GROUPE DE CREMONA ET DYNAMIQUE COMPLEXE

par

Julie Déserti

Abridged English version

Let $Bir(\mathbb{P}^2(\mathbf{C}))$ be the group of birational transformations of the complex projective plane also named Cremona group. In our study of this group we prove a result related to the Zimmer program ([16]):

Theorem 0.1. — Let G be a simple algebraic subgroup over \mathbf{Q} with \mathbf{Q} -rank (G) = r. Let Γ be a subgroup of finite index in $G(\mathbf{Z})$ and $\rho: \Gamma \to \mathsf{Bir}(\mathbb{P}^2(\mathbf{C}))$ a morphism. If ρ has infinite image, then r < 2.

If r=2 and ρ has infinite image, then the **Q**-root system of G contains a root system of type A_2 ; in this case $\rho(\Gamma)$ is, up to conjugacy, a subgroup of $PGL_3(\mathbf{C})$.

For our purpose the following observation, used by WITTE in [15], is crucial: the **Q**-root system of G contains a root system of type A_2 or B_2 . So we only have to study morphisms from a subgroup of finite index in $SL_3(\mathbf{Z})$ (resp. $SO_{2,3}(\mathbf{Z})$) to $Bir(\mathbb{P}^2(\mathbf{C}))$.

Theorem 0.2. Let Γ be a subgroup of finite index in $\mathsf{SL}_3(\mathbf{Z})$ and ρ an embedding from Γ to $\mathsf{Bir}(\mathbb{P}^2(\mathbf{C}))$. Then, up to conjugacy, ρ is the canonical embedding or the involution $u \mapsto {}^t(u^{-1})$.

We also obtain that there is no embedding from a subgroup of finite index in $SO_{2,3}(\mathbf{Z})$ to $Bir(\mathbb{P}^2(\mathbf{C}))$.

The proofs of the two last results are "similar". The main ingredients are the presence of HEISENBERG subgroups in $SL_3(\mathbf{Z})$ and $SO_{2,3}(\mathbf{Z})$, we use this to prove that the first dynamical degree of the image of each "standard generator" of Γ is equal to 1; so we can use the results of DILLER and FAVRE ([7]), CANTAT and LAMY ([4]).

1. Introduction

Les techniques de dynamique complexe permettent parfois d'établir des propriétés algébriques pour certains groupes de transformations, c'est le cas dans [3], [4], [8] et [12]; il en va ainsi pour cette note.

Afin de généraliser les travaux de Margulis sur les représentations linéaires des réseaux de groupes de Lie réels simples ([13]) aux représentations non linéaires, Zimmer propose d'étudier les actions des réseaux sur les variétés compactes ([16]). L'une des conjectures principales dans ce programme est la suivante : soient G un groupe de Lie réel simple connexe et Γ un réseau de G; s'il existe un morphisme d'image infinie de Γ dans le groupe des difféomorphismes d'une variété compacte M, le rang réel de G est inférieur ou égal à la dimension de M.

Rappelons quelques résultats obtenus dans cette direction. En 1993, GHYS étudie les groupes engendrés par des difféomorphismes analytiques réels proches de l'identité sur une variété compacte; il obtient en particulier que tout sous-groupe nilpotent de $\mathrm{Diff}^\omega(\mathbb{S}^2)$ est métabélien et que i Γ est un sous-groupe d'indice fini de $\mathrm{SL}_n(\mathbf{Z})$, avec $n \geq 4$, alors tout morphisme de Γ dans $\mathrm{Diff}^\omega(\mathbb{S}^2)$ est d'image finie ([10]). Dans [15], WITTE considère un \mathbf{Q} -groupe algébrique \mathbf{Q} -simple de \mathbf{Q} -rang supérieur ou égal à 2 et Γ un sous-groupe d'indice fini de $G(\mathbf{Z})$; il montre qu'il n'existe pas de relation d'ordre total sur Γ préservée par la multiplication à droite. Il en déduit que toute action continue de Γ sur \mathbb{S}^1 ou sur la droite réelle est d'image finie. Le théorème de WITTE s'applique à une classe restreinte de réseaux, classe dont il est question ici, contrairement à l'énoncé qui suit dû à GHYS ([11]). Soit G un groupe de LIE semi-simple, connexe, de rang réel supérieur ou égal à 2 et n'ayant pas de facteur simple isomorphe à $\mathrm{PSL}_2(\mathbf{R})$. Si Γ est un réseau irréductible de G et ρ un morphisme de Γ dans le groupe des difféomorphismes de classe \mathcal{C}^1 de \mathbb{S}^1 qui préservent l'orientation, alors l'image de ρ est finie. Un cas particulier de cet énoncé a été démontré par BURGER et MONOD lors de leur étude de la cohomologie bornée des réseaux ([2]).

