ACTION OF THE CREMONA GROUP ON FOLIATIONS ON $\mathbb{P}^2_{\mathbb{C}}$: SOME CURIOUS FACTS

by

Dominique CERVEAU & Julie DÉSERTI

Abstract. — The Cremona group of birational transformations of $\mathbb{P}^2_{\mathbb{C}}$ acts on the space $\mathbb{F}(2)$ of holomorphic foliations on the complex projective plane. Since this action is not compatible with the natural graduation of $\mathbb{F}(2)$ by the degree, its description is complicated. The fixed points of the action are essentially described by Cantat-Favre in [3]. In that paper we are interested in problems of "aberration of the degree" that is pairs $(\phi, \mathcal{F}) \in \text{Bir}(\mathbb{P}^2_{\mathbb{C}}) \times \mathbb{F}(2)$ for which $\deg \phi^* \mathcal{F} < (\deg \mathcal{F} + 1)\deg \phi + \deg \phi - 2$, the generic degree of such pull-back. We introduce the notion of numerical invariance ($\deg \phi^* \mathcal{F} = \deg \mathcal{F}$) and relate it in small degrees to the existence of transversal structure for the considered foliations.

2010 Mathematics Subject Classification. — 14E07, 37F75

1. Introduction

Let us consider on the complex projective plane $\mathbb{P}^2_{\mathbb{C}}$ a foliation \mathcal{F} of degree d and a birational map ϕ of degree k. If the pair (\mathcal{F}, ϕ) is generic then

$$\deg \phi^* \mathcal{F} = (d + 1)k + k - 2.$$

For example if \mathcal{F} and ϕ are both of degree 2, then $\phi^* \mathcal{F}$ is of degree 6. Nevertheless one has the following statement which says that "aberration of the degree" is not exceptional:

Theorem A. — For any foliation \mathcal{F} of degree 2 on $\mathbb{P}^2_{\mathbb{C}}$, there exists a quadratic birational map ψ of $\mathbb{P}^2_{\mathbb{C}}$ such that $\deg \psi^* \mathcal{F} \leq 3$.

Holomorphic singular foliations on compact complex projective surfaces have been classified up to birational equivalence by Brunella, McQuillan and Mendes ([11]). Let \mathcal{F} be a holomorphic singular foliation on a compact complex projective surface S. Let Bir(\mathcal{F}) (resp. Aut(\mathcal{F})) denote the group of birational (resp. biholomorphic) maps of S that send leaf to leaf. If \mathcal{F} is of general type, then Bir(\mathcal{F}) = Aut(\mathcal{F}) is a finite group. In [3] Cantat and Favre classify the pairs (S, \mathcal{F}) for which Bir(\mathcal{F}) (resp. Aut(\mathcal{F})) is infinite; in the case of $\mathbb{P}^2_{\mathbb{C}}$ such foliations are given by closed rational 1-forms.

In this article we introduce a weaker notion: the numerical invariance. We consider on $\mathbb{P}^2_{\mathbb{C}}$ a pair (\mathcal{F}, ϕ) of a foliation \mathcal{F} of degree d and a birational map ϕ of degree $k \geq 2$. The foliation \mathcal{F} is **numerically invariant**
under the action of ϕ if $\deg \phi^* F = \deg F$. We characterize such pairs (F, ϕ) with $\deg F = \deg \phi = 2$ which is the first degree with deep (algebraic and dynamical) phenomena, both for foliations and birational maps. We prove that a numerically invariant foliation under the action of a generic quadratic map is special:

Theorem B. — Let F be a foliation of degree 2 on $\mathbb{P}_\mathbb{C}^2$ numerically invariant under the action of a generic quadratic birational map of $\mathbb{P}_\mathbb{C}^2$. Then F is transversely projective.

In that statement generic means outside an hypersurface in the space Bir_2 of quadratic birational maps of $\mathbb{P}_\mathbb{C}^2$.

For any quadratic birational map ϕ of $\mathbb{P}_\mathbb{C}^2$ there exists at least one foliation of degree 2 on $\mathbb{P}_\mathbb{C}^2$ numerically invariant under the action of ϕ and we give "normal forms" for such foliations. We don’t know if the foliations numerically invariant under the action of a non-generic quadratic birational map have a special transversal structure. Problem: for any birational map ϕ of degree $d \geq 3$, does there exist a foliation numerically invariant under the action of ϕ?

A foliation F on $\mathbb{P}_\mathbb{C}^2$ is primitive if $\deg F \leq \deg \phi^* F$ for any birational map ϕ. Foliations of degree 0 and 1 are defined by a rational closed 1-form (it is a well-known fact, see for example [2]). Hence a non-primitive foliation of degree 2 is also defined by a closed 1-form that is a very special case of transversely projective foliations. Generically a foliation of degree 2 is primitive. Remark that there are foliations that are pull-back by a rational map of degree greater than 1, and that are nevertheless primitive. This is the case of the foliation given by $Q_1 dQ_2 - Q_2 dQ_1$ where Q_1 and Q_2 denote two generic polynomials of degree 3, in other words a generic pencil of elliptic curves. The following problem seems relevant: classify in any degree the primitive foliations numerically invariant under the action of birational maps of degree ≥ 2; are such foliations transversely projective or is this situation specific to the degree 2 ? In this vein we get the following statement.

Theorem C. — A foliation F of degree 2 on $\mathbb{P}_\mathbb{C}^2$ numerically invariant under the action of a generic cubic birational map of $\mathbb{P}_\mathbb{C}^2$ satisfies the following properties:

- F is given by a closed rational 1-form (Liouvillean integrability);
- F is non-primitive.

Is it a general fact, i.e. if F is numerically invariant under the action of ϕ and $\deg \phi \gg \deg F$ is F Liouvillean integrable?

The text is organized as follows: we first give some definitions, notations and properties of birational maps of $\mathbb{P}_\mathbb{C}^2$ and foliations on $\mathbb{P}_\mathbb{C}^2$. In §3 we give a proof of Theorem A. we focus on foliations of degree 2 on $\mathbb{P}_\mathbb{C}^2$ that have at least two singular points, and then on foliations of degree 2 on $\mathbb{P}_\mathbb{C}^2$ with exactly one singular point. The section 4 is devoted to the description of foliations of degree 2 on $\mathbb{P}_\mathbb{C}^2$ numerically invariant under the action of any quadratic birational map. This allows us to prove Theorem B. At the end of the paper, §5 we describe the foliations of degree 2 numerically invariant under some cubic birational maps of $\mathbb{P}_\mathbb{C}^2$, and we finally establish Theorem C.

