REPRESENTATIONS OF SOME LATTICES INTO THE GROUP OF ANALYTIC DIFFEOMORPHISMS OF THE SPHERE \mathbb{S}^2

by Julie Déserti

January 9, 2014

Abstract. — In [10] it is proved that any morphism from a subgroup of finite index of $SL(n,\mathbb{Z})$ to the group of analytic diffeomorphisms of \mathbb{S}^2 has a finite image as soon as $n \ge 5$. The case n = 4 is also claimed to follow along the same arguments; in fact this is not straightforward and this case indeed needs a modification of the argument. In this paper we recall the strategy for $n \ge 5$ and then focus on the case n = 4. 2010 Mathematics Subject Classification. — 58D05, 58B25

1. Introduction

After the works of Margulis ([14, 19]) on the linear representations of lattices of simple, real Lie groups with \mathbb{R} -rank larger than 1, some authors, like Zimmer, suggest to study the actions of lattices on compact manifolds ([20, 21, 22, 23]). One of the main conjectures of this program is the following: let us consider a connected, simple, real Lie group G, and let Γ be a lattice of G of \mathbb{R} -rank larger than 1. If there exists a morphism of infinite image from Γ to the group of diffeomorphisms of a compact manifold M, then the \mathbb{R} -rank of G is bounded by the dimension of M. There are a lot of contributions in that direction ([3, 4, 5, 7, 8, 9, 10, 11, 16, 17]). In this article we will focus on the embeddings of subgroups of finite index of $SL(n,\mathbb{Z})$ into the group $Diff^{\omega}(\mathbb{S}^2)$ of real analytic diffeomorphisms of \mathbb{S}^2 (see [10]).

The article is organized as follows. First of all we will recall the strategy of [10]: the study of the nilpotent subgroups of Diff $^{\omega}(\mathbb{S}^2)$ implies that such subgroups are metabelian. But subgroups of finite index of $SL(n,\mathbb{Z})$, for $n \geq 5$, contain nilpotent subgroups of length n-1 of finite index which are not metabelian; as a consequence Ghys gets the following statement.

Theorem A ([10]). — Let Γ be a subgroup of finite index of $SL(n, \mathbb{Z})$. As soon as $n \ge 5$ there is no embedding of Γ into $Diff^{\omega}(\mathbb{S}^2)$.

To study nilpotent subgroups of $\mathrm{Diff}^\omega(\mathbb{S}^2)$ one has to study nilpotent subgroups of $\mathrm{Diff}^\omega_+(\mathbb{S}^1)$ (see §2), and then nilpotent subgroups of the group of formal diffeomorphisms of \mathbb{C}^2 (see §3). The last section is devoted to establish the following result.

The author is partially supported by ANR Grant "BirPol" ANR-11-JS01-004-01.

Theorem B. — Let Γ be a subgroup of finite index of $SL(n,\mathbb{Z})$. As soon as $n \ge 4$ there is no embedding of Γ into $Diff^{\omega}(\mathbb{S}^2)$.

The proof relies on the characterization, up to isomorphism, of nilpotent subalgebras of length 3 of the algebra of formal vector fields of \mathbb{C}^2 that vanish at the origin.

Acknowledgements. — The author would like to thank Dominique Cerveau and Étienne Ghys for interesting discussions, and advices.

2. Nilpotent subgroups of the group of analytic diffeomorphisms of \mathbb{S}^1

Let G be a group; let us set

$$G^{(0)} = G$$
 & $G^{(i)} = [G, G^{(i-1)}] \quad \forall i \ge 1.$

The group G is *nilpotent* if there exists an integer n such that $G^{(n)} = \{id\}$; the *length* of *nilpotence* of G is the smallest integer k such that $G^{(k)} = \{id\}$.

Set

$$G_{(0)} = G$$
 & $G_{(i)} = [G_{(i-1)}, G_{(i-1)}] \ \forall i \ge 1.$

The group G is *solvable* if $G_{(n)} = \{id\}$ for some integer n; the *length* of *solvability* of G is the smallest integer k such that $G_{(k)} = \{id\}$.

We say that the group G (resp. algebra \mathfrak{g}) is metabelian if [G,G] (resp. $[\mathfrak{g},\mathfrak{g}]$) is abelian.