Notons $Bir(\mathbb{P}^2(\mathbf{C}))$ le groupe des transformations birationnelles du plan projectif complexe encore appelé groupe de CREMONA. Dans l'esprit des énoncés précédents, nous montrons le :

Théorème 1.1. — Soit G un \mathbf{Q} -groupe algébrique \mathbf{Q} -simple de \mathbf{Q} -rang r. Soient Γ un sous-groupe d'indice fini de $G(\mathbf{Z})$ et ρ un morphisme de Γ dans $\mathsf{Bir}(\mathbb{P}^2(\mathbf{C}))$. Si ρ est d'image infinie, alors $r \leq 2$.

De plus, si r=2 et ρ est d'image infinie, alors G possède un système de \mathbf{Q} -racines de type A_2 et l'image de ρ est, à conjugaison près, un sous-groupe de $\mathsf{PGL}_3(\mathbf{C})$, le groupe des automorphismes de $\mathbb{P}^2(\mathbf{C})$.

Supposons $r \geq 3$. Reprenons un argument utilisé par WITTE dans [15]; puisque G est simple, son système de \mathbf{Q} -racines possède un sous-système irréductible de rang 3, *i.e.* un système de racines de type A_3 , B_3 ou C_3 (voir [1], page 197, théorème 3). Or C_3 (resp. B_3) possède un sous-système de type A_3 (resp. B_2) donc le système de Q -racines de G possède un sous-système de type A_3 ou B_2 . Commençons par supposer qu'il s'agit d'un sous-système de type A_3 . Dans ce cas Γ contient un sous-groupe $\tilde{\Gamma}$ isomorphe à un sous-groupe d'indice fini de $\mathsf{SL}_4(\mathsf{Z})$; si G possède un sous-système de type B_2 , alors Γ contient un sous-groupe $\tilde{\Gamma}$ isomorphe à un sous-groupe d'indice fini de $\mathsf{SO}_{2,3}(\mathsf{Z})$. Nous sommes ainsi ramenés à l'étude des morphismes d'un sous-groupe d'indice fini de $\mathsf{SL}_n(\mathsf{Z})$ et de $\mathsf{SO}_{2,3}(\mathsf{Z})$ dans $\mathsf{Bir}(\mathbb{P}^2(\mathsf{C}))$.

Théorème 1.2. — Soient Γ un sous-groupe d'indice fini de $\mathsf{SL}_3(\mathbf{Z})$ et ρ un morphisme injectif de Γ dans $\mathsf{Bir}(\mathbb{P}^2(\mathbf{C}))$. Alors ρ coïncide, à conjugaison près, avec le plongement canonique ou la contragrédiente, i.e. l'involution $u \mapsto {}^{\mathsf{t}}(u^{-1})$.

Théorème 1.3. — Il n'existe pas de morphisme injectif d'un sous-groupe d'indice fini de $SO_{2,3}(\mathbf{Z})$ dans le groupe de Cremona.

Comme conséquence du théorème 1.1 nous obtenons le :

Corollaire 1.4. — Soit G un \mathbb{Q} -groupe algébrique \mathbb{Q} -simple de \mathbb{Q} -rang supérieur ou égal à 3. Soient Γ un sous-groupe d'indice fini de $G(\mathbb{Z})$ et S une surface kählerienne compacte. Tout morphisme de Γ dans le groupe des transformations birationnelles de S est d'image finie.