Acknowledgment. — We thank Alcides Lins Neto for helpful discussions, and the anonymous referee for remarks and suggestions.
2. Some definitions, notations and properties

2.1. About birational maps of $\mathbb{P}^2 \mathbb{C}$. — A rational map ϕ of $\mathbb{P}^2 \mathbb{C}$ is a "map" of the type

$$\phi : \mathbb{P}^2 \mathbb{C} \dashrightarrow \mathbb{P}^2 \mathbb{C}, \quad (x : y : z) \mapsto (\phi_0(x, y, z) : \phi_1(x, y, z) : \phi_2(x, y, z))$$

where the ϕ_i's are homogeneous polynomials of the same degree and without common factor. The degree of ϕ is by definition the degree of the ϕ_i's. A birational map ϕ of $\mathbb{P}^2 \mathbb{C}$ is a rational map having a rational "inverse" ψ, i.e. $\phi \circ \psi = \psi \circ \phi = \text{id}$. The first examples are the birational maps of degree 1 which generate the group $\text{Aut}(\mathbb{P}^2 \mathbb{C}) = \text{PGL}(3, \mathbb{C})$. Let us give some examples of quadratic birational maps:

$$\sigma : (x : y : z) \mapsto (yz : xz : xy), \quad \rho : (x : y : z) \mapsto (xy : z^2 : yz),$$

$$\tau : (x : y : z) \mapsto (x^2 : xy : y^2 - xz).$$

These three maps, which are involutions, play an important role in the description of the set of quadratic birational maps of $\mathbb{P}^2 \mathbb{C}$.

The birational maps of $\mathbb{P}^2 \mathbb{C}$ form a group denoted $\text{Bir}(\mathbb{P}^2 \mathbb{C})$ and called Cremona group. If ϕ is an element of $\text{Bir}(\mathbb{P}^2 \mathbb{C})$ then $\mathcal{O}(\phi)$ is the orbit of ϕ under the action of $\text{Aut}(\mathbb{P}^2 \mathbb{C}) \times \text{Aut}(\mathbb{P}^2 \mathbb{C})$:

$$\mathcal{O}(\phi) = \{ \ell \phi \ell' | \ell, \ell' \in \text{Aut}(\mathbb{P}^2 \mathbb{C}) \}.$$ A very old theorem, often called Noether Theorem, says that any element of $\text{Bir}(\mathbb{P}^2 \mathbb{C})$ can be written, up to the action of an automorphism of $\mathbb{P}^2 \mathbb{C}$, as a composition of quadratic birational maps ([4]). In [5] Chapters 1 & 6 the structure of the set Bir_d (resp. Bir_d) of birational maps of $\mathbb{P}^2 \mathbb{C}$ of degree $\leq d$ (resp. of degree d) has been studied when $d = 2$ and $d = 3$.

Theorem 2.1 (Corollary 1.10, Theorem 1.31, [5]). — One has the following decomposition

$$\text{Bir}_2 = \mathcal{O}(\sigma) \cup \mathcal{O}(\rho) \cup \mathcal{O}(\tau).$$

Furthermore

$$\text{Bir}_2 = \overline{\mathcal{O}(\sigma)}$$

where $\overline{\mathcal{O}(\sigma)}$ denotes the ordinary closure of $\mathcal{O}(\sigma)$, and

$$\dim \mathcal{O}(\tau) = 12, \quad \dim \mathcal{O}(\rho) = 13, \quad \dim \mathcal{O}(\sigma) = 14.$$

Note that there is a more precise description of Bir_2 in [5], Chapter 1.

We will further do some computations with birational maps of degree 3. Let us consider the following family of cubic birational maps:

$$\Phi_{a,b} : (x : y : z) \mapsto (x(x^2 + y^2 + axy + bxz + yz) : y(x^2 + y^2 + axy + bxz + yz) : xyz)$$

with $a, b \in \mathbb{C}$, $a^2 \neq 4$ and $2b \notin \{a \pm \sqrt{a^2 - 4}\}$. The structure of Bir_3 is much more complicated than the structure of Bir_2 (see [5] Chapter 6), nevertheless one has the following result.

Theorem 2.2 (Proposition 6.35, Theorem 6.38, [5]). — The closure of

$$\mathcal{X} = \{ \mathcal{O}(\Phi_{a,b}) | a, b \in \mathbb{C}, a^2 \neq 4, 2b \notin \{a \pm \sqrt{a^2 - 4}\} \}$$

in the set of rational maps of degree 3 is an irreducible algebraic variety of dimension 18. Furthermore the closure of \mathcal{X} in Bir_3 is Bir_3.

In the sequel we will say that a $\Phi_{a,b}$ is a generic element of Bir$_3$. The "most degenerate model" is up to automorphisms of $\mathbb{P}^2_\mathbb{C}$

$$\Psi: (x : y : z) \rightarrow (xz^2 + y^3 : yz^2 : z^3).$$

2.2. About foliations. —

Definition 2.3. Let \mathcal{F} be a foliation (maybe singular) on a complex manifold M; the foliation \mathcal{F} is a **singular transversely projective** one if there exists

a) $\pi: P \rightarrow M$ a \mathbb{P}^1-bundle over M,

b) \mathcal{G} a codimension one singular holomorphic foliation on P transversal to the generic fibers of π,

c) $\varsigma: M \rightarrow P$ a meromorphic section generically transverse to \mathcal{G}, such that $\mathcal{F} = \varsigma^* \mathcal{G}$.

Let us give another characterization of singular transversely projective foliations. Let \mathcal{F} be a foliation on $\mathbb{P}^2_\mathbb{C}$; assume that there exist three rational 1-forms θ_0, θ_1 and θ_2 on $\mathbb{P}^2_\mathbb{C}$ such that

i) \mathcal{F} is described by θ_0, i.e. $\mathcal{F} = \mathcal{F}_{\theta_0}$,

ii) the θ_i's form a $\text{sl}(2; \mathbb{C})$-triplet, that is

$$d\theta_0 = \theta_0 \wedge \theta_1, \quad d\theta_1 = \theta_0 \wedge \theta_2, \quad d\theta_2 = \theta_1 \wedge \theta_2.$$

Then \mathcal{F} is a singular transversely projective foliation. To see it one considers the manifolds $M = \mathbb{P}^2_\mathbb{C}$, $P = \mathbb{P}^2_\mathbb{C} \times \mathbb{P}^1_\mathbb{C}$, the canonical projection $\pi: P \rightarrow M$, and the foliation \mathcal{G} given by

$$\theta = dz + \theta_0 + z\theta_1 + \frac{z^2}{2} \theta_2$$

where z is an affine coordinate of $\mathbb{P}^1_\mathbb{C}$; in that case the transverse section is $z = 0$. When one can choose the θ_i's such that $\theta_1 = \theta_2 = 0$ (resp. $\theta_2 = 0$) the foliation \mathcal{F} is **defined by a closed 1-form** (resp. is **transversely affine**).

