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1. INTRODUCTION

In this article we work on the group of birational maps that preserve contact structures on ]P’?C. On P%
there is, up to automorphisms, only one (non-singular) contact structure given in homogeneous coordinates
by the 1-form O = 20dz1 — z1dzo + z22dz3 — z3dzo. In C3 there is the Darboux 1-form ® = zodz; +dz, that is
the standard local model of contact forms; it thus defines a holomorphic contact structure on C3 that extends
to ]P’% meromorphically. Note that ® has poles of order 3 along the hyperplane z3 = 0. We denote by c(®)
the (meromorphic) contact structure induced on ]P’?C by . Let us remark that actually o is birationally
conjugate to 5|z3:] (more precisely they are conjugate via a polynomial automorphism in the affine chart
z3 = 1). As a result the group of birational maps that preserve these structures are conjugate; since it is
more convenient to work with ® than with 9 we will focus on ®.

The contact geometry has a long story. The Darboux local model zodz; + dz; is related to the forma-
lization of zy = —gz—z'f. For instance if S is a surface in C3 given by F(zo,21,z2) = 0 then the restriction

of ® to S corresponds to the implicit differential equation F (—g%, 21, Zz) = 0. A birational self-map of

]P’% which preserves the contact structure (i.e., which sends the 1-form zodz; 4+ dz, viewed in the affine chart
73 = 1 onto a multiple of zodz; +dzp by a rational function) is said to be a contact map. The space C3
with the contact form @ can be seen as an affine chart of the projectivization of the cotangent bundle T*C?
(equipped with the standard Liouville contact form). As a consequence there is a natural extension of any
birational self-map of the (z;,z2) plane ([22])

90y | 9%
. . T 0z T 9 <0
K: Bir(Pg) = Bir(Pt)e(w),  (91,02) — or a5 91(21,22),02(21,22)
%y~ 09z <0

where Bir(IP’%)C(w) denotes the group of contact birational self-maps of IP%. The image of X is the Klein
group % . In 1926 Klein conjectured that the group of contact maps is generated by .#” and the Legendre
involution

(z0,21,22) + (21,20, =22 — 2021)-
In 2008 Gizatullin proved this "conjecture” in the case in which the contact transformations are polynomial

automorphisms of the affine space ([20]). The conjecture about generators of the contact group is still open
in the birational case.
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Let G be a subgroup of the group Bir(P{.) of birational self-maps of P{., and let § be a meromorphic
p-form on P.; denote by

Gg={0€G|¢"'B=B}
the subgroup of elements of G that preserve the form . In the same spirit for 1-forms B we set
Gep) = {9 € Glo"BAB=0}.
We have the obvious inclusions Gg C Gy C G.
We first describe the group Aut((C3)C(0,) of polynomial automorphisms of C> that preserve the contact
structure:
Theorem A. Ifn is the form dw = dzg Adzy, then
Aut(C?)y ~ Aut(C?), x C, Aut((C3)C(m) ~ Aut(C*) x C*.

Hence, as Banyaga did in the context of contact diffeomorphisms of smooth real manifolds ([2, 3, 4]),
one gets that the commutator of Aut(C3),, (resp. Aut((C3)C(0,>) is perfect. Any automorphism of Aut(C?) is
the composition of an inner automorphism and an automorphism of the field C (see [16]). Following this
idea we describe the group Aut(Aut(C?)y).

Danilov and Gizatullin proved that any finite subgroup of Aut(C?) is linearizable ([21]). We obtain a
similar statement:

Theorem B. Any finite subgroup of Aut((C3)C(w) is linearizable via an element of Aut((C3)c(w>.

We also deal with Bir(}P’?C)C(m). If ¢ belongs to Bir(IP’?C)C@), then 0*® = V(0)w where V(¢) is some
rational function. In particular one gets a map V from Bir(]P’%)C(w) to the set of rational functions in zo, z1,

2, satisfying cocycle conditions: V(¢oy) = (V(¢) o) - V().
The equality ¢*® = V(¢)® can be rewritten as the following system of P.D.E.

G0l + %2 =0 (%1)
($)3 G032 +32 =V(9)20 (*2)
G0 + 52 =V(9) (+3)

The first equation (x1) has a special family of solutions: maps for which both ¢; and ¢, do not depend
on zo; we can then compute ¢y from the two other equations. Taking (1,¢,) in Bir(P%) we get by this way
the group % .

Assume now that ¢, or ¢, depends on zj then both depend on it and (§) implies the following equality

90y 90y 901 z 901

le Z azz _ E)zl 0 azz

9
dz0 929

Let us defined o the map from Bir(P}.) () into the set of rational functions in zo, z1 and z5 by: 0/(¢) = oo
if ¢ belongs to .%#” and

90, a0 9y 901

(X(q)) 0z —20 0z, dzy —2073, 92
B 9 N L
dzp 920

otherwise.
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If 01 and ¢, are some first integrals of the rational vector field

d d d

one gets ¢p thanks to the first equation of (5). Such ¢ is not necessary birational but only rational; never-
theless one gets a lot of contact birational self-maps by this way. Remark that since %" (resp. Bir(IP’?C)m) is
a subgroup of Bir(IP},)¢(w) there is a natural left translation action of ¢ (resp. Bir(P{)e) on Bir(P)c(e)-
These two actions admit a complete invariant:

Zy =

Theorem C. The map o is a complete invariant of the left translation action of ¢ on Bir(]P’?C)C(m), that is
for any ¢ and y in Bir(IP’?C)C((,,) one has a/(¢) = a/(y) if and only if yo~' belongs to . .

The map V is a complete invariant of the left translation action of Bir(P}.), of Bir(]P’%)c(m), i.e. for any
0, v in Bir(P%)c(m> one has V() = V() if and only if yo~! belongs to Bir(P3.).

We prove that o is not surjective: generic linear differential equations of second order give linear func-
tions that are not in the image of o. Painlevé equations give examples of polynomials of higher degree that
do not belong to ima.. The map V is also not surjective.

Since ® has no integral surface in C> a contact birational self-map ¢ either preserves the hyperplane
z3 = 0, or blowns down z3 = 0. This naturally implies the following definition: ¢ € Bir(IPf’C)C(m) is regular
at infinity if z3 = 0 is preserved by ¢ and if ¢/, is birational. One shows that

Proposition D. The set of maps of Bir(IP’?C)U, that are regular coincides with Aut(IP’?C)U,.

Let ¢: Bir(P}.)e, — Bir(P% )y, be the projection onto the two first components. We say that ¢ € Bir(P% )y,
is exact if @ can be lifted via ¢ to Bir(P?c)m. One establishes the following criterion:

Theorem E. A map ¢ = (0o, 91) € Bir(P%)y, is exact if and only if the closed form ¢odo; —zodz; has trivial
residues. In that case ¢odd; — zodz; = —db with b € C(z9,z1) and ¢ = (9,22 +b(z0,21)) € Bir(PL.),.

We give a lot of examples, and even subgroups, of exact maps but also prove that the map ¢ is not
surjective:

Theorem F. A generic quadratic element of Bir(Pé)n is not exact.
Furthermore we look at invariant curves and surfaces. Thanks to a local argument of contact geometry
one gets that if ¢ belongs to Bir(P?C)m, if m is a periodic point of ¢, and if there exists a germ of irreducible

curve (C invariant by ¢ and passing through m, then either C is a curve of periodic points, or C is a legendrian
curve. We also give a precise description of elements of Aut(C?)g (resp. Bir(]P’?C)m) that preserve a surface.

Besides we deal with some group properties. Danilov proved that Aut((Cz)n is not simple ([15]); Cantat
and Lamy showed that Bir(]P’%) is not simple ([11]). In the same spirit we establish that

Theorem G. The groups Aut(C?), Bir(P3)q, Aut((C3)c(m>, the derived group of Aut(C?), and the derived
group of Aut(C3)c(w> are not simple.

Lamy proved that Aut(C?) satisfies the Tits alternative ([25]), then Cantat showed that Bir(IP%) also
([10]). In our context one gets that

Theorem H. The groups Aut(C?)y, Aut(C?), (o, and Bir(PY.), satisfy the Tits alternative.

Acknowledgments. We would like to thank Guy Casale for discussions about the non-integrability.
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Part 1. Contact polynomial automorphisms
A polynomial automorphism ¢ of C" is a polynomial map of the type
q): (Cn — (C”7 (ZO)ZI? M 7Zn71) = (q)O(ZO)Zla b )anl)aq)l(ZO)Zla b 7Zn71)7 e aq)n*l(z()azh et ,anl))
that is bijective. The set of polynomial automorphisms of C” form a group denoted Aut(C").
The automorphisms of C" of the form (¢g,¢1,...,d,—1) where ¢; depends only on z;, Zi+1, - - -, Zn—1 form

the Jonquiéres subgroup J,, C Aut(C"). Moreover one has the inclusions
GL(C") C Aff, C Aut(C")
where Aff, denotes the group of affine maps

0 (20,215 ---52n-1) 7 (00(20,215 - -5 20-1),01(20,215 - -5 Zn—1)s - s On—-1(20,215 - - Zn-1))

with ¢; affine; Aff, is the semi-direct product of GL(C") with the commutative subgroups of translations.
The subgroup Tame,, C Aut(C") generated by J, and Aff, is called the group of tame automorphisms.

Convention: In all the article we denote P, by P, and we write "birational maps of P"" instead of
"birational self-maps of P"*".

2. CONTACT FORMS AND CONTACT STRUCTURES

We recall in the context of 3-manifolds the formalism of contact structure. Let M be a complex 3-
manifold; we denote by Q'(M) the space of holomorphic i-forms on M. A contact form on M is an element
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® € Q!(M) such that the 3-form ® Ad® € Q3(M) has no zero: ® Ad@®(m) # O for any m € M. For
such a contact form there is a local model given by Darboux theorem: at each point m there is a local
biholomorphism F: M,, — C3, such that ® = F*(zodz; 4+ dz»). The 1-form zodz; + dz, is called the
standard contact form on C3; we denote it by o.

A contact structure on the 3-manifold M is given by the following data:

i. an open covering M = LIy Uy,
ii. oneach U a contact form @ € Q!( ),
iii. on each non-trivial intersection U, N U, a holomorphic unit ggy € O* (U N Uy) such that Oy = g, Oy.

A contact structure defines a holomorphic hyperplanes field ¢: M — P(TM)" given for all m € Uy by
t(m) = ker @ (m).

As we recalled in §1 the compact Kéhler manifolds having a contact structure are classified by Frantzen
and Peternell theorem ([?]). On P3 there is no contact form because there is no non-trivial global form.
Nevertheless there are contact structures; one of them is given in homogeneous coordinates by the 1-form

9= zodz1 — z1dzg + z2dz3 — z3d2o.

In that case we can take the standard covering by affine charts Uy = {zx = 1} and Oy = 5‘%{.
Proposition 2.1. Up to automorphisms of P3 there is only one contact structure on P3.

Proof. Remark that to a contact structure on IP* is associated a homogeneous 1-form B on C* such that
U, ={z =1} and O = B\‘uk satisfies properties i., ii., iii.

0
Let B be a contact structure on 3, and let R = Zzia— be the radial vector field. Since ig3 =0, to give B
~ 0z

is equivalent to give df. According to [23, Chapter 2, Proposition 2.1] one has degdf = 0; to give dp is
thus equivalent to give an antisymmetric matrix of maximal rank. But up to conjugacy there is only one
4 x 4 antisymmetric matrix of maximal rank. U

Remark 2.2. The group of linear automorphisms of C* that preserve 9 coincides with the group of auto-
morphisms of P3 that preserve d; as a consequence the subgroup of Aut(IP?) that preserves the contact
structure associated to d9 is the projectivization of the symplectic group Sp(4;C).

