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Abstract. — We give an extensive introduction to the current literature on the CREMONA
groups over the field of complex numbers, mostly of rank 2, with an emphasis on group theo-
retical and dynamical questions.

After a short introduction which explains in an informal style some selected results and
techniques Chapter 2 gives a description of the hyperbolic space on which the CREMONA
group in two variables acts, and which has turned out to provide some of the key techniques
to understand the plane CREMONA group. In Chapter 3 the ZARISKI topology is described.
Chapter 4 gives an overview of various presentations of the plane CREMONA group. Chapter
5 treats some group theoretical properties of the plane CREMONA group. Chapter 6 surveys
some results about finite (mostly abelian) subgroups of the plane CREMONA group. Chapter
7 surveys results about various subgroups using techniques that rely on the base-field being
uncountable. Chapter 8 gives a big variety of important results that can be deduce from the
action of the plane CREMONA group on the hyperbolic space, such as the TITS alternative
or the non-simplicity of the group. Chapter 9 gives an introduction to some notions from
dynamics and their relationship to the plane CREMONA group.
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PREFACE

The main purpose of the present treatise is to draw a portrait of the n-dimensional Cre-
mona group Bir(Pn

C). The study of this group started in the XIXth century; the subject has
known a lot of developments since the beginning of the XXIth century. Old and new results
are discussed; unfortunately we will not be exhaustive. The Cremona group is approached
through the study of its subgroups: algebraic, finite, normal, nilpotent, simple, torsion sub-
groups are evoked but also centralizers of elements, representation of lattices, subgroups of
automorphisms of positive entropy etc

Let us introduce birational self maps of the plane and the plane Cremona group from a
geometrical point of view.

A plane collineation is a one-to-one map from P2
C to itself such that the images of collinear

points are themselves collinear. Such maps leave the projective properties of curves unaltered.
In advancing beyond such properties let us introduce other maps of the plane to itself that
establish relations between curves of differents orders and possessing different sets of singu-
larities. The most general rational map of the plane is defined by equations of the form

φ : (z0 : z1 : z2) 99K
(
φ0(z0,z1,z2) : φ1(z0,z1,z2) : φ2(z0,z1,z2)

)
where φ0, φ1 and φ2 are homogeneous polynomials of degree n without common factor of
positive degree. Such a map makes correspond to a point p with coordinates (p0 : p1 : p2) a
point φ(p) = q with coordinates (q0 : q1 : q2) where

δq0 = φ0(p0, p1, p2), δq1 = φ1(p0, p1, p2), δq2 = φ2(p0, p1, p2) (0.0.1)

with δ in C∗.
Consider the net of curves Λφ defined by the equation

αφ0 +βφ1 + γφ2 = 0

where α, β and γ are arbitrary parameters. As p describes a line in P2
C, then q = φ(p) describes

a curve C of Λφ. The curves of the net Λφ are thus correlated by φ with the lines of the plane.
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Conversely given any net Λ of curves such as Λφ a linear representation of the curves of Λ on
the lines of the plane is equivalent to a rational map of the plane.

The curves of Λφ may have base-points pi common to them all. Each such point is a common
zero of φ0, φ1 and φ2, so the equations (0.0.1) to determine its corresponding point are illusory.
Conversely each point, termed a base-point of φ, which renders equation (0.0.1) illusory is a
base-point of Λφ. In other words

Theorem. — The base-points of any rational map are the base-points of the associated net of
curves.

Any two general curves C and C ′ of Λφ define a pencil of curves C +αC ′ of the net. Denote
by n the number of free intersections of C and C ′ not occuring at the base-points pi of Λφ;
denote by r1, r2, . . ., rn these points. The integer n is called the grade of Λφ.

To curves of the arbitrary pencil C +αC ′ there correspond by the map φ lines of a pencil
L+αL′. Furthermore if the base-point of the latter pencil is q, then clearly every point ri
corresponds to q. Conversely if any two points of the plane have the same preimage q, then
they belong to the same free intersection set of some pencil in Λφ.

Theorem. — Let φ be a rational self map of the plane. Let Λφ be its associated net and let
n be the grade of Λφ. An arbitrary point q is the transform of n points r1, r2, . . ., rn which
together form the free intersection set of a pencil of curves of Λφ.

In other words the general rational map of the plane is a (n,1) correspondence between the
points p and q. And this means that, when the ratios of q0, q1, q2 are given the equations
(0.0.1) have in general n distinct solutions for the ratios of p0, p1 and p2. If n = 1, i.e. if these
equations have only one solution, (p0 : p1 : p2) are rational functions of (q0 : q1 : q2). In this
case the equations of the reverse map will be of the form

αp0 = ψ0(q0,q1,q2) αp1 = ψ1(q0,q1,q2) αp2 = ψ2(q0,q1,q2)

where ψ0, ψ1 and ψ2 are homogeneous polynomials of degree n′. A Cremona map is a rational
map whose reverse is also rational, we also speak about birational self map of the plane. The
plane Cremona group is the group of birational self maps of the plane.

A homaloidal net of curves in the plane is one whose grade is 1.
Equations (0.0.1) define a birational map φ if and only if the associated net Λφ is homaloidal.

Conversely from any given homaloidal net we can derive many birational self maps of the
plane; if φ0, φ1 and φ2 are three independent linear combinations of φ0, φ1 and φ2, the net

αφ0 +βφ1 + γφ2 = 0

can also be expressed in the form

α
′
φ0 +β

′
φ1 + γ

′
φ2 = 0

and the map defined by

(z0 : z1 : z2) 99K
(
φ0(z0,z1,z2) : φ1(z0,z1,z2) : φ2(z0,z1,z2)

)
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is based on the same net. Moreover

Theorem. — To any birational self map of the plane there is associated a homaloidal net of
curves.

Conversely any homaloidal net of curves generates an infinity of birational self maps of the
plane, any of which is the product of any other by a plane collineation.

A collineation is the simplest kind of birational self map of the plane whose homaloidal net
is composed of the lines of the plane.

The degree of a birational self map of the plane is the degree of the curves of its generating
homaloidal net.

Let φ be a birational self map of the plane of degree n. Denote by n′ the degree of its
inverse φ−1. If the number of intersections of two curves C and C ′ is denoted by C ·C ′ and if L
and L′ are lines, then

n = L ·Λφ = φ(L) ·φ(Λφ) = Λφ−1 ·L′ = n′.

Hence

Theorem. — A birational self map of the plane and its inverse have the same degree.

Let us finish this introduction by pointing out that this statement is not true in higher dimen-
sion:

P3
C 99K P3

C (z0 : z1 : z2 : z3) 99K (z2
0 : z0z1 : z1z2 : z0z3− z2

1)

is a birational self map of P3
C of degree 2 whose inverse

P3
C 99K P3

C (z0 : z1 : z2 : z3) 99K
(
z2

0z1 : z0z2
1 : z2

0z2 : z1(z0z3 + z2
1)
)

has degree 3. As we will see there are many other differences between the 2-dimensional
Cremona group and the n-dimensional Cremona group, n≥ 3.

Note that the study of Bir(P2
C) is central: if S is a complex rational surface, then its group

of birational self maps is isomorphic to Bir(P2
C).

We now deal with the content of the manuscript. Chapter 1 contains introductory examples
and the very basic techniques used to study birational maps of the projective plane. This
chapter explains in particular the importance of divisors and linear systems in the study of the
plane Cremona groups.

Chapter 2 builds up on Chapter 1 by explaining how to blow-up all points in P2
C and subse-

quent blown-up surfaces. It gives rise to an infinite hyperbolic space on which the Cremona
group acts. This space plays a fundamental role in the study of Cremona groups, as it allows
to apply tools from geometric group theory to study subgroups of the Cremona group, as well
as degree growth and dynamical behaviours of birational maps.
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Chapter 3 presents two natural topologies on the Cremona group and their properties, and
the notion of algebraic subgroups of the Cremona groups. The construction of one of the
topologies - the Zariski topology - is defined via the concept of morphisms. It links to the
concept of an algebraic group acting on a variety, which is discussed in this chapter as well.

Chapter 4 adresses a very basic and classical interest while dealing with a group: finding a
”nice” and generating set and ”nice” structures of the group, such as an amalgamated structure.
This is quite an important topic in research on Cremona groups because for the plane Cremona
group there are ”nice” generating sets, and many statements are proven by using them. In
higher dimensions no nice generating sets are known: this is one of the many reasons why
working with Cremona groups in higher dimensions is very hard.

Chapter 5 discusses other group geometric properties of plane Cremona groups. While
Chapter 2 presents a representation of the Cremona group in terms of isometries of an infinite
hyperbolic space this chapter deals with linear representations (there are none) and represen-
tations of subgroups of SL(n,Z), n≥ 3, inside the plane Cremona group.

Chapter 6 deals with results on finite subgroups of the plane Cremona groups. They have
been of much interest for a very long time, and a short overview of the progress made in the
last 80 years is given. The chapter focuses on the classification results of finite abelian and
finite cyclic subgroups by Blanc and Dolgachev and Iskovskikh.

Chapter 7 is an extension of Chapter 6; it deals with infinite abelian subgroups of the plane
Cremona group. It then moves on the related topic of endomorphisms of Cremona groups,
subject already mentioned in Chapter 5.

Chapter 8 picks up the topic of Chapter 2 which is the action of the plane Cremona group
on an infinite hyperbolic space by isometries. The action and its properties have been very
fruitful and has played a vital role in many recent results on the plane Cremona group.

Chapter 9 has a more dynamical flavour. We first give three answers to the question ”when
is a birational self map of P2

C birationally conjugate to an automorphism ?” We then recall
some constructions of automorphisms of rational surfaces with positive entropy. And then we
realize SL(2,Z) as a subgroup of automorphisms of a rational surface with the property that
every element of infinite order has positive entropy.
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CHAPTER 1

INTRODUCTION

This chapter is devoted to recalls and first definitions.
In the first section morphisms between varieties, blow-ups, Cremona groups and bubble

space are introduced, the Zariski theorem, base-points, indeterminacy points are recalled, ans
examples of subgroups of the Cremona group are given, among them the group of automor-
phisms of Pn

C, the Jonquières group, the group of monomial maps.
The second section is devoted to divisors (prime divisors, Weil divisors, principal divisors,

Picard group) and intersection theory.
The third section deals with a geometric definition of birational maps of the complex pro-

jective plane.

1.1. First definitions and examples

Denote by Pn
C the complex projective space of dimension n. A rational map

φ : V1 ⊂ Pn
C 99KV2 ⊂ Pk

C

between two smooth projective complex varieties V1 and V2 is a regular map on a non-empty
Zariski open subset of V1 such that the image of the points where φ is well defined is contained
in V2. If φ is well defined on V1 we say that φ is a morphism or a regular map , otherwise
we denote by Ind(φ) the set where φ is not defined, and call it the indeterminacy set of φ. A
birational map between V1 and V2 is a rational map that admits an inverse which is rational. In
other words it is an isomorphism between two non-empty Zariski open subsets of V1 and V2.

Example 1. — Let us give an example of a birational morphism. Let p be a point on a smooth
algebraic surface S. We say that π : Y → S is a blow-up of p if
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� Y is a smooth surface,
� π|Yr{π−1(p)} : Y r{π−1(p)}→ Sr{p} is an isomorphism,
� and π−1(p)' P1

C.

We call π−1(p) the exceptional divisor .
If π : Y → S and π′ : Y ′ → S are two blow-ups of the same point p, then there exists an

isomorphism ϕ : Y → Y ′ such that π = π′ ◦ϕ. We can thus speak about the blow-up of p ∈ S.
Let us describe the blow-up of (0 : 0 : 1) in P2

C endowed with the homogeneous coordinates
(z0 : z1 : z2). Consider the affine chart z2 = 1, i.e. let us work in C2 with coordinates (z0,z1).
Set

V =
{(

(z0,z1),(u : v)
)
∈ C2×P1

C |z0v = z1u
}
.

Let π : V → C2 be the morphism given by the first projection. Then

� π−1(0,0) =
{(

(0,0),(u : v)
)
|(u : v) ∈ P1

C
}

, so π−1(0,0)' P1
C;

� if p = (z0,z1) is a point of C2r{(0,0)}, then

π
−1(p) =

{
((z0,z1),(z0 : z1))

}
∈V r{π−1(0,0)},

and π|Vr{π−1(0,0)} is an isomorphism, the inverse being

(z0,z1) 7→
(
(z0,z1),(z0 : z1)

)
.

In other words V = Bl(0,0)P2
C is the surface obtained by blowing up the complex projec-

tive plane at (0 : 0 : 1), π is the blow up of (0 : 0 : 1), and π−1(0,0) is the exceptional
divisor.

Let V be a complex algebraic variety, and let Bir(V ) be the group of birational maps of V .
The group Bir(Pn

C) is called the Cremona group . If we fix homogeneous coordinates (z0 : z1 :
. . . : zn) of Pn

C every element φ ∈ Bir(Pn
C) can be described by homogeneous polynomials of

the same degree φ0, φ1, . . ., φn ∈ C[z0,z1, . . . ,zn] without common factor of positive degree:

φ : (z0 : z1 : . . . : zn) 99K
(
φ0(z0,z1,z2, . . . ,zn) : φ1(z0,z1,z2, . . . ,zn) : . . . : φn(z0,z1,z2, . . . ,zn)

)
.

The degree of φ is the degree of the φi’s. In the affine chart z0 = 1, the map φ is given by
(ϕ1,ϕ2, . . . ,ϕn) where for any 1≤ i≤ n

ϕi =
φi(1,z1,z2, . . . ,zn)

φ0(1,z1,z2, . . . ,zn)
∈ C(z1,z2, . . . ,zn).

The subgroup of Bir(Pn
C) consisting of elements φ such that all the ϕi are polynomials as

well as the entries of φ−1 is exactly the group Aut(An
C) of polynomial automorphisms of the

affine space An
C .

Let S be a smooth projective surface. The bubble space B(S) is, roughly speaking, the set
of all points that belong to S, or are infinitely near to S. Let us be more precise: consider all
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surfaces Y above S, i.e. all birational morphisms π : Y → S ; we identify p1 ∈ Y1 and p2 ∈ Y2

if π
−1
1 ◦π2 is a local isomorphism in a neighborhood of p2 that maps p2 onto p1. The bubble

space B(S) is the union of all points of all surfaces above S modulo the equivalence relation
generated by these identifications. A point p ∈ B(S)∩S is a proper point . All points in B(S)
that are not proper are called infinitely near .

Let S and S′ be two smooth projective surfaces. Let φ : S 99K S′ be a birational map. By
Zariski’s theorem (see for instance [Bea83]) we can write φ = π2 ◦π

−1
1 where π1 : Y → S and

π2 : Y → S′ are finite sequences of blow-ups. We may assume that there is no (−1)-curve
in Y contracted by both π1 and π2. We then say that π2 ◦ π

−1
1 is a minimal resolution of φ.

The base-points Base(φ) of φ are the points blown up by π1. The proper base-points of φ are
precisely the indeterminacy points of φ.

A birational morphism π : S→ S′ induces a bijection π• : B(S)→ B(S′)rBase(π−1). A
birational map of smooth projective surfaces φ : S 99K S′ induces a bijection

φ• : B(S)rBase(φ)→ B(S′)rBase(φ−1)

by φ• = (π2)• ◦ (π1)
−1
• where π2 ◦π

−1
1 is a minimal resolution of φ.

Let us now give some subgroups of the Cremona group:

– First consider the automorphism group of Pn
C. It is the subgroup formed by regular maps,

i.e. maps well defined on Pn
C and whose inverse is also well defined on Pn

C:

Aut(Pn
C) =

{
φ ∈ Bir(Pn

C) |Base(φ) = Base(φ−1) = /0
}
.

To any M =
(
ai, j
)

0≤i, j≤n ∈ PGL(n+ 1,C) corresponds an element of Bir(Pn
C) of de-

gree 1:

(z0 : z1 : . . . : zn) 7→

(
n

∑
j=0

a0, jz j :
n

∑
j=0

a1, jz j : . . . :
n

∑
j=0

an, jz j

)
and vice-versa. Such elements are biregular. Furthermore Bezout theorem implies that
all biregular maps are linear. We thus have the following isomorphism

Aut(Pn
C)' PGL(n+1,C).

– The n-dimensional subgroup of Aut(Pn
C) consisting of diagonal automorphisms is de-

noted by Dn. Note that Dn is the torus of highest rank of Bir(Pn
C)

(1).

(1)indeed according to [ByB66] if G is an algebraic subgroup (see Chapter 3 for a definition) of Bir(Pn
C) isomor-

phic to (C∗)k, then k ≤ n, and if k = n, then G is conjugate to Dn.
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– Start with the surface P1
C×P1

C considered as a smooth quadric in P3
C; its automorphism

group contains PGL(2,C)×PGL(2,C). By the stereographic projection the quadric is
birationally equivalent to the plane, so that Bir(P2

C) contains also a copy of PGL(2,C)×
PGL(2,C).

If G is a semi-simple algebraic group, H is a parabolic subgroup of G, and V = G�H
is a homogeneous variety of dimension n, then V is rational. Once a birational map
π : V 99K Pn

C is given, π◦G◦π−1 determines an algebraic subgroup of Bir(Pn
C).

– A fibration of a surface S is a rational map π : S 99K C, where C is a curve, such that
the general fibers are one-dimensional. Two fibrations π1 : S 99KC and π2 : S 99KC′ are
identified if there exists an open dense subset U ⊂ S that is contained in the domains of
π1 and π2 such that π1|U and π2|U define the same set of fibers. We say that a group G
preserves a fibration π if G permutes the fibers. A rational fibration of a rational surface
S is a rational map π : S 99K P1

C such that the general fiber is rational. The following
statement due to Noether and Enriques says that, up to birational maps, there exists only
one rational fibration of P2

C:

Theorem 1.1 ([Bea83]). — Let S be a surface. Let π : S 99K C be a rational fibration.
Then there exists a birational map φ : C×P1

C 99K S such that π◦φ is the projection onto
the first factor.

The Jonquières subgroup J of Bir(P2
C) is the subgroup of elements that preserve the

pencil of lines through the point (0 : 0 : 1) ∈ P2
C.

Any subgroup of Bir(P2
C) that preserves a rational fibration is conjugate to a subgroup

of J (Theorem 1.1).
With respect to affine coordinates (z0 : z1 : 1) an element of J is of the form

(z0,z1) 99K

(
αz0 +β

γz0 +δ
,

A(z0)z1 +B(z0)

C(z0)z1 +D(z0)

)

where
(

α β

γ δ

)
belongs to PGL(2,C) and

(
A B
C D

)
to PGL(2,C(z0)). This induces

an isomorphism

J ' PGL(2,C)oPGL(2,C(z0)).

– Let M = (ai, j)1≤i, j≤n ∈M(n,Z) be a n×n matrix of integers. The matrix M determines
a rational self map of Pn

C given in the affine chart z0 = 1 by

φM : (z1, . . . ,zn) 7→
(

za1,1
1 za1,2

2 . . .za1,n
n ,za2,1

1 za2,2
2 . . .za2,n

n , . . . ,zan,1
1 zan,2

2 . . .zan,n
n

)
.
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The map φM is birational if and only if M belongs to GL(n,Z). This yields an injective
homomorphism GL(n,Z)→Bir(Pn

C) whose image is called the group of monomial maps
and is denoted Mon(n,C).

– The well known result of Noether and Castelnuovo states that

Theorem 1.2 ([Cas01, AC02]). — The group Bir(P2
C) is generated by the involution

σ2 : (z0 : z1 : z2) 99K (z1z2 : z0z2 : z0z1)

and the group Aut(P2
C) = PGL(3,C).