Classical examples of singular transversely projective foliations are given by Riccati foliations.

Definition 2.4. A **Riccati equation** is a differential equation of the following type

$$\mathcal{E}_R: \ y' = a(x)y^2 + b(x)y + c(x)$$

where a, b and c are meromorphic functions on an open subset \mathcal{U} of \mathbb{C}. To the equation \mathcal{E}_R one associates the meromorphic differential form

$$\omega_{\mathcal{E}_R} = dy - (a(x)y^2 + b(x)y + c(x)) \, dx$$

defined on $\mathcal{U} \times \mathbb{C}$. In fact $\omega_{\mathcal{E}_R}$ induces a foliation $\mathcal{F}_{\omega_{\mathcal{E}_R}}$ on $\mathcal{U} \times \mathbb{P}^1_\mathbb{C}$ that is transverse to the generic fiber of the projection $\mathcal{U} \times \mathbb{P}^1_\mathbb{C} \rightarrow \mathcal{U}$. One can check that

$$\theta_0 = \omega_{\mathcal{E}_R}, \quad \theta_1 = -(2a(x)y + b(x)) \, dx, \quad \theta_2 = -2a(x) \, dx$$

is a $\text{sl}(2; \mathbb{C})$-triplet associated to the foliation $\mathcal{F}_{\omega_{\mathcal{E}_R}}$.

We say that $\omega_{\mathcal{E}_R}$ is a **Riccati 1-form** and $\mathcal{F}_{\omega_{\mathcal{E}_R}}$ is a **Riccati foliation**.

1. In the following sense: the exceptional locus of any element of Bir$_3$ is a union of degree 6 of conics and lines; the exceptional locus of Ψ is reduced to a single line of multiplicity 6.
Let S be a ruled surface, that is a surface S endowed with $f : S \to C$, where C denotes a curve and $f^{-1}(c) \simeq \mathbb{P}^1_C$. Let us consider a singular foliation \mathcal{F} on S transverse to the generic fibers of f. The foliation \mathcal{F} is transversely projective.

Recall that a foliation \mathcal{F} on a surface S is radial at a point m of S if in local coordinates (x, y) around m the foliation \mathcal{F} is given by a holomorphic 1-form of the following type

$$\omega = x \, dy - y \, dx + \text{h.o.t.}$$

Let us denote by $\mathcal{F}(n; d)$ the set of foliations of degree d on \mathbb{P}^n_C (see [2]). The following statement gives a criterion which asserts that an element of $\mathcal{F}(2; 2)$ is transversely projective.

Proposition 2.5. — Let $\mathcal{F} \in \mathcal{F}(2; 2)$ be a foliation of degree 2 on \mathbb{P}^2_C. If a singular point of \mathcal{F} is radial, then \mathcal{F} is transversely projective.

Proof. — Assume that the singular point is the origin 0 in the affine chart $z = 1$, the foliation \mathcal{F} is thus defined by a 1-form of the following type

$$\omega = x \, dy - y \, dx + q_1 \, dx + q_2 \, dy + q_3 (x \, dy - y \, dx)$$

where the q_i’s denote quadratic forms. Let us consider the complex projective plane \mathbb{P}^2_C blown up at the origin; this space is denoted by $\text{Bl}(\mathbb{P}^2_C, 0)$. Let

$$\pi : \text{Bl}(\mathbb{P}^2_C, 0) \to \mathbb{P}^2_C$$

be the canonical projection. Then $\pi^* \mathcal{F}$ is transverse to the generic fibers of π, and in fact transverse to all the fibers excepted the strict transforms of the lines $xq_1 + yq_2 = 0$. Hence the foliation $\pi^* \mathcal{F}$ is transversely projective; since this notion is invariant under the action of a birational map, \mathcal{F} is transversely projective. \(\square \)

Remark 2.6. — The same argument can be involved for foliations of degree 2 on \mathbb{P}^2_C having a singular point with zero 1-jet.

Remark 2.7. — The closure of the set Δ_R of foliations in $\mathcal{F}(2; 2)$ having a radial singular point is irreducible, of codimension 2 in $\mathcal{F}(2; 2)$. Indeed Δ_R is the $\text{Aut}(\mathbb{P}^2_C)$-orbit of the set

$$\left\{ x \, dy - y \, dx + q_1 \, dx + q_2 \, dy + q_3 (x \, dy - y \, dx) \mid q_i \text{ quadratic form} \right\};$$

in fact it is easy to see that $\overline{\Delta_R}$ is the $\text{Aut}(\mathbb{P}^2_C)$-orbit of

$$\left\{ \lambda (x \, dy - y \, dx) + q_1 \, dx + q_2 \, dy + q_3 (x \, dy - y \, dx) \mid \lambda \in \mathbb{C}, q_i \text{ quadratic form} \right\}.$$

In particular $\overline{\Delta_R}$ is an unirational set in $\mathcal{F}(2; 2)$.

3. Proof of Theorem

We establish Theorem \square in two steps: we first look at foliations that have at least two singular points and then at foliations with exactly one singular point.
3.1. Foliations of degree 2 on \mathbb{P}^2_C with at least two singularities. — Any $\mathcal{F} \in \mathbb{F}(2; 2)$ is described in homogeneous coordinates by a 1-form ω that can be written
\[
\omega = q_1yz \left(\frac{dy}{y} - \frac{dz}{z} \right) + q_2xz \left(\frac{dz}{z} - \frac{dx}{x} \right) + q_3xy \left(\frac{dx}{x} - \frac{dy}{y} \right)
\] (3.1)
where
\[
q_1 = a_2x^2 + a_1y^2 + a_2z^2 + a_3xy + a_4xz + a_5yz,
q_2 = b_2x^2 + b_1y^2 + b_2z^2 + b_3xy + b_4xz + b_5yz,
q_3 = c_0x^2 + c_1y^2 + c_2z^2 + c_3xy + c_4xz + c_5yz.
\]

Proposition 3.1. — For any $\mathcal{F} \in \mathbb{F}(2; 2)$ with at least two distinct singularities there exists a quadratic birational map $\psi \in \mathcal{O}(\rho)$ such that $\deg \psi^* \mathcal{F} \leq 3$.

Proof. — In homogeneous coordinates \mathcal{F} is described by a 1-form ω as in (3.1).