Remark that the data of a global meromorphic 1-form ® on M such that ® Ad® # 0 induces a contact
form (and a contact structure) on the complement of the poles and zeros of ® and ® A d®. In that case we
say that ® induces a meromorphic contact structure on M.

For instance thg Darboux form ® = zgdz; 4+ dz; induces a meromorphic contact structure on P3. In fact
the forms ® and ¥, are conjugate on C3 via (%0711 ,—22+ %) The corresponding (meromorphic)
contact structure are birationally conjugate on P3.

3. DESCRIPTION OF CONTACT AUTOMORPHISMS

3.1. Description of Aut(C3?),. Set | = do = dzg Adz;. Remark that the invariance of @ implies the
invariance of 1 and as a consequence the equality (¢o, ;)™ n =1.

Proposition 3.1. If ¢ belongs to Aut(C3)y,, then q)*% = %.

In particular if ¢ belongs to Aut(C?)y, then
0 = (¢0(z0,21),91(z0,21),22 + b(z0,21))
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and the map
¢t Aut(C?)p — Aut(C?)y, (00(z20,21),01(20,21),22 4+ b(20,21)) — (90(20,21),91(20,21))
is a morphism.

Proof. As we already mentioned, for a contact form there exists a unique vector field , called Reeb vector

field, such that () = 1 and i, do® = 0; here ¥ = % If ¢ belongs to Aut(C?)g, then ¢, = . As a result ¢

has the following form

o = (00(20,21),91(20,21), 22+ b(z0,21))
with (99, 91) in Aut(C?) and b in Clzo,z1]. O

Remark 3.2. Any element of Aut((C3)C(w) can be written

((p()a D1 7detjaC(pZ2 +b(Z07Zl ))

where @ = (Qp,91) € Aut(C?) and db = (detjac )zodz; — @od@; . Let us still denote by ¢ the natural pro-
jection
G Aut((C3)C(m> — Aut((C2>.
An element ¢ of Bir(P?)y is exact if it can be lifted via ¢ to Bir(P?),, or equivalently if it belongs to
img.
Contrary to the birational case (Theorem 8.1) any element of Aut(C?) can be lifted via g to Aut((C3)c(m).
Since b is defined up to a constant we do not speak about the ¢-lift but a ¢-lift.

The following obvious statement describes the group Aut(C?):
Proposition 3.3. Let us consider the morphism
¢t Aut(C?)y — Aut(C?)y, (00(20,21),01(20,21),22 +b(20,21)) + (90(20,21),91(20,21)).
One has the following exact sequence
0 — C — Aut(C?)g — Aut(C)y — 1; 3.1)
more precisely kerg = {(z0,21,22+B) | B € C}. In particular
Aut(C?) ~ Aut(C?), x C.
Proof. The 1-form ¢od¢; —zodz; is a closed and polynomial one, so it is exact. Therefore ¢ is surjective. [
Let G be a group. The derived group of G is the subgroup of G generated by all the commutators of G:
[G,G] = (¢hg 'h"|g,h € G)

The group G is said to be perfect if it coincides with its derived group, or equivalently, if the group has no
nontrivial abelian quotients.

Such a property was established in the context of real smooth manifolds: Banyaga proved that the derived
group of the group of contact diffeomorphisms is a perfect one ([2, 3, 4]).

Theorem 3.4. The group [Aut(C?)g, Aut(C?)) is perfect.

Proof. Since ¢ is surjective (Proposition 3.3) and Aut((Cz)11 is perfect ([19, Proposition 10]) the restriction
of ¢

C = GlAau(C ) Au(C)o) - [AU(CY)w, Aut(C?)g] — Aut(C?)y
is surjective. Let ¢ be in ker¢; on the one hand ¢ = (z0,z1,22 + B) for some B (Proposition 3.3), and on the
other hand ¢ is a product of commutators hence 3 = 0. We thus have the following exact sequence

0 — [Aut(C?)y, Aut(C?)y] — Aut(C?)y — 1
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and [Aut(C?), Aut(C?)e] ~ Aut(C?),, which is perfect ([19, Proposition 10]). O

3.2. Description of Aut(C?).(y). Let us recall that Aut(C?) is generated by J, and Aff, (see [24]). This
implies that Aff, and

02,32] = {(z0+ B,21 + P(z0)) |B € C, P € Clzo] }.
generate Aut(C?).
Proposition 3.5. The group Aut((C3)C(m) is generated by A and ‘E where
E={cliftsofe|e € J2,J5]}  and A= {gliftsofalac Aff>}.
Proof. Let @ be a polynomial automorphism of C? and let ¢ be a ¢-lift of @ to Aut(C?),(
0 = (9,detjac @z, +b(z0,21))

with b in Cl[z9,z1]. One can write @ as ajejazes ... ase; where a; belongs to Aff; and ¢; to [Jo,J2]. Let us
now consider A; a ¢-lift of a;, E; = (¢;,20+d;) aG-lift of ¢;. Then A|E1A2E5 ... AgE; belongs to Aut((C3)C<w),
and up to composition by an element (z9,z1,22 + ) € 4 one has

0=AE1AE, .. AGE;.

Proposition 3.6. One has
Aut(C?)o() = Aut(C?)p x C*.

Proof. Let us consider an element ¢ of Aut(C?)(y), then ¢*® =V (¢)o for some polynomial V(9). As @
and ¢*® do not vanish, V(¢) does not vanish; therefore V(¢) = A € C*. Let us write ¢ as follows:

0 = (Az0,21,A22) 0 0;
of course 6*(0 = . O
Theorem 3.7. The derived group [Aut((C3)C<w),Aut((C3)C(w)] of Aut((C3)C<w) is perfect.
Proof. According to Proposition 3.6 an element ¢ of Aut((C3)C(m) can be written
(Ao, §1,Az2 +Ab)

with A € C* and (09, 91,22 +b) € Aut(C?)e. Denote by @ the element of Aut(C?) given by (¢g,d1). If ¢
belongs to kerg, then A = 1, ¢ = id and b € C, that is ker¢ ~ C and

C — Aut(C?) () — Aut(C?) — 1. (3.2)

Since Aut(C?)y, is perfect the restriction of ¢ to [Aut(C?)¢(y), Aut(C?)¢()] induces the following exact
sequence

0 — [Aut(C?) (@), Aut(C?) o)) — Aut(C?)y — 1
and [Aut((C3)C<w),Aut((C3)C(w)] ~ Aut(C?)y. One concludes as previously with [19, Proposition 10]. O
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3.3. Finite subgroups.

Proposition 3.8. Any element of Aut(C?)y, of period ¢ lifts via G to a unique element of Aut(C?)q, of
period £.

Proof. Let us consider an element ¢ = (q)o (z0,21),01 (20721)) of Aut(Cz)n. According to Proposition 3.3

there exists b € Clzg,z1] such that (¢o(z0,21),901(20,21),22 + b(20,21) + 1) belongs to Bir(IP*), for any
u € C. Assume that @ is of prime order /; let us prove that there exists a unique y € C such that

(00,01,22+b(20,21) +7)
is of order ¢.
Assume for simplicity that £ =2 (but a similar argument works for any ¢). Let us recall that the following
equality holds
Z0dz1 — §odo; = db (3.3)
Applying ¢ to this equality one gets
dodd; —zodz; =d(bo o) (3.4)
We add (3.3) and (3.4) and obtain that b+ b o ¢ is a constant B. Furthermore

2
(00(z0,21),91(20,21),22 + b(z0,21) + 1) = (20,21,22 +2Y+b+bo@) = (20,21,22+2Y+B)
s0 as soon as Y = —B/2 one has (¢o(z0,21),91(20,21),22 + b(20,21) +,u)2 =id. O
Proposition 3.9. A finite subgroup of Aut(C?) can be lifted to a finite subgroup of Aut((C3)C<w).

Proof. Let H be a finite subgroup of Aut(C?). The group H is linearizable ([21]) hence has a fixed point p.
Since the translations belong to Aut(C?) one can assume that p = (0,0). Let us consider the lifts of all
elements of H in {¢ € Aut(C?) (¢ |9(0) = 0}; they form a group isomorphic to H so is in particular
finite. =

Remark 3.10. Any subgroup G of Aut(C?) that preserves (0,0) can be lifted to a subgroup of Aut((C3)C(w)
isomorphic to G.

Theorem 3.11. Any finite subgroup of Aut((C3)C(w) is linearizable via an element of Aut(C3)C<w).

Proof. Let G be a finite subgroup of Aut((C3)C(m). The group G is isomorphic to H = ¢(G) which is thus a
finite subgroup of Aut(C?). There exists a map i € Aut(C?) that linearizes H (see [21]); as a result H has

a fixed point p and up to translations one can suppose that p = (0,0). Note that #(0) = 0. The lift of % in
{oe Aut((C3)C(m) |0(0) = 0} linearizes G. O

4. AUTOMORPHISMS GROUP

Let us first introduce some notations. The group of the field automorphisms of C acts on Aut(C")
(resp. Bir(P")): if f is an element of Aut(C") and if & is a field automorphism we denote by >f the
element obtained by letting & acting on f. Using the structure of amalgamated product of Aut(C?), the
automorphisms of this group have been described ([16]): let @ be an automorphism of Aut(C?); there exist
a polynomial automorphism y of C? and a field automorphism  such that

VfeAu(C)  o(f) =S(wrv).
Even if Bir(IP?) has not the same structure as Aut(C?) (see Appendix of [11]) the automorphisms group of
Bir(]P’z) can be described and a similar result is obtained ([17]).
We now would like to describe the group Aut(Aut((C3)w). Let us recall that the center of a group G,
denoted Z(G), is the set of elements that commute with every element of G.
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Proposition 4.1. The center of Aut(C?), is isomorphic to C:
Z(Aut(C3)y) = {(z0,21,22+B)|p € C}
and the center of Aut((C3)C(m> is trivial.

As Aut(C?)y ~ Aut(C?)y x C Proposition 4.1 implies the following statement:
Corollary 4.2. The quotient of Aut(C?), by its center is isomorphic to Aut(C?)q,.
Lemma 4.3. One has the following isomorphism

Hom(Aut(C?)g, C) ~ Hom(C,C)
where Hom(C, C) denotes the homomorphisms of the additive group C.

Proof. Note that if ¢ belongs to [Aut(C?)g, Aut(C3)e), then the last component of ¢ is well defined (that is
not defined modulo a constant). Besides Aut(C?)q, ~ Aut(C?)y x C and Aut(C?)y, is perfect thus

Aut(C)g ~
/[Aut((C3)m7Aut((C3)m] =C
and
Aut(C?) ~ Aut(C?)y x C
Aut(c3)w ~ X
/[AUt(C3)w7AUt(C3)w] .
We conclude by noting that any element of Hom(Aut(C?)q, C) acts trivially on ¢. O

Remark 4.4. An element ¢ of Hom(Aut(C?)g,C) acts on Aut(C?), as follows
(00, 01,22 +b(z20,21)) = (00, 01,22 +b(20,21) +¢(9))

Definition. Let H be a normal subgroup of a group G. We say that an automorphism of H of the form
¢ — @@, with @ in G, is G-inner.

Theorem 4.5. The group Aut(Aut(C3)m) is generated by the automorphisms group of the field C, the
group of Aut((C3)c(m> -inner automorphisms and the action of Hom(C, C).