Nous donnons ici une esquisse de preuve des théorèmes 1.1 et 1.2, la démarche pour le théorème 1.3 étant similaire à celle du théorème 1.2. L'idée est la suivante : la présence de nombreux groupes de HEISENBERG dans Γ , sur laquelle s'appuient aussi FRANKS et HANDEL dans [9], assure que tout « générateur standard » de Γ est distordu. Après avoir remarqué que le premier degré dynamique d'un élément distordu vaut 1, nous pouvons combiner les idées de [7] aux résultats de [4]. Les détails paraîtront ultérieurement.

Notations. Si M désigne une variété complexe alors Aut(M) est le groupe des automorphismes de M; nous notons $Aut[\mathbb{C}^2]$ le groupe des automorphismes polynomiaux du plan complexe.

2. Représentations des groupes de Heisenberg

Soit k un entier. Nous appellerons k-groupe de Heisenberg le groupe défini par la présentation : $\mathcal{H}_k = \langle \mathsf{f}, \mathsf{g}, \mathsf{h} \mid [\mathsf{f}, \mathsf{h}] = [\mathsf{g}, \mathsf{h}] = \mathsf{id}, [\mathsf{f}, \mathsf{g}] = \mathsf{h}^k \rangle$. Par convention $\mathcal{H} = \mathcal{H}_1$; c'est le groupe de Heisenberg des matrices 3×3 à coefficients entiers. Remarquons que \mathcal{H}_{k^2} est inclus dans $\mathcal{H}_k \dots$ Soit X une surface complexe compacte. La transformation birationnelle $f: X \dashrightarrow X$ est dite virtuellement isotope à l'identité s'il existe une transformation birationnelle $\eta: X \dashrightarrow X$ et un entier n > 0 tels que $\eta f^n \eta^{-1}$ soit un automorphisme de X isotope à l'identité.

A l'aide de techniques de dynamique complexe nous montrons la :

Proposition 2.1. — Soit ς une représentation de \mathcal{H}_k dans le groupe de Cremona. Supposons que $\varsigma(\mathsf{f})$, $\varsigma(\mathsf{g})$ et $\varsigma(\mathsf{h})$ soient virtuellement isotopes à l'identité. Il existe $\mathcal{H}_{k'} \subset \mathcal{H}_k$, une surface \tilde{X} et une transformation birationnelle $\eta: \mathbb{P}^2(\mathbf{C}) \dashrightarrow \tilde{X}$ tels que $\eta_{\varsigma}(\mathcal{H}_{k'})\eta^{-1}$ soit un sous-groupe de $\mathsf{Aut}(\tilde{X})$.

Remarque 1. — Un automorphisme f d'une surface S isotope à l'identité fixe chaque courbe d'auto-intersection négative; pour toute suite de contractions ψ de S vers un modèle minimal \tilde{S} de S, l'élément $\psi f \psi^{-1}$ est donc un automorphisme de \tilde{S} isotope à l'identité.

Soient S une surface minimale et ς un morphisme injectif de \mathcal{H}_k dans $\mathsf{Aut}(S)$. Trois cas sont possibles.

1. Si $S = \mathbb{P}^2(\mathbf{C})$, alors, à conjugaison linéaire près, nous avons

$$\varsigma(\mathsf{f}) = (x + \zeta y, y + \beta), \quad \varsigma(\mathsf{g}) = (x + \gamma y, y + \delta) \quad \text{et} \quad \varsigma(\mathsf{h}^k) = (x + k, y) \quad \text{avec} \quad \zeta\delta - \beta\gamma = k.$$

- 2. Si S est une surface de HIRZEBRUCH F_m , alors $\varsigma(\mathcal{H}_k)$ est birationnellement conjugué à un sous-groupe de $\mathsf{Aut}[\mathbf{C}^2]$. De plus, $\varsigma(\mathsf{h}^{2k})$ est de la forme (x+P(y),y) avec P dans $\mathbf{C}[y]$.
- 3. Il n'existe pas de morphisme injectif de \mathcal{H}_k dans $\mathsf{Aut}(\mathbb{P}^1(\mathbf{C}) \times \mathbb{P}^1(\mathbf{C}))$.

