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1. INTRODUCTION

In this article we work on the group of birational maps that preserve contact structures on P3
C. On P3

C
there is, up to automorphisms, only one (non-singular) contact structure given in homogeneous coordinates
by the 1-form ϑ̃ = z0dz1− z1dz0 + z2dz3− z3dz2. In C3 there is the Darboux 1-form ω = z0 dz1 +dz2 that is
the standard local model of contact forms; it thus defines a holomorphic contact structure on C3 that extends
to P3

C meromorphically. Note that ω has poles of order 3 along the hyperplane z3 = 0. We denote by c(ω)
the (meromorphic) contact structure induced on P3

C by ω. Let us remark that actually ω is birationally
conjugate to ϑ̃|z3=1 (more precisely they are conjugate via a polynomial automorphism in the affine chart
z3 = 1). As a result the group of birational maps that preserve these structures are conjugate; since it is
more convenient to work with ω than with ϑ̃ we will focus on ω.

The contact geometry has a long story. The Darboux local model z0dz1 + dz2 is related to the forma-
lization of z0 = − dz2

dz1
. For instance if S is a surface in C3 given by F(z0,z1,z2) = 0 then the restriction

of ω to S corresponds to the implicit differential equation F
(
− ∂z2

∂z1
,z1,z2

)
= 0. A birational self-map of

P3
C which preserves the contact structure (i.e., which sends the 1-form z0dz1+dz2 viewed in the affine chart

z3 = 1 onto a multiple of z0dz1 + dz2 by a rational function) is said to be a contact map. The space C3

with the contact form ω can be seen as an affine chart of the projectivization of the cotangent bundle T∗C2

(equipped with the standard Liouville contact form). As a consequence there is a natural extension of any
birational self-map of the (z1,z2) plane ([22])

K : Bir(P2
C) ↪→ Bir(P3

C)c(ω), (φ1,φ2) 7→

− ∂φ2
∂z1

+ ∂φ2
∂z2

z0

∂φ1
∂z1
− ∂φ1

∂z2
z0

,φ1(z1,z2),φ2(z1,z2)


where Bir(P3

C)c(ω) denotes the group of contact birational self-maps of P3
C. The image of K is the Klein

group K . In 1926 Klein conjectured that the group of contact maps is generated by K and the Legendre
involution

(z0,z1,z2) 7→ (z1,z0,−z2− z0z1).

In 2008 Gizatullin proved this "conjecture" in the case in which the contact transformations are polynomial
automorphisms of the affine space ([20]). The conjecture about generators of the contact group is still open
in the birational case.
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Let G be a subgroup of the group Bir(Pn
C) of birational self-maps of Pn

C, and let β be a meromorphic
p-form on Pn

C; denote by
Gβ =

{
φ ∈ G |φ∗β = β

}
the subgroup of elements of G that preserve the form β. In the same spirit for 1-forms β we set

Gc(β) =
{

φ ∈ G |φ∗β∧β = 0
}
.

We have the obvious inclusions Gβ ⊂ Gc(β) ⊂ G.

We first describe the group Aut(C3)c(ω) of polynomial automorphisms of C3 that preserve the contact
structure:

Theorem A. If η is the form dω = dz0∧dz1, then

Aut(C3)ω ' Aut(C2)η nC, Aut(C3)c(ω) ' Aut(C3)ω nC∗.

Hence, as Banyaga did in the context of contact diffeomorphisms of smooth real manifolds ([2, 3, 4]),
one gets that the commutator of Aut(C3)ω (resp. Aut(C3)c(ω)) is perfect. Any automorphism of Aut(C2) is
the composition of an inner automorphism and an automorphism of the field C (see [16]). Following this
idea we describe the group Aut(Aut(C3)ω).

Danilov and Gizatullin proved that any finite subgroup of Aut(C2) is linearizable ([21]). We obtain a
similar statement:

Theorem B. Any finite subgroup of Aut(C3)c(ω) is linearizable via an element of Aut(C3)c(ω).

We also deal with Bir(P3
C)c(ω). If φ belongs to Bir(P3

C)c(ω), then φ∗ω = V (φ)ω where V (φ) is some
rational function. In particular one gets a map V from Bir(P3

C)c(ω) to the set of rational functions in z0, z1,
z2 satisfying cocycle conditions: V (φ◦ψ) =

(
V (φ)◦ψ

)
·V (ψ).

The equality φ∗ω =V (φ)ω can be rewritten as the following system of P.D.E.

(S)



φ0
∂φ1
∂z0

+ ∂φ2
∂z0

= 0 (?1)

φ0
∂φ1
∂z1

+ ∂φ2
∂z1

=V (φ)z0 (?2)

φ0
∂φ1
∂z2

+ ∂φ2
∂z2

=V (φ) (?3)

The first equation (?1) has a special family of solutions: maps for which both φ1 and φ2 do not depend
on z0; we can then compute φ0 from the two other equations. Taking (φ1,φ2) in Bir(P2

C) we get by this way
the group K .

Assume now that φ1 or φ2 depends on z0 then both depend on it and (S) implies the following equality
∂φ2
∂z1
− z0

∂φ2
∂z2

∂φ2
∂z0

=

∂φ1
∂z1
− z0

∂φ1
∂z2

∂φ1
∂z0

.

Let us defined α the map from Bir(P3
C)c(ω) into the set of rational functions in z0, z1 and z2 by: α(φ) = ∞

if φ belongs to K and

α(φ) =

∂φ2
∂z1
− z0

∂φ2
∂z2

∂φ2
∂z0

=

∂φ1
∂z1
− z0

∂φ1
∂z2

∂φ1
∂z0

otherwise.
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If φ1 and φ2 are some first integrals of the rational vector field

Zφ = α(φ)
∂

∂z0
− ∂

∂z1
+ z0

∂

∂z2
,

one gets φ0 thanks to the first equation of (S). Such φ is not necessary birational but only rational; never-
theless one gets a lot of contact birational self-maps by this way. Remark that since K (resp. Bir(P3

C)ω) is
a subgroup of Bir(P3

C)c(ω) there is a natural left translation action of K (resp. Bir(P3
C)ω) on Bir(P3

C)c(ω).
These two actions admit a complete invariant:

Theorem C. The map α is a complete invariant of the left translation action of K on Bir(P3
C)c(ω), that is

for any φ and ψ in Bir(P3
C)c(ω) one has α(φ) = α(ψ) if and only if ψφ−1 belongs to K .

The map V is a complete invariant of the left translation action of Bir(P3
C)ω of Bir(P3

C)c(ω), i.e. for any
φ, ψ in Bir(P3

C)c(ω) one has V (φ) =V (ψ) if and only if ψφ−1 belongs to Bir(P3
C)ω.

We prove that α is not surjective: generic linear differential equations of second order give linear func-
tions that are not in the image of α. Painlevé equations give examples of polynomials of higher degree that
do not belong to imα. The map V is also not surjective.

Since ω has no integral surface in C3 a contact birational self-map φ either preserves the hyperplane
z3 = 0, or blowns down z3 = 0. This naturally implies the following definition: φ ∈ Bir(P3

C)c(ω) is regular
at infinity if z3 = 0 is preserved by φ and if φ|z3=0 is birational. One shows that

Proposition D. The set of maps of Bir(P3
C)ω that are regular coincides with Aut(P3

C)ω.

Let ς : Bir(P3
C)ω→ Bir(P2

C)η be the projection onto the two first components. We say that ϕ ∈ Bir(P2
C)η

is exact if ϕ can be lifted via ς to Bir(P3
C)ω. One establishes the following criterion:

Theorem E. A map ϕ = (φ0,φ1)∈Bir(P2
C)η is exact if and only if the closed form φ0dφ1−z0dz1 has trivial

residues. In that case φ0dφ1− z0dz1 =−db with b ∈ C(z0,z1) and φ =
(
ϕ,z2 +b(z0,z1)

)
∈ Bir(P3

C)ω.

We give a lot of examples, and even subgroups, of exact maps but also prove that the map ς is not
surjective:

Theorem F. A generic quadratic element of Bir(P2
C)η is not exact.

Furthermore we look at invariant curves and surfaces. Thanks to a local argument of contact geometry
one gets that if φ belongs to Bir(P3

C)ω, if m is a periodic point of φ, and if there exists a germ of irreducible
curve C invariant by φ and passing through m, then either C is a curve of periodic points, or C is a legendrian
curve. We also give a precise description of elements of Aut(C3)ω (resp. Bir(P3

C)ω) that preserve a surface.

Besides we deal with some group properties. Danilov proved that Aut(C2)η is not simple ([15]); Cantat
and Lamy showed that Bir(P2

C) is not simple ([11]). In the same spirit we establish that

Theorem G. The groups Aut(C3)ω, Bir(P3
C)ω, Aut(C3)c(ω), the derived group of Aut(C3)ω and the derived

group of Aut(C3)c(ω) are not simple.

Lamy proved that Aut(C2) satisfies the Tits alternative ([25]), then Cantat showed that Bir(P2
C) also

([10]). In our context one gets that

Theorem H. The groups Aut(C3)ω, Aut(C3)c(ω) and Bir(P3
C)ω satisfy the Tits alternative.

Acknowledgments. We would like to thank Guy Casale for discussions about the non-integrability.
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Part 1. Contact polynomial automorphisms

A polynomial automorphism φ of Cn is a polynomial map of the type

φ : Cn→ Cn,
(
z0,z1, . . . ,zn−1) 7→ (φ0(z0,z1, . . . ,zn−1),φ1(z0,z1, . . . ,zn−1), . . . ,φn−1(z0,z1, . . . ,zn−1)

)
that is bijective. The set of polynomial automorphisms of Cn form a group denoted Aut(Cn).

The automorphisms of Cn of the form (φ0,φ1, . . . ,φn−1) where φi depends only on zi, zi+1, . . ., zn−1 form
the Jonquières subgroup Jn ⊂ Aut(Cn). Moreover one has the inclusions

GL(Cn)⊂ Affn ⊂ Aut(Cn)

where Affn denotes the group of affine maps

φ : (z0,z1, . . . ,zn−1) 7→
(
φ0(z0,z1, . . . ,zn−1),φ1(z0,z1, . . . ,zn−1), . . . ,φn−1(z0,z1, . . . ,zn−1)

)
with φi affine; Affn is the semi-direct product of GL(Cn) with the commutative subgroups of translations.
The subgroup Tamen ⊂ Aut(Cn) generated by Jn and Affn is called the group of tame automorphisms.

Convention: In all the article we denote Pn
C by Pn, and we write "birational maps of Pn" instead of

"birational self-maps of Pn".

2. CONTACT FORMS AND CONTACT STRUCTURES

We recall in the context of 3-manifolds the formalism of contact structure. Let M be a complex 3-
manifold; we denote by Ωi(M) the space of holomorphic i-forms on M. A contact form on M is an element
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Θ ∈ Ω1(M) such that the 3-form Θ∧ dΘ ∈ Ω3(M) has no zero: Θ∧ dΘ(m) 6= 0 for any m ∈ M. For
such a contact form there is a local model given by Darboux theorem: at each point m there is a local
biholomorphism F : M,m→ C3,0 such that Θ = F∗(z0dz1 + dz2). The 1-form z0dz1 + dz2 is called the
standard contact form on C3; we denote it by ω.

A contact structure on the 3-manifold M is given by the following data:
i. an open covering M = tkUk,
ii. on each Uk a contact form Θk ∈Ω1(Uk),
iii. on each non-trivial intersection Uk∩U` a holomorphic unit gk` ∈O∗(Uk∩U`) such that Θk = gk`Θ`.

A contact structure defines a holomorphic hyperplanes field t : M→ P(TM)∨ given for all m ∈Uk by

t(m) = kerΘk(m).

As we recalled in §1 the compact Kähler manifolds having a contact structure are classified by Frantzen
and Peternell theorem ([?]). On P3 there is no contact form because there is no non-trivial global form.
Nevertheless there are contact structures; one of them is given in homogeneous coordinates by the 1-form

ϑ̃ = z0dz1− z1dz0 + z2dz3− z3dz2.

In that case we can take the standard covering by affine charts Uk = {zk = 1} and ϑk = ϑ̃|Uk .

Proposition 2.1. Up to automorphisms of P3 there is only one contact structure on P3.

Proof. Remark that to a contact structure on P3 is associated a homogeneous 1-form β on C4 such that
Uk = {zk = 1} and Θk = β|Uk satisfies properties i., ii., iii.

Let β be a contact structure on P3, and let R =∑
i

zi
∂

∂zi
be the radial vector field. Since iRβ = 0, to give β

is equivalent to give dβ. According to [23, Chapter 2, Proposition 2.1] one has degdβ = 0; to give dβ is
thus equivalent to give an antisymmetric matrix of maximal rank. But up to conjugacy there is only one
4×4 antisymmetric matrix of maximal rank. �

Remark 2.2. The group of linear automorphisms of C4 that preserve ϑ̃ coincides with the group of auto-
morphisms of P3 that preserve dϑ̃; as a consequence the subgroup of Aut(P3) that preserves the contact
structure associated to dϑ̃ is the projectivization of the symplectic group Sp(4;C).

