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ON CUBIC BIRATIONAL MAPS OF P2

BY JULIE DESERTI & FREDERIC HAN

ABsTrRACT. — We study the birational maps of IP’%. More precisely we describe the
irreducible components of the set of birational maps of bidegree (3,3) (resp. (3,4),
resp. (3,5)).

RESUME (Sur les transformations birationnelles cubiques de IP%)

Nous étudions les transformations birationnelles de ]P’%. Plus précisément nous dé-
crivons les composantes irréductibles de I’ensemble des transformations birationnelles
de P2 de bidegré (3,3) (resp. (3,4), resp. (3,5)).

1. Introduction

The Cremona group, denoted Bir(Pg), is the group of birational maps of P¢
into itself. If n = 2 a lot of properties have been established (see [4, 9] for
example). As far as we know the situation is much more different for n > 3
(see [14, 5] for example). If 9 is an element of Bir(P%) then degt) = degt~!.
It is not the case in higher dimensions; if ¢ belongs to Bir(P2) we only have
the inequality degy ! < (deg)? so one introduces the bidegree of 1 as the
pair (deg,degty~'). For n = 2, Biry(PZ) is the set of birational maps of
the complex projective plane of degree d; for n > 3 denote by Birg 4 (Pg)
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218 J. DESERTI & F. HAN

the set of elements of Bir(Pg) of bidegree (d,d’), and by Bity(P) the union
Uy Birg,a (Pg). The set Birg(P¢) inherits a structure of algebraic variety as a
locally closed subspace a projective space (|3, Lemma 2.4, Proposition 2.15]),
and we will always consider it with the Zariski topology ([8, 17]).

The varieties Biry(P%) and Birg(PZ) are described in [6]: Bira(P2Z) is
smooth, and irreducible in the space of quadratic rational maps of the complex
projective plane whereas Bitg(P2) is irreducible, and rationnally connected.
Besides, Bity(P2) is not irreducible as soon as d > 3 (see [2]). In [7] Cremona
studies three types of generic elements of Birg(P%). Then there were some
articles on the subject, and finally a precise description of %itg(]}b%); the
left-right conjugacy is the following one

PGL(4;C) x Bir(P%) x PGL(4; C) — Bir(P), (A,9,B) — AyB~1.

Pan, Ronga and Vust give quadratic birational maps of IP’% up to left-right
conjugacy, and show that there are only finitely many biclasses ([15, The-
orems 3.1.1, 3.2.1, 3.2.2, 3.3.1]). In particular they show that Biry(P) has
three irreducible components of dimension 26, 28, 29; the component of dimen-
sion 26 (resp. 28, resp. 29) corresponds to birational maps of bidegree (2,4)
(resp. (2,3), resp. (2,2)). We will see that the situation is slightly different
for Bir3(P2); in particular we cannot expect such an explicit list of biclasses
because there are infinitely many of biclasses (already the dimension of the
family &2 of the classic cubo-cubic example is 39 that is strictly larger that
dim(PGL(4; C) x PGL(4;C)) = 30). That’s why the approach is different.

We do not have such a precise description of Biry(IP2) for d > 4. Nevertheless
we can find a very fine and classical contribution for Bir3(P2) due to Hudson
([11]); in the appendix we reproduce Table VI of [11]. Hudson introduces there
some invariants to establish her classification. But it gives rise to many cases,
and we also find examples where invariants take values that do not appear
in her table. We do not know references explaining how her families fall into
irreducible components of Birs 4(P2) so we focus on this natural question.

DEFINITION. — An element 1 of Birs 4(P2) is ruled if the strict transform of
a generic plane under ¢! is a ruled cubic surface.

Denote by ruleds 4 the set of (3, d) ruled maps; we detail it in Lemma 2.3. Let
us remark that there are no ruled birational maps of bidegree (3, d) with d > 6.

We describe the irreducible components of Birg,d(]}”%) for 3 < d < 5. Let us
recall that the inverse of an element of Birz »(P2) is quadratic and so treated
in [15].

THEOREM A. — Assume that 2 < d < 5. The set tuleds 4 is an irreducible
component of Birs 4(P2).

TOME 144 — 2016 — N° 2



ON CUBIC BIRATIONAL MAPS OF ]P’% 219

In bidegree (3,3) (resp. (3,4)) there is only an other irreducible component;
in bidegree (3,5) there are three others.
The set tuledss intersects the closure of any irreducible component

of Birg 4(P2) (the closures being taken in Bits(P2)).

NotAaTIONS 1.1. — Consider a dominant rational map ¥ from ]P’% into itself.
For a generic line £, the preimage of £ by v is a complete intersection T'y; define
the scheme €5 to be the union of the irreducible components of T'y supported
in the base locus of 1. Define G1 by liaison from €5 in I'y. Remark that if ¢
is birational, then 1 = ;1 ({). Let us denote by p,(G;) the arithmetic genus
Of i?i.

It is difficult to find a uniform approach to classify elements of Birz(P2).
Nevertheless in small genus we succeed to obtain some common detailed results;
before stating them, let us introduce some notations.

Let us remark that the inequality degt~! < (deg)? mentioned previously
directly follows from

(deg¥))* = deg ™" + deg ©a.

PROPOSITION B. — Let 1 be a (3,d) birational map of P3..
Assume that 1 is not ruled, and p,(6G1) =0, i.e., G1 is smooth. Then
e d<6;

o and G2 is a curve of degree 9 — d, and arithmetic genus 9 — 2d.

Suppose po(61) =1, and 2 < d < 6. Then

o there exists a singular point p of 61 independent of the choice of €1;

o if d < 4, all the cubic surfaces of the linear system Ay are singular at p;

o the curve Go is of degree 9 —d, of arithmetic genus 10 — 2d, and lies on a
unique quadric Q; more precisely J¢, = (Q, S1,- ., Si—2) where the S;’s
are independent cubics modulo Q.

We denote by Birs g, (P2) the subset of non-ruled (3,d) birational maps
such that @5 is of degree 9 — d, and arithmetic genus ps. One has the following
statement:

THEOREM C. — If po € {3, 4}, then Birgs,,(P2) is non-empty, and irre-
ducible; Birs 3 4, (P2) is empty as soon as po & {3, 4}.

Ifpy € {1, 2}, then Birs 4 p, (P2) is non-empty, and irreducible; Birs 4 p, (P3)
is empty as soon as poy & {1, 2}.

The set Birg 5, (P2) is empty as soon as p2 € {—1, 0, 1} and

e if po = —1, then Birg 5, (P2) is non-empty, and irreducible;
o if py = 0, then Birz sy, (P2) is non-empty, and has two irreducible com-
ponents;
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220 J. DESERTI & F. HAN

e ifpy =1, then Birs 5, (P2) is non-empty, and has three irreducible com-
ponents.

Organization of the article. — In §2 we explain the particular case of ruled bi-
rational maps and set some notations. Then §3 is devoted to liaison theory that
plays a big role in the description of the irreducible components of Birs 3(P2)
(see §4), Birs 4(P2) (see §5) and Birz 5(P2) (see §6). In the last section we give
some illustrations of invariants considered by Hudson, especially concerning the
local study of the preimage of a line. Since Hudson’s book is very old, let us
recall her classification in the first part of the appendix.

Acknowledgment. — The authors would like to thank Jérémy Blanc and the
referee for their helpful comments.