3. Quasi-rigidité de $SL_3(\mathbf{Z})$

3.1. Groupes de congruence et présentation de $SL_3(\mathbf{Z})$ (voir [14]). —

Pour tout entier q introduisons le morphisme $\Theta_q : \mathsf{SL}_n(\mathbf{Z}) \to \mathsf{SL}_n(\mathbf{Z}/q\mathbf{Z})$ qui à une matrice à coefficients entiers associe sa réduite modulo q. Soient $\Gamma_n(q)$ le noyau de Θ_q et $\tilde{\Gamma}_n(q)$ l'image réciproque du groupe diagonal de $\mathsf{SL}_n(\mathbf{Z}/q\mathbf{Z})$ par Θ_q ; les $\Gamma_n(q)$ sont des sous-groupes distingués appelés groupes de congruence. Soient n un entier supérieur ou égal à 3 et Γ un sous-groupe de $\mathsf{SL}_n(\mathbf{Z})$. Si Γ est d'indice fini, il existe un entier q tel que Γ contienne un groupe $\Gamma_n(q)$ et soit contenu dans $\tilde{\Gamma}_n(q)$. Si Γ est d'indice infini, alors Γ est fini (voir [14]).

Notons δ_{ij} la matrice de Kronecker 3×3 et $e_{ij} = \operatorname{Id} + \delta_{ij}$. Le groupe $\operatorname{SL}_3(\mathbf{Z})$ a pour présentation

$$\langle e_{ij}, \ i \neq j \mid [e_{ij}, e_{kl}] = \mathsf{id} \ si \ i \neq l \ et \ j \neq k, \ e_{il} \ si \ i \neq l \ et \ j = k, \ e_{kj}^{-1} \ si \ i = l \ et \ j \neq k; \ (e_{12}e_{21}^{-1}e_{12})^4 = \mathsf{id} \rangle.$$

Les e_{ij}^q engendrent $\Gamma_3(q)$ et vérifient des relations similaires aux e_{ij} (voir $[\mathbf{14}]$); nous les appellerons générateurs standards de $\Gamma_3(q)$. Remarquons que chaque $e_{ij}^{q^2}$ s'écrit comme le commutateur de deux $e_{k\ell}^q$ avec lesquels il commute. Les $\Gamma_3(q)$ contiennent donc de nombreux k-groupes de HEISENBERG; par exemple le sous-groupe $\langle e_{12}^q, e_{13}^q, e_{23}^q \rangle$ de $\Gamma_3(q)$ en est un (pour k=q).

3.2. Dynamique de l'image d'un groupe de congruence. —

Soient G un groupe de type fini, $\{a_1, \ldots, a_n\}$ une partie génératrice de G et f un élément de G. La longueur de f, notée ||f||, est le plus petit entier k pour lequel il existe une suite (s_1, \ldots, s_k) d'éléments de $\{a_1, \ldots, a_n, a_1^{-1}, \ldots, a_n^{-1}\}$ telle que $f = s_1 \ldots s_k$. Un élément f de G est distordu s'il est d'ordre infini et si la quantité $\lim_{k\to\infty} \frac{||f^k||}{k}$ est nulle. Remarquons que la puissance k-ième du générateur standard h d'un k-groupe de Heisenberg \mathcal{H}_k est distordue. En particulier les générateurs standards de tout sous-groupe de congruence de $\mathsf{SL}_n(\mathbf{Z})$ sont distordus.

Le premier degré dynamique d'une application birationnelle $g: X \dashrightarrow X$ est défini par $\lambda(g) = \limsup_{n \to +\infty} |(g^n)^*|^{1/n}$ où $|\cdot|$ désigne une norme sur $\operatorname{End}(\mathsf{H}^{1,1}(X,\mathbf{R}))$ (voir [5]).

