BIRATIONAL MAPS PRESERVING THE CONTACT STRUCTURE ON $\mathbb{P}^3_{\mathbb{C}}$

DOMINIQUE CERVEAU AND JULIE DÉSERTI

ABSTRACT. We study the group of polynomial automorphisms of \mathbb{C}^3 (resp. birational self-maps of $\mathbb{P}^3_{\mathbb{C}}$) that preserve the contact structure.

2010 Mathematics Subject Classification. - 14E05, 14E07.

1. INTRODUCTION

In this article we work on the group of birational maps that preserve contact structures on $\mathbb{P}^3_{\mathbb{C}}$. On $\mathbb{P}^3_{\mathbb{C}}$ there is, up to automorphisms, only one (non-singular) contact structure given in homogeneous coordinates by the 1-form $\tilde{\vartheta} = z_0 dz_1 - z_1 dz_0 + z_2 dz_3 - z_3 dz_2$. In \mathbb{C}^3 there is the Darboux 1-form $\omega = z_0 dz_1 + dz_2$ that is the standard local model of contact forms; it thus defines a holomorphic contact structure on \mathbb{C}^3 that extends to $\mathbb{P}^3_{\mathbb{C}}$ meromorphically. Note that ω has poles of order 3 along the hyperplane $z_3 = 0$. We denote by $c(\omega)$ the (meromorphic) contact structure induced on $\mathbb{P}^3_{\mathbb{C}}$ by ω . Let us remark that actually ω is birationally conjugate to $\tilde{\vartheta}_{|z_3=1}$ (more precisely they are conjugate via a polynomial automorphism in the affine chart $z_3 = 1$). As a result the group of birational maps that preserve these structures are conjugate; since it is more convenient to work with ω than with $\tilde{\vartheta}$ we will focus on ω .

The contact geometry has a long story. The Darboux local model $z_0dz_1 + dz_2$ is related to the formalization of $z_0 = -\frac{dz_2}{dz_1}$. For instance if S is a surface in \mathbb{C}^3 given by $F(z_0, z_1, z_2) = 0$ then the restriction of ω to S corresponds to the implicit differential equation $F\left(-\frac{\partial z_2}{\partial z_1}, z_1, z_2\right) = 0$. A birational self-map of $\mathbb{P}^3_{\mathbb{C}}$ which preserves the contact structure (*i.e.*, which sends the 1-form $z_0dz_1 + dz_2$ viewed in the affine chart $z_3 = 1$ onto a multiple of $z_0dz_1 + dz_2$ by a rational function) is said to be a contact map. The space \mathbb{C}^3 with the contact form ω can be seen as an affine chart of the projectivization of the cotangent bundle $T^*\mathbb{C}^2$ (equipped with the standard Liouville contact form). As a consequence there is a natural extension of any birational self-map of the (z_1, z_2) plane ([22])

$$\mathcal{K} \colon \operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}}) \hookrightarrow \operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}, \qquad (\phi_1, \phi_2) \mapsto \left(\frac{-\frac{\partial \phi_2}{\partial z_1} + \frac{\partial \phi_2}{\partial z_2} z_0}{\frac{\partial \phi_1}{\partial z_1} - \frac{\partial \phi_1}{\partial z_2} z_0}, \phi_1(z_1, z_2), \phi_2(z_1, z_2) \right)$$

where $\operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$ denotes the group of contact birational self-maps of $\mathbb{P}^3_{\mathbb{C}}$. The image of \mathcal{K} is the Klein group \mathcal{K} . In 1926 Klein conjectured that the group of contact maps is generated by \mathcal{K} and the Legendre involution

$$(z_0, z_1, z_2) \mapsto (z_1, z_0, -z_2 - z_0 z_1).$$

In 2008 Gizatullin proved this "conjecture" in the case in which the contact transformations are polynomial automorphisms of the affine space ([20]). The conjecture about generators of the contact group is still open in the birational case.

Let G be a subgroup of the group $Bir(\mathbb{P}^n_{\mathbb{C}})$ of birational self-maps of $\mathbb{P}^n_{\mathbb{C}}$, and let β be a meromorphic *p*-form on $\mathbb{P}^n_{\mathbb{C}}$; denote by

$$\mathrm{G}_{eta} = ig\{ oldsymbol{\phi} \in \mathrm{G} \, | \, oldsymbol{\phi}^*eta = eta ig\}$$

the subgroup of elements of G that preserve the form β . In the same spirit for 1-forms β we set

$$\mathbf{G}_{\mathbf{c}(\boldsymbol{\beta})} = \left\{ \boldsymbol{\phi} \in \mathbf{G} \, | \, \boldsymbol{\phi}^* \boldsymbol{\beta} \wedge \boldsymbol{\beta} = \mathbf{0} \right\}$$

We have the obvious inclusions $G_{\beta} \subset G_{c(\beta)} \subset G$.

We first describe the group $Aut(\mathbb{C}^3)_{c(\omega)}$ of polynomial automorphisms of \mathbb{C}^3 that preserve the contact structure:

Theorem A. If η is the form $d\omega = dz_0 \wedge dz_1$, then

$$\operatorname{Aut}(\mathbb{C}^3)_{\omega} \simeq \operatorname{Aut}(\mathbb{C}^2)_{\eta} \ltimes \mathbb{C}, \qquad \operatorname{Aut}(\mathbb{C}^3)_{c(\omega)} \simeq \operatorname{Aut}(\mathbb{C}^3)_{\omega} \ltimes \mathbb{C}^*.$$

Hence, as Banyaga did in the context of contact diffeomorphisms of smooth real manifolds ([2, 3, 4]), one gets that the commutator of $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$ (resp. $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$) is perfect. Any automorphism of $\operatorname{Aut}(\mathbb{C}^2)$ is the composition of an inner automorphism and an automorphism of the field \mathbb{C} (*see* [16]). Following this idea we describe the group $\operatorname{Aut}(\operatorname{Aut}(\mathbb{C}^3)_{\omega})$.

Danilov and Gizatullin proved that any finite subgroup of $Aut(\mathbb{C}^2)$ is linearizable ([21]). We obtain a similar statement:

Theorem B. Any finite subgroup of $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$ is linearizable via an element of $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$.

We also deal with $\operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$. If ϕ belongs to $\operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$, then $\phi^*\omega = V(\phi)\omega$ where $V(\phi)$ is some rational function. In particular one gets a map V from $\operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$ to the set of rational functions in z_0 , z_1 , z_2 satisfying cocycle conditions: $V(\phi \circ \psi) = (V(\phi) \circ \psi) \cdot V(\psi)$.

The equality $\phi^* \omega = V(\phi) \omega$ can be rewritten as the following system of P.D.E.

$$(S) \begin{cases} \phi_0 \frac{\partial \phi_1}{\partial z_0} + \frac{\partial \phi_2}{\partial z_0} = 0 & (\star_1) \\ \phi_0 \frac{\partial \phi_1}{\partial z_1} + \frac{\partial \phi_2}{\partial z_1} = V(\phi) z_0 & (\star_2) \\ \phi_0 \frac{\partial \phi_1}{\partial z_2} + \frac{\partial \phi_2}{\partial z_2} = V(\phi) & (\star_3) \end{cases}$$

The first equation (\star_1) has a special family of solutions: maps for which both ϕ_1 and ϕ_2 do not depend on z_0 ; we can then compute ϕ_0 from the two other equations. Taking (ϕ_1, ϕ_2) in Bir($\mathbb{P}^2_{\mathbb{C}}$) we get by this way the group \mathcal{K} .

Assume now that ϕ_1 or ϕ_2 depends on z_0 then both depend on it and (S) implies the following equality

$$\frac{\frac{\partial \phi_2}{\partial z_1} - z_0 \frac{\partial \phi_2}{\partial z_2}}{\frac{\partial \phi_2}{\partial z_0}} = \frac{\frac{\partial \phi_1}{\partial z_1} - z_0 \frac{\partial \phi_1}{\partial z_2}}{\frac{\partial \phi_1}{\partial z_0}}.$$

Let us defined α the map from Bir $(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$ into the set of rational functions in z_0 , z_1 and z_2 by: $\alpha(\phi) = \infty$ if ϕ belongs to \mathscr{K} and

$$\alpha(\phi) = \frac{\frac{\partial \phi_2}{\partial z_1} - z_0 \frac{\partial \phi_2}{\partial z_2}}{\frac{\partial \phi_2}{\partial z_0}} = \frac{\frac{\partial \phi_1}{\partial z_1} - z_0 \frac{\partial \phi_1}{\partial z_2}}{\frac{\partial \phi_1}{\partial z_0}}$$

otherwise.

If ϕ_1 and ϕ_2 are some first integrals of the rational vector field

$$Z_{\phi} = \alpha(\phi) \frac{\partial}{\partial z_0} - \frac{\partial}{\partial z_1} + z_0 \frac{\partial}{\partial z_2},$$

one gets ϕ_0 thanks to the first equation of (S). Such ϕ is not necessary birational but only rational; nevertheless one gets a lot of contact birational self-maps by this way. Remark that since \mathscr{K} (resp. $\text{Bir}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$) is a subgroup of $\text{Bir}(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$ there is a natural left translation action of \mathscr{K} (resp. $\text{Bir}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$) on $\text{Bir}(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$. These two actions admit a complete invariant:

Theorem C. The map α is a complete invariant of the left translation action of \mathscr{K} on $Bir(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$, that is for any ϕ and ψ in $Bir(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$ one has $\alpha(\phi) = \alpha(\psi)$ if and only if $\psi \phi^{-1}$ belongs to \mathscr{K} .

The map *V* is a complete invariant of the left translation action of $\text{Bir}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$ of $\text{Bir}(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$, i.e. for any ϕ, ψ in $\text{Bir}(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$ one has $V(\phi) = V(\psi)$ if and only if $\psi\phi^{-1}$ belongs to $\text{Bir}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$.

We prove that α is not surjective: generic linear differential equations of second order give linear functions that are not in the image of α . Painlevé equations give examples of polynomials of higher degree that do not belong to im α . The map V is also not surjective.

Since ω has no integral surface in \mathbb{C}^3 a contact birational self-map ϕ either preserves the hyperplane $z_3 = 0$, or blowns down $z_3 = 0$. This naturally implies the following definition: $\phi \in \text{Bir}(\mathbb{P}^3_{\mathbb{C}})_{c(\omega)}$ is regular at infinity if $z_3 = 0$ is preserved by ϕ and if $\phi|_{z_3=0}$ is birational. One shows that

Proposition D. The set of maps of $\operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$ that are regular coincides with $\operatorname{Aut}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$.

Let ς : Bir $(\mathbb{P}^3_{\mathbb{C}})_{\omega} \to Bir(\mathbb{P}^2_{\mathbb{C}})_{\eta}$ be the projection onto the two first components. We say that $\phi \in Bir(\mathbb{P}^2_{\mathbb{C}})_{\eta}$ is exact if ϕ can be lifted via ς to Bir $(\mathbb{P}^3_{\mathbb{C}})_{\omega}$. One establishes the following criterion:

Theorem E. A map $\varphi = (\phi_0, \phi_1) \in \text{Bir}(\mathbb{P}^2_{\mathbb{C}})_{\eta}$ is exact if and only if the closed form $\phi_0 d\phi_1 - z_0 dz_1$ has trivial residues. In that case $\phi_0 d\phi_1 - z_0 dz_1 = -db$ with $b \in \mathbb{C}(z_0, z_1)$ and $\phi = (\varphi, z_2 + b(z_0, z_1)) \in \text{Bir}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$.

We give a lot of examples, and even subgroups, of exact maps but also prove that the map ς is not surjective:

Theorem F. A generic quadratic element of $Bir(\mathbb{P}^2_{\mathbb{C}})_{\eta}$ is not exact.

Furthermore we look at invariant curves and surfaces. Thanks to a local argument of contact geometry one gets that if ϕ belongs to $\operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$, if *m* is a periodic point of ϕ , and if there exists a germ of irreducible curve *C* invariant by ϕ and passing through *m*, then either *C* is a curve of periodic points, or *C* is a legendrian curve. We also give a precise description of elements of $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$ (resp. $\operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$) that preserve a surface.

Besides we deal with some group properties. Danilov proved that $\operatorname{Aut}(\mathbb{C}^2)_{\eta}$ is not simple ([15]); Cantat and Lamy showed that $\operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}})$ is not simple ([11]). In the same spirit we establish that

Theorem G. The groups $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$, $\operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$, $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$, the derived group of $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$ and the derived group of $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$ are not simple.

Lamy proved that $\operatorname{Aut}(\mathbb{C}^2)$ satisfies the Tits alternative ([25]), then Cantat showed that $\operatorname{Bir}(\mathbb{P}^2_{\mathbb{C}})$ also ([10]). In our context one gets that

Theorem H. The groups $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$, $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$ and $\operatorname{Bir}(\mathbb{P}^3_{\mathbb{C}})_{\omega}$ satisfy the Tits alternative.

Acknowledgments. We would like to thank Guy Casale for discussions about the non-integrability.

CONTENTS

1.	Introduction	1
Part 1	. Contact polynomial automorphisms	4
2.	Contact forms and contact structures	4
3.	Description of contact automorphisms	5
4.	Automorphisms group	8
Part 2	2. Contact birational maps	10
5.	A P.D.E. approach	11
6.	Invariant forms and vector fields	14
7.	Regular birational maps	16
8.	Exact birational maps	18
9.	Indeterminacy and exceptional sets	23
Part 3	8. Some common properties	25
10.	Invariant curves and surfaces	25
11.	Dynamical properties	28
12.	Non-simplicity, Tits alternative	32
13.	Non-conjugate isomorphic groups	33
Part 4	. Appendix: Automorphisms group of $\operatorname{Aut}(\mathbb{C}^2)_\eta$	33
Ref	ferences	34

Part 1. Contact polynomial automorphisms

A *polynomial automorphism* ϕ of \mathbb{C}^n is a polynomial map of the type

 $\phi: \mathbb{C}^n \to \mathbb{C}^n, \qquad (z_0, z_1, \dots, z_{n-1}) \mapsto (\phi_0(z_0, z_1, \dots, z_{n-1}), \phi_1(z_0, z_1, \dots, z_{n-1}), \dots, \phi_{n-1}(z_0, z_1, \dots, z_{n-1}))$

that is bijective. The set of polynomial automorphisms of \mathbb{C}^n form a group denoted Aut (\mathbb{C}^n) .

The automorphisms of \mathbb{C}^n of the form $(\phi_0, \phi_1, \dots, \phi_{n-1})$ where ϕ_i depends only on $z_i, z_{i+1}, \dots, z_{n-1}$ form the *Jonquières subgroup* $J_n \subset Aut(\mathbb{C}^n)$. Moreover one has the inclusions

$$\operatorname{GL}(\mathbb{C}^n) \subset \operatorname{Aff}_n \subset \operatorname{Aut}(\mathbb{C}^n)$$

where Aff_n denotes the group of affine maps

 $\phi: (z_0, z_1, \dots, z_{n-1}) \mapsto (\phi_0(z_0, z_1, \dots, z_{n-1}), \phi_1(z_0, z_1, \dots, z_{n-1}), \dots, \phi_{n-1}(z_0, z_1, \dots, z_{n-1}))$

with ϕ_i affine; Aff_n is the semi-direct product of $GL(\mathbb{C}^n)$ with the commutative subgroups of translations. The subgroup Tame_n \subset Aut(\mathbb{C}^n) generated by J_n and Aff_n is called the *group of tame automorphisms*.

Convention: In all the article we denote $\mathbb{P}^n_{\mathbb{C}}$ by \mathbb{P}^n , and we write "birational maps of \mathbb{P}^n " instead of "birational self-maps of \mathbb{P}^n ".

2. CONTACT FORMS AND CONTACT STRUCTURES

We recall in the context of 3-manifolds the formalism of contact structure. Let *M* be a complex 3-manifold; we denote by $\Omega^i(M)$ the space of holomorphic *i*-forms on *M*. A *contact form* on *M* is an element

 $\Theta \in \Omega^1(M)$ such that the 3-form $\Theta \wedge d\Theta \in \Omega^3(M)$ has no zero: $\Theta \wedge d\Theta(m) \neq 0$ for any $m \in M$. For such a contact form there is a local model given by Darboux theorem: at each point *m* there is a local biholomorphism $F: M_{,m} \to \mathbb{C}^3_{,0}$ such that $\Theta = F^*(z_0dz_1 + dz_2)$. The 1-form $z_0dz_1 + dz_2$ is called the *standard contact form* on \mathbb{C}^3 ; we denote it by ω .

A contact structure on the 3-manifold M is given by the following data:

- i. an open covering $M = \sqcup_k \mathcal{U}_k$,
- ii. on each \mathcal{U}_k a contact form $\Theta_k \in \Omega^1(\mathcal{U}_k)$,
- iii. on each non-trivial intersection $\mathcal{U}_k \cap \mathcal{U}_\ell$ a holomorphic unit $g_{k\ell} \in O^*(\mathcal{U}_k \cap \mathcal{U}_\ell)$ such that $\Theta_k = g_{k\ell} \Theta_\ell$.

A contact structure defines a holomorphic hyperplanes field $t: M \to \mathbb{P}(TM)^{\vee}$ given for all $m \in \mathcal{U}_k$ by

$$t(m) = \ker \Theta_k(m).$$

As we recalled in §1 the compact Kähler manifolds having a contact structure are classified by Frantzen and Peternell theorem ([?]). On \mathbb{P}^3 there is no contact form because there is no non-trivial global form. Nevertheless there are contact structures; one of them is given in homogeneous coordinates by the 1-form

$$\vartheta = z_0 \mathrm{d} z_1 - z_1 \mathrm{d} z_0 + z_2 \mathrm{d} z_3 - z_3 \mathrm{d} z_2.$$

In that case we can take the standard covering by affine charts $\mathcal{U}_k = \{z_k = 1\}$ and $\vartheta_k = \widetilde{\vartheta}_{|\mathcal{U}_k}$.

Proposition 2.1. Up to automorphisms of \mathbb{P}^3 there is only one contact structure on \mathbb{P}^3 .

Proof. Remark that to a contact structure on \mathbb{P}^3 is associated a homogeneous 1-form β on \mathbb{C}^4 such that $\mathcal{U}_k = \{z_k = 1\}$ and $\Theta_k = \beta_{|\mathcal{U}_k|}$ satisfies properties i., ii., iii.

Let β be a contact structure on \mathbb{P}^3 , and let $R = \sum_i z_i \frac{\partial}{\partial z_i}$ be the radial vector field. Since $i_R \beta = 0$, to give β

is equivalent to give $d\beta$. According to [23, Chapter 2, Proposition 2.1] one has $\deg d\beta = 0$; to give $d\beta$ is thus equivalent to give an antisymmetric matrix of maximal rank. But up to conjugacy there is only one 4×4 antisymmetric matrix of maximal rank.

Remark 2.2. The group of linear automorphisms of \mathbb{C}^4 that preserve $\tilde{\vartheta}$ coincides with the group of automorphisms of \mathbb{P}^3 that preserve $d\tilde{\vartheta}$; as a consequence the subgroup of Aut(\mathbb{P}^3) that preserves the contact structure associated to $d\tilde{\vartheta}$ is the projectivization of the symplectic group Sp(4; \mathbb{C}).

Remark that the data of a global meromorphic 1-form Θ on M such that $\Theta \wedge d\Theta \neq 0$ induces a contact form (and a contact structure) on the complement of the poles and zeros of Θ and $\Theta \wedge d\Theta$. In that case we say that Θ induces a *meromorphic contact structure* on M.

For instance the Darboux form $\omega = z_0 dz_1 + dz_2$ induces a meromorphic contact structure on \mathbb{P}^3 . In fact the forms ω and $\tilde{\vartheta}_{|z_3=1}$ are conjugate on \mathbb{C}^3 via $\left(\frac{z_0}{2}, z_1, -z_2 + \frac{z_0 z_1}{2}\right)$. The corresponding (meromorphic) contact structure are birationally conjugate on \mathbb{P}^3 .

3. DESCRIPTION OF CONTACT AUTOMORPHISMS

3.1. Description of $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$. Set $\eta = d\omega = dz_0 \wedge dz_1$. Remark that the invariance of ω implies the invariance of η and as a consequence the equality $(\phi_0, \phi_1)^* \eta = \eta$.