Proof. Consider an element y of Aut(Aut(C?),). For any ¢ = (99,22 + Ty(20,21)) one has
W(0) = (99,22 +Ag(20,21)).-

In particular y induces an automorphism Wy of Aut(C?)y; indeed since  is an automorphism of Aut(C?),
it preserves Z(Aut(C?)y,) and so, from Corollary 4.2 induces an automorphism of Aut(C?)y.

According to Theorem 13.2 one can assume that Yo = id up to the action of an automorphism of the
field C and up to conjugacy by an Aut(C?)-inner automorphism, i.e.

W(0) = (0o, 22+ Ao (20,21))
Set¢p~! = ((qul 22+ Ty (Zo7z1)). On the one hand ¢ ' o = (id,zz + To(20,21) + Ty ((pq,)) )
T¢+T¢f1(([)¢) =0 4.1)
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and on the other hand

Y000~ ") = (id, 22+ Ty-1 (20,21) + 26 0 ')
belongs to Aut(C?),, hence Ty-1+869, !is a constant. This, combined with (4.1), implies that Ay = Ty +c,
where ¢y is a constant, and yields to a morphism from Aut(C3)g to C:

Aut(C?)y — C, ¢ — co.
Consider an homomorphism
p: Aut(C?)y — C, O = py-
Let us define y: Aut(C3?), — Aut(C3), by:
W(0) = (90(z0,21),91(20,21),22 +b(20,21) + o)

where ¢ = (00(20,21),91(20,21),22+b(20,21)) € Aut(C?)e. One can check that y belongs to Aut(Aut(C?)g,).
O

Part 2. Contact birational maps

A rational map of P" can be written

O: P> P" (20211 20) == (00(20,215---+2n) 1 01(20,215--+52n) T -+ 0n(20,215- - 52n))

where the ¢;’s are homogeneous polynomials of the same degree > 1 and without common factor of positive
degree. The degree of ¢ is by definition the degree of the ¢;. A birational map of P" is a rational map that
admits a rational inverse. Of course Aut(C") is a subgroup of Bir(P"). An other natural subgroup of Bir(IP")
is the group Aut(P") ~ PGL(n + 1;C) of automorphisms of P".

The indeterminacy set Ind¢ of ¢ is the set of the common zeros of the ¢;’s. The exceptional set Exc
of ¢ is the (finite) union of subvarieties M; of P" such that ¢ is not injective on any open subset of M;.

Let us extend the definition of Jonquieres group we gave in the case of polynomial automorphisms of C"
to the case of birational maps of P?: the Jonquiéres group, denoted 7, is the group of birational maps of
IP? that preserve a pencil of rational curves. Since two pencils of rational curves are birationally conjugate,
J does not depend, up to conjugacy, of the choice of the pencil. In other words one can decide, up to
birational conjugacy, that 7 is in the affine chart zo = 1 the maximal group of birational maps that preserve
the fibration z; = cst. An element @ of J permutes the fibers of the fibration thus induces an automorphism
of the base P'; note that if the fibration is fiberwise invariant, @ acts as an homography in the generic fibers.
Hence J can be identified with the semi-direct product PGL(2;C(z;)) x PGL(2;C).

We study the birational maps ¢ = (0g,d1,¢>) defined on C*> = (z3 = 1) C P3 that preserve either the
contact standard form ®, or the contact structure c(®) associated to ®. In other words we would like to
describe the groups Bir(P*), and Bir(IP’3)C(m> and also their elements.

Let us now illustrate a fundamental difference between Bir(PP3), and Bir(]P’3)C(w): the first group pre-
serves the fibration associated to % whereas the second doesn’t.

Proposition 4.6. If ¢ belongs to Bir(P3)y, then ¢, % = %
In particular if ¢ belongs to Bir(P?), then

¢ = (90(20,21),91(20,21),22 +b(20,21))
and the map

¢: Bir(P?)y, — Bir(P?)y, (00(20,21),91(z0,21),22 4+ b(z0,21)) = (P0(20,21),91(z0,21))

is a morphism.
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Remark 4.7. The proof is similar to the proof of Proposition 3.1.

Remark 4.8. The first assertion of Proposition 4.6 is not true for the group Bir(}P’3)c(w); indeed let us

consider the map y defined by
v = <0 z 22 .
(1+22)%’ 1’1—|—Zz |

it belongs to Bir(IP’3)C(w) and does not preserve the fibration associated to the vector field %.

5. A P.D.E. APPROACH

Let ¢ = (¢0,91,02) be in Bir(P3)c(w); then ¢*® = V(¢) for some rational function V(¢). One inherits a
map V from Bir(IP’3)C(m> into the set of rational functions in zg, z; and zz. The equality ¢*® = V(¢)® gives
the following system (x) of P. D. E.:

0 )

¢0%+ aqz)g =0 (*1)
el )

o5 + 52 =V(0)2 (x2)
el )

0032 + 52 =V(9) (*3)

Thanks to (x2) and (*3) one gets

901 99 90 _ dp\
¢0< 3Z2>+(321_Z0812) —0 (x4)

Equation () has a special family of solutions: maps for which both ¢; or ¢, do not depend on zg (note
that if ¢; (resp. ¢2) does not depend on zq then (%) implies that ¢, (resp. ¢;) also); in that case we can then
compute ¢o thanks to (x4). Taking (¢1,0,) in Bir(P?) we get elements in im X; we will called this family
of solutions Klein family. Note that this family is a group denoted %", the Klein group.

Proposition 5.1. The elements of ¢ are of the following type

34’2 34)2
H’(Dl (Z17Z2)7¢2(Z1722)
0z~ D3,

with (¢1,6,) in Bir(P?).

Assume now that ¢; or ¢, really depends on zp (i.e. that ¢ does not belong to the Klein family). Then
(%1) and (%4) imply

90, 002\ 001 (00 901\ 902

= (xs)

971 — azz 920 Eiz 3z ) 920

One can rewrite (%s) as
902 9 901 991

9 D9 9 W00,
%2 L}
dz0 929

Denote by o the map from Bir(IP’3)C(w) to the set of rational functions in zp, z; and z, defined by o(¢) = o

if ¢ belongs to ¢ and
9 _ 9% 90 _ 90
09z 20 03, 3z 03z,
(X(¢) = 90, = 20,

a2 929
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otherwise.
If ¢; and ¢, are some first integrals of

ad d 0

Zo = a(0) — — -2 47—
0 a‘( )aZO aZl +Z08Z2a

then (xs) is satisfied. One thus gets ¢g from (x1). Note that such a ¢ is not always birational. But one can
get a lot of birational examples by this way.

For instance when a/(¢) = 0 one obtains a family of rational maps solutions of (x) and Legendre involu-
tion is one of them. The set of birational maps of that family is called Legendre family, i.e. it is the set of
birational maps of the following form

<_ 3870 (02(z0, — (22 +2021)))
a%) (01 (20, —(z2+2021)))

Remark 5.2. The Legendre family composed with the Legendre involution (right composition) yields to
the Klein family.

,01 (20, — (22 +ZOZI))a¢2(ZOa_(ZZ+ZOZI))> :

Definition. Let y be an irreducible curve; v is a legendrian curve if sy = 0 where sy denotes a local
parametrization of .

Remark 5.3. Elements of the Klein family preserve the fibration {zl = cst,zp = cst}; note that its fibers
are legendrian curves. The Legendre involution sends the fibration {z() = cst, 2o+ 2021 = cst} onto {zl =
cst, zp = cst}. Then of course if one conjugates the Klein family by the Legendre involution one gets a
family that preserves the fibration by legendrian curves {z() = cst, 22+ 2021 = cst}.

A direct computation implies:

Proposition 5.4. Let ¢ = (0o, d1,2) be a contact birational map of P3.
The map ¢ conjugates the foliation induced by Z to the foliation induced by %
As a consequence the field of the rational first integrals of Z is generated by ¢ and ¢;.

5.1. Actions of %" and Bir(P3), on Bir(]P’3)C(w). The left translation action of " on Bir(]P’3)C<m> is given
by
(W,0) € A X Bir(P)o() — W € Bir(P?) (g
Take ¢ and Y in Bir(IP’3)C(w) such that o(¢) = (), then y; and > are first integrals of Zy and by Propo-
sition 5.4
Vi=01(01,92),  W2=2(01,02)

where @ = (@1, ¢,) is birational. Hence

wo ' = (wooo !, ei(z1,22),92(21,22))

belongs to J¢'; in other words ¢ and  are in the same % -orbit.

Assume now that y = k¢ where K denotes an element of .%7". Then the foliations defined by Z, and Zy,
coincide because they have the same set of first integrals. As a consequence o) = o).

Hence one can state:

Theorem 5.5. The map . is a complete invariant of the left translation action of . on Bir(IF’3)C<w) , that is
for any ¢ and  in Bir(]P3)C(w) one has a,(¢) = ai(y) if and only if yo~' belongs to 7 .

Question 1. Is the map o surjective ?
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Let us consider the following differential equation

y'=F(x,y,y) (5.1)
where F denotes a rational function. Set y' = u, then

5.1)el L=y

So one can associate to (5.1) the following vector field
d 0 0
Z=F—+u—+—.
My Tax

We say that (5.1) is rationally integrable if the vector field Z has two first integrals r| and r, rationally
independent: dr;y Adr, #Z0.

For generic y and B in C the differential equation y” + vy’ 4+ By = 0 is not rationally integrable; as a
consequence —Yzo — Pzz is not in the image of a. The first Painlevé equation gives examples of polynomial
of degree 2 that does not belong to imo:

Theorem 5.6 ([12]). The equation Py
y// _ 6y2 g
is not rationally integrable.

If we come back with our notations it means that 6z% — z1 is not in the image of o.
Remark 5.7. Indeed all generic Painlevé equations give rise to rational functions that do not belong to im .
Nevertheless one can easily obtain examples of elements in the image of o
2
Examples 5.8. — If¢o= (%O,Zo +Bz1,220 — é—%) with B € C*, then a/(¢p) = B.
— If

0= (20,21 + P(20), 22+ Q(20))

with P, Q in C[z0] such that Q' (z9) = —z0P’ (20). then a(¢) = %
— If

0= (—z1,20+P(z1),22+ 2021 +Q(z1))
with P, Q in Clz;] such that Q'(z1) = z1 P/ (z1) then o(0) = P'(z;).

Consider the left translation action of Bir(IP*)e on Bir(P?)(,) defined by
(\Vaq)) € Bir(PB)(D x Bir(PB)c(w) —Vyde Bir(Pa)c(w)-

Theorem 5.9. The map V is a complete invariant of the left translation action of Bir(P?)¢ on Bir(IP’3)C(w):
for any 0, y in Bir(]P’3)C(w) one has V() = V() if and only if o' belongs to Bir(IP?).

Proof. Let ¢ be a contact birational map of P2, Obviously (f)*® = V(0)o for any f € Bir(P3)e.
Let us now consider two contact birational maps ¢ and y of P3 such that V = V(¢) = V(). On the one
hand

O 'vo=0")Vee=Ves ()0
and on the other hand composing ¢*® = Vw by (¢~)* one gets
Po=Vo=(0)(®0)=0")(Ve)=o=Voo" (7)o
As a consequence (¢~ 1)*y*® = w, that is y¢ ! belongs to Bir(P?),. O
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Proposition 5.10. If$ and y are two contact birational maps of P* such that o(¢) = a,(y) and V () = V (),
then wo~! belongs to

{(Z()_b/(m)y(11),zz+b(21)> |beC(z),ve PGL(ZQ(C)} = A NBir(P*)o.

V/(z1)
Proof. Since both a/(¢) = o(y) and V() = V() the map wd ! is an element of Bir(P?)¢,N.#". One gets
the result from the descriptions of the Klein family and of Bir(P3), (Proposition 3.1). g

Let us now give some examples of V(9).