Remark that the data of a global meromorphic 1-form Θ on M such that Θ∧ dΘ 6≡ 0 induces a contact
form (and a contact structure) on the complement of the poles and zeros of Θ and Θ∧dΘ. In that case we
say that Θ induces a meromorphic contact structure on M.

For instance the Darboux form ω = z0dz1 +dz2 induces a meromorphic contact structure on P3. In fact
the forms ω and ϑ̃|z3=1 are conjugate on C3 via

( z0
2 ,z1,−z2 +

z0z1
2

)
. The corresponding (meromorphic)

contact structure are birationally conjugate on P3.

3. DESCRIPTION OF CONTACT AUTOMORPHISMS

3.1. Description of Aut(C3)ω. Set η = dω = dz0 ∧ dz1. Remark that the invariance of ω implies the
invariance of η and as a consequence the equality (φ0,φ1)

∗η = η.

Proposition 3.1. If φ belongs to Aut(C3)ω, then φ∗
∂

∂z2
= ∂

∂z2
.

In particular if φ belongs to Aut(C3)ω, then

φ =
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)

)
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and the map

ς : Aut(C3)ω −→ Aut(C2)η,
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)

)
7→
(
φ0(z0,z1),φ1(z0,z1)

)
is a morphism.

Proof. As we already mentioned, for a contact form there exists a unique vector field χ, called Reeb vector
field, such that ω(χ) = 1 and iχdω = 0; here χ = ∂

∂z2
. If φ belongs to Aut(C3)ω, then φ∗χ = χ. As a result φ

has the following form
φ =

(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)

)
with (φ0,φ1) in Aut(C2) and b in C[z0,z1]. �

Remark 3.2. Any element of Aut(C3)c(ω) can be written(
ϕ0,ϕ1,det jacϕz2 +b(z0,z1)

)
where ϕ = (ϕ0,ϕ1) ∈ Aut(C2) and db = (det jacϕ)z0dz1−ϕ0dϕ1. Let us still denote by ς the natural pro-
jection

ς : Aut(C3)c(ω)→ Aut(C2).

An element φ of Bir(P2)η is exact if it can be lifted via ς to Bir(P3)ω, or equivalently if it belongs to
imς.

Contrary to the birational case (Theorem 8.1) any element of Aut(C2) can be lifted via ς to Aut(C3)c(ω).
Since b is defined up to a constant we do not speak about the ς-lift but a ς-lift.

The following obvious statement describes the group Aut(C3)ω:

Proposition 3.3. Let us consider the morphism

ς : Aut(C3)ω −→ Aut(C2)η,
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)

)
7→
(
φ0(z0,z1),φ1(z0,z1)

)
.

One has the following exact sequence

0−→ C−→ Aut(C3)ω

ς−→ Aut(C2)η −→ 1; (3.1)

more precisely kerς =
{
(z0,z1,z2 +β) |β ∈ C

}
. In particular

Aut(C3)ω ' Aut(C2)η nC.

Proof. The 1-form φ0dφ1−z0dz1 is a closed and polynomial one, so it is exact. Therefore ς is surjective. �

Let G be a group. The derived group of G is the subgroup of G generated by all the commutators of G:

[G,G] = 〈ghg−1h−1 |g, h ∈ G〉
The group G is said to be perfect if it coincides with its derived group, or equivalently, if the group has no
nontrivial abelian quotients.

Such a property was established in the context of real smooth manifolds: Banyaga proved that the derived
group of the group of contact diffeomorphisms is a perfect one ([2, 3, 4]).

Theorem 3.4. The group [Aut(C3)ω,Aut(C3)ω] is perfect.

Proof. Since ς is surjective (Proposition 3.3) and Aut(C2)η is perfect ([19, Proposition 10]) the restriction
of ς

ς̃ = ς|[Aut(C3)ω,Aut(C3)ω]
: [Aut(C3)ω,Aut(C3)ω]−→ Aut(C2)η

is surjective. Let φ be in ker ς̃; on the one hand φ = (z0,z1,z2 +β) for some β (Proposition 3.3), and on the
other hand φ is a product of commutators hence β = 0. We thus have the following exact sequence

0−→ [Aut(C3)ω,Aut(C3)ω]−→ Aut(C2)η −→ 1
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and [Aut(C3)ω,Aut(C3)ω]' Aut(C2)η which is perfect ([19, Proposition 10]). �

3.2. Description of Aut(C3)c(ω). Let us recall that Aut(C2) is generated by J2 and Aff2 (see [24]). This
implies that Aff2 and

[J2,J2] =
{
(z0 +β,z1 +P(z0)) |β ∈ C, P ∈ C[z0]

}
.

generate Aut(C2).

Proposition 3.5. The group Aut(C3)c(ω) is generated by A and E where

E =
{

ς-lifts of e |e ∈ [J2,J2]
}

and A =
{

ς-lifts of a |a ∈ Aff2
}
.

Proof. Let ϕ be a polynomial automorphism of C2 and let φ be a ς-lift of ϕ to Aut(C3)c(ω)

φ =
(
ϕ,det jacϕz2 +b(z0,z1)

)
with b in C[z0,z1]. One can write ϕ as a1e1a2e2 . . .ases where ai belongs to Aff2 and ei to [J2,J2]. Let us
now consider Ai a ς-lift of ai, Ei = (ei,z2+di) a ς-lift of ei. Then A1E1A2E2 . . .AsEs belongs to Aut(C3)c(ω),
and up to composition by an element (z0,z1,z2 +β) ∈ A one has

φ = A1E1A2E2 . . .AsEs.

�

Proposition 3.6. One has
Aut(C3)c(ω) ' Aut(C3)ω nC∗.

Proof. Let us consider an element φ of Aut(C3)c(ω), then φ∗ω = V (φ)ω for some polynomial V (φ). As ω

and φ∗ω do not vanish, V (φ) does not vanish; therefore V (φ) = λ ∈ C∗. Let us write φ as follows:

φ = (λz0,z1,λz2)◦ φ̃;

of course φ̃∗ω = ω. �

Theorem 3.7. The derived group [Aut(C3)c(ω),Aut(C3)c(ω)] of Aut(C3)c(ω) is perfect.

Proof. According to Proposition 3.6 an element φ of Aut(C3)c(ω) can be written(
λφ0,φ1,λz2 +λb

)
with λ ∈ C∗ and (φ0,φ1,z2 + b) ∈ Aut(C3)ω. Denote by ϕ the element of Aut(C2) given by (φ0,φ1). If φ

belongs to kerς, then λ = 1, ϕ = id and b ∈ C, that is kerς' C and

C−→ Aut(C3)c(ω)
ς−→ Aut(C2)−→ 1. (3.2)

Since Aut(C2)η is perfect the restriction of ς to [Aut(C3)c(ω),Aut(C3)c(ω)] induces the following exact
sequence

0−→ [Aut(C3)c(ω),Aut(C3)c(ω)]−→ Aut(C2)η −→ 1

and [Aut(C3)c(ω),Aut(C3)c(ω)]' Aut(C2)η. One concludes as previously with [19, Proposition 10]. �
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3.3. Finite subgroups.

Proposition 3.8. Any element of Aut(C2)η of period ` lifts via ς to a unique element of Aut(C3)ω of
period `.

Proof. Let us consider an element ϕ =
(
φ0(z0,z1),φ1(z0,z1)

)
of Aut(C2)η. According to Proposition 3.3

there exists b ∈ C[z0,z1] such that
(
φ0(z0,z1),φ1(z0,z1),z2 + b(z0,z1) + µ

)
belongs to Bir(P3)ω for any

µ ∈ C. Assume that ϕ is of prime order `; let us prove that there exists a unique γ ∈ C such that(
φ0,φ1,z2 +b(z0,z1)+ γ

)
is of order `.

Assume for simplicity that `= 2 (but a similar argument works for any `). Let us recall that the following
equality holds

z0dz1−φ0dφ1 = db (3.3)
Applying φ to this equality one gets

φ0dφ1− z0dz1 = d(b◦ϕ) (3.4)
We add (3.3) and (3.4) and obtain that b+b◦φ is a constant β. Furthermore(

φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)+µ
)2

=
(
z0,z1,z2 +2γ+b+b◦ϕ

)
= (z0,z1,z2 +2γ+β)

so as soon as γ =−β/2 one has
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)+µ

)2
= id. �

Proposition 3.9. A finite subgroup of Aut(C2) can be lifted to a finite subgroup of Aut(C3)c(ω).

Proof. Let H be a finite subgroup of Aut(C2). The group H is linearizable ([21]) hence has a fixed point p.
Since the translations belong to Aut(C2) one can assume that p = (0,0). Let us consider the lifts of all
elements of H in

{
φ ∈ Aut(C3)c(ω) |φ(0) = 0

}
; they form a group isomorphic to H so is in particular

finite. �

Remark 3.10. Any subgroup G of Aut(C2) that preserves (0,0) can be lifted to a subgroup of Aut(C3)c(ω)
isomorphic to G.

Theorem 3.11. Any finite subgroup of Aut(C3)c(ω) is linearizable via an element of Aut(C3)c(ω).

Proof. Let G be a finite subgroup of Aut(C3)c(ω). The group G is isomorphic to H = ς(G) which is thus a
finite subgroup of Aut(C2). There exists a map h ∈ Aut(C2) that linearizes H (see [21]); as a result H has
a fixed point p and up to translations one can suppose that p = (0,0). Note that h(0) = 0. The lift of h in{

φ ∈ Aut(C3)c(ω) |φ(0) = 0
}

linearizes G. �

4. AUTOMORPHISMS GROUP

Let us first introduce some notations. The group of the field automorphisms of C acts on Aut(Cn)

(resp. Bir(Pn)): if f is an element of Aut(Cn) and if ξ is a field automorphism we denote by ξ f the
element obtained by letting ξ acting on f . Using the structure of amalgamated product of Aut(C2), the
automorphisms of this group have been described ([16]): let ϕ be an automorphism of Aut(C2); there exist
a polynomial automorphism ψ of C2 and a field automorphism ξ such that

∀ f ∈ Aut(C2) ϕ( f ) = ξ(ψ f ψ
−1).

Even if Bir(P2) has not the same structure as Aut(C2) (see Appendix of [11]) the automorphisms group of
Bir(P2) can be described and a similar result is obtained ([17]).

We now would like to describe the group Aut
(
Aut(C3)ω

)
. Let us recall that the center of a group G,

denoted Z(G), is the set of elements that commute with every element of G.
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Proposition 4.1. The center of Aut(C3)ω is isomorphic to C:

Z(Aut(C3)ω) =
{
(z0,z1,z2 +β) |β ∈ C

}
and the center of Aut(C3)c(ω) is trivial.

As Aut(C3)ω ' Aut(C2)η nC Proposition 4.1 implies the following statement:

Corollary 4.2. The quotient of Aut(C3)ω by its center is isomorphic to Aut(C2)η.

Lemma 4.3. One has the following isomorphism

Hom(Aut(C3)ω,C)' Hom(C,C)

where Hom(C,C) denotes the homomorphisms of the additive group C.

Proof. Note that if φ belongs to [Aut(C3)ω,Aut(C3)ω], then the last component of φ is well defined (that is
not defined modulo a constant). Besides Aut(C3)ω ' Aut(C2)η nC and Aut(C2)η is perfect thus

Aut(C3)ω

/
[Aut(C3)ω,Aut(C3)ω]

' C

and
Aut(C3)ω ' Aut(C2)η nC

��
&&Aut(C3)ω

/
[Aut(C3)ω,Aut(C3)ω]

∼ // C

We conclude by noting that any element of Hom(Aut(C3)ω,C) acts trivially on φ. �

Remark 4.4. An element c of Hom(Aut(C3)ω,C) acts on Aut(C3)ω as follows(
φ0,φ1,zz +b(z0,z1)

)
→
(
φ0,φ1,z2 +b(z0,z1)+ c(φ)

)
Definition. Let H be a normal subgroup of a group G. We say that an automorphism of H of the form
φ 7→ ϕφϕ−1, with ϕ in G, is G-inner.

Theorem 4.5. The group Aut
(
Aut(C3)ω

)
is generated by the automorphisms group of the field C, the

group of Aut(C3)c(ω)-inner automorphisms and the action of Hom(C,C).

Proof. Consider an element ψ of Aut
(
Aut(C3)ω

)
. For any φ = (ϕφ,z2 +Tφ(z0,z1)) one has

ψ(φ) =
(
ϕ̃φ,z2 +∆φ(z0,z1)

)
.

In particular ψ induces an automorphism ψ0 of Aut(C2)η; indeed since ψ is an automorphism of Aut(C3)ω,
it preserves Z(Aut(C3)ω) and so, from Corollary 4.2 induces an automorphism of Aut(C2)η.

According to Theorem 13.2 one can assume that ψ0 = id up to the action of an automorphism of the
field C and up to conjugacy by an Aut(C2)-inner automorphism, i.e.