Up to an automorphism of \mathbb{P}^2_C, one can suppose that $(1 : 0 : 0)$ and $(0 : 1 : 0)$ are singular points of \mathcal{F}, that is $a_1 = b_2 = c_0 = c_1 = 0$. If $c_3 \neq 0$, resp. $c_3 = 0$ and $b_4 \neq 0$, resp. $c_3 = b_4 = 0$, then let us consider the quadratic birational map $\psi \in \mathcal{O}(\rho)$ defined as follows
\[
\psi: (x : y : z) \rightarrow \left(xy : z^2 + \frac{3b - c_4 + \sqrt{(b_3 - c_4)^2 + 4b_4c_3}}{2c_3} yz : yz \right),
\]
resp.
\[
\psi: (x : y : z) \rightarrow \left(xy : z^2 + \frac{b_3 - c_4}{b_4} yz \right),
\]
resp. $\psi = \rho$. A direct computation shows that $\psi^* \omega = yz^2 \omega'$ where ω' denotes a homogeneous 1-form of degree 4. The foliation \mathcal{F}' defined by ω' has degree at most 3. \qed

3.2. Foliations of degree 2 on \mathbb{P}^2_C with exactly one singularity. — Such foliations have been classified:

Theorem 3.2 (§6). — Up to automorphisms of \mathbb{P}^2_C there are four foliations of degree 2 on \mathbb{P}^2_C having exactly one singularity. They are described in affine chart by the following 1-forms:
- $\Omega_1 = x^2dx + y^2(xdy - ydx)$,
- $\Omega_2 = x^2dx + (x + y^2)(xdy - ydx)$,
- $\Omega_3 = xydx + (x^2 + y^2)(xdy - ydx)$,
- $\Omega_4 = (x + y^2 - x^2y)dy + x(x + y^2)dx$.

Proposition 3.3. — There exists a quadratic birational map $\psi_1 \in \mathcal{O}(\rho)$ such that $\deg \psi_1^* \Omega_1 = 2$; furthermore \mathcal{F}_{Ω_1} has a rational first integral and is non-primitive.

For $k = 2, 3$, there is no birational map φ_k such that $\deg \varphi_k^* \mathcal{F}_{\Omega_1} = 0$ but there is ψ_k in $\mathcal{O}(\tau)$ such that $\deg \psi_k^* \mathcal{F}_{\Omega_1} = 1$. In particular \mathcal{F}_{Ω_2} and \mathcal{F}_{Ω_3} are non-primitive.

There exists a birational map $\psi_4 \in \mathcal{O}(\tau)$ such that $\deg \psi_4^* \mathcal{F}_{\Omega_4} = 3$, and \mathcal{F}_{Ω_4} is primitive.

Remark 3.4. — If $\phi = (x^2 : xy : xz + y^2)$, then $\deg \phi^* \mathcal{F}_{\Omega_2} = \deg \phi^* \mathcal{F}_{\Omega_3} = 2$. A contrario we will see later there is no quadratic birational map ϕ such that $\deg \phi^* \mathcal{F}_{\Omega_4} = 2$ (see Corollary 4.15).

Corollary 3.5. — For any element \mathcal{F} of $\mathbb{F}(2; 2)$ with exactly one singularity there exists a quadratic birational map ψ such that $\deg \psi^* \mathcal{F} \leq 3$.
Proof of Proposition 3.3 — The foliation F_{Ω_1} is given in homogeneous coordinates by

$$\Omega_1' = (x^2z - y^3) \, dx + xy^2 \, dy - y^3 \, dz;$$

if $\psi_1: (x : y : z) \to (x^2 : xy : yz)$ then

$$\psi_1^* \Omega_1' \wedge (y(2xz - y^2) \, dx + x(y^2 - xz) \, dy - x^2y \, dz) = 0.$$

The foliation F_{Ω_1} has a rational first integral and is non-primitive, it is the image of a foliation of degree 0 by a cubic birational map:

$$(x^3 : x^2y : x^2z + y^3/3) \Omega_1' \wedge (z \, dx - x \, dz) = 0.$$

The foliation F_{Ω_2} is described in homogeneous coordinates by

$$\Omega_2' = (x^2z - x^2y - y^3) \, dx + x(xz + y^2) \, dy - x^3 \, dz;$$

let us consider the birational map $\psi_2: (x : y : z) \to (x^2 : xy : xz - 2x^2 - 2xy - y^2)$ then

$$\psi_2^* \Omega_2' \wedge ((xz - yz) \, dx + xz \, dy - x^2 \, dz) = 0.$$

One can verify that

$$\left(2 + \frac{1}{x} + 2 \frac{y}{x^2} \right) \exp \left(-\frac{y}{x} \right)$$

is a first integral of F_{Ω_2}; it is easy to see that F_{Ω_2} has no rational first integral so there is no birational map ϕ_2 such that $\deg \phi_2^* F_{\Omega_2} = 0$.

The foliation F_{Ω_3} is given in homogeneous coordinates by the 1-form

$$\Omega_3' = y(xz - x^2 - y^2) \, dx + x(x^2 + y^2) \, dy - x^2y \, dz;$$

if $\psi_3: (x : y : z) \to (x^2 : xy : xz + y^2/2)$ then

$$\psi_3^* \Omega_3' \wedge (y(z - x) \, dx + x^2 \, dy - xy \, dz) = 0.$$

The function

$$\left(\frac{y}{x} \right) \exp \left(\frac{1}{2} \frac{y^2}{x^2} - \frac{1}{x} \right)$$

is a first integral of F_{Ω_3}, and F_{Ω_3} has no rational first integral so there is no birational map ϕ_3 such that $\deg \phi_3^* F_{\Omega_3} = 0$.

Let us consider the birational map of $\mathbb{P}^2_{\mathbb{C}}$ given by

$$\psi_4: (x : y : z) \to (-x^2 : xy : y^2 - xz)$$

In homogeneous coordinates

$$\Omega_4' = x(xz + y^2) \, dx + (xz^2 + x^2y - x^2y) \, dy + (xyz - y^3 - x^3) \, dz;$$

a direct computation shows that $\psi_4^* \Omega_4' \wedge \eta = 0$ where

$$\eta = (3y^3z - x^3y^2 + x^3z - 2xyz^2) \, dx + (x^3y - 4y^4 - x^2z^2 + 3xy^2z) \, dy + x(2y^3 - x^3 - xyz) \, dz.$$
4. Numerical invariance

In the sequel num. inv. means numerically invariant.

