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ABSTRACT. We started the study of the family of birational maps ( fα,β) of

P2
C

in [12]. For “(α,β) well chosen” of modulus 1, the centraliser of fα,β is
trivial, the topological entropy of fα,β is 0, and there exist two domains of
linearisation: in the first one the closure of the orbit of a point is a torus, in
the other one the closure of the orbit of a point is the union of two circles.
On P1

C
×P1

C
, any fα,β can be viewed as a cocyle; using recent results about

SL(2;C)-cocycles ([1]), we determine the Lyapunov exponent of the cocyle
associated to fα,β.

INTRODUCTION

In this article we deal with a family of birational maps ( fα,β) given by

fα,β : P2
C 99KP

2
C (x : y : z) 99K

(
(αx + y)z :βy(x + z) : z(x + z)

)
,

where α, β denote two complex numbers of modulus 1, a case for which we
know almost nothing about the dynamics. Let us consider the set Ω of pairs
of complex numbers of modulus 1 that satisfy the Diophantine condition. The
family ( fα,β) satisfies the following properties ([12]):

• For (α,β) ∈Ω the centraliser of fα,β, that is the set of birational maps of
P2
C

that commutes with fα,β, is isomorphic to Z.
• The topological entropy of fα,β is 0.
• Rotation domains of ranks 1 and 2 coexist: there is a domain of linearisa-

tion where the orbit of a generic point under fα,β is a torus, and there is
another domain of linearisation where the orbit of a generic point under
f 2
α,β is a circle.

We can also view fα,β on P1
C
×P1

C

(
since all the computations of [12] have been

done in an affine chart, they may all be carried on P1
C
×P1

C

)
; the sets P1

C
×S1

ρ ,

where S1
ρ = {y ∈C | |y | = ρ}, are invariant.

Let us define Aα,ρ
n : S1

ρ → M(2;C), given in terms of Aα,ρ(y) =
[
α y
1 1

]
, by

Aα,ρ
n (·) = Aα,ρ(βn ·)Aα,ρ(βn−1 ·) . . . Aα,ρ(β ·)Aα,ρ(·).
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To compute f n
α,β(x, y) is equivalent to compute Aα,ρ

n (y) as soon as f k
α,β(x, y) 6=

(−1,α), for any 1 ≤ k ≤ n.
Using [1] we are able to determine the Lyapunov exponent of the cocycle

(Aα,ρ ,β).

THEOREM A. The Lyapunov exponent of (Aα,ρ ,β) is positive if ρ > 1 and zero if

ρ ≤ 1. More precisely, fα,β is semi-conjugate to
(
αx+y2

x+1 ,β1/2 y
)

and the Lyapunov

exponent of the cocycle
(
Bα,ρ ,β1/2

)
, where

Bα,ρ(y) =
[
α y2

1 1

]
,

is equal to max(0, lnρ).

In the next section we introduce the family ( fα,β) and its properties (§1). Then
we deal with the recent works of Avila on SL(2;C)-cocyles. In the last section
we give the proof of Theorem A (see §2). Let us explain the sketch of it. We
associate to

(
Bα,ρ ,β1/2

)
a cocycle

(
B̃α,ρ ,β1/2

)
that belongs to SL(2;C). We first

determine
lim
ρ→0

L
(
B̃α,ρ ,β1/2)

and, then,
lim

ρ→+∞L
(
B̃α,ρ ,β1/2),

where L(C ,γ) denotes the Lyapunov exponent of the SL(2;C)-cocyle (C ,γ). In
both cases, we get 0. Using [1, Theorem 5] we obtain that L

(
B̃α,ρ ,β1/2

)
vanishes

everywhere; it allows us to determine L
(

Aα,ρ ,β
)

since

L
(
Bα,ρ(y),β1/2)= L

(
B̃α,ρ(y),β1/2)+max(0, lnρ),

and since
(

Aα,ρ ,β
)

and
(
β1/2,Bα,ρ

)
are conjugate.