For n ≥ 3 the Cremona group is not generated by PGL(n+ 1,C) and Mon(n,C) (see
[Hud27, Pan99]). In other words the subgroup

〈PGL(n+1,C), Mon(n,C)〉

is a strict subgroup of Bir(Pn
C). The finite index subgroup of 〈PGL(n+1,C), Mon(n,C)〉

generated by PGL(n+1,C) and the involution

σn : (z0 : z1 : . . . : zn) 99K

 n

∏
i=0
i 6=0

zi :
n

∏
i=0
i6=1

zi : . . . :
n

∏
i=0
i 6=n

zi


has been studied in [BH15, D1́5b]. The group G(n,C) = 〈σn, PGL(n+ 1,C)〉 ”looks
like” G(2,C) = Bir(P2

C) in the following sense ([D1́5b]):
� there is no non-trivial finite dimensional linear representation of G(n,C) over any

field;
� the group G(n,C) is perfect, i.e.

[
G(n,C),G(n,C)

]
= G(n,C);

� the group G(n,C) equipped with the Zariski topology is simple;
� let ϕ be an automorphism of Bir(Pn

C); there exist an automorphism κ of the field C
and a birational self map ψ of Pn

C such that

ϕ(φ) = κ(ψ◦φ◦ψ
−1) ∀φ ∈ G(n,C).

We will deal with
� the Noether and Castelnuovo theorem in §4.3.1 and §4.3.2;
� the Hudson and Pan theorem in §4.3.3;
� the fact that there is no non-trivial finite dimensional linear representation of

G(2,C) over any field in §5.1;
� the fact that Bir(P2

C) = G(2,C) is perfect in §5.2;
� the fact that Bir(P2

C) = G(2,C) equipped with the Zariski topology is simple in
§3.4;
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� the description of Aut(Bir(P2
C)) = Aut(G(2,C)) in §7.1.

1.2. Divisors and intersection theory

Let V be an algebraic variety.
A prime divisor on V is an irreducible closed subset of V of codimension 1. For instance

if V is a surface, then the prime divisors of V are the irreducible curves that lie on it; if V is the
complex projective space, then the prime divisors are given by the zeros locus of irreducible
homogeneous polynomials.

A Weil divisor on V is a formal finite sum of prime divisors with integer coefficients:
m

∑
i=1

aiDi m ∈ N, ai ∈ Z, Di prime divisor of V .

Let us denote by Div(V ) the set of all Weil divisors of V .
Let f ∈ C(V )∗ be a rational function, and let D be a prime divisor. The multiplicity ν f (D)

of f at D is defined by

� ν f (D) = k > 0 if f vanishes on D at the order k;
� ν f (D) =−k if f has a pole of order k on D;
� ν f (D) = 0 otherwise.

To any rational function f ∈ C(V )∗ we associate a divisor div( f ) defined by

div( f ) = ∑
D prime
divisor

ν f (D)D.

Since ν f (D) is zero for all but finitely many D the divisor div( f ) belongs to Div(V ). Divisors
obtained like that are called principal divisors . The set of principal divisors form a subgroup
of Div(V ); indeed div( f g) = div( f )+div(g) for any f , g ∈ C(V )∗.

Let us introduce an equivalence relation on Div(V ). Two divisors D, D′ are linearly equiva-
lent if D−D′ is a principal divisor. The set of equivalence classes corresponds to the quotient
of Div(V ) by the subgroup of principal divisors. The Picard group of V is the group of iso-
morphism classes of line bundles on V ; it is denoted Pic(V ). When V is smooth the quotient
of Div(V ) by the subgroup of principal divisors is isomorphic to Pic(V ).

Example 2. — Let us determine Pic(Pn
C). Consider the morphism of groups

θ : Div(Pn
C)→ Z

which associates to any divisor D of degree d the integer d. Note that kerθ is the subgroup of
principal divisors of Pn

C: let D = ∑aiDi be an element of kerθ where each Di is a prime divisor
given by an homogeneous polynomial fi ∈C[z0,z1, . . . ,zn] of some degree di. Since ∑aidi = 0,
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f = ∏ f ai
i belongs to C(Pn

C)
∗. By construction D = div( f ) hence D is a principal divisor.

Conversely any principal divisor is equal to div( f ) where f = g/h for some homogeneous
polynomials g, h of the same degree. Thus any principal divisor belongs to kerθ.

Since Pic(Pn
C) is the quotient of Div(Pn

C) by the subgroup of principal divisors, we get by
restricting θ to the quotient an isomorphism between Pic(Pn

C) and Z. As an hyperplane is sent
on 1 we obtain that Pic(Pn

C) = ZH where H is the divisor of an hyperplane.

Let us now assume that dimV = 2; set V = S. We can define the notion of intersection:

Proposition 1.3 ([Har77]). — Let S be a smooth projective surface. There exists a unique
bilinear symmetric form

Div(S)×Div(S)→ Z (C,D) 7→C ·D

such that

� if C and D are smooth curves with transverse intersections, then C ·D = #(C∩D);
� if C and C′ are linearly equivalent, then C ·D =C′ ·D for any D.

In particular this yields an intersection form

Pic(S)×Pic(S)→ Z (C,D) 7→C ·D.

Let π : BlpS→ S be the blow-up of the point p ∈ S. The morphism π induces the map

π
∗ : Pic(S)→ Pic(BlpS), C 7→ π

−1(C).

If C is an irreducible curve on S, the strict transform C̃ of C is C̃ = π−1(Cr{p}).
If C ⊂ S is a curve and if p is a point of S, let us define the multiplicity mp(C) of C at p.

Recall that if V is a quasi-projective variety, and if q is a point of V , then Oq,V denotes the set
of equivalence classes of pairs (U,ϕ) where ϕ belongs to C[U], and U ⊂V is an open subset
such that q ∈U. Let m be the maximal ideal of Op,S. If f is a local equation of C, then mp(C)

is the integer k such that f belongs to mkrmk+1.

Example 3. — Assume that S is a rational surface. There exists a neighborhood U of p in S
with U ⊂ C2. We can assume that p = (0,0) in this affine neighborhood and that C is a curve

described by the equation
n

∑
i=1

Pi(z0,z1)= 0 where Pi is an homogeneous polynomial of degree i.

The multiplicity mp(C) is the lowest i such that Pi is not equal to 0. The following properties
hold:

� mp(C)≥ 0,
� mp(C) = 0 if and only if p does not belong to C,
� mp(C) = 1 if and only if p is a smooth point of C.
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Assume that C and D are distinct curves with no common component ; we can define an
integer (C ·D)p which counts the intersection of C and D at p:

� if either C or D does not pass through p, it is equal to 0;
� otherwise let f , resp. g be some local equation of C, resp. D in a neighborhood of p, and

define (C ·D)p to be the dimension of Op,S�( f ,g).

This number is related to C ·D by the following statement:

Proposition 1.4 ([Har77]). — If C and D are distinct curves without any common irreducible
component on a smooth surface, then

C ·D = ∑
p∈C∩D

(C ·D)p.

In particular C ·D≥ 0.

Let C be a curve on S, and let p be a point of S. Take local coordinates z0, z1 at p such that
p = (0,0). Set k = mp(C). The curve C is thus given by

Pk(z0,z1)+Pk+1(z0,z1)+ . . .+Pr(z0,z1) = 0

where the Pi’s denote homogeneous polynomials of degree i. The blow up of p can be viewed
as (u,v) 7→ (uv,v), and the pull-back of C is given by

vk(pk(u,1)+ vpk+1(u,1)+ . . .+ vr−k pr(u,1)
)
= 0.

In other words the pull-back of C decomposes into k times the exceptional divisor
E = π−1(0,0) = (v = 0) and the strict transform. We can thus state:

Lemma 1.5 ([Har77]). — Let S be a smooth surface. Let π : BlpS→ S be the blow-up of a
point p∈ S. If C is a curve on S, if C̃ is its strict transform and if E = π−1(p) is the exceptional
divisor, then

π
∗(C) = C̃+mp(C)E.

We also have the following statement:

Proposition 1.6 ([Har77]). — Let S be a smooth surface, let p be a point of S, and let
π : BlpS→ S be the blow-up of p. Denote by E ⊂ BlpS the exceptional divisor π−1(p) ' P1

C.
Then

Pic(BlpS) = π
∗Pic(S)+ZE.

The intersection form on BlpS is induced by the intersection form on S via the following for-
mulas:

� π∗C ·π∗D =C ·D for any C, D in Pic(S);
� π∗C ·E = 0 for any C in Pic(S);
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� E2 = E ·E =−1;
� C̃2 =C2−1 for any smooth curve C passing through p and where C̃ is the strict transform

of C.

If V is an algebraic variety, then the nef cone Nef(V ) is the cone of divisors D such that
D ·C ≥ 0 for any curve C in V .

1.3. A geometric definition of birational maps

Let φ be the element of Bir(P2
C) given by

φ : (z0 : z1 : z2) 99K
(
φ0(z0,z1,z2) : φ1(z0,z1,z2) : φ2(z0,z1,z2)

)
where the φi’s are homogeneous polynomials of the same degree ν, and without common factor
of positive degree. The linear system Λφ of φ is the strict pull-back of the system OP2

C
(1) of

lines of P2
C by ϕ.

Remarks 1.7. — � If A is an automorphism of P2
C, then Λφ = ΛA◦φ.

� The degree of the curves of Λφ is ν.

Example 4. — The linear system associated to σ2 is the linear system of conics passing
through (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1).

Remark 1.8. — Let us define the linear system of a divisor and then mention the connection
between the linear system of a divisor and the linear system of a birational map. Let D be a
divisor on a surface S. Denote by |D| the set of all effective divisors on S linearly equivalent
to D. Every non-vanishing section of OS(D) defines an element of |D|, namely its divisor
of zeros; conversely every element of |D| is the divisor of zeros of a non-vanishing section
of OS(D), defined up to scalar multiplication. Hence |D| can be naturally identified with the
projective space associated to the vector space H0(OS(D)). A linear subspace P of |D| is
called a linear system on S; of course equivalently P can be defined by a vector subspace of
H0(OS(D)). The subspace P is complete if P = |D|. The dimension of P is its dimension as a
projective space. A one-dimensional linear system is a pencil . A curve C is a fixed component
of P if every divisor of P contains C. The fixed part of P is the biggest divisor that is contained
in every element of P. A point p of S is a base-point of P if every divisor of P contains p. If
the linear system has no fixed part, then it has only a finite number of fixed points; this number
is bounded by D2 for D ∈ P.

Let S be a surface. Then there is a bijection between{
rational maps φ : S 99K Pn

C such that φ(S) is contained in no hyperplane
}
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and {
linear systems on S without fixed part and of dimension n

}
.

This correspondence is constructed as follows: to the map φ we associate the linear system
φ∗|H| where |H| is the system of hyperplanes in Pn

C. Conversely let P be a linear system on S
with no fixed part; denote by P̂ the projective dual space to P. Define a rational map φ : S 99K P̂
by sending p ∈ S to the hyperplane in P consisting of the divisors passing through p: the map
φ is defined at p if and only if p is not a base-point of P.

If p1 is a point of indeterminacy of φ, then denote by π1 : Blp1P2
C→ P2

C the blow-up of p1

and by E1 the associated exceptional divisor. The map ϕ1 = φ ◦π1 is a birational map from
Blp1P2

C to P2
C. If p2 is a point of indeterminacy of ϕ1, we blow up p2 via π2 : Blp1,p2P2

C→ P2
C,

and we set E2 = π
−1
2 (p2). Again the map ϕ2 = ϕ1 ◦ π1 : Blp1,p2P2

C 99K P2
C is a birational

map. We iterate this processus until ϕr becomes a morphism. Set Ei = (πi+1 ◦ . . .◦πr)
∗Ei and

`= (π1 ◦ . . .◦πr)
∗L where L is the divisor of a line. Applying r times Proposition 1.6 we get

Pic(Blp1,p2,...,prP2
C) = Z`⊕ZE1⊕ZE2⊕ . . .⊕ZEr,

`2 = ` · `,
E2

i = Ei ·Ei =−1,
Ei ·E j = 0 ∀1≤ i 6= j ≤ r,
Ei · `= 0 ∀1≤ i≤ r.

The curves of Λφ pass through the pi’s with multiplicity mpi(φ). Applying r times Lem-
ma 1.5 the elements of Λϕr are equivalent to

νL−
r

∑
i=1

mpi(φ)Ei

where L is the pull-back of a generic line in P2
C. As a result the curves of Λϕr have self intersec-

tion ν2−
r

∑
i=1

mpi(φ)
2. Note that all the members of a linear system are linearly equivalent and

that the dimension of Λϕr is 2; the self intersection has thus to be non-negative by Proposition
1.4. As a consequence the number r exists; in other words φ has a finite number of base-points.
By construction

ϕr : Blp1,p2,...,prP
2
C→ P2

C
is a birational morphism which is the blow-up of the base-points of φ−1. Consider a general
line L of P2

C that does not pass through p1, p2, . . ., pr. Its pull-back ϕ−1
r (L) corresponds to a

smooth curve on Blp1,p2,...,prP2
C which has self-intersection 1 and genus 0. Hence{

(ϕ−1
r (L))2 = 1,

ϕ−1
r (L) ·KBlp1,p2,...,prP2

C
=−3.
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As the elements of Λϕr are equivalent to νL−
r

∑
i=1

mpi(φ)Ei and since

KBlp1,p2,...,prP2
C
=−3L+

r

∑
i=1

Ei

the following equalities hold: 
r

∑
i=1

mpi(φ) = 3(ν−1),

r

∑
i=1

mpi(φ)
2 = ν

2−1.

Examples 1. — � If ν = 2, then r = 3 and mp1(φ) = mp2(φ) = mp3(φ) = 1.
� If ν = 3, then r = 5 and mp1(φ) = 2, mp2(φ) = mp3(φ) = mp4(φ) = mp5(φ) = 1.





CHAPTER 2

AN ISOMETRIC ACTION OF THE CREMONA GROUP
ON AN INFINITE DIMENSIONAL HYPERBOLIC

SPACE

If S is a projective surface, the group Bir(S) of birational self maps of S acts faithfully by
isometries on a hyperbolic space H∞(S) of infinite dimension. After recalling some notions
of hyperbolic geometry in the first section of this chapter we describe this construction in
the second section. Let us now give an outline of it before heading into details. Let S be
a projective surface. If π : Y → S is a birational morphism, then one obtains an embedding
π∗ : NS(S)→NS(Y ) of Néron-Severi groups. If π1 : Y1→ S and π2 : Y2→ S are two birational
morphisms, then

� π2 is above π1 if π
−1
1 ◦π2 is a morphism,

� one can always find a third birational morphism π3 : Y3→ S that is above π1 and π2.

Hence the inductive limit of all groups NS(Yi) for all surfaces Yi above S is well-defined;
this limit Z(S) is the Picard-Manin space of S. The intersection forms on Yi yield to a scalar
product 〈 , 〉 on Z(S).

Consider all surfaces Y above S, i.e. all birational morphisms π : Y → S. We identify p1 ∈Y1

and p2 ∈ Y2 if π
−1
1 ◦π2 is a local isomorphism in a neighborhood of p2 that maps p2 onto p1.

The bubble space B(S) of S is the union of all points of all surfaces above S modulo the
equivalence relation generated by these identifications. If p belongs to B(S), then we denote
by ep the divisor class of the exceptional divisor of the blow up of p. The equalities ep ·ep =−1
and ep · ep′ = 0 hold by Proposition 1.6

The Néron-Severi group NS(S) is naturally embedded as a subgroup of the Picard-Manin
space; this finite dimensional lattice is orthogonal to ep for any p ∈ B(S). More precisely

Z(S) = NS(S)
⊕

p∈B(S)

Zep.
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As a result any element v of Z(S) can be written as a finite sum

v = w+ ∑
p∈B(S)

mpep.

There is a completion process for which the completion Z(S) of Z(S)⊗ZR is

Z(S) =
{

w+ ∑
p∈B(S)

mpep |w ∈ NS(R,S), ∑
p∈B(S)

m2
p < ∞

}
.

The intersection form extends as a scalar product with signature (1,∞) on this space. The
hyperbolic space H∞(S) of S is defined by

H∞(S) =
{

w ∈ Z(S), | 〈w, w〉= 1, 〈w, a〉> 0 for all ample classes a ∈ NS(S)
}
.

It is an infinite dimensional analogue of the classical hyperbolic space Hn. One can define a
complete distance dist on H∞(S) by

cosh(dist(v,w)) = 〈v, w〉.

Geodesics are intersection of H∞(S) with planes. The projection of H∞(S) to the projective
space P(Z(S)) is one to one, and the boundary of its image is the projection of the cone of
isotropic vectors of Z(S):

∂H∞(S) =
{
R+v |v ∈ Z(S), 〈v, v〉= 0, 〈v, a〉> 0 for all ample classes a ∈ NS(S)

}
.

The important fact is that Bir(S) acts faithfully on Z(S) by continuous linear endomorphisms
preserving the intersection form, the effective cone, the nef cone, Z(S) and also H∞(S).

If φ is an element of Bir(S), we denote by φ∗ its action on Z(S): it is a linear isometry with
respect to the intersection form; we also denote by φ∗ the isometry of H∞(S) induced by this
endomorphism of Z(S). Let f be an isometry of H∞(S); the translation length of f is

L( f ) = inf
{

dist(v, f (v)) |v ∈H∞(S)
}
.

If this infimum is a minimum, then

� either it is equal to 0, f has a fixed point in H∞(S), and f is elliptic;
� or it is positive, and f is loxodromic.

When the infimum is not realized, L( f ) is equal to 0, and f is parabolic.
This classification into three types holds for all isometries of H∞(S). For isometries φ∗

induced by birational maps φ of S there is a dictionary between this classification and the
geometric properties of φ. We give this dictionary in the third section.
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2.1. Some hyperbolic geometry

Consider a real Hilbert space H of dimension n. Let e0 be a unit vector of H , and let e⊥0 be
the orthogonal complement of the space Re0. Denote by (ei)i∈I an orthonormal basis of e⊥0 . A
scalar product with signature (1,n−1) can be defined on H by setting

〈u, v〉= a0b0−∑
i∈I

aibi

for any two elements u = a0e0 +∑
i∈I

aiei and v = b0e0 +∑
i∈I

biei of H . The set{
v ∈H | 〈v,v〉= 1

}
defines a hyperboloid with two connected components. LetHn−1 be the connected component
of this hyperboloid that contains e0. A metric can be defined on Hn−1 by

d(u,v) := arccosh(〈u,v〉).

Remark 2.1. — A useful model for H2 is the Poincaré model: H2 is identified to the upper
half-plane

{
z ∈C | Im(z)> 0

}
with its Riemanniann metric given by ds2 = x2+y2

y2 . Its group of
orientation preserving isometries coincides with PSL(2,R), acting by linear fractional trans-
formations.

Let (H ,〈 ., .〉) be a real Hilbert space of infinite dimension. Let e0 be a unit vector of H , and
let e⊥0 be its orthogonal complement. Any element v of H can be written in a unique way as
v = ve0e0 + ve⊥0

where ve0 belongs to R and ve⊥0
belongs to e⊥0 . Consider the symetric bilinear

form B of H defined by
B(x,y) = xe0ye0−〈xe⊥0

,ye⊥0
〉;

it has signature (1,∞). Let H∞ be the hyperboloid given by

H∞ =
{

x ∈H |B(x,x) = 1, B(e0,x)> 0
}
.