2. Definitions, notations and first properties

2.1. Definitions and notations. — Let ¢: P2 --» P2 be a rational map given,
for some choice of coordinates, by

(Zo 2122 23) -2 (¢0(Zo,21722,23) 31/)1(20,21722723)
: o (20, 21, 22, 23) ¢ ¥3(20, 21, 22, 23))

where the 1);’s are homogeneous polynomials of the same degree d, and without
common factors. The map v is called a Cremona transformation or a birational
map of P2 if it has a rational inverse ¢ ~!. The degree of 1, denoted deg 1, is d.
The pair (deg ¥, deg 1) is the bidegree of 1, we say that 1 is a (deg 1, deg 1)
birational map. The indeterminacy set of 1 is the set of the common zeros of the
¥;’s. Denote by J,, the ideal generated by the ;’s, and by A, C HO(@I@% (d))
the subspace of dimension 4 generated by the v;, and by deg 4, the degree of
the scheme defined by the ideal 4,,. The scheme whose ideal is y, is denoted
Fy. It is called base locus of 9. If dim F, = 0 then F, = &, otherwise F is the
maximal subscheme of F, of dimension 1 without isolated point, and without
embedded point. Furthermore if G is a curve we will denote by wy its dualizing
sheaf.

REMARK 2.1. — We will sometimes identify a divisor of PZ and its equation;
for instance a surface @ of P2 will have ideal (Q).

Let us give a few comments about Table VI of [11]. For any subscheme X
of P denote by Jx the ideal of X in PJ. Let ¢ be a (3,d) birational map.
A point p is a double point if all the cubic surfaces of Ay are singular at p. A
point p is a binode if all the cubic surfaces of Ay are singular at p with order
2 approximation at p a quadratic form of rank < 2 (but this quadratic form

TOME 144 — 2016 — N° 2



ON CUBIC BIRATIONAL MAPS OF ]P’% 221

is allowed to vary in Ay). In other words p is a binode if there is a degree 1
element h of 4, such that all the cubics belong to (h-4,) + ji. A point p
is a double point of contact if the general element of Ay is singular at p with
order 2 approximation at p a quadratic form generically constant on Ay. In
other words p is a double point of contact if all the cubics belong to Jf, + (@)
with @ of degree 2 and singular at p. A point p is a point of contact if all the
cubics belong to Jﬁ + (S) where S is a cubic smooth at p. A point p is a point

of osculation if all the cubics belong to J/f, + (S) where S is a cubic smooth
at p.

NoOTATIONS 2.2. — We will denote by &; the i-th family of Table VI and
by Clz0, 21, - - -, 2n)a the set of homogeneous polynomials of degree d in the vari-
ables zg, z1, ..., zZn.

2.2. First properties. — Let us now focus on particular birational maps that
cannot be dealt as the others: the ruled birational maps of PZ. Recall that
there are two projective models of irreducible ruled cubic surfaces ; they both
have the same normalization: P2 blown up at one point which can be realized
as a cubic surface in P% (see [10, Chapter 10, introduction of § 4.4], [10, Chapter
9, §2.1]).

LEMMA 2.3. — Assume that 2 < d < 5.

o The set tuleds g is irreducible.
o Let 1 be a general element of tuleds 4, and let § be the common line to
all elements of {Sing S| S € Ay }; then

Ty =20 In, NIn, N---NIa,_, NIk

where A; are disjoint lines that intersect § at a unique point, and K is a
general reduced scheme of length 2d — 4.

Proof. — Let 9 be an element of tuleds 4. Recall that F«/{ is the maximal sub-
scheme of Fy of dimension 1 without isolated point, and without embedded
point, i.e., Fj} is a locally Cohen-Macaulay curve.

An irreducible element S of Ay is a ruled surface; it is the projection of a
smooth cubic ruled surface S of P?%. Recall that S is also the blow-up P2 2 (p)
of PZ at a point p. The embedding of S in P% is given by the linear system
|7, (2h)|, where h is the class of an hyperplane in PZ. Let us denote by 7 the
projection S - S, by H the class of the restriction of an hyperplane of P{ to S
and by E, the exceptional divisor associated to the blow-up of p. Set S=n"1§ ,
€ = 7 1(%1), and ﬁ:}) = n~'(F}). One has

S~r*h, H=2r"h-E, f=nh-E, F}=2+D

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



222 J. DESERTI & F. HAN

where D is an effective divisor. As a + ﬁ:}) = 3H, {771 -f=1and a -H=d
one gets D- f =0, and D- H = 5—d; therefore D = (5 —d)f. And we conclude

2

that ¢ has a residual base scheme of length 2d — 4 from ©; = 2d — 3.

Conversely, take a ruled cubic surface S in P, choose a general projection
™ to P, take a general element A of |05 ((5—d)f)| a,{l,d take a set K of 2d —4
general points on S of ideal 4. We have h° (J f((i?l)) = 3, and thanks to

—~2

the equality €1 = 2d — 3 and the surjection H° Ops (3) — H°0s(3) we get
an element of tuleds 4. Therefore the family of such (§ ,m, A, J %) dominates
tuleds 4, and tuleds 4 is irreducible.

To prove the claimed decomposition of y for the general element ¢ €
tuleds 4, let us denote by 7 the right part of the equality.

J=93NIa,NIa,N...0In, ,NIk.

We already have /, C 4. Furthermore, thanks to the computations on S , one
has h°(#(3)) = dim Ay = 4, and h°(/(2)) = 0; hence to prove /y = 7 we just
have to prove that ./ is generated by polynomials of degree < 3. As ) is general,
one can assume that the line defined by (23, z3) is trisecant to A; U Ay U Ag,
so up to a change of coordinates we have

J/é = (20, 21),
= (20, 22),
= (21, 23),
= (20 + 21,22 + 23)
then

= (23,2021, 23),
J(; ﬂJAl (2
SN Ia, N Ia, = (
Jﬁ NIa, NI, NI, = (2021(20 + 21), 2021 (22 + 23), 2122(20 + 21),

o O

,2’0217212’2)

2021, 2423, %1 %2),

2023(20 + zl))

so we have the equality / = 4 when d = 2. For d € {3,4, 5}, it is now enough
to produce examples of 2d — 4 points such that this equality is true to obtain
it to 2d — 4 general points. So consider the following 3 pairs of points of ideal

1 = (20 + 22,21 + 222 + 23, 2023),
o = (220 + 21 + 22,23 — 21, 2122),

@3 = (22,20 + 23,27 — 22).

TOME 144 — 2016 — N° 2



ON CUBIC BIRATIONAL MAPS OF ]P’% 223

Denote by Jy, (resp. Jy,,Jy,) the ideal generated by the 4 cubics of , =
S3NIA, NI, N s (resp. S, = I3NIn, N o s, S = 530 Gy N N Gs).
Then we can compute the following equalities for instance with Macaulay2:
Iy = (2322, 202122, 2027 + 2823, 2521 + 202123), Ty = (2322, 202122, 2521 —
20238 — 2823+ 202123, 228 + 2027 + 2820+ 32223), Jys = (2202122 — 23 22,5202 +
zi” + 7z%zz + 4z(2)23 + zp2123 + 2%23, 10z§zl + 22? + 9z%22 — 2z§zg + 12202123 +
222 23,4023 — 423 + 202220 — 32229 + 442323 — dzgz1 23 — 422 23),

J¢3 26737 j«l)z; 2447 (20, 21, 22, 23) = (js : jiﬁs)-

So we have obtained the claimed decomposition of .,, but when d = 5 the ideal
Jk has an irrelevant component. O

LEMMA 2.4. — The following inclusions hold:

tu[60372 C 'Cu[20373, tu[83373 C m[e03,4, tu[e03,4 C tu[203,5.

Proof (with the notations introduced in the proof of Lemma 2.3)

Let us start with an element of tuleds 5 with base curve 42 and 6 base points
p; in general position as described in Lemma 2.3. Then move two of the p;,
for instance p;, po until the line (p1p2) intersects . The line (p1p2) is now
automatically in the base locus of the linear system A, and we obtain like this
a generic element of tuleds 4.

A similar argument allows to prove the two other inclusions. O

Let us recall the notion of genus of a birational map ([11, Chapter IX]). The
genus gy of ¢ € Bir(P2) is the geometric genus of the curve h N1~ (k') where
h and k' are generic hyperplanes of P3. The equality g, = gy—1 holds.