Examples 5.11.  — If ¢ belongs to J#", then
901 992 _ 991 92

_ 0z 0zp 0z 921
V(o) = 90y 9
901 _ 901
aZ] Oazz

— If
1
(nzﬁlzz+(n+ D)zg(z1+1)
with n € Z, then V(¢) =
— If

,20 (20 + 22+ 2021) —zo>

20
(n+1)z0z1 +nza+(n+1)zo

o ( (z1 —20)* 222+7} o2 )
= 1—20
22001 +202-25 21— ’

then V(¢) = S2ama)

Z%*ZZ()Z| 275"

Remark 5.12. If ¢ belongs to Bir(P?) (). then ¢*® = V(¢)® and ¢* (@ A do) = V(¢)?e A dw and detjac ¢
is a square. This gives some constraint on V().

As previously we can ask: is V surjective ? The answer is no. Indeed let us assume that there exists

2
0 € Bir(P?) () such that V() = z. Then oddo + dds = z0z2dz; +d (%2) and dgo A do; = d(z022) Adzy.
Since the fibers of (z0z2,z1) are connected one can write ¢o as Qo(z0z2,z1) and ¢; as @;(z0z2,21). Then

2
0*0 = V(¢)w implies that ¢ — %2 = ©2(2022,21)- In other words

2
o= <<Po(zozz,z1),(P1 (2022,21), 92(2022,21) + Z22> _

But 0o ( %’ 11,12) is clearly not birational so does ¢: contradiction.

6. INVARIANT FORMS AND VECTOR FIELDS
The next statement deals with flows in Bir(IP?), (see [13] for a definition).

Proposition 6.1. Let ¢, be a flow in Bir(P*),. Then ¢, has a first integral depending only on (zo,z1) and
with rational fibers.
In other words
O = (9:(20,21),22 + be(20,21))

where ¢; belongs, up to conjugacy, to  and b; to C(z9,z1)-
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Proof. Let  be the infinitesimal generator of ¢, i.e.

_
~ Ot =0
2 9
By derivating ¢; ® = o with respect to f one gets that the Lie derivative Ly ® is zero. Sety, = Z X'& hence
1

i=0

Ly = 1, do+ di, o = xodz +zodx1 +dx2

and so
(.o | o2 1, o2 N1, 2
LX(D—( ao+ao dzo + XO"‘ZOT"‘T dz) + 874—872 dzp.
In particular zox1 + %2 = ¥(z0,21), then %o + E (zox1 +%2) =0s0yo = —=5+ and finally x; = aZO

If v is constant, then x = % that is ¢, = (zo0,z1,22 + Pt) with B € C.
Let us now assume that 7y is non-constant; one has

_9dy 9 dy o ( 87) d
X= le aZ() + aZO aZl ’Y(ZO,ZI) . aZO aZZ
and 7 s a first integral of (. For all ¢
O = (00,(20,21),01,4(20,21),22 + br (20,21))

and the function v is invariant by ¢; and as a consequence by the flow ¢;. The fibers of y in C? (up to
compactification/normalization) are rational or elliptic since they own a flow. As (@;) is uncountable they
have to be rational ([9]) and up to conjugacy ¢, belongs to 7. 0

The following examples contain many flows.
Example 6.2. The elements of Aut(P3)C(m) can be written
(e20+ A, Bz1 +v, —PAz) +€Bzz +8)
with €, B in C* and A, 7, 8 in C. The group Aut(IP3)C(U,) acts transitively on C = {z3 = 1}.
Examples 6.3. a) For any €, B, yand & in C such that €3 — By # 0, the map

(Y21 +8)* ez +B
€5 Py "y 8

belongs to Bir(IP3),. These maps form a group contained in im & and isomorphic to PGL(2;C).

b) The birational maps given by
— (20,21 +9(20),22 + W(20) ) with 209’ (z0) +¥'(z0) = 0,
— (20— V¥'(21),21,22+W(z1))

belong to Bir(P?),. Any of these families forms an abelian group.

The fact that an element of Bir(IP’3)C(w) preserves a vector field and the fact that it preserves a contact
form are related:

Proposition 6.4. Let ¢ be a contact birational map of P3. There exist a contact form ® colinear to ® such
that $*® = © if and only if V(0) can be written 35 for some rational function U. In that case ¢ preserves
the Reeb flow associated to ®, so a foliation by curves
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Proof. Assume that such a © exists. On the one hand ¢*® = V(¢)® and on the other hand ® = Uw. Hence

Vo0 v

P'O=Uco ¢'0=Uoco-V(9)o=—

and so if such U exists, one has V(¢) = U%q)
Reciprocally if ¢ € Bir(IP’3)C<w) \ Bir(P3), satisfies 0*0 = ULO‘D(D for some rational function U, then
0@ = O where @ =U. O

Examples 6.5. — First consider the Legendre involution £ = (z1,20,—22 — 20z1). As we have seen
V(L) = —1. One can check that U = z,+ % suits.

— For an element ¢ in Aut(P?)
¢ = (ez0 + A, Bz1 +7v, —PAzi + &Pz + 9)
with €, B in C* and A, 7, 8 in C (Example 6.2) we have V(¢) = €p. If

U= e
 eBzoz1 +€Y20 + Pz + Ay

then V(¢) = Uliq)-
Proposition 6.6. Let ¢ be an element of Bir(]P’3)C(w) \Bir(P?),. Assume that ¢ preserves a vector field

non-tangent to ®. Then ¢ preserves a contact form ' colinear to .

Remark 6.7. Under these assumptions ¢ preserves the vector field  and the Reeb vector field Z associated
to @’. With the previous notations if f = zoX1 + X2 and g = z0Z; + Z; one has V(¢) = f—;q’ = %. In
particular if H = f/g is non-constant, then H is non-constant and invariant: Ho ¢ = H.

Proof of Proposition 6.6. Write ¥, as X030 + %1 50 + %255 and ¢ as (0o, 01,92). Then 9. = if and only
if dg; () =xio¢ fori =0, 1 and 2. Therefore ¢* () = V(0)w()) can be rewritten

God@1 (x) +dd2(x) = dox1 00+ %200 =V (9)(z0X1 +X2)-
The vector field 7 is not tangent to ®, i.e. ®(y) Z 0 or in other words zo); + X2 Z 0 and so

(z0%1 +%2) 00
V()= ———""—.
20X1 +X2
As a consequence ¢ preserves a contact form @' colinear to ® (Proposition 6.4). (]

Remark 6.8. Let ¢ € Bir(P?).(y) \ Bir(P?),. Assume that there exists a vector field y such that ¢, = Wy.

If W can be written qu), then ¢ preserves the vector field Y = Uy. According to Proposition 6.6 the map ¢

belongs to Bir(IP?)y where @’ denotes a contact form colinear to .

7. REGULAR BIRATIONAL MAPS

Let e; be the point of IE”?C whose all components are zero except the i-th.
Let us denote by H,, the hyperplane z3 = 0. As #, is the unique invariant surface of c(®) one has the
following statement:

Proposition 7.1. The hyperplane #H,, is either preserved, or blown down by any element of Bir(IP’3)C(m>.
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Example 7.2. Let ¢ be a birational map of the complex projective plane; X (¢) is polynomial if and only if
¢ = (BZ1 +7,022 + P(z )) with P € Cl[z;]; remark that such a @ is a Jonquiéres polynomial automorphism.
In that case

K(p) = <é <5Zo— 31;(;11)> Bz +7,822 +P(Zl)> :

Note that deg P = 1 if and only if %(¢) is an automorphism of P3. If degP > 1, then Ind X (¢) = {z; =
z3 =0} and #, is blown down onto e3.

Proposition 7.1 naturally implies the following definition. We say that ¢ € Bir(]P’3)C(m> is regular at
infinity if 7L, is preserved by ¢ and if ¢/, is birational. We denote by Bir(P3)£e(%o) (resp. Bir(P?)g*) the
set of regular maps at infinity that belong to Bir(P?).() (resp. Bir(P?)g).

Example 7.3. Of course the elements of Aut(IP’3)C(w) (Example 6.2) are regular at infinity.
The contact structure is also given in homogeneous coordinates by the 1-form

® = 2023dz1 +23dz2 — (2021 + 2223)dz3.

Let ¢ be an element of Bir(P3)§i’); denote by ¢ its homogeneization. Since ¢*® = V() one has 6@ =

V() ® where V(¢) is a homogeneous polynomial. With these notations one can state:

Lemma 7.4. Let ¢ be a contact birational map of P3. Assume that ¢ either preserves #., or blows down 4.,
onto a subset contained in H,.
The map ¢ is regular if and only if V(0) does not vanish identically on H,.

Proof. Let us work in the affine chart z; = 1. On the one hand
oNdo = —z%dzo Adz; Adzz
and on the other hand ,
0" (@AdD) =V (0) ®AdD.
Hence
=2 . = —=2,
03 detjaco =V (9) z3 (7.1)
where 05 is the third component of ¢ expressed in the affine chart z, = 1.

Suppose that ¢ is regular. Let p be a generic point of .. As ¢ is regular, 6I 4¢. 18 a local diffeomorphism
at p. Since ¢ is birational and p is generic, 671, is a local diffeomorphism. As a consequence detjac ¢ is an

unit at p; moreover the invariance of #. by ¢ implies that ¢; = z3u where u is a unit. Therefore V (¢) does
not vanish at p.

Conversely assume that V(¢) does not vanish identically on .. As ¢ either preserves #L,, or con-
tracts .. onto a subset in #.,, one can write 05 as z3P. As aresult

(7.1) & P detjach=V(9)

Since V() does not vanish the map ¢ is then regular at infinity. 0
Corollary 7.5. One has Bir(P?)g? = Aut(P?),.

Proof. Let ¢ be an element of Bir(IP’3)r£g. From ¢*® = w, one gets with the previous notations 6*6 =70
for some integer n. Lemma 7.4 implies that n = 0, that is $*6 = ®; then looking at the degree of the
members of this equality one gets degp = 1. d
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reg

Example 7.6. The group Bir(IP’3)C( o
affine chart 7o = 1 and consider the birational map ¢ given in z; = 1 by

) contains blow-ups in restriction to #.. Indeed let us look at ® in the

0= (20,2021 —23,2023)-

Since (¢")*®w = z,"®, ¢" € Bir(IPﬁ)Z?i) \Bir(IP?), for any n # 0; in restriction to #£, the map ¢" coincides
with (zo,z12(}).

Let us note that Ind¢” = {e;} U (z0 = z2 = 0), that zop = 0 is contracted by ¢ onto (zo = zo = 0) and
22 =0onto (z0 =z3 =0). Besides Ind¢™" = {z0 = 22 = 0} U{z0 = 23 = 0}, (z0 = 0) is blown down by ¢~
onto ey and (zp = 0) onto e;.

Remark 7.7. The group generated by Examples 7.3 and 7.6 is in restriction to #£, and in the affine chart

=1
< Y20 Az

Bz +A"y(Bz1 +4)

it is of course a subgroup of Bir(]P’3)ze(§D).

) (20:2021) . B € C", A € C);

Question 2. Does this group coincide with Bir(IPﬁ)zeE%)) ?

S
GL(2;Z)), or a non-linear polynomial automorphism, or a Jonquiéres map, then & (¢) is not regular
at infinity.

b) The map of order 5 given by (—Qg}%,zz, @), the map ((Zziiowz,zl,%> and Examples 6.3

Examples 7.8. a) If ¢ is either a monomial map (i.e. a map of the form (z}'z3,7]z}) with [ lr] 4 } in

a) are non-regular at infinity.
¢) Any map of the form

<1 — f1(z2),22,21 +f(zz)>

20
isin Bir(]P’3)C(w) \ Bir(P3),, and is not regular at infinity.
d) Elements of the Legendre family are not regular at infinity.