We consider on H∞ the distance d defined by coshd(x,y) = B(x,y). The space (H∞,d) is a
complete metric space of infinite dimension.

2.1.1. δ-hyperbolicity and CAT(−1) spaces. — Let (X ,d) be a geodesic metric space. Let
x, y, z be three points of X . We denote by [p,q] the segment with endpoints p and q. A geodesic
triangle with vertices x, y, z is the union of three geodesic segments [x,y], [y,z] and [z,x]. Let
δ≥ 0. If for any point m ∈ [x,y] there is a point in [y,z]∪ [z,x] at distance less than δ of m, and
similarly for points on the other edges, then the triangle is said do be δ-slim . A δ-hyperbolic
space is a geodesic metric space whose all of geodesic triangles are δ-slim. A δ-hyperbolic
space is called Gromov hyperbolic space .
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Examples 2. — � Metric trees are 0-hyperbolic: all triangles are tripods.
� The hyperbolic plane is (−2)-hyperbolic. In fact the incircle of a geodesic triangle is the

circle of largest diameter contained in the triangle, and any geodesic triangle lies in the
interior of an ideal triangle, all of which are isometric with incircles of diameter 2 log3
(see [CDP90]).
� The spaceR2 endowed with the euclidian metric is not δ-hyperbolic (for instance because

of the existence of homotheties).

Let us now introduce CAT(−1) spaces(1). Let (X ,dX) be a geodesic metric space. Consider
a geodesic triangle T in X determined by the three points x, y, z and the data of three geodesics
between two of these three points. A comparison triangle of T in the metric space (X ′,dX ′) is
a triangle T ′ such that 

dX(x,y) = dX ′(x′,y′)
dX(x,z) = dX ′(x′,z′)
dX(y,z) = dX ′(y′,z′)

Let p be a point of [x,y]⊂ T . A point p′ ∈ [x′,y′]⊂ T ′ is a comparison point of p if dX ′(x′, p′) =
dX(x, p).

The triangle T satisfies the CAT(−1) inequality if for any (x,y) ∈ T 2

dX(x,y)≤ ||x′− y′||H2

where T ′ is a comparison triangle of T in H2 and x′ ∈ T ′ (resp. y′ ∈ T ′) is a comparison point
of x (resp. y).

The space X is CAT(−1) if all its triangles satisfy the CAT(−1) inequality.

Remark 2.2. — The CAT(−1) spaces are Gromov hyperbolic, but the converse is false.

Set H>0 =
{

v ∈H | 〈v,v〉> 0
}

. The image of v by the map

η : H>0→H∞ v 7→ v√
〈v,v〉

is called the normalization of v. Geometrically η associates to a point v ∈H>0 the intersection
of H∞ with the line through v. Note that if the intersection of H with a vectorial subspace of
dimension n+1 of H is not empty, then it is a copy of Hn. In particular there exists a unique
geodesic segment between two points of H∞ obtained as the intersection of H∞ with the plane
that contains these two points. Hence any triangle of H∞ is isometric to a triangle of H2. As a
result H∞ is CAT(−1) and δ-hyperbolic for the same constant δ as H2.

(1)The terminology corresponds to the initials of E. Cartan, A. Alexandrov and V. Toponogov.
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2.1.2. Boundary of H∞. — Let (X ,d) be a geodesic metric space. Let T be a geodesic
triangle of X given by x, y, z ∈ X and geodesic segments between two of these three points.
The triangle T satisfies the CAT(0) inequality if for any (x,y) ∈ T 2

dX(x,y)≤ ||x′− y′||R2

where x′ ∈ T ′ (resp. y′ ∈ T ′) is a comparison point of x (resp. y) and T ′ is a comparison triangle
of T in R2.

The space X is CAT(0) if all its triangles satisfy the CAT(0) inequality.

Remark 2.3. — A CAT(−1) space is a CAT(0) space. In particular H∞ is a CAT(0) space.

Since H∞ is a CAT(0), complete metric space there exists a notion of boundary at infinity
that generalizes the notion of boundary of finite dimensional Riemann varieties which are
complete, simply connected and with negative curvature. The boundary of H∞ is defined by

∂H∞ =
{

v ∈H | 〈v,v〉= 0, 〈v,e0〉> 0
}
.

A point of ∂H∞ is called point at infinity.

2.1.3. Isometries. — Denote by O1,n(R) the group of linear transformations of H preserving
the scalar product 〈 ,〉. The group of isometries Isom(Hn) coincides with the index 2 subgroup
O+

1,n(R) of O(H ) that preserves the chosen sheet Hn of the hyperboloid{
u ∈H | 〈u,u〉= 1

}
.

This group acts transitively on Hn and on its unit tangent bundle.
If h is an isometry of Hn and v ∈ H is an eigenvector of h with eigenvalue λ, then either
|λ| = 1 or v is isotropic. Furthermore Hn is homeomorphic to a ball, so h has a least one
eigenvector in Hn ∪ ∂Hn. As a consequence according to [BIM05] there are three types of
isometries:
� h is elliptic if and only if h fixes a point p ∈Hn. Since 〈 , 〉 is negative definite on p⊥, h

fixes pointwise Rp and acts by rotation on p⊥ with respect to 〈 , 〉;
� h is parabolic if h is not elliptic and fixes a vector v in the isotropic cone. The line Rv

is uniquely determined by h. Let p be a point of Hn; there exists an increasing sequence
(ni) ∈ NN such that (hni(p))i∈N converges to the boundary point determined by v.
� h is loxodromic if and only if h has an eigenvector v+h with eigenvalue λ > 1. Note that

v+h is unique up to scalar multiplication. There is another unique isotropic eigenline Rv−h
corresponding to the eigenvalue 1

λ
. On the orthogonal complement of Rv−h ⊕Rv+h the

isometry h acts as a rotation with respect to 〈 , 〉. The boundary points determined by v−h
and v+h are the two fixed points of h in Hn∪∂Hn; the first one is an attracting fixed point
α(h), the second one is a repelling fixed point ω(h).
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To an isometry h of Hn one can associate the translation length of h:

L(h) = inf
{

d(h(p), p) |p ∈Hn}.
The isometry h is elliptic if and only if L(h) = 0, and the infimum is achieved, i.e. h has a
fixed point inHn. The isometry h is parabolic if and only if L(h) = 0, and the infinimum is not
achieved. The isometry h is loxodromic if and only if L(h)> 0. In that case

� exp(L(h)) is the largest eigenvalue of h
� and d(p,hn(p)) grows like nL(h) as n goes to infinity for any point p ∈Hn.

2.2. The isometric action of Bir(S) on an infinite dimensional hyperbolic space

2.2.1. The Picard-Manin space. — Let S be a smooth, irreducible, projective, complex sur-
face. As we see in Chapter 1 the Picard group Pic(S) is the quotient of the abelian group
of divisors by the subgroup of principal divisors ([Har77]). The intersection between curves
extends to a quadratic form, the so-called intersection form:

Pic(S)×Pic(S)→ Z, (C,D) 7→C ·D

The quotient of Pic(S) by the subgroup of divisors E such that E ·D = 0 for all divisor classes
D is the Néron-Severi group NS(S). In case of rational surfaces we have NS(S) = Pic(S).
The Néron-Severi group is a free abelian group, and its rank, the Picard number is finite. The
pull-back of a birational morphism π : Y → S yields an injection from Pic(S) into Pic(Y ); we
thus get an injection from NS(S) into NS(Y ). The morphism π : Y → S can be written as a
finite sequence of blow ups. Let e1, e2, . . ., ek ⊂ Y be the class of the irreducible components
of the exceptional divisor of π, that is the classes contracted by π. We have the following
decomposition

NS(Y ) = NS(S)⊕Ze1⊕Ze2⊕ . . .⊕Zek (2.2.1)

which is orthogonal with respect to the intersection form.
Consider π1 : Y → S and π2 : Y ′ → S two birational morphisms of smooth projective sur-

faces. We say that π1 is above π2 if π
−1
2 ◦π1 is a morphism. For any two birational morphisms

π1 : Y → S and π2 : Y ′→ S there exists a birational morphism π3 : Y ′′→ S that lies above π1

and π2.
Let us consider the set of all birational morphisms of smooth projective surfaces π : Y → S.

The corresponding embeddings of the Néron-Severi groups NS(S)→ NS(Y ) form a directed
family; the direct limit

Z(S) := lim
π : Y→S

NS(Y )

thus exists. It is called the Picard Manin space of S. The intersection forms on the groups
NS(Y ) induce a quadratic form on Z(S) of signature (1,∞).
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Let p be a point of the bubble space of S. Denote by ep the divisor class of the exceptional
divisor of the blow-up of p in the corresponding Néron-Severi group. One deduces from
(2.2.1) the following decomposition

Z(S) = NS(S)⊕
⊕

p∈B(S)

Zep.

Furthermore according to Proposition 1.6 the following properties hold{
ep · ep =−1
ep · eq = 0 for all p 6= q

2.2.2. The hyperbolic spaceH∞(S). — Let S be a smooth projective surface, and let Z(S) be
its Picard-Manin space. We define Z(S) to be the completion of the real vector space Z(S)⊗R

Z(S) =
{

v+ ∑
p∈B(S)

mpep |v ∈ NS(S)⊗R, mp ∈ R, ∑
p∈B(S)

m2
p < ∞

}
.

The intersection form extends continuously to a quadratic form on Z(S) with signature (1,∞).
Let Isom(Z(S)) be the group of isometries of Z(S) with respect to the intersection form. The
set of vectors v ∈ Z(S) such that 〈v,v〉= 1 is a hyperboloid. The subset

H∞(S) =
{

v ∈ Z(S) | 〈v,v〉= 1, 〈v,e0〉> 0
}

is the sheet of that hyperboloid containing ample classes of NS(S,R). Let Isom(H∞(S)) be the
subgroup of Isom(Z(S)) that preserves H∞(S). The space H∞(S) equipped with the distance
defined by

cosh(d(v,v′)) = 〈v,v′〉
is isometric to a hyperbolic space H∞. Let ∂H∞(S) be the boundary of H∞(S). To simplify we
will often write H∞ (resp. ∂H∞) instead of H∞(S) (resp. ∂H∞(S)).

2.2.3. An isometric action of Bir(S). — Let us now describe the action of Bir(S) on H∞

(see [Man86, Can11]). Let φ : Y → S be a birational morphism of smooth projective surfaces.
Denote by p1, p2, . . ., pn ∈ B(S) the points blown up by φ. Denote by epi the irreducible
component of the exceptional divisor contracted to pi. One has

NS(Y ) = NS(S)⊕Zep1⊕Zep2⊕ . . .⊕Zepn.

The morphism φ induces the isomorphism φ∗ : Z(Y )→ Z(S) defined by
φ∗(ep) = eφ•(p) ∀ p ∈ B(Y )rBase(φ)
φ∗(epi) = epi ∀1≤ i≤ n
φ∗(D) = D ∀D ∈ NS(S)⊂ NS(Y )
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Let φ : Y 99K S be a birational map of smooth projective surfaces. Let π2 ◦π
−1
1 be a minimal

resolution of φ. The map φ induces an isomorphism φ∗ : Z(Y )→ Z(S) defined by

φ∗ = (π2)∗ ◦ (π1)
−1
∗ .

Let S be a smooth projective surface. Any element φ of Bir(S) induces an isomorphism
φ∗ : Z(S)→ Z(S), and φ∗ yields an automorphism of Z(S)⊗R which extends to an automor-
phism of the completion Z(S) and preserves the intersection form.

Let φ be a birational self map of P2
C. Assume that φ has degree d. Then the base-point e0,

i.e. the class of a line in P2
C, is mapped by φ∗ to the finite sum

de0−∑
i

miepi

where each mi is a positive integer and epi are the classes of the exceptional divisors corre-
sponding to the base-points of φ−1. For instance if φ = σ2 is the standard Cremona involution,
then

(σ2)∗e0 = 2e0− ep1− ep2− ep3

where p1 = (1 : 0 : 0), p2 = (0 : 1 : 0) and p3 = (0 : 0 : 1).

Remark 2.4. — An invariant structure is given by the canonical form. The canonical class

of P2
C blown up in n points p1, p2, . . ., pn is equal to −3e0−

n

∑
j=1

ep j . By taking intersection

products one obtains a linear form ω∞ defined by

ω∞ : Z(P2
C)→ Z, m0e0−

n

∑
j=1

m jep j 7→ −3m0 +
n

∑
j=1

m j

Since the isometric action of Bir(P2
C) on Z(P2

C) preserves the linear form ω∞ we get the

following equalities already obtained in §1.3: if φ∗e0 = de0−
n

∑
j=1

m jep j , then


d2 = 1+

n

∑
j=1

m2
j

3d−3 =
n

∑
j=1

m j

Example 5. — Let us understand the isometry (σ2)∗. Denote by p1, p2 and p3 the base-
points of σ2, and set S = Blp1,p2,p3P2

C. The involution σ2 lifts to an automorphism σ̃2 on S.
The Néron-Severi group NS(S) of S is the lattice of rank 4 generated by the class e0, coming
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from the class of a line in P2
C, and the classes ei = epi given by the three exceptional divisors.

The action of σ̃2 on NS(S) is given by
(σ̃2)∗e0 = 2e0− e1− e2− e3

(σ̃2)∗e1 = e0− e2− e3

(σ̃2)∗e2 = e0− e1− e3

(σ̃2)∗e3 = e0− e1− e2

Then (σ̃2)∗ coincides on NS(S) with the reflection with respect to e0− e1− e2− e3:

(σ̃2)∗(p) = p+ 〈p,e0− e1− e2− e3〉 ∀ p ∈ NS(S)

Let us blow up all points of S; we thus obtain a basis of Z(P2
C):

Z(P2
C) = NS(S)

⊕
p∈B(S)

Zep.

The isometry (σ2)∗ of Z(P2
C) acts on NS(S) as the reflection (σ̃2)∗ and permutes each vector

ep with eσ2(p).

2.3. Types and degree growth

Consider an ample class h ∈ NS(S,R) with self-intersection 1. The degree of φ ∈ Bir(S)
with respect to the polarization h is defined by

degh φ = 〈φ∗(h),h〉= cosh(d(h,φ∗h)).

Note that if S = P2
C and h = e0 is the class of a line, then degh φ is the degree of φ as defined

in Chapter 1.

A birational map φ of a projective surface S is

� virtually isotopic to the identity if there is a positive iterate φn of φ and a birational map
ψ : Z 99K S such that ψ−1 ◦φn ◦ψ is an element of Aut(Z)0;
� a Jonquières twist if φ preserves a one parameter family of rational curves on S, but φ is

not virtually isotopic to the identity;
� a Halphen twist if φ preserves a one parameter family of genus one curves on S, but φ is

not virtually isotopic to the identity.

Furthermore the Jonquières twists (resp. Halphen twists) preserve a unique fibration
([DF01]).

Remark 2.5. — If φ is a Jonquières (resp. Halphen) twist, then, after conjugacy by a birational
map ψ : Z 99K S, φ permutes the fibers of a rational (resp. genus one) fibration π : Z→ B. If
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z is the divisor class of the generic fiber of the fibration, then z is an isotropic vector in Z(S)
fixed by φ∗. In particular φ∗ can not be loxodromic.

Let C and C ′ be two smooth cubic curves in the complex projective plane. By Bezout
theorem C and C ′ intersect in nine points denoted p1, p2, . . ., p9. There is a pencil of cubic
curves passing through these nine points. Let us blow up p1, p2, . . ., p9. We get a rational
surface S with a fibration π : S→ P1

C whose fibers are genus 1 curves. More generally let us
consider a pencil of curves of degree 3m for m ∈ Z+, blow up its base-points and denote by
S the surface we get. Such a pencil of genus 1 curves is called a Halphen pencil , and such a
surface is called a Halphen surface of index m .

Definition. — A surface S is a Halphen one if |−mKS| satisfies the three following properties

� it is one-dimensional,
� it has no fixed component,
� it is base-point free.

According to [CD12a] up to birational conjugacy

� every pencil of genus 1 curves of P2
C is a Halphen pencil,

� Halphen surfaces are the only examples of rational elliptic surfaces.

Lemma 2.6 ([Ure]). — Let S be a Halphen surface. Let φ be an element of Bir(S) that
preserves the Halphen pencil. Then φ belongs to Aut(S).

Up to conjugacy by birational maps every pencil of genus 1 curves of P2
C is a Halphen pencil

and Halphen surfaces are the only examples of rational elliptic surfaces ([CD12a]) so Lemma
2.6 implies:

Corollary 2.7. — A subgroup G of Bir(P2
C) that preserves a pencil of genus 1 curves is con-

jugate to a subgroup of the automorphism group of some Halphen surface.

Proof of Lemma 2.6. — The Halphen pencil is defined by a multiple of the class of the anti-
canonical divisor −KS. As a result any birational map of a Halphen surface that preserves the
Halphen fibration preserves the class of the canonical divisor KS. Assume by contradiction
that φ is not an automorphism. Take a minimal resolution of φ

Z
η

��

π

��
S

φ

// S
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Denote by Ei and Fi the total pull backs of the exceptional curves. On the one hand

KZ = η
∗(KS)+∑Ei,

and on the other hand

KZ = π
∗(KS)+∑Fi.

The map φ preserves KS, so η∗(KS) = π∗(KS), and hence ∑Ei = ∑Fi. By assumption φ is not
an automorphism, i.e. ∑Ei contains at least one (−1)-curve Ek. Hence both

Ek ·
(
∑Ei

)
=−1

and

Ek ·
(
∑Fi

)
=−1

hold. This implies that Ek is contained in the support of ∑Fi: contradiction with the minimality
of the resolution.

Remark 2.8. — The automorphism groups of Halphen surfaces are studied in [Giz80] and in
[CD12a].

On the contrary Jonquières twists are not conjugate to automorphisms of projective surfaces
([DF01, BD15]).

Let S be a projective complex surface with a polarization H. Let φ : S 99K S be a birational
map. The dynamical degree of φ is defined by

λ(φ) = lim
n→+∞

degH(φ
n)1/n.

Definitions. — An element φ of Bir(P2
C) is called elliptic , (resp. parabolic , resp. loxodromic)

if the corresponding isometry φ∗ is elliptic (resp. parabolic, resp. loxodromic). .

The map φ is loxodromic if and only if λ(φ) > 1. As a consequence when φ ∈ Bir(P2
C),

λ(φ) > 1, the isometry φ∗ preserves a unique geodesic line Ax(φ) ⊂ H∞ called the axis of φ.
This line is the intersection of H∞ with a plane Pφ ⊂ Z(P2

C) which intersects the isotropic cone
of Z(P2

C) in two lines Rv+
φ∗

and Rv−
φ∗

such that

φ∗(p) = λ(φ)±1 p

for all p ∈ Rv±
φ∗

(the lines Rv+
φ∗

and Rv−
φ∗

correspond to ω(φ) and α(φ) with the notations of
§2.1.3).
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Take α ∈ Rv−
φ∗

and ω ∈ Rv+
φ∗

normalized so that 〈α, ω〉 = 1. The point p = α+ω√
2

lies on

Ax(φ). Since φ∗(p) = λ(φ)−1α+λ(φ)ω√
2

one obtains

exp(L(φ∗))+
1

exp(L(φ∗))
= 2cosh(d(p,φ∗(p)))

= 2〈p, φ∗(p)〉

= λ(φ)+
1

λ(φ)
.

The translation length is thus equal to logλ(φ). Consequently λ(φ) does not depend on the
polarization and is invariant under conjugacy.