REMARK 2.5. — If 1 is a birational map of P3 of degree 1 (resp. 2, resp. 3)
then gy = 0 (resp. gy = 0, resp. gy < 1).

One can give a characterization of ruled maps of Birs 4(P2) in terms of the
genus.

PROPOSITION 2.6. — Let ¢ be in Birs 4(P2), 2 < d < 5. The genus of 1 is
zero if and only if ¥ is ruled.

Proof. — On the one hand there exists a curve & such that J, C J 25 if and
only if v is ruled; on the other hand g, = 0 if and only if for generic hyperplanes
h, b’ of P} the curve h N ¢~ (h') is a singular rational cubic. O
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224 J. DESERTI & F. HAN

3. Liaison
According to [16] we say that two curves I'y and T's of IP’(?’: are geometrically
linked if

e I'y UT'; is a complete intersection,
e I'; and I's have no common component.

Let T'; and 'y be two curves geometrically linked. Recall that Jr, r, =

Jr, N Ir,. According to [16, Proposition 1.1] one has Jrj:ulm = Hom(Or,, Or,ur, ).
Since the kernel of O, yr, — O, is jrjrulr one gets the following fundamental
1 2

statement: if I';, I's are two curves geometrically linked, then
0 — wr, — wr,ur, — Hr, ® wr,ur, — 0.
LEMMA 3.1. — Let ¢ be a rational map of P2 of degree 3. We have

WEuBs = @€1U€2 (Zh)7

where h denotes an hyperplane of P, and for i € {1, 2}

(3.1) 0— wg, — @giug37i(2h) I @g371(2h) —0
and
(3.2) 0— jglug2 (3h) — jgi (3h) — Weg,_,; (h) —0

The first exact sequence (3.1) directly implies the following equalities (i €
{1,2})
H°(wg,(=h)) =H°(J¢,_,(h),  H(wg,)=H"(Je, ,(2h)),
H°(J¢,_,(3h))
~ H(J¢,06,(3R))

COROLLARY 3.2. — Let 9 be a rational map of P of degree 3. The ideal J¢,_,
is generated by cubics if and only if we, (h) is globally generated.

howi?i (h‘) +2= hO (jﬁ)a—i(?’h))? Ho(wﬁ)i (h))

Proof. — Tt directly follows from the exact sequence (3.2). O
COROLLARY 3.3. — Let 1 be a rational map of P2 of degree 3. Then

deg €2 — deg €1 = pa(62) — pa(E1).
Proof. — Taking the restriction of (3.1) to &; for ¢ = 1, 2 gives

degwy, = 2deg G; — deg(61 N G2),

and hence

deg G5 — deg 61 = pa(G2) — pa(61). O
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ON CUBIC BIRATIONAL MAPS OF ]P’% 225

Furthermore when ©; and € have no common component, and weg, is
locally free, then length (61 N €3) = degwy, (2h), i.e.,

Z length(G1 N G2)¢py = 2deg G — 2pa(6;) + 2.

PEGING2

In the preimage of a generic point of P2 by 1, the number of points that do
not lie in the base locus is given by

3deg €1 — > length(SN G1)gy — > length(SN 61)

pECINEG2 peEO

where S € Ay is non-zero modulo H%(/¢, ¢, (3R)), and where © denotes the
set of irreducible components of dimension 0 of the base locus Fy, of .

LEMMA 3.4. — Let ¢ be a rational map of P2 of degree 3. Let © denote the
set of irreducible components of dimension 0 of Fy,. The map v is birational if
and only if

1=3deg Gy — Z length(S N €1)(py — Z length(S N 61) -
pEG1NE2 peEO

Remark that the computation of length(S N ©1)(,} depends on the nature
of the singularity of the cubic surface and on the behavior of G5 in that point
(see §7).

LEMMA 3.5. — Let ¢ be a (3,d) Cremona map. Assume that d > 4, then €
is not contained in a plane.

Proof. — Suppose for instance that d = 4; then ©; is contained in an irre-
ducible cubic surface S. If &; is contained in a plane & then all the lines in &
are quadrisecant to S: contradiction with the irreducibility of S. [

LEMMA 3.6. — Let v be a (3,d) birational map, and let p be a point on G;.
Assume that the degree of the tangent cone of €1 at p is strictly less than 4. If
any S in Ay is singular at p, then p belongs to G,.

Proof. — If any S in Ay is singular at p, then the degree of the tangent cone
of €1 U Gy at p is at least 4 because it is the complete intersection of two
surfaces singular at p. Hence p has to belong to Gs. O]

LEMMA 3.7. — Let ¢ be a non-ruled (3,d) birational map, and let G1 be a
general element of Ay. The support of Sing G is independent of the choice

Of 61.
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226 J. DESERTI & F. HAN

Proof. — Let us show that there is a singular point independent of the choice
of 1. Let us consider an element S of Ay, with finite singular locus. Let 7: S —

S be a minimal desingularization of S, and let a be the strict transform of & .
The elements of Ay, give a linear system in |@J(€1)| whose base locus denoted
Q is finite. According to Bertini’s theorem applied on S one has the inclusion

Sing ¢ C w(Q)USing S. The assertion thus follows from the fact that QUSing S
is finite. O

THEOREM 3.8. — Let ¢ be a (3,d) birational map, 2 < d < 6, that is not
ruled. Assume that p,(61) = 1. Then

o there exists a singular point p of 1 independent of the choice of €1;

o if d < 4, all the cubic surfaces of the linear system Ay are singular at p;

o the curve G4 is of degree 9 — d, of arithmetic genus 10 — 2d, and lies on a
unique quadric Q; more precisely J¢, = (Q,S1,...,Sa—2) where the S;’s
are independent cubics modulo Q.

REMARK 3.9. — As soon as d = 5 the second assertion is not true. Indeed
for d = 5 we obtain two families: one for which all the elements of A, are
singular, and another one for which it is not the case (§6).

Proof. — The first assertion directly follows from Lemma 3.7.
Since p, (1) = 1, the curve &5 lies on a unique quadric Q. The arithmetic
genus of G is obtained from deg G2 —deg 61 = po(62)—pa(61) (Corollary 3.3).
As p,(61) = 1, weg, (h) has no base point, and J¢, is generated by cubics
(Corollary 3.2). The number of cubics containing & independent modulo the
multiple of @ is d — 2: the liaison sequence (Lemma 3.1) becomes

0— @?51 (h) — Q€1u6’2 (3h) — @g)z (3h) — 0
one gets that
h°0¢, (3h) = h°Op, e, (3h) —h°Op, (h) = 18 — d.
This implies that
h°d¢, (3h) = 20 — h°Oy, (3h) = d + 2.

If we remove the four multiples of () one obtains d + 2 — 4 = d — 2 cubics, and
ﬁnally jﬁz = (Q,S1,...,Sd_2). [

Corollary 3.3 and Theorem 3.8 imply Proposition B.

PROPOSITION 3.10. — For 2 < d <5 the set tuleds g is an irreducible compo-
nent of Birs 4(P%).
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ON CUBIC BIRATIONAL MAPS OF ]P’% 227

Proof. — Let us use the notations introduced in Lemma 2.3. Note that Fdl, -
©5. If ¢ € Birz q(P2) is not ruled then at a generic point p € Fdl} there exists
an element of Ay smooth at p. Hence Fli is locally complete intersection at p
and deg F}, = deg ©. In particular deg Jy, =9 — d.

Consider now a general element v in ruleds 4. From Lemma 2.3 there is a
line ¢ such that ¢ C Sing S for any S € Ay; the set Fdl) has an irreducible

component whose ideal is j? and Fdlj is not locally complete intersection. This
multiple structure has to be contained in &5 but since &5 is generically locally
complete intersection the inequality deg G2 > deg FI}, holds; it can be rewritten
deg Iy <9 —d.