Proposition 3.1. If ϕ belongs to Aut $(\mathbb{C}^3)_{\omega}$, then $\phi_* \frac{\partial}{\partial z_2} = \frac{\partial}{\partial z_2}$. In particular if ϕ belongs to Aut $(\mathbb{C}^3)_{\omega}$, then

 $\phi = (\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1))$

and the map

$$\varsigma \colon \operatorname{Aut}(\mathbb{C}^3)_{\omega} \longrightarrow \operatorname{Aut}(\mathbb{C}^2)_{\eta}, \qquad \left(\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1)\right) \mapsto \left(\phi_0(z_0, z_1), \phi_1(z_0, z_1)\right)$$

is a morphism.

Proof. As we already mentioned, for a contact form there exists a unique vector field χ , called Reeb vector field, such that $\omega(\chi) = 1$ and $i_{\chi} d\omega = 0$; here $\chi = \frac{\partial}{\partial z_2}$. If ϕ belongs to Aut(\mathbb{C}^3)_{ω}, then $\phi_* \chi = \chi$. As a result ϕ has the following form

$$\phi = (\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1))$$

with (ϕ_0, ϕ_1) in Aut (\mathbb{C}^2) and *b* in $\mathbb{C}[z_0, z_1]$.

Remark 3.2. Any element of $Aut(\mathbb{C}^3)_{c(\omega)}$ can be written

 $(\varphi_0, \varphi_1, \operatorname{detjac} \varphi_{z_2} + b(z_0, z_1))$

where $\varphi = (\varphi_0, \varphi_1) \in \operatorname{Aut}(\mathbb{C}^2)$ and $db = (\operatorname{detjac} \varphi) z_0 dz_1 - \varphi_0 d\varphi_1$. Let us still denote by ς the natural projection

$$\varsigma: \operatorname{Aut}(\mathbb{C}^3)_{\mathbf{c}(\boldsymbol{\omega})} \to \operatorname{Aut}(\mathbb{C}^2)$$

An element ϕ of $Bir(\mathbb{P}^2)_{\eta}$ is *exact* if it can be lifted via ς to $Bir(\mathbb{P}^3)_{\omega}$, or equivalently if it belongs to im ς .

Contrary to the birational case (Theorem 8.1) any element of $\operatorname{Aut}(\mathbb{C}^2)$ can be lifted via ζ to $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$. Since *b* is defined up to a constant we do not speak about the ζ -lift but a ζ -lift.

The following obvious statement describes the group $Aut(\mathbb{C}^3)_{\omega}$:

Proposition 3.3. Let us consider the morphism

$$\varsigma: \operatorname{Aut}(\mathbb{C}^3)_{\omega} \longrightarrow \operatorname{Aut}(\mathbb{C}^2)_{\eta}, \qquad \left(\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1)\right) \mapsto \left(\phi_0(z_0, z_1), \phi_1(z_0, z_1)\right).$$

One has the following exact sequence

$$0 \longrightarrow \mathbb{C} \longrightarrow \operatorname{Aut}(\mathbb{C}^3)_{\omega} \xrightarrow{\varsigma} \operatorname{Aut}(\mathbb{C}^2)_{\eta} \longrightarrow 1;$$

$$(3.1)$$

more precisely ker $\varsigma = \{(z_0, z_1, z_2 + \beta) | \beta \in \mathbb{C}\}$. In particular

$$\operatorname{Aut}(\mathbb{C}^3)_{\omega} \simeq \operatorname{Aut}(\mathbb{C}^2)_{\eta} \ltimes \mathbb{C}.$$

Proof. The 1-form $\phi_0 d\phi_1 - z_0 dz_1$ is a closed and polynomial one, so it is exact. Therefore ς is surjective. \Box

Let G be a group. The *derived group* of G is the subgroup of G generated by all the commutators of G:

$$[\mathbf{G},\mathbf{G}] = \langle ghg^{-1}h^{-1} \, | \, g, h \in \mathbf{G}$$

The group G is said to be *perfect* if it coincides with its derived group, or equivalently, if the group has no nontrivial abelian quotients.

Such a property was established in the context of real smooth manifolds: Banyaga proved that the derived group of the group of contact diffeomorphisms is a perfect one ([2, 3, 4]).

Theorem 3.4. The group $[Aut(\mathbb{C}^3)_{\omega}, Aut(\mathbb{C}^3)_{\omega}]$ is perfect.

Proof. Since ζ is surjective (Proposition 3.3) and Aut(\mathbb{C}^2)_{η} is perfect ([19, Proposition 10]) the restriction of ζ

$$\widetilde{\varsigma} = \varsigma_{\mid [\operatorname{Aut}(\mathbb{C}^3)_{\omega},\operatorname{Aut}(\mathbb{C}^3)_{\omega}]} \colon [\operatorname{Aut}(\mathbb{C}^3)_{\omega},\operatorname{Aut}(\mathbb{C}^3)_{\omega}] \longrightarrow \operatorname{Aut}(\mathbb{C}^2)_{\eta}$$

is surjective. Let ϕ be in ker $\tilde{\zeta}$; on the one hand $\phi = (z_0, z_1, z_2 + \beta)$ for some β (Proposition 3.3), and on the other hand ϕ is a product of commutators hence $\beta = 0$. We thus have the following exact sequence

$$0 \longrightarrow [\operatorname{Aut}(\mathbb{C}^3)_{\omega}, \operatorname{Aut}(\mathbb{C}^3)_{\omega}] \longrightarrow \operatorname{Aut}(\mathbb{C}^2)_{\eta} \longrightarrow 1$$

and $[Aut(\mathbb{C}^3)_{\omega}, Aut(\mathbb{C}^3)_{\omega}] \simeq Aut(\mathbb{C}^2)_{\eta}$ which is perfect ([19, Proposition 10]).

3.2. Description of $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$. Let us recall that $\operatorname{Aut}(\mathbb{C}^2)$ is generated by J_2 and Aff_2 (see [24]). This implies that Aff_2 and

$$[\mathbf{J}_2, \mathbf{J}_2] = \{ (z_0 + \beta, z_1 + P(z_0)) \, | \, \beta \in \mathbb{C}, \, P \in \mathbb{C}[z_0] \}.$$

generate $Aut(\mathbb{C}^2)$.

Proposition 3.5. The group $\text{Aut}(\mathbb{C}^3)_{c(\omega)}$ is generated by $\mathcal A$ and $\mathcal E$ where

$$\mathcal{E} = \{ \varsigma\text{-lifts of } \mathfrak{e} \, | \, \mathfrak{e} \in [J_2, J_2] \}$$
 and $\mathcal{A} = \{ \varsigma\text{-lifts of } \mathfrak{a} \, | \, \mathfrak{a} \in \mathrm{Aff}_2 \}.$

Proof. Let φ be a polynomial automorphism of \mathbb{C}^2 and let φ be a ς -lift of φ to Aut $(\mathbb{C}^3)_{c(\omega)}$

$$\phi = (\phi, \det jac \phi z_2 + b(z_0, z_1))$$

with *b* in $\mathbb{C}[z_0, z_1]$. One can write φ as $\mathfrak{a}_1 \mathfrak{e}_1 \mathfrak{a}_2 \mathfrak{e}_2 \dots \mathfrak{a}_s \mathfrak{e}_s$ where \mathfrak{a}_i belongs to Aff₂ and \mathfrak{e}_i to $[J_2, J_2]$. Let us now consider A_i a ζ -lift of \mathfrak{a}_i , $E_i = (\mathfrak{e}_i, z_2 + d_i)$ a ζ -lift of \mathfrak{e}_i . Then $A_1 E_1 A_2 E_2 \dots A_s E_s$ belongs to Aut $(\mathbb{C}^3)_{c(\omega)}$, and up to composition by an element $(z_0, z_1, z_2 + \beta) \in \mathcal{A}$ one has

$$\phi = A_1 E_1 A_2 E_2 \dots A_s E_s.$$

Proposition 3.6. One has

$$\operatorname{Aut}(\mathbb{C}^3)_{\mathbf{c}(\boldsymbol{\omega})} \simeq \operatorname{Aut}(\mathbb{C}^3)_{\boldsymbol{\omega}} \ltimes \mathbb{C}^*.$$

Proof. Let us consider an element ϕ of Aut(\mathbb{C}^3)_{$c(\omega)$}, then $\phi^*\omega = V(\phi)\omega$ for some polynomial $V(\phi)$. As ω and $\phi^*\omega$ do not vanish, $V(\phi)$ does not vanish; therefore $V(\phi) = \lambda \in \mathbb{C}^*$. Let us write ϕ as follows:

$$\phi = (\lambda z_0, z_1, \lambda z_2) \circ \phi;$$

of course $\tilde{\phi}^* \omega = \omega$.

Theorem 3.7. The derived group $[Aut(\mathbb{C}^3)_{c(\omega)}, Aut(\mathbb{C}^3)_{c(\omega)}]$ of $Aut(\mathbb{C}^3)_{c(\omega)}$ is perfect.

Proof. According to Proposition 3.6 an element ϕ of $Aut(\mathbb{C}^3)_{c(\omega)}$ can be written

$$(\lambda\phi_0,\phi_1,\lambda z_2+\lambda b)$$

with $\lambda \in \mathbb{C}^*$ and $(\phi_0, \phi_1, z_2 + b) \in \operatorname{Aut}(\mathbb{C}^3)_{\omega}$. Denote by φ the element of $\operatorname{Aut}(\mathbb{C}^2)$ given by (ϕ_0, ϕ_1) . If φ belongs to ker ς , then $\lambda = 1$, $\varphi = \operatorname{id}$ and $b \in \mathbb{C}$, that is ker $\varsigma \simeq \mathbb{C}$ and

$$\mathbb{C} \longrightarrow \operatorname{Aut}(\mathbb{C}^3)_{\mathsf{c}(\omega)} \stackrel{\varsigma}{\longrightarrow} \operatorname{Aut}(\mathbb{C}^2) \longrightarrow 1.$$
(3.2)

Since $\operatorname{Aut}(\mathbb{C}^2)_{\eta}$ is perfect the restriction of ζ to $[\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}, \operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}]$ induces the following exact sequence

$$0 \longrightarrow [Aut(\mathbb{C}^3)_{c(\omega)}, Aut(\mathbb{C}^3)_{c(\omega)}] \longrightarrow Aut(\mathbb{C}^2)_{\eta} \longrightarrow 1$$

and $[\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}, \operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}] \simeq \operatorname{Aut}(\mathbb{C}^2)_{\eta}$. One concludes as previously with [19, Proposition 10]. \Box

3.3. Finite subgroups.

Proposition 3.8. Any element of $\operatorname{Aut}(\mathbb{C}^2)_{\eta}$ of period ℓ lifts via ς to a unique element of $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$ of period ℓ .

Proof. Let us consider an element $\varphi = (\phi_0(z_0, z_1), \phi_1(z_0, z_1))$ of $\operatorname{Aut}(\mathbb{C}^2)_{\eta}$. According to Proposition 3.3 there exists $b \in \mathbb{C}[z_0, z_1]$ such that $(\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1) + \mu)$ belongs to $\operatorname{Bir}(\mathbb{P}^3)_{\omega}$ for any $\mu \in \mathbb{C}$. Assume that φ is of prime order ℓ ; let us prove that there exists a unique $\gamma \in \mathbb{C}$ such that

$$(\phi_0, \phi_1, z_2 + b(z_0, z_1) + \gamma)$$

is of order ℓ .

Assume for simplicity that $\ell = 2$ (but a similar argument works for any ℓ). Let us recall that the following equality holds

$$z_0 \mathrm{d} z_1 - \phi_0 \mathrm{d} \phi_1 = \mathrm{d} b \tag{3.3}$$

Applying ϕ to this equality one gets

$$\phi_0 \mathrm{d}\phi_1 - z_0 \mathrm{d}z_1 = \mathrm{d}(b \circ \varphi) \tag{3.4}$$

We add (3.3) and (3.4) and obtain that $b + b \circ \phi$ is a constant β . Furthermore

$$(\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1) + \mu)^2 = (z_0, z_1, z_2 + 2\gamma + b + b \circ \phi) = (z_0, z_1, z_2 + 2\gamma + \beta)$$

so as soon as $\gamma = -\beta/2$ one has $(\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1) + \mu)^2 = \text{id.}$

Proposition 3.9. A finite subgroup of $Aut(\mathbb{C}^2)$ can be lifted to a finite subgroup of $Aut(\mathbb{C}^3)_{c(\omega)}$.

Proof. Let H be a finite subgroup of Aut(\mathbb{C}^2). The group H is linearizable ([21]) hence has a fixed point p. Since the translations belong to Aut(\mathbb{C}^2) one can assume that p = (0,0). Let us consider the lifts of all elements of H in $\{\phi \in Aut(\mathbb{C}^3)_{c(\omega)} | \phi(0) = 0\}$; they form a group isomorphic to H so is in particular finite.

Remark 3.10. Any subgroup G of $Aut(\mathbb{C}^2)$ that preserves (0,0) can be lifted to a subgroup of $Aut(\mathbb{C}^3)_{c(\omega)}$ isomorphic to G.

Theorem 3.11. Any finite subgroup of $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$ is linearizable via an element of $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$.

Proof. Let G be a finite subgroup of $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$. The group G is isomorphic to $H = \zeta(G)$ which is thus a finite subgroup of $\operatorname{Aut}(\mathbb{C}^2)$. There exists a map $h \in \operatorname{Aut}(\mathbb{C}^2)$ that linearizes H (*see* [21]); as a result H has a fixed point p and up to translations one can suppose that p = (0,0). Note that h(0) = 0. The lift of h in $\{\phi \in \operatorname{Aut}(\mathbb{C}^3)_{c(\omega)} | \phi(0) = 0\}$ linearizes G.

4. AUTOMORPHISMS GROUP

Let us first introduce some notations. The group of the field automorphisms of \mathbb{C} acts on Aut(\mathbb{C}^n) (resp. Bir(\mathbb{P}^n)): if *f* is an element of Aut(\mathbb{C}^n) and if ξ is a field automorphism we denote by ξf the element obtained by letting ξ acting on *f*. Using the structure of amalgamated product of Aut(\mathbb{C}^2), the automorphisms of this group have been described ([16]): let φ be an automorphism of Aut(\mathbb{C}^2); there exist a polynomial automorphism ψ of \mathbb{C}^2 and a field automorphism ξ such that

$$\forall f \in \operatorname{Aut}(\mathbb{C}^2) \qquad \varphi(f) = \xi(\psi f \psi^{-1}).$$

Even if $Bir(\mathbb{P}^2)$ has not the same structure as $Aut(\mathbb{C}^2)$ (*see* Appendix of [11]) the automorphisms group of $Bir(\mathbb{P}^2)$ can be described and a similar result is obtained ([17]).

We now would like to describe the group $Aut(Aut(\mathbb{C}^3)_{\omega})$. Let us recall that the *center* of a group G, denoted Z(G), is the set of elements that commute with every element of G.

Proposition 4.1. The center of $Aut(\mathbb{C}^3)_{\omega}$ is isomorphic to \mathbb{C} :

 $Z(\operatorname{Aut}(\mathbb{C}^3)_{\omega}) = \left\{ (z_0, z_1, z_2 + \beta) \, | \, \beta \in \mathbb{C} \right\}$

and the center of $Aut(\mathbb{C}^3)_{c(\omega)}$ is trivial.

As
$$\operatorname{Aut}(\mathbb{C}^3)_{\omega} \simeq \operatorname{Aut}(\mathbb{C}^2)_{\eta} \ltimes \mathbb{C}$$
 Proposition 4.1 implies the following statement:

Corollary 4.2. The quotient of $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$ by its center is isomorphic to $\operatorname{Aut}(\mathbb{C}^2)_{\eta}$.

Lemma 4.3. One has the following isomorphism

$$\operatorname{Hom}(\operatorname{Aut}(\mathbb{C}^3)_{\omega},\mathbb{C})\simeq\operatorname{Hom}(\mathbb{C},\mathbb{C})$$

where $Hom(\mathbb{C},\mathbb{C})$ denotes the homomorphisms of the additive group \mathbb{C} .

А

Proof. Note that if ϕ belongs to $[Aut(\mathbb{C}^3)_{\omega}, Aut(\mathbb{C}^3)_{\omega}]$, then the last component of ϕ is well defined (that is not defined modulo a constant). Besides $Aut(\mathbb{C}^3)_{\omega} \simeq Aut(\mathbb{C}^2)_{\eta} \ltimes \mathbb{C}$ and $Aut(\mathbb{C}^2)_{\eta}$ is perfect thus

$$\operatorname{ut}(\mathbb{C}^3)_{\omega} / [\operatorname{Aut}(\mathbb{C}^3)_{\omega}, \operatorname{Aut}(\mathbb{C}^3)_{\omega}] \cong \mathbb{C}$$

and

$$Aut(\mathbb{C}^{3})_{\omega} \simeq Aut(\mathbb{C}^{2})_{\eta} \ltimes \mathbb{C}$$

$$Aut(\mathbb{C}^{3})_{\omega} / \underbrace{[Aut(\mathbb{C}^{3})_{\omega}, Aut(\mathbb{C}^{3})_{\omega}]}_{\sim} \longrightarrow \mathbb{C}$$

We conclude by noting that any element of Hom $(Aut(\mathbb{C}^3)_{\omega},\mathbb{C})$ acts trivially on ϕ .

Remark 4.4. An element *c* of Hom $(Aut(\mathbb{C}^3)_{\omega}, \mathbb{C})$ acts on $Aut(\mathbb{C}^3)_{\omega}$ as follows

$$(\phi_0,\phi_1,z_z+b(z_0,z_1)) \rightarrow (\phi_0,\phi_1,z_2+b(z_0,z_1)+c(\phi))$$

Definition. Let H be a normal subgroup of a group G. We say that an automorphism of H of the form $\phi \mapsto \phi \phi \phi^{-1}$, with ϕ in G, is G-*inner*.

Theorem 4.5. The group $\operatorname{Aut}(\operatorname{Aut}(\mathbb{C}^3)_{\omega})$ is generated by the automorphisms group of the field \mathbb{C} , the group of $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$ -inner automorphisms and the action of $\operatorname{Hom}(\mathbb{C},\mathbb{C})$.

Proof. Consider an element ψ of Aut $(Aut(\mathbb{C}^3)_{\omega})$. For any $\phi = (\phi_{\phi}, z_2 + T_{\phi}(z_0, z_1))$ one has

$$\Psi(\phi) = \left(\widetilde{\varphi_{\phi}}, z_2 + \Delta_{\phi}(z_0, z_1)\right).$$

In particular ψ induces an automorphism ψ_0 of $\operatorname{Aut}(\mathbb{C}^2)_{\eta}$; indeed since ψ is an automorphism of $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$, it preserves $Z(\operatorname{Aut}(\mathbb{C}^3)_{\omega})$ and so, from Corollary 4.2 induces an automorphism of $\operatorname{Aut}(\mathbb{C}^2)_{\eta}$.

According to Theorem 13.2 one can assume that $\psi_0 = id$ up to the action of an automorphism of the field \mathbb{C} and up to conjugacy by an Aut(\mathbb{C}^2)-inner automorphism, *i.e.*

$$\begin{aligned} \psi(\phi) &= \left(\phi_{\phi}, z_{2} + \Delta_{\phi}(z_{0}, z_{1})\right) \\ \text{Set } \phi^{-1} &= \left(\phi_{\phi}^{-1}, z_{2} + T_{\phi^{-1}}(z_{0}, z_{1})\right). \text{ On the one hand } \phi^{-1} \circ \phi = \left(\text{id}, z_{2} + T_{\phi}(z_{0}, z_{1}) + T_{\phi^{-1}}(\phi_{\phi})\right) \text{ so} \\ T_{\phi} + T_{\phi^{-1}}(\phi_{\phi}) &= 0 \end{aligned}$$
(4.1)

and on the other hand

$$\Psi(\phi \circ \phi^{-1}) = \left(\mathrm{id}, z_2 + T_{\phi^{-1}}(z_0, z_1) + \Delta_{\phi} \, \phi_{\phi}^{-1}\right)$$

belongs to Aut(\mathbb{C}^3) $_{\omega}$ hence $T_{\phi^{-1}} + \Delta_{\phi} \varphi_{\phi}^{-1}$ is a constant. This, combined with (4.1), implies that $\Delta_{\phi} = T_{\phi} + c_{\phi}$, where c_{ϕ} is a constant, and yields to a morphism from Aut(\mathbb{C}^3) $_{\omega}$ to \mathbb{C} :

$$\operatorname{Aut}(\mathbb{C}^3)_{\omega} \to \mathbb{C}, \qquad \phi \mapsto c_{\phi}.$$

Consider an homomorphism

$$\mathfrak{o}\colon \operatorname{Aut}(\mathbb{C}^3)_{\omega}\to\mathbb{C},\qquad \varphi\mapsto\rho_{\varphi}$$

Let us define $\psi\colon Aut(\mathbb{C}^3)_{\omega}\to Aut(\mathbb{C}^3)_{\omega}$ by:

$$\mathbf{J}(\mathbf{\phi}) = (\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1) + \rho_{\mathbf{\phi}})$$

where $\phi = (\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1)) \in \operatorname{Aut}(\mathbb{C}^3)_{\omega}$. One can check that ψ belongs to $\operatorname{Aut}(\operatorname{Aut}(\mathbb{C}^3)_{\omega})$.