Proposition 2.1 ([10]). — Any nilpotent subgroup of $\mathrm{Diff}^{\omega}_{+}(\mathbb{S}^{1})$ is abelian.

Proof. — Let G be a nilpotent subgroup of $\mathrm{Diff}^{\omega}_{+}(\mathbb{S}^{1})$. Assume that G is not abelian; it thus contains a Heisenberg group

$$\langle f, g, h | [f, g] = h, [f, h] = [g, h] = id \rangle.$$

The application "rotation number"

$$\operatorname{Diff}_{+}^{\omega}(\mathbb{S}^{1}) \to \mathbb{R}/\mathbb{Z}, \qquad \qquad \psi \mapsto \lim_{n \to +\infty} \frac{\psi^{n}(x) - x}{n}$$

is not a morphism but its restriction to a solvable subgroup is a morphism ([1]). Hence the rotation number of h is zero, and the set Fix(h) of fixed points of h is non-empty, and finite. Considering some iterates of f and g instead of f and g one can assume that f and g fix any point of Fix(h). The set of fixed points of a non trivial element of $\langle f, g \rangle$ is finite and invariant by h so the action of $\langle f, g \rangle$ is free (1) on each component of $\mathbb{S}^1 \setminus Fix(h)$. But the action of a free group on \mathbb{R} is abelian: contradiction.

^{1.} The stabilizer of every point is trivial, *i.e.* the action of a non trivial element of $\langle f, g \rangle$ has no fixed point.

3. Nilpotent subgroups of the group of formal diffeomorphisms of \mathbb{C}^2

Let us denote $\widehat{\mathrm{Diff}}(\mathbb{C}^2,0)$ the group of formal diffeomorphisms of \mathbb{C}^2 , *i.e.* the formal completion of the group of germs of holomorphic diffeomorphisms at 0. Let $\widehat{\mathrm{Diff}}_i$ be the quotient of $\widehat{\mathrm{Diff}}(\mathbb{C}^2,0)$ by the normal subgroups of formal diffeomorphisms tangent to the identity with multiplicity i; it can be viewed as the set of jets of diffeomorphisms at order i with the law of composition with truncation at order i. Note that $\widehat{\mathrm{Diff}}_i$ is a complex linear algebraic group. One can see $\widehat{\mathrm{Diff}}(\mathbb{C}^2,0)$ as the projective limit of the $\widehat{\mathrm{Diff}}_i$'s: $\widehat{\mathrm{Diff}}(\mathbb{C}^2,0) = \lim_{i \to \infty} \widehat{\mathrm{Diff}}_i$. Let us denote by $\widehat{\chi}(\mathbb{C}^2,0)$ the algebra of formal vector fields in \mathbb{C}^2 vanishing at 0. One can define the set χ_i of the i-th jets of vector fields; one has $\lim \chi_i = \widehat{\chi}(\mathbb{C}^2,0)$.

Let $\widehat{O}(\mathbb{C}^2)$ be the ring of formal series in two variables, and let $\widehat{K}(\mathbb{C}^2)$ be its fraction field; O_i is the set of elements of $\widehat{O}(\mathbb{C}^2)$ truncated at order i.

The family $(\exp_i : \chi_i \to \operatorname{Diff}_i)_i$ is filtered, *i.e.* compatible with the truncation. We then define the exponential application as follows: $\exp = \limsup_i : \widehat{\chi}(\mathbb{C}^2, 0) \to \widehat{\operatorname{Diff}}(\mathbb{C}^2, 0)$.

As in the classical case, if X belongs to $\widehat{\chi}(\mathbb{C}^2,0)$, then $\exp(X)$ can be seen as the "flow at time t=1" of X. Indeed an element X_i of χ_i can be seen as a derivation of O_i ; so it can be written $S_i + N_i$ where S_i and N_i are two semi-simple (resp. nilpotent) derivations that commute. Passing to the limit, one gets X = S + N where S is a semi-simple vector field, N a nilpotent one, and $[S,N] = \operatorname{id}(see\ [15])$. A semi-simple vector field is a formal vector field conjugate to a diagonal linear vector field that is complete. A vector field is nilpotent if and only if its linear part is; let us remark that the usual flow φ_t of a nilpotent vector field is polynomial in t

$$\varphi_t(x) = \sum_I P_I(t) x^I, \qquad P_I \in (\mathbb{C}[t])^2$$

so $\varphi_1(x)$ is well defined. As a consequence $\exp(tX) = \exp(tS) \exp(tN)$ is well defined for t = 1. Note that the Jordan decomposition is purely formal: if X is holomorphic, then S and N are not necessary holomorphic.

