LE GROUPE DE CREMONA EST HOPFIEN

par

Julie Déserti

 $\pmb{R\'esum\'e}$. — On décrit les endomorphismes du groupe de Cremona et on en déduit son caractère hopfien.

Une transformation rationnelle de $\mathbb{P}^2(\mathbb{C})$ dans lui-même s'écrit

$$(x:y:z) \mapsto (P_0(x,y,z):P_1(x,y,z):P_2(x,y,z))$$

où les P_i désignent des polynômes homogènes de même degré. Lorsqu'elle est inversible, on dit qu'elle est birationnelle ; par exemple l'involution de CREMONA $\sigma=(yz:xz:xy)$ est birationnelle. Le groupe des transformations birationnelles, noté $\mathsf{Bir}(\mathbb{P}^2(\mathbb{C}))$, est aussi appelé groupe de CREMONA.

Théorème 1 (Nœther, [1, 3]). — Le groupe de Cremona est engendré par $PGL_3(\mathbb{C})$ et l'involution $\sigma = (yz : xz : xy)$.

Un automorphisme τ du corps $\mathbb C$ induit un isomorphisme $\tau(.)$ de $Bir(\mathbb P^2(\mathbb C))$: à un élément f de $Bir(\mathbb P^2(\mathbb C))$ nous associons l'élément $\tau(f)$ obtenu en faisant agir τ sur les coefficients de f exprimé en coordonnées homogènes. Tout automorphisme du groupe de Cremona s'obtient à partir de l'action d'un automorphisme de corps et d'une conjugaison intérieure ([5]). Ici nous nous intéressons aux endomorphismes du groupe de Cremona:

Théorème 2. — Soit φ un endomorphisme non trivial de $Bir(\mathbb{P}^2(\mathbb{C}))$. Il existe une immersion de corps λ de \mathbb{C} dans lui-même et une transformation birationnelle ψ telles que pour tout f dans $Bir(\mathbb{P}^2(\mathbb{C}))$ on ait

$$\varphi(f) = \lambda(\psi f \psi^{-1}).$$

En particulier φ est injectif.

Une conséquence directe est la suivante :

Corollaire 3. — Le groupe de Cremona est hopfien, i.e. tout endomorphisme surjectif de $Bir(\mathbb{P}^2(\mathbb{C}))$ est un automorphisme.

La preuve du Théorème 2 repose en partie sur le résultat suivant que nous appliquons à $\Gamma = \mathsf{SL}_3(\mathbb{Z})$:

Théorème 4 ([4]). — Soient Γ un sous-groupe d'indice fini de $\mathsf{SL}_3(\mathbb{Z})$ et ρ un morphisme injectif de Γ dans $\mathsf{Bir}(\mathbb{P}^2(\mathbb{C}))$. Alors ρ coïncide, à conjugaison birationnelle près, avec le plongement canonique ou la contragrédiente, i.e. l'involution $u \mapsto {}^t u^{-1}$.

On travaille dans une carte affine (x,y) de $\mathbb{P}^2(\mathbb{C})$. Introduisons le groupe des translations :

$$T = \{ (x + \alpha, y + \beta) \mid \alpha, \beta \in \mathbb{C} \}.$$

Démonstration du Théorème 2. — Puisque $\mathsf{PGL}_3(\mathbb{C})$ est simple, $\varphi_{|\mathsf{PGL}_3(\mathbb{C})}$ est ou bien triviale, ou bien injective.

- 1. Supposons $\varphi_{|\mathsf{PGL}_3(\mathbb{C})}$ triviale. Posons h := (x, x y, x z); comme l'a remarqué GIZATULLIN ([6]), on a $(h\sigma)^3 = \mathsf{id}$. Ainsi $\varphi((h\sigma)^3) = \varphi(\sigma) = \mathsf{id}$, *i.e.* φ est trivial d'après le Théorème 1.
- 2. Si $\varphi_{|\mathsf{PGL}_3(\mathbb{C})}$ est injective, alors $\varphi_{|\mathsf{SL}_3(\mathbb{Z})}$ est, à conjugaison birationnelle près, le plongement canonique ou la contragrédiente.
- 2.a. Supposons que $\varphi_{|\mathsf{SL}_3(\mathbb{Z})} = \mathsf{id}$. Notons H le groupe des matrices 3×3 triangulaires supérieures unipotentes. Posons :

$$f_{\beta}(x,y) := \varphi(x+\beta,y), \quad g_{\alpha}(x,y) := \varphi(x+\alpha y,y) \quad \text{et} \quad h_{\gamma}(x,y) := \varphi(x,y+\gamma).$$

Les transformations birationnelles f_{β} et h_{γ} commutent à (x+1,y) et (x,y+1) donc

$$f_{\beta} = (x + \lambda(\beta), y + \zeta(\beta))$$
 et $h_{\gamma} = (x + \eta(\gamma), y + \mu(\gamma))$

où η , ζ , μ et λ sont des morphismes additifs de $\mathbb C$ dans $\mathbb C$; puisque g_{α} commute à (x+y,y) et (x+1,y) il est de la forme $(x+A_{\alpha}(y),y)$. La relation

$$(x + \alpha y, y)(x, y + \gamma)(x + \alpha y, y)^{-1}(x, y + \gamma)^{-1} = (x + \alpha \gamma, y)$$

implique que, pour tous nombres complexes α et γ , nous avons $g_{\alpha}h_{\gamma}=f_{\alpha\gamma}h_{\alpha}$. Nous en déduisons que :

$$f_{\beta} = (x + \lambda(\beta), y), \quad g_{\alpha} = (x + \Theta(\alpha)y + \varsigma(\alpha), y) \quad \text{et} \quad \Theta(\alpha)\mu(\gamma) = \lambda(\alpha\gamma).$$