In this section we determine the foliations \(F \) of \(\mathbb{P}(2; 2) \) num. inv. under the action of \(\sigma \) (resp. \(\rho \), resp. \(\tau \)). Note that if \(\phi \) is a birational map of \(\mathbb{P}^2_\mathbb{C} \) and \(\ell \) an element of \(\text{Aut}(\mathbb{P}^2_\mathbb{C}) \) then \(\text{deg}(\phi \ell)^*F = \text{deg}\phi^*F \); hence following Theorem 2.1 we get the description of foliations num. inv. under the action of a quadratic birational map of \(\mathbb{P}^2_\mathbb{C} \) by giving normal forms.

Recall that \(\sigma \) is given in a fixed system of homogeneous coordinates \((x : y : z)\) by

\[
\sigma: (x : y : z) \rightarrow (yz : xz : xy),
\]

and remark that \(\sigma \) is invariant under conjugacy by elements of the group \(S_3 \) of standard permutations of coordinates.

Lemma 4.1. — An element \(\sigma \) of \(\mathbb{P}(2; 2) \) is num. inv. under the action of \(\sigma \) if and only if it is given up to permutations of coordinates and standard affine charts by 1-forms of the following type

- either \(\omega_1 = y(\kappa + \varepsilon y) \, dx + (\beta x + \delta y + \alpha x^2 + \gamma xy) \, dy \),
- or \(\omega_2 = (\delta + \beta y + \kappa y^2) \, dx + (\alpha + \varepsilon x + \gamma x^2) \, dy \),

where \(\alpha, \beta, \gamma, \delta, \varepsilon, \kappa \) (resp. \(\alpha, \beta, \gamma, \delta, \varepsilon, \kappa \)) are complex numbers such that \(\text{deg} \, \omega_1 = 2 \) (resp. \(\text{deg} \, \omega_2 = 2 \)).

Proof. — The foliation \(\sigma \) is defined by a homogeneous 1-form \(\omega \) of degree 3. The map \(\sigma \) is an automorphism of \(\mathbb{P}^2_\mathbb{C} \setminus \{xyz = 0\} \); hence if \(\sigma^* \omega = P \omega' \), with \(\omega' \) a 1-form of degree 3 and \(P \) a homogeneous polynomial, then \(P = x^iy^jz^k \) for some integers \(i, j, k \) such that \(i + j + k = 4 \). Up to permutation of coordinates it is sufficient to look at the four following cases: \(P = x^3i, P = x^3y, P = x^2y^2 \) and \(P = x^2yz \). Let us write \(\omega \) as in (3.1).

Computations show that \(x^3 \) (resp. \(x^3y \)) cannot divide \(\sigma^* \omega \). If \(P = x^2yz \), then \(\sigma^* \omega = P \omega' \) if and only if

\[
c_0 = b_0 = a_2 = b_2 = a_1 = c_1 = b_4 = c_3 = 0, \quad b_3 = c_4
\]

that gives \(\omega_1 \). Finally one has \(\sigma^* \omega = x^2y^2 \omega' \) if and only if

\[
c_1 = c_0 = b_0 = a_1 = b_4 = c_3 = a_5 = 0, \quad b_3 = c_4, \quad c_5 = a_3;
\]

in that case we obtain \(\omega_2 \). \(\square \)

Proposition 4.2. — A foliation \(F \in \mathbb{P}(2; 2) \) num. inv. under the action of an element of \(\mathcal{O}(\sigma) \) is \(\text{Aut}(\mathbb{P}^2_\mathbb{C}) \)-conjugate either to a foliation of type \(F_{\omega_1} \), or to a foliation of type \(F_{\omega_2} \). In particular it is transversely projective.

Proof. — Let \(\phi \) be an element of \(\mathcal{O}(\sigma) \) such that \(\text{deg} \phi^* F = 2 \); the map \(\phi \) can be written \(\ell_1 \sigma \ell_2 \) where \(\ell_1 \) and \(\ell_2 \) denote automorphisms of \(\mathbb{P}^2_\mathbb{C} \). By assumption the degree of \((\ell_1 \sigma \ell_2)^* F = \ell_1^2 (\sigma^*(\ell_1^* F)) \) is 2. Hence \(\text{deg} \sigma^*(\ell_1^* F) = 2 \) and the foliation \(\ell_1^* F \) is num. inv. under the action of \(\sigma \). Since \(\ell_1 F \) and \(F \) are conjugate and since the notion of transversal projectivity is invariant by conjugacy it is sufficient to establish the statement for \(\phi = \sigma \). The proposition thus follows from the fact that 1-forms of Lemma 4.1 are Riccati ones (up to multiplication). \(\square \)

Remark 4.3. — For generic values of parameters \(\alpha, \beta, \gamma, \delta, \varepsilon, \kappa \) a foliation of type \(F_{\omega_1} \) given by the corresponding form \(\omega_1 \) is not given by a closed meromorphic 1-form. This can be seen by studying the holonomy group of \(F_{\omega_1} \) that can be identified with a subgroup of \(\text{PGL}(2; \mathbb{C}) \) generated by two elements \(f \) and \(g \). For generic values of the parameters \(f \) and \(g \) are also generic, in particular the group \(\langle f, g \rangle \) is free. When \(F_{\omega_1} \) is given by a closed 1-form, then the holonomy group is an abelian one.

Remark that a contrario the foliations given by 1-forms of type \(\omega_2 \) are given by a closed meromorphic 1-form.
Remark 4.4. — Let \(\Delta_1 \) denote the closure of the set of elements of \(\mathbb{F}(2;2) \) conjugate to a foliation of type \(F_{\omega_0} \).

In the affine chart \(x = 1 \) an element of type \(F_{\omega_0} \) is radial at \((0,0) \) as soon as \(\alpha \neq 0 \). Since \(\Delta_R \) is closed, the inclusion \(\Delta_1 \subset \Delta_R \) holds.

If the components of \(\omega_2 \) are not constant, then an element of type \(F_{\omega_0} \) has a singular point in \(\mathbb{C}^2 \), and up to an ad-hoc translation \(F_{\omega_2} \) is an element of type \(F_{\omega_0} \). As \(\Delta_1 \) is closed, one has \(\Delta_2 \subset \Delta_1 \).

Remark 4.5. — The notion of num. inv. is not related to the dynamic of the map (see \([3]\) for example): the foliations num. inv. by the involution \(\sigma \) ("without dynamic") are conjugate to the foliations num. inv. by \(A\sigma \), \(A \in \text{Aut}(\mathbb{P}^2) \), which has a rich dynamic for generic \(A \).

