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ON CUBIC BIRATIONAL MAPS OF P3
C

by Julie Déserti & Frédéric Han

Abstract. — We study the birational maps of P3
C. More precisely we describe the

irreducible components of the set of birational maps of bidegree (3, 3) (resp. (3, 4),
resp. (3, 5)).

Résumé (Sur les transformations birationnelles cubiques de P3
C)

Nous étudions les transformations birationnelles de P3
C. Plus précisément nous dé-

crivons les composantes irréductibles de l’ensemble des transformations birationnelles
de P3

C de bidegré (3, 3) (resp. (3, 4), resp. (3, 5)).

1. Introduction

The Cremona group, denoted Bir(PnC), is the group of birational maps of PnC
into itself. If n = 2 a lot of properties have been established (see [4, 9] for
example). As far as we know the situation is much more different for n ≥ 3

(see [14, 5] for example). If ψ is an element of Bir(P2
C) then degψ = degψ−1.

It is not the case in higher dimensions; if ψ belongs to Bir(P3
C) we only have

the inequality degψ−1 ≤ (degψ)2 so one introduces the bidegree of ψ as the
pair (degψ,degψ−1). For n = 2, Bird(P2

C) is the set of birational maps of
the complex projective plane of degree d; for n ≥ 3 denote by Bird,d′(PnC)
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218 J. DÉSERTI & F. HAN

the set of elements of Bir(PnC) of bidegree (d, d′), and by Bird(PnC) the union⋃
d′ Bird,d′(PnC). The set Bird(PnC) inherits a structure of algebraic variety as a

locally closed subspace a projective space ([3, Lemma 2.4, Proposition 2.15]),
and we will always consider it with the Zariski topology ([8, 17]).

The varieties Bir2(P2
C) and Bir3(P2

C) are described in [6]: Bir2(P2
C) is

smooth, and irreducible in the space of quadratic rational maps of the complex
projective plane whereas Bir3(P2

C) is irreducible, and rationnally connected.
Besides, Bird(P2

C) is not irreducible as soon as d > 3 (see [2]). In [7] Cremona
studies three types of generic elements of Bir2(P3

C). Then there were some
articles on the subject, and finally a precise description of Bir2(P3

C); the
left-right conjugacy is the following one

PGL(4;C)× Bir(P3
C)× PGL(4;C)→ Bir(P3

C), (A,ψ,B) 7→ AψB−1.

Pan, Ronga and Vust give quadratic birational maps of P3
C up to left-right

conjugacy, and show that there are only finitely many biclasses ([15, The-
orems 3.1.1, 3.2.1, 3.2.2, 3.3.1]). In particular they show that Bir2(P3

C) has
three irreducible components of dimension 26, 28, 29; the component of dimen-
sion 26 (resp. 28, resp. 29) corresponds to birational maps of bidegree (2, 4)

(resp. (2, 3), resp. (2, 2)). We will see that the situation is slightly different
for Bir3(P3

C); in particular we cannot expect such an explicit list of biclasses
because there are infinitely many of biclasses (already the dimension of the
family E2 of the classic cubo-cubic example is 39 that is strictly larger that
dim(PGL(4;C)× PGL(4;C)) = 30). That’s why the approach is different.

We do not have such a precise description ofBird(P3
C) for d ≥ 4. Nevertheless

we can find a very fine and classical contribution for Bir3(P3
C) due to Hudson

([11]); in the appendix we reproduce Table VI of [11]. Hudson introduces there
some invariants to establish her classification. But it gives rise to many cases,
and we also find examples where invariants take values that do not appear
in her table. We do not know references explaining how her families fall into
irreducible components of Bir3,d(P3

C) so we focus on this natural question.

Definition. — An element ψ of Bir3,d(P3
C) is ruled if the strict transform of

a generic plane under ψ−1 is a ruled cubic surface.

Denote by ruled3,d the set of (3, d) ruled maps; we detail it in Lemma 2.3. Let
us remark that there are no ruled birational maps of bidegree (3, d) with d ≥ 6.

We describe the irreducible components of Bir3,d(P3
C) for 3 ≤ d ≤ 5. Let us

recall that the inverse of an element of Bir3,2(P3
C) is quadratic and so treated

in [15].

Theorem A. — Assume that 2 ≤ d ≤ 5. The set ruled3,d is an irreducible
component of Bir3,d(P3

C).

tome 144 – 2016 – no 2
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In bidegree (3, 3) (resp. (3, 4)) there is only an other irreducible component;
in bidegree (3, 5) there are three others.

The set ruled3,3 intersects the closure of any irreducible component
of Bir3,4(P3

C) (the closures being taken in Bir3(P3
C)).

Notations 1.1. — Consider a dominant rational map ψ from P3
C into itself.

For a generic line `, the preimage of ` by ψ is a complete intersection Γ`; define
the scheme C2 to be the union of the irreducible components of Γ` supported
in the base locus of ψ. Define C1 by liaison from C2 in Γ`. Remark that if ψ
is birational, then C1 = ψ−1

∗ (`). Let us denote by pa( C i) the arithmetic genus
of C i.

It is difficult to find a uniform approach to classify elements of Bir3(P3
C).

Nevertheless in small genus we succeed to obtain some common detailed results;
before stating them, let us introduce some notations.

Let us remark that the inequality degψ−1 ≤ (degψ)2 mentioned previously
directly follows from

(degψ)2 = degψ−1 + deg C2.

Proposition B. — Let ψ be a (3, d) birational map of P3
C.

Assume that ψ is not ruled, and pa( C1) = 0, i.e., C1 is smooth. Then
• d ≤ 6;
• and C2 is a curve of degree 9− d, and arithmetic genus 9− 2d.
Suppose pa( C1) = 1, and 2 ≤ d ≤ 6. Then
• there exists a singular point p of C1 independent of the choice of C1;
• if d ≤ 4, all the cubic surfaces of the linear system Λψ are singular at p;
• the curve C2 is of degree 9−d, of arithmetic genus 10−2d, and lies on a
unique quadric Q; more precisely I C2

= (Q,S1, . . . , Sd−2) where the Si’s
are independent cubics modulo Q.

We denote by Bir3,d,p2(P3
C) the subset of non-ruled (3, d) birational maps

such that C2 is of degree 9− d, and arithmetic genus p2. One has the following
statement:

Theorem C. — If p2 ∈ {3, 4}, then Bir3,3,p2(P3
C) is non-empty, and irre-

ducible; Bir3,3,p2(P3
C) is empty as soon as p2 6∈ {3, 4}.

If p2 ∈ {1, 2}, then Bir3,4,p2(P3
C) is non-empty, and irreducible; Bir3,4,p2(P3

C)

is empty as soon as p2 6∈ {1, 2}.
The set Bir3,5,p2(P3

C) is empty as soon as p2 6∈ {−1, 0, 1} and
• if p2 = −1, then Bir3,5,p2(P3

C) is non-empty, and irreducible;
• if p2 = 0, then Bir3,5,p2(P3

C) is non-empty, and has two irreducible com-
ponents;

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



220 J. DÉSERTI & F. HAN

• if p2 = 1, then Bir3,5,p2(P3
C) is non-empty, and has three irreducible com-

ponents.

Organization of the article. — In §2 we explain the particular case of ruled bi-
rational maps and set some notations. Then §3 is devoted to liaison theory that
plays a big role in the description of the irreducible components of Bir3,3(P3

C)

(see §4), Bir3,4(P3
C) (see §5) and Bir3,5(P3

C) (see §6). In the last section we give
some illustrations of invariants considered by Hudson, especially concerning the
local study of the preimage of a line. Since Hudson’s book is very old, let us
recall her classification in the first part of the appendix.

Acknowledgment. — The authors would like to thank Jérémy Blanc and the
referee for their helpful comments.

2. Definitions, notations and first properties

2.1. Definitions and notations. — Let ψ : P3
C 99K P3

C be a rational map given,
for some choice of coordinates, by

(z0 : z1 : z2 : z3) 99K
(
ψ0(z0, z1, z2, z3) : ψ1(z0, z1, z2, z3)

: ψ2(z0, z1, z2, z3) : ψ3(z0, z1, z2, z3)
)

where the ψi’s are homogeneous polynomials of the same degree d, and without
common factors. The map ψ is called a Cremona transformation or a birational
map of P3

C if it has a rational inverse ψ−1. The degree of ψ, denoted degψ, is d.
The pair (degψ,degψ−1) is the bidegree of ψ, we say that ψ is a (degψ,degψ−1)

birational map. The indeterminacy set of ψ is the set of the common zeros of the
ψi’s. Denote by Iψ the ideal generated by the ψi’s, and by Λψ ⊂ H0

(
OP3

C
(d)
)

the subspace of dimension 4 generated by the ψi, and by deg Iψ the degree of
the scheme defined by the ideal Iψ. The scheme whose ideal is Iψ is denoted
Fψ. It is called base locus of ψ. If dimFψ = 0 then F 1

ψ = ∅, otherwise F 1
ψ is the

maximal subscheme of Fψ of dimension 1 without isolated point, and without
embedded point. Furthermore if C is a curve we will denote by ω C its dualizing
sheaf.