As d > 9 for any ¢ € Birz 4(P2), /, defines a 1-dimensional subscheme
of IP’(?’: so by the semi-continuity theorem v +— deg 4y, is upper semi-continuous.
Hence the number deg 4, cannot decrease by specialization, and tuleds 4 is not
included in an irreducible component in Birs 4(P%) whose generic element is
not ruled. O

COROLLARY 3.11. — Let ¢ be a (3,-) birational map of P3; if the general
element of Ay is smooth or with isolated singularities, then deg F} = deg 6.

4. (3,3) Cremona transformations

4.1. Some known results

4.1.1. — In the literature one can find different points of view concerning the
classification of (3,3) birational maps. For example Hudson introduced many
invariants related to singularities of families of surfaces and gave four families
described in the appendix; nevertheless we do not understand why the family
635 defined below does not appear. Pan chose an other point of view and
regrouped (3, 3) birational maps into three families. A (3,3) birational map 1
of ]P’% is called determinantal if there exists a 4 x 3 matrix M with linear entries
such that v is given by the four 3 x 3 minors of the matrix M; the inverse !
is also determinantal. Let us denote by Tg??) the set of determinantal maps.
A (3,3) Cremona transformation is a de Jongquiéres one if and only if the
strict transform of a general line under ¢! is a singular plane rational cubic
curve whose singular point is fixed. For such a map there is always a quadric
contracted onto a point, the corresponding fixed point for ¢! which is also a
de Jonquiéres transformation. The de Jonquiéres transformations form the set
T3 5. Pan established the following ([13, Theorem 1.2]):

Birs 3(P%) = TH5 U T3 5 U tuleds 3;

in other words an element of Birs 3 (]‘P’%) is a determinantal map, or a de Jon-
quiéres map, or a ruled map.
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REMARK 4.1. — One has T3 = Birg 3 3(P%) and T3 3 = Birs 3 4(P%); hence
Birs 34, (P2) is irreducible for po € {3,4} (see [13]).

REMARK 4.2. — The birational involution (z92% : 2221 : 2322 : 2223) is deter-
minantal, the matrix being

zo 23 O

—2z1 0 29
0 0 —z|’
0 —z O

and also ruled: all the partial derivatives of the components of the map vanish
on zp = z; = 0. The Cremona transformation (2§ : 2221 : 2322 : 2723) is a
de Jonquiéres and a ruled one; note that its primary decomposition (obtained

with Macaulay2) is

(z§’ Z%) n (237 Zg) n (ng 21, z2)
and that its primary component (232, 2?) is locally complete intersection con-
trary to the general case (Lemma 2.3)(%).

One has ([12])

T£3 n Tg73 =J, ng n tu[60373 7é J, Tig n YUI63373 7é .

We deal with the natural description of the irreducible components of Birs 3
which does not coincide with Pan’s point of view since one of his family is
contained in the closure of another one.

4.2. Irreducible components of the set of (3, 3) birational maps

4.2.1. General description of (3,3) birational maps. — One already describes
an irreducible component of Birs 3(IP2), the one that contains (3,3) ruled bira-
tional maps (Proposition 3.10). Hence let us consider the case where the linear
system A, associated to ¢ € Birs 3(IP2) contains a cubic surface without double
line.

— If &, is smooth then it is a twisted cubic, we are in family &y of Table
VI (see the appendix). In that case v is determinantal; more precisely a
(3, 3) birational map is determinantal if and only if its base locus scheme
is an arithmetically Cohen-Macaulay curve of degree 6 and (arithmetic)
genus 3 (see [1, Proposition 1]).

(1) Thanks to the referee for mentioning it to us.
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— Otherwise wg, = By,, and ¢ belongs to the irreducible family T§73 of
Jonquicres maps (&3 in terms of Hudson’s classification). The curve Gs
lies on a quadric described by the quadratic form Q. According to The-
orem 3.8 the ideal of G5 is (@, S), and there exists a point p such that
p € @, and p is a singular point of S. Furthermore 4, = 4,Q + (5).
Reciprocally such a triplet (p, @, S) induces a birational map.

The family T3 ; is stratified as follows by Hudson (all the cases belong
to &3):

o Description of &s. The general element of 4,Q + (S) has an ordi-
nary quadratic singularity at p (configuration (2,2) of Table 1 (see
§7)), and the generic cubic is singular at p with a quadratic form
of rank 3.

e Description of &3.5. The point p lies on @ (p is a smooth point
or not) and the generic cubic is singular at p with a quadratic
form of rank 2. In other words p is a binode and this happens
when one of the two biplanes is contained in T,Q), it corresponds
to the configuration (2,3)" of Table 1 (see §7). The generic cubic
is singular at p with a quadratic form of rank 2; this case does
not appear in Table VI (see the appendix). Let us denote by &35
the set of the associated (3,3) birational maps. The curve € has
degree 6 and a triple point (in Q).

e Description of &4. The point p is a double point of contact, it
corresponds to configuration (2,4) of Table 1 (see §7).

PRrRoOPOSITION 4.3. — One has

dlm 62 = 39, dll’n 63 = 38, dlIIl (33_5 = 35, dlm 64 = 35, dlm 65 = 31,

and

673 = Tg737 6;5 C 6737 6074 - 6737 6[’4 ¢ @7 5;5 ¢ 674

Proof. — Let us justify the equality dim &3 = 38. We have to choose a quadric
@ and a point p on @, this gives 9 + 2 = 11. Then we take a cubic surface
singular at p that yields to 19 — 4 = 15; since we look at this surface modulo
pQ one gets 15 — 3 = 12 so

dim &3 = 11 + 12 + 15 = 38.

Let us deal with dim &4. We take a singular quadric @ this gives 8. Then we
take a cubic singular at p, modulo p@ and this yields to 19 — 4 — 3 = 12, and
finally one obtains 12 + 8 4+ 15 = 35. O
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4.2.2. Irreducible components

THEOREM 4.4. — The set tuleds 3 is an irreducible component of Birg,g(]P)(%),
and there is only one another irreducible component in Birs 3(P). More pre-
cisely the set of the de Jonquieres maps &3 is contained in the closure of de-
terminantal ones 672 whereas tuleds 3 ¢ (‘72

Proof. — Let us consider the matrix A given by
[ 0 0 0 ]
—Z1 —Xk9 0
20 0 —Z9
0 Z0 <1

and let A; denote the matrix A minus the (¢ 4+ 1)-th line. If 4 > 0, the 2 x 2
minors of A; are divisible by z;_1.

Consider the 4 x 3 matrix B given by [bij] 1<i<4 1<j<3 with b;; € HO(@Pg(l));
as previously, B; is the matrix B minus the (i + 1)-th line. Denote by A%* the
determinant of the matrix Ag minus the j-th line and the k-th column; the
AJ* generate Clzg, 21, z2)2. One has

det(Ag +tBo) =t-S [t*]
where
S = (b21+b43)A1’1—(b31—b42)A2’1+(b33—bQQ)Al’Q+b23A1’3+b32A2’2+b41A3’1
is a generic cubic of the ideal (zo, 21, 22)2. For i > 0
det(A; +tB;) = det A; + t - (zi41Q)(—1)™' =t - (21 Q)(-1)"""  [t7]
where ) = b1,122 — b1,221 + b1,32p is the equation of a generic quadric that
contains (0,0,0,1). So the map
det(A() + tB(]) ) det(A1 + tBl) ) det(Az + tBQ) ) det(A3 + tB3)
t ’ t ' t ' t

allows to go from &, to a general element of &s.
Furthermore &3 and tuleds 5 are different components (Proposition 3.10). O

5. (3,4) Cremona transformations

5.1. General description of (3, 4) birational maps. — The ruled maps tuleds 4 give
rise to an irreducible component (Proposition 3.10). Let us now focus on the
case where the linear system A, associated to ¢ € Bir3,4(}P’%) contains a cubic
surface without double line.
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— First case: @1 is smooth. From h%wg, (h) = 3 one gets that @5 lies on five
cubics. Since po (1) = 0 we have wg, = B¢, (Corollary 3.3). The curve
G lies on a quadric (Lemma 3.1). This configuration corresponds to &g.