There is a correspondence between the dynamical behavior of a birational map φ of S, in
particular its degree, and the type of the induced isometry on H∞:

Theorem 2.9 ([Giz80, DF01, Can99]). — Let S be a smooth projective complex surface with
a fixed polarization H. Let φ : S 99K S be a birational map. Then one of the following holds:

� φ is elliptic, (degH φn)n is bounded, and φ is virtually isotopic to the identity;
� φ is parabolic and

either degH φn ∼ cn for some positive constant c and φ is a Jonquières twist;
or degH φn ∼ cn2 for some positive constant c and φ is a Halphen twist;

� φ is loxodromic and degH φn = cλ(φ)n +O(1) for some positive constant c.

Examples 3. — � Any birational map of finite order is elliptic. Any automorphism of P2
C

is elliptic. Any element of the group{
(z0,z1) 7→ (αz0 +P(z1),βz1 + γ) |α, β ∈ C∗, γ ∈ C, P ∈ C[z1]

}
is elliptic.
� Any element of J of the form

(z0,z1) 99K

(
z0,

a(z0)z1 +b(z0)

c(z0)z1 +d(z0)

)
with (trM)2

detM ∈ C(z0)rC where

M =

(
a(z0) b(z0)

c(z0) d(z0)

)
is a Jonquières twist ([CD12b]).
� Consider the family of birational self maps of P2

C) given in the affine chart z2 = 1 by

φε : (z0,z1) 99K

(
z1 +1− ε,z0

z1− ε

z1 +1

)
.
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If
� ε =−1, then φε is elliptic;
� ε ∈ {0, 1}, then φε is a Jonquières twist;
� ε ∈

{1
2 ,

1
3

}
, then φε is a Halphen twist;

� ε ∈
⋃
k≥4

1
k

, then φε is loxodromic.

This family has been introduced in [DF01].
� If φ : (z0,z1) 99K (z1,z0+z2

1), then deg(φn)= (degφ)n = 2n. If ψ : (z0,z1) 99K (z2
0z1,z0z1),

then degψn ∼
(

3+
√

5
2

)n
; in particular deg(ψn) 6= (degψ)n.

� Let us finish with a more geometric example. Consider the elliptic curve E = C�Z[i].
The linear action of the group GL(2,Z[i]) on the complex plane preserves the lattice
Z[i]×Z[i]. This yields to an action of GL(2,Z[i]) by regular automorphisms on the
abelian surface S = E×E. Since this action commutes with (z0,z1) 7→ (iz0, iz1) one gets
a morphism from PGL(2,Z[i]) to Aut

(
S�(z0,z1)

7→ (iz0, iz1)
)

. As S�(z0,z1)
7→ (iz0, iz1)

is rational one obtains an embedding of PGL(2,Z[i]) into Bir(P2
C).

Any element virtually isotopic to the identity is regularizable , that is birationally conjugate
to an automorphism. What can we say about two birational maps virtually isotopic to the
identity ? We will see that if they commute they are simultaneously regularizable. Before
proving it let us introduce a new notion.

Definitions. — An element φ ∈ Bir(P2
C) is algebraically stable if degφn = (degφ)n for all

n≥ 0.
More generally if S is a compact complex surface, then φ ∈ Bir(S) is algebraically stable if

(φ∗)n = (φn)∗ for all n≥ 0.

A geometric characterization of algebraically stable maps is the following: φ ∈ Bir(S) is
algebraically stable if and only if there is no curve C ⊂ S such that φk(C) ∈ Ind(φ) for some
integer k. Let us give an idea of the fact that this geometric characterization is equivalent to
the Definition when S = P2

C. If φk(C r Ind(φ)
)
⊂ Ind(φ), then all the components of φ ◦ φk

have a common factor that defines the equation of C . Then deg(φ◦φk)< (degφ)(degφk). The
converse holds.

Diller and Favre proved the following result:

Proposition 2.10 ([DF01]). — Let S be a compact complex surface, and let φ be a birational
self map of S. There exists a composition of finitely many point blow-ups that lifts φ to an
algebraically stable map.
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Before giving the proof, let us give its idea. Assume that φ is not algebraically stable. In
other words there exist a curve C ⊂ S and an integer k such that C is blown down onto p1 and
pk = φk−1(p1) belongs to Ind(φ). The idea of Diller and Favre to get an algebraically stable
map is the following: after blowing up the points pi = φi(p1), i = 1, . . ., k, the orbit of C
consists of curves. Doing this for any element of Exc(φ) whose an iterate belongs to Ind(φ)
one gets the statement (note that the cardinal of Exc(φ) is finite, so the process ends).

Proof. — Let us write φ as follows φ = φn ◦φn−1 ◦ . . .◦φ1 where

� φi : Si−1→ Si;
� S0 = Sn = S;
� and

(i) either φi blows up a point pi = Ind(φi) ∈ Si, and we denote by Vi+1 = Exc(φ−1
i )⊂

Si+1 the exceptional divisor of φ
−1
i ;

(ii) or φi blows down the exceptional divisor Ei⊂ Si; in this case we set qi+1 := φi(Ei)∈
Si+1.

For any j ∈ N set S j := S j mod n and φ j := φ j mod n.
Assume that φ is not algebraically stable. Then there exist integers 1 ≤ i ≤ N such that φi

blows down Ei and
φN−1 ◦φN−2 ◦ . . .◦φi(Ei) = pN ∈ Ind(φN).

Choosing a pair (i,N) of minimal length we can assume that for all i < j ≤ N

m j := φ j ◦φ j−1 ◦ . . .◦φi(Ei) = φ j ◦φ j−1 ◦ . . .◦φi+1(qi+1)

does not belong to Ind(φi)∪Exc(φi).
First blow up SN at mN = pN . Then

� φN lifts to a biholomorphism φ̂N of BlpN SN ;
� φ̂N−1 either blows up the two distinct points mN−1 and pN−1 or blows up mN−1 and blows

down EN−1 /∈ mN−1;
� ∑Card

(
φ j
(
Exc(φ j)

))
= ∑Card

(
φ̂ j
(
Exc(φ̂ j)

))
.

Remark that modifying SN means modifying SN+n, SN−n, . . . nevertheless blowing up a point
m j does not interfere with the behavior of the map φ j around mN+n, mN−n, . . . (indeed if j1 = j2
mod n but j1 6= j2, then the points m j1 , m j2 of S1 = S2 are distinct), and these points can be
blow up independently.

Similarly blow up mN−1, mN−2, . . ., mi+2. At each step ∑Card(φ j(Exc(φ j))) remains con-
stant. Let us finish by blowing up mi+1 = φi(Ei); the situation is then different: φi becomes
a biholomorphism φ̂i. The number of components of Exc(φi) thus reduces from 1 to 0. As a
consequence

∑Card
(
φ̂ j
(
Exc(φ̂ j)

))
= ∑Card

(
φ j
(
Exc(φ j)

))
−1. (2.3.1)
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Repeating finitely many times the above argument either we produce an algebraically stable
map φ̂ = φ̂N ◦ φ̂N−1 ◦ . . .◦ φ̂1, or thanks to (2.3.1) we eleminate all exceptional components of
the factors of φ. In both cases we get an algebraically stable map.

Lemma 2.11 ([D0́6a]). — Let φ, ψ be two birational self maps of a compact complex sur-
face S. Assume that φ and ψ are both virtually isotopic to the identity. Assume that φ and ψ

commute.
There exist a surface Y and a birational map ζ : Y 99K S such that

� ζ−1 ◦φ` ◦ζ ∈ Aut(Y )0 for some integer `,
� ζ−1 ◦ψ◦ζ is algebraically stable.

Proof. — Since φ is virtually isotopic to the identity we can assume that up to birational
conjugacy and finite index φ is an automorphism of S. Let N(ψ) be the minimal number of
blow-ups needed to make ψ algebraically stable (such a N(ψ) exists according to Proposition
2.10). If N(ψ) = 0, then ζ = id suits. Assume that Lemma 2.11 holds when N(ψ) ≤ j.
Consider a pair (φ,ψ) of birational self maps of S such that

� φ and ψ are both virtually isotopic to the identity,
� φ and ψ commute,
� N(ψ) = j+1.

Since ψ is not algebraically stable there exists a curve C blown down by ψ and such that ψq(C)

is a point of indeterminacy p of ψ for some integer q. The maps ψ and φ commute, so an
iterate φk of φ fixes the irreducible components of Ind(ψ). Let us blow up p via π. On the
one hand π−1 ◦ φk ◦ π is an automorphism because p is fixed by φk and on the other hand
N(π−1 ◦ψ ◦ π) = j. One can thus conclude by induction that there exist a surface Y and a
birational map ζ : Y 99K S such that ζ−1 ◦φ` ◦ ζ ∈ Aut(Y )0 for some integer ` and ζ−1 ◦ψ ◦ ζ

is algebraically stable.

Proposition 2.12 ([D0́6a]). — Let φ, ψ be two birational self maps of a surface S. Assume
that φ and ψ are both virtually isotopic to the identity. Assume that φ and ψ commute.

Then there exist a surface Z and a birational map π : Z 99K S such that

� π−1 ◦φ◦π and π−1 ◦ψ◦π belong to Aut(Z);
� π−1 ◦φk ◦π and π−1 ◦ψk ◦π belong to Aut(Z)0 for some integer k.

Proof. — By assumption there exist a surface S̃, a birational map η : S̃ 99K S and an integer n
such that η−1 ◦φ◦η belongs to Aut(S) and η−1 ◦φn ◦η belongs to Aut(S)0. Let us now work
on S̃; to simplify denote by φ the automorphism η−1 ◦ φn ◦ η and by ψ the birational map
η−1 ◦ψ◦η.
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According to Lemma 2.11 there exist a surface Y , a birational map υ : Y 99K S and an
integer ` such that ζ−1 ◦ φ̃` ◦ζ belongs to Aut(Y )0 and ζ−1 ◦ ψ̃◦ζ is algebraically stable.

Set φ = ζ−1 ◦ φ̃i ◦ ζ and ψ = ζ−1 ◦ ψ̃ ◦ ζ. To get an automorphism from ψ let us blow
down curves in Exc(ψ−1). But curves blown down by ψ

−1 are of self-intersection < 0
and φ fixes such curves since φ is isotopic to the identity. We conclude by using the fact
that Card

(
Exc(ψ−1)

)
is finite.

2.4. On the hyperbolicity of graphs associated to the Cremona group

To reinforce the analogy between the mapping class group and the plane Cremona group
Lonjou looked for a graph analogous to the curve graph and such that the Cremona group acts
on it trivially in [Lon19b].

A candidate is the graph introduce by Wright (Chapter 4 §4.2.2 and [Wri92]).
As we have recalled in Chapter 4 §4.2.2 the complex C is a simplicial complex of dimension

2 and 1-connected on which Bir(P2
C) acts. Since Lonjou is interested in the Gromov hyper-

bolicity property, she is only interested in the 1-skeleton of C. She proved that the diameter
of this non-locally finite graph is infinite ([Lon19b, Corollary 2.7]). She then focuses on the
following question ”Is this graph Gromov hyperbolic ?”(2) The answer is no:

Theorem 2.13 ([Lon19b]). — The Wright graph is not Gromov hyperbolic.

The first point of the proof is to note that the Wright graph is quasi-isometric to a graph
related to the system of generators of Bir(P2

C) given by PGL(3,C) and the Jonquières maps.
It is an analogue of the Cayley graph in the case of a finitely generated group. The vertices of
this graph are the elements of Bir(P2

C) modulo pre-composition by an automorphism of P2
C.

An edge connects two vertices if there exists a Jonquières map that permutes the two vertices.
The distance between two vertices φ, ψ in Bir(P2

C) is the minimal number of Jonquières maps
needed to decompose ψ−1 ◦ φ (in [BF19] Blanc and Furter called this integer the translation
length of ψ−1 ◦ φ. They gave an algorithm to compute this length. They also got that the
diameter of the Wright graph is infinite).

The second point is to prove that this graph contains a subgraph quasi-isometric to Z2 (see
[Lon19b, Theorem 2.12]). She took two Halphen twists that commute. They generate a

(2)Minosyan and Osin note that if the answer to this question is yes, the results of [DGO17] allow to give a new
proof of the non-simplicity of Bir(P2

C) (see [MO15, MO19]).
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subgroup isomorphic to Z2. Using some results of [BF19] she established that the action of
this subgroup on one of the vertices of the graph induces the desired graph(3).

Then Lonjou constructed two graphs associated to a Voronı̈ tessellation of the Cremona
group introduced in [Lon19a]; she proved that
� one of these graphs is quasi-isometric to the Wright graph;
� the second one is Gromov hyperbolic.

(3)The Cayley graph of the modular group of a compact surface of genus g≥ 2 is not Gromov hyperbolic; indeed,
this group has subgroups isomorphic to Z2 (for instance generated by two Dehn twists along two disjoint closed
curves).





CHAPTER 3

ALGEBRAIC SUBGROUPS OF THE CREMONA
GROUP

The first section of this chapter deals with the algebraic structure of the n-dimensional Cre-
mona group, the fact that it is not an algebraic group of infinite dimension if n ≥ 2, the ob-
struction to this, which is of a topological nature. By contrast, the existence of a Euclidean
topology on the Cremona group which extends that of its classical subgroups and makes it a
topological group is recalled. More precisely in [Bro76] Shafarevich asked

”Can one introduce a universal structure of an infinite di-
mensional group in the group of all automorphisms (resp.
all birational automorphisms) of arbitrary algebraic variety
?”

We will see that the answer to this question is no ([BF13]). For any algebraic variety V
defined over C there is a natural notion of families of elements of Bir(Pn

C) parameterized by
V . These are maps V (C)→Bir(Pn

C) compatible with the structures of algebraic varieties. Note
that Bir(P1

C) ' PGL(2,C) and families V 99K Bir(P1
C) correspond to morphisms of algebraic

varieties. If n ≥ 2 the set Bird(Pn
C) of all birational maps of Pn

C of degree d has the structure
of an algebraic variety defined over C such that the families V → Bird(Pn

C) correspond to
morphisms of algebraic varieties ([BF13]). So Bir(Pn

C) decomposes into a disjoint infinite
union of algebraic varieties, having unbounded dimension. Blanc and Furter established the
following statement:

Theorem 3.1 ([BF13]). — Let n ≥ 2. There is no structure of algebraic variety of infinite
dimension on Bir(Pn

C) such that families V → Bir(Pn
C) would correspond to morphisms of

algebraic varieties.

The lack of structure come from the degeneration of maps of degree d into maps of smaller
degree. A family of birational self maps of P2

C of degree d which depends on a parameter t may
degenerate for certain values of t onto a non-reduced expression of the type P id=P(z0 : z1 : z2)
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where P denotes an homogeneous polynomial of degree d − 1. Consider for instance the
family

φa,b,c : (z0 : z1 : z2) 99K(
z0(az2

2 + cz0z2 +bz2
0) : z1(az2

2 +(b+ c)z0z2 +(a+b)z2
0) : z2(az2

2 + cz0z2 +bz2
0)
)

parameterized by the nodal plane cubic a3 +b3 = abc. The family (φa,b,c) is globally defined
by formulas of degree 3, but each element φa,b,c has degree ≤ 2 and there is no global para-
meterization by homogeneous formulas of degree 2. In fact the obstruction to a positive answer
to Shafarevich question comes only from the topology:

Theorem 3.2 ([BF13]). — There is noC-algebraic variety of infinite dimension that is homeo-
morphic to Bir(Pn

C).

In 2010 in the question session of the workshop ”Subgroups of the Cremona group” in
Edinburgh, Serre asked the following question

”Is it possible to introduce such topology on Bir(P2
C) that is

compatible with PGL(3,C) and PGL(2,C)×PGL(2,C) ?”
We will see that Blanc and Furter gave a positive answer to this question:

Theorem 3.3 ([BF13]). — Let n ≥ 1 be an integer. There is a natural topology on Bir(Pn
C),

called the Euclidean topology, such that:

� Bir(Pn
C), endowed with the Euclidean topology, is a Hausdorff topological group,

� the restriction of the Euclidean topology to algebraic subgroups in particular to PGL(n+
1,C) and PGL(2,C)n is the classical Euclidean topology.

In the literature an algebraic subgroup G of Bir(V ) corresponds to taking an algebraic
group G and a morphism G→ Bir(V ) that is a group morphism and whose schematic ker-
nel is trivial. We will see that in the case of V = Pn

C one can give a more intrinsic definition
(Corollary 3.11) which corresponds to taking closed subgroups of Bir(Pn

C) of bounded degree
and that these two definitions agree (Lemma 3.12).

An element φ∈Bir(Pn
C) is algebraic if it is contained in an algebraic subgroup G of Bir(Pn

C).
It is equivalent to say that the sequence (degφn)n∈N is bounded. According to [BF13] the
group G is thus an affine algebraic group. As a consequence φ decomposes as φ = φs ◦ φu

where φs is a semi-simple element of G and φu an unipotent element of G. This decomposition
does not depend on G (see [Pop13]). In particular there is a natural notion of semi-simple
and unipotent elements of Bir(Pn

C). As we will see G could even by chosen to be the abelian
algebraic subgroup

{
φi | i ∈ Z

}
of Bir(Pn

C). In all linear algebraic groups the set of unipotent
elements is closed; Popov asked if it is the case in the context of the Cremona group. A natural
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and related question is the following one: is the set Bir(Pn
C)alg of algebraic elements of Bir(Pn

C)

closed ? The second section deals with the answers to these questions (Theorem 3.31).
In the third section the classification of maximal algebraic subgroups of the plane Cremona

group is given.
In the fourth section we give a sketch of the proof of the fact that Bir(Pn

C) is topologically
simple when endowed with the Zariski topology, i.e. it does not contain any non-trivial closed
normal strict subgroup. The main ingredients of the proof are some clever deformation argu-
ments.

The fifth section is devoted to a modern proof of the regularization theorem of Weil which
says that for every rational action ρ of an algebraic group G on a variety X there exist a
variety Y with a regular action µ of G and a dominant rational map φ : X 99K Y with the
following properties: for any (g, p) ∈ G×X such that

� ρ is defined in (g, p);
� φ is defined in p and ρ(g, p);
� µ is defined in (g,φ(p))

we have φ(ρ(g, p)) = µ(g,φ(p)).

3.1. Topologies and algebraic subgroups of Bir(Pn
C)

3.1.1. Zariski topology. — Take an irreducible algebraic variety V . A family of birational
self maps of Pn

C parameterized by V is a birational self map

ϕ : V ×Pn
C 99KV ×Pn

C

such that

� ϕ determines an isomorphism between two open subsets U and V of V ×Pn
C such that

the first projection pr1 maps both U and V surjectively onto V ,
� ϕ(v,x) =

(
v,pr2(ϕ(v,x))

)
where pr2 denotes the second projection; hence each ϕv =

pr2(ϕ(v, ·)) is a birational self map of Pn
C.

The map v 7→ ϕv is called a morphism from the parameter space V to Bir(Pn
C).

A subset S ⊂ Bir(Pn
C) is closed if for any algebraic variety V and any morphism V →

Bir(Pn
C) its preimage is closed.

This yields a topology on Bir(Pn
C) called the Zariski topology.

Remark 3.4. — For any φ ∈ Bir(Pn
C) the maps from Bir(Pn

C) into itself given by

ψ 7→ ψ◦ϕ, ψ 7→ ϕ◦ψ, ψ 7→ ψ
−1
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are homeomorphisms of Bir(Pn
C) with respect to the Zariski topology.

Indeed let V be an irreducible algebraic variety. If f , g : V ×Pn
C → V ×Pn

C are two V -
birational maps inducing morphisms V → Bir(Pn

C), then f ◦g and f−1 are again V -birational
maps that induce morphisms V → Bir(Pn

C).