The foliations of \(\mathbb{F}(2;2) \) invariant by \(\sigma \) are particular cases of num. inv. foliations:

Proposition 4.6. — An element of \(\mathbb{F}(2;2) \) invariant by \(\sigma \) is given up to permutations of coordinates and affine charts

- either by \(y(1+y)dx + (\beta x + \alpha y + \alpha^2 + \beta xy)dy \),
- or by \(y(1-y)dx + (\beta x - \alpha y + \alpha^2 - \beta xy)dy \),
- or by \(ydx + (\alpha + \epsilon x + \alpha^2)dy \),

where the parameters are complex numbers such that the degree of the associated foliations is 2.

Proof. — With the notations of Lemma 4.1 one has

\[
\sigma^* \omega_1 = -y(\epsilon + \kappa y)dx - (\gamma x + \alpha y + \delta x^2 + \beta xy)dy;
\]

thus \(\sigma^* \omega_1 \wedge \omega_1 = 0 \) if and only if either \(\gamma = \beta, \delta = \alpha, \epsilon = \kappa \) or \(\gamma = -\beta, \delta = -\alpha, \epsilon = -\kappa \).

One has \(\sigma^* \omega_2 = -(\kappa + \beta y + \delta y^2)dx - (\gamma + \epsilon x + \alpha^2)dy \), and \(\omega_2 \wedge \sigma^* \omega_2 = 0 \) if and only if \(\gamma = \alpha, \delta = 0 \) and \(\kappa = 0 \).

Remark 4.7. — The foliations associated to the two first 1-forms with parameters \(\alpha, \beta \) of Proposition 4.6 are conjugate by the automorphism \((x, y) \mapsto (x, -y)\).

Lemma 4.8. — A foliation \(F \in \mathbb{F}(2;2) \) is num. inv. under the action of \(\rho \) if and only if \(F \) is given in affine chart

- either by \(\omega_3 = y(\kappa + \epsilon y + \lambda y^2)dx + (\beta + \kappa x + \delta y + \gamma xy + \alpha^2 - \lambda xy^2)dy \),
- or by \(\omega_4 = y(\mu + \delta x + \epsilon y + \epsilon xy)dx + (\alpha + \beta x + \lambda y + \delta x^2 + \kappa xy - \epsilon x^2 y)dy \),
- or by \(\omega_5 = (\lambda + \gamma + \kappa xy + \epsilon y^2)dx + (\beta + \delta x + \alpha^2)dy \),

where the parameters of \(\omega_i \) are such that \(\deg F_{\omega_i} = 2 \).

Proof. — Let us take the notations of the proof of Lemma 4.1. The map \(\rho \) is an automorphism of \(\mathbb{P}^2 \setminus \{yz = 0\} \); therefore if \(\rho^* \omega = P\omega' \) with \(\omega' \) a 1-form of degree 3 and \(P \) a homogeneous polynomial then \(P = y^j z^k \) for some integers \(j, k \) such that \(j + k = 4 \). We have to look at the five following cases: \(P = z^4 \), \(P = yz^3 \), \(P = y^2 z^2 \), \(P = y^3 z \) and \(P = y^4 \). Computations show that \(y^4 \) (resp. \(y^3 z \)) cannot divide \(\rho^* \omega \). If \(P = z^4 \) then \(\rho^* \omega = P\omega' \) if and only if

\[
c_0 = b_0 = c_3 = b_4 = b_2 = 0, \quad a_0 = c_4, \quad b_3 = c_4, \quad a_4 = 2c_2 - b_5;
\]

this gives the first case \(\omega_3 \). The equality \(\rho^* \omega = yz^3 \omega' \) holds if and only if

\[
b_0 = c_0 = b_4 = c_1 = a_1 = b_2 = 0, \quad a_0 = 2c_4 - b_3
\]

and we obtain \(\omega_4 \). Finally one has \(\rho^* \omega = y^2 z^2 \omega' \) if and only if

\[
c_1 = b_0 = c_3 = a_5 = a_1 = c_0 = b_4 = 0, \quad c_5 = a_3
\]
which corresponds to ω_5.

Proposition 4.9. — The foliations of type \mathcal{F}_{ω_3} and \mathcal{F}_{ω_5} are transversely projective. In fact the \mathcal{F}_{ω_3} are transversely affine, and the \mathcal{F}_{ω_5} are Riccati ones.

Proof. — A foliation of type \mathcal{F}_{ω_3} is described by the 1-form

$$\theta_0 = dx - \frac{(\beta + \delta y + \alpha y^2) + (\kappa + \gamma y - \lambda y^2)x}{y(\kappa + \epsilon y + \lambda y^2)} dy$$

and it is transversely affine; to see it consider the $sl(2;\mathbb{C})$-triplet

$$\theta_0, \quad \theta_1 = \frac{\kappa + \gamma y - \lambda y^2}{y(\kappa + \epsilon y + \lambda y^2)} dy, \quad \theta_2 = 0.$$

A foliation of type \mathcal{F}_{ω_5} is given by

$$dy + \frac{\lambda + (\gamma + \kappa)y + \epsilon y^2}{\beta + \delta x + \alpha x^2} dx$$

and thus is a Riccati foliation. In fact the fibration $x/z = \text{constant}$ is transverse to \mathcal{F}_{ω_5} that generically has three invariant lines.

We don’t know if the \mathcal{F}_{ω_i} are transversely projective. For generic values of the parameters a foliation of type \mathcal{F}_{ω_i} hasn’t meromorphic uniform first integral in the affine chart $y = 1$. Thus if \mathcal{F}_{ω_i} is transversely projective then it must have an invariant algebraic curve different from $y = 0$ (see [7]). We don’t know if it is the case. A foliation of degree 2 is conjugate to a generic \mathcal{F}_{ω_i} (by an automorphism of $\mathbb{P}^2_\mathbb{C}$) if and only if it has an invariant line (say $y = 0$) with a singular point (say 0) and local model $2x dy - y dx$. The closure of the set of such foliations has codimension 2. Note that the three families $\mathcal{F}_{\omega_0}, \mathcal{F}_{\omega_3}$ and \mathcal{F}_{ω_5} have non trivial intersection. The set $\{\mathcal{F}_{\omega_i}\}$ contains many interesting elements such that the famous Euler foliation given by $y^2 dx + (y - x) dy$; this foliation is transversely affine but is not given by a closed rational 1-form.

Proposition 4.10. — A foliation $\mathcal{F} \in \mathbb{P}(2;2)$ num. inv. under the action of an element of $\Theta(\rho)$ is conjugate to a foliation either of type \mathcal{F}_{ω_0}, or of type \mathcal{F}_{ω_1}, or of type \mathcal{F}_{ω_5}.

Let us look at special num. inv. foliations, those invariant by ρ.