1. SOME PROPERTIES OF THE FAMILY ( fα,β)

A rational map φ from P2
C

into itself is a map of the form

(x : y : z) 99K
(
φ0(x, y, z) :φ1(x, y, z) :φ2(x, y, z)

)
,

where the φi ’s are some homogeneous polynomials of the same degree without
common factor; φ is birational if it admits an inverse of the same type. We will
denote by Bir(P2

C
) the group of birational maps of P2

C
, also called the Cremona

group. The degree of φ, denoted degφ, is the degree of the φi ’s. The degree is
not a birational invariant: degψφψ−1 6= degφ for generic birational maps φ and
ψ. The first dynamical degree of φ given by

λ(φ) = lim
n→+∞

(
degφn)1/n

is a birational invariant; it is strongly related to the topological entropy htop(φ)
of φ (see [17, 20]),

htop(φ) ≤ logλ(φ).(1.1)
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Any birational map φ admits a resolution

S
π2

��

π1

��
P2
C φ

// P2
C

where π1, π2 : S → P2
C

are sequences of blow-ups (see [3], for example). The
resolution is minimal if and only if no (−1)-curve of S is contracted by both π1

and π2. The base-points of φ are the points blown-up in π1, which can be points
of P2

C
or infinitely near points. We denote by b(φ) the number of such points,

which is also equal to the difference of the ranks of Pic(S) and Pic(P2
C

), and thus
is equal to b(φ−1).

The dynamical number of base-points of φ introduced in [8] is by definition

µ(φ) = lim
n→+∞

b(φn)

n
.

It is a real positive number that satisfies µ(ψφψ−1) = µ(φ) and, for any n ∈ Z,
µ(φn) = |nµ(φ)|. It allows us to give a characterization of birational maps conju-
gate to automorphisms.

THEOREM 1.1 ([8]). Let S be a smooth projective surface; the birational map
φ ∈ Bir(S) is conjugate to an automorphism of a smooth projective surface if and
only if µ(φ) = 0.

The behavior of φ ∈ Bir(P2
C

) is strongly related to the behavior of
(
degφn

)
n∈N

(see [16, 15, 8]); up to birational conjugacy exactly one of the following holds:

1. The sequence
(
degφn

)
n∈N is bounded and either φ is of finite order, or φ

is an automorphism of P2
C

.

2. There exists an integer k such that

lim
n→+∞

degφn

n
= k2 µ(φ)

2
and φ is not an automorphism.

3. There exists an integer k ≥ 3 such that

lim
n→+∞

degφn

n2 = k2 κ(φ)

9
,

where κ(φ) ∈Q is a birational invariant, and φ is an automorphism.

4. The sequence
(

degφn
)

n∈N grows exponentially (see [15] for more precise
dynamical properties).

In the first three cases λ(φ) = 1, in the last one λ(φ) > 1. In case 2 (respec-
tively, 3) the map φ preserves a unique fibration which is rational (respectively,
elliptic).

In case 1 (respectively 2, 3, and 4) we say that φ is elliptic (respectively a
Jonquières twist, an Halphen twist, and hyperbolic).
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Let us give some examples. Let

φ(x, y) =
(

a(y)x +b(y)

c(y)x +d(y)
,
αy +β
γy +δ

)
be an element of the Jonquières group PGL(2;C(y))oPGL(2;C); either φ is ellip-
tic (for instance, φ : (x : y : z) 99K (y z : xz : x y)), or φ is a Jonquières twist (for
example, φ : (x : y : z) 99K (xz : x y : z2) for which the unique invariant fibration
is y/z = constant). The map

φ : P2
C 99KP

2
C (x : y : z) 99K

(
(2y + z)(y + z) : x(2y − z) : 2z(y + z)

)
is an Halphen twist ([15, Proposition 9.5]). Hénon automorphisms give by ho-
mogenization examples of hyperbolic maps.

Clearly, elliptic birational maps have a poor dynamical behavior contrary to
hyperbolic ones. The study of automorphisms of positive entropy is strongly
related with birational maps of P2

C
.

THEOREM 1.2 ([9]). Let S be a compact complex surface that carries an automor-
phism φ of positive topological entropy. Then, either

• the Kodaira dimension of S is zero and φ is conjugate to an automorphism
on the unique minimal model of S that necessarily is a torus, a K3 surface,
or an Enriques surface; or

• the surface S is a non-minimal rational one, isomorphic to P2
C

blown up at
n points, n ≥ 10, and φ is conjugate to a birational map of P2

C
.

This yields many examples of hyperbolic birational maps for which we can
establish many dynamical properties ([18, 4, 5, 6, 7, 14, 13]).