Let Bir≤d(Pn
C) (resp. Bird(Pn

C)) be the set of elements of Bir(Pn
C) of degree ≤ d (resp. of

degree d); we have the following increasing sequence

Aut(Pn
C) = Bir≤1(Pn

C)⊆ Bir≤2(Pn
C)⊆ Bir≤3(Pn

C)⊆ . . .

whose union gives the Cremona group. We will see that Bir≤d(Pn
C) is closed in Bir(Pn

C) and
the topology of Bir(Pn

C) is the inductive topology induced by the above sequence. As a result
it suffices to describe the topology of Bir≤d(Pn

C) to understand the topology of Bir(Pn
C).

Take a positive integer d. Let Wd be the set of equivalence classes of non-zero (n+ 1)-
uples (φ0,φ1, . . . ,φn) of homogeneous polynomials φi ∈ C[z0,z1, . . . ,zn] of degree d where
(φ0,φ1, . . . ,φn) is equivalent to (λφ0,λφ1, . . . ,λφn) for any λ ∈C∗. We denote by (φ0 : φ1 : . . . :
φn) the equivalence class of (φ0,φ1, . . . ,φn). Let Hd ⊆Wd be the set of elements φ = (φ0 : φ1 :
. . . : φn) ∈Wd such that the rational map ψφ : Pn

C 99K Pn
C given by

(z0 : z1 : . . . : zn) 99K
(
φ0(z0,z1, . . . ,zn) : φ1(z0,z1, . . . ,zn) : . . . : φn(z0,z1, . . . ,zn)

)
is birational. The map

Hd → Bir(Pn
C) φ 7→ ψφ

is denoted by πd .

Lemma 3.5 ([BF13]). — The following properties hold:

� The set Wd is isomorphic to Pk
C where k = (n+1)

(d+n
d

)
−1.

� The set Hd is locally closed in Wd; thus it inherits from Wd the structure of an algebraic
variety.
� The map πd : Hd → Bir(Pn

C) is a morphism, and πd(Hd) is the set Bir≤d(Pn
C).

� For all φ in Bir≤d(Pn
C) the set π

−1
d (φ) is closed in Wd , so in Hd as well.

� If S⊂ H` (`≥ 1) is closed, then π
−1
d (π`(S)) is closed in Hd .

Hence Wd and Hd are naturally algebraic varieties, Bird(Pn
C) also, but not Bir≤d(Pn

C).

Proof of Lemma 3.5. — � The set of homogeneous polynomials of degree d in (n + 1)
variables is a C-vector space of dimension

(d+n
d

)
; this implies the first assertion.

� Denote by Y ⊆Wdn−1×Wd the set defined by{
(ϕ,φ) ∈Wdn−1×Wd |ϕ◦φ = P id for some P ∈ C[z0,z1, . . . ,zn]dn

}
.
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If P is nonzero, then the rational maps ψφ and ψϕ are birational and inverses of each
other.

If P is zero, then ψφ contracts the entire set Pn
C onto a strict subvariety included in the

set
{

ϕ1 = ϕ2 = . . .= ϕn = 0
}

.
In particular for any pair (ϕ,φ) of Y the rational map ψφ is birational if and only if its

Jacobian is nonzero.
As a consequence any element φ ∈ Hd corresponds to at least one pair (ϕ,φ) in Y

(indeed according to [BCW82] the inverse of a birational self map of Pn
C of degree d has

degree ≤ dn−1).
The description of Y shows that it is closed in Wdn−1 ×Wd . The image pr2(Y ) of Y

by the second projection pr2 is closed in Wd since Wdn−1 is a complete variety and pr2 a
Zariski closed morphism. One can write Hd as U∩pr2(Y ) where U ⊆Wd is the open set
of elements having a nonzero Jacobian. As a result Hd is locally closed in Wd and closed
in U.
� Consider the Hd-rational map φ defined by

f : Hd×Pn
C 99K Hd×Pn

C (ϕ,z) 99K (ϕ,ϕ(z)).

Set J = det
((

∂ϕi
∂x j

)
0≤i, j≤n

)
. Let V ⊂ Hd×Pn

C be the open set where J is not zero.

Claim 3.6 ([BF13]). — The restriction f|V of f to V is an open immersion.

Hence πd is a morphism and it follows from the construction of Hd that the image of
πd is Bir≤d(Pn

C).
� Let φ be an element in Bir(Pn

C)≤d . It corresponds to a birational self map ψφ of Pn
C given

by

ψφ : (z0 : z1 : . . . : zn) 99K (φ0(z0,z1, . . . ,zn) : φ1(z0,z1, . . . ,zn) : . . . : φn(z0,z1, . . . ,zn))

for some homogeneous polynomials of degree k ≤ d having no common divisor. Then

(πd)
−1(ψφ) =

{
(ϕ0 : ϕ1 : . . . : ϕn) ∈Wd |ϕiφ j = ϕ jφi ∀1≤ i < j ≤ n

}
⊂ Hd.

This set is thus closed in Wd , and so in Hd .
� If ` is a positive integer and F a closed subset of H`, then we denote by YF the subset of

Y ×F (where Y ⊂Wdn−1×Wd is as above and F is the closure of F in W`) given by

YF =
{
((ζ,φ),ϕ) |φ and ϕ yield the same map Pn

C 99K Pn
C
}
.

In other words
YF =

{
((ζ,φ),ϕ) |φiϕ j = φ jϕi ∀ i, j

}
.
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Hence YF is closed in Y ×F and also in Wdn−1×Wd×W`. The subset pr2(YF) of Wd is closed
in Wd , and so in pr2(Y ); as a result pr2(YF)∩U is closed in pr2(Y )∩U. We conclude using
the fact that pr2(YF)∩U = (πd)

−1(π`(F)) and pr2(Y )∩U = Hd .

Lemma 3.7 ([BF13]). — Let V be an irreducible algebraic variety, and let υ : V → Bir(Pn
C)

be a morphism. There exists an open affine covering (Vi)i∈I of V such that for each i there
exist an integer di and a morphism υi : Vi→ Hdi such that υ|Vi

= πdi ◦υi.

Proof. — Consider a morphism τ : V → Bir(Pn
C) given by a V -birational map

φ : V ×Pn
C 99KV ×Pn

C

which restricts to an open immersion on an open set U. Take a point p0 in V . Let V0 ⊂V be
an open affine set containing p0. Take an element w0 = (p0,y) of U. Let us fix homogeneous
coordinates (z0 : z1 : . . . : zn) on Pn

C such that

� y = (1 : 0 : 0 : . . . : 0),
� φ(w0) does not belong to the plane z0 = 0.

Let us denote by An
C ⊂ P

n
C the affine set where z0 = 1;

x1 =
z1

z0
x2 =

z2

z0
. . . xn =

zn

z0

are natural affine coordinates ofAn
C. The map φ restricts to a rational map of V0×Pn

C defined at
w0. Its composition with the projection on the i-th coordinate is a rational function on V0×An

C
defined at w0. Hence φ|V0×An

C
can be written in a neighborhood of w0 as

(v,x1,x2, . . . ,xn) 7→
(

R1

Q1
,

R2

Q2
, . . . ,

Rn

Qn

)
for some Ri, Qi in C[V ][x1,x2, . . . ,xn] such that none of the Qi vanish at w0. As a result φ is
given in a neighborhood of w0 by(

v,(z0 : z1 : . . . : zn)
)
7→ (P0 : P1 : . . . : Pn)

where the Pi ∈ C[V0][z0,z1, . . . ,zn] are homogeneous polynomials of the same degree d0 such
that not all vanish at w0. Denote by U0 the set of points of (V ×Pn

C)∩U where at least one
of the Pi does not vanish; U0 is an open subset of V ×Pn

C. Its projection pr1(U0) on V is
an open subset of V0 containing p0. There thus exists an affine open subset Ã0 ⊆ pr1(U0)

containing p0. The n-uple (P0,P1, . . . ,Pn) yields to a morphism υ0 : Ã0→Hd . By construction
υ|Ã0

= πd ◦υ0. If we repeat this process for any point of V we get an affine covering.

Lemma 3.7 implies the following one:
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Corollary 3.8 ([BF13]). — � A set S⊆ Bir(Pn
C) is closed if and only if π

−1
d (S) is closed in

Hd for any d ≥ 1.
� For any d,the set Bir≤d(Pn

C) is closed in Bir(Pn
C).

� For any d, the map πd : Hd → Bir≤d(Pn
C) is surjective, continuous and closed. In partic-

ular it is a topological quotient map.

Proof. — Let us prove the first assertion. Assume that S is closed in Bir(Pn
C). Recall that a

subset of Bir(Pn
C) is closed in Bir(Pn

C) if and only if its preimage by any morphism is closed.
Since any πd : Hd → Bir(Pn

C) is a morphism π
−1
d (S) is thus closed in Hd .

Conversely suppose that π
−1
d (S) is closed in Hd for any d. Let V be an irreducible algebraic

variety, and let υ : V → Bir(Pn
C) be a morphism. According to Lemma 3.7 there exists an open

affine covering (Vi)i∈I of V such that for any i there exist

� an integer di,
� a morphism υi : Vi→ Hdi

with υ|Vi
= πdi ◦ υi. As π

−1
di
(S) is closed and υ−1(S) ∩Vi = υ

−1
i (π−1

di
(F)) one gets that

υ−1(S)∩ Vi is closed in Vi for any i. As a result υ−1(S) is closed.

We will now prove the second assertion. According to the first assertion it suffices to prove
that

π
−1
`

(
Bir≤d(Pn

C)
)
= π

−1
` (πd(Hd))

is closed in H` for any `. This follows from Lemma 3.5.

Finally let us prove the third assertion. The surjectivity follows from the construction of Hd
and πd (see [BF13]). Since πd is a morphism, πd is continuous. Let S⊆Hd be a closed subset.
According to Lemma 3.5 the set π

−1
` (πd(S)) is closed in H` for any `. The first assertion allows

to conclude.

The first and third assertions of Corollary 3.8 imply:

Proposition 3.9 ([BF13]). — The Zariski topology of Bir(Pn
C) is the inductive limit topology

given by the Zariski topologies of Bir≤d(Pn
C), d ∈ N, which are the quotient topology of

πd : Hd → Bir≤d(Pn
C)

where Hd is endowed with its Zariski topology.

3.1.2. Algebraic subgroups. — An algebraic subgroup of Bir(Pn
C) is a subgroup G ⊂

Bir(Pn
C) which is the image of an algebraic group H by a homomorphism υ such that

υ : H→ Bir(Pn
C) is a morphism; by Lemma 3.7 any algebraic group is contained in some

Bir≤d(Pn
C), i.e. any algebraic group has bounded degree . Corollary 3.11 allows to give a
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more intrinsic definition of algebraic groups which corresponds to taking closed subgroups of
Bir(Pn

C) of bounded degree. Lemma 3.12 shows that these two definitions agree.

Proposition 3.10 ([BF13]). — Let G be a subgroup of Bir(Pn
C). Assume that

� G is closed for the Zariski topology;
� G is connected for the Zariski topology;
� G⊂ Bir≤d(Pn

C) for some integer d.

If d is choosen minimal, then the set (πd)
−1(G∩Bird(Pn

C)
)

is non empty. Let us denote by K
the closure of (πd)

−1(G∩Bird(Pn
C)
)

in Hd . Then

� πd induces a homeomorphism K→ G;
� if V is an irreducible algebraic variety, the morphisms V → Bir(Pn

C) having image in G
correspond, via πd , to the morphisms of algebraic varieties V → K;
� the liftings to K of the maps

G×G→ G, (ϕ,ψ) G→ G, ϕ 7→ ϕ
−1

give rise to morphisms of algebraic varieties K×K→ K and K→ K.

This gives G a unique structure of algebraic group.

Corollary 3.11 ([BF13]). — Let G be a subgroup of Bir(Pn
C). Assume that G is

� closed for the Zariski topology,
� of bounded degree.

Then there exist an algebraic group K together with a morphism K→ Bir(Pn
C) inducing a

homeomorphism π : K→ G such that:

� π is a group homomorphism
� and for any irreducible algebraic variety V the morphisms V → Bir(Pn

C) having their
image in G correspond, via π, to the morphisms of algebraic varieties V → K.

Proof. — Let us first prove that G has a finite number of irreducible components. The group G
is closed in Bir≤d(Pn

C) hence its preimage (πd)
−1(G) is also closed in Hd . It thus has a finite

number of irreducible components C1, C2, . . ., Cr. The sets πd(C1), πd(C2), . . ., πd(Cr) are
closed and irreducible and cover G (third assertion of Corollary 3.8). If we keep the maximal
ones with respect to inclusion we get the irreducible components of G.

As for algebraic groups ([Hum75, §7.3]) one can show that:

� exactly one irreducible component of G passes through id;
� this irreducible component is a closed normal subgroup of finite index in G whose cosets

are the connected as well as irreducible components of G.

This allows to reduced to the connected case; Proposition 3.10 allows to conclude.
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Lemma 3.12 ([BF13]). — Let A be an algebraic group and ρ : A→ Bir(Pn
C) be a morphism

that is also a group homomorphism.
Then the image G of A is a closed subgroup of Bir(Pn

C) of bounded degree.
If π : K→ G is the homeomorphism constructed in Corollary 3.11, there exists a unique

morphism of algebraic groups ρ̃ : A→ K such that ρ = π◦ ρ̃.

Proof. — Lemma 3.7 asserts that G = ρ(A) has bounded degree. The closure G of G is a
subgroup of Bir(Pn

C); indeed inversion being a homeomorphism G−1
= G−1 = G. Similarly

translation by g∈G is a homeomorphism thus gK = gK = K, that is GG⊂G. In turn, if g∈G,
then Gg⊂ G, so Gg = Gg⊂ G. As a result G is a subgroup of Bir(Pn

C).
According to Corollary 3.11 there exist a canonical homeomorphism K→ G where K is

an algebraic group and a lift ρ̃ : A→ H of the morphism ρ : A→ Bir(Pn
C) whose image is

contained in G. As ρ is a group homomorphism ρ̃ is a morphism of algebraic groups hence its
image is closed, so imρ = K. Therefore, G = G.

Proposition 3.13 ([BF13]). — Any algebraic subgroup of Bir(Pn
C) is affine.

Sketch of the proof. — Let G be an algebraic subgroup of Bir(Pn
C). One can show that G is

linear, and this reduces to the connected case. By the regularization theorem of Weil (see
§3.5) the group G acts by automorphisms on some (smooth) rational variety V . Assume that
αV : V → A(V ) is the Albanese morphism. According to the Nishi-Matsumura theorem the
induced action of G on A(V ) factors through a morphism A(G)→ A(V ) with finite kernel (see
for instance [Bri10]). But V is rational hence A(V ) is trivial and so does A(G). The structure
theorem of Chevalley asserts that G is affine (see for instance [Ros56]).

Let us finish by some examples:

� The Cremona group in one variable Bir(P1
C) coincides with the group of linear projective

transformations PGL(2,C); it is an algebraic group of dimension 3.
� In dimension 2 the Cremona group contains the two following algebraic subgroups:

• the group PGL(3,C) of automorphisms of P2
C;

• the group PGL(2,C)× PGL(2,C) obtained as follows: the surface P1
C×P1

C can
be considered as a smooth quadric in P3

C whose automorphism group contains
PGL(2,C)× PGL(2,C); by stereographic projection the quadric is birationally
equivalent to P2

C. Hence Bir(P2
C) also contains a copy of PGL(2,C)×PGL(2,C).

� More generally Aut(Pn
C) = PGL(n+1,C) is an algebraic subgroup of Bir(Pn

C) and

PGL(2,C)×PGL(2,C)× . . .×PGL(2,C)︸ ︷︷ ︸
n times
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is an algebraic subgroup of

Aut(P1
C×P1

C× . . .P1
C︸ ︷︷ ︸

n times

)⊂ Bir(Pn
C).

� If G is a semi-simple algebraic group, H is a parabolic subgroup of G and V = G�H,
then the homogeneous variety V of dimension n is rational; π ◦G ◦ π−1 determines an
algebraic subgroup of Bir(Pn

C) for any birational map π : V 99K Pn
C.

3.1.3. Euclidean topology. — We can put the Euclidean topology on a complex algebraic
group; this gives any algebraic group the structure of a topological group. Recall that the
Euclidean topology is finer than the Zariski one.

Let n ≥ 1 be an integer. The group Bir(P1
C) = Aut(P2

C) = PGL(2,C) is obviously a topo-
logical group. Assume now that n≥ 2; we will
� first define the Euclidean topology on Bir≤d(Pn

C) and show that the natural inclusion
Bir≤d(Pn

C) ↪→ Bir≤d+1(Pn
C) is a closed embedding;

� second define the Euclidean topology on Bir(Pn
C) as the inductive limit topology induced

by those of Bir≤d(Pn
C), that is a subset F ⊂Bir(Pn

C) is closed if and only if F∩Bir≤d(Pn
C)

is closed in Bir≤d(Pn
C) for each d. Finally we will prove that Bir(Pn

C) endowed with the
Euclidean topology is a topological group;
� third give some remarks and properties.

3.1.4. The Euclidean topology on Bir≤d(Pn
C). — Let us recall that Wd is a projective space

and Hd is locally closed in Wd for the Zariski topology (Lemma 3.5). Let us put the Euclidean
topology on Wd: the distance between (p0 : p1 : . . . : pn) and (q0 : q1 : . . . : qn) is (see [Wey39])

∑
i< j
|piq j− p jqi|2(

∑
i
|pi|2

)(
∑

i
|qi|2

)
We then put the induced topology on Hd . The behavior of the Zariski topology on Bir(Pn

C)

leads to:

Definition. — The Euclidean topology on Bir≤d(Pn
C) is the quotient topology induced by the

surjective map πd : Hd → Bir≤d(Pn
C) where we put the Euclidean topology on Hd .

Recall that if f : X →Y is a quotient map between topological spaces, A is a subspace of X ,
A is open and A = f−1( f (A)), then the induced map A→ f (A) is a quotient map ([Bou98,
Chapter I, §3.6]). Set

Hd,d = (πd)
−1(Bird(Pn

C)).
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As (πd)
−1(Bir≤d−1(Pn

C)) is closed in Hd , Hd,d is open in Hd for the Zariski topology and hence
also for the Euclidean topology; πd restricts to a homeomorphism Hd,d → Bird(Pn

C) for any
d ≥ 1.

Lemma 3.14 ([BF13]). — Let d ≥ 1 be an integer. The spaces Wd and Hd are locally compact
metric spaces endowed with the Euclidean topology.

In particular the sets Wd , Hd and Bir≤d(Pn
C) are sequential spaces: a subset F is closed if

the limit of every convergent sequence with values in F belongs to F.

Proof. — The construction of the topology implies that Wd and Hd are metric spaces. As Wd is
compact and Hd is locally closed in Wd (Lemma 3.5) the set Hd is locally compact. But metric
spaces are sequential spaces and quotients of sequential spaces are sequential ([Fra65]).

We now would like to prove that the topological map πd : Hd → Bir≤d(Pn
C) is proper and

the topological space Bir≤d(Pn
C) is locally compact. Recall that a map f : X →Y between two

topological spaces is proper if it is continuous and universally closed: for each topological
space Z the map f × idZ : X ×Z→ Y ×Z is closed ([Bou98]). A topological space is locally
compact if it is Hausdorff and if each of its points has a compact neighborhood. If f : X → Y
is a quotient map between topological spaces such that X is locally compact, then f is proper
if and only if it is closed and the preimages of points are compact. This implies furthermore
that Y is locally compact. According to Lemma 3.5 for any φ in Bir≤d(Pn

C) the set (πd)
−1(φ)

is closed in the compact space Wd , so (πd)
−1(Y ) is compact. The topological space Hd being

locally compact (Lemma 3.14), to prove that πd is proper it suffices to prove that πd is closed.