ψ(φ) =
(
ϕφ,z2 +∆φ(z0,z1)

)
Set φ−1 =

(
ϕ
−1
φ
,z2 +Tφ−1(z0,z1)

)
. On the one hand φ−1 ◦φ =

(
id,z2 +Tφ(z0,z1)+Tφ−1(ϕφ)

)
so

Tφ +Tφ−1(ϕφ) = 0 (4.1)
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and on the other hand
ψ(φ◦φ

−1) =
(
id,z2 +Tφ−1(z0,z1)+∆φ ϕ

−1
φ

)
belongs to Aut(C3)ω hence Tφ−1 +∆φϕ

−1
φ

is a constant. This, combined with (4.1), implies that ∆φ = Tφ+cφ,
where cφ is a constant, and yields to a morphism from Aut(C3)ω to C:

Aut(C3)ω→ C, φ 7→ cφ.

Consider an homomorphism
ρ : Aut(C3)ω→ C, φ 7→ ρφ.

Let us define ψ : Aut(C3)ω→ Aut(C3)ω by:

ψ(φ) =
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)+ρφ

)
where φ=

(
φ0(z0,z1),φ1(z0,z1),z2+b(z0,z1)

)
∈Aut(C3)ω. One can check that ψ belongs to Aut(Aut(C3)ω).

�

Part 2. Contact birational maps

A rational map of Pn can be written

φ : Pn 99K Pn (
z0 : z1 : . . . : zn) 99K (φ0(z0,z1, . . . ,zn) : φ1(z0,z1, . . . ,zn) : . . . : φn(z0,z1, . . . ,zn)

)
where the φi’s are homogeneous polynomials of the same degree≥ 1 and without common factor of positive
degree. The degree of φ is by definition the degree of the φi. A birational map of Pn is a rational map that
admits a rational inverse. Of course Aut(Cn) is a subgroup of Bir(Pn). An other natural subgroup of Bir(Pn)
is the group Aut(Pn)' PGL(n+1;C) of automorphisms of Pn.

The indeterminacy set Indφ of φ is the set of the common zeros of the φi’s. The exceptional set Excφ

of φ is the (finite) union of subvarieties Mi of Pn such that φ is not injective on any open subset of Mi.
Let us extend the definition of Jonquières group we gave in the case of polynomial automorphisms of Cn

to the case of birational maps of P2: the Jonquières group, denoted J , is the group of birational maps of
P2 that preserve a pencil of rational curves. Since two pencils of rational curves are birationally conjugate,
J does not depend, up to conjugacy, of the choice of the pencil. In other words one can decide, up to
birational conjugacy, that J is in the affine chart z2 = 1 the maximal group of birational maps that preserve
the fibration z1 = cst. An element ϕ of J permutes the fibers of the fibration thus induces an automorphism
of the base P1; note that if the fibration is fiberwise invariant, ϕ acts as an homography in the generic fibers.
Hence J can be identified with the semi-direct product PGL(2;C(z1))oPGL(2;C).

We study the birational maps φ = (φ0,φ1,φ2) defined on C3 = (z3 = 1) ⊂ P3 that preserve either the
contact standard form ω, or the contact structure c(ω) associated to ω. In other words we would like to
describe the groups Bir(P3)ω and Bir(P3)c(ω) and also their elements.

Let us now illustrate a fundamental difference between Bir(P3)ω and Bir(P3)c(ω): the first group pre-
serves the fibration associated to ∂

∂z2
whereas the second doesn’t.

Proposition 4.6. If φ belongs to Bir(P3)ω, then φ∗
∂

∂z2
= ∂

∂z2
.

In particular if φ belongs to Bir(P3)ω, then

φ =
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)

)
and the map

ς : Bir(P3)ω −→ Bir(P2)η,
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)

)
7→
(
φ0(z0,z1),φ1(z0,z1)

)
is a morphism.
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Remark 4.7. The proof is similar to the proof of Proposition 3.1.

Remark 4.8. The first assertion of Proposition 4.6 is not true for the group Bir(P3)c(ω); indeed let us
consider the map ψ defined by

ψ =

(
z0

(1+ z2)2 ,z1,
z2

1+ z2

)
;

it belongs to Bir(P3)c(ω) and does not preserve the fibration associated to the vector field ∂

∂z2
.

5. A P.D.E. APPROACH

Let φ = (φ0,φ1,φ2) be in Bir(P3)c(ω); then φ∗ω =V (φ)ω for some rational function V (φ). One inherits a
map V from Bir(P3)c(ω) into the set of rational functions in z0, z1 and z2. The equality φ∗ω =V (φ)ω gives
the following system (?) of P. D. E.:

φ0
∂φ1
∂z0

+ ∂φ2
∂z0

= 0 (?1)

φ0
∂φ1
∂z1

+ ∂φ2
∂z1

=V (φ)z0 (?2)

φ0
∂φ1
∂z2

+ ∂φ2
∂z2

=V (φ) (?3)

Thanks to (?2) and (?3) one gets

φ0

(
∂φ1

∂z1
− z0

∂φ1

∂z2

)
+

(
∂φ2

∂z1
− z0

∂φ2

∂z2

)
= 0 (?4)

Equation (?1) has a special family of solutions: maps for which both φ1 or φ2 do not depend on z0 (note
that if φ1 (resp. φ2) does not depend on z0 then (?1) implies that φ2 (resp. φ1) also); in that case we can then
compute φ0 thanks to (?4). Taking (φ1,φ2) in Bir(P2) we get elements in imK ; we will called this family
of solutions Klein family. Note that this family is a group denoted K , the Klein group.

Proposition 5.1. The elements of K are of the following type− ∂φ2
∂z1

+ z0
∂φ2
∂z2

∂φ1
∂z1
− z0

∂φ1
∂z2

,φ1(z1,z2),φ2(z1,z2)


with (φ1,φ2) in Bir(P2).

Assume now that φ1 or φ2 really depends on z0 (i.e. that φ does not belong to the Klein family). Then
(?1) and (?4) imply (

∂φ2

∂z1
− z0

∂φ2

∂z2

)
∂φ1

∂z0
=

(
∂φ1

∂z1
− z0

∂φ1

∂z2

)
∂φ2

∂z0
(?5)

One can rewrite (?5) as
∂φ2
∂z1
− z0

∂φ2
∂z2

∂φ2
∂z0

=

∂φ1
∂z1
− z0

∂φ1
∂z2

∂φ1
∂z0

.

Denote by α the map from Bir(P3)c(ω) to the set of rational functions in z0, z1 and z2 defined by α(φ) = ∞

if φ belongs to K and

α(φ) =

∂φ2
∂z1
− z0

∂φ2
∂z2

∂φ2
∂z0

=

∂φ1
∂z1
− z0

∂φ1
∂z2

∂φ1
∂z0
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otherwise.
If φ1 and φ2 are some first integrals of

Zφ = α(φ)
∂

∂z0
− ∂

∂z1
+ z0

∂

∂z2
,

then (?5) is satisfied. One thus gets φ0 from (?1). Note that such a φ is not always birational. But one can
get a lot of birational examples by this way.

For instance when α(φ)≡ 0 one obtains a family of rational maps solutions of (?) and Legendre involu-
tion is one of them. The set of birational maps of that family is called Legendre family, i.e. it is the set of
birational maps of the following form(

−
∂

∂z0

(
φ2
(
z0,−(z2 + z0z1)

))
∂

∂z0

(
φ1
(
z0,−(z2 + z0z1)

)) ,φ1
(
z0,−(z2 + z0z1)

)
,φ2
(
z0,−(z2 + z0z1)

))
.

Remark 5.2. The Legendre family composed with the Legendre involution (right composition) yields to
the Klein family.

Definition. Let γ be an irreducible curve; γ is a legendrian curve if s∗γ ω = 0 where sγ denotes a local
parametrization of γ.

Remark 5.3. Elements of the Klein family preserve the fibration
{

z1 = cst, z2 = cst
}

; note that its fibers
are legendrian curves. The Legendre involution sends the fibration

{
z0 = cst, z2 + z0z1 = cst

}
onto

{
z1 =

cst, z2 = cst
}

. Then of course if one conjugates the Klein family by the Legendre involution one gets a
family that preserves the fibration by legendrian curves

{
z0 = cst, z2 + z0z1 = cst

}
.

A direct computation implies:

Proposition 5.4. Let φ = (φ0,φ1,φ2) be a contact birational map of P3.
The map φ conjugates the foliation induced by Zφ to the foliation induced by ∂

∂z0
.

As a consequence the field of the rational first integrals of Zφ is generated by φ1 and φ2.

5.1. Actions of K and Bir(P3)ω on Bir(P3)c(ω). The left translation action of K on Bir(P3)c(ω) is given
by

(ψ,φ) ∈K ×Bir(P3)c(ω) −→ ψφ ∈ Bir(P3)c(ω).

Take φ and ψ in Bir(P3)c(ω) such that α(φ) = α(ψ), then ψ1 and ψ2 are first integrals of Zφ and by Propo-
sition 5.4

ψ1 = ϕ1(φ1,φ2), ψ2 = ϕ2(φ1,φ2)

where ϕ = (ϕ1,ϕ2) is birational. Hence

ψφ
−1 =

(
ψ0 ◦φ

−1,ϕ1(z1,z2),ϕ2(z1,z2)
)

belongs to K ; in other words φ and ψ are in the same K -orbit.
Assume now that ψ = κφ where κ denotes an element of K . Then the foliations defined by Zφ and Zψ

coincide because they have the same set of first integrals. As a consequence α(φ) = α(ψ).
Hence one can state:

Theorem 5.5. The map α is a complete invariant of the left translation action of K on Bir(P3)c(ω), that is
for any φ and ψ in Bir(P3)c(ω) one has α(φ) = α(ψ) if and only if ψφ−1 belongs to K .

Question 1. Is the map α surjective ?
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Let us consider the following differential equation

y′′ = F(x,y,y′) (5.1)

where F denotes a rational function. Set y′ = u, then

(5.1)⇔


du
dt = F(x,y,u)
dy
dt = u
dx
dt = 1

So one can associate to (5.1) the following vector field

Z = F
∂

∂u
+u

∂

∂y
+

∂

∂x
.

We say that (5.1) is rationally integrable if the vector field Z has two first integrals r1 and r2 rationally
independent: dr1∧dr2 6≡ 0.

For generic γ and β in C the differential equation y′′+ γy′+ βy = 0 is not rationally integrable; as a
consequence −γz0−βz2 is not in the image of α. The first Painlevé equation gives examples of polynomial
of degree 2 that does not belong to imα:

Theorem 5.6 ([12]). The equation P1
y′′ = 6y2 + x

is not rationally integrable.

If we come back with our notations it means that 6z2
2− z1 is not in the image of α.

Remark 5.7. Indeed all generic Painlevé equations give rise to rational functions that do not belong to imα.

Nevertheless one can easily obtain examples of elements in the image of α:

Examples 5.8. — If φ =
(

z0
β
,z0 +βz1,z2−

z2
0

2β

)
with β ∈ C∗, then α(φ) = β.

— If
φ =

(
z0,z1 +P(z0),z2 +Q(z0)

)
with P, Q in C[z0] such that Q′(z0) =−z0P′(z0), then α(φ) = 1

P′(z0)
.

— If
φ =

(
− z1,z0 +P(z1),z2 + z0z1 +Q(z1)

)
with P, Q in C[z1] such that Q′(z1) = z1P′(z1) then α(φ) = P′(z1).

Consider the left translation action of Bir(P3)ω on Bir(P3)c(ω) defined by

(ψ,φ) ∈ Bir(P3)ω×Bir(P3)c(ω) −→ ψφ ∈ Bir(P3)c(ω).

Theorem 5.9. The map V is a complete invariant of the left translation action of Bir(P3)ω on Bir(P3)c(ω):
for any φ, ψ in Bir(P3)c(ω) one has V (φ) =V (ψ) if and only if ψφ−1 belongs to Bir(P3)ω.

Proof. Let φ be a contact birational map of P3. Obviously ( f φ)∗ω =V (φ)ω for any f ∈ Bir(P3)ω.
Let us now consider two contact birational maps φ and ψ of P3 such that V =V (φ) =V (ψ). On the one

hand
(φ−1)∗ψ∗ω = (φ−1)∗V (φ)ω =V ◦φ

−1 (φ−1)∗ω

and on the other hand composing φ∗ω =V ω by (φ−1)∗ one gets

φ
∗
ω =V ω⇒ (φ−1)∗(φ∗ω) = (φ−1)∗(V ω)⇒ ω =V ◦φ

−1 (φ−1)∗ω.

As a consequence (φ−1)∗ψ∗ω = ω, that is ψφ−1 belongs to Bir(P3)ω. �
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Proposition 5.10. If φ and ψ are two contact birational maps of P3 such that α(φ)=α(ψ) and V (φ)=V (ψ),
then ψφ−1 belongs to{(

z0−b′(z1)

ν′(z1)
,ν(z1),z2 +b(z1)

)
|b ∈ C(z1), ν ∈ PGL(2;C)

}
= K ∩Bir(P3)ω.

Proof. Since both α(φ) = α(ψ) and V (φ) =V (ψ) the map ψφ−1 is an element of Bir(P3)ω∩K . One gets
the result from the descriptions of the Klein family and of Bir(P3)ω (Proposition 3.1). �

Let us now give some examples of V (φ).

Examples 5.11. — If φ belongs to K , then

V (φ) =

∂φ1
∂z1

∂φ2
∂z2
− ∂φ1

∂z2

∂φ2
∂z1

∂φ1
∂z1
− z0

∂φ1
∂z2

.