Another way to measure chaos is to look at the size of centralisers. Let us give
two examples. The polynomial automorphisms of C2 having rich dynamics are
Hénon maps; furthermore, a polynomial automorphism of C2 is a Hénon one
if and only if its centraliser is countable. Let us now consider rational maps on
S1; if the centraliser of such maps is not trivial 1, then the Julia set is “special”.
The centraliser of an elliptic birational map of infinite order is uncountable
([8]). The centralisers of Halphen twists are described in [16]. The centraliser
of an hyperbolic map is countable ([10]). In [11] we end the story by studying
centralisers of Jonquières twists. If the fibration is fiberwise invariant, then
the centraliser is uncountable; but if it isn’t, then generically the centraliser is
isomorphic to Z. We don’t know much about the dynamics of these maps, thus
in this article we will focus on a family of such maps. We consider the Jonquières
maps

fα,β : P2
C 99KP

2
C (x : y : z) 99K

(
(αx + y)z :βy(x + z) : z(x + z)

)
,

where α, β denote two complex numbers of modulus 1. The base-points of fα,β

are
(1 : 0 : 0), (0 : 1 : 0), (−1 :α : 1).

1. The centraliser of a map φ is trivial if it coincides with the iterates of φ.
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Any fα,β preserves a rational fibration (the fibration y = constant in the affine
chart z = 1). Each element of the family ( fα,β) has first dynamical degree 1,
hence topological entropy zero (1.1); more precisely, one has ([8, Example 4.3])

µ( fα,β) = 1

2
,

so fα,β is not conjugate to an automorphism (Theorem 1.1). The centralizer
of fα,β is isomorphic to Z (see [12, Theorem 1.6]). The idea of the proof is as
follows: the point p = (1 : α : 1) is blown-up onto a fiber of the fibration y =
constant. Let ψ be an element of

Cent( fα,β) = {
g ∈ Bir(P2

C) | g ◦ fα,β = fα,β ◦ g
}
.

Since ψ blows down a finite number of curves, there exists a positive integer k
(chosen minimal) such that f k

α,β(p) is not blown down by ψ. Replacing ψ by

ψ̃=ψ f k−1
α,β , one gets that ψ̃(p) is an indeterminacy point of fα,β. In other words,

ψ̃ permutes the indeterminacy points of fα,β. A more precise study allows us
to establish that p is fixed by ψ̃. The pair (α,β) being in Ω, the closure of the
negative orbit of p under the action of fα,β is Zariski dense; since ψ̃ fixes any
element of the orbit of p, one obtains ψ̃= id.

Let us recall that if ψ is an automorphism on a compact complex manifold
M, then the Fatou set F (ψ) of ψ is the set of points that have a neighborhood V

such that
{

f n
|V | n ∈N}

is a normal family. Set

G (U ) = {
φ : U →U | φ= lim

n j→+∞ψ
n j

}
.

We say that U is a rotation domain if G (U ) is a subgroup of Aut(U ). An equiva-
lent definition is the following: a component U of F (ψ) which is invariant by
ψ is a rotation domain if ψ|U is conjugate to a linear rotation. If U is a rotation
domain, then G (U ) is a compact Lie group, and the action of G (U ) on U is an-
alytic real. Since G (U ) is a compact, infinite, abelian Lie group, the connected
component of the identity of G (U ) is a torus of dimension 0 ≤ d ≤ dimCM.
The integer d is the rank of the rotation domain. The rank coincides with the
dimension of the closure of a generic orbit of a point in U .

We can also view fα,β on P1
C
×P1

C
and that is what we will do in the sequel(

since all the computations of [12] have been done in an affine chart, they may
all be carried on P1

C
×P1

C

)
; the sets P1

C
×S1

ρ are invariant. In [12] we show that

there are two rotation domains for f 2
α,β, one of rank 1, and the other one of

rank 2 2; for the first case, we give below a more precise statement than in [12].

THEOREM 1.3. Assume that (α,β) belongs to Ω. There exists a strictly positive
real number r such that fα,β is conjugate to (αx,βy) on P1

C
× D(0,r ), where

D(0,r ) denotes the disk centered at the origin with radius r . There exists a strictly

positive real number r̃ such that f 2
α,β is conjugate to

(
x
β , z

β2

)
on P1

C
×D(0, r̃ ).

2. There already exists an example of automorphism of positive entropy with rotation domains
of rank 1 and 2 (see [5]), but fα,β is not conjugate to an automorphism on a rational surface.
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REMARK 1.4. The point (α−1,0) is also a fixed point of fα,β, where the behavior
of fα,β is the same as near (0,0).

Proof. The first assertion is proved in [12].