Part 2. Contact birational maps

A *rational map* of \mathbb{P}^n can be written

 $\phi \colon \mathbb{P}^n \dashrightarrow \mathbb{P}^n \qquad (z_0 : z_1 : \ldots : z_n) \dashrightarrow (\phi_0(z_0, z_1, \ldots, z_n) : \phi_1(z_0, z_1, \ldots, z_n) : \ldots : \phi_n(z_0, z_1, \ldots, z_n))$

where the ϕ_i 's are homogeneous polynomials of the same degree ≥ 1 and without common factor of positive degree. The *degree* of ϕ is by definition the degree of the ϕ_i . A *birational map* of \mathbb{P}^n is a rational map that admits a rational inverse. Of course Aut(\mathbb{C}^n) is a subgroup of Bir(\mathbb{P}^n). An other natural subgroup of Bir(\mathbb{P}^n) is the group Aut(\mathbb{P}^n) \simeq PGL(n + 1; \mathbb{C}) of automorphisms of \mathbb{P}^n .

The *indeterminacy set* Ind ϕ of ϕ is the set of the common zeros of the ϕ_i 's. The *exceptional set* Exc ϕ of ϕ is the (finite) union of subvarieties M_i of \mathbb{P}^n such that ϕ is not injective on any open subset of M_i .

Let us extend the definition of Jonquières group we gave in the case of polynomial automorphisms of \mathbb{C}^n to the case of birational maps of \mathbb{P}^2 : the **Jonquières group**, denoted \mathcal{I} , is the group of birational maps of \mathbb{P}^2 that preserve a pencil of rational curves. Since two pencils of rational curves are birationally conjugate, \mathcal{I} does not depend, up to conjugacy, of the choice of the pencil. In other words one can decide, up to birational conjugacy, that \mathcal{I} is in the affine chart $z_2 = 1$ the maximal group of birational maps that preserve the fibration $z_1 = \text{cst.}$ An element φ of \mathcal{I} permutes the fibers of the fibration thus induces an automorphism of the base \mathbb{P}^1 ; note that if the fibration is fiberwise invariant, φ acts as an homography in the generic fibers. Hence \mathcal{I} can be identified with the semi-direct product PGL(2; $\mathbb{C}(z_1)) \rtimes \text{PGL}(2; \mathbb{C})$.

We study the birational maps $\phi = (\phi_0, \phi_1, \phi_2)$ defined on $\mathbb{C}^3 = (z_3 = 1) \subset \mathbb{P}^3$ that preserve either the contact standard form ω , or the contact structure $c(\omega)$ associated to ω . In other words we would like to describe the groups $Bir(\mathbb{P}^3)_{\omega}$ and $Bir(\mathbb{P}^3)_{c(\omega)}$ and also their elements.

Let us now illustrate a fundamental difference between $Bir(\mathbb{P}^3)_{\omega}$ and $Bir(\mathbb{P}^3)_{c(\omega)}$: the first group preserves the fibration associated to $\frac{\partial}{\partial z_2}$ whereas the second doesn't.

Proposition 4.6. If ϕ belongs to $\operatorname{Bir}(\mathbb{P}^3)_{\omega}$, then $\phi_* \frac{\partial}{\partial z_2} = \frac{\partial}{\partial z_2}$.

In particular if ϕ belongs to $Bir(\mathbb{P}^3)_{\omega},$ then

$$\mathbf{\phi} = (\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1))$$

and the map

 $\varsigma \colon Bir(\mathbb{P}^3)_{\omega} \longrightarrow Bir(\mathbb{P}^2)_{\eta}, \qquad \left(\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1)\right) \mapsto \left(\phi_0(z_0, z_1), \phi_1(z_0, z_1)\right)$ is a morphism.

Remark 4.7. The proof is similar to the proof of Proposition 3.1.

Remark 4.8. The first assertion of Proposition 4.6 is not true for the group $Bir(\mathbb{P}^3)_{c(\omega)}$; indeed let us consider the map ψ defined by

$$\Psi = \left(\frac{z_0}{(1+z_2)^2}, z_1, \frac{z_2}{1+z_2}\right);$$

it belongs to Bir(\mathbb{P}^3)_{c(ω)} and does not preserve the fibration associated to the vector field $\frac{\partial}{\partial z_2}$.

5. A P.D.E. APPROACH

Let $\phi = (\phi_0, \phi_1, \phi_2)$ be in Bir $(\mathbb{P}^3)_{c(\omega)}$; then $\phi^* \omega = V(\phi) \omega$ for some rational function $V(\phi)$. One inherits a map *V* from Bir $(\mathbb{P}^3)_{c(\omega)}$ into the set of rational functions in z_0 , z_1 and z_2 . The equality $\phi^* \omega = V(\phi) \omega$ gives the following system (\star) of P. D. E.:

$$\begin{cases} \phi_0 \frac{\partial \phi_1}{\partial z_0} + \frac{\partial \phi_2}{\partial z_0} = 0 & (\star_1) \\ \phi_0 \frac{\partial \phi_1}{\partial z_1} + \frac{\partial \phi_2}{\partial z_1} = V(\phi) z_0 & (\star_2) \\ \phi_0 \frac{\partial \phi_1}{\partial z_2} + \frac{\partial \phi_2}{\partial z_2} = V(\phi) & (\star_3) \end{cases}$$

Thanks to (\star_2) and (\star_3) one gets

$$\phi_0\left(\frac{\partial\phi_1}{\partial z_1} - z_0\frac{\partial\phi_1}{\partial z_2}\right) + \left(\frac{\partial\phi_2}{\partial z_1} - z_0\frac{\partial\phi_2}{\partial z_2}\right) = 0 \qquad (\star_4)$$

Equation (\star_1) has a special family of solutions: maps for which both ϕ_1 or ϕ_2 do not depend on z_0 (note that if ϕ_1 (resp. ϕ_2) does not depend on z_0 then (\star_1) implies that ϕ_2 (resp. ϕ_1) also); in that case we can then compute ϕ_0 thanks to (\star_4) . Taking (ϕ_1, ϕ_2) in Bir(\mathbb{P}^2) we get elements in im \mathcal{K} ; we will called this family of solutions *Klein family*. Note that this family is a group denoted \mathcal{K} , the *Klein group*.

Proposition 5.1. The elements of \mathcal{K} are of the following type

$$\left(\frac{-\frac{\partial\phi_2}{\partial z_1}+z_0\frac{\partial\phi_2}{\partial z_2}}{\frac{\partial\phi_1}{\partial z_1}-z_0\frac{\partial\phi_1}{\partial z_2}},\phi_1(z_1,z_2),\phi_2(z_1,z_2)\right)$$

with (ϕ_1, ϕ_2) in Bir (\mathbb{P}^2) .

Assume now that ϕ_1 or ϕ_2 really depends on z_0 (*i.e.* that ϕ does not belong to the Klein family). Then (\star_1) and (\star_4) imply

$$\left(\frac{\partial\phi_2}{\partial z_1} - z_0\frac{\partial\phi_2}{\partial z_2}\right)\frac{\partial\phi_1}{\partial z_0} = \left(\frac{\partial\phi_1}{\partial z_1} - z_0\frac{\partial\phi_1}{\partial z_2}\right)\frac{\partial\phi_2}{\partial z_0} \tag{*}{5}$$

One can rewrite (\star_5) as

$$\frac{\frac{\partial \phi_2}{\partial z_1} - z_0 \frac{\partial \phi_2}{\partial z_2}}{\frac{\partial \phi_2}{\partial z_0}} = \frac{\frac{\partial \phi_1}{\partial z_1} - z_0 \frac{\partial \phi_1}{\partial z_2}}{\frac{\partial \phi_1}{\partial z_0}}.$$

Denote by α the map from Bir(\mathbb{P}^3)_{c(ω)} to the set of rational functions in z_0 , z_1 and z_2 defined by $\alpha(\phi) = \infty$ if ϕ belongs to \mathcal{K} and

$$\alpha(\phi) = \frac{\frac{\partial \phi_2}{\partial z_1} - z_0 \frac{\partial \phi_2}{\partial z_2}}{\frac{\partial \phi_2}{\partial z_0}} = \frac{\frac{\partial \phi_1}{\partial z_1} - z_0 \frac{\partial \phi_1}{\partial z_2}}{\frac{\partial \phi_1}{\partial z_0}}$$

otherwise.

If ϕ_1 and ϕ_2 are some first integrals of

$$Z_{\phi} = \alpha(\phi) \frac{\partial}{\partial z_0} - \frac{\partial}{\partial z_1} + z_0 \frac{\partial}{\partial z_2}$$

then (\star_5) is satisfied. One thus gets ϕ_0 from (\star_1) . Note that such a ϕ is not always birational. But one can get a lot of birational examples by this way.

For instance when $\alpha(\phi) \equiv 0$ one obtains a family of rational maps solutions of (\star) and Legendre involution is one of them. The set of birational maps of that family is called *Legendre family*, *i.e.* it is the set of birational maps of the following form

$$\left(-\frac{\frac{\partial}{\partial z_0}\left(\phi_2(z_0,-(z_2+z_0z_1))\right)}{\frac{\partial}{\partial z_0}\left(\phi_1(z_0,-(z_2+z_0z_1))\right)},\phi_1(z_0,-(z_2+z_0z_1)),\phi_2(z_0,-(z_2+z_0z_1))\right)\right).$$

Remark 5.2. The Legendre family composed with the Legendre involution (right composition) yields to the Klein family.

Definition. Let γ be an irreducible curve; γ is a *legendrian curve* if $s_{\gamma}^* \omega = 0$ where s_{γ} denotes a local parametrization of γ .

Remark 5.3. Elements of the Klein family preserve the fibration $\{z_1 = \operatorname{cst}, z_2 = \operatorname{cst}\}$; note that its fibers are legendrian curves. The Legendre involution sends the fibration $\{z_0 = \operatorname{cst}, z_2 + z_0 z_1 = \operatorname{cst}\}$ onto $\{z_1 = \operatorname{cst}, z_2 = \operatorname{cst}\}$. Then of course if one conjugates the Klein family by the Legendre involution one gets a family that preserves the fibration by legendrian curves $\{z_0 = \operatorname{cst}, z_2 + z_0 z_1 = \operatorname{cst}\}$.

A direct computation implies:

Proposition 5.4. Let $\phi = (\phi_0, \phi_1, \phi_2)$ be a contact birational map of \mathbb{P}^3 .

The map ϕ conjugates the foliation induced by Z_{ϕ} to the foliation induced by $\frac{\partial}{\partial z_0}$.

As a consequence the field of the rational first integrals of Z_{ϕ} is generated by ϕ_1 and ϕ_2 .

5.1. Actions of \mathscr{K} and $\operatorname{Bir}(\mathbb{P}^3)_{\omega}$ on $\operatorname{Bir}(\mathbb{P}^3)_{c(\omega)}$. The left translation action of \mathscr{K} on $\operatorname{Bir}(\mathbb{P}^3)_{c(\omega)}$ is given by

$$(\psi, \phi) \in \mathscr{K} \times \operatorname{Bir}(\mathbb{P}^3)_{\operatorname{c}(\omega)} \longrightarrow \psi \phi \in \operatorname{Bir}(\mathbb{P}^3)_{\operatorname{c}(\omega)}.$$

Take ϕ and ψ in Bir(\mathbb{P}^3)_{c(ω)} such that $\alpha(\phi) = \alpha(\psi)$, then ψ_1 and ψ_2 are first integrals of Z_{ϕ} and by Proposition 5.4

$$\psi_1 = \varphi_1(\phi_1, \phi_2), \qquad \psi_2 = \varphi_2(\phi_1, \phi_2)$$

where $\boldsymbol{\varphi} = (\boldsymbol{\varphi}_1, \boldsymbol{\varphi}_2)$ is birational. Hence

$$\boldsymbol{\psi}\boldsymbol{\phi}^{-1} = \left(\boldsymbol{\psi}_0 \circ \boldsymbol{\phi}^{-1}, \boldsymbol{\phi}_1(z_1, z_2), \boldsymbol{\phi}_2(z_1, z_2)\right)$$

belongs to \mathcal{K} ; in other words ϕ and ψ are in the same \mathcal{K} -orbit.

Assume now that $\psi = \kappa \phi$ where κ denotes an element of \mathscr{K} . Then the foliations defined by Z_{ϕ} and Z_{ψ} coincide because they have the same set of first integrals. As a consequence $\alpha(\phi) = \alpha(\psi)$.

Hence one can state:

Theorem 5.5. The map α is a complete invariant of the left translation action of \mathscr{K} on $\operatorname{Bir}(\mathbb{P}^3)_{c(\omega)}$, that is for any ϕ and ψ in $\operatorname{Bir}(\mathbb{P}^3)_{c(\omega)}$ one has $\alpha(\phi) = \alpha(\psi)$ if and only if $\psi \phi^{-1}$ belongs to \mathscr{K} .

Question 1. Is the map α surjective ?

Let us consider the following differential equation

$$y'' = F(x, y, y')$$
 (5.1)

where *F* denotes a rational function. Set y' = u, then

$$(5.1) \Leftrightarrow \begin{cases} \frac{du}{dt} = F(x, y, u) \\ \frac{dy}{dt} = u \\ \frac{dx}{dt} = 1 \end{cases}$$

So one can associate to (5.1) the following vector field

$$Z = F\frac{\partial}{\partial u} + u\frac{\partial}{\partial y} + \frac{\partial}{\partial x}.$$

We say that (5.1) is *rationally integrable* if the vector field Z has two first integrals r_1 and r_2 rationally independent: $dr_1 \wedge dr_2 \neq 0$.

For generic γ and β in \mathbb{C} the differential equation $y'' + \gamma y' + \beta y = 0$ is not rationally integrable; as a consequence $-\gamma z_0 - \beta z_2$ is not in the image of α . The first Painlevé equation gives examples of polynomial of degree 2 that does not belong to im α :

Theorem 5.6 ([12]). *The equation* \mathcal{P}_1

$$y'' = 6y^2 + x$$

is not rationally integrable.

If we come back with our notations it means that $6z_2^2 - z_1$ is not in the image of α .

Remark 5.7. Indeed all generic Painlevé equations give rise to rational functions that do not belong to im α .

Nevertheless one can easily obtain examples of elements in the image of α :

Examples 5.8. — If $\phi = \left(\frac{z_0}{\beta}, z_0 + \beta z_1, z_2 - \frac{z_0^2}{2\beta}\right)$ with $\beta \in \mathbb{C}^*$, then $\alpha(\phi) = \beta$. — If $\phi = \left(z_0, z_1 + P(z_0), z_2 + Q(z_0)\right)$ with P, Q in $\mathbb{C}[z_0]$ such that $Q'(z_0) = -z_0 P'(z_0)$, then $\alpha(\phi) = \frac{1}{P'(z_0)}$.

$$\phi = (-z_1, z_0 + P(z_1), z_2 + z_0 z_1 + Q(z_1))$$

with *P*, *Q* in $\mathbb{C}[z_1]$ such that $Q'(z_1) = z_1 P'(z_1)$ then $\alpha(\phi) = P'(z_1)$.

Consider the left translation action of $Bir(\mathbb{P}^3)_{\omega}$ on $Bir(\mathbb{P}^3)_{c(\omega)}$ defined by

$$(\psi, \phi) \in \operatorname{Bir}(\mathbb{P}^3)_{\omega} imes \operatorname{Bir}(\mathbb{P}^3)_{\operatorname{c}(\omega)} \longrightarrow \psi \phi \in \operatorname{Bir}(\mathbb{P}^3)_{\operatorname{c}(\omega)}$$

Theorem 5.9. The map V is a complete invariant of the left translation action of $Bir(\mathbb{P}^3)_{\omega}$ on $Bir(\mathbb{P}^3)_{c(\omega)}$: for any ϕ , ψ in $Bir(\mathbb{P}^3)_{c(\omega)}$ one has $V(\phi) = V(\psi)$ if and only if $\psi \phi^{-1}$ belongs to $Bir(\mathbb{P}^3)_{\omega}$.

Proof. Let ϕ be a contact birational map of \mathbb{P}^3 . Obviously $(f\phi)^*\omega = V(\phi)\omega$ for any $f \in Bir(\mathbb{P}^3)_{\omega}$.

Let us now consider two contact birational maps ϕ and ψ of \mathbb{P}^3 such that $V = V(\phi) = V(\psi)$. On the one hand

$$(\phi^{-1})^* \Psi^* \omega = (\phi^{-1})^* V(\phi) \omega = V \circ \phi^{-1} (\phi^{-1})^* \omega$$

and on the other hand composing $\phi^* \omega = V \omega$ by $(\phi^{-1})^*$ one gets

$$\phi^*\omega = V\omega \Rightarrow (\phi^{-1})^*(\phi^*\omega) = (\phi^{-1})^*(V\omega) \Rightarrow \omega = V \circ \phi^{-1}(\phi^{-1})^*\omega$$

As a consequence $(\phi^{-1})^* \psi^* \omega = \omega$, that is $\psi \phi^{-1}$ belongs to Bir $(\mathbb{P}^3)_{\omega}$.

Proposition 5.10. If ϕ and ψ are two contact birational maps of \mathbb{P}^3 such that $\alpha(\phi) = \alpha(\psi)$ and $V(\phi) = V(\psi)$, then $\psi \phi^{-1}$ belongs to

$$\left\{ \left(\frac{z_0 - b'(z_1)}{\mathbf{v}'(z_1)}, \mathbf{v}(z_1), z_2 + b(z_1)\right) \mid b \in \mathbb{C}(z_1), \mathbf{v} \in \mathrm{PGL}(2;\mathbb{C}) \right\} = \mathscr{K} \cap \mathrm{Bir}(\mathbb{P}^3)_{\omega}$$

Proof. Since both $\alpha(\phi) = \alpha(\psi)$ and $V(\phi) = V(\psi)$ the map $\psi \phi^{-1}$ is an element of $Bir(\mathbb{P}^3)_{\omega} \cap \mathscr{K}$. One gets the result from the descriptions of the Klein family and of $Bir(\mathbb{P}^3)_{\omega}$ (Proposition 3.1).

Let us now give some examples of $V(\phi)$.

Examples 5.11. — If ϕ belongs to \mathcal{K} , then

$$V(\mathbf{\phi}) = \frac{\frac{\partial \phi_1}{\partial z_1} \frac{\partial \phi_2}{\partial z_2} - \frac{\partial \phi_1}{\partial z_2} \frac{\partial \phi_2}{\partial z_1}}{\frac{\partial \phi_1}{\partial z_1} - z_0 \frac{\partial \phi_1}{\partial z_2}}$$

— If

$$\phi = \left(\frac{1}{nz_0^{n-1}z_2 + (n+1)z_0^n(z_1+1)}, z_0^n(z_0+z_2+z_0z_1), -z_0\right)$$

with $n \in \mathbb{Z}$, then $V(\phi) = \frac{z_0}{(n+1)z_0z_1 + nz_2 + (n+1)z_0}$. — If $((z_1 - z_0)^2)$

$$\phi = \left(\frac{(z_1 - z_0)^2}{2z_0 z_1 + 2z_2 - z_0^2}, \frac{2z_2 + z_0^2}{z_1 - z_0}, z_1 - z_0\right),$$

then $V(\phi) = \frac{2(z_0 - z_1)}{z_0^2 - 2z_0 z_1 - 2z_2}.$

Remark 5.12. If ϕ belongs to Bir $(\mathbb{P}^3)_{c(\omega)}$, then $\phi^*\omega = V(\phi)\omega$ and $\phi^*(\omega \wedge d\omega) = V(\phi)^2\omega \wedge d\omega$ and detjac ϕ is a square. This gives some constraint on $V(\phi)$.