Proposition 3.1 ([10]). — Any nilpotent subalgebra of $\widehat{\chi}(\mathbb{C}^2,0)$ is metabelian.

Proof. — Let \mathfrak{l} be a nilpotent subalgebra of $\widehat{\chi}(\mathbb{C}^2,0)$, and let $Z(\mathfrak{l})$ be its center. Since $\widehat{\chi}(\mathbb{C}^2,0)\otimes\widehat{K}(\mathbb{C}^2)$ is a vector space of dimension 2 over $\widehat{K}(\mathbb{C}^2)$ one has the following alternative:

- the dimension of the subspace generated by $Z(\mathfrak{l})$ in $\widehat{\chi}(\mathbb{C}^2,0)\otimes\widehat{K}(\mathbb{C}^2)$ is 1;
- the dimension of the subspace generated by $Z(\mathfrak{l})$ in $\widehat{\chi}(\mathbb{C}^2,0)\otimes\widehat{K}(\mathbb{C}^2)$ is 2.

Let us study these different cases.

Under the first assumption there exists an element X of $Z(\mathfrak{l})$ having the following property: any vector field of $Z(\mathfrak{l})$ can be written uX with u in $\widehat{K}(\mathbb{C}^2)$. Let us consider the subalgebra \mathfrak{g} of \mathfrak{l} given by

$$\mathfrak{g} = \big\{ \widetilde{X} \in \mathfrak{l} \, | \, \exists \, u \in \widehat{K}(\mathbb{C}^2), \, \widetilde{X} = uX \big\}.$$

Since X belongs to $Z(\mathfrak{l})$, the algebra \mathfrak{g} is abelian; it is also an ideal of \mathfrak{l} . Let us assume that \mathfrak{l} is not abelian: let Y be an element of \mathfrak{l} whose projection on $\mathfrak{l}/\mathfrak{g}$ is non trivial, and central. Any vector field of \mathfrak{l} can be written as uX + vY with u, v in $\widehat{K}(\mathbb{C}^2)$. As X belongs to $Z(\mathfrak{l})$, and Y is central modulo \mathfrak{g} one has

$$X(u) = X(v) = Y(v) = 0.$$

The vector fields $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ being some linear combinations of X and Y with coefficients in $\widehat{K}(\mathbb{C}^2,0)$, the partial derivatives of v are zero so v is a constant. Therefore $[\mathfrak{l},\mathfrak{l}] \subset \mathfrak{g}$; but \mathfrak{g} is abelian thus \mathfrak{l} is metabelian.

In the second case $Z(\mathfrak{l})$ contains two elements X and Y which are linearly independent on $\widehat{K}(\mathbb{C}^2)$. Any vector field of \mathfrak{l} can be written as uX + vY with u and v in $\widehat{K}(\mathbb{C}^2)$. Since X and Y belong to $Z(\mathfrak{l})$ one has

$$X(u) = X(v) = Y(u) = Y(v) = 0.$$

As a consequence u and v are constant, i.e. $l \subset \{uX + vY \mid u, v \in \mathbb{C}\}$; in particular l is abelian.

Proposition 3.2 ([10]). — Any nilpotent subgroup of $\widehat{Diff}(\mathbb{C}^2,0)$ is metabelian.

Proof. — Let G be a nilpotent subgroup of $\widehat{\text{Diff}}(\mathbb{C}^2,0)$ of length k. Let us denote by G_i the projection of G on $\widehat{\text{Diff}}_i$. The Zariski closure $\overline{G_i}$ of G_i in $\widehat{\text{Diff}}_i$ is an algebraic nilpotent subgroup of length k. It is sufficient to prove that $\overline{G_i}$ is metabelian.