Claim 3.15. — The map πd : Hd → Bir≤d(Pn
C) is proper.

Proof. — Let F ⊂Hd be a closed subset. To prove that πd(F) is closed in Bir≤d(Pn
C) amounts

to prove that the saturated set F̂ = (πd)
−1(πd(F)) is closed in Hd . Consider a sequence (ϕi)i∈N

of elements in F̂ which converges to ϕ ∈ Hd . Let us show that ϕ belongs to F̂ . Since πd is by
construction continuous, the sequence

(
πd(ϕi)

)
i∈N converges to πd(ϕ) in Bir≤d(Pn

C). Taking a
subsequence of

(
πd(ϕi)

)
i∈N if needed, we may suppose that the degree of all πd(ϕi) is constant

equal to some m≤ d.
� Assume m = d, then (πd)

−1(πd(ϕi)) = {ϕi} for each i. As a result each ϕi belongs to F ,
so ϕ belongs to F ⊂ F̂ as wanted.
� Suppose m < d. Set k = d−m ≥ 1. For any i there exists a non-zero homogeneous

polynomial ai ∈ C[z0,z1, . . . ,zn] of degree k such that

ϕi =
(
ai fi,0 : ai fi,1 : . . . : ai fi,n

)
and ( fi,0 : fi,1 : . . . : fi,n) ∈Wm corresponds to a birational map of degree m < d. Each ai

is defined up to a constant and P(C[z0,z1, . . . ,zn]) is compact, so, taking a subsequence if
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needed, we can suppose that (ai)i∈N converges to a non-zero homogeneous polynomial
a ∈ C[z0,z1, . . . ,zn] of degree k.

Taking a subsequence if needed we can assume that {( fi,0 : fi,1 : . . . : fi,n)}i∈N con-
verges to an element ( f0 : f1 : . . . : fn) of the projective space Wm. Since (ϕi)i∈N converges
to ϕ we get that ϕ = (a f0 : a f1 : . . . : a fn) in Hd .

As ϕi belongs to F̂ = (πd)
−1(πd(F)) for any i there exists ϕ′i in F such that πd(ϕ

′
i) =

πd(ϕi). Consequently

ϕ
′
i =
(
bi fi,0 : bi fi,1 : . . . : bi fi,n

)
for some non-zero homogeneous polynomial bi ∈ C[z0,z1, . . . ,zn] of degree k. As be-
fore we can assume that (bi)i∈N converges to a non-zero homogeneous polynomial b ∈
C[z0,z1, . . . ,zn] of degree k. The sequence (ϕ′i)i∈N converges to (b f0 : b f1 : . . . : b fn) and
F is closed, thus (b f0 : b f1 : . . . : b fn) belongs to F . This implies that ϕ = (a f0 : a f1 : . . . :
a fn) belongs to F̂ .

We can thus state:

Lemma 3.16 ([BF13]). — Let d ≥ 1 be an integer. Then

� the topological map πd : Hd → Bir≤d(Pn
C) is proper (and closed);

� the topological space Bir≤d(Pn
C) is locally compact (and Hausdorff).

Lemma 3.17 ([BF13]). — Let d ≥ 0 be an integer. The natural injection

ιd : Bir≤d(Pn
C)→ Bir≤d+1(Pn

C)

is a closed embedding, that is a homeomorphism onto its image which is closed in
Bir≤d+1(Pn

C).

Proof. — Consider the map

ι̂d : Hd → Hd+1, ( f0 : f1 : . . . : fn) 7→ (z0 f0 : z0 f1 : . . . : z0 fn).

It is a morphism of algebraic varieties that is a closed immersion. As a result it is continuous
and closed with respect to the Euclidean topology. The diagram

Hd
ι̂d //

πd
��

Hd+1

πd+1
��

Bir≤d(Pn
C) ιd

// Bir≤d+1(Pn
C)

commutes.
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The continuity of ι̂d implies the continuity of ιd: let U be an open subset of Bir≤d+1(Pn
C);

the equality (πd)
−1((ιd)

−1(U)) = (πd+1 ◦ ι̂d)
−1(U) shows that (πd)

−1((ιd)
−1(U)) is open in

Hd , that is (ιd)
−1(U) is open in Bir≤d(Pn

C).

3.1.5. The Euclidean topology on Bir(Pn
C). — Thanks to Lemma 3.17 one can put on

Bir(Pn
C) the inductive limit topology given by the Bir≤d(Pn

C): a subset of Bir(Pn
C) is closed

(resp. open) if and only if its intersection with any Bir≤d(Pn
C) is closed (resp. open). In

particular the injections Bir≤d(Pn
C) ↪→ Bir(Pn

C) are closed embeddings. This topology is
called the Euclidean topology of Bir(Pn

C). Let us now prove that Bir(Pn
C) is a topological

group endowed with the Euclidean topology.

Lemma 3.18 ([BF13]). — Let d ≥ 1 be an integer. The map

Id : Bir≤d(Pn
C)→ Bir≤dn−1(Pn

C), φ 7→ φ
−1

is continuous.

Proof. — As in Lemma 3.5 we consider the set Y ⊂Wdn−1×Wd defined by

Y =
{
(ϕ,φ) ∈Wdn−1×Wd |ϕ◦φ = P id for some P ∈ C[z0,z1, . . . ,zn]d

}
.

Let U ⊂Wd (resp. U′ ⊂Wdn−1) be the set of elements having a nonzero Jacobian. The set
Y is closed in Wdn−1 ×Wd (see the proof of Lemma 3.5) and the set U is open in Wd . As a
consequence

L = Y ∩ (Wdn−1×U) = Y ∩ (U′×U)

is locally closed in the algebraic variety Wdn−1×Wd .

The projection on the first factor is a morphism η1 : L→ Hdn−1 which is not surjective in
general. The projection on the second factor induces a surjective morphism η2 : L→ Hd . By
construction the diagram

Hd

πd
��

L⊂Wdn−1×Wd
η2oo η1 // Hdn−1

πd−1
��

Bir≤d(Pn
C) Id

// Bir≤dn−1(Pn
C)

commutes.

Let us prove that η2 is a closed map for the Euclidean topology. The set Wdn−1 is compact,
so the second projection Wdn−1×Wd →Wd is a closed map. Its restriction η′2 : Y →Wd to the
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closed subset Y of Wdn−1 ×Wd is a closed map. Since L = (η′2)
−1(Hd), we get that η2 is a

closed map(1).

As the diagram is commutative for any F ⊂ Bir≤dn−1(Pn
C) we have

η2
(
(πdn−1 ◦η1)

−1(F)
)
= (Id ◦πd)

−1(F);

furthermore this set corresponds to elements (φ0 : φ1 : . . . : φn) ∈Wd such that the rational
map ψφ is the inverse of an element of F . Assume that F is closed in Bir≤dn−1(Pn

C). The maps
η1 and πdn−1 are continuous for the Euclidean topology hence (πdn−1 ◦η1)

−1(F) is closed in L.
Lemma 3.16 asserts that

π
−1
d (I−1

d (F)) = η2
(
(πdn−1 ◦η1)

−1(F)
)

is closed in Hd and I−1
d (F) is closed in Bir≤d(Pn

C).

Let us introduce the map I defined by

I : Bir(Pn
C)→ Bir(Pn

C), φ 7→ φ
−1.

The degree of the inverse of a birational self map of Pn
C of degree d has degree at most dn−1.

Consequently for any d ≥ 1 the map I restricts to an injective map

Id : Bir≤d(Pn
C)→ Bir≤dn−1(Pn

C).

According to Lemma 3.18 the map Id is continuous. The definition of the topology of Bir(Pn
C)

implies that I is continuous. Since I = I−1 one has:

Corollary 3.19 ([BF13]). — The map

I : Bir(Pn
C)→ Bir(Pn

C), φ 7→ φ
−1

is a homeomorphism.

Let us now look at the composition of two birational maps.

Lemma 3.20 ([BF13]). — For any d, k ≥ 1 the map

χd,k : Bir≤d(Pn
C)×Bir≤k(Pn

C)→ Bir≤dk(Pn
C), (φ,ψ) 7→ φ◦ψ

is continuous.

(1)Let us recall that if ϕ : A→ B is a continuous closed map between topological spaces and C is any subset of B,
then ϕ induces a continuous closed map ϕ−1(C)→C.
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Proof. — Let us consider the map χ̂d,k : Hd×Hk→ Hdk given by(
(φ0 : φ1 : . . . : φn), (ψ0 : ψ1 : . . . : ψn)

)
7→
(
φn(ψ0,ψ1, . . . ,ψn)) : . . . : φn(ψ0,ψ1, . . . ,ψn)).

The diagram

Hd×Hk

πd×πk
��

χ̂d,k // Hdk

πdk
��

Bir≤d(Pn
C)×Bir≤k(Pn

C)Id

// Bir≤dk(Pn
C)

commutes.
The map χ̂d,k is a morphism of algebraic varieties, so is continuous for the Euclidean topo-

logy. Therefore, if F is a closed subset of Bir≤dk(Pn
C), then (πdk ◦ χ̂d,k)

−1(F) is closed in
Hd×Hk. But the diagram is commutative, so

(πd ◦ χ̂d,k)(F) = (πd×πk)
−1((χd,k)

−1(F)
)
.

The product of two proper maps is proper ([Bou98, Chapter 1,§10.1]); as a consequence πd×
πk is proper and hence closed. This implies that πd×πk is a quotient map. Hence (χd,k)

−1(F)

is closed and χd,k is continuous.

According to Lemma 3.20 the map

χd,k : Bir≤d(Pn
C)×Bir≤k(Pn

C)→ Bir≤dk(Pn
C)

is continuous for each d, k≥ 1. As a consequence by definition of the topology of Bir(Pn
C) we

get:

Corollary 3.21 ([BF13]). — The map

Bir(Pn
C)×Bir(Pn

C)→ Bir(Pn
C), (φ,ψ) 7→ φ◦ψ

is continuous.

Corollaries 3.19 and 3.21 complete the proof of:

Theorem 3.22 ([BF13]). — The n-dimensional Cremona group endowed with the Euclidean
topology is a topological group.

Let us give a statement about the restriction of the topology on algebraic subgroups:

Proposition 3.23 ([BF13]). — Let G be a Zariski closed subgroup of Bir(Pn
C) of bounded

degree, let K be its associated algebraic group (Corollary 3.11). We put on G the restriction
of the Euclidean topology of Bir(Pn

C), we get the Euclidean topology on K via the bijection
π : K→ G which becomes a homeomorphism.
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3.1.6. Properties of the Euclidean topology of Bir(Pn
C). —

Lemma 3.24. — Any convergent sequence of Bir(Pn
C) has bounded degree.

Proof. — If the sequence (ϕi)i∈N of Bir(Pn
C) converges to ϕ, then

{
ϕi | i ∈ N

}
∪{ϕ} is com-

pact, so contained in Bir≤d(Pn
C) for some d.

Lemma 3.25. — The topological group Bir(Pn
C) is Hausdorff.

Proof. — According to [Bou98, III, §2.5, Prop. 13] a topological group is Hausdorff if and
only if the trivial one-element subgroup is closed. Any point of Bir(Pn

C) is closed in some
Bir≤d(Pn

C) (Lemma 3.5), so is closed in Bir(Pn
C). As a result Bir(Pn

C) is Hausdorff.

Lemma 3.26. — Any compact subset of Bir(Pn
C) is contained in Bir≤d(Pn

C) for some d.

Proof. — Assume by contradiction that Bir(Pn
C) contains a compact subset K such that

(ϕi)i∈N is a sequence of elements of K with degϕi+1 > degϕi for each i. Let us consider
K′ =

{
ϕi | i ∈ N

}
. On the one hand it is a closed subset of the compact set K; hence it is

compact. On the other hand the intersection of any subset of K′ with Bir≤d(Pn
C) is closed, so

K′ is an infinite set endowed with the discrete topology; in particular it cannot be compact:
contradiction.

Lemma 3.27. — For n≥ 2 the topological space Bir(Pn
C) is not locally compact.

Proof. — Let U ⊂ Bir(Pn
C) be an open neighborhood of the identity. Since any compact

subset of Bir(Pn
C) is contained in Bir≤d(Pn

C) (Lemma 3.26) for some d to prove that U is not
contained in any compact subset of Bir(Pn

C) it suffices to show that U contains elements of
arbitrarily large degree. For any integers m, k ≥ 1 let us consider the birational map given in
the affine chart z0 = 1 by

fm,k : (z1,z2, . . . ,zn) 99K

(
z1 +

1
k

zm
2 ,z2, . . . ,zn

)
.

Fixing m we note that the sequence ( fm,k)k≥1 converges to the identity; in particular fm,k
belongs to U when k is large enough.

Lemma 3.28. — For n≥ 2 the topological space Bir(Pn
C) is not metrisable.

Proof. — Consider the inclusion

C[z2] ↪→ Aut(Cn)⊂ Bir(Pn
C)

P ↪→
(
(z1,z2, . . . ,zn) 99K (z1 +P(z2),z2,z3, . . . ,zn)

)



3.2. ALGEBRAIC ELEMENTS OF THE CREMONA GROUP 47

Observe that C[z2] is closed in Bir(Pn
C) and that for any d the induced topology on C[z2]≤d is

the topology as a vector space (or as an algebraic group). The induced topology on C[z2] is
thus the inductive limit topology given by

C[z2]≤1 ⊂ C[z2]≤2 ⊂ . . .

For any sequence `= (`n)n∈N of positive integers the set

U` =

{
d

∑
i=0

aiXi | |ai|<
1
`i

}
is open in C[z2]. This implies that C[z2] is not countable and hence not metrisable. The same
holds for Bir(Pn

C).

Lemma 3.29. — The topological group Bir(Pn
C) is compactly generated if and only if n≤ 2.

Proof. — The group Bir(P1
C) = PGL(2,C) is a linear algebraic group; consequently it is com-

pactly generated.
By the classical Noether and Castelnuovo Theorem the group Bir(P2

C) is generated by
Aut(P2

C) = PGL(3,C) and the standard involution σ2. The linear algebraic group Aut(P2
C) =

PGL(3,C) being compactly generated, Bir(P2
C) is compactly generated.

Assume n≥ 3. The group Bir(Pn
C) is not generated by Bir≤d(Pn

C) for any integer d because
the birational type of the hypersurfaces that are contracted by some element of Bir≤d(Pn

C) is
bounded (see [Pan99] for more details or Chapter 4, §4.3.3). The fact that Bir(Pn

C) is not
compactly generated follows from Lemma 3.26.

Remark 3.30. — Theorem 3.1 holds for any field, Theorem 3.2 holds for any algebraically
closed field, and Theorem 3.3 holds for (locally compact) local field.

3.2. Algebraic elements of the Cremona group

The goal of this section is the study of algebraic elements; in particular we will show that
the set of all these elements is a countable union of closed subsets but it is not closed.

In this section the considered topology is the Zariski topology.
An element φ∈Bir(Pn

C) is algebraic if it is contained in an algebraic subgroup G of Bir(Pn
C).

Let us denote by Bir(Pn
C)alg the set of algebraic elements of Bir(Pn

C).

Theorem 3.31 ([Bla16]). — Let n≥ 2.

� There are a closed subset U ⊂ Bir(Pn
C) canonically homeomorphic to A1

C and a family
of birational maps U → Bir(Pn

C) such that algebraic elements of U are unipotent and
correspond to elements of the subgroup of (C,+) generated by 1;
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� there is a closed subset S ⊂ Bir(Pn
C) such that algebraic elements of S are semi-simple

and correspond to elements of{
(a,ξ) ∈ A1

C× (A1
Cr{0}) |a = ξ

k}
for some k ∈ Z.

In particular Bir(Pn
C)alg and the set of unipotent elements of Bir(Pn

C) are not closed in
Bir(Pn

C).

Furthermore we will see that Bir(Pn
C)alg is a countable union of closed sets of Bir(Pn

C).

Lemma 3.32 ([Bla16]). — Let φ be an element of Bir(Pn
C). The closure of

{
φk |k ∈ Z

}
in

Bir(Pn
C) is a closed abelian subgroup of Bir(Pn

C).

Proof. — Let us denote by Ω the closure of
{

φk |k ∈ Z
}

in Bir(Pn
C). For any j ∈ Z the set

φ j(Ω) is a closed subset of Bir(Pn
C). It contains

{
φk |k ∈ Z

}
; thus it contains Ω. As a result

φk(Ω) = Ω for any k ∈ Z. Set

M =
{

ψ ∈ Bir(Pn
C) |ψ(Ω)⊂Ω

}
=

⋂
ω∈Ω

Ωω
−1.

As M is closed and contains
{

φk |k ∈ Z
}

, the set M contains Ω. Therefore, M is closed under
composition. Similarly the set

{
ψ−1 |ψ ∈ Ω

}
is closed in Bir(Pn

C) and contains
{

φk |k ∈ Z
}

.
The set Ω is then a subgroup of Bir(Pn

C).
Let us now prove that Ω is abelian. The centralizer

Cent(ϕ) =
{

ψ ∈ Bir(Pn
C) |ψ◦ϕ = ϕ◦ψ

}
of an element ϕ of Bir(Pn

C) is the preimage of the identity by the continuous map

Bir(Pn
C)→ Bir(Pn

C) ψ 7→ ψ◦ϕ◦ψ
−1 ◦ϕ

−1.

Since a point of Bir(Pn
C) is closed (Lemma 3.5), Cent(φ) is closed.

The closed subgroup Cent(φ) of Bir(Pn
C) contains

{
φ j | j ∈ Z

}
hence it contains Ω. Conse-

quently each element of Ω commutes with φ. The set{
ψ ∈ Bir(Pn

C) |ψ◦ω = ω◦ψ ∀ω ∈Ω
}
=

⋂
ω∈Ω

Cent(ω)

is closed and contains
{

φ j | j ∈ Z
}

, so contains Ω. Therefore, Ω is abelian.

Proposition 3.33 ([Bla16]). — Let φ be an element of Bir(Pn
C).

� If the sequence (degφk)k∈N is unbounded, then φ is not contained in any algebraic sub-
group of Bir(Pn

C).
� If the sequence (degφk)k∈N is bounded, then

{
φ j | j ∈ Z

}
is an abelian algebraic sub-

group of Bir(Pn
C).
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A direct consequence is the following result:

Corollary 3.34 ([Bla16]). — Let φ be a birational self map of Pn
C. The following assertions

are equivalent:

� the map φ is algebraic;
� the sequence (degφk)k∈N is bounded, i.e. φ is elliptic.

Proof of Proposition 3.33. — The first assertion follows from Lemma 3.12.
Let us now focus on the second assertion. Assume that the sequence (degφk)k∈N is bounded.

According to [BCW82] one has for any k

degφ
−k ≤ (degφ

k)n−1.

As a consequence the set
{

φ j | j ∈ Z
}

is contained in Bir(Pn
C)≤d for some d, and so does the

closure Ω of
{

φ j | j ∈ Z}. Lemma 3.32 allows to conclude.