As previously we can ask: is *V* surjective ? The answer is no. Indeed let us assume that there exists $\phi \in \operatorname{Bir}(\mathbb{P}^3)_{c(\omega)}$ such that $V(\phi) = z_2$. Then $\phi_0 d\phi_0 + d\phi_2 = z_0 z_2 dz_1 + d\left(\frac{z_2^2}{2}\right)$ and $d\phi_0 \wedge d\phi_1 = d(z_0 z_2) \wedge dz_1$. Since the fibers of $(z_0 z_2, z_1)$ are connected one can write ϕ_0 as $\phi_0(z_0 z_2, z_1)$ and ϕ_1 as $\phi_1(z_0 z_2, z_1)$. Then $\phi^* \omega = V(\phi) \omega$ implies that $\phi_2 - \frac{z_2^2}{2} = \phi_2(z_0 z_2, z_1)$. In other words

$$\phi = \left(\phi_0(z_0z_2, z_1), \phi_1(z_0z_2, z_1), \phi_2(z_0z_2, z_1) + \frac{z_2^2}{2}\right).$$

But $\phi \circ \left(\frac{z_0}{z_2}, z_1, z_2\right)$ is clearly not birational so does ϕ : contradiction.

6. INVARIANT FORMS AND VECTOR FIELDS

The next statement deals with flows in $Bir(\mathbb{P}^3)_{\omega}$ (see [13] for a definition).

Proposition 6.1. Let ϕ_t be a flow in Bir(\mathbb{P}^3) $_{\omega}$. Then ϕ_t has a first integral depending only on (z_0, z_1) and with rational fibers.

In other words

$$\phi_t = (\phi_t(z_0, z_1), z_2 + b_t(z_0, z_1))$$

where φ_t belongs, up to conjugacy, to \mathcal{I} and b_t to $\mathbb{C}(z_0, z_1)$.

Proof. Let χ be the infinitesimal generator of ϕ_t , *i.e.*

$$\chi = \frac{\partial \phi_t}{\partial t}\Big|_{t=0}.$$

By derivating $\phi_t^* \omega = \omega$ with respect to t one gets that the Lie derivative $L_{\chi}\omega$ is zero. Set $\chi = \sum_{i=1}^{2} \chi_i \frac{\partial}{\partial z_i}$, hence

$$L_{\chi}\omega = \iota_{\chi}d\omega + d\iota_{\chi}\omega = \chi_0 dz_1 + z_0 d\chi_1 + d\chi_2$$

and so

$$L_{\chi}\omega = \left(z_0\frac{\partial\chi_1}{\partial z_0} + \frac{\partial\chi_2}{\partial z_0}\right)dz_0 + \left(\chi_0 + z_0\frac{\partial\chi_1}{\partial z_1} + \frac{\partial\chi_2}{\partial z_1}\right)dz_1 + \left(z_0\frac{\partial\chi_1}{\partial z_2} + \frac{\partial\chi_2}{\partial z_2}\right)dz_2.$$

In particular $z_0\chi_1 + \chi_2 = \gamma(z_0, z_1)$, then $\chi_0 + \frac{\partial}{\partial z_1}(z_0\chi_1 + \chi_2) = 0$ so $\chi_0 = -\frac{\partial \gamma}{\partial z_1}$ and finally $\chi_1 = \frac{\partial \gamma}{\partial z_0}$.

If γ is constant, then $\chi = \frac{\partial}{\partial z_2}$, that is $\phi_t = (z_0, z_1, z_2 + \beta t)$ with $\beta \in \mathbb{C}$. Let us now assume that γ is non-constant; one has

$$\chi = -\frac{\partial \gamma}{\partial z_1} \frac{\partial}{\partial z_0} + \frac{\partial \gamma}{\partial z_0} \frac{\partial}{\partial z_1} + \left(\gamma(z_0, z_1) - z_0 \frac{\partial \gamma}{\partial z_0}\right) \frac{\partial}{\partial z_2}$$

and γ is a first integral of χ . For all *t*

$$\phi_t = (\phi_{0,t}(z_0, z_1), \phi_{1,t}(z_0, z_1), z_2 + b_t(z_0, z_1))$$

and the function γ is invariant by ϕ_t and as a consequence by the flow ϕ_t . The fibers of γ in \mathbb{C}^2 (up to compactification/normalization) are rational or elliptic since they own a flow. As $\langle \phi_t \rangle$ is uncountable they have to be rational ([9]) and up to conjugacy φ_t belongs to \mathcal{I} . \square

The following examples contain many flows.

Example 6.2. The elements of $Aut(\mathbb{P}^3)_{c(\omega)}$ can be written

$$(\varepsilon z_0 + \lambda, \beta z_1 + \gamma, -\beta \lambda z_1 + \varepsilon \beta z_2 + \delta)$$

with ε , β in \mathbb{C}^* and λ , γ , δ in \mathbb{C} . The group Aut(\mathbb{P}^3)_{c(ω)} acts transitively on $\mathbb{C}^3 = \{z_3 = 1\}$.

a) For any ε , β , γ and δ in \mathbb{C} such that $\varepsilon\delta - \beta\gamma \neq 0$, the map Examples 6.3.

$$\left(\frac{(\gamma z_1 + \delta)^2}{\epsilon \delta - \beta \gamma} z_0, \frac{\epsilon z_1 + \beta}{\gamma z_1 + \delta}, z_2\right)$$

belongs to Bir(\mathbb{P}^3)_{ω}. These maps form a group contained in im \mathcal{K} and isomorphic to PGL(2; \mathbb{C}).

b) The birational maps given by

- $(z_0, z_1 + \varphi(z_0), z_2 + \psi(z_0))$ with $z_0 \varphi'(z_0) + \psi'(z_0) = 0$, $-(z_0 - \psi'(z_1), z_1, z_2 + \psi(z_1))$

belong to Bir(\mathbb{P}^3)_{ω}. Any of these families forms an abelian group.

The fact that an element of $Bir(\mathbb{P}^3)_{c(\omega)}$ preserves a vector field and the fact that it preserves a contact form are related:

Proposition 6.4. Let ϕ be a contact birational map of \mathbb{P}^3 . There exist a contact form Θ colinear to ω such that $\phi^* \Theta = \Theta$ if and only if $V(\phi)$ can be written $\frac{U}{U \circ \phi}$ for some rational function U. In that case ϕ preserves the Reeb flow associated to Θ , so a foliation by curves.

Proof. Assume that such a Θ exists. On the one hand $\phi^* \omega = V(\phi) \omega$ and on the other hand $\Theta = U \omega$. Hence

$$\phi^*\Theta = U \circ \phi \cdot \phi^*\omega = U \circ \phi \cdot V(\phi)\omega = \frac{U \circ \phi}{U} \cdot V(\phi)\Theta$$

and so if such U exists, one has $V(\phi) = \frac{U}{U_{O\phi}}$.

Reciprocally if $\phi \in \operatorname{Bir}(\mathbb{P}^3)_{\operatorname{c}(\omega)} \setminus \operatorname{Bir}(\mathbb{P}^3)_{\omega}$ satisfies $\phi^* \omega = \frac{U}{U \circ \phi} \omega$ for some rational function U, then $\phi^* \Theta = \Theta$ where $\Theta = U \omega$.

Examples 6.5. — First consider the Legendre involution $\mathcal{L} = (z_1, z_0, -z_2 - z_0 z_1)$. As we have seen $V(\mathcal{L}) = -1$. One can check that $U = z_2 + \frac{z_0 z_1}{2}$ suits.

— For an element ϕ in Aut $(\mathbb{P}^3)_{c(\omega)}$

$$\phi = (\varepsilon z_0 + \lambda, \beta z_1 + \gamma, -\beta \lambda z_1 + \varepsilon \beta z_2 + \delta)$$

with ε , β in \mathbb{C}^* and λ , γ , δ in \mathbb{C} (Example 6.2) we have $V(\phi) = \varepsilon \beta$. If

$$U = \frac{\epsilon \rho}{\epsilon \beta z_0 z_1 + \epsilon \gamma z_0 + \beta \lambda z_1 + \lambda \gamma}$$

then $V(\phi) = \frac{U}{U \circ \phi}$.

Proposition 6.6. Let ϕ be an element of $Bir(\mathbb{P}^3)_{c(\omega)} \setminus Bir(\mathbb{P}^3)_{\omega}$. Assume that ϕ preserves a vector field χ non-tangent to ω . Then ϕ preserves a contact form ω' colinear to ω .

Remark 6.7. Under these assumptions ϕ preserves the vector field χ and the Reeb vector field Z associated to ω' . With the previous notations if $f = z_0\chi_1 + \chi_2$ and $g = z_0Z_1 + Z_2$ one has $V(\phi) = \frac{f \circ \phi}{f} = \frac{g \circ \phi}{g}$. In particular if H = f/g is non-constant, then H is non-constant and invariant: $H \circ \phi = H$.

Proof of Proposition 6.6. Write χ as $\chi_0 \frac{\partial}{\partial z_0} + \chi_1 \frac{\partial}{\partial z_1} + \chi_2 \frac{\partial}{\partial z_2}$ and ϕ as (ϕ_0, ϕ_1, ϕ_2) . Then $\phi_* \chi = \chi$ if and only if $d\phi_i(\chi) = \chi_i \circ \phi$ for i = 0, 1 and 2. Therefore $\phi^* \omega(\chi) = V(\phi) \omega(\chi)$ can be rewritten

$$\phi_0 d\phi_1(\chi) + d\phi_2(\chi) = \phi_0 \chi_1 \circ \phi + \chi_2 \circ \phi = V(\phi)(z_0 \chi_1 + \chi_2).$$

The vector field χ is not tangent to ω , *i.e.* $\omega(\chi) \neq 0$ or in other words $z_0\chi_1 + \chi_2 \neq 0$ and so

$$V(\phi) = \frac{(z_0\chi_1 + \chi_2) \circ \phi}{z_0\chi_1 + \chi_2}$$

As a consequence ϕ preserves a contact form ω' colinear to ω (Proposition 6.4).

Remark 6.8. Let $\phi \in \text{Bir}(\mathbb{P}^3)_{c(\omega)} \setminus \text{Bir}(\mathbb{P}^3)_{\omega}$. Assume that there exists a vector field χ such that $\phi_*\chi = W\chi$. If *W* can be written $\frac{U \circ \phi}{U}$, then ϕ preserves the vector field $Y = U\chi$. According to Proposition 6.6 the map ϕ belongs to $\text{Bir}(\mathbb{P}^3)_{\omega'}$ where ω' denotes a contact form colinear to ω .

7. REGULAR BIRATIONAL MAPS

Let \mathbf{e}_i be the point of $\mathbb{P}^3_{\mathbb{C}}$ whose all components are zero except the *i*-th.

Let us denote by \mathcal{H}_{∞} the hyperplane $z_3 = 0$. As \mathcal{H}_{∞} is the unique invariant surface of $c(\omega)$ one has the following statement:

Proposition 7.1. The hyperplane \mathcal{H}_{∞} is either preserved, or blown down by any element of $Bir(\mathbb{P}^3)_{c(\omega)}$.

Example 7.2. Let φ be a birational map of the complex projective plane; $\mathcal{K}(\varphi)$ is polynomial if and only if $\varphi = (\beta z_1 + \gamma, \delta z_2 + P(z_1))$ with $P \in \mathbb{C}[z_1]$; remark that such a φ is a Jonquières polynomial automorphism. In that case

$$\mathcal{K}(\boldsymbol{\varphi}) = \left(\frac{1}{\beta}\left(\delta z_0 - \frac{\partial P(z_1)}{\partial z_1}\right), \beta z_1 + \gamma, \delta z_2 + P(z_1)\right).$$

Note that deg P = 1 if and only if $\mathcal{K}(\varphi)$ is an automorphism of \mathbb{P}^3 . If deg P > 1, then Ind $\mathcal{K}(\varphi) = \{z_1 = z_3 = 0\}$ and \mathcal{H}_{∞} is blown down onto \mathbf{e}_3 .

Proposition 7.1 naturally implies the following definition. We say that $\phi \in \operatorname{Bir}(\mathbb{P}^3)_{c(\omega)}$ is *regular at infinity* if \mathcal{H}_{∞} is preserved by ϕ and if $\phi_{|\mathcal{H}_{\infty}}$ is birational. We denote by $\operatorname{Bir}(\mathbb{P}^3)^{\operatorname{reg}}_{c(\omega)}$ (resp. $\operatorname{Bir}(\mathbb{P}^3)^{\operatorname{reg}}_{\omega}$) the set of regular maps at infinity that belong to $\operatorname{Bir}(\mathbb{P}^3)_{c(\omega)}$ (resp. $\operatorname{Bir}(\mathbb{P}^3)_{\omega}$).

Example 7.3. Of course the elements of Aut(\mathbb{P}^3)_{c(ω)} (Example 6.2) are regular at infinity.

The contact structure is also given in homogeneous coordinates by the 1-form

 $\overline{\omega} = z_0 z_3 dz_1 + z_3^2 dz_2 - (z_0 z_1 + z_2 z_3) dz_3.$

Let ϕ be an element of $\operatorname{Bir}(\mathbb{P}^3)^{\operatorname{reg}}_{c(\omega)}$; denote by $\overline{\phi}$ its homogeneization. Since $\phi^* \omega = V(\phi) \omega$ one has $\overline{\phi} \overline{\omega} = \overline{V(\phi)} \overline{\omega}$ where $\overline{V(\phi)}$ is a homogeneous polynomial. With these notations one can state:

Lemma 7.4. Let ϕ be a contact birational map of \mathbb{P}^3 . Assume that ϕ either preserves \mathcal{H}_{∞} , or blows down \mathcal{H}_{∞} onto a subset contained in \mathcal{H}_{∞} .

The map ϕ is regular if and only if $\overline{V(\phi)}$ does not vanish identically on \mathcal{H}_{∞} .

Proof. Let us work in the affine chart $z_2 = 1$. On the one hand

$$\overline{\omega} \wedge \mathrm{d}\overline{\omega} = -z_3^2 \mathrm{d}z_0 \wedge \mathrm{d}z_1 \wedge \mathrm{d}z_3$$

and on the other hand

$$\phi^*(\overline{\omega} \wedge d\overline{\omega}) = \overline{V(\phi)}^2 \overline{\omega} \wedge d\overline{\omega}.$$

Hence

$$\overline{\phi}_3^2 \det jac \overline{\phi} = \overline{V(\phi)}^2 z_3^2$$
(7.1)

where $\overline{\phi}_3$ is the third component of $\overline{\phi}$ expressed in the affine chart $z_2 = 1$.

Suppose that ϕ is regular. Let *p* be a generic point of \mathcal{H}_{∞} . As ϕ is regular, $\overline{\phi}_{|\mathcal{H}_{\infty}}$ is a local diffeomorphism at *p*. Since $\overline{\phi}$ is birational and *p* is generic, $\overline{\phi}_{,p}$ is a local diffeomorphism. As a consequence det jac $\overline{\phi}$ is an unit at *p*; moreover the invariance of \mathcal{H}_{∞} by $\overline{\phi}$ implies that $\overline{\phi}_3 = z_3 u$ where *u* is a unit. Therefore $\overline{V(\phi)}$ does not vanish at *p*.

Conversely assume that $\overline{V(\phi)}$ does not vanish identically on \mathcal{H}_{∞} . As ϕ either preserves \mathcal{H}_{∞} , or contracts \mathcal{H}_{∞} onto a subset in \mathcal{H}_{∞} , one can write $\overline{\phi}_3$ as z_3P . As a result

(7.1)
$$\Leftrightarrow P^2 \operatorname{detjac} \overline{\phi} = \overline{V(\phi)}^2$$

Since $\overline{V(\phi)}$ does not vanish the map ϕ is then regular at infinity.

Corollary 7.5. One has $Bir(\mathbb{P}^3)^{reg}_{\omega} = Aut(\mathbb{P}^3)_{\omega}$.

Proof. Let ϕ be an element of Bir $(\mathbb{P}^3)^{\text{reg}}_{\omega}$. From $\phi^* \omega = \omega$, one gets with the previous notations $\overline{\phi}^* \overline{\omega} = z_3^n \overline{\omega}$ for some integer *n*. Lemma 7.4 implies that n = 0, that is $\overline{\phi}^* \overline{\omega} = \overline{\omega}$; then looking at the degree of the members of this equality one gets deg $\phi = 1$.

Example 7.6. The group $\operatorname{Bir}(\mathbb{P}^3)^{\operatorname{reg}}_{c(\omega)}$ contains blow-ups in restriction to \mathcal{H}_{∞} . Indeed let us look at ω in the affine chart $z_2 = 1$ and consider the birational map ϕ given in $z_2 = 1$ by

$$\boldsymbol{\phi} = (z_0, z_0 z_1 - z_3, z_0 z_3)$$

Since $(\phi^n)^* \omega = z_0^{-n} \omega$, $\phi^n \in \operatorname{Bir}(\mathbb{P}^3)_{c(\omega)}^{\operatorname{reg}} \setminus \operatorname{Bir}(\mathbb{P}^3)_{\omega}$ for any $n \neq 0$; in restriction to \mathcal{H}_{∞} the map ϕ^n coincides with $(z_0, z_1 z_0^n)$.

Let us note that $\text{Ind}\phi^n = \{\mathbf{e}_1\} \cup (z_0 = z_2 = 0)$, that $z_0 = 0$ is contracted by ϕ onto $(z_0 = z_2 = 0)$ and $z_2 = 0$ onto $(z_0 = z_3 = 0)$. Besides $\text{Ind}\phi^{-n} = \{z_0 = z_2 = 0\} \cup \{z_0 = z_3 = 0\}$, $(z_0 = 0)$ is blown down by ϕ^{-1} onto \mathbf{e}_2 and $(z_2 = 0)$ onto \mathbf{e}_1 .

Remark 7.7. The group generated by Examples 7.3 and 7.6 is in restriction to \mathcal{H}_{∞} and in the affine chart $z_2 = 1$

$$\langle \left(\frac{\gamma z_0}{\beta z_1 + \lambda}, \frac{\lambda z_1}{\gamma(\beta z_1 + \lambda)}\right), (z_0, z_0 z_1) | \gamma, \beta \in \mathbb{C}^*, \lambda \in \mathbb{C} \rangle;$$

it is of course a subgroup of $Bir(\mathbb{P}^3)^{reg}_{c(\omega)}$.

Question 2. Does this group coincide with $\operatorname{Bir}(\mathbb{P}^3)^{\operatorname{reg}}_{c(\omega)}$?

- **Examples 7.8.** a) If ϕ is either a monomial map (*i.e.* a map of the form $(z_1^p z_2^q, z_1^r z_2^s)$ with $\begin{bmatrix} p & q \\ r & s \end{bmatrix}$ in GL(2; Z)), or a non-linear polynomial automorphism, or a Jonquières map, then $\mathcal{K}(\phi)$ is not regular at infinity.
 - b) The map of order 5 given by $\left(-\frac{z_2+1+z_0z_1}{z_0z_1^2}, z_2, \frac{z_2+1}{z_1}\right)$, the map $\left(\frac{z_0}{(z_2+1)^2}, z_1, \frac{z_2}{z_2+1}\right)$ and Examples 6.3 a) are non-regular at infinity.
 - c) Any map of the form

$$\left(\frac{1}{z_0} - f'(z_2), z_2, z_1 + f(z_2)\right)$$

is in $Bir(\mathbb{P}^3)_{c(\varpi)}\smallsetminus Bir(\mathbb{P}^3)_{\varpi}$ and is not regular at infinity.

d) Elements of the Legendre family are not regular at infinity.

8. EXACT BIRATIONAL MAPS

8.1. First properties. Recall that an element ϕ of $Bir(\mathbb{P}^2)_{\eta}$ is *exact* if it can be lifted via ζ to $Bir(\mathbb{P}^3)_{\omega}$, or equivalently if it belongs to im ζ . The following statement allows to determine such maps.

Theorem 8.1. A map $(\phi_0(z_0, z_1), \phi_1(z_0, z_1)) \in Bir(\mathbb{P}^2)_{\eta}$ is exact if and only if the closed form $\phi_0 d\phi_1 - z_0 dz_1$ has trivial residues. In that case $\phi_0 d\phi_1 - z_0 dz_1 = -db$ with $b \in \mathbb{C}(z_0, z_1)$ and

$$\mathbf{\phi} = (\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1))$$

belongs to Bir(\mathbb{P}^3) $_{\omega}$.