Remark 2.1. — We will sometimes identify a divisor of P3
C and its equation;

for instance a surface Q of P3
C will have ideal (Q).

Let us give a few comments about Table VI of [11]. For any subscheme X
of P3

C denote by IX the ideal of X in P3
C. Let ψ be a (3, d) birational map.

A point p is a double point if all the cubic surfaces of Λψ are singular at p. A
point p is a binode if all the cubic surfaces of Λψ are singular at p with order
2 approximation at p a quadratic form of rank ≤ 2 (but this quadratic form
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is allowed to vary in Λψ). In other words p is a binode if there is a degree 1

element h of I p such that all the cubics belong to (h · I p) + I 3
p. A point p

is a double point of contact if the general element of Λψ is singular at p with
order 2 approximation at p a quadratic form generically constant on Λψ. In
other words p is a double point of contact if all the cubics belong to I 3

p + (Q)

with Q of degree 2 and singular at p. A point p is a point of contact if all the
cubics belong to I 2

p + (S) where S is a cubic smooth at p. A point p is a point
of osculation if all the cubics belong to I 3

p + (S) where S is a cubic smooth
at p.

Notations 2.2. — We will denote by Ei the i-th family of Table VI and
by C[z0, z1, . . . , zn]d the set of homogeneous polynomials of degree d in the vari-
ables z0, z1, . . ., zn.

2.2. First properties. — Let us now focus on particular birational maps that
cannot be dealt as the others: the ruled birational maps of P3

C. Recall that
there are two projective models of irreducible ruled cubic surfaces ; they both
have the same normalization: P2

C blown up at one point which can be realized
as a cubic surface in P4

C (see [10, Chapter 10, introduction of § 4.4], [10, Chapter
9, § 2.1]).

Lemma 2.3. — Assume that 2 ≤ d ≤ 5.
• The set ruled3,d is irreducible.
• Let ψ be a general element of ruled3,d, and let δ be the common line to
all elements of

{
SingS |S ∈ Λψ

}
; then

Iψ = I 2
δ ∩ I ∆1

∩ I ∆2
∩ · · · ∩ I ∆5−d ∩ IK

where ∆i are disjoint lines that intersect δ at a unique point, and K is a
general reduced scheme of length 2d− 4.

Proof. — Let ψ be an element of ruled3,d. Recall that F 1
ψ is the maximal sub-

scheme of Fψ of dimension 1 without isolated point, and without embedded
point, i.e., F 1

ψ is a locally Cohen-Macaulay curve.
An irreducible element S of Λψ is a ruled surface; it is the projection of a

smooth cubic ruled surface S̃ of P4
C. Recall that S̃ is also the blow-up P̃2

C(p)

of P2
C at a point p. The embedding of S̃ in P4

C is given by the linear system
| I p(2h)|, where h is the class of an hyperplane in P2

C. Let us denote by π the
projection S̃ → S, by H the class of the restriction of an hyperplane of P4

C to S̃,
and by Ep the exceptional divisor associated to the blow-up of p. Set δ̃ = π−1δ,
C̃1 = π−1( C1), and F̃ 1

ψ = π−1(F 1
ψ). One has

δ̃ ∼ π∗h, H = 2π∗h− Ep, f = π∗h− Ep, F̃ 1
ψ = 2δ̃ +D

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



222 J. DÉSERTI & F. HAN

where D is an effective divisor. As C̃1 + F̃ 1
ψ = 3H, C̃1 · f = 1 and C̃1 ·H = d

one gets D ·f = 0, and D ·H = 5−d; therefore D = (5−d)f . And we conclude

that ψ has a residual base scheme of length 2d− 4 from C̃1

2
= 2d− 3.

Conversely, take a ruled cubic surface S̃ in P4
C, choose a general projection

π to P3
C, take a general element ∆ of | OS̃

(
(5− d)f

)
| and take a set K̃ of 2d− 4

general points on S̃ of ideal I K̃ . We have h0
(
I K̃( C̃1)

)
= 3, and thanks to

the equality C̃1

2
= 2d − 3 and the surjection H0 OP3

C
(3) � H0 OS(3) we get

an element of ruled3,d. Therefore the family of such (S̃, π,∆, I K̃) dominates
ruled3,d, and ruled3,d is irreducible.

To prove the claimed decomposition of Iψ for the general element ψ ∈
ruled3,d, let us denote by J the right part of the equality.

J = I 2
δ ∩ I ∆1

∩ I ∆2
∩ . . . ∩ I ∆5−d ∩ IK .

We already have Iψ ⊂ J . Furthermore, thanks to the computations on S̃, one
has h0

(
J (3)

)
= dim Λψ = 4, and h0

(
J (2)

)
= 0; hence to prove Iψ = J we just

have to prove that J is generated by polynomials of degree ≤ 3. As ψ is general,
one can assume that the line defined by (z2, z3) is trisecant to ∆1 ∪∆2 ∪∆3,
so up to a change of coordinates we have

I δ = (z0, z1),

I ∆1
= (z0, z2),

I ∆2 = (z1, z3),

I ∆3 = (z0 + z1, z2 + z3)

then

I 2
δ =

(
z2

0 , z0z1, z
2
1

)
,

I 2
δ ∩ I ∆1

=
(
z2

0 , z0z1, z
2
1z2

)
,

I 2
δ ∩ I ∆1 ∩ I ∆2 =

(
z0z1, z

2
0z3, z

2
1z2

)
,

I 2
δ ∩ I ∆1

∩ I ∆2
∩ I ∆3

=
(
z0z1(z0 + z1), z0z1(z2 + z3), z1z2(z0 + z1),

z0z3(z0 + z1)
)

so we have the equality Iψ = J when d = 2. For d ∈ {3, 4, 5}, it is now enough
to produce examples of 2d − 4 points such that this equality is true to obtain
it to 2d− 4 general points. So consider the following 3 pairs of points of ideal

A1 = (z0 + z2, z1 + 2z2 + z3, z0z3),

A2 = (2z0 + z1 + z2, z3 − z1, z1z2),

A3 = (z2, z0 + z3, z
2
1 − z2

0).
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Denote by Iψ3 (resp. Iψ4 , Iψ5) the ideal generated by the 4 cubics of J 3 =

I 2
δ ∩ I ∆1

∩ I ∆2
∩ A3 (resp. J 4 = I 2

δ ∩ I ∆1
∩ A2∩ A3, J 5 = I 2

δ ∩ A1∩ A2∩ A3).
Then we can compute the following equalities for instance with Macaulay2:
Iψ3

= (z2
1z2, z0z1z2, z0z

2
1 + z2

0z3, z
2
0z1 + z0z1z3), Iψ4

= (z2
1z2, z0z1z2, z

2
0z1 −

z0z
2
1 − z2

0z3 + z0z1z3, 2z
3
0 + z0z

2
1 + z2

0z2 + 3z2
0z3), Iψ5

= (2z0z1z2− z2
1z2, 5z0z

2
1 +

z3
1 + 7z2

1z2 + 4z2
0z3 + z0z1z3 + z2

1z3, 10z2
0z1 + 2z3

1 + 9z2
1z2 − 2z2

0z3 + 12z0z1z3 +

2z2
1z3, 40z3

0 − 4z3
1 + 20z2

0z2 − 3z2
1z2 + 44z2

0z3 − 4z0z1z3 − 4z2
1z3),

Iψ3
= J 3, Iψ4

= J 4, (z0, z1, z2, z3) = ( J 5 : Iψ5
).

So we have obtained the claimed decomposition of Iψ but when d = 5 the ideal
IK has an irrelevant component.

Lemma 2.4. — The following inclusions hold:

ruled3,2 ⊂ ruled3,3, ruled3,3 ⊂ ruled3,4, ruled3,4 ⊂ ruled3,5.

Proof (with the notations introduced in the proof of Lemma 2.3)

Let us start with an element of ruled3,5 with base curve δ2 and 6 base points
pi in general position as described in Lemma 2.3. Then move two of the pi,
for instance p1, p2 until the line (p1p2) intersects δ. The line (p1p2) is now
automatically in the base locus of the linear system Λψ, and we obtain like this
a generic element of ruled3.4.

A similar argument allows to prove the two other inclusions.