Lemme 3.1. — Soient f un élément d'un groupe de type fini G et ς un morphisme de G dans $Bir(\mathbb{P}^2(\mathbf{C}))$. Si f est distordu, le degré dynamique de $\varsigma(f)$ vaut 1.

Démonstration. — Notons $\deg g$ le degré algébrique d'une transformation birationnelle g et $\{a_1, \ldots, a_n\}$ une partie génératrice de G. Les inégalités $\lambda(\varsigma(f))^n \leq \deg \varsigma(f)^n \leq \max_i (\deg \varsigma(a_i))^{\|f^n\|}$ conduisent à

$$0 \le \log \lambda(\varsigma(f)) \le \frac{\|f^n\|}{n} \log(\max_i(\deg \varsigma(a_i))).$$

Si f est distordu, la quantité $\lim_{k\to\infty}\frac{\|f^k\|}{k}$ est nulle et le degré dynamique de $\varsigma(f)$ vaut 1. \square

Dans la suite de cette partie, ρ désigne un morphisme injectif d'un sous-groupe de congruence $\Gamma_3(q)$ de $\mathsf{SL}_3(\mathbf{Z})$ dans $\mathsf{Bir}(\mathbb{P}^2(\mathbf{C}))$. Nous déduisons de ce qui précède l'égalité $\lambda(\rho(e^q_{ij}))=1$. D'après le théorème 0.2 de [7], nous avons l'alternative suivante : ou bien l'un des $\rho(e^q_{ij})$ préserve une unique fibration, rationnelle ou elliptique; ou bien tout générateur standard de $\Gamma_3(q)$ est virtuellement isotope à l'identité. Nous allons traiter séparément ces deux éventualités.

Proposition 3.2. — Soit ρ un morphisme d'un sous-groupe de congruence $\Gamma_3(q)$ de $\mathsf{SL}_3(\mathbf{Z})$ dans $\mathsf{Bir}(\mathbb{P}^2(\mathbf{C}))$. Si l'un des $\rho(e^q_{ij})$ préserve une unique fibration, alors l'image de ρ est finie.

La preuve de cette proposition consiste à montrer que $\Gamma_3(q)$ préserve la fibration et nous concluons en utilisant que l'image de tout morphisme d'un groupe de type fini ayant la propriété (T) de KAZHDAN dans $\mathsf{PGL}_2(\mathbf{C}(y))$ (resp. $\mathsf{PGL}_2(\mathbf{C})$) est finie.

Etudions le cas où tout générateur standard de $\Gamma_3(q)$ est virtuellement isotope à l'identité. Alors les images de e_{12}^{qn} , e_{13}^{qn} et e_{23}^{qn} par ρ sont, pour un certain n, des automorphismes d'une même surface minimale (proposition 2.1). En utilisant [4] nous obtenons l'énoncé suivant.

Proposition 3.3. — Soit ρ un morphisme injectif d'un sous-groupe de congruence $\Gamma_3(q)$ de $\mathsf{SL}_3(\mathbf{Z})$ dans $\mathsf{Bir}(\mathbb{P}^2(\mathbf{C}))$. Si $\rho(e_{12}^{qn})$, $\rho(e_{13}^{qn})$ et $\rho(e_{23}^{qn})$ sont, pour un certain n, simultanément conjugués à des éléments de $\mathsf{Aut}(\mathbb{P}^2(\mathbf{C}))$ (resp. $\mathsf{Aut}(\mathsf{F}_m)$ avec $m \geq 1$), alors l'image d'un sous-groupe de congruence de $\mathsf{SL}_3(\mathbf{Z})$ est, à conjugaison près, un sous-groupe de $\mathsf{PGL}_3(\mathbf{C})$.