— If

φ =

(
1

nzn−1
0 z2 +(n+1)zn

0(z1 +1)
,zn

0 (z0 + z2 + z0z1) ,−z0

)
with n ∈ Z, then V (φ) = z0

(n+1)z0z1+nz2+(n+1)z0
.

— If

φ =

(
(z1− z0)

2

2z0z1 +2z2− z2
0
,

2z2 + z2
0

z1− z0
,z1− z0

)
,

then V (φ) = 2(z0−z1)

z2
0−2z0z1−2z2

.

Remark 5.12. If φ belongs to Bir(P3)c(ω), then φ∗ω =V (φ)ω and φ∗(ω∧dω) =V (φ)2ω∧dω and det jacφ

is a square. This gives some constraint on V (φ).

As previously we can ask: is V surjective ? The answer is no. Indeed let us assume that there exists

φ ∈ Bir(P3)c(ω) such that V (φ) = z2. Then φ0dφ0 +dφ2 = z0z2dz1 +d
(

z2
2
2

)
and dφ0∧dφ1 = d(z0z2)∧dz1.

Since the fibers of (z0z2,z1) are connected one can write φ0 as ϕ0(z0z2,z1) and φ1 as ϕ1(z0z2,z1). Then

φ∗ω =V (φ)ω implies that φ2−
z2
2
2 = ϕ2(z0z2,z1). In other words

φ =

(
ϕ0(z0z2,z1),ϕ1(z0z2,z1),ϕ2(z0z2,z1)+

z2
2
2

)
.

But φ◦
(

z0
z2
,z1,z2

)
is clearly not birational so does φ: contradiction.

6. INVARIANT FORMS AND VECTOR FIELDS

The next statement deals with flows in Bir(P3)ω (see [13] for a definition).

Proposition 6.1. Let φt be a flow in Bir(P3)ω. Then φt has a first integral depending only on (z0,z1) and
with rational fibers.

In other words
φt =

(
ϕt(z0,z1),z2 +bt(z0,z1)

)
where ϕt belongs, up to conjugacy, to J and bt to C(z0,z1).
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Proof. Let χ be the infinitesimal generator of φt , i.e.

χ =
∂φt

∂t

∣∣∣
t=0

.

By derivating φ∗t ω = ω with respect to t one gets that the Lie derivative Lχω is zero. Set χ =
2

∑
i=0

χi
∂

∂zi
, hence

Lχω = ιχdω+dιχω = χ0dz1 + z0dχ1 +dχ2

and so

Lχω =

(
z0

∂χ1

∂z0
+

∂χ2

∂z0

)
dz0 +

(
χ0 + z0

∂χ1

∂z1
+

∂χ2

∂z1

)
dz1 +

(
z0

∂χ1

∂z2
+

∂χ2

∂z2

)
dz2.

In particular z0χ1 +χ2 = γ(z0,z1), then χ0 +
∂

∂z1
(z0χ1 +χ2) = 0 so χ0 =− ∂γ

∂z1
and finally χ1 =

∂γ

∂z0
.

If γ is constant, then χ = ∂

∂z2
, that is φt = (z0,z1,z2 +βt) with β ∈ C.

Let us now assume that γ is non-constant; one has

χ =− ∂γ

∂z1

∂

∂z0
+

∂γ

∂z0

∂

∂z1
+

(
γ(z0,z1)− z0

∂γ

∂z0

)
∂

∂z2

and γ is a first integral of χ. For all t

φt =
(
φ0,t(z0,z1),φ1,t(z0,z1),z2 +bt(z0,z1)

)
and the function γ is invariant by φt and as a consequence by the flow ϕt . The fibers of γ in C2 (up to
compactification/normalization) are rational or elliptic since they own a flow. As 〈ϕt〉 is uncountable they
have to be rational ([9]) and up to conjugacy ϕt belongs to J . �

The following examples contain many flows.

Example 6.2. The elements of Aut(P3)c(ω) can be written(
εz0 +λ,βz1 + γ,−βλz1 + εβz2 +δ

)
with ε, β in C∗ and λ, γ, δ in C. The group Aut(P3)c(ω) acts transitively on C3 = {z3 = 1}.

Examples 6.3. a) For any ε, β, γ and δ in C such that εδ−βγ 6= 0, the map(
(γz1 +δ)2

εδ−βγ
z0,

εz1 +β

γz1 +δ
,z2

)
belongs to Bir(P3)ω. These maps form a group contained in imK and isomorphic to PGL(2;C).

b) The birational maps given by

—
(
z0,z1 +ϕ(z0),z2 +ψ(z0)

)
with z0ϕ′(z0)+ψ′(z0) = 0,

—
(
z0−ψ′(z1),z1,z2 +ψ(z1)

)
belong to Bir(P3)ω. Any of these families forms an abelian group.

The fact that an element of Bir(P3)c(ω) preserves a vector field and the fact that it preserves a contact
form are related:

Proposition 6.4. Let φ be a contact birational map of P3. There exist a contact form Θ colinear to ω such
that φ∗Θ = Θ if and only if V (φ) can be written U

U◦φ for some rational function U . In that case φ preserves
the Reeb flow associated to Θ, so a foliation by curves.
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Proof. Assume that such a Θ exists. On the one hand φ∗ω =V (φ)ω and on the other hand Θ =Uω. Hence

φ
∗
Θ =U ◦φ · φ∗ω =U ◦φ · V (φ)ω =

U ◦φ

U
· V (φ)Θ

and so if such U exists, one has V (φ) = U
U◦φ .

Reciprocally if φ ∈ Bir(P3)c(ω) rBir(P3)ω satisfies φ∗ω = U
U◦φ ω for some rational function U , then

φ∗Θ = Θ where Θ =Uω. �

Examples 6.5. — First consider the Legendre involution L = (z1,z0,−z2− z0z1). As we have seen
V (L) =−1. One can check that U = z2 +

z0z1
2 suits.

— For an element φ in Aut(P3)c(ω)

φ = (εz0 +λ,βz1 + γ,−βλz1 + εβz2 +δ)

with ε, β in C∗ and λ, γ, δ in C (Example 6.2) we have V (φ) = εβ. If

U =
εβ

εβz0z1 + εγz0 +βλz1 +λγ

then V (φ) = U
U◦φ .

Proposition 6.6. Let φ be an element of Bir(P3)c(ω)rBir(P3)ω. Assume that φ preserves a vector field χ

non-tangent to ω. Then φ preserves a contact form ω′ colinear to ω.

Remark 6.7. Under these assumptions φ preserves the vector field χ and the Reeb vector field Z associated
to ω′. With the previous notations if f = z0χ1 + χ2 and g = z0Z1 + Z2 one has V (φ) = f◦φ

f = g◦φ
g . In

particular if H = f/g is non-constant, then H is non-constant and invariant: H ◦φ = H.

Proof of Proposition 6.6. Write χ as χ0
∂

∂z0
+χ1

∂

∂z1
+χ2

∂

∂z2
and φ as (φ0,φ1,φ2). Then φ∗χ = χ if and only

if dφi(χ) = χi ◦φ for i = 0, 1 and 2. Therefore φ∗ω(χ) =V (φ)ω(χ) can be rewritten

φ0dφ1(χ)+dφ2(χ) = φ0χ1 ◦φ+χ2 ◦φ =V (φ)(z0 χ1 +χ2).

The vector field χ is not tangent to ω, i.e. ω(χ) 6≡ 0 or in other words z0χ1 +χ2 6≡ 0 and so

V (φ) =
(z0χ1 +χ2)◦φ

z0χ1 +χ2
.

As a consequence φ preserves a contact form ω′ colinear to ω (Proposition 6.4). �

Remark 6.8. Let φ∈Bir(P3)c(ω)rBir(P3)ω. Assume that there exists a vector field χ such that φ∗χ =Wχ.
If W can be written U◦φ

U , then φ preserves the vector field Y =Uχ. According to Proposition 6.6 the map φ

belongs to Bir(P3)ω′ where ω′ denotes a contact form colinear to ω.

7. REGULAR BIRATIONAL MAPS

Let ei be the point of P3
C whose all components are zero except the i-th.

Let us denote by H∞ the hyperplane z3 = 0. As H∞ is the unique invariant surface of c(ω) one has the
following statement:

Proposition 7.1. The hyperplane H∞ is either preserved, or blown down by any element of Bir(P3)c(ω).
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Example 7.2. Let ϕ be a birational map of the complex projective plane; K (ϕ) is polynomial if and only if
ϕ =

(
βz1 + γ,δz2 +P(z1)

)
with P ∈ C[z1]; remark that such a ϕ is a Jonquières polynomial automorphism.

In that case

K (ϕ) =

(
1
β

(
δz0−

∂P(z1)

∂z1

)
,βz1 + γ,δz2 +P(z1)

)
.

Note that degP = 1 if and only if K (ϕ) is an automorphism of P3. If degP > 1, then IndK (ϕ) =
{

z1 =

z3 = 0
}

and H∞ is blown down onto e3.

Proposition 7.1 naturally implies the following definition. We say that φ ∈ Bir(P3)c(ω) is regular at
infinity if H∞ is preserved by φ and if φ|H∞

is birational. We denote by Bir(P3)
reg
c(ω)

(
resp. Bir(P3)

reg
ω

)
the

set of regular maps at infinity that belong to Bir(P3)c(ω)
(
resp. Bir(P3)ω

)
.

Example 7.3. Of course the elements of Aut(P3)c(ω)
(
Example 6.2

)
are regular at infinity.

The contact structure is also given in homogeneous coordinates by the 1-form

ω = z0z3dz1 + z2
3dz2− (z0z1 + z2z3)dz3.

Let φ be an element of Bir(P3)
reg
c(ω); denote by φ its homogeneization. Since φ∗ω = V (φ)ω one has φω =

V (φ)ω where V (φ) is a homogeneous polynomial. With these notations one can state:

Lemma 7.4. Let φ be a contact birational map of P3. Assume that φ either preserves H∞, or blows down H∞

onto a subset contained in H∞.
The map φ is regular if and only if V (φ) does not vanish identically on H∞.

Proof. Let us work in the affine chart z2 = 1. On the one hand

ω∧dω =−z2
3dz0∧dz1∧dz3

and on the other hand
φ
∗(ω∧dω) =V (φ)

2
ω∧dω.

Hence
φ

2
3 det jacφ =V (φ)

2
z2

3 (7.1)

where φ3 is the third component of φ expressed in the affine chart z2 = 1.

Suppose that φ is regular. Let p be a generic point of H∞. As φ is regular, φ|H∞
is a local diffeomorphism

at p. Since φ is birational and p is generic, φ,p is a local diffeomorphism. As a consequence det jacφ is an
unit at p; moreover the invariance of H∞ by φ implies that φ3 = z3u where u is a unit. Therefore V (φ) does
not vanish at p.

Conversely assume that V (φ) does not vanish identically on H∞. As φ either preserves H∞, or con-
tracts H∞ onto a subset in H∞, one can write φ3 as z3P. As a result

(7.1) ⇔ P2 det jacφ =V (φ)
2

Since V (φ) does not vanish the map φ is then regular at infinity. �

Corollary 7.5. One has Bir(P3)
reg
ω = Aut(P3)ω.

Proof. Let φ be an element of Bir(P3)
reg
ω . From φ∗ω = ω, one gets with the previous notations φ

∗
ω = zn

3 ω

for some integer n. Lemma 7.4 implies that n = 0, that is φ
∗
ω = ω; then looking at the degree of the

members of this equality one gets degφ = 1. �
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Example 7.6. The group Bir(P3)
reg
c(ω) contains blow-ups in restriction to H∞. Indeed let us look at ω in the

affine chart z2 = 1 and consider the birational map φ given in z2 = 1 by

φ =
(
z0,z0z1− z3,z0z3

)
.

Since (φn)∗ω = z−n
0 ω, φn ∈ Bir(P3)

reg
c(ω)rBir(P3)ω for any n 6= 0; in restriction to H∞ the map φn coincides

with (z0,z1zn
0).

Let us note that Indφn = {e1}∪ (z0 = z2 = 0), that z0 = 0 is contracted by φ onto (z0 = z2 = 0) and
z2 = 0 onto (z0 = z3 = 0). Besides Indφ−n = {z0 = z2 = 0}∪{z0 = z3 = 0}, (z0 = 0) is blown down by φ−1

onto e2 and (z2 = 0) onto e1.

Remark 7.7. The group generated by Examples 7.3 and 7.6 is in restriction to H∞ and in the affine chart
z2 = 1

〈
(

γz0

βz1 +λ
,

λz1

γ(βz1 +λ)

)
, (z0,z0z1) |γ, β ∈ C∗, λ ∈ C〉;

it is of course a subgroup of Bir(P3)
reg
c(ω).

Question 2. Does this group coincide with Bir(P3)
reg
c(ω) ?

Examples 7.8. a) If φ is either a monomial map (i.e. a map of the form (zp
1zq

2,z
r
1zs

2) with
[

p q
r s

]
in

GL(2;Z)), or a non-linear polynomial automorphism, or a Jonquières map, then K (φ) is not regular
at infinity.

b) The map of order 5 given by
(
− z2+1+z0z1

z0z2
1

,z2,
z2+1

z1

)
, the map

(
z0

(z2+1)2 ,z1,
z2

z2+1

)
and Examples 6.3

a) are non-regular at infinity.
c) Any map of the form (

1
z0
− f ′(z2),z2,z1 + f (z2)

)
is in Bir(P3)c(ω)rBir(P3)ω and is not regular at infinity.

d) Elements of the Legendre family are not regular at infinity.