Let us recall the notion of genus of a birational map ([11, Chapter IX]). The
genus gψ of ψ ∈ Bir(P3

C) is the geometric genus of the curve h∩ψ−1(h′) where
h and h′ are generic hyperplanes of P3

C. The equality gψ = gψ−1 holds.

Remark 2.5. — If ψ is a birational map of P3
C of degree 1 (resp. 2, resp. 3)

then gψ = 0 (resp. gψ = 0, resp. gψ ≤ 1).

One can give a characterization of ruled maps of Bir3,d(P3
C) in terms of the

genus.

Proposition 2.6. — Let ψ be in Bir3,d(P3
C), 2 ≤ d ≤ 5. The genus of ψ is

zero if and only if ψ is ruled.

Proof. — On the one hand there exists a curve C such that Iψ ⊂ I 2
C if and

only if ψ is ruled; on the other hand gψ = 0 if and only if for generic hyperplanes
h, h′ of P3

C the curve h ∩ ψ−1(h′) is a singular rational cubic.
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3. Liaison

According to [16] we say that two curves Γ1 and Γ2 of P3
C are geometrically

linked if

• Γ1 ∪ Γ2 is a complete intersection,
• Γ1 and Γ2 have no common component.

Let Γ1 and Γ2 be two curves geometrically linked. Recall that I Γ1∪Γ2
=

I Γ1
∩ I Γ2

. According to [16, Proposition 1.1] one has IΓ1

IΓ1∪Γ2
= Hom

(
OΓ2

, OΓ1∪Γ2

)
.

Since the kernel of OΓ1∪Γ2
−→ OΓ2

is IΓ1

IΓ1∪Γ2
one gets the following fundamental

statement: if Γ1, Γ2 are two curves geometrically linked, then

0 −→ ωΓ1
−→ ωΓ1∪Γ2

−→ OΓ2
⊗ ωΓ1∪Γ2

−→ 0.

Lemma 3.1. — Let ψ be a rational map of P3
C of degree 3. We have

ω C1∪ C2
= O C1∪ C2

(2h),

where h denotes an hyperplane of P3
C, and for i ∈ {1, 2}

(3.1) 0 −→ ω Ci −→ O Ci∪ C3−i(2h) −→ O C3−i(2h) −→ 0

and

(3.2) 0 −→ I C1∪ C2
(3h) −→ I Ci(3h) −→ ω C3−i(h) −→ 0

The first exact sequence (3.1) directly implies the following equalities (i ∈
{1, 2})

H0
(
ω Ci(−h)

)
= H0

(
I C3−i(h)

)
, H0

(
ω Ci) = H0

(
I C3−i(2h)

)
,

h0ω Ci(h) + 2 = h0
(
I C3−i(3h)

)
, H0

(
ω Ci(h)

)
=

H0
(
I C3−i(3h)

)
H0
(
I C1∪ C2

(3h)
) .

Corollary 3.2. — Let ψ be a rational map of P3
C of degree 3. The ideal I C3−i

is generated by cubics if and only if ω Ci(h) is globally generated.

Proof. — It directly follows from the exact sequence (3.2).

Corollary 3.3. — Let ψ be a rational map of P3
C of degree 3. Then

deg C2 − deg C1 = pa( C2)− pa( C1).

Proof. — Taking the restriction of (3.1) to C i for i = 1, 2 gives

degω Ci = 2 deg C i − deg( C1 ∩ C2),

and hence
deg C2 − deg C1 = pa( C2)− pa( C1).
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Furthermore when C1 and C2 have no common component, and ω Ci is
locally free, then length ( C1 ∩ C2) = degω∨Ci(2h), i.e.,∑

p∈ C1∩ C2

length( C1 ∩ C2){p} = 2 deg C i − 2pa( C i) + 2.

In the preimage of a generic point of P3
C by ψ, the number of points that do

not lie in the base locus is given by

3 deg C1 −
∑

p∈ C1∩ C2

length(S ∩ C1){p} −
∑
p∈Θ

length(S ∩ C1){p}

where S ∈ Λψ is non-zero modulo H0
(
I C1∪ C2

(3h)
)
, and where Θ denotes the

set of irreducible components of dimension 0 of the base locus Fψ of ψ.

Lemma 3.4. — Let ψ be a rational map of P3
C of degree 3. Let Θ denote the

set of irreducible components of dimension 0 of Fψ. The map ψ is birational if
and only if

1 = 3 deg C1 −
∑

p∈ C1∩ C2

length(S ∩ C1){p} −
∑
p∈Θ

length(S ∩ C1){p}.

Remark that the computation of length(S ∩ C1){p} depends on the nature
of the singularity of the cubic surface and on the behavior of C2 in that point
(see §7).

Lemma 3.5. — Let ψ be a (3, d) Cremona map. Assume that d ≥ 4, then C1

is not contained in a plane.

Proof. — Suppose for instance that d = 4; then C1 is contained in an irre-
ducible cubic surface S. If C1 is contained in a plane P then all the lines in P
are quadrisecant to S: contradiction with the irreducibility of S.

Lemma 3.6. — Let ψ be a (3, d) birational map, and let p be a point on C1.
Assume that the degree of the tangent cone of C1 at p is strictly less than 4. If
any S in Λψ is singular at p, then p belongs to C2.

Proof. — If any S in Λψ is singular at p, then the degree of the tangent cone
of C1 ∪ C2 at p is at least 4 because it is the complete intersection of two
surfaces singular at p. Hence p has to belong to C2.

Lemma 3.7. — Let ψ be a non-ruled (3, d) birational map, and let C1 be a
general element of Λψ. The support of Sing C1 is independent of the choice
of C1.
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Proof. — Let us show that there is a singular point independent of the choice
of C1. Let us consider an element S of Λψ with finite singular locus. Let π : S̃ →
S be a minimal desingularization of S, and let C̃1 be the strict transform of C1.
The elements of Λψ give a linear system in | O S̃( C̃1)| whose base locus denoted

Ω is finite. According to Bertini’s theorem applied on S̃ one has the inclusion
Sing C1 ⊂ π(Ω)∪SingS. The assertion thus follows from the fact that Ω∪SingS

is finite.

Theorem 3.8. — Let ψ be a (3, d) birational map, 2 ≤ d ≤ 6, that is not
ruled. Assume that pa( C1) = 1. Then

• there exists a singular point p of C1 independent of the choice of C1;
• if d ≤ 4, all the cubic surfaces of the linear system Λψ are singular at p;
• the curve C2 is of degree 9−d, of arithmetic genus 10−2d, and lies on a
unique quadric Q; more precisely I C2

= (Q,S1, . . . , Sd−2) where the Si’s
are independent cubics modulo Q.

Remark 3.9. — As soon as d = 5 the second assertion is not true. Indeed
for d = 5 we obtain two families: one for which all the elements of Λψ are
singular, and another one for which it is not the case (§6).

Proof. — The first assertion directly follows from Lemma 3.7.
Since pa( C1) = 1, the curve C2 lies on a unique quadric Q. The arithmetic

genus of C2 is obtained from deg C2−deg C1 = pa( C2)−pa( C1) (Corollary 3.3).
As pa( C1) = 1, ω C1

(h) has no base point, and I C2
is generated by cubics

(Corollary 3.2). The number of cubics containing C2 independent modulo the
multiple of Q is d− 2: the liaison sequence (Lemma 3.1) becomes

0 −→ O C1
(h) −→ O C1∪ C2

(3h) −→ O C2
(3h) −→ 0

one gets that

h0 O C2
(3h) = h0 O C1∪ C2

(3h)− h0 O C1
(h) = 18− d.

This implies that

h0 I C2
(3h) = 20− h0 O C2

(3h) = d+ 2.

If we remove the four multiples of Q one obtains d+ 2− 4 = d− 2 cubics, and
finally I C2

= (Q,S1, . . . , Sd−2).

Corollary 3.3 and Theorem 3.8 imply Proposition B.

Proposition 3.10. — For 2 ≤ d ≤ 5 the set ruled3,d is an irreducible compo-
nent of Bir3,d(P3

C).

tome 144 – 2016 – no 2



ON CUBIC BIRATIONAL MAPS OF P3
C 227

Proof. — Let us use the notations introduced in Lemma 2.3. Note that F 1
ψ ⊂

C2. If ψ ∈ Bir3,d(P3
C) is not ruled then at a generic point p ∈ F 1

ψ there exists
an element of Λψ smooth at p. Hence F 1

ψ is locally complete intersection at p
and degF 1

ψ = deg C2. In particular deg Iψ = 9− d.
Consider now a general element ψ in ruled3,d. From Lemma 2.3 there is a

line ` such that ` ⊂ SingS for any S ∈ Λψ; the set F 1
ψ has an irreducible

component whose ideal is I 2
` and F 1

ψ is not locally complete intersection. This
multiple structure has to be contained in C2 but since C2 is generically locally
complete intersection the inequality deg C2 > degF 1

ψ holds; it can be rewritten
deg Iψ < 9− d.