— Second case: G is a singular curve of degree 4 not contained in a plane
(see Lemma 3.5) so wg, = Bg,. The curve &1 lies on two quadrics and
€2 on six cubics (h®wg, (k) = 4). Let p be the singular point of &1; all
elements of Ay are singular at p (Theorem 3.8), and p belongs to G»
(Lemma 3.6). The curve @5 lies on a unique quadric @ (Theorem 3.8), is
linked to a line £ in a (2, 3) complete intersection @ NS; (with deg @ = 2
and deg S; = 3), and J¢, = (@, S1,52) with deg S2 = 3 (Theorem 3.8).

Since © is of degree 4 and arithmetic genus 1, one has H° (le (h)) =
HO(QPé(l)). Let us consider L = H°(J¢,u¢,(3R)) C Ay and the map

HO(J¢,(3h))

L b
it is injective. Indeed dim(%; N Q) = 0 thus modulo @ the cubics
defining @7 are independent. Therefore Ay, is contained in (Q.), S1,S2).

H°(O¢, (h)) — h— Qh;

Let m: &1 — €1 be the normalization. The linear system induced by ©om
is given by m*wg, (h) = 7*@¢, (h), and vanishes on 7~ !(p). This linear
system has degree 4 and the conductor 7—!(p) has length 2 because
p.(61) = 1. So it has a residual base point p; € %/1 because 1 sends
birationally ©; onto a line. Deforming p; to a general point p’ of &1 we
obtain the 4 dimensional vector space

A= HO(((QJ/ZH S51,82) N jp’)(?’))‘

that is a deformation of Ay. In the following lines we will prove that the
linear system given by A is birational.

Reciprocally let @@ be a quadric, p be a point on @, S; be a cubic
singular at p and that contains a line £ of Q. If &5 is the residual of £
in (@, S1), then there exists Sy singular at p such that J¢, = (Q, S1,52).
Take p; € P2 \ @, and set

A =H((4p, N (QIp, 81, 52))(3))-

Let L be a 2-dimensional general element of A; the general linked curve
to G2 in L, denoted @1 1, is of degree 4, is singular at p, lies on two
quadrics; furthermore the linear system induced by A on @5 has the
two following properties:

e its base locus contains p and py,

e it sends birationally &, 1 onto a line.
In other words, A = Ay, for a (3,4) birational map .
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Let us give some explicit examples, the generic one and the degenera-
cies considered by Hudson:

e Description of &7. The quadric @ is smooth at p, and the rank of @)
is maximal. Hence the point p is an ordinary quadratic singularity
of the generic element of Ay, we are in the configuration (2,2) of
Table 1 (see §7).

e Description of &7.5. In that case, p is a binode, @ is smooth at p
and one of the two biplanes is contained in 7,Q; we are in the
configuration (2,3)" of Table 1 (see §7). The set of such maps is
denoted &75, this case does not appear in Table VI but should
appear.

e Description of &s. The second way to obtain a binode is the follow-
ing one: ) is an irreducible cone with vertex p. This corresponds
to the configuration (2, 3) of Table 1 (see §7).

e Description of &g9. The rank of ) is 2, and the point p is a double
point of contact; we are in the configuration (2,4) of Table 1 (see
§7).

e Description of &19. The general element of A, has a double point
of contact and a binode (configurations (2,4) and (1,4) of Table
1, see §7). Hudson details this case carefully ([11, Chap. XV]).

PROPOSITION 5.1. — One has the following properties:
dim &g = 38, &r5U 6g C (?77
and

e a generic element of &7.5 is not a specialization of a generic element
of &s;

e q generic element of &g is not a specialization of a generic element of &7.5;

e a generic element of &g is a specialization of a generic element of &s.

Proof. — The arguments to establish dim &g = 38 are similar to those used in
the proof of Proposition 4.3.

Let us justify that a generic element of &75 is not a specialization of a
generic element of &g (we take the notations of §5.1): as we see when ¢ € &g
the quadric @ is always singular whereas it is not the case when 9 € &75.
Conversely if ¢ belongs to &7.5 then @5 is reducible but if 1) belongs to &g the
curve @5 can be irreducible and reduced; hence a generic element of &g is not
a specialization of a generic element of &7 5. O

THEOREM 5.2. — The set tuleds 4 is an irreducible component of Birg 4(P2).
There is only one another irreducible component in Birz 4(P3.).
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Proof. — According to Proposition 3.10 the set tuleds 4 is an irreducible com-
ponent of Birs 4(P3.).
Any element 1 of &7 U &7.5 U &g U Sg U &1 satisfies the following property:
Ay = H°(((QFp, 51,52) N Jp,)(3))
where p belongs to @, p; is an ordinary base point, and
Ly Ly

I ] y S1=LoQ1+ L1Q2, Sz = LaQq + L3Q>
9 L3

Q:det[

with Lz S (C[Zo,zl,ZQ,Zg]h Qz S C[Zo,zl,ZQ]z. So 67, 67,5, 68 69 and é)lO
belong to the same irreducible component &.

It remains to show that & = (‘76: let us consider

[0 0 01] [ 0 —z 2 L0-| |-z2-|

0 010 0 L L
J= . N= 22 1 2 . w= 21
0 —-100 —Z3 —L1 0 L3 20
-1 000 —L() _LQ —L3 0 tZ3
with L; linear forms and
J t —z1 —
Mt _ v _ z3 zZo —Z1 zZ9
Nv tzslo+Q q1 q2 g3
with
Q = 2023 — 2129, q1 = 25 + z0L1 + tz3Lo,
g2 = —2z223 — z1L1 +tz3Ls3, q3 = —z2Lg — 21L3 — 20L3.

For generic L;’s and t # 0 the 2 X 2 minors of M; generate the ideal of a generic
elliptic quintic curve as in &g. For Mj the 2 x 2 minors become Qzg, Qz1, Qz2,
Sl, SQ, and Sg with

S1=—20Q, Sy = —21q3 + 2242, S3 = z0q3 + 22q1.-
Therefore the ideal Mo generated by these minors is
(Qz0,Qz1,Q22, 52, S3).
Denote by £ the line defined by 4y = (21, 23). According to
2383 = =228 + Q(g3 + L122) & 2183 = —2059 — 23Q

Ms is the ideal of the residual of £ in the complete intersection of ideals (@, Sa2).
To prove &7 C &g we just need to show that one can obtain the generic element
of &7 with a good choice of the L;’s (Proposition 5.1); in other words it remains
to prove that S5 is generic among the cubics singular at p that contain £. Modulo
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@ one can assume that g3 = —z3a + b, with a (resp. b) an element of C[z1, 231
(resp. Clzo, #1, 22]2). Then

Sy = —zg(zla + z%) + 21 (b - Z2L1);

in conclusion S = 23A + 22B for generic A and B in C|zg, 21, 22]2. As &6 is
irreducible & = &g. O

5.2. Relations between Birz 3(P3) and Bir; 4(P2). — One can now state the fol-
lowing result:

PROPOSITION 5.3. — The set ruleds 3 intersects the closure of any irreducible
component of Birs 4(P2).

Proof. — According to Lemma 2.4 and Theorem 5.2 it is sufficient to prove
that tuleds 3 intersects the closure of (3, 4) birational maps that are non-ruled.