Proof. Remark that $\phi = (\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1))$ belongs to Bir(\mathbb{P}^3)_{ω} if and only if

$$\phi_0 \mathrm{d}\phi_1 - z_0 \mathrm{d}z_1 = -\mathrm{d}b;$$

in other words $\phi_0 d\phi_1 - z_0 dz_1$ is not only a closed rational 1-form but also an exact one. Recall that a closed rational 1-form Θ can be written ([14])

$$\Theta = \sum_{i} \lambda_i \frac{\mathrm{d}f_i}{f_i} + \mathrm{d}g$$

where the λ_i are complex numbers and the f_i 's and g are rational. The 1-form Θ is exact (*i.e.* the differential of a rational function) if $\lambda_i = 0$ for all i, that is if the residues of Θ are trivial.

Example 8.2. The set

$$\left\{ \left(A(z_0), \frac{z_1}{A'(z_0)} \right) | A \in \operatorname{PGL}(2; \mathbb{C}) \right\}$$

is a subgroup of exact maps isomorphic to $PGL(2; \mathbb{C})$; it is a direct consequence of Theorem 8.1.

An other direct consequence of Theorem 8.1 is the following statement:

Corollary 8.3. The maps $\phi = (\phi_0, \phi_1)$ of Bir $(\mathbb{P}^2)_{\eta}$ such that $\phi_0 d\phi_1 - z_0 dz_1$ has trivial residues form a group.

8.2. **Involutions.** Bertini gives a classification of birational involutions ([6]): a non-trivial birational involution is conjugate to either a Jonquières involution of degree ≥ 2 , or a Bertini involution, or a Geiser involution. More recently Bayle and Beauville precise it ([5]); the map which associates to a birational involution of \mathbb{P}^2 its normalized fixed curve establishes a one-to-one correspondence between:

- conjugacy classes of Jonquières involutions of degree d and isomorphism classes of hyperelliptic curves of genus d 2 ($d \ge 3$);
- conjugacy classes of Geiser involutions and isomorphism classes of non-hyperelliptic curves of genus 3;
- conjugacy classes of Bertini involutions and isomorphism classes of non-hyperelliptic curves of genus 4 whose canonical model lies on a singular quadric.

Besides the Jonquières involutions of degree 2 form one conjugacy class.

Proposition 8.4. Let $I \in Bir(\mathbb{P}^2)$ be a birational involution. If *I* is conjugate to either a Geiser involution, or a Bertini involution, or a Jonquières involution of degree ≥ 3 , then *I* does not belong to $Bir(\mathbb{P}^2)_{\eta}$.

Hence the only involutions in $Bir(\mathbb{P}^2)_{\eta}$ are birationally conjugate to $(-z_0, -z_1)$. Some of them can not be lifted.

Proof. Let us consider such an involution, then the set of fixed points contains a curve Γ of genus > 0 and thus it is not contained in the line at infinity. The jacobian determinant of *I* at a fixed point of Γ is -1 hence *I* does not preserve η .

Contrary to the polynomial case (Proposition 3.8) $\operatorname{Bir}(\mathbb{P}^2)_{\eta}$ contains periodic elements that are non-exact. Consider the map $(\phi_0(z_0, z_1), \phi_1(z_0, z_1))$ where

$$\phi_0(z_0, z_1) = -z_0 + \frac{1}{z_1^2 - 1}, \qquad \phi_1(z_0, z_1) = -z_1;$$

it is a birational involution that preserves η . Furthermore the 1-form $\phi_0 d\phi_1 - z_0 dz_1$ has non-trivial residues and so is not exact (Theorem 8.1).

8.3. Quadratic maps. Any birational map of \mathbb{P}^2 can be written as a composition of birational maps of degree ≤ 2 (*see* for instance [1]). The three following maps are birational and of degree 2

$$\sigma: \mathbb{P}^{2} \dashrightarrow \mathbb{P}^{2}$$

$$(z_{0}: z_{1}: z_{2}) \dashrightarrow (z_{1}z_{2}: z_{0}z_{2}: z_{0}z_{1})$$

$$\rho: \mathbb{P}^{2} \dashrightarrow \mathbb{P}^{2}$$

$$(z_{0}: z_{1}: z_{2}) \dashrightarrow (z_{0}z_{2}: z_{0}z_{1}: z_{2}^{2})$$

$$\tau: \mathbb{P}^{2} \dashrightarrow \mathbb{P}^{2}$$

$$(z_{0}: z_{1}: z_{2}) \dashrightarrow (z_{0}z_{2} + z_{1}^{2}: z_{1}z_{2}: z_{2}^{2})$$

Denote by $\operatorname{Bir}_2(\mathbb{P}^2)$ the set of birational maps of \mathbb{P}^2 of degree 2 exactly; for any $\phi \in \operatorname{Bir}(\mathbb{P}^2)$ set

$$\mathcal{O}(\mathbf{\phi}) = \left\{ \mathfrak{g} \mathbf{\phi} \mathfrak{h}^{-1} \, | \, \mathfrak{g}, \, \mathfrak{h} \in \operatorname{Aut}(\mathbb{P}^2) \right\}$$

one has ([13])

$$\operatorname{Bir}_2(\mathbb{P}^2) = \mathcal{O}(\sigma) \cup \mathcal{O}(\rho) \cup \mathcal{O}(\tau).$$

Let us now describe the quadratic birational maps that preserve η ; note that τ preserves η . Consider Υ the set of pairs $(\mathfrak{g}(\gamma), \mathfrak{g}(\beta))$ where

$$\mathfrak{g}(\beta) = \left(\frac{\beta_0 z_0 + \beta_1 z_1 + \beta_2}{\beta_6 z_0 + \beta_7 z_1 + \beta_8}, \frac{\beta_3 z_0 + \beta_4 z_1 + \beta_5}{\beta_6 z_0 + \beta_7 z_1 + \beta_8}\right)$$

in $\operatorname{Aut}(\mathbb{P}^2) \times \operatorname{Aut}(\mathbb{P}^2)$ such that

$$\gamma_6 = 0, \quad \gamma_7 \beta_3 = 0, \quad \gamma_7 \beta_4 = 0, \quad \det \mathfrak{g} \det \mathfrak{h} = (\gamma_7 \beta_5 + \gamma_8)^3.$$

Proposition 8.5. A quadratic birational map that preserves η belongs to $O(\tau)$.

More precisely a birational map belongs to $\operatorname{Bir}_2(\mathbb{P}^2) \cap \operatorname{Bir}(\mathbb{P}^2)_{\eta}$ if and only if it can be written $\mathfrak{g}(z_0 + z_1^2, z_1)\mathfrak{h}$ with $(\mathfrak{g}, \mathfrak{h})$ in Υ .

Proof. Let ψ be in Bir $(\mathbb{P}^2)_{\eta} \cap \mathring{B}ir_2(\mathbb{P}^2)$; it is sufficient to prove that $\psi \notin \mathcal{O}(\sigma) \cup \mathcal{O}(\rho)$.

Assume by contradiction that ψ belongs to $O(\sigma)$, *i.e.* $\psi = \mathfrak{g}\sigma\mathfrak{h}$ with $\mathfrak{g} = \mathfrak{g}(\gamma)$, $\mathfrak{h}^{-1} = \mathfrak{g}(\beta)$. One can rewrite $\psi^*\eta = \eta$ as $\sigma^*\mathfrak{g}^*\eta = \mathfrak{h}^*\eta$; this last one relation is equivalent in the affine chart $z_3 = 1$ to

$$\frac{(\det\mathfrak{g})z_0z_1}{\left(\gamma_6z_1+\gamma_7z_0+\gamma_8z_0z_1\right)^3}\eta = \frac{\det\mathfrak{h}}{\left(\beta_6z_0+\beta_7z_1+\beta_8\right)^3}\eta \tag{8.1}$$

the coefficients γ_6 and γ_7 have thus to be zero and (8.1) is equivalent to

$$\frac{\det\mathfrak{g}}{\gamma_8^3z_0^2z_1^2}\eta=\frac{\det\mathfrak{h}}{\left(\beta_6z_0+\beta_7z_1+\beta_8\right)^3}\eta$$

and this equality never holds.

A similar argument allows to exclude the case: $\psi \in O(\rho)$. This proves the first assertion.

Let us consider $\psi = \mathfrak{gth}$ in $\operatorname{Bir}_2(\mathbb{P}^2) \cap \operatorname{Bir}(\mathbb{P}^2)_{\eta}$ with $\mathfrak{g} = \mathfrak{g}(\gamma)$ and $\mathfrak{h} = \mathfrak{g}(\beta)$. The 1-form η has a line of poles of order 3 at infinity so does $\psi^*\eta$ and so does $(z_0 + z_1^2, z_1)^*\mathfrak{g}^*\eta$. But

$$(z_0+z_1^2,z_1)^*\mathfrak{g}^*\mathfrak{\eta}=\frac{\det\mathfrak{g}}{\left(\gamma_6(z_0+z_1^2)+\gamma_7z_1+\gamma_8\right)^3}\mathfrak{\eta}$$

therefore γ_6 has to be 0. This implies that

$$\psi^*\eta = \frac{\det\mathfrak{g}\det\mathfrak{h}}{\left(\gamma_7(\beta_3z_0 + \beta_4z_1 + \beta_5) + \gamma_8\right)^3}\eta$$

as a consequence $\psi^*\eta=\eta$ if and only if

$$\gamma_6 = 0, \quad \gamma_7 \beta_3 = 0, \quad \gamma_7 \beta_4 = 0, \quad \det \mathfrak{g} \det \mathfrak{h} = (\gamma_7 \beta_5 + \gamma_8)^3.$$

Theorem 8.6. A generic element of $\operatorname{Bir}_2(\mathbb{P}^2) \cap \operatorname{Bir}(\mathbb{P}^2)_{\eta}$ is not exact.

In fact there exists a non-empty Zariski open subset Υ of Υ such that no element of

$$\left\{\mathfrak{g}(\gamma) \tau \mathfrak{g}(\beta) \,|\, (\mathfrak{g}(\gamma), \mathfrak{g}(\beta)) \in \Upsilon\right\}$$

is exact.

Proof. It is sufficient to exhibit a non-exact element. Let us recall that the birational map $\phi = (\phi_0, \phi_1)$ belongs to $\mathring{Bir}_2(\mathbb{P}^2) \cap Bir(\mathbb{P}^2)_{\eta}$ if and only if it can be written as $\mathfrak{g}(\gamma) \tau \mathfrak{g}(\beta)$ with $(\mathfrak{g}(\gamma), \mathfrak{g}(\beta))$ in Υ (Proposition 8.5).

If we consider the special case $\gamma_i = \beta_i = 0$ for any $i \in \{1, 2, 3, 4, 6, 8\}$, $\gamma_5 = \gamma_7$ and $\gamma_0 = \frac{\gamma_7 \beta_5^2}{\beta_0 \beta_7}$ then

$$z_0 \mathrm{d} z_1 - \phi_0 \mathrm{d} \phi_1 = -\frac{\beta_5^2 \mathrm{d} z_1}{\beta_0 \beta_7 z_1}$$

But det $\mathfrak{g}(\beta) \neq 0$ so $\beta_5 \neq 0$ and ϕ can not be lifted to $Bir(\mathbb{P}^3)_{\omega}$.

The set Υ is rational hence irreducible, this yields the result.

8.4. Examples of exact maps.

Proposition 8.7. Let φ be an automorphism of \mathbb{P}^2 ; the map φ is exact if and only if φ is affine in the affine chart $z_2 = 1$ and preserves η , that is

$$\boldsymbol{\varphi} = (\delta_0 z_0 + \beta_0 z_1 + \gamma_0, \delta_1 z_0 + \beta_1 z_1 + \gamma_1)$$

with δ_i , β_i , γ_i in \mathbb{C} such that $\delta_0\beta_1 - \delta_1\beta_0 = 1$.

Proof. The form η has a pole at infinity so if $\phi \in Aut(\mathbb{P}^2)$ preserves η , it preserves the pole. Hence ϕ belongs to Aff₂, so in particular to $Aut(\mathbb{C}^2)_{\eta}$ and then ϕ is exact.

We will now consider the subgroup of $Bir(\mathbb{P}^2)_{\eta}$ that preserves the fibration $z_0z_1 = \text{cst}$ fiberwise. The following statement says that this subgroup is not isomorphic to the subgroup of $Bir(\mathbb{P}^2)_{\eta}$ that preserves $z_1 = \text{cst}$ fiberwise.

Proposition 8.8. The set

$$\Lambda = \left\{ \left(z_0 a(z_0 z_1), \frac{z_1}{a(z_0 z_1)} \right) | a \in \mathbb{C}(t) \right\}$$

is a subgroup isomorphic to the uncountable abelian subgroup $\{(a(z_1)z_0,z_1) | a \in \mathbb{C}(z_1)^*\}$ and is contained in Bir $(\mathbb{P}^2)_{\eta}$.

Any birational map of the form $\left(z_0 a(z_0, z_1), \frac{z_1}{a(z_0, z_1)}\right)$ that preserves η belongs to Λ .

A generic element of Λ is in Bir $(\mathbb{P}^2)_{\eta}$ but not in im ς . More precisely $\left(z_0 a(z_0 z_1), \frac{z_1}{a(z_0 z_1)}\right) \in \Lambda$ is exact if and only if *a* is a monomial.

If *a* is a monomial, i.e. $a(z_0z_1) = cz_0^{\mu}z_1^{\mu}$ with $c \in \mathbb{C}^*$ and $\mu \in \mathbb{Z}$, then the ς -lifted maps are

$$\left(z_0 c z_0^{\mu} z_1^{\mu}, \frac{z_1}{c z_0^{\mu} z_1^{\mu}}, z_2 - \mu z_0 z_1 + \beta\right), \qquad \beta \in \mathbb{C}$$

These maps form a subgroup of Bir(\mathbb{P}^3)_{ω} isomorphic to $\mathbb{C} \times \mathbb{C}^* \times \mathbb{Z}$.

Proof. The first assertion follows from

$$\left(z_0 a(z_0 z_1), \frac{z_1}{a(z_0 z_1)}\right) = (z_0, z_0 z_1)^{-1} (z_0 a(z_1), z_1) (z_0, z_0 z_1)$$

A direct computation shows that $\Lambda \subset Bir(\mathbb{P}^2)_{\eta}$.

A birational map $\left(z_0 a(z_0, z_1), \frac{z_1}{a(z_0, z_1)}\right)$ preserves η if and only if

$$\left(z_0 \frac{\partial}{\partial z_0} - z_1 \frac{\partial}{\partial z_1}\right)(a) = 0$$

that is, if and only if $a = a(z_0 z_1)$.

Let us consider $\phi = (\phi_0, \phi_1) = \left(z_0 a(z_0 z_1), \frac{z_1}{a(z_0 z_1)}\right)$ an element of Λ ; then

$$\phi_0 \mathrm{d}\phi_1 - z_0 \mathrm{d}z_1 = t \frac{a'(t)}{a(t)} \mathrm{d}t$$

with $t = z_0 z_1$. Let us write *a* as follows:

$$a(t) = \prod_{i=1}^{n} (t - t_i)^{\mu_i}$$

then

$$t\frac{a'(t)}{a(t)}\mathrm{d}t = t\sum_{i=1}^{n}\frac{\mu_i}{t-t_i}\mathrm{d}t$$

and the residues of this 1-form are trivial if and only if *a* is monomial, *i.e.* $a(t) = ct^{\mu}$ where $c \in \mathbb{C}^*$ and $\mu \in \mathbb{Z}$.

We can determine $\mathcal{J} \cap Bir(\mathbb{P}^2)_{\eta}$ and the exact maps in $\mathcal{J} \cap Bir(\mathbb{P}^2)_{\eta}$.

Proposition 8.9. A Jonquières map of \mathbb{P}^2 preserves η if and only if it can be written as follows

$$\left(\frac{(\gamma z_1 + \delta)^2}{\epsilon \delta - \beta \gamma} z_0 + r(z_1), \frac{\epsilon z_1 + \beta}{\gamma z_1 + \delta}\right)$$

where *r* belongs to $\mathbb{C}(z_1)$ and $\begin{bmatrix} \varepsilon & \beta \\ \gamma & \delta \end{bmatrix}$ to PGL(2; \mathbb{C}).

Furthermore it is exact if it has the following form

$$\left(\frac{(\gamma z_1 + \delta)^2}{\varepsilon \delta - \beta \gamma} z_0 + P(z_1)(\gamma z_1 + \delta)^2, \frac{\varepsilon z_1 + \beta}{\gamma z_1 + \delta}\right)$$

where *P* denotes an element of $\mathbb{C}[z_1]$.

Let us now look at monomial maps that belong to $Bir(\mathbb{P}^2)_\eta$ and those who are exact.

Proposition 8.10. A monomial map belongs to $Bir(\mathbb{P}^2)_{\eta}$ if and only if it can be written either

$$\left(\gamma z_0^p z_1^{p-1}, \frac{1}{\gamma} z_0^{1-p} z_1^{2-p}\right) \tag{8.2}$$

or

$$\left(\gamma z_0^p z_1^{p+1}, -\frac{1}{\gamma} z_0^{1-p} z_1^{-p}\right) \tag{8.3}$$

with
$$\gamma$$
 in \mathbb{C}^* and p in \mathbb{Z} .

Furthermore any monomial map of $Bir(\mathbb{P}^2)_{\eta}$ is exact.

The ς -lifts of a map of type (8.2) are

$$\left(\gamma z_0^p z_1^{p-1}, \frac{1}{\gamma} z_0^{1-p} z_1^{2-p}, z_2 + (p-1)z_0 z_1 + \beta\right) \qquad \beta \in \mathbb{C}$$

similarly the ς -lifts of a map of type (8.3) are

$$\left(\gamma z_0^p z_1^{p+1}, -\frac{1}{\gamma} z_0^{1-p} z_1^{-p}, z_2 + (1-p) z_0 z_1 + \beta'\right) \qquad \beta' \in \mathbb{C}$$

Remarks 8.11. — Both maps of type (8.2) and of type (8.3) preserve $(z_0z_1)^2 = \text{cst.}$

— Maps of type (8.2) form a group G₁. Note that the matrices $\begin{bmatrix} p & p-1 \\ 1-p & 2-p \end{bmatrix}$ are in SL(2; Z); they are stochastic up to transposition and have trace equal to 2. The group

$$\left\{ \left[\begin{array}{cc} p & p-1 \\ 1-p & 2-p \end{array} \right] \middle| p \in \mathbb{Z} \right\}$$

is isomophic to \mathbb{Z} . As a consequence G_1 is isomorphic to $\mathbb{C}^* \times \mathbb{Z}$.

The maps of type (8.3) don't form a group. The corresponding matrices $\begin{bmatrix} p & p+1 \\ 1-p & -p \end{bmatrix}$ have determinant -1, trace 0 and are stochastic up to transposition.

But the union of the maps of type (8.2) or (8.3) is a group which is a double extension of $\mathbb{C}^* \times \mathbb{Z}$.

9. INDETERMINACY AND EXCEPTIONAL SETS

As we have seen if ϕ is a contact map, then \mathcal{H}_{∞} is either preserved by ϕ , or blown down by ϕ (Proposition 7.1). In case it is blown down, \mathcal{H}_{∞} can be blown down onto a point or onto a curve; in this last eventuality \mathcal{H}_{∞} can be contracted onto a curve contained in \mathcal{H}_{∞} (take for instance $\phi = \mathcal{K}(z_1, z_1 z_2)$). Note also that \mathcal{H}_{∞} can be contracted onto a curve not contained in \mathcal{H}_{∞} : the map $\mathcal{K}\left(\frac{z_1}{z_2}, \frac{1}{z_2}\right)$ blows down \mathcal{H}_{∞} onto the legendrian curve $z_0 = z_2 = 0$. We will see that this is a general case and for any contracted surface:

Proposition 9.1. Let ϕ be a contact birational map of \mathbb{P}^3 . Assume that ϕ blows down a surface S onto a curve C. Then

— either C is contained in \mathcal{H}_{∞} ,

— or *C* is an algebraic legendrian curve.

Corollary 9.2. Let ϕ be a contact birational map of \mathbb{P}^3 . If *C* is a curve not contained in \mathcal{H}_{∞} and blown-up by ϕ on a surface distinct from \mathcal{H}_{∞} , then *C* is a legendrian curve.

Let us now give an example of maps of finite order that illustrates Proposition 9.6.