3.3. Rigidité de $SL_3(\mathbf{Z})$: démonstration du théorème 1.2. —

La proposition 3.2 assure que tout générateur standard de $\Gamma_3(q)$ est virtuellement isotope à l'identité. D'après la proposition 2.1 et la remarque 1 les transformations $\rho(e_{12}^{qn})$, $\rho(e_{13}^{qn})$ et $\rho(e_{23}^{qn})$ sont, pour un certain n, conjuguées à des automorphismes d'une surface minimale S; seuls les cas $S = \mathbb{P}^2(\mathbf{C})$ et $S = \mathsf{F}_m$, avec $m \geq 1$, sont à considérer. Nous obtenons finalement que $\rho(\Gamma_3(p))$ est, pour un certain p, conjugué à un sous-groupe de $\mathsf{PGL}_3(\mathbf{C})$ (proposition 3.3). Nous pouvons donc supposer que $\rho(\Gamma_3(p))$ est un sous-groupe de $\mathsf{PGL}_3(\mathbf{C})$. La restriction de ρ à $\Gamma_3(p)$ se prolonge alors en un morphisme de groupe de LIE de $\mathsf{PGL}_3(\mathbf{C})$ dans lui-même ([14]); par simplicité de $\mathsf{PGL}_3(\mathbf{C})$, ce prolongement est injectif et donc surjectif. Or d'après le chapitre IV de [6] les automorphismes lisses de $\mathsf{PGL}_3(\mathbf{C})$ s'obtiennent à partir des automorphismes intérieurs et de la contragrédiente; ainsi, à conjugaison linéaire près, la restriction de ρ à $\Gamma_3(p)$ coïncide avec le plongement canonique ou la contragrédiente. Soit f un élément de $\rho(\Gamma) \setminus \rho(\Gamma_3(p))$ dont le lieu exceptionnel, que nous noterons \mathcal{C} , n'est pas vide. Le groupe $\Gamma_3(p)$ est distingué dans Γ ; la courbe \mathcal{C} est donc invariante par tous les éléments de $\rho(\Gamma_3(p))$ donc par tous ceux de $\overline{\rho(\Gamma_3(p))}^Z = \mathsf{PGL}_3(\mathbf{C})$, où l'adhérence est prise au sens de Zariski, ce qui est impossible. Donc f est dans $\mathsf{PGL}_3(\mathbf{C})$.

4. Application aux représentations des groupes $SL_n(\mathbf{Z})$

Théorème 4.1. — Tout morphisme d'un sous-groupe d'indice fini de $\mathsf{SL}_n(\mathbf{Z})$ dans le groupe de Cremona est d'image finie si $n \geq 4$.

Démonstration. — Il suffit de considérer le cas d'un sous-groupe d'indice fini Γ de $\mathsf{SL}_4(\mathbf{Z})$ et d'un morphisme ρ de Γ dans $\mathsf{Bir}(\mathbb{P}^2(\mathbf{C}))$. Le sous-groupe Γ de $\mathsf{SL}_4(\mathbf{Z})$ contient un sous-groupe de congruence $\Gamma_4(q)$. Notons encore e_{ij} les générateurs standards de $\mathsf{SL}_4(\mathbf{Z})$. Le morphisme ρ induit une représentation fidèle $\tilde{\rho}$ de $\Gamma_3(q) = \langle e_{ij}^q \mid 1 \leq i, j \leq 3 \rangle$ dans $\mathsf{Bir}(\mathbb{P}^2(\mathbf{C}))$. Le théorème 1.2 assure qu'à conjugaison près $\tilde{\rho}$ est le plongement canonique ou la contragrédiente. Plaçons nous dans la première éventualité. L'élément $\rho(e_{34}^q)$ commute à $\rho(e_{31}^q) = (x, y, qx + z)$ et le lieu des courbes contractées par $\rho(e_{34}^q)$, noté $\mathsf{Exc}(\rho(e_{34}^q))$, est invariant par (x, y, qx + z). Par ailleurs $\rho(e_{34}^q)$ commute à $\rho(e_{12}^q)$ et $\rho(e_{21}^q)$, autrement dit au $\Gamma_2(q)$ suivant

$$\Gamma\supset \left(egin{array}{c|c} \Gamma_2(q) & 0 & 0 \ 0 & 0 \ \hline 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ \end{array}
ight)
ightarrow \mathsf{Bir}(\mathbb{P}^2(\mathbf{C})).$$