As d > 9 for any ψ ∈ Bir3,d(P3
C), Iψ defines a 1-dimensional subscheme

of P3
C so by the semi-continuity theorem ψ 7→ deg Iψ is upper semi-continuous.

Hence the number deg Iψ cannot decrease by specialization, and ruled3,d is not
included in an irreducible component in Bir3,d(P3

C) whose generic element is
not ruled.

Corollary 3.11. — Let ψ be a (3, ·) birational map of P3
C; if the general

element of Λψ is smooth or with isolated singularities, then degF 1
ψ = deg C2.

4. (3, 3) Cremona transformations

4.1. Some known results

4.1.1. — In the literature one can find different points of view concerning the
classification of (3, 3) birational maps. For example Hudson introduced many
invariants related to singularities of families of surfaces and gave four families
described in the appendix; nevertheless we do not understand why the family
E3.5 defined below does not appear. Pan chose an other point of view and
regrouped (3, 3) birational maps into three families. A (3, 3) birational map ψ
of P3

C is called determinantal if there exists a 4×3 matrixM with linear entries
such that ψ is given by the four 3× 3 minors of the matrix M ; the inverse ψ−1

is also determinantal. Let us denote by TD
3,3 the set of determinantal maps.

A (3, 3) Cremona transformation is a de Jonquières one if and only if the
strict transform of a general line under ψ−1 is a singular plane rational cubic
curve whose singular point is fixed. For such a map there is always a quadric
contracted onto a point, the corresponding fixed point for ψ−1 which is also a
de Jonquières transformation. The de Jonquières transformations form the set
TJ

3,3. Pan established the following ([13, Theorem 1.2]):

Bir3,3(P3
C) = TD

3,3 ∪TJ
3,3 ∪ ruled3,3;

in other words an element of Bir3,3(P3
C) is a determinantal map, or a de Jon-

quières map, or a ruled map.
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Remark 4.1. — One has TD
3,3 = Bir3,3,3(P3

C) and TJ
3,3 = Bir3,3,4(P3

C); hence
Bir3,3,p2(P3

C) is irreducible for p2 ∈ {3, 4} (see [13]).

Remark 4.2. — The birational involution (z0z
2
1 : z2

0z1 : z2
0z2 : z2

1z3) is deter-
minantal, the matrix being 

z0 z3 0

−z1 0 z2

0 0 −z1

0 −z0 0

 ,
and also ruled: all the partial derivatives of the components of the map vanish
on z0 = z1 = 0. The Cremona transformation (z3

0 : z2
0z1 : z2

0z2 : z2
1z3) is a

de Jonquières and a ruled one; note that its primary decomposition (obtained
with Macaulay2) is

(z2
0 , z

2
1) ∩ (z2

0 , z3) ∩ (z3
0 , z1, z2)

and that its primary component (z2
0 , z

2
1) is locally complete intersection con-

trary to the general case (Lemma 2.3)(1).

One has ([12])

TD
3,3 ∩TJ

3,3 = ∅, TD
3,3 ∩ ruled3,3 6= ∅, TJ

3,3 ∩ ruled3,3 6= ∅.

We deal with the natural description of the irreducible components of Bir3,3

which does not coincide with Pan’s point of view since one of his family is
contained in the closure of another one.

4.2. Irreducible components of the set of (3, 3) birational maps

4.2.1. General description of (3, 3) birational maps. — One already describes
an irreducible component of Bir3,3(P3

C), the one that contains (3, 3) ruled bira-
tional maps (Proposition 3.10). Hence let us consider the case where the linear
system Λψ associated to ψ ∈ Bir3,3(P3

C) contains a cubic surface without double
line.

– If C1 is smooth then it is a twisted cubic, we are in family E2 of Table
VI (see the appendix). In that case ψ is determinantal; more precisely a
(3, 3) birational map is determinantal if and only if its base locus scheme
is an arithmetically Cohen-Macaulay curve of degree 6 and (arithmetic)
genus 3 (see [1, Proposition 1]).

(1) Thanks to the referee for mentioning it to us.
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– Otherwise ω C1
= O C1

, and ψ belongs to the irreducible family TJ
3,3 of

Jonquières maps ( E3 in terms of Hudson’s classification). The curve C2

lies on a quadric described by the quadratic form Q. According to The-
orem 3.8 the ideal of C2 is (Q,S), and there exists a point p such that
p ∈ Q, and p is a singular point of S. Furthermore Iψ = I pQ + (S).
Reciprocally such a triplet (p,Q, S) induces a birational map.

The family TJ
3,3 is stratified as follows by Hudson (all the cases belong

to E3):
• Description of E3. The general element of I pQ+ (S) has an ordi-

nary quadratic singularity at p (configuration (2, 2) of Table 1 (see
§7)), and the generic cubic is singular at p with a quadratic form
of rank 3.
• Description of E3.5. The point p lies on Q (p is a smooth point

or not) and the generic cubic is singular at p with a quadratic
form of rank 2. In other words p is a binode and this happens
when one of the two biplanes is contained in TpQ, it corresponds
to the configuration (2, 3)′ of Table 1 (see §7). The generic cubic
is singular at p with a quadratic form of rank 2; this case does
not appear in Table VI (see the appendix). Let us denote by E3.5

the set of the associated (3, 3) birational maps. The curve C2 has
degree 6 and a triple point (in Q).

• Description of E4. The point p is a double point of contact, it
corresponds to configuration (2, 4) of Table 1 (see §7).

Proposition 4.3. — One has

dim E2 = 39, dim E3 = 38, dim E3.5 = 35, dim E4 = 35, dim E5 = 31,

and

E3 = TJ
3,3, E̊3.5 ⊂ E3, E̊4 ⊂ E3, E̊4 6⊂ E3.5, E̊3.5 6⊂ E4.

Proof. — Let us justify the equality dim E3 = 38. We have to choose a quadric
Q and a point p on Q, this gives 9 + 2 = 11. Then we take a cubic surface
singular at p that yields to 19 − 4 = 15; since we look at this surface modulo
pQ one gets 15− 3 = 12 so

dim E3 = 11 + 12 + 15 = 38.

Let us deal with dim E4. We take a singular quadric Q this gives 8. Then we
take a cubic singular at p, modulo pQ and this yields to 19− 4− 3 = 12, and
finally one obtains 12 + 8 + 15 = 35.
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4.2.2. Irreducible components

Theorem 4.4. — The set ruled3,3 is an irreducible component of Bir3,3(P3
C),

and there is only one another irreducible component in Bir3,3(P3
C). More pre-

cisely the set of the de Jonquières maps E3 is contained in the closure of de-
terminantal ones E2 whereas ruled3,3 6⊂ E2.

Proof. — Let us consider the matrix A given by
0 0 0

−z1 −z2 0

z0 0 −z2

0 z0 z1


and let Ai denote the matrix A minus the (i + 1)-th line. If i > 0, the 2 × 2

minors of Ai are divisible by zi−1.
Consider the 4×3 matrix B given by

[
bij
]
1≤i≤4, 1≤j≤3

with bij ∈ H0
(
OP3

C
(1)
)
;

as previously, Bi is the matrix B minus the (i+ 1)-th line. Denote by ∆j,k the
determinant of the matrix A0 minus the j-th line and the k-th column; the
∆j,k generate C[z0, z1, z2]2. One has

det(A0 + tB0) = t · S [t2]

where

S = (b21+b43)∆1,1−(b31−b42)∆2,1+(b33−b22)∆1,2+b23∆1,3+b32∆2,2+b41∆3,1

is a generic cubic of the ideal (z0, z1, z2)2. For i > 0

det(Ai + tBi) = detAi + t · (zi+1Q)(−1)i+1 = t · (zi+1Q)(−1)i+1 [t2]

where Q = b1,1z2 − b1,2z1 + b1,3z0 is the equation of a generic quadric that
contains (0, 0, 0, 1). So the map[

det(A0 + tB0)

t
:

det(A1 + tB1)

t
:

det(A2 + tB2)

t
:

det(A3 + tB3)

t

]
allows to go from E2 to a general element of E3.

Furthermore E3 and ruled3,3 are different components (Proposition 3.10).