Example 9.3. Start with the birational map $\varphi = \left(z_2, \frac{z_2+1}{z_1}\right)$ of order 5. The map $\mathcal{K}(\varphi) = \left(-\frac{z_2+1+z_0z_1}{z_0z_1^2}, z_2, \frac{z_2+1}{z_1}\right)$ blows down $z_2 = -z_3$ onto the legendrian curve $(z_2 = z_1 + z_3 = 0)$;

Proof of Proposition 9.1. We will distinguish the cases $S = \mathcal{H}_{\infty}$ and $S \neq \mathcal{H}_{\infty}$.

Let us start with the eventuality $S = \mathcal{H}_{\infty}$. Suppose that C is not contained in \mathcal{H}_{∞} . Note that $\phi_{|\mathcal{H}_{\infty} \setminus \text{Ind}\phi}$ is holomorphic of rank ≤ 1 . If p belongs to $C \setminus \text{Ind}\phi$, then $\phi^{-1}(p)$ is a curve contained in \mathcal{H}_{∞} ; there exists a curve C' transverse to

$$\left\{ \phi^{-1}(p) \, | \, p \in \mathcal{C} \smallsetminus \operatorname{Ind} \phi \right\}$$

contained in \mathcal{H}_{∞} and such that $\phi(\mathcal{C}') = \mathcal{C}$. Consider a parametrization *s* of \mathcal{C}' ; then $t = \phi \circ s$ is a parametrization of \mathcal{C} and

$$t^*\omega = (\phi \circ s)^*\omega = s^*\phi^*\omega = s^*V(\phi)\omega = V(\phi) \circ s \cdot s^*\omega = 0$$

Assume now that $S \neq \mathcal{H}_{\infty}$ and $C \not\subset \mathcal{H}_{\infty}$. Set $\mathcal{C} = \phi(S)$. Let us consider a generic point p of S. The germ $\phi_{,p}$ is holomorphic and $\phi(p) \in C$ does not belong to \mathcal{H}_{∞} . In particular the 3-form $\phi^* \omega \wedge d\omega$ is thus holomorphic at p; in fact $V(\phi)_{,p}$ is holomorphic and as we have seen

$$\phi^* \omega \wedge \mathrm{d}\omega = V(\phi)^2 \omega \wedge \mathrm{d}\omega.$$

Since S is blown down by ϕ , the jacobian determinant of ϕ is identically zero on S and then $V(\phi)$ vanishes on S.

Assume that C is not a legendrian curve, then the restriction of ω to C in a neighborhood of $\phi(p)$ defines a 1-form Θ on C without zero (let us recall that p is generic). As the restriction

$$\phi_{p|_{\mathcal{S},p}} \colon \mathcal{S}_{p} \to \mathcal{C}_{\phi(p)}$$

is locally a submersion, $\phi_{,p|_{S,p}}^* \Theta$ is a nonzero 1-form on $S_{,p}$: contradiction with the fact that $\phi_{,p}^* \omega$ vanishes on $S_{,p}$.

There is no statement if $\phi \in Bir(\mathbb{P}^3)_{c(\omega)}$ blows down \mathcal{H}_{∞} onto a point. Indeed

$$\mathcal{K}\left(\frac{z_1}{z_2^2}, \frac{z_1}{z_2^3}\right) = \left(\frac{z_2 + 3z_0z_1}{z_2(z_2 - 2z_0z_1)}, \frac{z_1}{z_2^2}, \frac{z_1}{z_2^3}\right)$$

contracts \mathcal{H}_{∞} onto $\mathbf{e}_3 \notin \mathcal{H}_{\infty}$ but $\mathcal{K}(z_1 z_2, z_1 z_2^2)$ contracts \mathcal{H}_{∞} onto $\mathbf{e}_2 \in \mathcal{H}_{\infty}$. But we get some result when $\phi \in \operatorname{Bir}(\mathbb{P}^3)_{c(\omega)}$ blows down a surface distinct from \mathcal{H}_{∞} onto a point.

Definition. Let ϕ be a contact birational map of \mathbb{P}^3 . Let S = (f = 0) be an irreducible surface blown down by ϕ , and let *p* be a smooth point of *S* such that ϕ and $V(\phi)$ are holomorphic at *p*. The multiplicity of contraction of ϕ at *p* is the greatest integer *n* such that $f_{,p}^n$ divides $V(\phi)$. One can check that *n* is independent on *p*. The integer *n* is the *multiplicity of contraction of* ϕ *on S*.

Remark 9.4. Let ϕ be a contact birational map of \mathbb{P}^3 . If ϕ is holomorphic at $p \in \mathbb{P}^3 \setminus \mathcal{H}_{\infty}$, then $V(\phi)$ is too.

Example 9.5. Let us consider the birational map ϕ defined in the affine chart $z_1 = 1$ by

$$\phi = \left(\frac{z_0 z_3^2}{(z_2 + z_3)^2}, \frac{z_2 z_3}{(z_2 + z_3)}, z_3\right);$$

in this chart $\omega = dz_2 - \frac{z_0 + z_2 z_3}{z_3^2} dz_3$ and one can check that $V(\phi) = \frac{z_3^2}{z_2 + z_3^2}$. Furthermore \mathcal{H}_{∞} is blown down by ϕ onto the point (0,0,0); the multiplicity of contraction of ϕ on \mathcal{H}_{∞} is thus 2.

Proposition 9.6. Let ϕ be a map of Bir $(\mathbb{P}^3)_{c(\omega)}$ and let S be an irreducible surface distinct from \mathcal{H}_{∞} blown down by ϕ onto a point p. If the multiplicity of contraction of ϕ on S is 1, then p belongs to \mathcal{H}_{∞} .

Remark 9.7. As soon as the multiplicity of contraction of ϕ on S is > 1, the point p can be in $\mathbb{P}^3 \setminus \mathcal{H}_{\infty}$. Let us consider the map of $\text{Bir}(\mathbb{P}^3)_{c(\omega)}$ given in the affine chart $z_3 = 1$ by

$$\left(\frac{z_2(nz_0z_1-z_2)}{z_2+(1-n)z_0z_1}, z_1z_2^{n-1}, z_1z_2^n\right)$$

with $n \in \mathbb{Z}$. The surface $z_2 = 0$ is blown down onto $\mathbf{e}_3 \notin \mathcal{H}_{\infty}$. One can check that $V(\phi) = \frac{z_1 z_2^n}{z_2 + (1-n)z_0 z_1}$ so the multiplicity of contraction of ϕ on $z_2 = 0$ is n if $n \ge 2$ and 0 otherwise.

Proof of Proposition 9.6. Assume by contradiction that $p = (p_0, p_1, p_2)$ does not belong to \mathcal{H}_{∞} . Let (f = 0) be an equation of \mathcal{S} ; as the multiplicity of contraction of ϕ on \mathcal{S} is 1 one has $V(\phi) = fV_1$ with $V_{1|\mathcal{S}}$ generically

regular. There exists a point $m \in S$ such that $f_{,m}$ is a submersion and ϕ is holomorphic at m. One has $\phi_{,m} = (p_0 + fA, p_1 + fB, p_2 + fC)$ with A, B, C holomorphic and $\phi_{,m}^* \omega = V(\phi)\omega$ can be rewritten

$$(fA + p_0)(fdB + Bdf) + (fdC + Cdf) = fV_1(z_0dz_1 + dz_2)$$
(9.1)

This implies that there exists C_1 holomorphic such that $p_0B + C = fC_1$, *i.e.* $C = fC_1 - p_0B$. Hence

$$(9.1) \Longleftrightarrow fAdB + ABdf + fdC_1 + 2C_1df = V_1(z_0dz_1 + dz_2)$$

$$(9.2)$$

The multiplicity of contraction of ϕ on S is 1 hence f does not divide V_1 . Then S is invariant by ω and this gives a contradiction with the fact that \mathcal{H}_{∞} is the only invariant surface of ω .

For elements in $Bir(\mathbb{P}^3)_{\omega}$ we only have one statement that includes both cases of a surface contracted onto a point and onto a curve. Let us remark that in the case of a point, we don't need the assumption about the multiplicity of contraction; in the other one the statement shows that Proposition 9.1 applies to elements of $Bir(\mathbb{P}^3)_{c(\omega)} \setminus Bir(\mathbb{P}^3)_{\omega}$.

Proposition 9.8. Let ϕ be a map of Bir $(\mathbb{P}^3)_{\omega}$. If S is a surface distinct from \mathcal{H}_{∞} contracted by ϕ , then $\phi(S)$ belongs to \mathcal{H}_{∞} .

Proof. From $\phi^* \omega = \omega$ one gets $\phi^* (\omega \wedge d\omega) = \omega \wedge d\omega = dz_0 \wedge dz_1 \wedge dz_2$. Suppose that for $p \in S$ generic $\phi(p)$ does not belong to \mathcal{H}_{ω} . As codim Ind $\phi \geq 2$, the map ϕ is holomorphic at p. Since ϕ preserves the volume form, ϕ is a diffeomorphism; hence ϕ cannot blow down a subvariety onto a curve or a point not contained in \mathcal{H}_{∞} .

Example 9.9. If
$$\phi = (\phi_1, \phi_2) = (z_1^p z_2^q, z_1^r z_2^s)$$
, with $\begin{bmatrix} p & q \\ r & s \end{bmatrix} \in SL(2; \mathbb{Z})$, then
 $\mathcal{K}(\phi) = \left(z_1^{r-p} z_2^{s-q} \frac{-rz_2 + sz_0z_1}{pz_2 - qz_0z_1}, z_1^p z_2^q, z_1^r z_2^s\right).$

Note that for any $\begin{bmatrix} p & q \\ r & s \end{bmatrix} \in SL(2;\mathbb{Z})$ the map $\mathcal{K}(\phi)$ belongs to $Bir(\mathbb{P}^3)_{c(\omega)} \setminus Bir(\mathbb{P}^3)_{\omega}$.

For instance if $\begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$, *i.e.* if $\boldsymbol{\sigma} = \left(\frac{1}{z_0}, \frac{1}{z_1}\right)$ is the Cremona involution, then $\mathcal{K}(\boldsymbol{\sigma}) = \mathcal{K}(\boldsymbol{\sigma}^{-1}) = \left(\frac{z_0 z_1^2}{z_1}, \frac{1}{z_1}, \frac{1}{z_1}\right)$

$$\mathcal{K}(\mathbf{\sigma}) = \mathcal{K}(\mathbf{\sigma}^{-1}) = \left(\frac{z_0 z_1}{z_2^2}, \frac{1}{z_1}, \frac{1}{z_2}\right)$$

and Ind $\mathcal{K}(\sigma) = \{z_0 = z_2 = 0\} \cup \{z_0 = z_3 = 0\} \cup \{z_1 = z_2 = 0\} \cup \{z_1 = z_3 = 0\}$; furthermore $z_2 = 0$ and \mathcal{H}_{∞} are blown down onto \mathbf{e}_1 and $z_1 = 0$ onto \mathbf{e}_2 .

Part 3. Some common properties

10. INVARIANT CURVES AND SURFACES

The following statement is a local statement of contact analytic geometry.

Proposition 10.1. Let ϕ be an element of $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$ or $\operatorname{Bir}(\mathbb{P}^3)_{\omega}$. Suppose that *m* is a periodic point of ϕ and that there exists a germ of irreducible curve *C* invariant by ϕ , passing through *m*. Then

— either C is a curve of periodic points (i.e. $\phi_{|C}^{\ell} = id$ for some integer ℓ),

- or C is a legendrian curve.

Let us note that according to Proposition 11.4 we know that such a situation often occurs.

Proof. Assume that ϕ belongs to Aut(\mathbb{C}^3)_{ω}. Up to considering a well-chosen iterate of ϕ let us assume that *m* is a fixed point of ϕ . Let $s \mapsto \gamma(s)$ be a local parametrization of *C* at *m*. Up to reparametrization one can suppose that $\gamma(0) = m$. Let ϕ be the "restriction" to *C* of ϕ , that is the local map $\phi \colon \mathbb{C}_{,0} \to \mathbb{C}$ defined by $\phi(0) = 0$ and

$$\forall s \in \mathbb{C}_{,0} \quad \phi(\gamma(s)) = \gamma(\phi(s)).$$

On the one hand $\gamma^* \omega = \varepsilon(s) ds$ and on the other hand $\gamma^* \omega = \gamma^* \phi^* \omega = (\phi \circ \gamma)^* \omega$ so

$$\varepsilon(s)ds = \varphi^*(\varepsilon(s)ds) = \varepsilon(\varphi)\varphi'ds.$$

Let us set $\tilde{\epsilon}(s) = \int_0^s \epsilon(t) dt$. One has $(\tilde{\epsilon}(\phi))' = \epsilon(\phi)\phi' = \epsilon(s) = (\tilde{\epsilon}(s))'$ hence $\tilde{\epsilon}(\phi) = \tilde{\epsilon} + \beta$ for some $\beta \in \mathbb{C}$. As $\phi(0) = 0$, one gets $\beta = 0$ and $\tilde{\epsilon}(\phi) = \tilde{\epsilon}$. Then:

— either $\tilde{\varepsilon} = 0$ therefore $\varepsilon = 0$ and C is a legendrian curve.

— or there exists some local coordinate for which $\tilde{\varepsilon} = z^{\ell}$, $\varphi = e^{2i\pi k/\ell} z$ and $\phi_{\ell}^{\ell} = id$.

If φ is a polynomial automorphism of \mathbb{C}^2 that preserves a curve distinct from the line at infinity, then φ is conjugate to a Jonquières polynomial automorphism ([8]); in particular φ preserves a rational fibration. We have a similar statement in dimension 3:

Proposition 10.2. If $\phi \in Aut(\mathbb{C}^3)_{\omega}$ preserves a surface, then

$$\phi = (\phi(z_0, z_1), z_2 + b(z_0, z_1))$$

where φ is Aut(\mathbb{C}^2)-conjugate to a Jonquières polynomial automorphism.

Proof. Let us write ϕ as $(\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1))$ and set $\phi = (\phi_0, \phi_1)$.

First note that if $b \equiv 0$ then $\phi_0 d\phi_1 - z_0 dz_1 = 0$; as a result $\phi_1 = \phi_1(z_1)$ and ϕ is a Jonquières polynomial automorphism.

Let us now assume that the surface S preserved by ϕ is described by

$$a_{\ell}(z_0, z_1)z_2^{\ell} + a_{\ell-1}(z_0, z_1)z_2^{\ell-1} + a_{\ell-2}(z_0, z_1)z_2^{\ell-2} + \ldots = 0$$

where $a_i \in \mathbb{C}[z_0, z_1]$, or equivalently by

$$z_2^{\ell} + \widetilde{a}_{\ell-1}(z_0, z_1) z_2^{\ell-1} + \widetilde{a}_{\ell-2}(z_0, z_1) z_2^{\ell-2} + \ldots = 0$$

where $\tilde{a}_i = a_i/a_\ell$. Writing that S is invariant by ϕ one gets that

$$(z_2 + b(z_0, z_1))^{\ell} + \widetilde{a}_{\ell-1} (\varphi(z_0, z_1)) (z_2 + b(z_0, z_1))^{\ell-1} + \widetilde{a}_{\ell-2} (\varphi(z_0, z_1)) (z_2 + b(z_0, z_1))^{\ell-2} + \dots$$

= $z_2^{\ell} + \widetilde{a}_{\ell-1} (z_0, z_1) z_2^{\ell-1} + \widetilde{a}_{\ell-2} (z_0, z_1) z_2^{\ell-2} + \dots$

Looking at terms in $z_2^{\ell-1}$ one gets that $\ell b(z_0, z_1) = \widetilde{a}_{\ell-1}(z_0, z_1) - \widetilde{a}_{\ell-1}(\varphi(z_0, z_1))$.

- If $\tilde{a}_{\ell-1}$ is constant, then $b \equiv 0$ and as we just see φ is a Jonquières polynomial automorphism.
- Otherwise ϕ is conjugate (in Bir(\mathbb{P}^3)) via $\left(z_0, z_1, z_2 + \frac{\widetilde{a}_{\ell-1}}{\ell}\right)$ to $\psi = (\phi, z_2)$. The map ψ preserves $\widetilde{\omega} = z_0 dz_1 + d\left(z_2 + \frac{\widetilde{a}_{\ell-1}}{\ell}\right)$, the surface \widetilde{S} given by

$$z_2^{\ell} + \widetilde{a}_{\ell-2}(z_0, z_1) z_2^{\ell-2} + \widetilde{a}_{\ell-3}(z_0, z_1) z_2^{\ell-3} + \ldots = 0$$

and thus $\tilde{a}_i(\varphi) = \tilde{a}_i$. If one of the \tilde{a}_i is non-constant, then φ is a Jonquières polynomial automorphism. Otherwise $\tilde{S} = \bigcup_j (z_2 = c_j)$; up to take an iterate ψ^k of ψ one can suppose that any $z_2 = c_j$ is invariant. Consider $z_2 = c_0$; up to a well-chosen translation (that belongs to $\text{Bir}(\mathbb{P}^3)_{\omega}$) the hypersurface $z_2 = 0$ is invariant, that is ψ^k is a Jonquières map and so does ψ . **Example 10.3.** For any $n \ge 1$ consider $\phi = \left(z_0 + z_1^n, z_1, z_2 - \frac{z_1^{n+1}}{n+1}\right)$ in Aut $(\mathbb{C}^3)_{\omega}$. The map $\phi = (z_0 + z_1^n, z_1)$ is a Jonquières polynomial automorphism. The surface S given by $z_2 + \frac{z_0 z_1}{n+1} = 0$, is invariant by ϕ . The foliation induced by ω on S is described by the linear differential equation $nz_0dz_1 - z_1dz_0$. In fact the functions $z_2 + \frac{z_0 z_1}{n+1}$ and z_1 are invariant by ϕ and the commutative Lie algebra generated by the vector fields $\frac{\partial}{\partial z_0} + \frac{z_1}{n+1} \frac{\partial}{\partial z_2}$ are invariant by ϕ .

In general an element of $\text{Aut}(\mathbb{C}^3)_\omega$ has no invariant surface. For instance there is no polynomial solution to

$$-a(\varphi(z_0,z_1)) + a(z_0,z_1) = -\frac{z_1^{n+1}}{n+1} + \beta$$

with $\varphi = (z_0 + z_1^n, z_1)$ as soon as $\beta \neq 0$.

Remark 10.4. If $\phi \in Bir(\mathbb{P}^3)_{\omega}$ preserves $z_2 = 0$, then ϕ belongs to the Klein family; more precisely $\phi = \left(\frac{z_0}{v'(z_1)}, v(z_1), z_2\right)$ with $v \in PGL(2; \mathbb{C}(z_1))$. Indeed since ϕ belongs to $Bir(\mathbb{P}^3)_{\omega}$,

$$\mathbf{\phi} = \big(\phi_0(z_0, z_1), \phi_1(z_0, z_1), z_2 + b(z_0, z_1)\big).$$

But ϕ preserves $z_2 = 0$ so $b \equiv 0$ and $\phi^* \omega = \omega$ implies that $\phi_1 = v(z_1)$ with $v \in PGL(2; \mathbb{C}(z_1))$ and $\phi_0 = \frac{z_0}{v'(z_1)}$.

Of course there are more general contact maps that preserve $z_2 = 0$; let us give some examples:

$$\mathcal{K}\left(z_1, \frac{z_2}{a(z_1)z_2+1}\right), \qquad \mathcal{K}\left(z_1+P(z_2), z_2\right)$$

where $a \in \mathbb{C}(z_1)^*$ and $P \in \mathbb{C}[z_1]$.

Let ϕ be an element of Bir(\mathbb{P}^3)_{ω}. Suppose that ϕ preserves a surface S distinct from \mathcal{H}_{∞} . The contact form is non-zero on S so induces a foliation \mathcal{F} on S, necessarily invariant by ϕ ; let us describe $(S, \phi_{1S}, \mathcal{F})$:

Proposition 10.5. Let ϕ be an element of $\text{Bir}(\mathbb{P}^3)_{\omega}$ that preserves a surface distinct from \mathcal{H}_{∞} . Then ϕ is $\text{Bir}(\mathbb{P}^3)$ -conjugate to $(\phi(z_0, z_1), z_2)$ with ϕ in $\text{Bir}(\mathbb{P}^2)$. The map ϕ preserves a codimension 1 foliation given by a closed 1-form. As a consequence ϕ preserves a "vertical" foliation and a rational function $z_2 + a(z_0, z_1)$.