8. EXACT BIRATIONAL MAPS

8.1. First properties. Recall that an element ¢ of Bir(IP’z)n is exact if it can be lifted via ¢ to Bir(P3), or
equivalently if it belongs to im¢. The following statement allows to determine such maps.

Theorem 8.1. A map (09(z0,21),91(z0,21)) € Bir(P?)y, is exact if and only if the closed form §odd; —zodz
has trivial residues. In that case ¢odd; — zodz; = —db with b € C(z9,z1) and

0= (¢0(20,21),91(z0,21),22 + b(z0,21))
belongs to Bir(P?),.
Proof. Remark that ¢ = (0o(20,21),91(20,21),22 4+ b(20,21)) belongs to Bir(IP*), if and only if
Oodd1 —z0dzy = —db;

in other words 0odd; — zpdz; is not only a closed rational 1-form but also an exact one. Recall that a closed
rational 1-form ® can be written ([14])

0= Z)\«l% +dg
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where the A; are complex numbers and the f;’s and g are rational. The 1-form © is exact (i.e. the differential
of a rational function) if A; = O for all i, that is if the residues of ©® are trivial. O

Example 8.2. The set
21
A(zo 7> A € PGL(2;C }
{(a0. 7 ) Iaeporac)
is a subgroup of exact maps isomorphic to PGL(2;C); it is a direct consequence of Theorem 8.1.

An other direct consequence of Theorem 8.1 is the following statement:

Corollary 8.3. The maps ¢ = (0o, ¢1) of Bir(P?)y, such that 9odd; — zodz has trivial residues form a group.

8.2. Involutions. Bertini gives a classification of birational involutions ([6]): a non-trivial birational in-
volution is conjugate to either a Jonquieres involution of degree > 2, or a Bertini involution, or a Geiser
involution. More recently Bayle and Beauville precise it ([5]); the map which associates to a birational
involution of P? its normalized fixed curve establishes a one-to-one correspondence between:

— conjugacy classes of Jonquieres involutions of degree d and isomorphism classes of hyperelliptic
curves of genus d —2 (d > 3);

— conjugacy classes of Geiser involutions and isomorphism classes of non-hyperelliptic curves of
genus 3;

— conjugacy classes of Bertini involutions and isomorphism classes of non-hyperelliptic curves of
genus 4 whose canonical model lies on a singular quadric.

Besides the Jonquieres involutions of degree 2 form one conjugacy class.

Proposition 8.4. Let I € Bir(IP?) be a birational involution. If I is conjugate to either a Geiser involution,
or a Bertini involution, or a Jonquiéres involution of degree > 3, then I does not belong to Bir(]}”z)n.

Hence the only involutions in Bir(P?)y, are birationally conjugate to (—zo, —z1). Some of them can not
be lifted.

Proof. Let us consider such an involution, then the set of fixed points contains a curve I" of genus > 0 and
thus it is not contained in the line at infinity. The jacobian determinant of I at a fixed point of I" is —1
hence I does not preserve M.

Contrary to the polynomial case (Proposition 3.8) Bir(]P’z)n contains periodic elements that are non-
exact. Consider the map (¢o(zo,z1),91(20,21)) Where

1
®o(z0,21) = —20 + e 01(z0,21) = =213
2 _
it is a birational involution that preserves 1. Furthermore the 1-form ¢od¢; — zodz; has non-trivial residues
and so is not exact (Theorem 8.1). ]

8.3. Quadratic maps. Any birational map of P? can be written as a composition of birational maps of
degree < 2 (see for instance [1]). The three following maps are birational and of degree 2

o: P? -5 P? (z0:z1:22) --» (2122 : 2022 2021)
p: P? -5 P? (z0:21:22) -- (2022 : 2021 : 23)
T: P? > P? (z0:21:22) - (022423 : 2122 : 23)

Denote by Bir; (P?) the set of birational maps of P2 of degree 2 exactly; for any ¢ € Bir(P?) set
0(0) = {g0b ™" |g. b € Aut(P?)}
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one has ([13])
Bir,(P?) = O(c) U O(p) U O(x).

Let us now describe the quadratic birational maps that preserve m; note that T preserves 1. Consider T
the set of pairs (g(v),g(B)) where

a(B) = (

in Aut(P?) x Aut(IP?) such that

Bozo +Biz1 4+ B2 B3zo +Bazi +Bs)
Bezo + Prz1 + Bs’ Pezo + Prz1 + Ps

Y6=0, YB3=0, vPs=0, detgdeth= (ysBs +Y8)3-

Proposition 8.5. A quadratic birational map that preserves 1 belongs to O(1).
More precisely a birational map belongs to Bir,(P2) N Bir(P?)y, if and only if it can be written g (zo +
zi,21) b with (g,h) in Y.

Proof. Let y be in Bir(P?)y N Bir, (P?); it is sufficient to prove that y ¢ O(c)U O(p).
Assume by contradiction that W belongs to O(c), i.e. W = goh with g = g(y), b~ = g(B). One can
rewrite Y*1n =1 as 6*g*n = h*n; this last one relation is equivalent in the affine chart z3 =1 to

detg)zoz1 det
(detg) = b - &1
(Y(;Zl +Y720 +Y82021) (BGZO+B7ZI +B8)
the coefficients s and 7 have thus to be zero and (8.1) is equivalent to
detg deth

n= n
Ygz(z)z% (B(,Z() +Brzi + [38)3

and this equality never holds.
A similar argument allows to exclude the case: ¥ € O(p). This proves the first assertion.

Let us consider y = gth in Biry (P?) N Bir(P?), with g = g(y) and h = g(B). The 1-form 1 has a line of
poles of order 3 at infinity so does y*1 and so does (z9 +z7,21)*g*n. But
detg

(Yo(z0+237) + V721 +'Yg)3

(z0+21,21)" g M =

therefore Y has to be 0. This implies that
detg deth

(v7(B3zo + Paz1 + Bs) +Ys)3 "

ym =
as a consequence Y*1 =1 if and only if

Yo=0, YB3=0, 7YBs=0, detgdeth= (ysBs +Ys)3-

Theorem 8.6. A generic element of Biry (P?) N Bir(P?)y, is not exact.

In fact there exists a non-empty Zariski open subset Y of Y such that no element of

{a(v)taB)|(g(y),0(B)) € T}

is exact.
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Proof. Tt is sufficient to exhibit a non-exact element. Let us recall that the birational map ¢ = (¢, ;)
belongs to Biry (P2) N Bir(P?)y, if and only if it can be written as g(y)Tg(B) with (g(y),8(B)) in Y (Propo-
sition 8.5).

2
If we consider the special case y; =; =0 forany i€ {1,2,3,4,6,8},ys =y and Yo = g;—l; then
B2dz
z0dz1 — Godd = —
fodo BoPrzi
But detg(B) # 0 so Bs # 0 and ¢ can not be lifted to Bir(IP?).
The set T is rational hence irreducible, this yields the result. O

8.4. Examples of exact maps.

Proposition 8.7. Let ¢ be an automorphism of P?; the map ¢ is exact if and only if ¢ is affine in the affine
chart 7o = 1 and preserves 1, that is

@ = (8020 + Poz1 40,8120 + B1z1 +71)
with 6,', [3,', Yi in C such that 60[31 — 81[30 =1

Proof. The form M has a pole at infinity so if ¢ € Aut(P?) preserves 7, it preserves the pole. Hence ¢
belongs to Aff,, so in particular to Aut((Cz)n and then @ is exact. O

We will now consider the subgroup of Bir(]P’Z)n that preserves the fibration zpz; = cst fiberwise. The
following statement says that this subgroup is not isomorphic to the subgroup of Bir(]P’z)n that preserves

z1 = cst fiberwise.
A= {(Z a(zo21) Zl) aEC(I)}
0 0<1 761(202])

is a subgroup isomorphic to the uncountable abelian subgroup {(a(z1)z0,21)|a € C(z1)*} and is contained
in Bir(P?)q,.
Any birational map of the form (z() a(zo,21)

Proposition 8.8. The set

21
7 a(z0,21)

) that preserves 1 belongs to A.

A generic element of A is in Bir(P?)y but not inimg. More precisely (Zo a(z021), 572 ) € A is exact if

" a(zoz1)
and only if a is a monomial.

If a is a monomial, i.e. a(z0z1) = czﬁz"l’ with ¢ € C* and u € Z, then the ¢-lifted maps are
4, —rma—moa+B),  BeC
(zoc 0 z2 —pzoz1 + P B

These maps form a subgroup of Bir(IP?), isomorphic to C x C* x Z.

Proof. The first assertion follows from

(zo a(zoz1),

a(z()lzl)) = (Z07Z0Z1)*1 (zoa(z1),21)(z0,2021)

A direct computation shows that A C Bir(IP?)y,.
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A birational map (zo a(z0,21), a&fﬁzl )> preserves 1 if and only if

d d
(ZOaZO—Z] aZl) (a)—()

Let us consider ¢ = (¢g,01) = (zo a(zoz1), m) an element of A; then
d'(r)

a(t)

that is, if and only if a = a(z0z1).

0odd; —zodz) =1 dr

with t = zgz;. Let us write a as follows:

n

a(r) =[] —u)"

i=1

then
/(¢ n .
ta()dt:tz B g
a(t) ity
and the residues of this 1-form are trivial if and only if ¢ is monomial, i.e. a(t) = c* where ¢ € C* and
UEZ. U

We can determine 7 N Bir(P?),, and the exact maps in J N Bir(P?)y.

Proposition 8.9. A Jonquiéres map of P? preserves 1 if and only if it can be written as follows

(vz1 +8)? €21+
( - pr T
where r belongs to C(z;) and [ i g } to PGL(2;C).
Furthermore it is exact if it has the following form
(Yz1 +8)? ) €21+ P
AL E) P §)2. =P
( £5— By 20+ P(z1)(¥z1 +90) v

where P denotes an element of Clz;].
Let us now look at monomial maps that belong to Bir(IP’z)n and those who are exact.
Proposition 8.10. A monomial map belongs to Bir(]P’z)n if and only if it can be written either
<Yz§z’l’ _1, %z(l)_p zﬁ_p ) 8.2)
or
(“ngz’fJrl , —izé”zf) (8.3)

withyin C* and p in Z.
Furthermore any monomial map of Bir(Pz)n is exact.
The c-lifts of a map of type (8.2) are

R T
(ngzf 1’§Z(1) s p,zz+(p*1)zoa+[3) peC
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similarly the G-lifts of a map of type (8.3) are
pott 1 1-p —p / /
Yo% 22+ (1= p)zoz1 + B peC

Remarks 8.11.  — Both maps of type (8.2) and of type (8.3) preserve (z0z1)? = cst.
— Maps of type (8.2) form a group G;. Note that the matrices [ p o p-l ] are in SL(2;Z); they

1—p 2—p
are stochastic up to transposition and have trace equal to 2. The group

p p-1 ‘
{{I—P Z—P] pez}
is isomophic to Z. As a consequence G is isomorphic to C* x Z.

The maps of type (8.3) don’t form a group. The corresponding matrices [ | f » p _—;1 } have
determinant — 1, trace 0 and are stochastic up to transposition.

But the union of the maps of type (8.2) or (8.3) is a group which is a double extension of C* x Z.