Proposition 4.11. — An element of $\mathbb{P}(2;2)$ invariant by ρ is given by a 1-form of one of the following type

- $y(1-y) dx + (\beta + x) dy$,
- $y^2 dx + (\alpha x) dy$,
- $y(1-y)(y + \delta x) dx + (1+y)(\alpha + \beta x + \delta x^2) dy$,
- $y(1+y)(y + \delta x) dx + (1-y)(\alpha + \beta x + \delta x^2) dy$,
- $(1-y^2) dx + (\beta + \delta x + \alpha x^2) dy$,

where the parameters are complex numbers such that the degree of the associated foliations is 2.

Corollary 4.12. — An element of $\mathbb{P}(2;2)$ invariant by ρ is defined by a closed 1-form.

Remark 4.13. — The third and fourth cases with parameters $\alpha, \beta, \gamma, \delta$ are conjugate by the automorphism $(x,y) \mapsto (x,-y)$.

From Lemmas [4.1] and [4.8] one gets the following statement.
Proposition 4.14. — A foliation num. inv. by an element of $\mathcal{O}(\phi)$, with $\phi = \sigma, \rho$, preserves an algebraic curve.

Corollary 4.15. — There is no quadratic birational map ϕ of the complex projective plane such that $\deg \phi^* \mathcal{F}_{\Omega_4} = 2$.

Proof. — The foliation \mathcal{F}_{Ω_4} has no invariant algebraic curve ([6 Proposition 1.3]); according to Proposition 4.14 it is thus sufficient to show that there is no birational map $\phi \in \mathcal{O}(\tau)$ such that $\deg \phi^* \mathcal{F}_{\Omega_4} = 2$ that can be established with a direct and tedious computation.

Remark 4.16. — The map ρ can be written $\ell_1 \sigma \ell_2 \sigma \ell_3$ with

$$\ell_1 = (z - y : y - x : y), \quad \ell_2 = (y + z : z : x), \quad \ell_3 = (x + z : y - z : z).$$

We are interested by the "intermediate" degrees of a numerically invariant foliation \mathcal{F}, that is the sequence $\deg \mathcal{F}, \deg (\ell_1 \sigma)^* \mathcal{F}, \deg (\ell_1 \sigma \ell_2 \sigma \ell_3)^* \mathcal{F} = \deg \mathcal{F}$. A tedious computation shows that for generic values of the parameters the sequence is 2, 5, 2. We schematize this fact by the diagram

```
  5
 / \ /
/   \/
\   /\2
  \  /
    2
```

A similar argument to Lemma 4.1 yields to the following result.

Lemma 4.17. — An element \mathcal{F} of $\mathbb{P}(2; 2)$ is num. inv. under the action of τ if and only if \mathcal{F} is given in affine chart by a 1-form of type

$$\omega_0 = \left(- \delta x + \alpha y - \varepsilon x^2 + \theta xy + \beta y^2 + \kappa x y + \mu x y^2 + \lambda y^3 \right) dx + \left(- 3 \alpha x + \xi x^2 + 2(\delta - \beta)xy + \alpha y^2 - \kappa x^3 - \mu x^2 y - \lambda xy^2 \right) dy$$

where the parameters are such that $\deg \mathcal{F}_{\omega_0} = 2$.

We don’t know the qualitative description of foliations of type \mathcal{F}_{ω_0}. For example we don’t know if the \mathcal{F}_{ω_0} are transversely projective. If it is the case, this implies the existence of invariant algebraic curves, and that fact is unknown.

Proposition 4.18. — A foliation $\mathcal{F} \in \mathbb{P}(2; 2)$ num. inv. under the action of an element of $\mathcal{O}(\tau)$ is conjugate to \mathcal{F}_{ω_0} for suitable values of the parameters.

Let us describe some special num. inv. foliations under the action of τ, those invariant by τ.

Proposition 4.19. — An element of $\mathbb{P}(2; 2)$ invariant by τ is given

- either by

$$\left(- \varepsilon x^2 + \theta xy + \beta y^2 + \varepsilon xy^2 - \left(\frac{\xi}{2} + \theta \right) y^3 \right) dx + x \left(\xi x - 2 \beta y - \varepsilon xy + \left(\frac{\xi}{2} + \theta \right) y^2 \right) dy,$$

- or by

$$\left(- \delta x + \alpha y + \frac{3}{2} \delta y^2 + \kappa x^2 y + \mu x y^2 + \lambda y^3 \right) dx - \left(3 \alpha x + \delta xy - \alpha y^2 + \kappa x^3 + \mu x^2 y + \lambda xy^2 \right) dy,$$

where the parameters are complex numbers such that the degree of the associated foliations is 2.

The foliations associated to the first 1-form are transversely affine.
Proof. — The 1-jet at the origin of the 1-form
\[\omega = (-\varepsilon x^2 + \Theta xy + \beta y^2 + \varepsilon xy^2 - (\frac{\xi}{2} + \Theta) y^3) \, dx + x(\xi x - 2\beta y - \varepsilon xy + (\frac{\xi}{2} + \Theta) y^2) \, dy \]
is zero so after one blow-up \(F_\omega \) is transverse to the generic fiber of the Hopf fibration; furthermore as the exceptional divisor is invariant, \(F_\omega \) is transversely affine. \(\square \)

Remark 5.20. — The map \(\tau \) can be written \(\ell_1 \sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma \ell_4 \) with
\[
\begin{align*}
\ell_1 &= (x - y : x - 2y : -x + y - z), \\
\ell_2 &= (x + z : x : y), \\
\ell_3 &= (-y : x - 3y + z : x), \\
\ell_4 &= (y - x : z - 2x : 2x - y).
\end{align*}
\]
Let us consider a foliation \(F \) num. inv. under the action of \(\tau \); set \(F' = \ell_1^* F \). We compute the intermediate degrees:
\[
\deg \sigma^* F' = 5, \quad \deg (\sigma \ell_2 \sigma)^* F' = 4, \quad \deg (\sigma \ell_3 \sigma \ell_2 \sigma)^* F' = 5.
\]
To summarize:

\[
\begin{array}{cccc}
5 & & 5 \\
& 4 & & \\
2 & & & 2
\end{array}
\]

5. Higher degree

We will now focus on similar questions but with cubic birational maps of \(\mathbb{P}^2_\mathbb{C} \) and elements of \(\mathfrak{F}(2; 2) \). The generic model of such birational maps is:
\[
\Phi_{a,b}: (x : y : z) \mapsto (x(x^2 + y^2 + axy + bxz + yz) : y(x^2 + y^2 + axy + bxz + yz) : xyz)
\]
with \(a, b \in \mathbb{C}, a^2 \neq 4 \) and \(2b \notin \{a \pm \sqrt{a^2 - 4}\} \).