Or l'action de $\mathsf{SL}_2(\mathbf{Z})$ sur \mathbf{C}^2 ne laisse pas de courbe invariante; les éventuelles courbes contractées par $\rho(e^q_{34})$ sont donc contenues dans la droite à l'infini. L'image de celle-ci par (x,y,qx+z) intersecte \mathbf{C}^2 ; par suite $\mathsf{Exc}(\rho(e^q_{34}))$ est vide et $\rho(e^q_{34})$ appartient à $\mathsf{PGL}_3(\mathbf{C})$. Nous montrons de la même manière que $\rho(e^q_{43})$ est un élément de $\mathsf{PGL}_3(\mathbf{C})$. Les relations assurent alors que $\rho(\Gamma_4(q))$ est dans $\mathsf{PGL}_3(\mathbf{C})$; l'image de ρ est donc finie. Un raisonnement analogue permet de conclure lorsque $\tilde{\rho}$ est la contragrédiente.

Remerciements.

Merci à S. Cantat, D. Cerveau, E. Ghys et D. Witte pour leurs remarques et suggestions.

Références

- [1] N. Bourbaki, Éléments de mathématique, Groupes et algèbres de Lie. Chapitres 4, 5 et 6., Masson, Paris, 1981, 290.
- [2] M. Burger, N. Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. (JEMS), 1, 1999, 2, 199–235. Erratum, 1, 1999, 3, 338.
- [3] S. Cantat, Version kählérienne d'une conjecture de Robert J. Zimmer, Ann. Sci. École Norm. Sup. (4), 37, 2004, 5, 759–768.
- [4] S. Cantat, S. Lamy, Groupes d'automorphismes polynomiaux du plan, preprint.
- [5] D. Cerveau, E. Ghys, N. Sibony, J.C. Yoccoz, Dynamique et géométrie complexes, Panoramas et Synthèses, 8, Société Mathématique de France, Paris, 1999.
- [6] J.A. Dieudonné, La géométrie des groupes classiques, Troisième édition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5, Springer-Verlag, Berlin, 1971.
- [7] J. Diller, C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math., 123, 2001, 6, 1135–1169.
- [8] T.C. Dinh, N. Sibony, Groupes commutatifs d'automorphismes d'une variété kählérienne compacte, Duke Math. J., 123, 2004, 2, 311–328.
- [9] J. Franks, M. Handel, Area preserving group actions on surfaces, Geom. Topol., 7, 2003, 757–771 (electronic).

- [10] E. Ghys, Sur les groupes engendrés par des difféomorphismes proches de l'identité, Bol. Soc. Brasil. Mat. (N.S.), 24, 1993, 2, 137–178.
- [11] E. Ghys, Actions de réseaux sur le cercle, Invent. Math., 137, 1999, 1, 199–231.
- [12] S. Lamy, L'alternative de Tits pour $Aut[\mathbb{C}^2]$, J. Algebra, 239, 2001, 2, 413–437.
- [13] G. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991.
- [14] R. Steinberg, Some consequences of the elementary relations in SL_n , Finite groups—coming of age (Montreal, Que., 1982), Contemp. Math., 45, 335–350, Amer. Math. Soc., Providence, RI, 1985.
- [15] D. Witte, Arithmetic groups of higher **Q**-rank cannot act on 1-manifolds, Proc. Amer. Math. Soc., 122, 1994, 2, 333–340.
- [16] R.J. Zimmer, Actions of semisimple groups and discrete subgroups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 1247–1258, Amer. Math. Soc., Providence, RI, 1987.

JULIE DÉSERTI, IRMAR, UMR 6625 du CNRS, Université de Rennes I, 35042 Rennes, France. E-mail: julie.deserti@univ-rennes1.fr