9. INDETERMINACY AND EXCEPTIONAL SETS

As we have seen if ¢ is a contact map, then %L, is either preserved by ¢, or blown down by ¢ (Propo-
sition 7.1). In case it is blown down, #£, can be blown down onto a point or onto a curve; in this last
eventuality #, can be contracted onto a curve contained in %, (take for instance ¢ = X (z1,z1z2)). Note
2 1
2722
the legendrian curve zg = zo = 0. We will see that this is a general case and for any contracted surface:

also that #£, can be contracted onto a curve not contained in #L,: the map X ( ) blows down #£, onto

Proposition 9.1. Let ¢ be a contact birational map of P3. Assume that ¢ blows down a surface S onto a
curve C. Then

— either C is contained in H.,

— or C is an algebraic legendrian curve.

Corollary 9.2. Let ¢ be a contact birational map of P*. If C is a curve not contained in #, and blown-up
by ¢ on a surface distinct from ., then C is a legendrian curve.

Let us now give an example of maps of finite order that illustrates Proposition 9.6.

Example 9.3. Start with the birational map ¢ = (Zz, %) of order 5. The map X (¢) = (— 2tlizn o, %)

2027
blows down z; = —z3 onto the legendrian curve (z; =z +z3 = 0);

Proof of Proposition 9.1. We will distinguish the cases § = %, and § # ..
Let us start with the eventuality § = #£,. Suppose that C is not contained in . Note that 0122, Indo 18

holomorphic of rank < 1. If p belongs to € . Ind ¢, then ¢! (p) is a curve contained in H; there exists a
curve (' transverse to

{67 (p)|p € C~Indo}

contained in #, and such that (') = C. Consider a parametrization s of ’; thent = ¢ os is a parametriza-
tion of C and

r'o=(¢os) o=s0'0=sV(@)o=V(p)os -s"o=0.



24 DOMINIQUE CERVEAU AND JULIE DESERTI

Assume now that S # H. and C ¢ Ho. Set C = ¢(S). Let us consider a generic point p of §. The
germ ¢, is holomorphic and ¢(p) € C does not belong to #,. In particular the 3-form ¢*® A dw is thus
holomorphic at p; in fact V(¢) , is holomorphic and as we have seen

o*oAdo =V(0)’0Ado.

Since § is blown down by ¢, the jacobian determinant of ¢ is identically zero on § and then V(¢) vanishes
ons.

Assume that C is not a legendrian curve, then the restriction of ® to € in a neighborhood of ¢(p) defines
a 1-form ® on C without zero (let us recall that p is generic). As the restriction

q)wp‘&p: 'Sap - Cq)(P)

is locally a submersion, q)*p‘s O is a nonzero 1-form on S, ,: contradiction with the fact that ¢, ® vanishes
Plsp ;
on .S . O

There is no statement if ¢ € Bir(IP’3)c(m> blows down #£, onto a point. Indeed

71 21 2+3%221 21
X 223)  \ oo o203
5 % 2(22—22021) '3 25
contracts H., onto ez € H., but ']((lez,zlz%) contracts H., onto e; € .. But we get some result when
o€ Bir(]P’3)C(u,) blows down a surface distinct from #£, onto a point.

Definition. Let ¢ be a contact birational map of P3. Let § = (f = 0) be an irreducible surface blown down
by ¢, and let p be a smooth point of § such that ¢ and V(¢) are holomorphic at p. The multiplicity of
contraction of ¢ at p is the greatest integer n such that /7, divides V(6). One can check that n is independent
on p. The integer n is the multiplicity of contraction of ¢ on S.

Remark 9.4. Let ¢ be a contact birational map of P3. If ¢ is holomorphic at p € P3 \ #., then V (¢) is too.

Example 9.5. Let us consider the birational map ¢ defined in the affine chart z; = 1 by

o ( 2023 SICH ) .
= ) 3<3 | s
(Zz +Z3)2 (Zz+Z3)

3

Furthermore #, is blown down

in this chart ® = dz; — mt# dz3 and one can check that V(¢) = ——.
3

by ¢ onto the point (0,0,0) ; the multiplicity of contraction of ¢ on H, is thus 2.

Proposition 9.6. Let ¢ be a map of Bir(IP3)c(w) and let S be an irreducible surface distinct from H,. blown
down by ¢ onto a point p. If the multiplicity of contraction of ¢ on S is 1, then p belongs to L.

Remark 9.7. As soon as the multiplicity of contraction of ¢ on § is > 1, the point p can be in P? \ #L,.
Let us consider the map of Bir(IP’3)c(w> given in the affine chart zz = 1 by

( 2(nzoz1 — 22)

n—1 n
= 7y .2
n+(1—n)zz ~ % )

with n € Z. The surface z; = 0 is blown down onto e3 & #£,. One can check that V (¢) = 1z so the

— 2+(1-n)zz
multiplicity of contraction of ¢ on zo = 0 is n if n > 2 and 0 otherwise.

Proof of Proposition 9.6. Assume by contradiction that p = (po, p1, p2) does not belong to #.. Let (f =0)
be an equation of 5; as the multiplicity of contraction of ¢ on S is 1 one has V(¢) = fV; with V}| ¢ generically
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regular. There exists a point m € § such that f,, is a submersion and ¢ is holomorphic at m. One has
0m = (po+fA,p1+ fB,p2+ fC) with A, B, C holomorphic and ¢7,® = V (¢)® can be rewritten

(fA+ po)(fdB+Bdf) + (fdC+Cdf) = fVi(zodzi +dz2) ©.1)

This implies that there exists C; holomorphic such that poB+C = fCy, i.e. C = fC| — poB. Hence
(9.1) <= fAdAB+ABdf + fdC; +2C1df = V) (zodz1 +dz2) 9.2)
The multiplicity of contraction of ¢ on § is 1 hence f does not divide V. Then S is invariant by ® and
this gives a contradiction with the fact that 4, is the only invariant surface of . g

For elements in Bir(IP3), we only have one statement that includes both cases of a surface contracted
onto a point and onto a curve. Let us remark that in the case of a point, we don’t need the assumption about
the multiplicity of contraction; in the other one the statement shows that Proposition 9.1 applies to elements
of Bir(P?) (@) ~ Bir(P?)e.

Proposition 9.8. Let ¢ be a map of Bir(P*)y,. If S is a surface distinct from #, contracted by ¢, then ¢(S)
belongs to H..

Proof. From ¢0*® = ® one gets 0" (0)/\ d(n)) = wAdw = dzyg Adz; Adzy. Suppose that for p € S generic 0(p)
does not belong to H.. As codimInd¢ > 2, the map ¢ is holomorphic at p. Since ¢ preserves the volume
form, ¢ is a diffeomorphism; hence ¢ cannot blow down a subvariety onto a curve or a point not contained

in H,. O

Example 9.9. If ¢ = (¢1,02) = (z)23,2]25), with { ’r’ ;’ ] € SL(2;Z), then

—p s—g — 122+ 52021 G
_ r=p_s—q P_q K
K(0) = (z1 2 ,zlzz,ZEZE)-
P72 — 42021

Note that for any [ p CS] } € SL(2:Z) the map % (¢) belongs to Bir(P?)() \ Bir(P?),.

r

For instance if { lz CSI ] = { 1 _01 }, ie. ifo= ( L] ) is the Cremona involution, then

0 0021
x0) = o) = (2.1 1)
3 a2

and Ind K (6) = {z0 =22 =0} U{z0 = 23 = 0} U{z1 = 22 = 0} U {z1 = z3 = 0}; furthermore z = 0 and #.
are blown down onto e; and z; = 0 onto e;.

Part 3. Some common properties

10. INVARIANT CURVES AND SURFACES
The following statement is a local statement of contact analytic geometry.

Proposition 10.1. Let ¢ be an element of Aut(C?)¢, or Bir(IP?),. Suppose that m is a periodic point of ¢
and that there exists a germ of irreducible curve C invariant by ¢, passing through m. Then

— either C is a curve of periodic points (i.e. (])fc = id for some integer {),

— or C is a legendrian curve.

Let us note that according to Proposition 11.4 we know that such a situation often occurs.
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Proof. Assume that ¢ belongs to Aut((C3)w. Up to considering a well-chosen iterate of ¢ let us assume
that m is a fixed point of ¢. Let s — y(s) be a local parametrization of C at m. Up to reparametrization one
can suppose that Y(0) = m. Let @ be the "restriction” to C of ¢, that is the local map @: C g — C defined by
¢(0) =0and

VseCo  o(v(s)) = v(9(s)).
On the one hand y*® = €(s)ds and on the other hand Y*®© = Y*¢*® = (¢ o y)*® so

e(s)ds = @* (e(s)ds) = €(@)@'ds.
Let us set €(s) = [; €(r)dr. One has (£(9))" = €(¢)¢’ = &(s) = (£(s)) hence €(@) = €+ B for some
B e C. As ¢(0) =0, one gets p = 0 and €(¢) = €. Then:
— either € = 0 therefore € = 0 and C is a legendrian curve.

— or there exists some local coordinate for which € = z/, ¢ = ¢*™/{ 7 and ¢f€ =id.
O

If @ is a polynomial automorphism of C? that preserves a curve distinct from the line at infinity, then ¢
is conjugate to a Jonquieres polynomial automorphism ([8]); in particular @ preserves a rational fibration.
We have a similar statement in dimension 3:

Proposition 10.2. If ¢ € Aut(C?),, preserves a surface, then
0 = (9(20,21),22 +b(20,21))

where @ is Aut(C?)-conjugate to a Jonquiéres polynomial automorphism.

Proof. Let us write ¢ as (§o(z0,21),91(20,21),22 +b(z0,21)) and set @ = (¢o, 91 ).

First note that if b = 0 then ¢odd; — zodz; = 0; as a result ¢; = ¢1(z1) and ¢ is a Jonquieres polynomial
automorphism.

Let us now assume that the surface § preserved by ¢ is described by

ar(20,21)5 +ar—1(20,21)25 ' +ar-a2(z0,21)25 2 4... =0

where a; € Clz9,z1], or equivalently by

2

2 +a (zo,zl)zg_l +Zig,2(zo,Z1)z€_ +...=0

where a; = a;/ay. Writing that § is invariant by ¢ one gets that

(22 + b(ZO’Zl))Z +ar-1(9(z0,21)) (22 +b(20,21 ))[_1 +ap-2(9(z0,21)) (22 +b(z0, 21 ))[_2 +...

4

=25 +ap-1(20,21)75 " +ar-2(z0,21)25 2+ ...

Looking at terms in z5~ ! one gets that £b(z0,21) = @r—1(20,21) — dr—1 (9(z0,21))-

— If ay_; is constant, then b = 0 and as we just see @ is a Jonquieres polynomial automorphism.

— Otherwise ¢ is conjugate (in Bir(P3)) via (Z(),Z1,Z2 + 5‘7*1) to ¥ = (¢,z2). The map Y preserves

O = zodz; +d (zz + %’1 ) , the surface S given by

3

5 +ag,2(zo,zl)z§‘2 +ap-3(z0,21 )zg_ +...=0

and thus a;(@) = a;. If one of the g; is non-constant, then @ is a Jonquieres polynomial automorphism.
Otherwise S = Uj(z2 = ¢;j); up to take an iterate ¥ of W one can suppose that any 7 = ¢ ;18 invariant.
Consider 75 = co; up to a well-chosen translation (that belongs to Bir(IP3)y) the hypersurface zo = 0 is

invariant, that is W is a Jonquiéres map and so does . d
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n+1
Example 10.3. For any n > 1 consider ¢ = (Z() +2f,21,22 — le+l> in Aut(C?)g. The map ¢ = (z0+2/,21)

is a Jonquieres polynomial automorphism. The surface § given by z + % =0, is invariant by ¢. The
foliation induced by ® on S is described by the linear differential equation nzpdz; — z1dzp. In fact the

functions z, + % and z; are invariant by ¢ and the commutative Lie algebra generated by the vector fields
9

9 4 2 9 9 invari
dg Tt og and 3z, are invariant by 0.