Lemma 5.1. — An element \(F \) of \(\mathfrak{F}(2; 2) \) is num. inv. under the action of \(\Phi_{a,b} \) if and only if \(F \) is given in affine chart
- either by \(\omega_7 = y(\alpha + \gamma y) \, dx - x(\alpha + \kappa x) \, dy \),
- or by
\[
\omega_8 = b(b^2 - ab + 1 + (a - 2b)y + y^2) \, dx + ((b^2 - ab + 1) + (ab - 2)x + x^2) \, dy,
\]
where the parameters are such that \(\deg F_{\omega_7} = \deg F_{\omega_8} = 2 \).

Remark 5.2. — Remark that the foliations \(F_{\omega_7} \), do not depend on the parameters of \(\Phi_{a,b} \), that is, the \(F_{\omega_7} \), are num. inv. by all \(\Phi_{a,b} \), whereas the \(F_{\omega_8} \) only depend on \(a \) and \(b \).

Furthermore \(F_{\omega_7} \) is num. inv. by \(\sigma \) and \(\rho \).

Proposition 5.3. — Any \(F \in \mathfrak{F}(2; 2) \) num. inv. under the action of \(\Phi_{a,b} \), and more generally any \(F \in \mathfrak{F}(2; 2) \) num. inv. under the action of a generic cubic birational map of \(\mathbb{P}^2_\mathbb{C} \), satisfies the following properties:
- \(F \) is given by a rational closed 1-form;
- \(F \) is non-primitive.
Proof. — Let us establish the properties for F_{ω_7}; remark that F_{ω_7} is given by
\[
\frac{dx}{x(\alpha + \kappa y)} - \frac{dy}{y(\alpha + \gamma y)}
\]
which is a closed rational 1-form (remark that $(|\alpha| + |\kappa|)(|\alpha| + |\gamma|) \neq 0$ since $\deg F_{\omega_7} = 2$). The foliation F_{ω_7} is non-primitive: indeed one has
\[
\sigma^* \omega_7 = \frac{1}{x^r y^s} \left((\alpha x + \kappa) dx - (\alpha y + \gamma) dy \right)
\]
that defines a foliation of degree 0.

The idea and result are the same for the foliations F_{ω_8} (except that it gives a birational map ϕ such that $\deg \phi^* F_{\omega_8} = 1$).

Let us consider an element F of $F_{(2;2)}$ num. inv. under the action of a birational map of degree ≥ 3; is F defined by a closed 1-form ?

Remark 5.4. — The foliations F_{ω_7} are contained in the orbit of the foliation $F_{\eta'}$.

Remark 5.5. — Any map $\Phi_{a,b}$ can be written $\ell_1 \sigma \ell_2 \sigma_3$ with
\[
\ell_2 = (a_0 y + a_1 z : a_2 y + a_3 z : a_4 x + a_5 y + a_6 z)
\]
(see [5] proof of Proposition 6.36). Let us consider the birational map $\xi = \sigma \ell_2 \sigma$ with
\[
\ell_2 = (a_0 y + a_1 z : a_2 y + a_3 z : a_4 x + a_5 y + a_6 z) \in \text{Aut}(\mathbb{P}^2_C).
\]
As in Lemma 5.1 there are two families of foliations F_1, F_2 of degree 2, one that does not depend on the parameters of ξ and the other one depending only on the parameters of ξ, such that $\xi^* F_1$ and $\xi^* F_2$ are of degree 2. One question is the following: what is the intermediate degree? A computation shows that for generic parameters $\deg \sigma^* F_1 = 4$ and that $\deg \sigma^* F_2 = 2$. This implies in particular that F_{ω_8} is num. inv. under the action of σ. For F_1 and F_{ω_7} one has

\[
\begin{array}{c}
4 \\
2 \\
\end{array}
\begin{array}{c}
2 \\
\end{array}
\]

and for F_2 and F_{ω_8}

\[
\begin{array}{c}
2 \\
2 \\
2 \\
\end{array}
\]

Let us now consider the ”most degenerate” cubic birational map
\[
\Psi: (x : y : z) \rightarrow (xz^2 + y^3 : yz^2 : z^3).
\]

Lemma 5.6. — An element F of $F(2;2)$ is num. inv. under the action of Ψ if and only if F is given in affine chart by
\[
\omega_0 = (-\alpha + \beta y + \gamma z^2) dx + (\epsilon - 3\beta x + \kappa y - 3\gamma xy + \lambda y^2) dy
\]
where the parameters are such that $\deg F_{\omega_0} = 2$. In particular F is transversely affine.
Remark 5.7. — The map ψ can be written $\ell_1 \sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma \ell_5 \sigma \ell_6 \sigma \ell_7$ with

\[
\begin{align*}
\ell_1 &= (z-y:y:y-x), & \ell_2 &= (y+z:z:x), & \ell_3 &= (-z:-y:x-y), \\
\ell_4 &= (x+z:x:y), & \ell_5 &= (-y:x-3y+z:x), & \ell_6 &= (-x:-y-z:x+y), \\
\ell_7 &= (x+y:z-y:y).
\end{align*}
\]

As previously we consider the problem of the intermediate degrees; if $\mathcal{F}' = \ell_1^* \mathcal{F}$, a computation shows that for generic parameters

\[
\begin{align*}
\deg \sigma^* \mathcal{F}' &= 4, & \deg (\sigma \ell_2 \sigma)^* \mathcal{F}' &= 3, & \deg (\sigma \ell_2 \sigma \ell_3 \sigma)^* \mathcal{F}' &= 5, \\
\deg (\sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma)^* \mathcal{F}' &= 3, & \deg (\sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma \ell_5 \sigma)^* \mathcal{F}' &= 5, \\
\deg (\sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma \ell_5 \sigma \ell_6 \sigma)^* \mathcal{F}' &= 3, & \deg (\sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma \ell_5 \sigma \ell_6 \sigma)^* \mathcal{F}' &= 4,
\end{align*}
\]

that is

\[
\begin{array}{c}
\begin{array}{c}
4 \\
3 \\
4 \\
3 \\
3 \\
5 \\
5 \\
3 \\
2
\end{array}
\end{array}
\]

We have not studied the quadratic foliations numerically invariant by (any) cubic birational transformation. It is reasonable to think that such foliations are transversely projective.

References

DOMINIQUE CERVEAU, Membre de l’Institut Universitaire de France. IRMAR, UMR 6625 du CNRS, Université de Rennes 1, 35042 Rennes, France. • E-mail: dominique.cerveau@univ-rennes1.fr

JULIE DÉSERTI, IMJ-PRG, UMR 7586, Université Paris 7, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France. E-mail: julie.deserti@imj-prg.fr