En utilisant l'égalité

$$(x+\alpha)(x,\beta x+y)(x-\alpha,y)(x,y-\beta x) = (x,y-\alpha\beta)$$

on établit que $h_{\gamma} = (x, y + \mu(\gamma))$. Autrement dit

$$\varphi(x+\alpha,y+\beta) = (x+\lambda(\alpha),y+\mu(\beta)) \quad \forall \alpha, \beta \in \mathbb{C}.$$

- Ainsi $\varphi(T) \subset T$ et $\varphi(H) \subset H$; puisque $PGL_3(\mathbb{C})$ est engendré par H et $SL_3(\mathbb{Z})$, l'image de $PGL_3(\mathbb{C})$ par φ est contenue dans $PGL_3(\mathbb{C})$. Le Théorème de classification de BOREL et TITS ([2]) assure qu'à conjugaison intérieure près l'action de φ sur $PGL_3(\mathbb{C})$ provient d'une immersion de corps de \mathbb{C} dans lui-même.
- 2.b. Supposons que la restriction de φ à $\mathsf{SL}_3(\mathbb{Z})$ coïncide avec la contragrédiente. En étudiant les images de T et H par φ , on montre que $\varphi(\mathsf{PGL}_3(\mathbb{C})) \subset \mathsf{PGL}_3(\mathbb{C})$. Toujours d'après [2] à conjugaison intérieure près, l'action de φ sur $\mathsf{PGL}_3(\mathbb{C})$ provient ici d'une immersion de corps de \mathbb{C} dans lui-même composée avec la contragrédiente.
- 3. Supposons donc que l'action de φ sur $\mathsf{PGL}_3(\mathbb{C})$ coïncide avec celle d'une immersion de corps λ de \mathbb{C} dans lui-même ou avec la composée d'une telle action et de la contragrédiente.

Posons $(\tau_1, \tau_2) = \varphi(x, 1/y)$. À partir de

$$(x, 1/y)(\alpha x, \beta y)(x, 1/y) = (\alpha x, y/\beta)$$

on obtient

$$\tau_1(\lambda(\alpha^{-1})x,\lambda(\beta^{-1})y) = \lambda(\alpha^{-1})\tau_1(x,y) \quad \text{et} \quad \tau_2(\lambda(\alpha^{-1})x,\lambda(\beta^{-1})y) = \lambda(\beta)\tau_2(x,y)$$

ou

$$\tau_1(\lambda(\alpha)x, \lambda(\beta)y) = \lambda(\alpha)\tau_1(x, y) \quad \text{et} \quad \tau_2(\lambda(\alpha)x, \lambda(\beta)y) = \frac{\tau_2(x, y)}{\lambda(\beta)}$$

suivant que la contragrédiente intervient ou non. Par suite $\varphi(x,1/y)=(\pm x,\pm 1/y)$.

L'égalité $((y,x)(x,1/y))^2 = \sigma$ assure que $\varphi(\sigma) = \pm \sigma$. Notons $h := \left(\frac{x}{x-1},\frac{x-y}{x-1}\right)$; la transformation $(h\sigma)^3$ est triviale $(voir\ [\mathbf{6}])$ donc $(\varphi(h)\varphi(\sigma))^3$ doit aussi l'être. Puisque h appartient à $\mathsf{SL}_3(\mathbb{Z})$, on a $\varphi(h) = h$ ou $\varphi(h) = (-x-y-1,y)$ suivant que $\varphi_{|\mathsf{SL}_3(\mathbb{Z})}$ est l'identité ou la contragrédiente. Si $\varphi(h) = h$, alors $\varphi(\sigma) = \sigma$ et on conclut avec le Théorème 1. Lorsque $\varphi(h) = (-x-y-1,y)$, la seconde composante de $(\varphi(h)\varphi(\sigma))^3$ vaut $\pm 1/y$ ce qui est exclu.

Remerciements. Le résultat précédent répond à une question d'E. Ghys que je remercie. Merci à D. Cerveau pour nos discussions animées et fructueuses.

Références

- [1] M. Alberich-Carramiñana. Geometry of the plane Cremona maps, volume 1769 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
- [2] A. Borel and J. Tits. Homomorphismes "abstraits" de groupes algébriques simples. *Ann. of Math.* (2), 97:499–571, 1973.
- [3] G. Castelnuovo. Le trasformationi generatrici del gruppo cremoniano nel piano. Atti della R. Accad. delle Scienze di Torino, 36:861–874, 1901.
- [4] J. Déserti. Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer. *Int. Math. Res. Not.*, pages Art. ID 71701, 27, 2006.
- [5] J. Déserti. Sur les automorphismes du groupe de Cremona. Compos. Math., à paraître.
- [6] M. Kh. Gizatullin. Defining relations for the Cremona group of the plane. *Izv. Akad. Nauk SSSR Ser. Mat.*, 46(5):909–970, 1134, 1982.

Julie Déserti • E-mail: julie.deserti@univ-rennes1.fr