Let us consider an element 1 of Birz 4(P2) whose G is the union of the lines
of ideals

Is = (2072%)7 (20 — €22, 21), jel = (20, 23), jeg = (21, 22).
Denote by /. = (2o, 22)N (20 — €22, 21) N (20, 23) N (21, 22). One can check that
J. = (2021, 2522 + €2023, 27 23).

Set J. = 2021(20, 21, 22) + (2822 + €2023,2223). For a general p, the map 1.

defined by Ay, = H%((4. N J,,)(3)) is birational; furthermore
e 1. € Bir374(IF’fé) N tu[20374 for e 7é 0;
o Yy € tuleds 3. ]

As in the case of (3,3) birational maps one has the following statement:

THEOREM 5.4. — If po € {1, 2}, then Birz 4, (P2) is non-empty and irre-
ducible.

6. (3,5) Cremona transformations

6.1. General description of (3,5) birational maps. — We already find an irre-
ducible component of the (3,5) birational maps: tuleds 5 (Proposition 3.10).
Let us now consider a (3,5) Cremona transformation 9 such that Ay contains
a cubic surface without double line.

Strategy. By Lemma 3.1 the image of G1 by v is given by a 2-dimensional
vector subspace u of HY (wg1 (h)) The restriction of ¢ to 61 thus factorises by
the composition of €1 --» [H° (ng(h))v| with the projection |H® (we, (h))v| —
|uY|. In the following cases we will use the equivalence between the birationality
of ¥ and the birationality of the composition G1 --+ |u|. It will be useful to

TOME 144 — 2016 — N° 2



ON CUBIC BIRATIONAL MAPS OF ]P’% 235

compute the number of base points but also to show that a linear system is
birational.

6.1.1. Case: &1 smooth. — By (3.2) the image of &1 by % is given by a sub-
linear system of |wg, (R)|. In that situation degwg, (h) = 3 so as ¢ sends bira-
tionally &7 onto a line of IP’% the map ¥ has a residual base scheme of length
2. The curve &5 has genus —1 and does not lie on a quadric; @5 is the disjoint
union of a twisted cubic and a line, so this case gives an irreducible family, and
the general element belongs to &12. Indeed suppose that 1) & &2, then €5 is the
union of two smooth conics I'y and I's that do not intersect. Any I'; is contained
in a plane &;. Denote by £ the intersection #; N P. As #(6 NI U Fg)) =4,
all the cubic surfaces that contain I'y UT'; contain . So £ C G5: contradiction.

6.1.2. Case: &1 not smooth. — So p,(61) > 1, and by Corollary 3.3
pa(i?g) =deg G5 — deg G1 + pa(€1) =—-1+ pa(??l) > 0.

Since @7 is not in a plane, p,(%1) < 2. Therefore we only have to distinguish
the eventualities p,(G1) = 1 and p,(G1) = 2. Before looking at any of these
eventualities let us introduce the set

% = {irreducible curves of P of degree 5 and geometric genus 0}

e Assume first that p,(%1) = 1. Then O, = wg,. We will denote by 7: PL —
©1 the normalization of ©;.

a1. — Suppose first that all the elements of A, are singular at p € P?. Denote
by L the 2-dimensional vector space Ay N HO((ji N J¢,)(3h)) defining 6,
and €. Let us follow the strategy explained before. By the liaison sequence
(3.2) AT'” gives a vector subspace u of H(wg, (k) = H°(0g, (h)) of dimension
2. It induces a projection from ©; to |u"| that coincides with the restriction
of 1 to ©1; hence this projection has degree 1. Moreover, via the identification
H(0y, (h)) = H (7" Og, (h)), u is included in the set V; of sections of Op1 (5)
whose base locus contains m~1(p); as po(©1) = 1 the conductor 7~1(p) has
length 2. So there is an other base scheme of length 2 because 9¢, : €1 --» [u”|
is birational.

We would like to show that Gs moves in an irreducible family. We will do
this by deforming ¢ (and ©2) while G is fixed. So, p € P being fixed, let us
consider

Rp1 = {i? € € |Sing G = {p}, p.(6) = 1};
the set R, 1 is an irreducible one. Remark that
h°J¢(3h) = h®(Ops (3h)) — h°(Og(3h)) =20 — (3deg € + 1 — pa(6)) =5

and ho((ﬂi NJ¢)(3h))) =5 — 1 =4 because & has a double point at p for all
‘6 in %p,l-
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Let us denote by Fy the set of (€, L,u) € Ry, X HO((J?J NJe)(3h)) x Vi
defined by

- LCH° ((Jf, NJ¢)(3R)) of dimension 2 such that the residual of & in the
complete intersection defined by L has no common component with &,
and @ is geometrically linked to a curve denoted by €2 1,

- u C V; of dimension 2 such that PL --» |uV| has degree 1 (N.B. the
general element of this family will then have two ordinary base points in
addition to 7= 1(p)).

The set F} is irreducible since the choice of @ is irreducible, and thus the choices
of L and u too.

If (6, L,u) belongs to Fy, let us set
hr: H(J¢, , (3h)) — H® (we(h))

HO (/%,L(?m))
L

(recall that ~ H°(wg/(h))). Consider the map

k1: Fy — G(4H(0p3(3))), (6, L,u) — hy'(u).

By construction of F} if 1 is a birational map such that p,(G1) =1 and all
the elements of Ay are singular at p, then Ay is in the image of &;.

Conversely one has:

LEMMA 6.1. — The general element of im k1 coincides with Ay for some bi-
rational map P of &14.

Proof. — As F} is irreducible it is enough to show that |h; ' (u)| is a birational
system when (G, L,u) is general in Fj. In that situation @2 1, is a curve of de-
gree 4, arithmetic genus 0, singular at p, lying on a smooth quadric. Therefore
62,1 is reducible; more precisely it is the union of a twisted cubic and a line of
this smooth quadric. All the elements of |h; ' (u)| are cubic surfaces singular at p
because G2 1, has a double point at p, and the residual pencil v C H° (wg(h))
vanishes at p by definition of Fy. Let &7 be the residual of €5 1 in the in-
tersection of two general cubics of |h;'(u)|. Hence © is singular at p. As u
is by definition a pencil of sections of €1 (5) vanishing on 7~ %(p) such that
PL --» |u¥| has degree 1 the linear system |h;'(u)| sends birationally €; onto
the line |u"|. Therefore |h}'(u)| gives a birational map. O

Let us remark that the previous irreducibility result asserts that the following
example (belonging to family &15) whose base locus is not on a smooth quadric
is nevertheless a deformation of elements of &14:
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EXAMPLE 6.2. — Let &5 be the union of a line doubled on a smooth quadric
with two other lines, such that all these lines contain a same point p. Set
Q = 2023 — 2122, Ip = (20,21, 22);

then J¢, = ((22,20)% + (Q)) N (21, 22) N (20 — 22,21 — 22). Now chose a double
point of contact (note that the tangent cone must contain the tangent cone

of gz):
Jape = (2523 — 202123) + (20, 21, 22)°,
and let p; and ps be two general points. Define 4y by J¢, N Tape N Ip, NI p,.
So 44 is the intersections of 4, N J,, with
e, NI dpe = (zlzg — 23, 2028 — 23, Py — 25 — 202123 + 2223,
202120 — 23, 2570 — 23, 2521 — 7).

The tangent cone of G5 at p has degree 4 but the tangent cone of G1 U G at p
has degree 6, so G1 belongs to R, 1.

b;. — Suppose now that A, contains a smooth element at p. Then p is a point
of contact, all the cubic surfaces are tangent at p; the curve G C Q@ is linked to
a curve of degree 2 and genus —1 so has degree 4 and genus 0. A general curve
of degree 4 and genus 0 is in fact rational, smooth on a smooth quadric @ and
we will see that such a curve can be "the G2" of a birational map of that type.
Hence this family of birational maps will turn out to be an irreducible one. Set
Q = 2023 — 2122, o, = (20,21), and Iy, = (22, 23); one has

J = Je,0e, = (2022, 2023, 2122, 2123).
Let Sy be the element of / given by
azgza + bzozz + cz123 a, b, c € Clzo, 21, 22, 23]1;
one has J¢, = ((So,Q) : J) = (Q, So, S1, S2) with
S = zga + z9z1b + zfc, Sy = zga + z923b + zgc.
The dimension of H° (J € (3h)) is 7; indeed one has the following seven cubics:
I, = (Qz0, Qz1, Q22, Q23, So, S1, S2).