Proposition 3.35. — For any k, d ∈ N set

Bir(Pn
C)k,d =

{
φ ∈ Bir(Pn

C) | degφ
k ≤ d

}
and

Bir(Pn
C)∞,d =

{
φ ∈ Bir(Pn

C) | degφ
k ≤ d∀k ∈ N

}
Then

� the set Bir(Pn
C)k,d is closed in Bir(Pn

C);
� the set Bir(Pn

C)∞,d =
⋂
i∈N

Bir(Pn
C)i,d is closed in Bir(Pn

C);

� the set Bir(Pn
C)alg of all algebraic elements of Bir(Pn

C) coincides with the union of all
Bir(Pn

C)∞,d , d ≥ 1.

Proof. — The set Bir(Pn
C)≤d is closed in Bir(Pn

C) for any d (Corollary 3.8), and the map

Bir(Pn
C)→ Bir(Pn

C), ϕ 7→ ϕ
k

is continuous (Remark 3.4); the set Bir(Pn
C)k,d is thus closed in Bir(Pn

C).
The first assertion clearly implies the second one.
The third assertion follows from Corollary 3.34.

Let us now deal with the first assertion of Theorem 3.31. Assume n ≥ 2. Consider the
morphism ρ : A1

C→ Bir(Pn
C) given by

a 7→
(
(z0 : z1 : . . . : zn) 99K (z0z1 : z1(z1 + z0) : z2(z1 +az0) : z3z1 : z4z1 : . . . : znz1

)
.

It is clearly injective. Let ρ̃ : P1
C→W2 be the closed embedding given by

(α : β)→ (αz0z1 : αz1(z1 + z0) : z2(z1 +az0) : αz3z1 : αz4z1 : . . . : αznz1).
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Note that ρ̂((0 : 1)) does not belong to H2. However for any t ∈ A1
C one has pr2(ρ̂((1 :

t)) = ρ(t). The restriction to A1
C; thus it yields a closed embedding A1

C→ H2. According to
Corollary 3.8 the restriction of π2 to ρ̂(P1

Cr{(0 : 1)}) is an homeomorphism.

Proposition 3.36. — � For t ∈ C the following conditions are equivalent:
- ρ(t) is algebraic,
- ρ(t) is unipotent,
- ρ(t) is conjugate to ρ(0) : (z1,z2, . . . ,zn)→ (z1 +1,z2, . . . ,zn),
- t belongs to the subgroup of (C,+) generated by 1.

� The pull-back by ρ of the set of algebraic elements is not closed.

Proof. — � A direct computation yields to

ρ(a)k : (z1,z2, . . . ,zn) 7→
(

z1 + k,z2
(z1 +a)(z1 +a+1) . . .(z1 +a+ k−1)

z1(z1 +1) . . .(z1 +m−1)
,z3,z4, . . . ,zn

)
In particular the second coordinate of ρ(a)k(z1,z2, . . . ,zn) is

z2

k−1

∏
i=0

(z1 +a+ i)

k−1

∏
i=0

(z1 + i)

If a does not belong to the subgroup of (C,+) generated by 1, then the degree growth of
ρ(a)k is linear which implies that ρ(a) is not algebraic.

If a belongs to the subgroup of (C,+) generated by 1, then

degρ(a)k ≤ |k|+1 ∀k ∈ N.

As a consequence ρ(a) is algebraic. Furthermore ρ(a) is conjugate to

ρ(0) : (z1,z2, . . . ,zn) 7→ (z1 +1,z2, . . . ,zn)

via

(z1,z2, . . . ,zn) 99K

(
z1,

z2

z1(z1 +1) . . .(z1 +a−1)
,z3,z4, . . . ,zn

)
if a > 0 or via

(z1,z2, . . . ,zn) 99K
(

z1,z2z1(z1−1) . . .(z1 +a),z3,z4, . . . ,zn

)
if a < 0(2). In particular ρ(a) is unipotent.

(2)Let us recall that a belongs to the subgroup of (C,+) generated by 1.
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� The second assertion follows from the first one and the fact that the subgroup of (C,+)

generated by 1 is not closed.

Finally let us prove the second assertion of Theorem 3.31. Assume n ≥ 2. Consider the
morphism

ρ : A1
C× (A1

Cr{0})→ Bir(Pn
C)

given by

(a,ξ) 7→
(
(z0 : z1 : . . . : zn) 99K (z0(z1 + z0) : ξz1(z1 + z0) : z2(z1 +az0) : z3(z1 + z0) : . . . : zn(z1 + z0)

)
.

It is injective. Let ρ̂ : P2
C→W2 be the closed embedding given by

(α : β : γ) 99K
(

αz0(z1 + z0) : γz1(z1 + z0) : z2(αz1 +βz0) : αz3(z1 + z0) : . . . : αzn(z1 + z0)
)
.

Note that

(z0 : z1 : . . . : zn) 99K
(

αz0(z1 + z0) : γz1(z1 + z0) : z2(αz1 +βz0) : αz3(z1 + z0) : . . . : αzn(z1 + z0)
)

is a birational map if and only if αγ 6= 0. This yields a closed embedding

A1
C× (A1

Cr{0})→ H2, (a,ξ) 7→ ρ̂((1 : a : ξ)).

Furthermore pr2(ρ̂(1 : a : ξ)) = ρ(a,ξ). Proposition 3.33 says that the restriction of π2 to the
image is a homeomorphism.

Proposition 3.37. — � For (a,ξ) ∈ A1
C× (A1

Cr {0}) the following conditions are equi-
valent:

- ρ(a,ξ) is algebraic,
- ρ(a,ξ) is semi-simple,
- ρ(a,ξ) is conjugate to ρ(1,ξ) : (z1,z2, . . . ,zn) 7→ (ξz1,z2,z3, . . . ,zn),
- there exists k ∈ Z such that a = ξk.

� The pull-back by ρ of the set of algebraic elements is not closed.

Proof. — � Note that

ρ(a,ξ)k : (z1,z2, . . . ,zn) 99K

(
ξ

kz1,z2
(z1 +a)(ξz1 +a) . . .(ξkz1 +a)
(z1 +1)(ξz1 +1) . . .(ξk−1z1 +1)

,z3,z4, . . . ,zn

)
.

In particular the second coordinate of ρ(a,ξ)k is

z2

k−1

∏
i=0

(ξiz1 +a)

k−1

∏
i=0

(ξiz1 +1)

.
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If a does not belong to 〈ξ〉 ⊂ (C, ·), then the degree growth of ρ(a,ξ)k is linear hence
ρ(a,ξ) is not algebraic.

If a belongs to 〈ξ〉 ⊂ (C, ·), then a = ξk for some k ∈ Z and for any j ∈ N

degρ(a,ξ) j ≤ |k|+1,

so ρ(a,ξ) is algebraic. Remark that ρ(a,ξ) is conjugate to ρ(1,ξ) via

(z1,z2, . . . ,zn) 99K

(
z1,

z2

z1(z1 +1) . . .(z1 +a−1)
,z3,z4, . . . ,zn

)
if k > 0 and via

(z1,z2, . . . ,zn) 99K
(

z1,z2z1(z1−1) . . .(z1 +a),z3,z4, . . . ,zn

)
if k < 0.
� The second assertion follows from the first one and the fact that{

(a,ξ) ∈ A1
C× (A1

Cr{0}) |a = ξ
k for some k ∈ Z

}
is not closed.

Remark 3.38. — Note that all the results of this section hold for Bir(Pn
k) whose k is an alge-

braically closed field of characteristic 0.

3.3. Classification of maximal algebraic subgroups of Bir(P2
C)

In [Bla09b] the author gives a complete classification of maximal algebraic subgroups of the
plane Cremona group and provides algebraic varieties that parametrize the conjugacy classes.
The algebraic subgroups of Bir(Pn

C) have been studied for a long time. Enriques established
in [Enr93] the complete classification of maximal connected algebraic subgroups of Bir(P2

C):
every such subgroup is the conjugate of the identity component of the automorphism group of
a minimal rational surface. A modern proof was given in [Ume82b]. The case of Bir(P3

C) was
treated by Enriques and Fano and more recently by Umemura ([Ume80, Ume82b, Ume82a]).
Demazure has studied the smooth connected subgroups of Bir(Pn

C) that contain a split torus of
dimension n (see [Dem70]). Only a few results are known for non-connected subgroups even
in dimension 2. Nevertheless there are a lot of statements in the case of finite subgroups which
are algebraic ones ([Wim96, BB00, dF04, BB04, Bea07, Isk05, DI09, Bla07b, Bla07a]) and
we deal with in Chapter 6. But these results do not show which finite groups are maximal
algebraic subgroups. As mentioned in [DI09] there are some remaining open questions like the
description of the algebraic varieties that parameterize conjugacy classes of finite subgroups
G of Bir(P2

C). Blanc gives an answer to this question for
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� abelian finite subgroups G of Bir(P2
C) whose elements do not fix a curve of positive genus

([Bla09a]);
� finite cyclic subgroups of Bir(P2

C) (see [Bla11a]);
� maximal algebraic subgroups of Bir(P2

C) (see [Bla09b]).

Before specifying Blanc results let us recall some notions. If S is a projective smooth rational
surface and G a subgroup of Aut(S) we say that (G,S) is a pair . A birational map ϕ : X 99K Y
is G-equivariant if the inclusion ϕ ◦G ◦ϕ−1 ⊂ Aut(Y ) holds. The pair (G,S) is minimal if
every birational G-equivariant morphism ϕ : S 99K S′ where S′ is a projective, smooth surface,
is an isomorphism. A morphism π : S→ P1

C is a conic bundle if all generic fibers of π are
isomorphic to P1

C and if there exists a finite number of singular fibers which are the transverse
union of two curves isomorphic to P1

C.

3.3.1. del Pezzo surfaces and their automorphism groups. — A del Pezzo surface is a
smooth projective surface S such that the anti-canonical divisor −KS is ample. Let us recall
the classification of del Pezzo surfaces. The number d = K2

S is called the degree of S. By
Noether’s formula 1≤ d ≤ 9. For d ≥ 3, the anticanonical linear system |−KS| maps S onto a
non-singular surface of degree d in Pd

C. If d = 9, then S ' P2
C. If d = 8, then S ' P1

C×P1
C or

S' F1. For d ≤ 7 a del Pezzo surface S is isomorphic to the blow up of n = 9−d points in P2
C

in general position, that is

� no three of them are colinear,
� no six are on the same conic,
� if n = 8, then the points are not on a plane cubic which has one of them as its singular

point.

There exist ([Dol12, Chapter 8])

� a unique isomorphism class of del Pezzo surfaces of degree 5 (resp. 6, resp. 7, resp. 9),
� two isomorphism classes of del Pezzo surfaces of degree 8,
� and infinitely many isomorphism classes of del Pezzo surfaces of degree 1, (resp. 2,

resp. 3, resp. 4).

We will see that automorphism groups of del Pezzo surfaces are algebraic subgroups
of Bir(P2

C) and that they are finite if and only if the degree of the corresponding surface
is ≤ 5. If S is a del Pezzo surface of degree 5, then Aut(S) = S5. Automorphism groups of
del Pezzo surfaces of degree ≤ 4 are described in [DI09, §10]. In particular the authors got
the following:

Theorem 3.39 ([DI09]). — If the automorphism group of a del Pezzo surface is finite, then it
has order at most 648.
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Lemma 3.40 ([Ure]). — If the automorphism group of a del Pezzo surface is finite, then it can
be embedded into GL(8,C).

Proof. — Let S be a del Pezzo surface such that Aut(S) is finite. Then degS ≤ 5 and S is
isomorphic to Blp1,p2,...,prP2

C where 4≤ r = 9−degS≤ 8 and p1, p2, . . ., pr are general points
of P2

C. Denote by e0 the pullback of the class of a line and by epi the class of the exceptional
line Epi corresponding to the point pi. The dimension of the Néron-Severi space NS(S)⊗R
is r+1 and e0, ep1 , ep2 , . . ., epr is a basis of NS(S)⊗R. Note that the equality epi · epi = −1
implies that Epi is the only representative of epi on S.

If ϕ ∈ Aut(S) acts as the identity on NS(S)⊗R, then ϕ preserves the exceptional lines Epi

for 1≤ i≤ r. Hence ϕ induces an automorphism of P2
C that fixes p1, p2, . . ., pr. As r ≥ 4 and

as the pi are in general position the induced automorphism of P2
C is the identity. The action of

Aut(S) on NS(S)⊗R is thus faithful and we get a faithful representation

Aut(S)→ GL(r+1,C).

Any element ϕ of Aut(S) fixes KS; as a result the one-dimensional subspace R ·KS of NS(S)⊗
R is fixed. By projecting the orthogonal complement of KS in NS(S)⊗R we obtain a faithful
representation of Aut(S) into GL(r,C).

A del Pezzo surface of degree 6 is isomorphic to the blow up of the complex projective
plane in three general points, i.e. isomorphic to the surface

S6 =
{(

(z0 : z1 : z2),(a : b : c)
)
∈ P2

C×P2
C |az0 = bz1 = cz2

}
.

The automorphism group of S6 is isomorphic to (C∗)2o
(
S3×Z�2Z

)
where S3 acts by per-

muting the coordinates of the two factors simultaneously, Z�2Z exchanges the two factors and
d ∈ (C∗)2 acts as follows

d ·
(
(z0 : z1 : z2),(a : b : c)

)
=
(
d(z0 : z1 : z2) : d−1(a : b : c)

)
.

In other words Aut(S6) is conjugate to
(
S3×Z�2Z

)
nD2 ⊂ GL(2,Z)nD2.

Lemma 3.41 ([Ure]). — The group Aut(S6) can be embedded in GL(6,C).

Proof. — Consider the rational map

φ : P2
C 99K P6

C, (z0 : z1 : z2) 99K (z2
0z1 : z2

0z2 : z0z2
1 : z2

1z2 : z0z2
2 : z1z2

2 : z0z1z2).

The rational action of (S3×Z�2Z)nD2 on φ(P2
C) extends to a regular action on P6

C that
preserves the affine space given by z6 6= 0. This yields an embedding of (S3×Z�2Z)nD2

into GL(6,C).
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3.3.2. Hirzebruch surfaces and their automorphism groups. — Let us introduce the
Hirzebruch surfaces. Consider the surface F1 obtained by blowing up (1 : 0 : 0) ∈ P2

C; it is a
compactification of C2 which has a natural fibration corresponding to the lines z1 = constant.
The divisor at infinity is the union of two rational curves which intersect in one point:

� one of them is the strict transform of the line at infinity in P2
C, it is a fiber denoted by f1;

� the other one, denoted by s1, is the exceptional divisor which is a section for the fibration.

Furthermore f 2
1 = 0 and s2

1 = −1. More generally for any n, Fn is a compactification of
C2 with a rational fibration and such that the divisor at infinity is the union of two transversal
rational curves: a fiber fn and a section sn of self-intersection −n. These surfaces are called
Hirzebruch surfaces . One can go from Fn to Fn+1 as follows. Consider the surface Fn. Set
p = sn∩ fn. Let p1 be the blow up of p∈ Fn and let p2 be the contraction of the strict transform
f̃n of fn. One goes from Fn to Fn+1 via p2 ◦p−1

1 . We can also go from Fn+1 to Fn via p̃2 ◦ p̃1
−1

where

� p̃1 is the blow-up of a point q such that q ∈ fn+1, q 6∈ sn+1;
� p̃2 is the contraction of the strict transform f̃n+1 of fn+1.

We will say that both p2 ◦p−1
1 and p̃2 ◦ p̃1

−1 are elementary transformations .
The n-th Hirzebruch surface Fn = P

(
OP1

C
⊕OP1

C
(n)
)

is isomorphic to the hypersurface{
([x0,x1], [y0,y1,y2]) ∈ P1

C×P2
C |xn

0y1− xn
1y2 = 0

}
of P1

C×P2
C.

Their automorphism groups are

Aut(P2
C×P1

C) = (PGL(2,C)×PGL(2,C))o 〈(z0,z1) 7→ (z1,z0)〉,
Aut(P2

C) = PGL(3,C)

and

Aut(Fn) =

{
(z0,z1) 7→

(
az0 +P(z1)

(γz1 +δ)n ,
αz1 +β

γz1 +δ

) ∣∣(
α β

γ δ

)
∈ PGL(2,C), a ∈ C∗, P ∈ C[z1], degP≤ n

}
.

In other words as soon as n ≥ 2 the group Aut(Fn) is isomorphic to C[z0,z1]noGL(2,C)�µn
where µn ⊂ GL(2,C) is the subgroup of n-torsion elements in the center of GL(2,C).

Lemma 3.42 ([Ure]). — If n ≥ 2 is even, then GL(2,C)�µn is isomorphic as an algebraic
group to PGL(2,C)×C∗.

If n is odd, then GL(2,C)�µn is isomorphic as an algebraic group to PGL(2,C).
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In particular all finite subgroups of Aut(Fn) can be embedded into PGL(2,C)×PGL(2,C)
as soon as n≥ 2.

3.3.3. Automorphism groups of exceptional conic bundles. — An exceptional conic bun-
dle S is a conic bundle with singular fiber above 2n points in P1

C and with two sections s1 and
s2 of self-intersection −n, where n≥ 2 (see [Bla09b]).

Lemma 3.43 ([Bla09b]). — Let π : S→ P1
C be an exceptional conic bundle. Then Aut(S,π)

is isomorphic to a subgroup of PGL(2,C)×PGL(2,C).

3.3.4.
(
Z�2Z

)2
-conic bundles. — A conic bundle π : S→ P1

C is a
(
Z�2Z

)2
-conic bundle

if

� the group Aut
(

S�P1
C

)
is isomorphic to

(
Z�2Z

)2
,

� each of the three involutions of Aut
(

S�P1
C

)
fixes pointwise an irreducible curve C such

that π : C → P1
C is a double covering that is ramified over a positive even number of

points.

The automorphism group Aut(S,π) of a
(
Z�2Z

)2
-conic bundle is finite; its structure is

given by the following exact sequence ([Bla09b])

1−→V −→ Aut(S,π)−→ HV −→ 1

where V '
(
Z�2Z

)2
and HV is a finite subgroup of Aut(P1

C).
Note that we also have the following property:

Lemma 3.44 ([Ure]). — Let G ⊂ Bir(P2
C) be an infinite torsion group. Assume that for any

finitely generated subgroup Γ⊂G there exists a
(
Z�2Z

)2
-conic bundle S→ P1

C such that Γ is
conjugate to a subgroup of Aut(S,π). Then any finitely generated subgroup of G is isomorphic
to a subgroup of PGL(2,C)×PGL(2,C).

3.3.5. Blanc results. — First Blanc proved:

Theorem 3.45 ([Bla09b]). — Every algebraic subgroup of Bir(P2
C) is contained in a maximal

algebraic subgroup of Bir(P2
C).

The maximal algebraic subgroups of the plane Cremona group are the conjugate of the
groups G = Aut(S,π) where S is a rational surface and π : S→ Y is a morphism such that

1. Y is a point, G = Aut(S) and S is one of the following:
� P2

C, P1
C×P1

C;
� a del Pezzo surface of degree 1, 4, 5 or 6;
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� a del Pezzo surface of degree 3 (resp. 2) such that the pair (Aut(S),S) is minimal
and such that the fixed points of the action of Aut(S) on S are lying on exceptional
curves;

2. Y ' P1
C and π is one of the following conic bundles:

� the fibration by lines of the Hirzebruch surface Fn for n≥ 2;
� an exceptional conic bundle with at least 4 singular fibers;

� a
(
Z�2Z

)2
-conic bundle such that S is not a del Pezzo surface.

Moreover, in all these cases, the pair (G,S) is minimal and the fibration π : S→ Y is a G-
Mori fibration which is birationally superrigid . This means that two such groups G=Aut(S,π)
and G′ = Aut(S′,π′) are conjugate if and only if there exists an isomorphism S→ S′ which
sends fibers of π onto fibers of π′.