Proof. Let us denote by S the surface invariant by $\phi = (\phi(z_0, z_1), z_2 + b(z_0, z_1))$ with $\phi \in Bir(\mathbb{P}^2)$. One can assume that S is given by

$$z_2^{\ell} + a_{\ell-1}(z_0, z_1) z_2^{\ell-1} + \ldots = 0$$

The fact that S is invariant by ϕ implies that $a_{\ell-1}(z_0, z_1) - a_{\ell-1}(\phi(z_0, z_1)) = \ell b(z_0, z_1)$. Let us consider the map $\Psi = \left(z_0, z_1, z_2 + \frac{a_{\ell-1}(z_0, z_1)}{\ell}\right)$. One has

$$\widetilde{\phi} = \psi \phi \psi^{-1} = \left(\phi(z_0, z_1), z_2 + b(z_0, z_1) - \frac{a_{\ell-1}(z_0, z_1)}{\ell} + \frac{a_{\ell-1}(\phi(z_0, z_1))}{\ell} \right) = \left(\phi(z_0, z_1), z_2 \right)$$

As S and ω are invariant by ϕ , the restriction $\phi_{|S}$ preserves the foliation induced by ω on S, and ϕ preserves the "vertical" foliation given by $z_0 dz_1 - da_{\ell-1}(z_0, z_1)$. Therefore ϕ preserves a codimension 1 foliation given by a closed 1-form.

Example 10.6. If $\phi = (z_2, z_1 z_2^n)$, then $\mathcal{K}(\phi) = \left(-\frac{z_2^n}{z_0} + nz_1, z_1 z_2^n, z_2\right)$ belongs to $\operatorname{Bir}(\mathbb{P}^3)_{\mathbf{c}(\omega)} \setminus \operatorname{Bir}(\mathbb{P}^3)_{\omega}$ preserves the surface $z_1 = 0$ and also $z_2 = \operatorname{cst.}$

11. DYNAMICAL PROPERTIES

11.1. **Periodic points.** Let ϕ be a birational map of \mathbb{P}^n ; a point p is a *periodic point* of ϕ of period ℓ if ϕ is holomorphic on a neighborhood of any point of $\{\phi^j(q) | j = 0, ..., \ell - 1\}$ and if $\phi^\ell(q) = q$ and $\phi^j(q) \neq q$ for $1 \leq j \leq \ell - 1$.

Recall that a polynomial automorphism of \mathbb{C}^2 of Hénon type (*see* [18]) has an infinite number of hyperbolic periodic points. For any of these points p of period ℓ_p there exists a stable manifold $W^s(p)$ defined as the set of points that move towards the orbit of p by positive iteration of φ^{ℓ_p} ; such a $W^s(p)$ is an immersion from \mathbb{C} to \mathbb{C}^2 . Remark that even if $W^s(m) \neq W^s(p)$ are different as soon as p and m have distinct orbits one has $\overline{W^s(m)} = \overline{W^s(p)}$. The Julia set of φ is the topological boundary of the set of points with bounded positive orbits. One can prove that the Julia set of φ is equal to the closure of any of the stable manifold. Hence its topology is very complicated: this set contains an infinite number of immersions of \mathbb{C} and pairwise distinct ([18]).

Example 11.1. Let us consider a polynomial automorphism φ of Hénon type given by $\varphi = (\beta z_1 + z_0^2, -\gamma z_0)$. A ζ -lift of φ to Aut $(\mathbb{C}^3)_{c(\omega)}$ is

$$\boldsymbol{\phi} = \left(\beta z_1 + z_0^2, -\gamma z_0, \gamma \beta z_2 + \gamma \beta z_0 z_1 + \frac{\gamma}{3} z_0^3\right)$$

Take a periodic point (p_0, p_1) of φ of period k; then as $\phi^k = (\varphi^k(z_0, z_1), (\gamma\beta)^k z_2 + f(z_0, z_1))$ one gets, as soon as $\gamma\beta$ is not a root of unity, that there exists p_2 such that $\phi^k(p_0, p_1, p_2) = (p_0, p_1, p_2)$.

More generally, one can state:

Proposition 11.2. Let ϕ the element of Bir $(\mathbb{P}^3)_{c(\omega)}$ of the following type

$$\phi = (\phi, \det jac\phi z_2 + b(z_0, z_1))$$

with φ in Bir(\mathbb{P}^2) and b in $\mathbb{C}(z_0, z_1)$.

If det jac φ is not a root of unity, then any periodic point of φ can be lifted into a periodic point of φ .

Corollary 11.3. Let φ be a polynomial automorphism of \mathbb{C}^2 of Hénon type. A ζ -lift of φ has an infinite number of periodic points that lift the hyperbolic periodic points of φ .

Question 3. Let φ be a Hénon automorphism and let ϕ be a ς -lift of φ . The closure of the hyperbolic periodic points of φ is the Julia set of φ ; in particular it is a Cantor set. Is the closure of the set of periodic points of ϕ a Cantor set ?

Let us consider a Hénon automorphism $\varphi = (\varphi_1, \varphi_2)$ and let *m* be an hyperbolic periodic point of φ ; then the matrix

$$\begin{bmatrix} -\frac{\partial \varphi_2}{\partial z_1} & \frac{\partial \varphi_2}{\partial z_2} \\ \frac{\partial \varphi_1}{\partial z_1} & -\frac{\partial \varphi_1}{\partial z_2} \end{bmatrix}$$

is a non-parabolic one and so $z_0 \mapsto \frac{-\frac{\partial \varphi_2}{\partial z_1} + \frac{\partial \varphi_2}{\partial z_2} z_0}{\frac{\partial \varphi_1}{\partial z_1} - \frac{\partial \varphi_1}{\partial z_2} z_0}$ has two fixed points. We can thus state the following:

Proposition 11.4. Let φ be an automorphism of \mathbb{C}^2 of Hénon type; to any periodic point of period ℓ of φ corresponds two periodic points of period ℓ of $\mathcal{K}(\varphi) \in Bir(\mathbb{P}^3)_{c(\omega)}$.

A similar question as Question 3 is the following:

Question 4. Let φ be a polynomial automorphism of \mathbb{C}^2 of Hénon type; what is the topology of the distribution of periodic points of $\mathcal{K}(\varphi)$? Is it a discrete set? Is its closure a Cantor set?

Remark 11.5. Let us consider an element $(\phi_0(z_0,z_1),\phi_1(z_0,z_1),z_2+b(z_0,z_1))$ of Bir $(\mathbb{P}^3)_{\omega}$. Then $\phi_t = (\phi_0(z_0,z_1),\phi_1(z_0,z_1),z_2+b(z_0,z_1)+t)$ belongs to Bir $(\mathbb{P}^3)_{\omega}$. If $p = (p_0,p_1,p_2)$ is a fixed point of ϕ_t , then (p_0,p_1) is a fixed point of $\phi = (\phi_0,\phi_1)$ and $b(p_0,p_1)+t = 0$. In particular if ϕ only has isolated fixed points (that is ϕ has no curve of fixed points, which is the case in general), then ϕ_t has no fixed points for t generic.

Similarly, if φ has a countable number of periodic points, then for t generic ϕ_t has no periodic points.

11.2. **Degree and degree growths.** In the 2-dimensional case, that is if φ belongs to Aut(\mathbb{C}^2), or Bir(\mathbb{P}^2), then deg $\varphi = \deg \varphi^{-1}$. This equality is not true in higher dimension; for instance if

$$\mathbf{\phi} = \left(z_0^2 + z_2^2 + z_1, z_2^2 + z_0, z_2\right),$$

then $\phi^{-1} = (z_1 - z_2^2, z_0 - (z_1 - z_2^2)^2 - z_2^2, z_2))$. What happens in our context ? The equality $\deg \varphi = \deg \varphi^{-1}$ still does not hold; indeed if $(\phi_0, \phi_1, z_2 + b(z_0, z_1))$ belongs to $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$, then $-db = \phi_0 d\phi_1 - z_0 dz_1$ and $\deg b = \deg \phi_0 + \deg \phi_1$. For instance if $\varphi = (z_0 + (z_1^3 - z_0)^2, z_1^3 - z_0)$, then

$$\varphi^{-1} = ((z_0 - z_1^2)^3 - z_1, z_0 - z_1^2).$$

Hence the degree of the ζ -lifts of φ (resp. φ^{-1}) is 9 (resp. 8).

Let ϕ and ψ be two birational self-maps of \mathbb{P}^3 . We will say that *the degree growths of* ϕ *and* ψ *are of the same order* if one of the following holds

- $(\deg \phi^n)_n$ and $(\deg \psi^n)_n$ are bounded,
- there exist an integer k such that $\lim_{n \to +\infty} \frac{\deg \phi^n}{n^k}$ and $\lim_{n \to +\infty} \frac{\deg \psi^n}{n^k}$ are finite and nonzero,
- $(\deg \phi^n)_n$ and $(\deg \psi^n)_n$ grow exponentially.

Let φ be a polynomial automorphism of \mathbb{C}^2 ; let us recall that φ has either a bounded growth or an exponential one ([18]). Denote by φ a ζ -lift of φ to Aut $(\mathbb{C}^3)_{c(\omega)}$

$$\phi = (\phi, \det jac \phi z_2 + b(z_0, z_1))$$

Note that *b* belongs to $\mathbb{C}[z_0, z_1]$ and so deg $b(\varphi^j(z_0, z_1)) \leq \deg b \deg \varphi^j$ for any *j*. Hence

$$\deg \varphi^n \leq \deg \varphi^n \leq \max(\deg \varphi^n, \deg b \deg \varphi^{n-1})$$

and

— if $(\deg \varphi^n)_n$ is bounded, then $(\deg \varphi^n)_n$ is bounded,

— if $(\deg \phi^n)_n$ grows exponentially, then $(\deg \phi^n)_n$ grows exponentially.

Remark that if ψ is a polynomial automorphism of \mathbb{C}^3 linear growth is also possible ([7]) and this eventuality does not appear when we look at elements of Aut $(\mathbb{C}^3)_{c(\omega)}$.

In the case of the ς -lift of an exact element of $\operatorname{Bir}(\mathbb{P}^2)_{\eta}$ we cannot give formula because we are not dealing with polynomials. But the degree growth of a ς -lift ϕ of an exact element ϕ of $\operatorname{Bir}(\mathbb{P}^2)_{\eta}$ and the degree growth of ϕ are the same. Indeed set $\phi^n = (\phi_{0,n}, \phi_{1,n})$ for any $n \ge 1$. On the one hand

$$\phi^n = (\phi_{0,n}, \phi_{1,n}, z_2 + b(z_0, z_1) + b(\phi_{0,1}, \phi_{1,1}) + b(\phi_{0,2}, \phi_{1,2}) + \dots + b(\phi_{0,n-1}, \phi_{1,n-1}))$$

with $db = z_0 dz_1 - \varphi_0 d\varphi_1$, but on the other hand $\phi^n = (\varphi_{0,n}, \varphi_{1,n}, z_2 + \tilde{b}(z_0, z_1))$ with $d\tilde{b} = z_0 dz_1 - \varphi_{0,n} d\varphi_{1,n}$. Using this last writing one gets the statement.

Let ϕ be a birational self-map of \mathbb{P}^2 . For any $n \ge 1$ set $\phi^n = (\phi_{1,n}, \phi_{2,n}) = \left(\frac{P_{1,n}}{Q_{1,n}}, \frac{P_{2,n}}{Q_{2,n}}\right)$ with $P_{i,n}, Q_{i,n} \in \mathbb{C}[z_0, z_1]$ without common factor; denote by $p_{i,q}$ (resp. $q_{i,n}$) the degree of $P_{i,n}$ (resp. $Q_{i,n}$). Of course

 $\deg \phi^n = \max(p_{1,n} + q_{2,n}, p_{2,n} + q_{1,n}, q_{1,n} + q_{2,n})$ and since

$$\mathcal{K}(\phi)^{n} = \mathcal{K}(\phi^{n}) = \left(\frac{Q_{2,n}^{2}}{Q_{1,n}^{2}} \frac{P_{2,n} \frac{\partial Q_{2,n}}{\partial z_{1}} - Q_{2,n} \frac{\partial P_{2,n}}{\partial z_{1}} + \left(Q_{2,n} \frac{\partial P_{2,n}}{\partial z_{2}} - P_{2,n} \frac{\partial Q_{2,n}}{\partial z_{2}}\right) z_{0}}{Q_{1,n} \frac{\partial P_{1,n}}{\partial z_{1}} - P_{1,n} \frac{\partial Q_{1,n}}{\partial z_{1}} - \left(Q_{1,n} \frac{\partial P_{1,n}}{\partial z_{2}} - P_{1,n} \frac{\partial Q_{1,n}}{\partial z_{2}}\right) z_{0}}, \frac{P_{1,n}}{Q_{1,n}}, \frac{P_{2,n}}{Q_{2,n}}\right)$$

one gets $\deg \phi^n \leq \deg \mathcal{K}(\phi)^n \leq \max(4q_{2,n} + p_{2,n} + 1, 2p_{1,n} + 2q_{1,n} + q_{2,n} + 1, p_{2,n} + 3q_{1,n} + p_{1,n} + 1).$

Proposition 11.6. — Assume that $G = Aut(\mathbb{C}^2)$ or $G = Bir(\mathbb{P}^2)_{\eta}$. Let φ be an element of G, and let ϕ be a ς -lift of φ . The degree growths of φ and ϕ are of the same order.

— Let φ be a birational self-map of the complex projective plane, and let us consider $\mathcal{K}(\varphi)$ the image of φ by \mathcal{K} . The degree growths of φ and $\mathcal{K}(\varphi)$ are of the same order.

11.3. Centralisers. If G is a group and f an element of G, we denote by Cent(f,G) the centraliser of f in G, that is

$$\operatorname{Cent}(f, \mathbf{G}) = \left\{ g \in \mathbf{G} \, | \, fg = gf \right\}$$

Let φ be a polynomial automorphism of \mathbb{C}^2 , then ([18, 25])

- either φ is conjugate to an element of J₂ and Cent(φ , Aut(\mathbb{C}^2)) is uncountable;
- or φ is of Hénon type and the centraliser of φ is isomorphic to $\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$ for some *p*.

Let \mathcal{H} be the set of polynomial automorphisms of \mathbb{C}^2 of Hénon type.

Proposition 11.7. Let φ be a polynomial automorphism of \mathbb{C}^2 and let ϕ be one of its ς -lift.

- If det jac $\varphi = 1$, then Cent $(\phi, Aut(\mathbb{C}^3)_{\omega})$ is uncountable and isomorphic to Cent $(\phi) \rtimes \mathbb{C}$.
- If detjac $\phi \neq 1$ and ϕ belongs to \mathcal{H} , then $Cent(\phi, Aut(\mathbb{C}^3)_{c(\omega)})$ is countable and isomorphic to $Cent(\phi)$.

Proof. One can look at the restriction of ς to Cent(ϕ , Aut(\mathbb{C}^3)_{c(ω)}):

$$\mathsf{S}_{|\operatorname{Cent}(\phi,\operatorname{Aut}(\mathbb{C}^3)_{\mathsf{c}(\omega)})} \colon \operatorname{Cent}(\phi,\operatorname{Aut}(\mathbb{C}^3)_{\mathsf{c}(\omega)}) \to \operatorname{Cent}(\phi,\operatorname{Aut}(\mathbb{C}^2))$$

Of course

$$\ker \varsigma_{|\operatorname{Cent}(\phi,\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)})} \subset \{(z_0,z_1,z_2+\beta) \mid \beta \in \mathbb{C}\}.$$

If det jac $\varphi = 1$, *i.e.* φ belongs to Aut $(\mathbb{C}^2)_{\eta}$, then

$$\ker \varsigma_{|\operatorname{Cent}(\phi,\operatorname{Aut}(\mathbb{C}^3)_c(\omega))} = \left\{ (z_0, z_1, z_2 + \beta) \, | \, \beta \in \mathbb{C} \right\}$$

and the centraliser of a ς -lift of φ is always uncountable even if Cent(φ , Aut(\mathbb{C}^2)) is countable.

If det jac $\varphi \neq 1$, *i.e.* φ belongs to Aut(\mathbb{C}^2) \setminus Aut(\mathbb{C}^2) $_{\eta}$, then ker $\zeta_{|Cent(\phi,Aut(\mathbb{C}^3)_{c(\omega)})} = \{id\}$ and

$$\operatorname{Cent}(\phi, \operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}) \hookrightarrow \operatorname{Cent}(\phi, \operatorname{Aut}(\mathbb{C}^2))$$

In particular if φ belongs to $(\operatorname{Aut}(\mathbb{C}^2) \setminus \operatorname{Aut}(\mathbb{C}^2)_{\eta}) \cap \mathcal{H}$, then $\operatorname{Cent}(\phi, \operatorname{Aut}(\mathbb{C}^3)_{c(\omega)})$ is countable.

Remark 11.8. Contrary to the 2-dimensional case there exist some φ in Aut $(\mathbb{C}^3)_{\omega}$ such that

- Cent(ϕ , Aut(\mathbb{C}^3) $_{\omega}$) is uncountable,
- and $(\deg \phi^n)_{n \in \mathbb{N}}$ grows exponentially.
- A similar reasoning leads to:

Proposition 11.9. Let $\phi \in Bir(\mathbb{P}^2)_{\eta}$ be an exact map, and let ϕ be one of its ς -lifts. Then $Cent(\phi, Bir(\mathbb{P}^3)_{\omega})$ is uncountable.

Let $G = Aut(\mathbb{C}^2)$ or $G = Bir(\mathbb{P}^2)_{\eta}$. Let φ be an element of G, and let φ be one of its ς -lift. In the following examples we look at the links between the ς -lift of $Cent(\varphi, G)$ and $Cent(\varphi, G')$ where $G' = Aut(\mathbb{C}^3)_{c(\omega)}$ or $Bir(\mathbb{P}^3)_{c(\omega)}$.

Example 11.10. In this example we give a polynomial automorphism φ and maps in Cent $(\varphi, Aut(\mathbb{C}^2))$ whose only one ς -lift belongs to Aut $(\phi, Aut(\mathbb{C}^3)_{c(\omega)})$ where ϕ denotes a ς -lift of φ .

Let us now consider the Hénon automorphism φ given by

$$\boldsymbol{\varphi} = (\delta z_1, \beta z_1^k - \gamma z_0)$$

where δ , β , γ are complex numbers such that $\delta\beta \neq 0$, $\delta\beta \neq 1$ and $k \geq 4$. The map

$$\phi = \left(\delta z_1, \beta z_1^k - \gamma z_0, \delta \gamma z_2 + \delta \gamma z_0 z_1 - \frac{\delta \beta}{k+1} z_1^{k+1}\right)$$

is a ζ -lift of φ . One can check that $(\zeta z_0, \zeta z_1)$, where $\zeta \in \mathbb{C}^*$ such that $\zeta^k = \zeta$, commutes with φ . Among the ζ -lifts $(\zeta z_0, \zeta z_1, \zeta^2 z_2 + \beta)$, $\beta \in \mathbb{C}$, only one commutes with φ .

Example 11.11. We consider a polynomial automorphism ϕ , a subgroup G of $Cent(\phi, Aut(\mathbb{C}^2))$ and G_{ς} its ς -lift. In the first example the inclusion $G_{\varsigma} \subset Cent(\phi, Aut(\mathbb{C}^3)_{c(\omega)})$ holds whereas in the second example it doesn't.

Let us consider the polynomial automorphism $\varphi = (\beta^d z_0 + \beta^d z_1^d Q(z_1^r), \beta z_1)$ with $\beta \in \mathbb{C}^*$, $Q \in \mathbb{C}[z_1]$ and $d, r \in \mathbb{N}$. One can check that

$$\mathbf{G} = \left\{ (z_0 + \gamma z_1^d, z_1) \, | \, \gamma \in \mathbb{C} \right\} \subset \operatorname{Cent}(\boldsymbol{\varphi}, \operatorname{Aut}(\mathbb{C}^2))$$

The map $\phi = (\beta^d z_0 + \beta^d z_1^d Q(z_1^r), \beta z_1, \beta^{d+1} z_2 - \beta P(z_1))$ with $P'(z_1) = z_1^q Q(z_1^r)$ is a ζ -lift of ϕ . Let G_{ζ} be the ζ -lift of G; the group

$$\mathbf{G}_{\varsigma} = \left\{ \left(z_0 + \gamma z_1^d, z_1, z_2 - \frac{\gamma z_1^{d+1}}{d+1} \right) | \gamma \in \mathbb{C} \right\}$$

is here contained in Cent(ϕ , Aut(\mathbb{C}^3)_{c(ω)}).