Since $\overline{G_i}$ is a complex algebraic subgroup it is the direct product of the subgroup $\overline{G_{i,u}}$ of its unipotent elements and the subgroup $\overline{G_{i,s}}$ of its semi-simple elements (*see for example* [2]).

An element of Diff_i is unipotent if and only if its linear part, which belongs to $GL(2,\mathbb{C})$, is; so $\overline{G_{i,s}}$ projects injectively onto a nilpotent subgroup of $GL(2,\mathbb{C})$. Therefore $\overline{G_{i,s}}$ is abelian.

The group $\overline{G_{i,u}}$ coincides with $\exp \mathfrak{l}_i$ where \mathfrak{l}_i is a nilpotent Lie algebra of χ_i of length k. Passing to the limit one thus obtains the existence of a nilpotent subalgebra \mathfrak{l} of $\widehat{\chi}(\mathbb{C}^2,0)$ of length k such that $\exp(\mathfrak{l})$ projects onto $\overline{G_{i,u}}$ for any i. According to Proposition 3.1 the subalgebra \mathfrak{l} , and thus $\overline{G_{i,u}}$ are metabelian.

4. Nilpotent subgroups of the group of analytic diffeomorphisms of \mathbb{S}^2

Proposition 4.1 ([10]). — Any nilpotent subgroup of Diff $^{\omega}(\mathbb{S}^2)$ has a finite orbit.

Proof. — Let G be a nilpotent subgroup of $Diff^{\omega}(\mathbb{S}^2)$; up to finite index one can assume that the elements of G preserve the orientation. Let ϕ be a non trivial element of G that commutes with G. Let $Fix(\phi)$ be the set of fixed points of ϕ ; it is a non empty analytic subspace of \mathbb{S}^2 invariant by G. If p is an isolated fixed point of ϕ , then the orbit of p under the action of G is finite. So it is sufficient to study the case where $Fix(\phi)$ only contains curves; there are thus two possibilities:

- Fix(ϕ) is a singular analytic curve whose set of singular points is a finite orbit for G;
- Fix(ϕ) is a smooth analytic curve, not necessary connected. One of the connected component of $\mathbb{S}^2 \setminus \text{Fix}(\phi)$ is a disk denoted by \mathbb{D} . Any subgroup Γ of finite index of G which contains ϕ fixes \mathbb{D} . Let us consider an element γ of Γ , and a fixed point m of γ that belongs to $\overline{\mathbb{D}}$. By construction ϕ has no fixed point in \mathbb{D} so according to the Brouwer Theorem $(\phi^k(m))_k$ has a limit point on the boundary $\partial \mathbb{D}$ of $\overline{\mathbb{D}}$. Therefore γ has at least one fixed point on $\partial \mathbb{D}$. The group Γ thus acts on $\partial \mathbb{D}$, and any of its elements has a fixed point on \mathbb{D} . Then Γ has a fixed point on $\partial \mathbb{D}$ (Proposition 2.1).

Theorem 4.2 ([10]). — Any nilpotent subgroup of Diff $^{\omega}(\mathbb{S}^2)$ is metabelian.

Proof. — Let G be a nilpotent subgroup of $Diff^{\omega}(\mathbb{S}^2)$, and let Γ be a subgroup of finite index of G having a fixed point m (such a subgroup exists according to Proposition 4.1). One can embed Γ into $\widehat{Diff}(\mathbb{R}^2,0)$, and so into $\widehat{Diff}(\mathbb{C}^2,0)$, by considering the jets of infinite order of elements of Γ in m. According to Proposition 3.2 the group Γ is metabelian.

One can suppose that G is a finitely generated group.

Let us first assume that G has no element of finite order. Then G is a cocompact lattice of the nilpotent, simply connected Lie group $G \otimes \mathbb{R}$ (see [18]). The group G is metabelian if and only if $G \otimes \mathbb{R}$ is; but Γ is metabelian so $G \otimes \mathbb{R}$ also.