5. (3, 4) Cremona transformations

5.1. General description of (3, 4) birational maps. — The ruled maps ruled3,4 give
rise to an irreducible component (Proposition 3.10). Let us now focus on the
case where the linear system Λψ associated to ψ ∈ Bir3,4(P3

C) contains a cubic
surface without double line.
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– First case: C1 is smooth. From h0ω C1
(h) = 3 one gets that C2 lies on five

cubics. Since pa( C1) = 0 we have ω C2
= O C2

(Corollary 3.3). The curve
C1 lies on a quadric (Lemma 3.1). This configuration corresponds to E6.

– Second case: C1 is a singular curve of degree 4 not contained in a plane
(see Lemma 3.5) so ω C1

= O C1
. The curve C1 lies on two quadrics and

C2 on six cubics (h0ω C1
(h) = 4). Let p be the singular point of C1; all

elements of Λψ are singular at p (Theorem 3.8), and p belongs to C2

(Lemma 3.6). The curve C2 lies on a unique quadric Q (Theorem 3.8), is
linked to a line ` in a (2, 3) complete intersection Q∩S1 (with degQ = 2

and degS1 = 3), and I C2
= (Q,S1, S2) with degS2 = 3 (Theorem 3.8).

Since C1 is of degree 4 and arithmetic genus 1, one has H0
(
O C1

(h)
)

=

H0
(
OP3

C
(1)
)
. Let us consider L = H0

(
I C1∪ C2

(3h)
)
⊂ Λψ and the map

H0
(
O C1

(h)
)
−→

H0
(
I C2

(3h)
)

L
, h 7→ Qh;

it is injective. Indeed dim( C1 ∩ Q) = 0 thus modulo Q the cubics
defining C1 are independent. Therefore Λψ is contained in (Q I p, S1, S2).
Let π : C̃1 → C1 be the normalization. The linear system induced by ψ◦π
is given by π∗ω C1

(h) = π∗ O C1
(h), and vanishes on π−1(p). This linear

system has degree 4 and the conductor π−1(p) has length 2 because
pa( C1) = 1. So it has a residual base point p1 ∈ C̃1 because ψ sends
birationally C1 onto a line. Deforming p1 to a general point p′ of C1 we
obtain the 4 dimensional vector space

Λ = H0
(
((Q I p, S1, S2) ∩ I p′)(3)

)
.

that is a deformation of Λψ. In the following lines we will prove that the
linear system given by Λ is birational.

Reciprocally let Q be a quadric, p be a point on Q, S1 be a cubic
singular at p and that contains a line ` of Q. If C2 is the residual of `
in (Q,S1), then there exists S2 singular at p such that I C2

= (Q,S1, S2).
Take p1 ∈ P3

C rQ, and set

Λ = H0
(
( I p1 ∩ (Q I p, S1, S2))(3)

)
.

Let L be a 2-dimensional general element of Λ; the general linked curve
to C2 in L, denoted C1,L, is of degree 4, is singular at p, lies on two
quadrics; furthermore the linear system induced by Λ on C1,L has the
two following properties:
• its base locus contains p and p1,
• it sends birationally C1,L onto a line.

In other words, Λ = Λψ for a (3, 4) birational map ψ.
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Let us give some explicit examples, the generic one and the degenera-
cies considered by Hudson:
• Description of E7. The quadric Q is smooth at p, and the rank of Q

is maximal. Hence the point p is an ordinary quadratic singularity
of the generic element of Λψ, we are in the configuration (2, 2) of
Table 1 (see §7).
• Description of E7.5. In that case, p is a binode, Q is smooth at p

and one of the two biplanes is contained in TpQ; we are in the
configuration (2, 3)′ of Table 1 (see §7). The set of such maps is
denoted E7.5, this case does not appear in Table VI but should
appear.
• Description of E8. The second way to obtain a binode is the follow-

ing one: Q is an irreducible cone with vertex p. This corresponds
to the configuration (2, 3) of Table 1 (see §7).
• Description of E9. The rank of Q is 2, and the point p is a double

point of contact; we are in the configuration (2, 4) of Table 1 (see
§7).
• Description of E10. The general element of Λψ has a double point

of contact and a binode (configurations (2, 4) and (1, 4) of Table
1, see §7). Hudson details this case carefully ([11, Chap. XV]).

Proposition 5.1. — One has the following properties:

dim E6 = 38, E7.5 ∪ E8 ⊂ E7

and

• a generic element of E7.5 is not a specialization of a generic element
of E8;
• a generic element of E8 is not a specialization of a generic element of E7.5;
• a generic element of E9 is a specialization of a generic element of E8.

Proof. — The arguments to establish dim E6 = 38 are similar to those used in
the proof of Proposition 4.3.

Let us justify that a generic element of E7.5 is not a specialization of a
generic element of E8 (we take the notations of §5.1): as we see when ψ ∈ E8

the quadric Q is always singular whereas it is not the case when ψ ∈ E7.5.
Conversely if ψ belongs to E7.5 then C2 is reducible but if ψ belongs to E8 the
curve C2 can be irreducible and reduced; hence a generic element of E8 is not
a specialization of a generic element of E7.5.

Theorem 5.2. — The set ruled3,4 is an irreducible component of Bir3,4(P3
C).

There is only one another irreducible component in Bir3,4(P3
C).
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Proof. — According to Proposition 3.10 the set ruled3,4 is an irreducible com-
ponent of Bir3,4(P3

C).
Any element ψ of E7 ∪ E7.5 ∪ E8 ∪ E9 ∪ E10 satisfies the following property:

Λψ = H0
(
((Q I p, S1, S2) ∩ I p1

)(3)
)

where p belongs to Q, p1 is an ordinary base point, and

Q = det

[
L0 L1

L2 L3

]
, S1 = L0Q1 + L1Q2, S2 = L2Q1 + L3Q2

with Li ∈ C[z0, z1, z2, z3]1, Qi ∈ C[z0, z1, z2]2. So E7, E7.5, E8 E9 and E10

belong to the same irreducible component E .
It remains to show that E = E6: let us consider

J =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 , N =


0 −z2 z3 L0

z2 0 L1 L2

−z3 −L1 0 L3

−L0 −L2 −L3 0

 , v =


z2

z1

z0

tz3


with Li linear forms and

Mt =

[
Jv

Nv

]
=

[
tz3 z0 −z1 −z2

tz3L0 +Q q1 q2 q3

]
with

Q = z0z3 − z1z2, q1 = z2
2 + z0L1 + tz3L2,

q2 = −z2z3 − z1L1 + tz3L3, q3 = −z2L0 − z1L2 − z0L3.

For generic Li’s and t 6= 0 the 2×2 minors ofMt generate the ideal of a generic
elliptic quintic curve as in E6. For M0 the 2× 2 minors become Qz0, Qz1, Qz2,
S1, S2, and S3 with

S1 = −z2Q, S2 = −z1q3 + z2q2, S3 = z0q3 + z2q1.

Therefore the ideal M2 generated by these minors is

(Qz0, Qz1, Qz2, S2, S3).

Denote by ` the line defined by I ` = (z1, z3). According to

z3S3 = −z2S2 +Q(q3 + L1z2) & z1S3 = −z0S2 − z2
2Q

M2 is the ideal of the residual of ` in the complete intersection of ideals (Q,S2).
To prove E7 ⊂ E6 we just need to show that one can obtain the generic element
of E7 with a good choice of the Li’s (Proposition 5.1); in other words it remains
to prove that S2 is generic among the cubics singular at p that contain `. Modulo
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Q one can assume that q3 = −z3a+ b, with a (resp. b) an element of C[z1, z2]1
(resp. C[z0, z1, z2]2). Then

S2 = −z3

(
z1a+ z2

2

)
+ z1

(
b− z2L1

)
;

in conclusion S2 = z3A + z2B for generic A and B in C[z0, z1, z2]2. As E6 is
irreducible E = E6.

5.2. Relations between Bir3,3(P3
C) and Bir3,4(P3

C). — One can now state the fol-
lowing result:

Proposition 5.3. — The set ruled3,3 intersects the closure of any irreducible
component of Bir3,4(P3

C).

Proof. — According to Lemma 2.4 and Theorem 5.2 it is sufficient to prove
that ruled3,3 intersects the closure of (3, 4) birational maps that are non-ruled.

Let us consider an element ψ of Bir3,4(P3
C) whose C2 is the union of the lines

of ideals

I δ = (z0, z
2
1), (z0 − εz2, z1), I `1 = (z0, z3), I `2 = (z1, z2).

Denote by J ε = (z0, z
2
1)∩ (z0− εz2, z1)∩ (z0, z3)∩ (z1, z2). One can check that

J ε = (z0z1, z
2
0z2 + εz0z

2
2 , z

2
1z3).