8. EXACT BIRATIONAL MAPS

8.1. First properties. Recall that an element φ of Bir(P2)η is exact if it can be lifted via ς to Bir(P3)ω, or
equivalently if it belongs to imς. The following statement allows to determine such maps.

Theorem 8.1. A map
(
φ0(z0,z1),φ1(z0,z1)

)
∈Bir(P2)η is exact if and only if the closed form φ0dφ1−z0dz1

has trivial residues. In that case φ0dφ1− z0dz1 =−db with b ∈ C(z0,z1) and

φ =
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)

)
belongs to Bir(P3)ω.

Proof. Remark that φ =
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)

)
belongs to Bir(P3)ω if and only if

φ0dφ1− z0dz1 =−db;

in other words φ0dφ1− z0dz1 is not only a closed rational 1-form but also an exact one. Recall that a closed
rational 1-form Θ can be written ([14])

Θ = ∑
i

λi
d fi

fi
+dg



BIRATIONAL MAPS PRESERVING THE CONTACT STRUCTURE ON P3
C 19

where the λi are complex numbers and the fi’s and g are rational. The 1-form Θ is exact (i.e. the differential
of a rational function) if λi = 0 for all i, that is if the residues of Θ are trivial. �

Example 8.2. The set {(
A(z0),

z1

A′(z0)

)
|A ∈ PGL(2;C)

}
is a subgroup of exact maps isomorphic to PGL(2;C); it is a direct consequence of Theorem 8.1.

An other direct consequence of Theorem 8.1 is the following statement:

Corollary 8.3. The maps φ = (φ0,φ1) of Bir(P2)η such that φ0dφ1−z0dz1 has trivial residues form a group.

8.2. Involutions. Bertini gives a classification of birational involutions ([6]): a non-trivial birational in-
volution is conjugate to either a Jonquières involution of degree ≥ 2, or a Bertini involution, or a Geiser
involution. More recently Bayle and Beauville precise it ([5]); the map which associates to a birational
involution of P2 its normalized fixed curve establishes a one-to-one correspondence between:

— conjugacy classes of Jonquières involutions of degree d and isomorphism classes of hyperelliptic
curves of genus d−2 (d ≥ 3);

— conjugacy classes of Geiser involutions and isomorphism classes of non-hyperelliptic curves of
genus 3;

— conjugacy classes of Bertini involutions and isomorphism classes of non-hyperelliptic curves of
genus 4 whose canonical model lies on a singular quadric.

Besides the Jonquières involutions of degree 2 form one conjugacy class.

Proposition 8.4. Let I ∈ Bir(P2) be a birational involution. If I is conjugate to either a Geiser involution,
or a Bertini involution, or a Jonquières involution of degree ≥ 3, then I does not belong to Bir(P2)η.

Hence the only involutions in Bir(P2)η are birationally conjugate to (−z0,−z1). Some of them can not
be lifted.

Proof. Let us consider such an involution, then the set of fixed points contains a curve Γ of genus > 0 and
thus it is not contained in the line at infinity. The jacobian determinant of I at a fixed point of Γ is −1
hence I does not preserve η.

Contrary to the polynomial case (Proposition 3.8) Bir(P2)η contains periodic elements that are non-
exact. Consider the map (φ0(z0,z1),φ1(z0,z1)) where

φ0(z0,z1) =−z0 +
1

z2
1−1

, φ1(z0,z1) =−z1;

it is a birational involution that preserves η. Furthermore the 1-form φ0dφ1− z0dz1 has non-trivial residues
and so is not exact (Theorem 8.1). �

8.3. Quadratic maps. Any birational map of P2 can be written as a composition of birational maps of
degree ≤ 2 (see for instance [1]). The three following maps are birational and of degree 2

σ : P2 99K P2 (z0 : z1 : z2) 99K (z1z2 : z0z2 : z0z1)

ρ : P2 99K P2 (z0 : z1 : z2) 99K (z0z2 : z0z1 : z2
2)

τ : P2 99K P2 (z0 : z1 : z2) 99K (z0z2 + z2
1 : z1z2 : z2

2)

Denote by B̊ir2(P2) the set of birational maps of P2 of degree 2 exactly; for any φ ∈ Bir(P2) set

O(φ) =
{
gφh−1 |g, h ∈ Aut(P2)

}
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one has ([13])
B̊ir2(P2) = O(σ)∪O(ρ)∪O(τ).

Let us now describe the quadratic birational maps that preserve η; note that τ preserves η. Consider ϒ

the set of pairs (g(γ),g(β)) where

g(β) =

(
β0z0 +β1z1 +β2

β6z0 +β7z1 +β8
,

β3z0 +β4z1 +β5

β6z0 +β7z1 +β8

)
in Aut(P2)×Aut(P2) such that

γ6 = 0, γ7β3 = 0, γ7β4 = 0, detg deth=
(
γ7β5 + γ8

)3
.

Proposition 8.5. A quadratic birational map that preserves η belongs to O(τ).
More precisely a birational map belongs to B̊ir2(P2)∩Bir(P2)η if and only if it can be written g(z0 +

z2
1,z1)h with (g,h) in ϒ.

Proof. Let ψ be in Bir(P2)η∩ B̊ir2(P2); it is sufficient to prove that ψ 6∈ O(σ)∪O(ρ).
Assume by contradiction that ψ belongs to O(σ), i.e. ψ = gσh with g = g(γ), h−1 = g(β). One can

rewrite ψ∗η = η as σ∗g∗η = h∗η; this last one relation is equivalent in the affine chart z3 = 1 to

(detg)z0z1(
γ6z1 + γ7z0 + γ8z0z1

)3 η =
deth(

β6z0 +β7z1 +β8
)3 η (8.1)

the coefficients γ6 and γ7 have thus to be zero and (8.1) is equivalent to

detg
γ3

8z2
0z2

1
η =

deth(
β6z0 +β7z1 +β8

)3 η

and this equality never holds.

A similar argument allows to exclude the case: ψ ∈ O(ρ). This proves the first assertion.

Let us consider ψ = gτh in B̊ir2(P2)∩Bir(P2)η with g= g(γ) and h= g(β). The 1-form η has a line of
poles of order 3 at infinity so does ψ∗η and so does (z0 + z2

1,z1)
∗g∗η. But

(z0 + z2
1,z1)

∗g∗η =
detg(

γ6(z0 + z2
1)+ γ7z1 + γ8

)3 η

therefore γ6 has to be 0. This implies that

ψ
∗
η =

detg deth(
γ7(β3z0 +β4z1 +β5)+ γ8

)3 η

as a consequence ψ∗η = η if and only if

γ6 = 0, γ7β3 = 0, γ7β4 = 0, detg deth=
(
γ7β5 + γ8

)3
.

�

Theorem 8.6. A generic element of B̊ir2(P2)∩Bir(P2)η is not exact.

In fact there exists a non-empty Zariski open subset ϒ̃ of ϒ such that no element of{
g(γ)τg(β) |(g(γ),g(β)) ∈ ϒ̃

}
is exact.
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Proof. It is sufficient to exhibit a non-exact element. Let us recall that the birational map φ = (φ0,φ1)

belongs to B̊ir2(P2)∩Bir(P2)η if and only if it can be written as g(γ)τg(β) with (g(γ),g(β)) in ϒ (Propo-
sition 8.5).

If we consider the special case γi = βi = 0 for any i ∈ {1, 2, 3, 4, 6, 8}, γ5 = γ7 and γ0 =
γ7β2

5
β0β7

then

z0dz1−φ0dφ1 =−
β2

5dz1

β0β7z1

But detg(β) 6= 0 so β5 6= 0 and φ can not be lifted to Bir(P3)ω.

The set ϒ is rational hence irreducible, this yields the result. �

8.4. Examples of exact maps.

Proposition 8.7. Let ϕ be an automorphism of P2; the map ϕ is exact if and only if ϕ is affine in the affine
chart z2 = 1 and preserves η, that is

ϕ =
(
δ0z0 +β0z1 + γ0,δ1z0 +β1z1 + γ1

)
with δi, βi, γi in C such that δ0β1−δ1β0 = 1.

Proof. The form η has a pole at infinity so if ϕ ∈ Aut(P2) preserves η, it preserves the pole. Hence ϕ

belongs to Aff2, so in particular to Aut(C2)η and then ϕ is exact. �

We will now consider the subgroup of Bir(P2)η that preserves the fibration z0z1 = cst fiberwise. The
following statement says that this subgroup is not isomorphic to the subgroup of Bir(P2)η that preserves
z1 = cst fiberwise.

Proposition 8.8. The set

Λ =

{(
z0 a(z0z1),

z1

a(z0z1)

)
|a ∈ C(t)

}
is a subgroup isomorphic to the uncountable abelian subgroup

{
(a(z1)z0,z1) |a ∈ C(z1)

∗} and is contained
in Bir(P2)η.

Any birational map of the form
(

z0 a(z0,z1),
z1

a(z0,z1)

)
that preserves η belongs to Λ.

A generic element of Λ is in Bir(P2)η but not in imς. More precisely
(

z0 a(z0z1),
z1

a(z0z1)

)
∈ Λ is exact if

and only if a is a monomial.
If a is a monomial, i.e. a(z0z1) = czµ

0zµ
1 with c ∈ C∗ and µ ∈ Z, then the ς-lifted maps are(

z0 czµ
0zµ

1,
z1

czµ
0zµ

1
,z2−µz0z1 +β

)
, β ∈ C

These maps form a subgroup of Bir(P3)ω isomorphic to C×C∗×Z.

Proof. The first assertion follows from(
z0 a(z0z1),

z1

a(z0z1)

)
= (z0,z0z1)

−1(z0 a(z1),z1)(z0,z0z1)

A direct computation shows that Λ⊂ Bir(P2)η.
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A birational map
(

z0 a(z0,z1),
z1

a(z0,z1)

)
preserves η if and only if(
z0

∂

∂z0
− z1

∂

∂z1

)
(a) = 0

that is, if and only if a = a(z0z1).

Let us consider φ = (φ0,φ1) =
(

z0 a(z0z1),
z1

a(z0z1)

)
an element of Λ; then

φ0dφ1− z0dz1 = t
a′(t)
a(t)

dt

with t = z0z1. Let us write a as follows:

a(t) =
n

∏
i=1

(t− ti)µi

then

t
a′(t)
a(t)

dt = t
n

∑
i=1

µi

t− ti
dt

and the residues of this 1-form are trivial if and only if a is monomial, i.e. a(t) = ctµ where c ∈ C∗ and
µ ∈ Z. �

We can determine J ∩Bir(P2)η and the exact maps in J ∩Bir(P2)η.

Proposition 8.9. A Jonquières map of P2 preserves η if and only if it can be written as follows(
(γz1 +δ)2

εδ−βγ
z0 + r(z1),

εz1 +β

γz1 +δ

)
where r belongs to C(z1) and

[
ε β

γ δ

]
to PGL(2;C).

Furthermore it is exact if it has the following form(
(γz1 +δ)2

εδ−βγ
z0 +P(z1)(γz1 +δ)2,

εz1 +β

γz1 +δ

)
where P denotes an element of C[z1].

Let us now look at monomial maps that belong to Bir(P2)η and those who are exact.

Proposition 8.10. A monomial map belongs to Bir(P2)η if and only if it can be written either(
γzp

0zp−1
1 ,

1
γ

z1−p
0 z2−p

1

)
(8.2)

or (
γzp

0zp+1
1 ,−1

γ
z1−p

0 z−p
1

)
(8.3)

with γ in C∗ and p in Z.
Furthermore any monomial map of Bir(P2)η is exact.
The ς-lifts of a map of type (8.2) are(

γzp
0zp−1

1 ,
1
γ

z1−p
0 z2−p

1 ,z2 +(p−1)z0z1 +β

)
β ∈ C
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similarly the ς-lifts of a map of type (8.3) are(
γzp

0zp+1
1 ,−1

γ
z1−p

0 z−p
1 ,z2 +(1− p)z0z1 +β

′
)

β
′ ∈ C

Remarks 8.11. — Both maps of type (8.2) and of type (8.3) preserve (z0z1)
2 = cst.

— Maps of type (8.2) form a group G1. Note that the matrices
[

p p−1
1− p 2− p

]
are in SL(2;Z); they

are stochastic up to transposition and have trace equal to 2. The group{[
p p−1

1− p 2− p

] ∣∣∣ p ∈ Z
}

is isomophic to Z. As a consequence G1 is isomorphic to C∗×Z.

The maps of type (8.3) don’t form a group. The corresponding matrices
[

p p+1
1− p −p

]
have

determinant −1, trace 0 and are stochastic up to transposition.

But the union of the maps of type (8.2) or (8.3) is a group which is a double extension of C∗×Z.