Finally let us consider the case where G contains at least one element of finite order. The set of such elements is a normal subgroup of G that thus intersects non trivially the center Z(G) of G. Let us consider a non trivial element ϕ of Z(G) which has finite order. Let us recall that a finite group of diffeomorphisms of the sphere is conjugate to a group of isometries. Denote by G^+ the subgroup of elements of G which preserve the orientation. It is thus sufficient to prove that G^+ is metabelian; indeed if ϕ does not preserve the orientation, then ϕ has order 2, and $G = \mathbb{Z}/2\mathbb{Z} \times G^+$. So let us assume that ϕ preserves the orientation; ϕ is conjugate to a direct isometry of \mathbb{S}^2 , and has exactly two fixed points on the sphere. The group G has thus an invariant set of two elements. By considering germs in the neighborhood of these two points, one gets that G can be embedded into $2 \cdot \operatorname{Diff}(\mathbb{R}^2, 0)$ (2) and thus into $2 \cdot \operatorname{Diff}(\mathbb{C}^2, 0)$:

$$1 \longrightarrow Diff(\mathbb{C}^2, 0) \longrightarrow 2 \cdot Diff(\mathbb{C}^2, 0) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

Remark that $2 \cdot \text{Diff}(\mathbb{C}^2, 0)$ is the projective limit of the algebraic groups $2 \cdot \text{Diff}_i$. One can conclude as in the proof of Proposition 3.2 except that the subgroup of the semi-simple elements of $2 \cdot \text{Diff}_i$ embeds now in $2 \cdot \text{GL}(2, \mathbb{C})$; it is metabelian because it contains an abelian subgroup of index 2.

Let Γ be a subgroup of finite index of $SL(n,\mathbb{Z})$ for $n \geq 5$. Since Γ contains nilpotent subgroups of finite index of length n-1 (for example the group of upper triangular unipotent matrices) which are not metabelian one gets the following statement.

Corollary 4.3 ([10]). — Let Γ be a subgroup of finite index of $SL(n,\mathbb{Z})$; as soon as $n \geq 5$ there is no embedding of Γ into $Diff^{\omega}(\mathbb{S}^2)$.

5. Nilpotent subgroups of length 3 of the group of analytic diffeomorphisms of \mathbb{S}^2

Let us precise Proposition 3.1 for nilpotent subalgebras of length 3 of $\widehat{\chi}(\mathbb{C}^2,0)$. Let \mathfrak{l} be such an algebra. The dimension of the subspace generated by $Z(\mathfrak{l})$ in $\widehat{\chi}(\mathbb{C}^2,0)\otimes\widehat{K}(\mathbb{C}^2)$ has dimension at most 1, for else \mathfrak{l} would be abelian (Proposition 3.1) and this is impossible under our assumptions. So let us assume that the dimension of the subspace generated by $Z(\mathfrak{l})$ in $\widehat{\chi}(\mathbb{C}^2,0)\otimes\widehat{K}(\mathbb{C}^2)$ is 1. There exists an element X in $Z(\mathfrak{l})$ with the following property: any element of $Z(\mathfrak{l})$ can be written uX with u in $\widehat{K}(\mathbb{C}^2)$. Let \mathfrak{g} denote the abelian ideal of \mathfrak{l} defined by

$$\mathfrak{g} = \big\{\widetilde{X} \in \mathfrak{l} \, \big| \, \exists u \in \widehat{K}(\mathbb{C}^2), \, \widetilde{X} = uX \big\}.$$

By hypothesis \mathfrak{l} is not abelian. Let Y be in \mathfrak{l} ; assume that its projection onto $\mathfrak{l}/\mathfrak{g}$ is a non trivial element of $Z(\mathfrak{l}/\mathfrak{g})$. Any vector field of \mathfrak{l} can be written

$$uX + vY$$
, $u, v \in \widehat{K}(\mathbb{C}^2)$.

Since X, resp. Y belongs to $Z(\mathfrak{l})$ (resp. $Z(\mathfrak{l}/\mathfrak{g})$) and since the length of \mathfrak{l} is 3, one has

$$X(u) = Y^{3}(u) = X(v) = Y(v) = 0.$$
(5.1)

If X and Y are non singular, one can choose formal coordinates x and y such that $X = \frac{\partial}{\partial x}$ and $Y = \frac{\partial}{\partial y}$. The previous conditions can be thus translated as follows: v is a constant and u is a polynomial in y of degree 2. We will see that we have a similar property without assumption on X and Y.