If v is a birational map, then 1 has no base point. Indeed u = — B
HO (J'(:lu'(:g(i”))
is contained in the sections of @p:1(5) whose base locus contains 277 1(p); we
thus already have an isomorphism between IE”}C and |u"|. The map v belongs

to &a3. Conversely let L be a general 2-dimensional subspace of HO((J gy N
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@+ Jf,))(Sh)), and let &) be the curve linked to €5 defined by L. Then the
previous arguments show that the image of & by

HO((S¢, N (Q + 73)) (3h))
L

is a line. So HO((J¢, N (Q + Jf,))(?)h)) = A, for some birational map 1 of this
type.

e Suppose that p,(61) = 2. Then p,(G2) = 1, &1 lies on a quadric and
h7¢, (3) = 6. We will still denote by 7m: Pt — € the normalization of €.

as. — Assume first that &1 has a triple point p. The curve 61 is linked to a line
by a complete intersection (Q, Sy) where Q (resp. Sp) is a cone (resp. a cubic)
singular at p. We can write the normalization 7 as follows (a2A, o34, 32A, B)
with A € Cla, fls, B € Clo, 85, and A, B without common factors. Then
@ = 2% — 2022, and H(wg, (h)) can be identified with H°(/,(2)), where 4, =
(20, 21). So H (wg, (R)) is the 6-dimensional subspace W of H? (0p1 (6)) spanned
by (o, 8) - (a?A, aBA, 3?A, B). Let us consider the subspace V,:; = Wn(4)
of W. Let L be the 2-dimensional vector space Ay NH°(7¢, (3h)). Then AT‘”
gives a 2-dimensional vector subspace u of V4. The restriction of ¥ to & gives
a birational map P{ --» |uV| induced by u C V4 C H° (Qpé (6)). Furthermore 1
has two ordinary base points. We would like to show that in that case G2 moves
in an irreducible family whose general element is the complete intersection of
two quadrics. We thus fix a point p € P2 and introduce the irreducible set

Rp2 ={6 € €|Sing & = {p}, pa(€) = 2}.
We define the set F as the (G, L,u) € Ry, 2 x H*(J¢(3h)) x V4 given by

— L C H°(J¢(3R)) of dimension 2 such that the residual of & in the com-
plete intersection defined by L has no common component with &, and
G is geometrically linked to a curve denoted by €2 r,

— u C V4 of dimension 2 such that P& --» |u"| is birational and whose base
locus contains 7~ 1(p).

Let us consider the map
Kot Fp = G(4H(0p2(3))),  (6,L,u) = hp'(u).

If ¢ is birational, if p,(%1) = 2, and G has a triple point then 1 belongs
to im ko.

LEMMA 6.3. — The general element of im ko coincides with Ay for some bi-
rational map 1 of &13.
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Proof. — As F5 is irreducible one can consider a general element of F5, and
then €2 1, is a curve of degree 4, genus 1 and is the complete intersection of two
smooth quadrics. The map 1 has two ordinary base points p1, p2, and belongs
to &13. More precisely Ay = H((Jg, , - Ip N Ip, N Ip,)(3)). O

Note that this irreducibility result asserts that the following example in
which @2 is not a complete intersection of two quadrics is nevertheless a defor-
mation of elements of &:3.

EXAMPLE 6.4. — Let € be the union of a plane cubic @3 singular at p and
a line ¢ containing p but not in the plane spanned by 3. For instance take

Ip = (20,21,22), Jo=(21,22), Jg, = (=1 —Zo,(Zl—22)2123+ZS+Z§’+ZS)-

Let J4pc be a double point of contact at p. (As we have already chosen s, we
must take a quadric cone containing the tangent cone to ©5). For instance one
can take: Jape = (27 — 2022) + Ji, and let
J=Ie,NTape = (zozg — 2123, 202122 — 2122, Za%e — 2329,
Zzi” + zg + 2323 — 202923, 2202'% + zg + zfz;a, — 202923,
2z§zl + zg + 2%23 — 202223)
choose two general points p; and p, and define by 4, the ideal generated by
the 4 cubics of 4/ N Jp, N Jp,. The tangent cone of &5 at p has degree 3, the

tangent cone of &1 U G5 at p has degree 6 (because p is a double point of
contact); hence &7 has also a triple point at p, and belongs to &, ».

by. — Suppose now that &; hasn’t a triple point; &1 has thus two distinct
double points. Fix two distinct points p and ¢ in IP’%, and set

Rpa2 = {6 € €|Sing € = {p, ¢}, pa(€) = 2}.

Let V3 (resp. V4) be the sections of @p1(7) whose base locus contains 7! (p)

and 77 1(q) (resp. 7~!(p) and 2771(q)). The set R, ;2 is irreducible. Remark
that for all & in R, 42 one has

h07p(3h) =6, LO((JgNI2)(3h) =5,  hO((JgnIan2)(3h)) = 4.

REMARK 6.5. — One cannot have two distinct points of contact. Assume
by contradiction that there are two distinct points of contact p and ¢. De-
note by m: &1 — €5 the normalization of &;. One would have 7*wg, (h) =
@Pé(7) but the linear system induced by 1 would contain in the base locus

277 1(p) + 27 1(q) which is of length 8: contradiction with the fact that
sends birationally &1 onto a line.

So one has the following alternative:
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byi. — Either all the cubics of Ay are singular at p and g. One can then define
the set F3 of (G, L,u) € Rpq2 x H'((J¢ N JZZ, N ji)(?yh)) x V3 given by

- LCH((J¢ ﬂﬂi ﬂfz)(?)h)) of dimension 2 such that the residual of & in
the complete intersection defined by L has no common component with
G;

— u C V3 of dimension 2 such that & --» |[u¥| has degree 1.

Let us consider the map

K3: FS — (Gr(4, HO(@P%(?)))), ((g,L,U,) — h;l(u)

If ¢ is birational, if p,(G1) = 2, if &1 has two distinct double points at p and
g and if all the cubics of Ay, are singular at p and ¢, then A, belongs to im k3.

LEMMA 6.6. — The general element of im k3 coincides with Ay for some bi-
rational map ¢ of &19.

Proof. — As Fj is irreducible one can consider a general element (G, L, u) of F3
and then @5 1 is a curve of degree 4 and genus 1, is singular at p and g, lies
on a smooth quadric, and is reducible: G5 1, is the union of a twisted cubic I'
and the line £ = (pg). Moreover for all the elements of h} ' (u) the curve € is
singular at p and ¢ (by definition of V3 and by the fact that &2, is singular
at p and q). O

In this situation as all the cubic surfaces are singular at p and g,
hi'(w) =HO((Ir - JeN Iy N Ip,)(3))
where p;, p2 are two ordinary base points; ¥ belongs to &19.
baii. — Or one of the cubics of Ay is smooth at (for instance) g. Let us
introduce the set Fy of pairs (€,L) € Ry, 42 x HO((J¢ N Ji)(3h)) satisfying:

L c H((Jg N Ji)(?)h)) of dimension 2 such that the residual of & in the
complete intersection defined by L has no common component with ©.

Let us consider the map
ka: Fy — G(4;H°(0p3(3))), (8, L) — hy ' (Vy);

note that dim V; = 2.

If ¢ is birational, if p, (1) = 2, &1 hasn’t a triple point and one of the cubic
of Ay is smooth at (for instance) ¢, then A, belongs to im k4.