9. INDETERMINACY AND EXCEPTIONAL SETS

As we have seen if φ is a contact map, then H∞ is either preserved by φ, or blown down by φ (Propo-
sition 7.1). In case it is blown down, H∞ can be blown down onto a point or onto a curve; in this last
eventuality H∞ can be contracted onto a curve contained in H∞ (take for instance φ = K (z1,z1z2)). Note
also that H∞ can be contracted onto a curve not contained in H∞: the map K

(
z1
z2
, 1

z2

)
blows down H∞ onto

the legendrian curve z0 = z2 = 0. We will see that this is a general case and for any contracted surface:

Proposition 9.1. Let φ be a contact birational map of P3. Assume that φ blows down a surface S onto a
curve C . Then

— either C is contained in H∞,

— or C is an algebraic legendrian curve.

Corollary 9.2. Let φ be a contact birational map of P3. If C is a curve not contained in H∞ and blown-up
by φ on a surface distinct from H∞, then C is a legendrian curve.

Let us now give an example of maps of finite order that illustrates Proposition 9.6.

Example 9.3. Start with the birational map ϕ=
(

z2,
z2+1

z1

)
of order 5. The map K (ϕ)=

(
− z2+1+z0z1

z0z2
1

,z2,
z2+1

z1

)
blows down z2 =−z3 onto the legendrian curve (z2 = z1 + z3 = 0);

Proof of Proposition 9.1. We will distinguish the cases S = H∞ and S 6= H∞.
Let us start with the eventuality S = H∞. Suppose that C is not contained in H∞. Note that φ|H∞rIndφ is

holomorphic of rank ≤ 1. If p belongs to C r Indφ, then φ−1(p) is a curve contained in H∞; there exists a
curve C ′ transverse to {

φ
−1(p) | p ∈ C r Indφ

}
contained in H∞ and such that φ(C ′) = C . Consider a parametrization s of C ′; then t = φ◦s is a parametriza-
tion of C and

t∗ω = (φ◦ s)∗ω = s∗φ∗ω = s∗V (φ)ω =V (φ)◦ s · s∗ω = 0.
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Assume now that S 6= H∞ and C 6⊂ H∞. Set C = φ(S). Let us consider a generic point p of S . The
germ φ,p is holomorphic and φ(p) ∈ C does not belong to H∞. In particular the 3-form φ∗ω∧ dω is thus
holomorphic at p; in fact V (φ),p is holomorphic and as we have seen

φ
∗
ω∧dω =V (φ)2

ω∧dω.

Since S is blown down by φ, the jacobian determinant of φ is identically zero on S and then V (φ) vanishes
on S .

Assume that C is not a legendrian curve, then the restriction of ω to C in a neighborhood of φ(p) defines
a 1-form Θ on C without zero (let us recall that p is generic). As the restriction

φ,p|S ,p : S,p→ C,φ(p)

is locally a submersion, φ∗,p|S ,pΘ is a nonzero 1-form on S,p: contradiction with the fact that φ∗,pω vanishes
on S,p. �

There is no statement if φ ∈ Bir(P3)c(ω) blows down H∞ onto a point. Indeed

K
(

z1

z2
2
,

z1

z3
2

)
=

(
z2 +3z0z1

z2(z2−2z0z1)
,

z1

z2
2
,

z1

z3
2

)
contracts H∞ onto e3 6∈ H∞ but K (z1z2,z1z2

2) contracts H∞ onto e2 ∈ H∞. But we get some result when
φ ∈ Bir(P3)c(ω) blows down a surface distinct from H∞ onto a point.

Definition. Let φ be a contact birational map of P3. Let S = ( f = 0) be an irreducible surface blown down
by φ, and let p be a smooth point of S such that φ and V (φ) are holomorphic at p. The multiplicity of
contraction of φ at p is the greatest integer n such that f n

,p divides V (φ). One can check that n is independent
on p. The integer n is the multiplicity of contraction of φ on S .

Remark 9.4. Let φ be a contact birational map of P3. If φ is holomorphic at p ∈ P3 rH∞, then V (φ) is too.

Example 9.5. Let us consider the birational map φ defined in the affine chart z1 = 1 by

φ =

(
z0z2

3
(z2 + z3)2 ,

z2z3

(z2 + z3)
,z3

)
;

in this chart ω = dz2− z0+z2z3
z2
3

dz3 and one can check that V (φ) =
z2
3

z2+z32 . Furthermore H∞ is blown down

by φ onto the point (0,0,0) ; the multiplicity of contraction of φ on H∞ is thus 2.

Proposition 9.6. Let φ be a map of Bir(P3)c(ω) and let S be an irreducible surface distinct from H∞ blown
down by φ onto a point p. If the multiplicity of contraction of φ on S is 1, then p belongs to H∞.

Remark 9.7. As soon as the multiplicity of contraction of φ on S is > 1, the point p can be in P3 rH∞.
Let us consider the map of Bir(P3)c(ω) given in the affine chart z3 = 1 by(

z2(nz0z1− z2)

z2 +(1−n)z0z1
,z1zn−1

2 ,z1zn
2

)
with n ∈ Z. The surface z2 = 0 is blown down onto e3 6∈H∞. One can check that V (φ) =

z1zn
2

z2+(1−n)z0z1
so the

multiplicity of contraction of φ on z2 = 0 is n if n≥ 2 and 0 otherwise.

Proof of Proposition 9.6. Assume by contradiction that p = (p0, p1, p2) does not belong to H∞. Let ( f = 0)
be an equation of S ; as the multiplicity of contraction of φ on S is 1 one has V (φ)= fV1 with V1|S generically
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regular. There exists a point m ∈ S such that f,m is a submersion and φ is holomorphic at m. One has
φ,m = (p0 + f A, p1 + f B, p2 + fC) with A, B, C holomorphic and φ∗,mω =V (φ)ω can be rewritten

( f A+ p0)( f dB+Bd f )+( f dC+Cd f ) = fV1(z0dz1 +dz2) (9.1)

This implies that there exists C1 holomorphic such that p0B+C = fC1, i.e. C = fC1− p0B. Hence

(9.1)⇐⇒ f AdB+ABd f + f dC1 +2C1d f =V1(z0dz1 +dz2) (9.2)

The multiplicity of contraction of φ on S is 1 hence f does not divide V1. Then S is invariant by ω and
this gives a contradiction with the fact that H∞ is the only invariant surface of ω. �

For elements in Bir(P3)ω we only have one statement that includes both cases of a surface contracted
onto a point and onto a curve. Let us remark that in the case of a point, we don’t need the assumption about
the multiplicity of contraction; in the other one the statement shows that Proposition 9.1 applies to elements
of Bir(P3)c(ω)rBir(P3)ω.

Proposition 9.8. Let φ be a map of Bir(P3)ω. If S is a surface distinct from H∞ contracted by φ, then φ(S)
belongs to H∞.

Proof. From φ∗ω = ω one gets φ∗
(
ω∧dω

)
= ω∧dω = dz0∧dz1∧dz2. Suppose that for p∈ S generic φ(p)

does not belong to H∞. As codimIndφ ≥ 2, the map φ is holomorphic at p. Since φ preserves the volume
form, φ is a diffeomorphism; hence φ cannot blow down a subvariety onto a curve or a point not contained
in H∞. �

Example 9.9. If φ = (φ1,φ2) =
(
zp

1zq
2,z

r
1zs

2
)
, with

[
p q
r s

]
∈ SL(2;Z), then

K (φ) =

(
zr−p

1 zs−q
2
−rz2 + sz0z1

pz2−qz0z1
,zp

1zq
2,z

r
1zs

2

)
.

Note that for any
[

p q
r s

]
∈ SL(2;Z) the map K (φ) belongs to Bir(P3)c(ω)rBir(P3)ω.

For instance if
[

p q
r s

]
=

[
−1 0
0 −1

]
, i.e. if σ =

(
1
z0
, 1

z1

)
is the Cremona involution, then

K (σ) = K (σ−1) =

(
z0z2

1

z2
2
,

1
z1
,

1
z2

)
and IndK (σ) = {z0 = z2 = 0}∪{z0 = z3 = 0}∪{z1 = z2 = 0}∪{z1 = z3 = 0}; furthermore z2 = 0 and H∞

are blown down onto e1 and z1 = 0 onto e2.

Part 3. Some common properties

10. INVARIANT CURVES AND SURFACES

The following statement is a local statement of contact analytic geometry.

Proposition 10.1. Let φ be an element of Aut(C3)ω or Bir(P3)ω. Suppose that m is a periodic point of φ

and that there exists a germ of irreducible curve C invariant by φ, passing through m. Then
— either C is a curve of periodic points (i.e. φ`|C = id for some integer `),

— or C is a legendrian curve.

Let us note that according to Proposition 11.4 we know that such a situation often occurs.
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Proof. Assume that φ belongs to Aut(C3)ω. Up to considering a well-chosen iterate of φ let us assume
that m is a fixed point of φ. Let s 7→ γ(s) be a local parametrization of C at m. Up to reparametrization one
can suppose that γ(0) = m. Let ϕ be the "restriction" to C of φ, that is the local map ϕ : C,0→C defined by
ϕ(0) = 0 and

∀s ∈ C,0 φ(γ(s)) = γ(ϕ(s)).
On the one hand γ∗ω = ε(s)ds and on the other hand γ∗ω = γ∗φ∗ω = (φ◦ γ)∗ω so

ε(s)ds = ϕ
∗(ε(s)ds) = ε(ϕ)ϕ′ds.

Let us set ε̃(s) =
∫ s

0 ε(t)dt. One has (̃ε(ϕ))
′
= ε(ϕ)ϕ′ = ε(s) = (̃ε(s))′ hence ε̃(ϕ) = ε̃+ β for some

β ∈ C. As ϕ(0) = 0, one gets β = 0 and ε̃(ϕ) = ε̃. Then:
— either ε̃ = 0 therefore ε = 0 and C is a legendrian curve.
— or there exists some local coordinate for which ε̃ = z`, ϕ = e2iπk/` z and φ`|C = id.

�

If ϕ is a polynomial automorphism of C2 that preserves a curve distinct from the line at infinity, then ϕ

is conjugate to a Jonquières polynomial automorphism ([8]); in particular ϕ preserves a rational fibration.
We have a similar statement in dimension 3:

Proposition 10.2. If φ ∈ Aut(C3)ω preserves a surface, then

φ =
(
ϕ(z0,z1),z2 +b(z0,z1)

)
where ϕ is Aut(C2)-conjugate to a Jonquières polynomial automorphism.

Proof. Let us write φ as
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)

)
and set ϕ = (φ0,φ1).

First note that if b≡ 0 then φ0dφ1− z0dz1 = 0; as a result φ1 = φ1(z1) and ϕ is a Jonquières polynomial
automorphism.

Let us now assume that the surface S preserved by φ is described by

a`(z0,z1)z`2 +a`−1(z0,z1)z`−1
2 +a`−2(z0,z1)z`−2

2 + . . .= 0

where ai ∈ C[z0,z1], or equivalently by

z`2 + ã`−1(z0,z1)z`−1
2 + ã`−2(z0,z1)z`−2

2 + . . .= 0

where ãi = ai/a`. Writing that S is invariant by φ one gets that(
z2 +b(z0,z1)

)`
+ ã`−1

(
ϕ(z0,z1)

)(
z2 +b(z0,z1)

)`−1
+ ã`−2

(
ϕ(z0,z1)

)(
z2 +b(z0,z1)

)`−2
+ . . .

= z`2 + ã`−1(z0,z1)z`−1
2 + ã`−2(z0,z1)z`−2

2 + . . .

Looking at terms in z`−1
2 one gets that `b(z0,z1) = ã`−1(z0,z1)− ã`−1

(
ϕ(z0,z1)

)
.

— If ã`−1 is constant, then b≡ 0 and as we just see ϕ is a Jonquières polynomial automorphism.

— Otherwise φ is conjugate (in Bir(P3)) via
(

z0,z1,z2 +
ã`−1
`

)
to ψ = (ϕ,z2). The map ψ preserves

ω̃ = z0dz1 +d
(

z2 +
ã`−1
`

)
, the surface S̃ given by

z`2 + ã`−2(z0,z1)z`−2
2 + ã`−3(z0,z1)z`−3

2 + . . .= 0

and thus ãi(ϕ) = ãi. If one of the ãi is non-constant, then ϕ is a Jonquières polynomial automorphism.
Otherwise S̃ = ∪ j(z2 = c j); up to take an iterate ψk of ψ one can suppose that any z2 = c j is invariant.
Consider z2 = c0; up to a well-chosen translation (that belongs to Bir(P3)ω) the hypersurface z2 = 0 is
invariant, that is ψk is a Jonquières map and so does ψ. �
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Example 10.3. For any n≥ 1 consider φ =

(
z0 + zn

1,z1,z2−
zn+1
1

n+1

)
in Aut(C3)ω. The map ϕ = (z0 + zn

1,z1)

is a Jonquières polynomial automorphism. The surface S given by z2 +
z0z1
n+1 = 0, is invariant by φ. The

foliation induced by ω on S is described by the linear differential equation nz0dz1 − z1dz0. In fact the
functions z2 +

z0z1
n+1 and z1 are invariant by φ and the commutative Lie algebra generated by the vector fields

∂

∂z0
+ z1

n+1
∂

∂z2
and ∂

∂z2
are invariant by φ.