^{2.} Let G be a group and let q be a positive integer; $q \cdot G$ denotes the semi-direct product of G^q by $\mathbb{Z}/q\mathbb{Z}$ under the action of the cyclic permutation of the factors.

Lemma 5.1. — Let X and Y be two vector fields of $\widehat{\chi}(\mathbb{C}^2,0)$ that commute and are not colinear. One can assume that $(X,Y) = \left(\frac{\partial}{\partial \widehat{x}}, \frac{\partial}{\partial \widehat{y}}\right)$ where \widetilde{x} and \widetilde{y} are two independent variables in a Liouvillian extension of $\widehat{K}(\mathbb{C}^2,0)$.

Proof. — Since *X* and *Y* are non colinear, there exist two 1-forms α , β with coefficients in $\widehat{K}(\mathbb{C}^2)$ such that

$$\alpha(X) = 1,$$
 $\alpha(Y) = 0,$ $\beta(X) = 0,$ $\beta(X) = 1.$

The vector fields X and Y commute if and only if α and β are closed (this statement of linear algebra is true for convergent meromorphic vector fields and is also true in the completion). The 1-form α is closed so according to [6] one has

$$\alpha = \sum_{i=1}^{r} \lambda_{i} \frac{d\widehat{\phi}_{i}}{\widehat{\phi}_{i}} + d\left(\frac{\widehat{\Psi}_{1}}{\widehat{\Psi}_{2}}\right) = d\left(\sum_{i=1}^{r} \lambda_{i} \log \widehat{\phi}_{i} + \frac{\widehat{\Psi}_{1}}{\widehat{\Psi}_{2}}\right)$$

where $\widehat{\psi}_1$, $\widehat{\psi}_2$, and the $\widehat{\phi}_i$ denote some formal series and the λ_i some complex numbers. One has a similar expression for β . So there exists a Liouvillian extension κ of $\widehat{K}(\mathbb{C}^2)$ having two elements \widetilde{x} and \widetilde{y} with $\alpha = d\widetilde{x}$ and $\beta = d\widetilde{y}$. One thus has

$$X(\widetilde{x}) = 1,$$
 $Y(\widetilde{y}) = 0,$ $Y(\widetilde{x}) = 0,$ $Y(\widetilde{y}) = 1.$

From (5.1) one gets: v is a constant, and u is a polynomial in \widetilde{y} of degree 2; so one proves the following statement.

Proposition 5.2. — Let \mathfrak{l} be a nilpotent subalgebra of $\widehat{\chi}(\mathbb{C}^2,0)$ of length 3. Then \mathfrak{l} is isomorphic to a subalgebra of

$$\mathfrak{n} = \Big\{ P(\widetilde{\mathbf{y}}) \frac{\partial}{\partial \widetilde{\mathbf{x}}} + \alpha \frac{\partial}{\partial \widetilde{\mathbf{y}}} \; \Big| \; \alpha \in \mathbb{C}, P \in \mathbb{C}[\widetilde{\mathbf{y}}], \deg P = 2 \Big\}.$$

Remark 5.3. — We use a real version of this statement whose proof is an adaptation of the previous one: a nilpotent subalgebra \mathfrak{l} of length 3 of $\widehat{\chi}(\mathbb{R}^2,0)$ is isomorphic to a subalgebra of

$$\mathfrak{n} = \left\{ P(\widetilde{y}) \frac{\partial}{\partial \widetilde{x}} + \alpha \frac{\partial}{\partial \widetilde{y}} \, \middle| \, \alpha \in \mathbb{R}, \, P \in \mathbb{R}[\widetilde{y}], \, \deg P = 2 \right\}.$$

Theorem 5.4. — Let Γ be a subgroup of finite index of $SL(n,\mathbb{Z})$; as soon as $n \geq 4$ there is no embedding of Γ into $Diff^{\omega}(\mathbb{S}^2)$.