Set I ε = z0z1(z0, z1, z2) + (z2
0z2 + εz0z

2
2 , z

2
1z3). For a general p2 the map ψε

defined by Λψε = H0
(
( I ε ∩ I p2

)(3)
)
is birational; furthermore

• ψε ∈ Bir3,4(P3
C) r ruled3,4 for ε 6= 0;

• ψ0 ∈ ruled3,3.

As in the case of (3, 3) birational maps one has the following statement:

Theorem 5.4. — If p2 ∈ {1, 2}, then Bir3,4,p2(P3
C) is non-empty and irre-

ducible.

6. (3, 5) Cremona transformations

6.1. General description of (3, 5) birational maps. — We already find an irre-
ducible component of the (3, 5) birational maps: ruled3,5 (Proposition 3.10).
Let us now consider a (3, 5) Cremona transformation ψ such that Λψ contains
a cubic surface without double line.

Strategy. By Lemma 3.1 the image of C1 by ψ is given by a 2-dimensional
vector subspace u of H0

(
ω C1

(h)
)
. The restriction of ψ to C1 thus factorises by

the composition of C1 99K |H0
(
ω C1

(h)
)∨| with the projection |H0

(
ω C1

(h)
)∨| →

|u∨|. In the following cases we will use the equivalence between the birationality
of ψ and the birationality of the composition C1 99K |u∨|. It will be useful to
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compute the number of base points but also to show that a linear system is
birational.

6.1.1. Case: C1 smooth. — By (3.2) the image of C1 by ψ is given by a sub-
linear system of |ω C1

(h)|. In that situation degω C1
(h) = 3 so as ψ sends bira-

tionally C1 onto a line of P3
C the map ψ has a residual base scheme of length

2. The curve C2 has genus −1 and does not lie on a quadric; C2 is the disjoint
union of a twisted cubic and a line, so this case gives an irreducible family, and
the general element belongs to E12. Indeed suppose that ψ 6∈ E12, then C2 is the
union of two smooth conics Γ1 and Γ2 that do not intersect. Any Γi is contained
in a plane Pi. Denote by ` the intersection P1 ∩ P2. As #

(
` ∩ (Γ1 ∪ Γ2)

)
= 4,

all the cubic surfaces that contain Γ1 ∪ Γ2 contain `. So ` ⊂ C2: contradiction.

6.1.2. Case: C1 not smooth. — So pa( C1) ≥ 1, and by Corollary 3.3

pa( C2) = deg C2 − deg C1 + pa( C1) = −1 + pa( C1) ≥ 0.

Since C1 is not in a plane, pa( C1) ≤ 2. Therefore we only have to distinguish
the eventualities pa( C1) = 1 and pa( C1) = 2. Before looking at any of these
eventualities let us introduce the set

C =
{
irreducible curves of P3

C of degree 5 and geometric genus 0
}

•Assume first that pa( C1) = 1. Then O C1
= ω C1

. We will denote by π : P1
C →

C1 the normalization of C1.

a1. — Suppose first that all the elements of Λψ are singular at p ∈ P3
C. Denote

by L the 2-dimensional vector space Λψ ∩ H0
(
( I 2

p ∩ I C1
)(3h)

)
defining C1

and C2. Let us follow the strategy explained before. By the liaison sequence
(3.2) Λψ

L gives a vector subspace u of H0
(
ω C1

(h)
)

= H0
(
O C1

(h)
)
of dimension

2. It induces a projection from C1 to |u∨| that coincides with the restriction
of ψ to C1; hence this projection has degree 1. Moreover, via the identification
H0
(
O C1

(h)
)

= H0
(
π∗ O C1

(h)
)
, u is included in the set V1 of sections of OP1

C
(5)

whose base locus contains π−1(p); as pa( C1) = 1 the conductor π−1(p) has
length 2. So there is an other base scheme of length 2 because ψ| C1

: C1 99K |u∨|
is birational.

We would like to show that C2 moves in an irreducible family. We will do
this by deforming ψ (and C2) while C1 is fixed. So, p ∈ P3

C being fixed, let us
consider

Rp,1 =
{

C ∈ C |Sing C = {p}, pa( C) = 1
}

;

the set Rp,1 is an irreducible one. Remark that

h0 I C (3h) = h0
(
OP3

C
(3h))− h0

(
O C (3h)) = 20−

(
3 deg C + 1− pa( C)

)
= 5

and h0
(
( I 2

p ∩ I C )(3h))
)

= 5− 1 = 4 because C has a double point at p for all
C in Rp,1.
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Let us denote by F1 the set of ( C , L, u) ∈ R1,p × H0
(
( I 2

p ∩ I C )(3h)
)
× V1

defined by

– L ⊂ H0
(
( I 2

p ∩ I C )(3h)
)
of dimension 2 such that the residual of C in the

complete intersection defined by L has no common component with C ,
and C is geometrically linked to a curve denoted by C2,L,

– u ⊂ V1 of dimension 2 such that P1
C 99K |u∨| has degree 1 (N.B. the

general element of this family will then have two ordinary base points in
addition to π−1(p)).

The set F1 is irreducible since the choice of C is irreducible, and thus the choices
of L and u too.

If ( C , L, u) belongs to F1, let us set

hL : H0
(
I C2,L

(3h)
)
→ H0

(
ω C (h)

)
(recall that

H0
(

I C2,L
(3h)
)

L ' H0
(
ω C (h)

)
). Consider the map

κ1 : F1 → G
(
4; H0

(
OP3

C
(3)
))
, ( C , L, u) 7→ h−1

L (u).

By construction of F1 if ψ is a birational map such that pa( C1) = 1 and all
the elements of Λψ are singular at p, then Λψ is in the image of κ1.

Conversely one has:

Lemma 6.1. — The general element of imκ1 coincides with Λψ for some bi-
rational map ψ of E14.

Proof. — As F1 is irreducible it is enough to show that |h−1
L (u)| is a birational

system when ( C , L, u) is general in F1. In that situation C2,L is a curve of de-
gree 4, arithmetic genus 0, singular at p, lying on a smooth quadric. Therefore
C2,L is reducible; more precisely it is the union of a twisted cubic and a line of
this smooth quadric. All the elements of |h−1

L (u)| are cubic surfaces singular at p
because C2,L has a double point at p, and the residual pencil u ⊂ H0

(
ω C (h)

)
vanishes at p by definition of F1. Let C1 be the residual of C2,L in the in-
tersection of two general cubics of |h−1

L (u)|. Hence C1 is singular at p. As u
is by definition a pencil of sections of OP1

C
(5) vanishing on π−1(p) such that

P1
C 99K |u∨| has degree 1 the linear system |h−1

L (u)| sends birationally C1 onto
the line |u∨|. Therefore |h−1

L (u)| gives a birational map.

Let us remark that the previous irreducibility result asserts that the following
example (belonging to family E18) whose base locus is not on a smooth quadric
is nevertheless a deformation of elements of E14:
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Example 6.2. — Let C2 be the union of a line doubled on a smooth quadric
with two other lines, such that all these lines contain a same point p. Set

Q = z0z3 − z1z2, I p = (z0, z1, z2);

then I C2
= ((z2, z0)2 + (Q)) ∩ (z1, z2) ∩ (z0 − z2, z1 − z2). Now chose a double

point of contact (note that the tangent cone must contain the tangent cone
of C2):

I dpc = (z2
2z3 − z0z1z3) + (z0, z1, z2)3,

and let p1 and p2 be two general points. Define Iψ by I C2
∩ I dpc ∩ I p1 ∩ I p2 .

So Iψ is the intersections of I p1
∩ I p2

with

I C2
∩ I dpc =

(
z1z

2
2 − z3

2 , z0z
2
2 − z3

2 , z
2
1z2 − z3

2 − z0z1z3 + z2
2z3,

z0z1z2 − z3
2 , z

2
0z2 − z3

2 , z
2
0z1 − z3

2

)
.

The tangent cone of C2 at p has degree 4 but the tangent cone of C1 ∪ C2 at p
has degree 6, so C1 belongs to Rp,1.

b1. — Suppose now that Λψ contains a smooth element at p. Then p is a point
of contact, all the cubic surfaces are tangent at p; the curve C2 ⊂ Q is linked to
a curve of degree 2 and genus −1 so has degree 4 and genus 0. A general curve
of degree 4 and genus 0 is in fact rational, smooth on a smooth quadric Q and
we will see that such a curve can be "the C2" of a birational map of that type.
Hence this family of birational maps will turn out to be an irreducible one. Set
Q = z0z3 − z1z2, I `1 = (z0, z1), and I `2 = (z2, z3); one has

J = I `1∪`2 = (z0z2, z0z3, z1z2, z1z3).