In general an element of Aut(C?), has no invariant surface. For instance there is no polynomial solution
to

n+1

—a((z0,21)) +alz0,21) = —514_1 +B

with @ = (z0+2/,z1) as soon as  # 0.
Remark 10.4. If ¢ € Bir(P3),, preserves zo = 0, then ¢ belongs to the Klein family; more precisely ¢ =
(%,V(Z] ),12) with v € PGL(2;C(z;)). Indeed since ¢ belongs to Bir(P3),

0 = (90(z0,21),91(20,21),22+b(20,21))-

But ¢ preserves z; =0 so b =0 and ¢*® = @ implies that ¢; = v(z1) withv € PGL(2;C(z1)) and ¢ = v’?gl) .
Of course there are more general contact maps that preserve z; = 0; let us give some examples:

22

X (Zl, CZ(ZI)Z2H> ) K (214 P(22),22)
where a € C(z;)* and P € C[zy].

Let ¢ be an element of Bir(P3),. Suppose that ¢ preserves a surface § distinct from #.. The contact
form is non-zero on § so induces a foliation F on S, necessarily invariant by ¢; let us describe (S ,¢‘ s F):

Proposition 10.5. Let ¢ be an element of Bir(P3)y, that preserves a surface distinct from H,. Then ¢
is Bir(IP*)-conjugate to (¢(z0,z1),22) with @ in Bir(P?). The map ¢ preserves a codimension 1 folia-
tion given by a closed 1-form. As a consequence ¢ preserves a "vertical" foliation and a rational func-
tionzo + a(z0,21)-

Proof. Let us denote by S the surface invariant by ¢ = (9(20,21),22 +b(20,21)) with ¢ € Bir(P?). One can
assume that S is given by

b +ar (zo,m)zg_l +...=0
The fact that S is invariant by ¢ implies that ay_;(z0,21) — ar—1 ((p(z(),zl )) = {b(z0,71). Let us consider the
map Y = (Zom ,22+ W) One has

o=yoy! = ((P(ZO,Zl),Zerb(zO,zl) 3 am(g,o,m) N ael(@éZm@))) = ((z0:21),22)

As § and ® are invariant by ¢, the restriction ¢ 5 preserves the foliation induced by @ on §, and 5 preserves
the "vertical" foliation given by zodz; —day_1(zo,z1). Therefore @ preserves a codimension 1 foliation given
by a closed 1-form. g

Example 10.6. If ¢ = (z2,z125), then K(¢) = (7% +nz ,zlz’;,Q) belongs to Bir(P3)C(w) \ Bir(P?),, pre-
serves the surface z; = 0 and also zp = cst.
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11. DYNAMICAL PROPERTIES

11.1. Periodic points. Let ¢ be a birational map of P"; a point p is a periodic point of ¢ of period ¢ if ¢
is holomorphic on a neighborhood of any point of {¢/(¢)|j =0, ...,/ — 1} and if ¢'(q) = g and ¢/ (q) # q
for1 <j</-—1.

Recall that a polynomial automorphism of C> of Hénon type (see [18]) has an infinite number of hyper-
bolic periodic points. For any of these points p of period ¢, there exists a stable manifold W*(p) defined
as the set of points that move towards the orbit of p by positive iteration of ¢7; such a W*(p) is an im-
mersion from C to C2. Remark that even if W*(m) # W*(p) are different as soon as p and m have distinct
orbits one has W*(m) = W*(p). The Julia set of @ is the topological boundary of the set of points with
bounded positive orbits. One can prove that the Julia set of @ is equal to the closure of any of the stable
manifold. Hence its topology is very complicated: this set contains an infinite number of immersions of C
and pairwise distinct ([18]).

Example 11.1. Let us consider a polynomial automorphism ¢ of Hénon type given by ¢ = (Bz1 + 23, —Vz0)-
A ¢lift of @ to Aut(C?) () is

(P = <BZ1 +Z5, 7’YZ0,'YBZ2 +YBZOZI + %ZS)

Take a periodic point (pg,p1) of @ of period k; then as ¢* = (¢*(z0,21), (YB)*z2 + f(z0,21)) one gets, as
soon as Y is not a root of unity, that there exists p, such that O (po, p1, p2) = (po, p1,p2)-

More generally, one can state:
Proposition 11.2. Let ¢ the element of Bir(]P’3)C(w) of the following type
o= ((p, detjac®zy + b(z0,z1 ))

with ¢ in Bir(P?) and b in C(z9,71).
If detjace is not a root of unity, then any periodic point of ¢ can be lifted into a periodic point of ¢.

Corollary 11.3. Let ¢ be a polynomial automorphism of C*> of Hénon type. A ¢-lift of ¢ has an infinite
number of periodic points that lift the hyperbolic periodic points of @.

Question 3. Let ¢ be a Hénon automorphism and let ¢ be a c-lift of @. The closure of the hyperbolic
periodic points of @ is the Julia set of @, in particular it is a Cantor set. Is the closure of the set of periodic
points of ¢ a Cantor set ?

Let us consider a Hénon automorphism ¢ = (@, @,) and let m be an hyperbolic periodic point of ¢; then

the matrix
_99 99
dz; 0z
99, _ 99

%y %y
_ %& gﬂ %
is a non-parabolic one and so zg — 94;11 aq;;z has two fixed points. We can thus state the following:
20

0 9

Proposition 11.4. Let ¢ be an automorphism of C* of Hénon type; to any periodic point of period ¢ of @
corresponds two periodic points of period £ of K (@) € Bir(IP’3)C(m).

A similar question as Question 3 is the following:

Question 4. Let ¢ be a polynomial automorphism of C* of Hénon type; what is the topology of the distri-
bution of periodic points of K (@) ? Is it a discrete set ? Is its closure a Cantor set ?
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Remark 11.5. Let us consider an element (¢o(z0,21),91(20,21),22 + b(20,21)) of Bir(P*)e. Then ¢, =
(00(20,21),01(20,21),22 + b(20,21) +1) belongs to Bir(P?)q. If p = (po, p1, p2) is a fixed point of ¢y, then
(po, 1) is a fixed point of @ = (¢o,$1) and b(po, p1) +1¢ = 0. In particular if @ only has isolated fixed points
(that is @ has no curve of fixed points, which is the case in general), then ¢, has no fixed points for # generic.
Similarly, if @ has a countable number of periodic points, then for # generic ¢; has no periodic points.

11.2. Degree and degree growths. In the 2-dimensional case, that is if @ belongs to Aut(C?), or Bir(P?),
then deg @ = deg@~!. This equality is not true in higher dimension; for instance if

0= (§+23+21,23 +20.22),
then ¢~ = (zl - z%,zo —(z1— Z%)2 — Z%7Z2)). What happens in our context ? The equality deg @ = deg ¢!
still does not hold; indeed if (o, 01,22 + b(z0,21)) belongs to Aut(C?)e, then —db = ¢podd; — z0dz; and
degb = deg ¢ +deg¢;. For instance if ¢ = (z0 + (2} — 20)%,2} —20). then
¢ ' =((z0—21) ~ 21,20~ 21)-

Hence the degree of the ¢-lifts of @ (resp. ') is 9 (resp. 8).

Let ¢ and y be two birational self-maps of P3. We will say that the degree growths of ¢ and \y are of
the same order if one of the following holds

— (degd™),, and (degy"), are bounded,

deg¢” degy”
egk¢ and_tim eV
n n—te 1
— (deg0™), and (degy"), grow exponentially.

— there exist an integer k such that liIJIrl are finite and nonzero,
n——oo

Let @ be a polynomial automorphism of C?; let us recall that ¢ has either a bounded growth or an
exponential one ([18]). Denote by ¢ a ¢-lift of @ to Aut((C3)c(m)

0 = (9,detjac@zz +b(20,21))
Note that b belongs to C|zo,z1] and so degh(¢/(z0,z1)) < deghdeg @’ for any j. Hence
deg@" < deg” < max(deg@",deghdeg@" ')
and
— if (deg@"), is bounded, then (deg "), is bounded,
— if (deg @"), grows exponentially, then (deg¢™), grows exponentially.

Remark that if y is a polynomial automorphism of C> linear growth is also possible ([7]) and this eventuality
does not appear when we look at elements of Aut((C3)c(w).

In the case of the c-lift of an exact element of Bir(]P’z)11 we cannot give formula because we are not
dealing with polynomials. But the degree growth of a ¢-lift ¢ of an exact element ¢ of Bir([@z)n and the
degree growth of @ are the same. Indeed set ¢ = (@g », 91 ,,) for any n > 1. On the one hand

0" = (0.0, Q11,22 +b(20,21) +5(P0,1,01,1) +5(P02,P12) + .. +b(Pou—1,P1.0-1))
with db = zodz; — @od@, but on the other hand ¢" = (90,4, P1,1,22 +b(z0,21)) With db = zodz1 — P9 ,dP1 -
Using this last writing one gets the statement.

Let ¢ be a birational self-map of P2. For any n > 1 set ¢" = (¢1,4,02,) = (gll’" , 222'" ) with P, Qin €

Clzo,z1] without common factor; denote by p;, (resp. g;,) the degree of P;, (resp. Q;,). Of course
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deg 0" = max(pi,n+ 92,1, P2.n +q1 0,91, + q2,n) and since

Q2n aPZ.n aPzn E)Q
Q2n 2n 0z _Q 2Zn 0z +(Q2n 92 _PZn 322 )ZO Pln P2n

oP SN aQ n oP; N aQ n
an an 1 Pln ale (Ql,n 1 *Pl,n azlz, )ZO Ql,n Q2,n

d2n

K(9)" = K(9") =

one gets degq)n S deg K(q))n S max(4Q2,n + P2.n + 172p17n + 2C]l,n + qQ2.n + 17p2,n + 3q1,n +p1,n + ])~
Proposition 11.6.  — Assume that G = Aut(C?) or G = Bir(P?),. Let ¢ be an element of G, and let ¢
be a c-lift of . The degree growths of ¢ and ¢ are of the same order.

— Let @ be a birational self-map of the complex projective plane, and let us consider K (@) the image
of @ by K. The degree growths of ¢ and K (@) are of the same order.

11.3. Centralisers. If G is a group and f an element of G, we denote by Cent(f,G) the centraliser of f
in G, that is
Cent(f,G) = {g€G|fg=sf}
Let @ be a polynomial automorphism of (C2, then ([18, 25])
— either @ is conjugate to an element of J, and Cent(¢, Aut(C?)) is uncountable;
— or @ is of Hénon type and the centraliser of @ is isomorphic to Z x Z/ pZ for some p.
Let # be the set of polynomial automorphisms of C? of Hénon type.

Proposition 11.7. Let ¢ be a polynomial automorphism of C? and let ¢ be one of its ¢-lift.
— Ifdetjac@ = 1, then Cent(¢, Aut(C3)y,) is uncountable and isomorphic to Cent(¢) x C.

— If detjaco # 1 and @ belongs to H, then Cent((]),Aut((C3)C(w)) is countable and isomorphic to
Cent(o).