Proof. — Let $U(4,\mathbb{Z})$ (resp. $U(4,\mathbb{R})$) be the subgroup of unipotent upper triangular matrices of $SL(4,\mathbb{Z})$ (resp. $SL(4,\mathbb{R})$); it is a nilpotent subgroup of length 3. Assume that there exists an embedding from a subgroup Γ of finite index of $SL(4,\mathbb{Z})$ into $Diff^{\omega}(\mathbb{S}^2)$. Up to finite index Γ contains $U(4,\mathbb{Z})$. Let us set $H = \rho(U(4,\mathbb{Z}))$. Up to finite index H has a fixed point (Proposition 4.1). One can thus see H as a subgroup of $Diff(\mathbb{R}^2,0) \subset \widehat{Diff}(\mathbb{R}^2,0)$ up to finite index.

Let us denote by j^1 the morphism from $\widehat{\mathrm{Diff}}(\mathbb{R}^2,0)$ to Diff_i . Up to conjugation $j^1(\rho(\mathrm{U}(4,\mathbb{Z})))$ is a subgroup of

$$\Big\{ \left[\begin{array}{cc} \lambda & t \\ 0 & \lambda \end{array} \right] \, \Big| \, \lambda \in \mathbb{R}^*, t \in \mathbb{R} \Big\}.$$

Up to index 2 one can thus assume that $j^1 \circ \rho$ takes values in the connected, simply connected group T defined by

$$\mathbf{T} = \Big\{ \left[\begin{array}{cc} \boldsymbol{\lambda} & t \\ 0 & \boldsymbol{\lambda} \end{array} \right] \, \Big| \, \boldsymbol{\lambda}, t \in \mathbb{R}, \boldsymbol{\lambda} > 0 \Big\}.$$

Let us set

$$\operatorname{Diff}_{i}(T) = \{ f \in \operatorname{Diff}_{i} | j^{1}(f) \in T \};$$

the group $Diff_i(T)$ is a connected, simply connected, nilpotent and algebraic group. The morphism

$$\rho_i \colon U(4,\mathbb{Z}) \to Diff_i$$

can be extended to a unique continuous morphism $\widetilde{\rho_i} \colon U(4,\mathbb{R}) \to \mathrm{Diff}_i(T)$ (see [13, 12]) so to an algebraic morphism (3). Let us note that $\widetilde{\rho_i}(U(4,\mathbb{Z}))$ is an algebraic subgroup of $\mathrm{Diff}_i(T)$ that contains $\rho_i(U(4,\mathbb{Z}))$; in particular $\overline{H_i} = \overline{\rho_i(U(4,\mathbb{Z}))} \subset \widetilde{\rho_i}(U(4,\mathbb{R}))$. By construction the family $(H_i)_i$ is filtered; since the extension is unique, the family $(\widetilde{\rho_i})_i$ is also filtered. Therefore $K = \varinjlim_i \overline{H_i}$ is well defined. Since ρ is injective, H is a nilpotent subgroup of length 3; as $H \subset K$ and as any $\overline{H_i}$ is nilpotent of length at most 3 the group K is nilpotent of length at most 3. For i sufficiently large $\widetilde{\rho_i}(U(4,\mathbb{R}))$ is nilpotent of length 3; this group is connected so its Lie algebra is also nilpotent of length 3. Therefore the image of

$$D\widetilde{\rho} := \lim_{\leftarrow} D\widetilde{\rho_i} \colon \mathfrak{u}(4,\mathbb{R}) \to \widehat{\chi}(\mathbb{R}^2,0)$$

is isomorphic to $\mathfrak n$ (Proposition 5.2). So there exists a surjective map ψ from $\mathfrak u(4,\mathbb R)$ onto $\mathfrak n$. The kernel of ψ is an ideal of $\mathfrak u(4,\mathbb R)$ of dimension 2; hence $\ker \psi = \langle \delta_{14}, a\delta_{13} + b\delta_{24} \rangle$ where the δ_{ij} denote the Kronecker matrices. One concludes by noting that $\dim Z(\mathfrak u(4,\mathbb R)/\ker \psi) = 2$ whereas $\dim Z(\mathfrak n) = 1$.

Corollary 5.5. — The image of a morphism from a subgroup of $SL(n,\mathbb{Z})$ of finite index to $Diff^{\omega}(\mathbb{S}^2)$ is finite as soon as $n \geq 4$.