Let S0 be the element of J given by

az0z2 + bz0z3 + cz1z3 a, b, c ∈ C[z0, z1, z2, z3]1;

one has I C2
= ((S0, Q) : J ) = (Q,S0, S1, S2) with

S1 = z2
0a+ z0z1b+ z2

1c, S2 = z2
2a+ z2z3b+ z2

3c.

The dimension of H0
(
I C2

(3h)
)
is 7; indeed one has the following seven cubics:

I C2
= 〈Qz0, Qz1, Qz2, Qz3, S0, S1, S2〉.

If ψ is a birational map, then ψ has no base point. Indeed u =
Λψ

H0
(

I C1∪ C2
(3)
)

is contained in the sections of OP1
C
(5) whose base locus contains 2π−1(p); we

thus already have an isomorphism between P1
C and |u∨|. The map ψ belongs

to E23. Conversely let L be a general 2-dimensional subspace of H0
((

I C2
∩
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(Q+ I 2
p)
)
(3h)

)
, and let C1 be the curve linked to C2 defined by L. Then the

previous arguments show that the image of C1 by∣∣∣∣∣H0
((

I C2
∩ (Q+ I 2

p)
)
(3h)

)
L

∣∣∣∣∣
is a line. So H0

((
I C2
∩ (Q+ I 2

p)
)
(3h)

)
= Λψ for some birational map ψ of this

type.
• Suppose that pa( C1) = 2. Then pa( C2) = 1, C1 lies on a quadric and

h0 I C1
(3) = 6. We will still denote by π : P1

C → C1 the normalization of C1.

a2. — Assume first that C1 has a triple point p. The curve C1 is linked to a line
by a complete intersection (Q,S0) where Q (resp. S0) is a cone (resp. a cubic)
singular at p. We can write the normalization π as follows (α2A,αβA, β2A,B)

with A ∈ C[α, β]3, B ∈ C[α, β]5, and A, B without common factors. Then
Q = z2

1 − z0z2, and H0
(
ω C1

(h)
)
can be identified with H0

(
I `(2)

)
, where I ` =

(z0, z1). So H0
(
ω C1

(h)
)
is the 6-dimensional subspaceW of H0

(
OP1

C
(6)
)
spanned

by (α, β) · (α2A,αβA, β2A,B). Let us consider the subspace VA = W ∩ (A)

of W . Let L be the 2-dimensional vector space Λψ ∩ H0
(
I C1

(3h)
)
. Then Λψ

L

gives a 2-dimensional vector subspace u of VA. The restriction of ψ to C1 gives
a birational map P1

C 99K |u∨| induced by u ⊂ VA ⊂ H0
(
OP1

C
(6)
)
. Furthermore ψ

has two ordinary base points. We would like to show that in that case C2 moves
in an irreducible family whose general element is the complete intersection of
two quadrics. We thus fix a point p ∈ P3

C and introduce the irreducible set

Rp,2 =
{

C ∈ C |Sing C = {p}, pa( C) = 2
}
.

We define the set F2 as the ( C , L, u) ∈ Rp,2 ×H0
(
I C (3h)

)
× VA given by

– L ⊂ H0
(
I C (3h)

)
of dimension 2 such that the residual of C in the com-

plete intersection defined by L has no common component with C , and
C is geometrically linked to a curve denoted by C2,L,

– u ⊂ VA of dimension 2 such that P1
C 99K |u∨| is birational and whose base

locus contains π−1(p).

Let us consider the map

κ2 : F2 → G
(
4; H0

(
OP3

C
(3)
))
, ( C , L, u) 7→ h−1

L (u).

If ψ is birational, if pa( C1) = 2, and C1 has a triple point then ψ belongs
to imκ2.

Lemma 6.3. — The general element of imκ2 coincides with Λψ for some bi-
rational map ψ of E13.
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Proof. — As F2 is irreducible one can consider a general element of F2, and
then C2,L is a curve of degree 4, genus 1 and is the complete intersection of two
smooth quadrics. The map ψ has two ordinary base points p1, p2, and belongs
to E13. More precisely Λψ = H0

(
( I C2,L

· I p ∩ I p1 ∩ I p2)(3)
)
.

Note that this irreducibility result asserts that the following example in
which C2 is not a complete intersection of two quadrics is nevertheless a defor-
mation of elements of E13.

Example 6.4. — Let C2 be the union of a plane cubic C3 singular at p and
a line ` containing p but not in the plane spanned by C3. For instance take

I p = (z0, z1, z2), I ` = (z1, z2), I C3
= (z1−z0, (z1−z2)z1z3 +z3

0 +z3
1 +z3

2).

Let I dpc be a double point of contact at p. (As we have already chosen C2, we
must take a quadric cone containing the tangent cone to C2). For instance one
can take: I dpc = (z2

1 − z0z2) + I 3
p, and let

J = I C2
∩ I dpc =

(
z0z

2
2 − z1z

2
2 , z0z1z2 − z2

1z2, z
2
0z2 − z2

1z2,

2z3
1 + z3

2 + z2
1z3 − z0z2z3, 2z0z

2
1 + z3

2 + z2
1z3 − z0z2z3,

2z2
0z1 + z3

2 + z2
1z3 − z0z2z3

)
choose two general points p1 and p2 and define by Iψ the ideal generated by
the 4 cubics of J ∩ I p1 ∩ I p2 . The tangent cone of C2 at p has degree 3, the
tangent cone of C1 ∪ C2 at p has degree 6 (because p is a double point of
contact); hence C1 has also a triple point at p, and belongs to Rp,2.

b2. — Suppose now that C1 hasn’t a triple point; C1 has thus two distinct
double points. Fix two distinct points p and q in P3

C, and set

Rp,q,2 =
{

C ∈ C |Sing C = {p, q}, pa( C) = 2
}
.

Let V3 (resp. V4) be the sections of OP1
C
(7) whose base locus contains π−1(p)

and π−1(q) (resp. π−1(p) and 2π−1(q)). The set Rp,q,2 is irreducible. Remark
that for all C in Rp,q,2 one has

h0 I C (3h) = 6, h0
(
( I C ∩ I 2

p)(3h)
)

= 5, h0
(
( I C ∩ I 2

p ∩ I 2
q)(3h)

)
= 4.

Remark 6.5. — One cannot have two distinct points of contact. Assume
by contradiction that there are two distinct points of contact p and q. De-
note by π : C̃1 → C1 the normalization of C1. One would have π∗ω C1

(h) =

OP1
C
(7) but the linear system induced by ψ would contain in the base locus

2π−1(p) + 2π−1(q) which is of length 8: contradiction with the fact that ψ
sends birationally C1 onto a line.

So one has the following alternative:
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b2 i. — Either all the cubics of Λψ are singular at p and q. One can then define
the set F3 of ( C , L, u) ∈ Rp,q,2 ×H0

(
( I C ∩ I 2

p ∩ I 2
q)(3h)

)
× V3 given by

– L ⊂ H0
(
( I C ∩ I 2

p∩ I 2
q)(3h)

)
of dimension 2 such that the residual of C in

the complete intersection defined by L has no common component with
C ;

– u ⊂ V3 of dimension 2 such that C 99K |u∨| has degree 1.

Let us consider the map

κ3 : F3 → G
(
4; H0

(
OP3

C
(3)
))
, ( C , L, u) 7→ h−1

L (u).

If ψ is birational, if pa( C1) = 2, if C1 has two distinct double points at p and
q and if all the cubics of Λψ are singular at p and q, then Λψ belongs to imκ3.

Lemma 6.6. — The general element of imκ3 coincides with Λψ for some bi-
rational map ψ of E19.

Proof. — As F3 is irreducible one can consider a general element ( C , L, u) of F3

and then C2,L is a curve of degree 4 and genus 1, is singular at p and q, lies
on a smooth quadric, and is reducible: C2,L is the union of a twisted cubic Γ

and the line ` = (pq). Moreover for all the elements of h−1
L (u) the curve C is

singular at p and q (by definition of V3 and by the fact that C2,L is singular
at p and q).

In this situation as all the cubic surfaces are singular at p and q,

h−1
L (u) = H0

(
( I Γ · I ` ∩ I p1

∩ I p2
)(3)

)
where p1, p2 are two ordinary base points; ψ belongs to E19.

b2 ii. — Or one of the cubics of Λψ is smooth at (for instance) q. Let us
introduce the set F4 of pairs ( C , L) ∈ Rp,q,2 × H0

(
( I C ∩ I 2

p)(3h)
)
satisfying:

L ⊂ H0
(
( I C ∩ I 2

p)(3h)
)
of dimension 2 such that the residual of C in the

complete intersection defined by L has no common component with C .
Let us consider the map

κ4 : F4 → G
(
4; H0

(
OP3

C
(3)
))
, ( C , L) 7→ h−1

L (V4);

note that dimV4 = 2.
If ψ is birational, if pa( C1) = 2, C1 hasn’t a triple point and one of the cubic

of Λψ is smooth at (for instance) q, then Λψ belongs to imκ4.