Let us consider the map ψ(x, z) =
(

a(z)x+b(z)
c(z)x+1 , z

)
. The equation

ψ−1 f 2
α,βψ=

(
x

β
,

z

β2

)
yields

(1.2) βa
(
β−2 z

)
c(z)+βa

(
β−2 z

)
a(z)− c

(
β−2 z

)
a(z)+αa

(
β−2 z

)
a(z)

+ z
(
α2 a

(
β−2 z

)
c(z)−αc

(
β−2 z

)
c(z)− c

(
β−2 z

)
c(z)− c

(
β−2 z

)
a(z)

)= 0,

(1.3) βa
(
β−2 z

)−βa(z)+ z
(
α2 a

(
β−2 z

)−αβc(z)−βc(z)−βa(z)

−αc
(
β−2 z

)− c
(
β−2 z

))+β(α+β) a(z)b
(
β−2 z

)+ (α+β)b(z)a
(
β−2 z

)
+β2 b

(
β−2 z

)
c(z)−b(z)c

(
β−2 z

)+ z
(
α2βb

(
β−2 z

)
c(z)−b(z)c

(
β−2 z

))= 0,

and

(1.4) (α+1) z +b(z)−βb
(
β−2 z

)−α2 zb
(
β−2 z

)
+ zb(z)− (α+β)b

(
β−2 z

)
b(z) = 0.

Let us set

a(z) = ∑
i≥0

ai zi , b(z) = ∑
i≥0

bi zi , c(z) = ∑
i≥0

ci zi .

We easily get a0 = 1−β, b0 = 0 and c0 =α+β.
Relation (1.4) implies that

b1 = β(1+α)

1−β and βbν
(
1−β1−2ν)+Fi (bi | i < ν) = 0 ,∀ν> 1,

(1.3) yields

aν
(
β1−2ν−β)+bν

(
(α+β)a0

(
1+β1−2ν

)
+ c0

(
β2−2ν−1

))
+Gi (ai , bi , ci | i < ν) = 0,

and (1.2) implies

cνa0
(
β−β−2ν)+aν

(
(α+β)a0

(
1+β−2ν

)
+ c0

(
β1−2ν−1

))
+Hi (ai , bi , ci | i < ν) = 0,

where the Fi ’s, Gi ’s and Hi ’s denote universal polynomials; this allows to com-
pute bν, aν and cν. Thus we get a formal conjugacy of f 2

α,β to its linear part.

Since this linear part satisfies a Rüssmann condition (see [19, Theorem 2.1],
condition (2)), according to [19, Theorem 2.1], any formal linearizing map con-
jugating f 2

α,β to its linear part is convergent on a polydisc.
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2. ABOUT SL(2;C)-COCYCLES

A (one-frequency, analytic) quasiperiodic SL(2;C)-cocycle is a pair (A,β), where
β ∈ R and

A : S1
1 → SL(2;C)

is analytic, and defines a linear skew product acting on C2 ×S1
1 by

(x, y) 7→ (A(y) · x,βy).

The iterates of the cocyle are given by (An ,nβ) where An is given by

An(y) = A
(
βn−1 y

)
. . . A(y) n ≥ 1, A0(y) = id, A−n(y) = An(β−n y)−1.

The Lyapunov exponent L(A,β) of a quasiperiodic SL(2;C)-cocycle (A,β) is given
by

lim
n→+∞

1

n

∫
S1

1

ln ||An(y)||dy.

A quasiperiodic SL(2;C)-cocycle (A,β) is uniformly hyperbolic if there exist ana-
lytic functions

u, s : S1
1 →P2

C,

called the unstable and stable directions, and n ≥ 1 such that for any y ∈S1
1,

A(y) ·u(y) = u(βy), A(y) · s(y) = s(βy),

and for any unit vector x ∈ s(y) (respectively, x ∈ u(y)) we have ||An(y) · x|| < 1
(respectively, ||An(y) · x|| > 1). The unstable and stable directions are uniquely
characterized by those properties, and clearly u(y) 6= s(y) for any y ∈S1

1. If (A,β)
is uniformly hyperbolic, then L(A,β) > 0. Let us denote by

UH ⊂Cω
(
SL(2;C),S1

1

)
the set of A such that (A,β) is uniformly hyperbolic. Uniform hyperbolicity is a
stable property: UH is open, and A 7→ L(A,β) is analytic over UH (regularity
properties of the Lyapunov exponent are consequence of the regularity of the
unstable and stable directions which depend smoothly on both variables).

DEFINITION. Let (A,β) be a quasiperiodic SL(2;C)-cocycle. If L(A,β) > 0 but
(A,β) 6∈UH , then (A,β) is nonuniformly hyperbolic.