In general an element of Aut(C3)ω has no invariant surface. For instance there is no polynomial solution
to

−a
(
ϕ(z0,z1)

)
+a(z0,z1) =−

zn+1
1

n+1
+β

with ϕ = (z0 + zn
1,z1) as soon as β 6= 0.

Remark 10.4. If φ ∈ Bir(P3)ω preserves z2 = 0, then φ belongs to the Klein family; more precisely φ =(
z0

ν′(z1)
,ν(z1),z2

)
with ν ∈ PGL(2;C(z1)). Indeed since φ belongs to Bir(P3)ω,

φ =
(
φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)

)
.

But φ preserves z2 = 0 so b≡ 0 and φ∗ω=ω implies that φ1 = ν(z1) with ν∈ PGL(2;C(z1)) and φ0 =
z0

ν′(z1)
.

Of course there are more general contact maps that preserve z2 = 0; let us give some examples:

K
(

z1,
z2

a(z1)z2 +1

)
, K

(
z1 +P(z2),z2

)
where a ∈ C(z1)

∗ and P ∈ C[z1].

Let φ be an element of Bir(P3)ω. Suppose that φ preserves a surface S distinct from H∞. The contact
form is non-zero on S so induces a foliation F on S , necessarily invariant by φ; let us describe (S ,φ|S ,F ):

Proposition 10.5. Let φ be an element of Bir(P3)ω that preserves a surface distinct from H∞. Then φ

is Bir(P3)-conjugate to (ϕ(z0,z1),z2) with ϕ in Bir(P2). The map ϕ preserves a codimension 1 folia-
tion given by a closed 1-form. As a consequence φ preserves a "vertical" foliation and a rational func-
tion z2 + a(z0,z1).

Proof. Let us denote by S the surface invariant by φ =
(
ϕ(z0,z1),z2 +b(z0,z1)

)
with ϕ ∈ Bir(P2). One can

assume that S is given by
z`2 +a`−1(z0,z1)z`−1

2 + . . .= 0

The fact that S is invariant by φ implies that a`−1(z0,z1)−a`−1
(
ϕ(z0,z1)

)
= `b(z0,z1). Let us consider the

map ψ =
(

z0,z1,z2 +
a`−1(z0,z1)

`

)
. One has

φ̃ = ψφψ
−1 =

(
ϕ(z0,z1),z2 +b(z0,z1)−

a`−1(z0,z1)

`
+

a`−1
(
ϕ(z0,z1)

)
`

)
=
(
ϕ(z0,z1),z2

)
As S and ω are invariant by φ, the restriction φ|S preserves the foliation induced by ω on S , and φ̃ preserves
the "vertical" foliation given by z0dz1−da`−1(z0,z1). Therefore ϕ preserves a codimension 1 foliation given
by a closed 1-form. �

Example 10.6. If φ = (z2,z1zn
2), then K (φ) =

(
− zn

2
z0
+nz1,z1zn

2,z2

)
belongs to Bir(P3)c(ω)rBir(P3)ω pre-

serves the surface z1 = 0 and also z2 = cst.
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11. DYNAMICAL PROPERTIES

11.1. Periodic points. Let φ be a birational map of Pn; a point p is a periodic point of φ of period ` if φ

is holomorphic on a neighborhood of any point of {φ j(q) | j = 0, . . . , `−1} and if φ`(q) = q and φ j(q) 6= q
for 1≤ j ≤ `−1.

Recall that a polynomial automorphism of C2 of Hénon type (see [18]) has an infinite number of hyper-
bolic periodic points. For any of these points p of period `p there exists a stable manifold Ws(p) defined
as the set of points that move towards the orbit of p by positive iteration of ϕ`p ; such a Ws(p) is an im-
mersion from C to C2. Remark that even if Ws(m) 6= Ws(p) are different as soon as p and m have distinct
orbits one has Ws(m) = Ws(p). The Julia set of ϕ is the topological boundary of the set of points with
bounded positive orbits. One can prove that the Julia set of ϕ is equal to the closure of any of the stable
manifold. Hence its topology is very complicated: this set contains an infinite number of immersions of C
and pairwise distinct ([18]).

Example 11.1. Let us consider a polynomial automorphism ϕ of Hénon type given by ϕ= (βz1+z2
0,−γz0).

A ς-lift of ϕ to Aut(C3)c(ω) is

φ =
(

βz1 + z2
0,−γz0,γβz2 + γβz0z1 +

γ

3
z3

0

)
Take a periodic point (p0, p1) of ϕ of period k; then as φk =

(
ϕk(z0,z1),(γβ)kz2 + f (z0,z1)

)
one gets, as

soon as γβ is not a root of unity, that there exists p2 such that φk(p0, p1, p2) = (p0, p1, p2).

More generally, one can state:

Proposition 11.2. Let φ the element of Bir(P3)c(ω) of the following type

φ =
(
ϕ,det jacϕz2 +b(z0,z1)

)
with ϕ in Bir(P2) and b in C(z0,z1).

If det jacϕ is not a root of unity, then any periodic point of ϕ can be lifted into a periodic point of φ.

Corollary 11.3. Let ϕ be a polynomial automorphism of C2 of Hénon type. A ς-lift of ϕ has an infinite
number of periodic points that lift the hyperbolic periodic points of ϕ.

Question 3. Let ϕ be a Hénon automorphism and let φ be a ς-lift of ϕ. The closure of the hyperbolic
periodic points of ϕ is the Julia set of ϕ; in particular it is a Cantor set. Is the closure of the set of periodic
points of φ a Cantor set ?

Let us consider a Hénon automorphism ϕ = (ϕ1,ϕ2) and let m be an hyperbolic periodic point of ϕ; then
the matrix [

− ∂ϕ2
∂z1

∂ϕ2
∂z2

∂ϕ1
∂z1

− ∂ϕ1
∂z2

]

is a non-parabolic one and so z0 7→
− ∂ϕ2

∂z1
+

∂ϕ2
∂z2

z0

∂ϕ1
∂z1
− ∂ϕ1

∂z2
z0

has two fixed points. We can thus state the following:

Proposition 11.4. Let ϕ be an automorphism of C2 of Hénon type; to any periodic point of period ` of ϕ

corresponds two periodic points of period ` of K (ϕ) ∈ Bir(P3)c(ω).

A similar question as Question 3 is the following:

Question 4. Let ϕ be a polynomial automorphism of C2 of Hénon type; what is the topology of the distri-
bution of periodic points of K (ϕ) ? Is it a discrete set ? Is its closure a Cantor set ?
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Remark 11.5. Let us consider an element
(
φ0(z0,z1),φ1(z0,z1),z2 + b(z0,z1)

)
of Bir(P3)ω. Then φt =(

φ0(z0,z1),φ1(z0,z1),z2 +b(z0,z1)+ t
)

belongs to Bir(P3)ω. If p = (p0, p1, p2) is a fixed point of φt , then
(p0, p1) is a fixed point of ϕ = (φ0,φ1) and b(p0, p1)+ t = 0. In particular if ϕ only has isolated fixed points
(that is ϕ has no curve of fixed points, which is the case in general), then φt has no fixed points for t generic.

Similarly, if ϕ has a countable number of periodic points, then for t generic φt has no periodic points.

11.2. Degree and degree growths. In the 2-dimensional case, that is if ϕ belongs to Aut(C2), or Bir(P2),
then degϕ = degϕ−1. This equality is not true in higher dimension; for instance if

φ =
(
z2

0 + z2
2 + z1,z2

2 + z0,z2
)
,

then φ−1 =
(
z1− z2

2,z0− (z1− z2
2)

2− z2
2,z2

)
). What happens in our context ? The equality degϕ = degϕ−1

still does not hold; indeed if (φ0,φ1,z2 + b(z0,z1)) belongs to Aut(C3)ω, then −db = φ0dφ1− z0dz1 and
degb = degφ0 +degφ1. For instance if ϕ =

(
z0 +(z3

1− z0)
2,z3

1− z0
)
, then

ϕ
−1 =

(
(z0− z2

1)
3− z1,z0− z2

1
)
.

Hence the degree of the ς-lifts of ϕ (resp. ϕ−1) is 9 (resp. 8).

Let φ and ψ be two birational self-maps of P3. We will say that the degree growths of φ and ψ are of
the same order if one of the following holds

— (degφn)n and (degψn)n are bounded,

— there exist an integer k such that lim
n→+∞

degφn

nk and lim
n→+∞

degψn

nk are finite and nonzero,

— (degφn)n and (degψn)n grow exponentially.
Let ϕ be a polynomial automorphism of C2; let us recall that ϕ has either a bounded growth or an

exponential one ([18]). Denote by φ a ς-lift of ϕ to Aut(C3)c(ω)

φ =
(
ϕ,det jacϕz2 +b(z0,z1)

)
Note that b belongs to C[z0,z1] and so degb(ϕ j(z0,z1))≤ degbdegϕ j for any j. Hence

degϕ
n ≤ degφ

n ≤max(degϕ
n,degbdegϕ

n−1)

and
— if (degϕn)n is bounded, then (degφn)n is bounded,
— if (degϕn)n grows exponentially, then (degφn)n grows exponentially.

Remark that if ψ is a polynomial automorphism of C3 linear growth is also possible ([7]) and this eventuality
does not appear when we look at elements of Aut(C3)c(ω).

In the case of the ς-lift of an exact element of Bir(P2)η we cannot give formula because we are not
dealing with polynomials. But the degree growth of a ς-lift φ of an exact element ϕ of Bir(P2)η and the
degree growth of ϕ are the same. Indeed set ϕn = (ϕ0,n,ϕ1,n) for any n≥ 1. On the one hand

φ
n =

(
ϕ0,n,ϕ1,n,z2 +b(z0,z1)+b(ϕ0,1,ϕ1,1)+b(ϕ0,2,ϕ1,2)+ . . .+b(ϕ0,n−1,ϕ1,n−1)

)
with db = z0dz1−ϕ0dϕ1, but on the other hand φn =

(
ϕ0,n,ϕ1,n,z2 + b̃(z0,z1)

)
with db̃ = z0dz1−ϕ0,ndϕ1,n.

Using this last writing one gets the statement.

Let φ be a birational self-map of P2. For any n ≥ 1 set φn = (φ1,n,φ2,n) =
(

P1,n
Q1,n

,
P2,n
Q2,n

)
with Pi,n, Qi,n ∈

C[z0,z1] without common factor; denote by pi,q (resp. qi,n) the degree of Pi,n (resp. Qi,n). Of course
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degφn = max(p1,n +q2,n, p2,n +q1,n,q1,n +q2,n) and since

K (φ)n = K (φn) =

Q2
2,n

Q2
1,n

P2,n
∂Q2,n
∂z1
−Q2,n

∂P2,n
∂z1

+
(

Q2,n
∂P2,n
∂z2
−P2,n

∂Q2,n
∂z2

)
z0

Q1,n
∂P1,n
∂z1
−P1,n

∂Q1,n
∂z1
−
(

Q1,n
∂P1,n
∂z2
−P1,n

∂Q1,n
∂z2

)
z0

,
P1,n

Q1,n
,

P2,n

Q2,n


one gets degφn ≤ degK (φ)n ≤max(4q2,n + p2,n +1,2p1,n +2q1,n +q2,n +1, p2,n +3q1,n + p1,n +1).

Proposition 11.6. — Assume that G = Aut(C2) or G = Bir(P2)η. Let ϕ be an element of G, and let φ

be a ς-lift of ϕ. The degree growths of ϕ and φ are of the same order.
— Let ϕ be a birational self-map of the complex projective plane, and let us consider K (ϕ) the image

of ϕ by K . The degree growths of ϕ and K (ϕ) are of the same order.

11.3. Centralisers. If G is a group and f an element of G, we denote by Cent( f ,G) the centraliser of f
in G, that is

Cent( f ,G) =
{

g ∈ G | f g = g f
}

Let ϕ be a polynomial automorphism of C2, then ([18, 25])
— either ϕ is conjugate to an element of J2 and Cent(ϕ,Aut(C2)) is uncountable;
— or ϕ is of Hénon type and the centraliser of ϕ is isomorphic to ZoZ/pZ for some p.

Let H be the set of polynomial automorphisms of C2 of Hénon type.

Proposition 11.7. Let ϕ be a polynomial automorphism of C2 and let φ be one of its ς-lift.
— If det jacϕ = 1, then Cent(φ,Aut(C3)ω) is uncountable and isomorphic to Cent(φ)oC.
— If det jacϕ 6= 1 and ϕ belongs to H , then Cent(φ,Aut(C3)c(ω)) is countable and isomorphic to

Cent(ϕ).

Proof. One can look at the restriction of ς to Cent(φ,Aut(C3)c(ω)):

ς|Cent(φ,Aut(C3)c(ω))
: Cent(φ,Aut(C3)c(ω))→ Cent(ϕ,Aut(C2))

Of course
kerς|Cent(φ,Aut(C3)c(ω))

⊂
{
(z0,z1,z2 +β) |β ∈ C

}
.

If det jacϕ = 1, i.e. ϕ belongs to Aut(C2)η, then

kerς|Cent(φ,Aut(C3)c(ω))
=
{
(z0,z1,z2 +β) |β ∈ C

}
and the centraliser of a ς-lift of ϕ is always uncountable even if Cent(ϕ,Aut(C2)) is countable.