Lemma 6.7. — The general element of imκ4 coincides with Λψ for some bi-
rational map ψ of E24.
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Proof. — As F4 is irreducible one can consider a general element of F4, and
then C2,L is a curve of degree 4, genus 1, singular at p, and is the complete
intersection of two quadrics. The map ψ has no base point and belongs to E24.

6.2. Irreducible components. — The following statement, and Theorems 4.4 and
5.2 imply Theorem A.

Theorem 6.8. — One has the inclusions: E14 ⊂ E12, E24 ⊂ E23, and E19 ⊂
E12.

The set Bir3,5(P3
C) has four irreducible components: E12, E13, E23, and E27 =

ruled3,5.

Proof. — Let us first prove that E14 ⊂ E12. If ψ belongs to E12, or to E14 the
curve C2 is the union of a line ` and a twisted cubic Γ such that length (`∩Γ) ≤
1. Let I ` (resp. I Γ) be the ideal of ` (resp. Γ). We have Iψ ⊂ I ` ∩ I Γ. If ψ
belongs to E12, then `∩Γ = ∅, and I ` ∩ I Γ = I ` · I Γ. And if ψ is in E14, then
all the cubics are singular at p = ` ∩ Γ so Iψ is again in I ` · I Γ.

Prove now that E24 ⊂ E23. Consider a general element ψ of E24; the curve
C2 is the complete intersection of a quadric Q′ = az2+bz0+cz1 passing through
the double point p and a cone Q0 = z1z2−z2

0 . Furthermore all the cubics of Iψ
are singular at p, and Iψ ⊂ J ′0 = (Q0, z0Q

′, z1Q
′, z2Q

′). Let ctq be the ideal
of the point of contact q; one has ctq = I 2

q + (Hq) where Hq is a plane passing
through q. Denote by I 0 the intersection of J ′0 and ctq. Set

Z0 = z0 + tz3, Z1 = z1, Z2 = z2, Z3 = z0 − tz3,

Qt = Z1Z2 − Z0Z3, S0 = aZ0Z2 + bZ0Z3 + cZ1Z3,

S1 = aZ2
0 + bZ0Z1 + cZ2

1 , S2 = aZ2
2 + bZ2Z3 + cZ2

3 .

Hence J t = (Qt, S0, S1, S2) is the ideal of a rational quartic if t 6= 0 (cf. the
equations in §6.1.1 b1)). The ideal I t = J t ∩ ctq is the ideal Iψ of ψ ∈ E23.
Remark that if t = 0, then

J 0 = (Q0, z0Q
′, az2

0 + bz0z1 + cz2
1 , az

2
2 + bz0z2 + cz2

0)

but az2
0 + bz0z1 + cz2

1 = z1Q
′ modulo Q, and az2

2 + bz0z2 + cz2
0 = z2Q

′ modulo
Q, that is J ′0 = J 0. Therefore I t tends to I 0 as t tends to 0.

The inclusion E19 ⊂ E12 follows from Λψ = H0
(
( I ` · I Γ ∩ I p1 ∩ I p2)(3)

)
found in b2 i.

Note that E12 6⊂ E13 (resp. E12 6⊂ E23): if ψ is in E12 then the associated C2

does not lie on a quadric whereas if ψ belongs to E13 (resp. E23) then C2 lies
on two quadrics (resp. one quadric). Conversely E13 6⊂ E12 (resp. E23 6⊂ E12): if
ψ is an element of E13 (resp. E23), then C2 is smooth and irreducible whereas
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the associated C2 of a general element of E12 is the disjoint union of a twisted
cubic and a line.

Let us now justify that E23 6⊂ E13: the linear system of an element of E23

has a smooth surface whereas the linear system of an element of E13 does not.
Conversely E13 6⊂ E23; indeed h0 I C2

(3h) = 6 for a birational map of E13 and
h0 I C2

(3h) = 7 for a birational map of E23.

In bidegree (3, 5) the description of Bir3,5,p2(P3
C) is very different from those

of smaller bidegrees. Let us now prove Theorem C.

Theorem 6.9. — The set Bir3,5,p2(P3
C) is empty as soon as p2 6∈ {−1, 0, 1}

and
• if p2 = −1, then Bir3,5,p2(P3

C) is non-empty, and irreducible;
• if p2 = 0, then Bir3,5,p2(P3

C) is non-empty, and has two irreducible com-
ponents: one formed by the birational maps of E14, and the other one by
the elements of E23;
• if p2 = 1, then Bir3,5,p2(P3

C) is non-empty, and has three irreducible com-
ponents: one formed by the birational maps of E13, a second one formed
by the birational maps of E19, and a third one by the elements of E24.

Proof. — • Assume p2 = −1. In that case only one family appears : E12 (see
§ 6.1.1), and according to Theorem 6.8 the family E12 is already an irreducible
component of Bir3,5(P3

C) so an irreducible component of Bir3,5,−1(P3
C).

• Suppose p2 = 0. We found two families : E14 (case a1 of § 6.1.1), and E23

(case b1 of § 6.1.2). Note that for ψ general in E23 the linear system Λψ contains
smooth cubics whereas all cubics of Λψ are singular as soon as ψ belongs to E14.
Hence E23 6⊂ E14.

Take a general element of E14; it hasn’t a base scheme of dimension 0,
connected and of length≥ 3 whereas elements of E23 have. Therefore E14 6⊂ E23.
• Assume last that p2 = 1. Our study gives three families: E13, E19 and

E24 (cases a2, b2 i and b2 ii of § 6.1.2). The general element of E19 has two
double points whereas a general element of E13 (resp. E24) has only one; thus
E19 6⊂ E13 and E19 6⊂ E24.

Take a general element in E13; its base locus is a smooth curve. On the
contrary if ψ belongs to E19 (resp. E24), then the base locus of ψ is a singular
curve. Thus E13 6⊂ E19 (resp. E13 6⊂ E24).

If ψ is a general element of E24 its base locus is an irreducible curve and this
is not the case if ψ ∈ E19 so E24 6⊂ E19.

Let us now consider a general element of E24, the tangent plane at all cubic
surfaces at the point of contact doesn’t contain the double point p; hence if
we denote by Q1 and Q2 the quadrics containing C2 there isn’t a plane h
passing through p such that (hQ1, hQ2) ⊂ Λψ. But if we take ψ in E13 then
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Λψ = H0
(
( I C2

· I p∩ I p1 ∩ I p2)(3)
)
with p1, p2 two ordinary base points, and p

the triple point lying on C1. If h is the plane passing through p, p1 and p2, if
I C2

= (Q1, Q2), then (hQ1, hQ2) ⊂ Λψ. Thus E24 6⊂ E13.

7. Relations with Hudson’s invariants

To prove the birationality of a linear system of cubics, the local properties
of C1 and C2 are required. For instance to apply Lemma 3.4 one needs to
understand the support of C1 ∪ C2 and the local intersection of C1 with a
general element of Λψ at any point of C1 ∪ C2. So in the following table we
make a schematic picture of the tangent cone of C1 ∪ C2 at one of its singular
point in the different cases considered by Hudson. Let us note that the degree
of the tangent cone of C1 ∪ C2 at a point of C1 ∪ C2 varies from 1 to 6.
In particular if the linear system has a double point (resp. a double point of
contact), then it is a complete intersection of two quadric cones (resp. of one
quadric cone and one cubic cone). We draw pictures only when the quadric cone
is irreducible. If the linear system has a binode, the tangent cone of C1 ∪ C2

has degree 5; more precisely for a binode at p = (z0, z1, z2) whose fixed plane
is z0, i.e., Iψ ⊂ I p · (z0), then the ideal of the tangent cone of C1 ∪ C2 at p
is (z0z1, z0z2, P ) where P denotes an element of C[z1, z2]4. In our pictures the
marked plane of the binode is vertical.

Convention: If the point is black (resp. white) then C2 does not pass (resp.
passes) through the point. For all cases mentioned in the paper we precise
(d̃1, d̃2) where d̃i is the degree of the tangent cone of C i at p.

Let us mention that this table in which we propose local illustrations could
help the reader to visualize the different examples but the proofs are not based
on it.
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Appendix

Hudson’s Table

In this appendix we give a reproduction of what Hudson called “Cubic Space
Transformations”. The first (resp. second, resp. third, resp. fourth) table con-
cerns birational maps of bidegrees (3, 2), (3, 3) and (3, 4) (resp. (3, 5), resp.
(3, 6), resp. (3, 7), (3, 8) and (3, 9)).
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