If A ∈Cω
(
SL(2;C),S1

1

)
admits a holomorphic extension to |Im y | < δ, then for

|ε| < δ we can define Aε ∈Cω
(
SL(2;C),S1

1

)
by

Aε(y) = A(y + iε).

The Lyapunov exponent L(Aε,β) is a convex function of ε. We can thus intro-
duce the following notion. The acceleration of a quasiperiodic SL(2;C)-cocyle
(A,β) is given by

ω(A,β) = lim
ε→0+

1

2πε

(
L(Aε,β)−L(A,β)

)
.

REMARK 2.1. The convexity of the Lyapunov exponent as function of ε implies
that the acceleration is decreasing.
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Since the Lyapunov exponent is a convex and continuous function, the accel-
eration is an upper semi-continuous function in RàQ×Cω

(
SL(2;C),S1

1

)
. The

acceleration is quantized.

THEOREM 2.2 ([1]). If (A,β) is a SL(2;C)-cocycle with β ∈ RrQ, then ω(A,β) is
always an integer.

A direct consequence is the following.

COROLLARY 2.3. The function ε 7→ L(Aε,β) is a piecewise affine function of ε.

It is thus natural to introduce the notion of regularity. A cocycle

(A,β) ∈Cω
(
SL(2;C),S1

1

)×RàQ
is regular if L(Aε,β) is affine for ε in a neighborhood of 0. In other words, (A,β)
is regular if the equality

L(Aε,β)−L(A,β) = 2πεω(A,β)

holds for all ε small, and not only for the positive ones. Regularity is equivalent
to the acceleration being locally constant near (A,β). It is an open condition in
Cω

(
SL(2;C),S1

1

)×RàQ. The following statement gives a characterization of the
dynamics of regular cocycles with positive Lyapunov exponent.

THEOREM 2.4 ([1]). Let (A,β) be a SL(2;C)-cocycle with β ∈ RrQ. Assume that
L(A,β) > 0; then (A,β) is regular if and only if (A,β) is in UH .

One striking consequence is the following:

COROLLARY 2.5 ([1]). For any (A,β) in Cω
(
SL(2;C),S1

1

)×RàQ, there exists ε0

such that

• L(Aε,β) = 0 (and ω(A,β) = 0) for every 0 < ε< ε0, or

• (Aε,β) ∈UH for every 0 < ε< ε0.

REMARK 2.6. Let us mention that there is a link between SL(2;C)-cocycles and
Schrödinger operators (see [1] for more details).

3. PROOF OF THEOREM A

Suppose that ρ 6= 1, and let us consider the cocycle (Bα,ρ ,β1/2), where

Bα,ρ(y) =
[
α y2

1 1

]
.

Since (αx + y

x +1
,βy

)(
x, y2)= (

x, y2)(αx + y2

x +1
,β1/2 y

)
,

the cocycles (Aα,ρ ,β) and (Bα,ρ ,β1/2) have the same behavior. Using two differ-
ent arguments of monodromy (one for ρ < 1, and the other one for ρ > 1) we
see that there is a continuous determination for the square root of detBα,ρ(y) =
α− y2. Let us set

B̃α,ρ(y) = 1√
α− y2

Bα,ρ(y) ∈ SL(2;C)
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that is thus defined on two different domains of analyticity. According to Theo-
rem 1.3 one has L

(
B̃α,ρ ,β1/2

)= 0 when ρ is close to both 0 and ∞.

Assume that L
(
B̃α,ρ ,β1/2

)
is nonconstant. When B̃α,ρ is holomorphic, in par-

ticular, when ρ < 1 and ρ > 1, the acceleration is decreasing (Remark 2.1); fur-
thermore, the acceleration is positive for ρ < 1 and negative for ρ > 1 (because
L is continuous). Theorem 2.2 thus implies

ω
(
B̃α,1+

,β1/2)−ω(
B̃α,1−

,β1/2)≤−2.

By definition of B̃α,ρ we have

L
(
B̃α,ρ(y),β1/2)= L

(
Bα,ρ(y),β1/2)−∫

S1
ρ

ln
√
α− y2 dy

= L
(
Bα,ρ(y),β1/2)−max(0, lnρ).

Even though
(
Bα,ρ(y),β1/2

)
is not a SL(2;C)-cocycle, the Lyapunov exponent is

still a convex function of logρ (see for example [2]). The jump of ω(Bα,ρ(y),β1/2)
is thus ≥ 0, and the jump for the second term of the right member is −1. There-
fore the jump of L

(
B̃α,ρ(y),β1/2

)
is ≥−1, contradiction.
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