LEMMA 6.7. — The general element of im k4 coincides with Ay for some bi-
rational map P of &ag4.
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Proof. — As F} is irreducible one can consider a general element of Fj, and
then G5 1, is a curve of degree 4, genus 1, singular at p, and is the complete
intersection of two quadrics. The map v has no base point and belongs to &a4.

O

6.2. Irreducible components. — The following statement, and Theorems 4.4 and
5.2 imply Theorem A.

THEOREM 6.8. — One has the inclusions: 14 C 6712, 6oa C 6723, and 519 C
612.

The set Birs 5(P2) has four irreducible components: &12, &13, o3, and S =
tU[203’5.

Proof. — Let us first prove that &14 C &12. If ¢ belongs to &1, or to &14 the
curve G5 is the union of a line £ and a twisted cubic I" such that length (¢NT") <
1. Let 4, (resp. Jr) be the ideal of £ (resp. I'). We have 4y, C S, N Ip. If ¢
belongs to &12, then /NT = &, and I, NI = I, - Ir. And if 9 is in S14, then
all the cubics are singular at p = ¢NT so Jy is again in 4, - Jr.

Prove now that &q4 C 6723 Consider a general element 1 of $a4; the curve
@ is the complete intersection of a quadric Q' = azy+bzg+cz; passing through
the double point p and a cone Q¢ = 2122 — 22. Furthermore all the cubics of ./ "
are singular at p, and 4, C jg = (Qo, 20Q’, z1Q’, 22Q"). Let ct; be the ideal
of the point of contact g; one has ct; = JZ + (H,) where H, is a plane passing
through ¢. Denote by /g the intersection of jg and ct,. Set

Zo = 2o + tzs, Zy = 71, Zy = z, Z3 = zp — tzs,
Qi = 2123 — ZyZ3, So = aZoZa +bZoZ3 + cZ1Z3,
Sy =aZZ +bZyZ, + cZ?, Sy = aZ2 +bZy73 + cZ3.

Hence ./, = (Q¢,So,51,52) is the ideal of a rational quartic if ¢t # 0 (cf. the
equations in §6.1.1 by)). The ideal J; = 4, N ct, is the ideal Sy of ¢ € 3.
Remark that if t = 0, then
o = (Qo, zOQ',azg + bzoz1 + cz%,azg + bzozg + czg)

but azZ + bzpz1 + c2? = 21Q’ modulo Q, and az2 + bzpzz + c22 = 22Q’ modulo
Q, that is J = J,,. Therefore J¢ tends to J as t tends to 0.

The inclusion &19 C 12 follows from Ay = HO((J¢ - Ir N Ip, N I4,)(3))
found in by i. L L

Note that &12 ¢ &13 (resp. S12 € S23): if ¢ is in &5 then the associated Go
does not lie on a quadric whereas if 1) belongs to &13 (resp. &a3) then € lies
on two quadrics (resp. one quadric). Conversely &13 ¢ &12 (resp. Gaz ¢ &12): if
1 is an element of &13 (resp. &23), then €5 is smooth and irreducible whereas
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the associated @5 of a general element of &15 is the disjoint union of a twisted
cubic and a line.

Let us now justify that a3 ¢ &13: the linear system of an element of o3
has a smooth surface whereas the linear system of an element of &3 does not.
Conversely &15 ¢ &a3; indeed h%7¢,(3h) = 6 for a birational map of ;3 and
h%7¢,(3h) = 7 for a birational map of &a3. O

In bidegree (3, 5) the description of Birg 5 ,, (P2) is very different from those
of smaller bidegrees. Let us now prove Theorem C.

THEOREM 6.9. — The set Birs 5, (P%) is empty as soon as p2 € {1, 0, 1}
and

e if po = —1, then Birg 5, (P2) is non-empty, and irreducible;

o if py = 0, then Birz sy, (P2) is non-empty, and has two irreducible com-
ponents: one formed by the birational maps of &14, and the other one by
the elements of &a3;

e ifpy =1, then Birsg 5, (P2) is non-empty, and has three irreducible com-
ponents: one formed by the birational maps of &13, a second one formed
by the birational maps of &19, and a third one by the elements of &oy.

Proof. — e Assume ps = —1. In that case only one family appears : 12 (see
§6.1.1), and according to Theorem 6.8 the family &2 is already an irreducible
component of Bir375(IF’fé) so an irreducible component of Birg,s,,l(P%).

e Suppose pa = 0. We found two families : &14 (case aq of §6.1.1), and &as
(case by of §6.1.2). Note that for ¢ general in §23 the linear system A, contains
smooth cubics whereas all cubics of Ay, are singular as soon as ¢ belongs to &14.
Hence 23 ¢ 1a.

Take a general element of &$14; it hasn’t a base scheme of dimension 0,
connected and of length > 3 whereas elements of &23 have. Therefore &14 4 Sa3.

e Assume last that po = 1. Our study gives three families: &13, &19 and
624 (cases ag, bai and boii of §6.1.2). The general element of &9 has two
double points whereas a general element of &5 (resp. &24) has only one; thus
&9 z 613 and 19 4 Go4.

Take a general element in &13; its base locus is a smooth curve. On the
contrary if 1 belongs to &19 (resp. &24), then the base locus of ¥ is a singular
curve. Thus 13 ¢ S19 (resp. E13 ¢ Ea4).

If 4 is a general element of &o4 its base locus is an irreducible curve and this
is not the case if ¥ € &9 50 Eoa Z Eno-

Let us now consider a general element of 24, the tangent plane at all cubic
surfaces at the point of contact doesn’t contain the double point p; hence if
we denote by @; and @ the quadrics containing @, there isn’t a plane h
passing through p such that (hQ1,hQ2) C Ay. But if we take ¢ in &5 then
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Ay =H((Je, - IpNIp, NIp,)(3)) with py, ps two ordinary base points, and p
the triple point lying on @1. If h is the plane passing through p, p1 and pa, if
I, = (Q1,Q2), then (hQ1,hQ2) C Ay. Thus Eay ¢ 13- O

7. Relations with Hudson’s invariants

To prove the birationality of a linear system of cubics, the local properties
of €1 and €y are required. For instance to apply Lemma 3.4 one needs to
understand the support of &1 U G2 and the local intersection of &1 with a
general element of Ay at any point of ;1 U G5. So in the following table we
make a schematic picture of the tangent cone of & U G2 at one of its singular
point in the different cases considered by Hudson. Let us note that the degree
of the tangent cone of ©; U G5 at a point of &1 U G5 varies from 1 to 6.
In particular if the linear system has a double point (resp. a double point of
contact), then it is a complete intersection of two quadric cones (resp. of one
quadric cone and one cubic cone). We draw pictures only when the quadric cone
is irreducible. If the linear system has a binode, the tangent cone of &1 U €4
has degree 5; more precisely for a binode at p = (2, 21, 22) whose fixed plane
is zo, i.€., Iy C Iy - (20), then the ideal of the tangent cone of 1 U Gy at p
is (2021, 2022, P) where P denotes an element of C[z1, 22]4. In our pictures the
marked plane of the binode is vertical.

Convention: If the point is black (resp. white) then &2 does not pass (resp.
passes) through the point. For all cases mentioned in the paper we precise
(d1,d2) where d; is the degree of the tangent cone of &; at p.

Let us mention that this table in which we propose local illustrations could
help the reader to visualize the different examples but the proofs are not based
on it.
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Appendix
Hudson’s Table

In this appendix we give a reproduction of what Hudson called “Cubic Space
Transformations”. The first (resp. second, resp. third, resp. fourth) table con-
cerns birational maps of bidegrees (3,2), (3,3) and (3,4) (resp. (3,5), resp.
(3,6), resp. (3,7), (3,8) and (3,9)).
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