Let φ be the polynomial automorphism given by $\varphi = (z_0 + z_1^2, \lambda z_1)$ with $\lambda \in \mathbb{C}^*$ and $\lambda^2 \neq 1$. A ζ -lift of φ to Aut $(\mathbb{C}^3)_{c(\omega)}$ is

$$\phi = \left(z_0 + z_1^2, \lambda z_1, \lambda z_2 - \frac{z_1^3}{3} + \mu\right)$$

for some $\mu \in \mathbb{C}$. Note that

$$\mathbf{G} = \left\{ \left(\delta z_0 + \frac{\gamma^2 - \delta}{\lambda^2 - 1} z_1 + \varepsilon, \gamma z_1 \right) | \, \delta, \gamma \in \mathbb{C}^*, \varepsilon \in \mathbb{C} \right\}$$

is contained in Cent(ϕ , Aut(\mathbb{C}^2)). Let us denote by G_c the c-lift of G; a direct computation shows that

$$G_{\varsigma} = \left\{ \left(\delta z_0 + \frac{\gamma^2 - \delta}{\lambda^2 - 1} z_1 + \epsilon, \gamma z_1, \delta \gamma z_2 - \frac{\gamma(\gamma^2 - \delta)}{3(\lambda^2 - 1)} z_1^3 - \gamma \epsilon z_1 + \beta \right) | \, \delta, \gamma \in \mathbb{C}^*, \, \beta, \epsilon \in \mathbb{C} \right\}$$

The inclusion $G_{\varsigma}\cap Cent(\phi,Aut(\mathbb{C}^3)_{c(\varpi)})\subsetneq G_{\varsigma}$ is strict; indeed

$$G_{\varsigma} \cap \operatorname{Cent}(\phi, \operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}) = \left\{ \left(\gamma^2 z_0 + \varepsilon, \gamma z_1, \gamma^3 z_2 - \gamma \varepsilon z_1 + \frac{\gamma^3 - 1}{\lambda - 1} \delta \right) | \gamma \in \mathbb{C}^*, \varepsilon \in \mathbb{C} \right\}.$$

12. NON-SIMPLICITY, TITS ALTERNATIVE

12.1. **Non-simplicity.** Let us recall that a *simple group* is a non-trivial group G whose only normal subgroups are {id} and G.

Danilov proved that $Aut(\mathbb{C}^2)_{\eta}$ is not simple ([15]). More recently Cantat and Lamy showed that $Bir(\mathbb{P}^2)$ is not simple ([11]). As a consequence one has:

Proposition 12.1. The groups

 $\operatorname{Aut}(\mathbb{C}^3)_{\omega}, \quad \operatorname{Bir}(\mathbb{P}^3)_{\omega}, \quad \operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}, \quad [\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}, \operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}], \quad [\operatorname{Aut}(\mathbb{C}^3)_{\omega}, \operatorname{Aut}(\mathbb{C}^3)_{\omega}]$

are not simple.

Proof. Since $[Aut(\mathbb{C}^3)_{c(\omega)}, Aut(\mathbb{C}^3)_{c(\omega)}] \simeq Aut(\mathbb{C}^2)_{\eta}$ and $[Aut(\mathbb{C}^3)_{\omega}, Aut(\mathbb{C}^3)_{\omega}] \simeq Aut(\mathbb{C}^2)_{\eta}$ the first assertion follows from [15].

The exact sequence (3.1) implies in particular that there exists a morphism with a non-trivial kernel from $Aut(\mathbb{C}^3)_{\omega}$ into $Aut(\mathbb{C}^2)_{\eta}$, hence $Aut(\mathbb{C}^3)_{\omega}$ is not simple. A similar argument holds for $Bir(\mathbb{P}^3)_{\omega}$ and $Aut(\mathbb{C}^3)_{c(\omega)}$.

The morphism

$$\operatorname{Bir}(\mathbb{P}^3)^{\operatorname{reg}}_{\omega} \longrightarrow \operatorname{Bir}(\mathbb{P}^2)$$

that consists to take the restriction of $\phi \in Bir(\mathbb{P}^3)^{reg}_{\omega}$ to \mathcal{H}_{∞} has a non-trivial kernel; indeed

$$\phi = \left(z_0 - \left(\frac{P(z_1)}{Q(z_1)}\right)', z_1, z_2 + \frac{P(z_1)}{Q(z_1)}\right)$$

with *P*, *Q* two polynomials of degree *p*, *q* such that p < q+1, is regular and induces the identity on \mathcal{H}_{∞} . In particular one gets the following statement:

Proposition 12.2. The group $Bir(\mathbb{P}^3)^{reg}_{\omega}$ is not simple.

Let us consider the maps $\psi = \left(\gamma z_0^2 z_1, \frac{1}{\gamma z_0}, z_2 + z_0 z_1\right)$ and $\phi = \left(z_0 + \frac{1}{z_1^3}, z_1, z_2 + \frac{1}{2z_1^2}\right)$. One can check that ψ belongs to $Bir(\mathbb{P}^3)_{\omega} \setminus Bir(\mathbb{P}^3)_{\omega}^{reg}$ whereas ϕ is in $Bir(\mathbb{P}^3)_{\omega}^{reg}$. A direct computation shows that $\psi^{-1}\phi\psi$ blows down \mathcal{H}_{∞} onto \mathbf{e}_3 . Hence one can state:

Proposition 12.3. The subgroup $\operatorname{Bir}(\mathbb{P}^3)^{\operatorname{reg}}_{\omega}$ of $\operatorname{Bir}(\mathbb{P}^3)_{\omega}$ is not normal.

12.2. The Tits alternative. The derived series of a group G is defined as follows

$$D_0(G) = G, \quad D_1(G) = [G,G], \quad \dots, \quad D_{n+1}(G) = [G,D_n(G)]$$

The group G is *solvable* if there exists an integer k such that $D_k(G) = \{id\}$. The least ℓ such that $D_\ell = \{id\}$ is called the *derived length* of G.

A group G satisfies the *Tits alternative* if any finitely generated subgroup of G contains either a nonabelian free group, or a solvable subgroup of finite index. This alternative has been established by Tits for linear groups $GL(n; \mathbb{k})$ for any field \mathbb{k} ([27]). Lamy proves that the group of polynomial automorphisms of $Aut(\mathbb{C}^2)$ satisfies the Tits alternative ([25]), so does Cantat for the group of birational maps of a complex, compact, kähler surface (*see* [10]). Note that the automorphisms groups of complex, compact, kähler manifolds of any dimension also satisfies Tits alternative ([10, 26]).

Theorem 12.4. The groups $\operatorname{Aut}(\mathbb{C}^3)_{\omega}$, $\operatorname{Aut}(\mathbb{C}^3)_{c(\omega)}$ and $\operatorname{Bir}(\mathbb{P}^3)_{\omega}$ satisfy the Tits alternative.

Proof. Let G be a finitely generated subgroup of $Bir(\mathbb{P}^3)_{\omega}$. Set

$$G_0 = \varsigma(G) \subset \operatorname{Bir}(\mathbb{P}^2)_{\eta}$$

Since $Bir(\mathbb{P}^2)_{\eta}$ is a subgroup of $Bir(\mathbb{P}^2)$ that satisfies the Tits alternative, either G_0 contains a non-abelian free group, or a solvable subgroup of finite index.

Assume first that G_0 contains two elements f and h such that $\langle f, h \rangle \simeq \mathbb{Z} * \mathbb{Z}$. Let us denote by F, resp. H a lift of f, resp. h in Bir(\mathbb{P}^3). Suppose that there exists a non-trivial word M such that $M(F,H) = \{id\}$. As ς is a morphism, one gets that $M(f,h) = \{id\}$: contradiction.

Suppose now that up to finite index G_0 is solvable, and let ℓ be its derived length; in particular $D_{\ell}(G_0) = \{id\}$ and $D_{\ell}(G)$ belongs to ker ς . Since

$$\ker \varsigma = \{(z_0, z_1, z_2 + \beta) \,|\, \beta \in \mathbb{C}\}$$

one gets $D_{\ell+1}(\mathbf{G}) = {\mathrm{id}}.$

13. NON-CONJUGATE ISOMORPHIC GROUPS

Let us denote by υ_1 the trivial embedding from $(Aut(\mathbb{C}^2)_{n}|0)$ into $Aut(\mathbb{C}^3)$

$$\mathfrak{v}_1 \colon (\operatorname{Aut}(\mathbb{C}^2)_{\eta}|0) \hookrightarrow \operatorname{Aut}(\mathbb{C}^3), \qquad (\phi_0, \phi_1) \mapsto (\phi_0, \phi_1)$$

and by v_2 the trivial embedding from $Bir(\mathbb{P}^2)$ into $Bir(\mathbb{P}^3)$

 $\upsilon_2 \colon \operatorname{Bir}(\mathbb{P}^2) \hookrightarrow \operatorname{Bir}(\mathbb{P}^3), \qquad (\phi_1, \phi_2) \mapsto (z_0, \phi_1, \phi_2).$

 $, z_2)$

Despite im v_1 (resp. im v_2) is isomorphic to im ζ (resp. im \mathcal{K}) one has the following statement:

Proposition 13.1. The image of v_1 (resp. v_2) is not $Aut(\mathbb{C}^3)$ -conjugate (resp. $Bir(\mathbb{P}^3)$ -conjugate) to a subgroup of $Aut(\mathbb{C}^3)_{c(\omega)}$ (resp. $Bir(\mathbb{P}^3)_{c(\omega)}$).

Proof. Let us assume that there exists ψ in Aut(\mathbb{C}^3) (resp. Bir(\mathbb{P}^3)) such that for any $\phi = (\phi_0, \phi_1)$ (resp. $\phi = (\phi_1, \phi_2)$) in Aut(\mathbb{C}^2) (resp. Bir(\mathbb{P}^2)) the map $\psi \upsilon_1(\phi) \psi^{-1}$ (resp. $\psi \upsilon_2(\phi) \psi^{-1}$) is a contact polynomial automorphism (resp. contact birational map); as a result $\upsilon_1(\phi)$ (resp. $\upsilon_2(\phi)$) preserves a polynomial form $\Theta = Adz_0 + Bdz_1 + Cdz_2$. Looking at the restriction to any hyperplane $z_2 = \lambda$ (resp. $z_0 = \lambda$) for λ generic one gets that all the ϕ preserve the foliation given by $\Theta_{|z_2=\lambda}$ (resp. $\Theta_{|z_0=\lambda}$): contradiction.

Part 4. Appendix: Automorphisms group of $Aut(\mathbb{C}^2)_{\eta}$

As we recalled $Aut(\mathbb{C}^2)$ is generated by J_2 and Aff_2 . More precisely $Aut(\mathbb{C}^2)$ has a structure of amalgamated product ([24])

$$\operatorname{Aut}(\mathbb{C}^2) = \operatorname{J}_2 *_{\operatorname{J}_2 \cap \operatorname{Aff}_2} \operatorname{Aff}_2;$$

this is also the case for $Aut(\mathbb{C}^2)_{\eta}$ ([19, Proposition 9])

$$\operatorname{Aut}(\mathbb{C}^2)_{\eta} = (J_2)_{\eta} \ast_{(J_2)_{\eta} \cap (\operatorname{Aff}_2)_{\eta}} (\operatorname{Aff}_2)_{\eta}$$

Following [16] we prove that:

Theorem 13.2. The group $Aut(Aut(\mathbb{C}^2)_{\eta})$ is generated by the automorphisms of the field \mathbb{C} and the group of $Aut(\mathbb{C}^2)$ -inner automorphisms.

Idea of the Proof. Let us set $\mathcal{G} = \operatorname{Aut}(\mathbb{C}^2)_{\eta}$. One can follow [16] and prove that if φ is an automorphism of \mathcal{G} , then

- $\varphi((J_2)_{\eta}) = (J_2)_{\eta}$ up to conjugacy by an element of Aut(\mathbb{C}^2) ([16, Proposition 4.4]);

- for any integer k if $\mathcal{R} = \bigcup_{n \le k} \langle \left(\beta z_0, \frac{z_1}{\beta}\right) | \beta n$ -th root of unity \rangle , then there exists ψ in $(J_2)_{\eta}$ such that $\varphi(\mathcal{R}) = \psi \mathcal{R} \psi^{-1}$. So one can suppose that $\varphi((J_2)_{\eta}) = (J_2)_{\eta}$ and $\varphi(\mathcal{R}) = \mathcal{R}$ (*see* [16, Proposition 4.4]);
- $\begin{array}{l} -- \mbox{ set } D_\eta = \left\{ (\beta z_0, z_1/\beta) \, | \, \beta \in \mathbb{C}^* \right\} \mbox{ one can show that conjugating } \phi \mbox{ by an element of } (J_2)_\eta \mbox{ one has } \\ \phi((J_2)_\eta) = (J_2)_\eta \mbox{ and } \phi(D_\eta) = D_\eta. \\ -- \mbox{ set } \end{array}$

and

$$\Gamma_1 = \{(z_0 + \beta, z_1) | \beta \in \mathbb{C}\}, \qquad \Gamma_2 = \{(z_0, z_1 + \beta) | \beta \in \mathbb{C}\}$$

 $T = \left\{ (z_0 + \gamma, z_1 + \beta) | \gamma, \beta \in \mathbb{C} \right\}$ Since $T_1 \subset [[(J_2)_{\eta}, (J_2)_{\eta}], [(J_2)_{\eta}, (J_2)_{\eta}]]$, then $T_1 \subset \{(z_0 + P(z_1), z_1) | P \in \mathbb{C}[z_1]\}$. As $\forall n \in \mathbb{N}, \forall \beta \in \mathbb{C} \qquad \left(\frac{z_0}{n}, nz_1\right) (z_0 + \beta, z_1)^n \left(nz_0, \frac{z_1}{n}\right) = (z_0 + \beta, z_1)$

and $\phi(D_{\eta}) = D_{\eta}$, one gets

$$\forall n \in \mathbb{N}, \forall \beta \in \mathbb{C} \qquad \varphi\left(\frac{z_0}{n}, nz_1\right) \varphi(z_0 + \beta, z_1)^n \varphi\left(nz_0, \frac{z_1}{n}\right) = \varphi(z_0 + \beta, z_1)$$

that is

$$\forall n \in \mathbb{N}$$
 $\left(\frac{z_0}{\delta}, \delta z_1\right) (z_0 + nP(z_1), z_1)^n \left(\delta z_0, \frac{z_1}{\delta}\right) = (z_0 + P(z), z_1)^n$

so $P(z_1) = \frac{n}{\delta}P(\frac{z_1}{\delta})$. The polynomial *P* is non-zero hence $n = \delta$ and *P* is a constant. Therefore $\varphi(T_1) \subset T_1$.

The groups T_1 and T_2 commute, that's why

$$\phi(\mathsf{T}_2) \subset \left\{ (z_0 + P(z_1), z_1 + \beta) \, | \, P \in \mathbb{C}[z_1], \, \beta \in \mathbb{C} \right\}$$

The relation

$$\left(\frac{z_0}{n}, nz_1\right)(z_0, z_1 + \beta)\left(nz_0, \frac{z_1}{n}\right) = (z_0, z_1 + \beta)^n$$

true for any integer *n* and for any β in \mathbb{C} implies that $\varphi(T_2) \subset T_2$. The group T being a maximal abelian subgroup of \mathcal{G} , one has $\varphi(T) = T$ and $\varphi(T_i) = T_i$.

— There exist ξ_1, ξ_2 two additive morphisms and ζ a multiplicative one such that

$$\varphi(z_0 + \gamma, z_1 + \beta) = (z_0 + \xi_1(\gamma), z_1 + \xi_2(\beta)) \qquad \& \qquad \varphi\left(\gamma z_0, \frac{z_1}{\gamma}\right) = \left(\zeta(\gamma) z_0, \frac{z_1}{\zeta(\gamma)}\right)$$

The statement follows from [16, Proposition 1.4].

REFERENCES

- M. Alberich-Carramiñana. Geometry of the plane Cremona maps, volume 1769 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
- [2] A. Banyaga. Sur le groupe des difféomorphismes symplectiques. C. R. Acad. Sci. Paris Sér. A, 278:1343–1344, 1974.
- [3] A. Banyaga. Sur le groupe des difféomorphismes qui préservent une forme de contact régulière. C. R. Acad. Sci. Paris Sér. A-B, 281(16):Aii, A707–A709, 1975.
- [4] A. Banyaga. The group of diffeomorphisms preserving a regular contact form. In Topology and Algebra (Proc. Colloq., Eidgenöss. Tech. Hochsch., Zurich, 1977), volume 26 of Monograph. Enseign. Math., pages 47–53. Univ. Genève, Geneva, 1978.
- [5] L. Bayle and A. Beauville. Birational involutions of P². Asian J. Math., 4(1):11–17, 2000. Kodaira's issue.

- [6] E. Bertini. Ricerche sulle trasformazioni univoche involutorie nel piano. Annali di Mat., 8:244–286, 1877.
- [7] A. M. Bonifant and J. E. Fornæss. Growth of degree for iterates of rational maps in several variables. *Indiana Univ. Math. J.*, 49(2):751–778, 2000.
- [8] M. Brunella. Minimal models of foliated algebraic surfaces. Bull. Soc. Math. France, 127(2):289–305, 1999.
- [9] S. Cantat. Dynamique des automorphismes des surfaces complexes compactes. PhD thesis, École Normale Supérieure de Lyon, 1999.
- [10] S. Cantat. Sur les groupes de transformations birationnelles des surfaces. Ann. of Math. (2), 174(1):299-340, 2011.
- [11] S. Cantat and S. Lamy. Normal subgroups in the Cremona group. Acta Math., 210(1):31–94, 2013. With an appendix by Yves de Cornulier.
- [12] G. Casale. Le groupoïde de Galois de P₁ et son irréductibilité. *Comment. Math. Helv.*, 83(3):471–519, 2008.
- [13] D. Cerveau and J. Déserti. Transformations birationnelles de petit degré, volume 19 of Cours Spécialisés. Société Mathématique de France, Paris, 2013.
- [14] D. Cerveau and J.-F. Mattei. Formes intégrables holomorphes singulières, volume 97 of Astérisque. Société Mathématique de France, Paris, 1982. With an English summary.
- [15] V. I. Danilov. Non-simplicity of the group of unimodular automorphisms of an affine plane. Mat. Zametki, 15:289–293, 1974.
- [16] J. Déserti. Sur le groupe des automorphismes polynomiaux du plan affine. J. Algebra, 297(2):584–599, 2006.
- [17] J. Déserti. Sur les automorphismes du groupe de Cremona. Compos. Math., 142(6):1459-1478, 2006.
- [18] S. Friedland and J. Milnor. Dynamical properties of plane polynomial automorphisms. *Ergodic Theory Dynam. Systems*, 9(1):67–99, 1989.
- [19] J.-P. Furter and S. Lamy. Normal subgroup generated by a plane polynomial automorphism. *Transform. Groups*, 15(3):577–610, 2010.
- [20] M. Gizatullin. Klein's conjecture for contact automorphisms of the three-dimensional affine space. *Michigan Math. J.*, 56(1):89– 98, 2008.
- [21] M. H. Gizatullin and V. I. Danilov. Automorphisms of affine surfaces. I. Izv. Akad. Nauk SSSR Ser. Mat., 39(3):523–565, 703, 1975.
- [22] E. L. Ince. Ordinary Differential Equations. Dover Publications, New York, 1944.
- [23] J. P. Jouanolou. Équations de Pfaff algébriques, volume 708 of Lecture Notes in Mathematics. Springer, Berlin, 1979.
- [24] H. W. E. Jung. Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math., 184:161–174, 1942.
- [25] S. Lamy. L'alternative de Tits pour Aut[C²]. J. Algebra, 239(2):413–437, 2001.
- [26] K. Oguiso. Tits alternative in hyperkähler manifolds. Math. Res. Lett., 13:307-316, 2006.
- [27] J. Tits. Free subgroups in linear groups. J. Algebra, 20:250-270, 1972.

IRMAR, UMR 6625 DU CNRS, UNIVERSITÉ DE RENNES 1, 35042 RENNES, FRANCE. *E-mail address*: dominique.cerveau@univ-rennes1.fr

UNIVERSITÉ PARIS DIDEROT, SORBONNE PARIS CITÉ, INSTITUT DE MATHÉMTIQUES DE JUSSIEU-PARIS RIVE GAUCHE, UMR 7586, CNRS, SORBONNE UNIVERSITÉS, UPMC UNIV PRIS 06, F-75013 PARIS, FRANCE.

E-mail address: deserti@math.univ-paris-diderot.fr