Proof. One can look at the restriction of ¢ to Cent(9, Aut((C3)C(w)):
G\Cent (I)Aut((C3) ) Cent(¢ AUt<C3) (o )) - Cent((vaUt((Cz))
Of course
Ker Glcent(p Aut(C?),0)) {(z0,21,22+B)|B € C}.
If detjac@ = 1, i.e. ¢ belongs to Aut(C?)q, then
Ker G cent(g. Aut(C), ) = { (20:21,22+B) [B € C}

and the centraliser of a ¢-lift of ¢ is always uncountable even if Cent(¢, Aut((Cz)) is countable.
If detjac @ # 1, i.e. @ belongs to Aut(C?) \ Aut(C?)y, then Ker §cent(o, Aut(C? = {id} and

Cent(¢, Aut(C?), (@) = Cent(@, Aut(C?))
In particular if @ belongs to (Aut(C?) \ Aut(C2)y) N %, then Cent(¢, Aut(C?), (w)) is countable. O
Remark 11.8. Contrary to the 2-dimensional case there exist some ¢ in Aut(C?)g, such that

— Cent(0, Aut(C?)y) is uncountable,
— and (deg¢"),en grows exponentially.

A similar reasoning leads to:

Proposition 11.9. Let ¢ € Bir(P?)y, be an exact map, and let ¢ be one of its ¢-lifts. Then Cent(¢, Bir(P3),)
is uncountable.
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Let G = Aut(C?) or G = Bir(IP?)y,. Let @ be an element of G, and let ¢ be one of its ¢-lift. In the following
examples we look at the links between the ¢-lift of Cent(,G) and Cent(¢,G’) where G’ = Aut(C?) ()
or Bir(P?)(q).

Example 11.10. In this example we give a polynomial automorphism ¢ and maps in Cent((p,Aut((CZ))
whose only one ¢-lift belongs to Aut(9, Aut((C3)c(m>) where ¢ denotes a c-lift of .

Let us now consider the Hénon automorphism ¢ given by
¢ = (821, —120)
where 9, 3, y are complex numbers such that 83 # 0, 8p # 1 and k > 4. The map

3p
o= (é‘m,ﬁz’f —Yz0,0Y22 + OYz021 — mz’f“)

is a ¢-lift of @. One can check that ({zo,z1), where { € C* such that ¥ = {, commutes with ¢. Among the
¢-lifts (£z0,821,%22 +B), B € C, only one commutes with ¢.

Example 11.11. We consider a polynomial automorphism ¢, a subgroup G of Cent(@, Aut(C?)) and G¢
its ¢-lift. In the first example the inclusion G¢ C Cent(¢, Aut(C? )e(w)) holds whereas in the second example
it doesn’t.

Let us consider the polynomial automorphism ¢ = (B9zo + B9z{Q(z}),Bz1) with € C*, Q € C[z;] and
d, r € N. One can check that

G={(z20+7¥{,21)| Y€ C} C Cent(g, Aut(C?))
The map ¢ = (B920 + Bz{Q(z;), Bz1,B* 20 — BP(z1)) with P'(z1) = z1Q(2}) is a G-lift of @. Let G¢ be the

¢-lift of G; the group
d-+1
Y2y
G = ¢ — C
c {<Z0+YZ17Z1,22 dJrl) lye }

is here contained in Cent(q),Aut((C3)C(w)).

Let ¢ be the polynomial automorphism given by ¢ = (zo +z%,Az;) with L € C* and A? # 1. A g-lift of ¢
to Aut((C3)c(m) is
A3
o= (zo +21, M2, A — ?l +H>

for some u € C. Note that

G= {(5204—%214—8,%1) |8,ve (C*,ee(C}

is contained in Cent(@, Aut(C?)). Let us denote by G the ¢-lift of G; a direct computation shows that

_ Y -3 Y(¥ —38) 4 .
G = {(5Z0+m21 +37Yzl,8Yzz—mZ1—Y€Zl +B) 18,yeC ’B,SEC}

The inclusion G¢ N Cent (9, Aut(C?)¢()) C G is strict; indeed

-1
GgﬂCent(¢,Aut(C3)c(m)) = { (vzzo +&,721,Y 2 — Yezr + %8) |lyeC*ee (C}.
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12. NON-SIMPLICITY, TITS ALTERNATIVE

12.1. Non-simplicity. Let us recall that a simple group is a non-trivial group G whose only normal sub-
groups are {id} and G.

Danilov proved that Au‘[((Cz)n is not simple ([15]). More recently Cantat and Lamy showed that Bir(IP?)
is not simple ([11]). As a consequence one has:
Proposition 12.1. The groups

Aut(C)o, Bir(P)g, Aut(C)yq),  [Aut(C?)e(e), Aut(C) )],  [Aut(C?)y, Aut(C?)y)

are not simple.
Proof. Since [Aut((C3)C(m),Aut((C3)C(w)] ~ Aut(C?)y and [Aut(C?)y, Aut(C?)e] =~ Aut(C?), the first as-
sertion follows from [15].

The exact sequence (3.1) implies in particular that there exists a morphism with a non-trivial kernel
from Aut(C?), into Aut(C?)y, hence Aut(C?)y, is not simple. A similar argument holds for Bir(P?),
and Aut((C3)C(w). O

The morphism
Bir(P?)¢ — Bir(P?)

that consists to take the restriction of ¢ € Bir(P*)u® to #£, has a non-trivial kernel; indeed

o= (o= (55) ==+ 5s)

with P, Q two polynomials of degree p, ¢ such that p < g+ 1, is regular and induces the identity on #,. In
particular one gets the following statement:

Proposition 12.2. The group Bir(P3)® is not simple.

Let us consider the maps y = (Yz(z)zl , % ,22 —|—ZoZl) and ¢ = (zo + Z%,zl ,22 + ﬁ) . One can check that y
1 1
belongs to Bir(P3), . Bir(P3)e® whereas ¢ is in Bir(IP?),%. A direct computation shows that y~! ¢y blows
down £, onto e3. Hence one can state:

Proposition 12.3. The subgroup Bir(IP3)® of Bir(P3),, is not normal.

12.2. The Tits alternative. The derived series of a group G is defined as follows
DO(G):Gv Dl(G):[GaG]a tee Dn+](G): [GvD'l(G)]

The group G is solvable if there exists an integer k such that Dy (G) = {id}. The least ¢ such that Dy = {id}
is called the derived length of G.

A group G satisfies the Tits alternative if any finitely generated subgroup of G contains either a non-
abelian free group, or a solvable subgroup of finite index. This alternative has been established by Tits for
linear groups GL(n;k) for any field k ([27]). Lamy proves that the group of polynomial automorphisms of
Aut(C?) satisfies the Tits alternative ([25]), so does Cantat for the group of birational maps of a complex,
compact, kdhler surface (see [10]). Note that the automorphisms groups of complex, compact, kihler
manifolds of any dimension also satisfies Tits alternative ([10, 26]).

Theorem 12.4. The groups Aut(C?)e, Aut(C3)C(w) and Bir(IP?), satisfy the Tits alternative.
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Proof. Let G be a finitely generated subgroup of Bir(P?),. Set

Go = ¢(G) C Bir(P?)y
Since Bir(IP?)y, is a subgroup of Bir(IP?) that satisfies the Tits alternative, either Gy contains a non-abelian
free group, or a solvable subgroup of finite index.

Assume first that Gy contains two elements f and & such that (f, h) ~ Z «Z. Let us denote by F, resp. H
alift of £, resp. & in Bir(IP?). Suppose that there exists a non-trivial word M such that M(F,H) = {id}. As ¢
is a morphism, one gets that M(f,h) = {id}: contradiction.

Suppose now that up to finite index Gy is solvable, and let £ be its derived length; in particular Dy(Go) = {id}
and Dy(G) belongs to kerg. Since

kerg = {(z0,21,22+B)[B € C}
one gets Dyt (G) = {id}. O

13. NON-CONJUGATE ISOMORPHIC GROUPS
Let us denote by v; the trivial embedding from (Aut(C?)y|0) into Aut(C?)

12 (Aut(C?)y|0) = Aut(C),  (60,01) = (00, 01,22)
and by ', the trivial embedding from Bir(IP?) into Bir(P?)

Vy: Bir(IP’z) — Bir(P3), (01,02) — (z0,91,02).
Despite imv; (resp. imV,) is isomorphic to im¢ (resp. im X)) one has the following statement:

Proposition 13.1. The image of v; (resp. vy) is not Aut(C?)-conjugate (resp. Bir(P*)-conjugate) to a
subgroup ofAut((C3)C(w) (resp. Bir(P3)c(w)).

Proof. Let us assume that there exists W in Aut(C?) (resp. Bir(P?)) such that for any ¢ = (9o,d;) (resp.
o = (¢1,02)) in Aut(C?) (resp. Bir(IP?)) the map wv;(¢)y~! (resp. wv,(¢)y~!) is a contact polynomial
automorphism (resp. contact birational map); as a result v () (resp. V2(9)) preserves a polynomial form
® = Adzg + Bdz; + Cdzp. Looking at the restriction to any hyperplane z, = A (resp. zo = A) for A generic
one gets that all the ¢ preserve the foliation given by ©,,_ (resp. ®, _»): contradiction. O

Part 4. Appendix: Automorphisms group of Aut((Cz)n

As we recalled Aut(C?) is generated by J, and Aff,. More precisely Aut(C?) has a structure of amalga-
mated product ([24])
Aut(C?) = Jp #1,0amr, Aff;
this is also the case for Aut(C?)y ([19, Proposition 9])

Aut(C?)y = (T2)n * (1) N(Aff)y (Aff2)n

Following [16] we prove that:
Theorem 13.2. The group Aut(Aut(C?)y,) is generated by the automorphisms of the field C and the group
of Aut(C?)-inner automorphisms.

Idea of the Proof. Let us set G = Aut((Cz)n. One can follow [16] and prove that if @ is an automorphism
of G, then

— @((J2)n) = (J2) up to conjugacy by an element of Aut(C?) ([16, Proposition 4.4]);
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— for any integer k if R = Un§k<(ﬁzo7 %) | B n-th root of unity), then there exists y in (J2)y such
that (R) = yRy~!. So one can suppose that ¢((J2)y) = (J2)n and §(R) = R (see [16, Proposi-
tion 4.4]);

— set Dy = {(Bz0,21/B)|B € C*} one can show that conjugating ¢ by an element of (J»); one has
¢((J2)n) = (J2)y and ¢(Dy) = Dy

— set

T ={(z0+B,z1)|p€C}, T, = {(z0,21+B)|B € C}
and

T={(z0+vz+B)|7,BeC}
Since Ty C [[(J2)n, (J2)n]s [(32)n, (32)n]], then Ty C {(z0 + P(z1),21) | P € Clz1]}. As
VneN,VBeC (Z;O,nm) (zo+B,z1)" (nz(), %) = (z0+B,z1)
and ¢(Dy,) = Dy, one gets

Vn € N7VB S C ¢ (Z;()vnzl) (p(ZO+BaZl)n(P (nz()a%) = (p(Z0+B7Z1)

that is

%O,le) (zo +nP(z1),21)" (510, %1) = (z20+P(2),21)

so P(z1) = §P (%1) The polynomial P is non-zero hence n = § and P is a constant. Therefore
(p(Tl) c Ty.
The groups Ty and T, commute, that’s why

o(Ty) C {(Zo +P(z1),21+PB)|P€Clu],B e (C}

VneN (

The relation
20 21
(;,nm) (z0,21+B) (’lZo, ;) = (20,21 +B)"

true for any integer n and for any B in C implies that ¢(T,) C T,. The group T being a maximal
abelian subgroup of G, one has @(T) =T and ¢(T;) =T;.
— There exist &;, & two additive morphisms and { a multiplicative one such that

OGo+1a+B) = (o+E (M. +8B) & o (Wo@) - (C(”Z"’qz(lv))

The statement follows from [16, Proposition 1.4].
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