If det jacϕ 6= 1, i.e. ϕ belongs to Aut(C2)rAut(C2)η, then kerς|Cent(φ,Aut(C3)c(ω))
= {id} and

Cent(φ,Aut(C3)c(ω)) ↪→ Cent(ϕ,Aut(C2))

In particular if ϕ belongs to (Aut(C2)rAut(C2)η)∩H , then Cent(φ,Aut(C3)c(ω)) is countable. �

Remark 11.8. Contrary to the 2-dimensional case there exist some ϕ in Aut(C3)ω such that
— Cent(φ,Aut(C3)ω) is uncountable,
— and (degφn)n∈N grows exponentially.

A similar reasoning leads to:

Proposition 11.9. Let ϕ ∈ Bir(P2)η be an exact map, and let φ be one of its ς-lifts. Then Cent(φ,Bir(P3)ω)
is uncountable.
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Let G=Aut(C2) or G=Bir(P2)η. Let ϕ be an element of G, and let φ be one of its ς-lift. In the following
examples we look at the links between the ς-lift of Cent(ϕ,G) and Cent(φ,G′) where G′ = Aut(C3)c(ω)

or Bir(P3)c(ω).

Example 11.10. In this example we give a polynomial automorphism ϕ and maps in Cent
(
ϕ,Aut(C2)

)
whose only one ς-lift belongs to Aut(φ,Aut(C3)c(ω)) where φ denotes a ς-lift of ϕ.

Let us now consider the Hénon automorphism ϕ given by

ϕ = (δz1,βzk
1− γz0)

where δ, β, γ are complex numbers such that δβ 6= 0, δβ 6= 1 and k ≥ 4. The map

φ =
(

δz1,βzk
1− γz0,δγz2 +δγz0z1−

δβ

k+1
zk+1

1

)
is a ς-lift of ϕ. One can check that (ζz0,ζz1), where ζ ∈C∗ such that ζk = ζ, commutes with ϕ. Among the
ς-lifts (ζz0,ζz1,ζ

2z2 +β), β ∈ C, only one commutes with φ.

Example 11.11. We consider a polynomial automorphism ϕ, a subgroup G of Cent(ϕ,Aut(C2)) and Gς

its ς-lift. In the first example the inclusion Gς ⊂ Cent(φ,Aut(C3)c(ω)) holds whereas in the second example
it doesn’t.

Let us consider the polynomial automorphism ϕ = (βdz0 +βdzd
1Q(zr

1),βz1) with β ∈ C∗, Q ∈ C[z1] and
d, r ∈ N. One can check that

G =
{
(z0 + γzd

1 ,z1) |γ ∈ C
}
⊂ Cent(ϕ,Aut(C2))

The map φ =
(
βdz0 +βdzd

1Q(zr
1),βz1,β

d+1z2−βP(z1)
)

with P′(z1) = zq
1Q(zr

1) is a ς-lift of ϕ. Let Gς be the
ς-lift of G; the group

Gς =

{(
z0 + γzd

1 ,z1,z2−
γzd+1

1
d +1

)
|γ ∈ C

}
is here contained in Cent(φ,Aut(C3)c(ω)).

Let ϕ be the polynomial automorphism given by ϕ = (z0 + z2
1,λz1) with λ ∈C∗ and λ2 6= 1. A ς-lift of ϕ

to Aut(C3)c(ω) is

φ =
(

z0 + z2
1,λz1,λz2−

z3
1
3
+µ
)

for some µ ∈ C. Note that

G =
{(

δz0 +
γ2−δ

λ2−1
z1 + ε,γz1

)
|δ, γ ∈ C∗, ε ∈ C

}
is contained in Cent(ϕ,Aut(C2)). Let us denote by Gς the ς-lift of G; a direct computation shows that

Gς =
{(

δz0 +
γ2−δ

λ2−1
z1 + ε,γz1,δγz2−

γ(γ2−δ)

3(λ2−1)
z3

1− γεz1 +β

)
|δ, γ ∈ C∗, β, ε ∈ C

}
The inclusion Gς∩Cent(φ,Aut(C3)c(ω))( Gς is strict; indeed

Gς∩Cent(φ,Aut(C3)c(ω)) =
{(

γ
2z0 + ε,γz1,γ

3z2− γεz1 +
γ3−1
λ−1

δ

)
|γ ∈ C∗, ε ∈ C

}
.
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12. NON-SIMPLICITY, TITS ALTERNATIVE

12.1. Non-simplicity. Let us recall that a simple group is a non-trivial group G whose only normal sub-
groups are {id} and G.

Danilov proved that Aut(C2)η is not simple ([15]). More recently Cantat and Lamy showed that Bir(P2)
is not simple ([11]). As a consequence one has:

Proposition 12.1. The groups

Aut(C3)ω, Bir(P3)ω, Aut(C3)c(ω), [Aut(C3)c(ω),Aut(C3)c(ω)], [Aut(C3)ω,Aut(C3)ω]

are not simple.

Proof. Since [Aut(C3)c(ω),Aut(C3)c(ω)] ' Aut(C2)η and [Aut(C3)ω,Aut(C3)ω] ' Aut(C2)η the first as-
sertion follows from [15].

The exact sequence (3.1) implies in particular that there exists a morphism with a non-trivial kernel
from Aut(C3)ω into Aut(C2)η, hence Aut(C3)ω is not simple. A similar argument holds for Bir(P3)ω

and Aut(C3)c(ω). �

The morphism
Bir(P3)

reg
ω −→ Bir(P2)

that consists to take the restriction of φ ∈ Bir(P3)
reg
ω to H∞ has a non-trivial kernel; indeed

φ =

(
z0−

(
P(z1)

Q(z1)

)′
,z1,z2 +

P(z1)

Q(z1)

)
with P, Q two polynomials of degree p, q such that p < q+1, is regular and induces the identity on H∞. In
particular one gets the following statement:

Proposition 12.2. The group Bir(P3)
reg
ω is not simple.

Let us consider the maps ψ=
(

γz2
0z1,

1
γz0

,z2+z0z1

)
and φ=

(
z0 +

1
z3
1
,z1,z2 +

1
2z2

1

)
. One can check that ψ

belongs to Bir(P3)ωrBir(P3)
reg
ω whereas φ is in Bir(P3)

reg
ω . A direct computation shows that ψ−1φψ blows

down H∞ onto e3. Hence one can state:

Proposition 12.3. The subgroup Bir(P3)
reg
ω of Bir(P3)ω is not normal.

12.2. The Tits alternative. The derived series of a group G is defined as follows

D0(G) = G, D1(G) = [G,G], . . . , Dn+1(G) = [G,Dn(G)]

The group G is solvable if there exists an integer k such that Dk(G) = {id}. The least ` such that D` = {id}
is called the derived length of G.

A group G satisfies the Tits alternative if any finitely generated subgroup of G contains either a non-
abelian free group, or a solvable subgroup of finite index. This alternative has been established by Tits for
linear groups GL(n;k) for any field k ([27]). Lamy proves that the group of polynomial automorphisms of
Aut(C2) satisfies the Tits alternative ([25]), so does Cantat for the group of birational maps of a complex,
compact, kähler surface (see [10]). Note that the automorphisms groups of complex, compact, kähler
manifolds of any dimension also satisfies Tits alternative ([10, 26]).

Theorem 12.4. The groups Aut(C3)ω, Aut(C3)c(ω) and Bir(P3)ω satisfy the Tits alternative.
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Proof. Let G be a finitely generated subgroup of Bir(P3)ω. Set

G0 = ς(G)⊂ Bir(P2)η

Since Bir(P2)η is a subgroup of Bir(P2) that satisfies the Tits alternative, either G0 contains a non-abelian
free group, or a solvable subgroup of finite index.

Assume first that G0 contains two elements f and h such that 〈 f , h〉 ' Z∗Z. Let us denote by F , resp. H
a lift of f , resp. h in Bir(P3). Suppose that there exists a non-trivial word M such that M(F,H) = {id}. As ς

is a morphism, one gets that M( f ,h) = {id}: contradiction.
Suppose now that up to finite index G0 is solvable, and let ` be its derived length; in particular D`(G0)= {id}

and D`(G) belongs to kerς. Since

kerς = {(z0,z1,z2 +β) |β ∈ C}
one gets D`+1(G) = {id}. �

13. NON-CONJUGATE ISOMORPHIC GROUPS

Let us denote by υ1 the trivial embedding from (Aut(C2)η|0) into Aut(C3)

υ1 : (Aut(C2)η|0) ↪→ Aut(C3), (φ0,φ1) 7→ (φ0,φ1,z2)

and by υ2 the trivial embedding from Bir(P2) into Bir(P3)

υ2 : Bir(P2) ↪→ Bir(P3), (φ1,φ2) 7→ (z0,φ1,φ2).

Despite imυ1 (resp. imυ2) is isomorphic to imς (resp. imK ) one has the following statement:

Proposition 13.1. The image of υ1 (resp. υ2) is not Aut(C3)-conjugate (resp. Bir(P3)-conjugate) to a
subgroup of Aut(C3)c(ω) (resp. Bir(P3)c(ω)).

Proof. Let us assume that there exists ψ in Aut(C3) (resp. Bir(P3)) such that for any φ = (φ0,φ1) (resp.
φ = (φ1,φ2)) in Aut(C2) (resp. Bir(P2)) the map ψυ1(φ)ψ

−1 (resp. ψυ2(φ)ψ
−1) is a contact polynomial

automorphism (resp. contact birational map); as a result υ1(φ) (resp. υ2(φ)) preserves a polynomial form
Θ = Adz0 +Bdz1 +Cdz2. Looking at the restriction to any hyperplane z2 = λ (resp. z0 = λ) for λ generic
one gets that all the φ preserve the foliation given by Θ|z2=λ (resp. Θ|z0=λ): contradiction. �

Part 4. Appendix: Automorphisms group of Aut(C2)η

As we recalled Aut(C2) is generated by J2 and Aff2. More precisely Aut(C2) has a structure of amalga-
mated product ([24])

Aut(C2) = J2 ∗J2∩Aff2 Aff2;
this is also the case for Aut(C2)η ([19, Proposition 9])

Aut(C2)η = (J2)η ∗(J2)η∩(Aff2)η
(Aff2)η

Following [16] we prove that:
Theorem 13.2. The group Aut(Aut(C2)η) is generated by the automorphisms of the field C and the group
of Aut(C2)-inner automorphisms.

Idea of the Proof. Let us set G = Aut(C2)η. One can follow [16] and prove that if ϕ is an automorphism
of G , then

— ϕ((J2)η) = (J2)η up to conjugacy by an element of Aut(C2) ([16, Proposition 4.4]);
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— for any integer k if R = ∪n≤k〈
(

βz0,
z1
β

)
|β n-th root of unity〉, then there exists ψ in (J2)η such

that ϕ(R ) = ψR ψ−1. So one can suppose that ϕ((J2)η) = (J2)η and ϕ(R ) = R (see [16, Proposi-
tion 4.4]);

— set Dη =
{
(βz0,z1/β) |β ∈ C∗

}
one can show that conjugating φ by an element of (J2)η one has

ϕ((J2)η) = (J2)η and ϕ(Dη) = Dη.
— set

T1 =
{
(z0 +β,z1) |β ∈ C

}
, T2 =

{
(z0,z1 +β) |β ∈ C

}
and

T =
{
(z0 + γ,z1 +β) |γ, β ∈ C

}
Since T1 ⊂ [[(J2)η,(J2)η], [(J2)η,(J2)η]], then T1 ⊂ {(z0 +P(z1),z1) |P ∈ C[z1]}. As

∀n ∈ N, ∀β ∈ C
( z0

n
,nz1

)
(z0 +β,z1)

n
(

nz0,
z1

n

)
= (z0 +β,z1)

and ϕ(Dη) = Dη, one gets

∀n ∈ N, ∀β ∈ C ϕ

( z0

n
,nz1

)
ϕ(z0 +β,z1)

n
ϕ

(
nz0,

z1

n

)
= ϕ(z0 +β,z1)

that is
∀n ∈ N

( z0

δ
,δz1

)
(z0 +nP(z1),z1)

n
(

δz0,
z1

δ

)
= (z0 +P(z),z1)

so P(z1) =
n
δ
P
( z1

δ

)
. The polynomial P is non-zero hence n = δ and P is a constant. Therefore

ϕ(T1)⊂ T1.
The groups T1 and T2 commute, that’s why

ϕ(T2)⊂
{
(z0 +P(z1),z1 +β) |P ∈ C[z1], β ∈ C

}
The relation ( z0

n
,nz1

)
(z0,z1 +β)

(
nz0,

z1

n

)
= (z0,z1 +β)n

true for any integer n and for any β in C implies that ϕ(T2) ⊂ T2. The group T being a maximal
abelian subgroup of G , one has ϕ(T) = T and ϕ(Ti) = Ti.

— There exist ξ1, ξ2 two additive morphisms and ζ a multiplicative one such that

ϕ(z0 + γ,z1 +β) = (z0 +ξ1(γ),z1 +ξ2(β)) & ϕ

(
γz0,

z1

γ

)
=

(
ζ(γ)z0,

z1

ζ(γ)

)
The statement follows from [16, Proposition 1.4].

�
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