References

- [1] C. Bavard. Longueur stable des commutateurs. Enseign. Math. (2), 37(1-2):109–150, 1991.
- [2] A. Borel. *Linear algebraic groups*, volume 126 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 1991.
- [3] M. Burger and N. Monod. Bounded cohomology of lattices in higher rank Lie groups. *J. Eur. Math. Soc. (JEMS)*, 1(2):199–235, 1999.
- [4] S. Cantat. Version kählérienne d'une conjecture de Robert J. Zimmer. *Ann. Sci. École Norm. Sup.* (4), 37(5):759–768, 2004.
- [5] S. Cantat. Sur les groupes de transformations birationnelles des surfaces. *Ann. of Math.* (2), 174(1):299–340, 2011.
- [6] D. Cerveau and J.-F. Mattei. *Formes intégrables holomorphes singulières*, volume 97 of *Astérisque*. Société Mathématique de France, Paris, 1982. With an English summary.
- [7] J. Déserti. Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer. *Int. Math. Res. Not.*, pages Art. ID 71701, 27, 2006.

^{3.} Let N_1 and N_2 be two connected, simply connected, nilpotent and algebraic subgroups of \mathbb{R} ; any continuous morphism from N_1 to N_2 is algebraic.

- [8] B. Farb and P. Shalen. Real-analytic actions of lattices. *Invent. Math.*, 135(2):273–296, 1999.
- [9] J. Franks and M. Handel. Area preserving group actions on surfaces. Geom. Topol., 7:757–771 (electronic), 2003.
- [10] É. Ghys. Sur les groupes engendrés par des difféomorphismes proches de l'identité. *Bol. Soc. Brasil. Mat. (N.S.)*, 24(2):137–178, 1993.
- [11] É. Ghys. Actions de réseaux sur le cercle. *Invent. Math.*, 137(1):199–231, 1999.
- [12] A. I. Malcev. On a class of homogeneous spaces. Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13:9–32, 1949.
- [13] A. I. Malcev. On a class of homogeneous spaces. Amer. Math. Soc. Translation, 1951(39):33, 1951.
- [14] G. A. Margulis. *Discrete subgroups of semisimple Lie groups*, volume 17 of *Ergebnisse der Mathematik und ihrer Grenzgebiete* (3). Springer-Verlag, Berlin, 1991.
- [15] J. Martinet. Normalisation des champs de vecteurs holomorphes (d'après A.-D Brjuno). In *Séminaire Bourbaki* (1980/1981), volume 901 of *Lecture Notes in Math.*, pages Exp. No. 765, pp. 103–119. Springer, Berlin, 1981.
- [16] A. Navas. Actions de groupes de Kazhdan sur le cercle. Ann. Sci. École Norm. Sup. (4), 35(5):749–758, 2002.
- [17] L. Polterovich. Growth of maps, distortion in groups and symplectic geometry. *Invent. Math.*, 150(3):655–686, 2002.
- [18] M. S. Raghunathan. *Discrete subgroups of Lie groups*. Springer-Verlag, New York, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68.
- [19] E. B. Vinberg, V. V. Gorbatsevich, and O. V. Shvartsman. Discrete subgroups of Lie groups. In *Lie groups and Lie algebras, II*, volume 21 of *Encyclopaedia Math. Sci.*, pages 1–123, 217–223. Springer, Berlin, 2000.
- [20] R. J. Zimmer. Kazhdan groups acting on compact manifolds. *Invent. Math.*, 75(3):425–436, 1984.
- [21] R. J. Zimmer. On connection-preserving actions of discrete linear groups. *Ergodic Theory Dynam. Systems*, 6(4):639–644, 1986.
- [22] R. J. Zimmer. Actions of semisimple groups and discrete subgroups. In *Proceedings of the International Congress of Mathematicians*, Vol. 1, 2 (Berkeley, Calif., 1986), pages 1247–1258, Providence, RI, 1987. Amer. Math. Soc.
- [23] R. J. Zimmer. Lattices in semisimple groups and invariant geometric structures on compact manifolds. In *Discrete groups in geometry and analysis (New Haven, Conn., 1984)*, volume 67 of *Progr. Math.*, pages 152–210. Birkhäuser Boston, Boston, MA, 1987.

JULIE DÉSERTI • E-mail: deserti@math.jussieu.fr

[,] Institut de Mathématiques de Jussieu, UMR 7586, Université Paris 7, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France.