Then Blanc described more precisely the structure of these minimal algebraic subgroups of
Bir(P2

C). Furthermore he provides algebraic varieties that parameterize the conjugacy classes
of these groups:

Theorem 3.46 ([Bla09b]). — The maximal algebraic subgroups of Bir(P2
C) belong up to con-

jugacy to one of the eleven following families:

(1) Aut(P2
C)' PGL(3,C);

(2) Aut(P1
C×P1

C)'
(
PGL(2,C)

)2oZ�2Z;

(3) Aut(S)' (C∗)2o
(
S3×Z�2Z

)
where S is the del Pezzo surface of degree 6;

(4) Aut(Fn) ' Cn+1oGL(2,C)�µn where µn is the n-th torsion of the center of GL(2,C)
with n≥ 2;

(5) Aut(S,π) where (S,π) is an exceptional conic bundle with singular fibers over a set
∆⊂ P1

C of 2n distinct points, n≥ 2; the projection of Aut(S,π) onto PGL(2,C) gives an
exact sequence

1−→ C∗oZ�2Z−→ Aut(S,π)−→ H∆ −→ 1

where H∆ is the finite subgroup of PGL(2,C) formed by elements that preserve ∆;
(6) Aut(S)'S5 where S is the del Pezzo surface of degree 5;

(7) Aut(S)'
(
Z�2Z

)4
oHS where S is a del Pezzo surface of degree 4 obtained by blowing

up 5 points in P2
C and HS is the group of automorphisms of P2

C that preserve this set of
points;

(8) Aut(S) where S is a del Pezzo surface of degree 3 of the following form
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� the triple cover of P2
C ramified along a smooth cubic Γ. If S is the Fermat cubic,

then Aut(S) =
(
Z�3Z

)3
oS4, otherwise we have an exact sequence

1−→ Z�3Z−→ Aut(S)−→ HΓ −→ 1

where HΓ is the group of automorphisms of P2
C that preserve Γ, HΓ contains a

subgroup isomorphic to
(
Z�3Z

)2
;

� the Clebsch cubic surface whose automorphism group is isomorphic to S5;
� a cubic surface given by z3

0 + z0(z2
1 + z2

2 + z2
3)+λz1z2z3 = 0 for some λ ∈ C, 9λ3 6=

8λ, 8λ3 6=−1 and whose automorphism group is isomorphic to S4;
(9) Aut(S)' Z�2ZoHS where S is a del Pezzo surface of degree 2 which is a double cover

of a smooth quartic QS ⊂ P2
C such that HS = Aut(QS) acts without fixed point on the

quartic without its bitangent points;
(10) Aut(S) where S is a del Pezzo surface of degree 1, double cover of a quadratic cone Q,

ramified along a curve ΓS of degree 6, complete intersection of Q with a cubic surface of
P3
C. We have the following exact sequence

1−→ Z�2Z−→ Aut(S)−→ HS −→ 1

where HS denotes the automorphism group of Q preserving the curve ΓS;

(11) Aut(S,π) where (S,π) is a
(
Z�2Z

)2
-conic bundle such that S is not a del Pezzo surface.

The projection of Aut(S,π) onto PGL(2,C) gives the following exact sequence

1−→V −→ Aut(S,π)−→ HV −→ 1

where V '
(
Z�2Z

)2
contains three involutions fixing an hyperelliptic curve ramified

over points of p1, p2, p3 ⊂ P1
C and HV ⊂ Aut(P1

C) is the finite subgroup preserving the
set
{

p1, p2, p3
}

.

The eleven families are disjoint and the conjugacy classes in any family are parameterized
respectively by
(1) , (2), (3), (6) the point;
(4) there is only one conjugacy class for any integer n≥ 2;
(5) for any integer n ≥ 2 the set of 2n points of P1

C modulo the action of Aut(P1
C) =

PGL(2,C);
(7) the isomorphism classes of del Pezzo surfaces of degree 4;
(8) the isomorphism classes of cubic surfaces given respectively

� by the isomorphism classes of elliptic curves;
� for the Clebsch surface there is only one isomorphism class;



3.4. CLOSED NORMAL SUBGROUPS OF THE CREMONA GROUP 59

� by the classes of
{

λ ∈ C |9λ3 6= 8λ, 8λ3 6=−1
}

modulo the equivalence λ∼−λ.
(9) the isomorphism classes of smoooth quartics of P2

C having automorphism groups acting
without fixed points on the quartic without its bitangent points;

(10) the isomorphism classes of del Pezzo surfaces of degree 1;
(11) the triplets of ramification

{
p1, p2, p3

}
⊂ P1

C that determine
(Z�2Z

)2 conic bundles on
surfaces that are not del Pezzo ones, modulo the action of P1

C.

The approach of Blanc used the modern viewpoint of Mori’s theory and Sarkisov’s program,
aiming a generalization in higher dimension:

� he described each maximal algebraic subgroup of the classification as a G-Mori fibration;
� he then proved that any algebraic subgroup is contained in one of the groups of the

classification;
� he also showed that any group of the classification is a minimal G-fibration that is fur-

thermore superrigid.

Lemmas 3.40, 3.41 and Theorem 3.46 allow to prove the following statement:

Lemma 3.47 ([Ure]). — Let G be a subgroup of the plane Cremona group. Assume that G is
conjugate to an automorphism group of a del Pezzo surface S. Then G can be embedded into
GL(8,C).

Proof. — If degS≤ 5, then Aut(S) is finite and Lemma 3.40 allows to conclude.
If degS = 6, then Aut(S) can be embedded into GL(8,C) (Lemma 3.41).
If degS = 7, then Aut(S) is conjugate to a subgroup of

Aut(P1
C×P1

C)'
(
PGL(2,C)×PGL(2,C)

)
oZ�2Z⊂ GL(6,C).

If degS = 8, then S is isomorphic either to F0 = P1
C×P1

C or to F1. On the one hand

Aut(P1
C×P1

C)'
(
PGL(2,C)×PGL(2,C)

)
oZ�2Z⊂ GL(6,C).

and on the other hand Aut(F1) is not a maximal algebraic subgroup of Bir(P2
C) (Theorem 3.46).

If degS = 9, then S' P2
C and Aut(S) = PGL(3,C)⊂ GL(8,C).

3.4. Closed normal subgroups of the Cremona group

As we have seen we can endow the Cremona group with a natural Zariski topology induced
by morphisms V → Bir(Pn

C) where V is an algebraic variety.
In [Bro76] Mumford discussed properties of Bir(P2

C) and in particular asked if it is a simple
group with respect to the Zariski topology, i.e. if every closed normal subgroup of Bir(P2

C) is
trivial. Blanc and Zimmermann provided an affirmative answer to Mumford question:
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Theorem 3.48 ([BZ18]). — Let n ≥ 1 be an integer. The group Bir(Pn
C) is topologically

simple when endowed with the Zariski topology.

Remark 3.49. — This statement was proved in dimension 2 by Blanc ([Bla10]) using the
classical Noether and Castelnuovo Theorem.

Let us mention that Bir(Pn
C), n≥ 2, is not simple as an abstract group (for n = 2 see [CL13]

or §8.6, for n ≥ 3 see [BLZar]). Furthermore there is an analogue of Theorem 3.48 when
Bir(Pn

C) is endowed with the Euclidean topology:

Theorem 3.50 ([BZ18]). — Let n ≥ 2 be an integer. The topological group Bir(Pn
C) is topo-

logically simple when endowed with the Euclidean topology.

The proof of Theorem 3.50 is similar to the proof of Theorem 3.48, so we will just focus on
this last one.

Sketch of the proof of Theorem 3.48. — Let us first prove the statement for n = 1.

Lemma 3.51. — Let n ≥ 2 be an integer. The group PSL(n,C) is dense in PGL(n,C) with
respect to the Zariski topology.

Moreover every non-trivial normal subgroup of PGL(n,C) contains PSL(n,C). In particu-
lar PGL(n,C) does not contain any non-trivial normal strict subgroups closed for the Zariski
topology.

Proof. — The group morphism det : GL(n,C)→ C∗ yields a group morphism

det : PGL(n,C)→ C
∗
�{ f n | f ∈ C∗

}
whose kernel is the group PSL(n,C). Denote by id the identity matrix of size (n−1)× (n−1)
and consider the morphism

ρ : A1
Cr{0}→ PGL(n,C), t 7→

(
t 0
0 id

)
.

Note that ρ−1(PSL(n,C)) contains
{

tn | t ∈ A1
C
}

which is an infinite subset of A1
C and is thus

dense in A1
C. Therefore the closure of PSL(n,C) contains ρ(A1

Cr {0}). Any element of
PGL(n,C) is equal to some ρ(t) modulo PSL(n,C) hence PSL(n,C) is dense in PGL(n,C).

Let N be a non-trivial normal subgroup of PGL(n,C). Let f be a non-trivial element of
N. Let us prove that N contains PSL(n,C). The center of PGL(n,C) being trivial one can
replace f by α ◦ f ◦α−1 ◦ f−1 where α ∈ PGL(n,C) does not commute with f , and assume
that f belongs to N∩PSL(n,C). But PSL(n,C) is a simple group ([Die71, Chapitre II, §2]) so
PSL(n,C)⊂ N.
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The first two points imply that PGL(n,C) does not contain any non-trivial normal strict
subgroup which is closed with respect to the Zariski topology.

We will now focus on Bir(Pn
C) as soon as n≥ 2.

Proposition 3.52 ([BZ18]). — Let φ be an element of Bir(Pn
C). Let p be a point of Pn

C such
that φ induces a local isomorphism at p, and fixes p. Then there exist morphisms ν : A1

Cr
{0}→ Aut(Pn

C) and υ : A1
C→ Bir(Pn

C) such that:

� υ(t) = ν(t)−1 ◦φ◦ν(t) for any t ∈ C, moreover ν(1) = id, so υ(1) = φ;
� υ(0) belongs to Aut(Pn

C) and is the identity if and only if the action of φ on the tangent
space is trivial.

Proof. — Up to conjugacy by an element of Aut(Pn
C) we can assume that p=(1 : 0 : 0 : . . . : 0).

In the affine chart z0 = 1 one can write φ locally as(
p1,1(z1, . . . ,zn)+ . . .+ p1,`(z1, . . . ,zn)

1+q1,1(z1, . . . ,zn)+ . . .+q1,`(z1, . . . ,zn)
, . . . ,

pn,1(z1, . . . ,zn)+ . . .+ pn,`(z1, . . . ,zn)

1+qn,1(z1, . . . ,zn)+ . . .+qn,`(z1, . . . ,zn)

)
where pi, j, qi, j are homogeneous of degree j. For each t ∈ Cr{0} the element

νt : (z1,z2, . . . ,zn) 7→ (tz1, tz2, . . . , tzn)

extends to a linear automorphism of Pn
C that fixes p. Hence the map t 7→ ν

−1
t ◦φ◦νt gives rise

to a morphism Θ : A1
Cr{0} → Bir(Pn

C) and the image of Θ contains only conjugates of φ by
linear automorphisms. Note that

Θ : t 7→
(

p1,1(z1, . . . ,zn)+ t p1,2(z1, . . . ,zn)+ . . .+ t`−1 p1,`(z1, . . . ,zn)

1+ tq1,1(z1, . . . ,zn)+ t2q1,2(z1, . . . ,zn)+ . . .+ t`q1,`(z1, . . . ,zn)
,

. . . ,
pn,1(z1, . . . ,zn)+ t pn,2(z1, . . . ,zn)+ . . .+ t`−1 pn,`(z1, . . . ,zn)

1+ tqn,1(z1, . . . ,zn)+ t2qn,2(z1, . . . ,zn)+ . . .+ t`qn,`(z1, . . . ,zn)

)
and Θ(0) corresponds to the linear part of Θ at p which is locally given by(

p1,1(z1, . . . ,zn), . . . , pn,1(z1, . . . ,zn)
)
.

As φ is a local isomorphism at p, this linear part is an automorphism of Pn
C. Furthermore it is

trivial if and only if the action of φ on the tangent space is trivial.

Let φ ∈ Bir(Pn
C)r{id}; it induces an isomorphism from U to V where U, V ⊂ Pn

C are two
non-empty open subsets. There exist a point p in U and two automorphisms α1, α2 of Pn

C such
that

� ψ = α1 ◦φ◦α2 fixes p,
� ψ = α1 ◦φ◦α2 is a local isomorphism at p,
� Dpψ is not trivial.
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According to Proposition 3.52 there exist morphisms ν : A1
Cr{0}→Aut(Pn

C) and υ1 : A1
C→

Bir(Pn
C) such that

� υ1(t) = ν(t)−1 ◦ψ−1 ◦ν(t) for each t 6= 0,
� υ1(0) is an automorphism of Pn

C.

Consider the morphism υ2 : A1
C→ Bir(Pn

C) defined by

υ2(t) = α
−1
1 ◦ψ◦υ1(t)◦υ1(0)−1 ◦α

−1
2 .

Since α1, α2, υ1(0) and ν(t) are automorphisms of Pn
C for all t 6= 0

υ2(t) = α
−1
1 ◦

(
ψ◦ν(t)−1 ◦ψ

−1)◦ν(t)◦υ1(0)−1 ◦α
−1
2

belongs for any t 6= 0 to the normal subgroup of Bir(Pn
C) generated by Aut(Pn

C). As a con-
sequence φ = υ2(0) belongs to the closure of the normal subgroup of Bir(Pn

C) generated
by Aut(Pn

C). The normal subgroup of Bir(Pn
C) generated by Aut(Pn

C) is dense in Bir(Pn
C)

(see [BF13]).

In particular Bir(Pn
C) does not contain any non-trivial closed normal strict subgroup. Indeed

let {id} 6= N ⊂ Bir(Pn
C) be a closed normal subgroup with respect to the Zariski topology.

Then Aut(Pn
C) ⊂ N (see [BZ18, Prop. 3.3, Lemma 3.4]). Since N is closed it contains the

closure of the normal subgroup generated by Aut(Pn
C) which is equal to Bir(Pn

C).

Furthermore, one has:

Theorem 3.53 ([BZ18]). — If n ≥ 1, the group Bir(Pn
C) is connected with respect to the

Zariski topology.
If n ≥ 2, the group Bir(Pn

C) is path-connected, and thus connected with respect to the Eu-
clidean topology.

Let us give an idea of the proof of this statement. We start with an example.

Example 6. — Let n ≥ 2 and let α be an element of C∗. Consider the birational self map
of Pn

C given by

Φ : (z0 : z1 : . . . : zn) 99K

(
z0(z1 +αz2)+ z1z2

z1 + z2
: z1 : z2 : . . . : zn

)
.

The points p = (0 : 1 : 0 : 0 : . . . : 0) and q = (0 : 0 : 1 : 0 : 0 : . . . : 0) are fixed by Φ. Applying
Proposition 3.52 to the points p and q we get two morphisms Θ1, Θ2 : A1

C → Bir(Pn
C) such

that

� Θ1(0) : (z0 : z1 : . . . : zn) 7→ (z0 + z2 : z1 : z2 : . . . : zn) ∈ Aut(Pn
C),

� Θ2(0) : (z0 : z1 : . . . : zn) 7→ (αz0 + z1 : z1 : z2 : . . . : zn) ∈ Aut(Pn
C),

� Θ1(1) = Θ2(1) = Φ.
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Proposition 3.54. — Let n ≥ 2 be an integer. For any φ, ψ ∈ Bir(Pn
C) there is a morphism

υ : P1
C→ Bir(Pn

C) such that υ(0) = φ and υ(1) = ψ.

Proof. — Up to composition with φ−1 one can assume that φ = id. Let us consider the subset
S of Bir(Pn

C) given by

S =
{

ϕ ∈ Bir(Pn
C) |∃ ν : A1

C→ Bir(Pn
C) morphism such that ν(0) = id and ν(1) = ϕ

}
.

Let φ (resp. ψ) be an element of S; denote by νφ (resp. νψ) the associated morphism. We define
a morphism νφ◦ψ : A1

C→ Bir(Pn
C) by νφ◦ψ(t) = νφ(t)◦νψ(t) which satisfies νφ◦ψ(0) = id and

νφ◦ψ(1) = φ◦ψ. For any ϕ ∈ Bir(Pn
C) it is also possible to define a morphism t 7→ ϕ◦νφ(t)◦

ϕ−1. Therefore, S is a normal subgroup of Bir(Pn
C).

Claim 3.55 ([BF13]). — The group S contains PSL(n+1,C).

Take α, Φ, Θ1 and Θ2 as in Example 6; for i ∈ {1, 2} the morphisms

t 7→Θi(t)◦ (Θi(0))−1

show that g ◦
(
Θ1(0)

)−1 and g ◦
(
Θ2(0)

)−1 belong to S, hence Θ1(0) ◦
(
Θ2(0)

)−1 belong
to S. But Θ1(0) belongs to PSL(n + 1,C) ⊂ S, so Θ2(0) belongs to S. Thus Aut(Pn

C) =

PGL(n+1,C) is contained in S.

Take φ ∈ Bir(Pn
C) of degree d ≥ 2. Let p be a point of Pn

C such that φ induces a local
isomorphism at p. Consider an element A of PSL(n+ 1,C) such that A ◦ φ fixes p. There
exists a morphism θ : A1

C→ Bir(Pn
C) such that θ(0) belongs to Aut(Pn

C) and θ(1) = A◦φ. Let
us define θ′ : A1

C→ Bir(Pn
C) by θ′(t) = ρ(t)◦θ(0)−1. Then θ′(1) = A◦φ◦θ(0)−1. But A and

θ(0) belong to Aut(Pn
C)⊂ S, so φ belongs to S.

3.5. Regularization of rational group actions

The aim of [Kra18] is to give a modern proof of the regularization theorem of Weil which
says:

Theorem 3.56 ([Wei55]). — For every rational action of an algebraic group G on a variety X
there exist a variety Y with a regular action of G and a G-equivariant birational map X 99KY .

In this section a variety is an algebraic complex variety, and an algebraic group is an alge-
braic C-group.

A rational map φ : X 99K Y is called biregular in p ∈ X if there is an open neighborhood
U ⊂ (XrBase(φ)) of p such that φ|U : U ↪→ Y is an open immersion. As a result the subset

X ′ =
{

p ∈ X |φ is biregular in p
}
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is open in X , and the induced morphism φ : X ′ ↪→ Y is an open immersion. We can thus state:

Lemma 3.57. — Let X and Y be two varieties. Let φ : X 99K Y be a birational map. Then the
set

Breg(φ) =
{

p ∈ X |φ is biregular in p
}

is open and dense in X.

3.5.1. Rational group actions. — Let X and Z be two varieties. Let us recall that a map
φ : Z→ Bir(X) is a morphism if there exists an open dense set U ⊂ Z×X such that
� the induced map U→ X , (q, p) 7→ φ(q)(p) is a morphism of varieties;
� for every q ∈ Z the open set Uq =

{
p ∈ X |(q, p) ∈U

}
is dense in X ;

� for every q ∈ Z the birational map φ(q) : X 99K X is defined on Uq.
Equivalently there is a rational map φ : Z×X → X such that for every q ∈ Z

� the open subset (Z×XrBase(φ))∩ ({q}×X) is dense in {q}×X ;
� the induced birational map φq : X 99K X , p 7→ φ(q, p) is birational.

Recall that this definition allows to define the Zariski topology on Bir(X) (see §3.1).
We can now define rational group actions on varieties. Let G be an algebraic group, and

let X be a variety. A rational action of G on X is a morphism ρ : G→ Bir(X) which is a
morphism of groups. In other words there is a rational map still denoted ρ

ρ : G×X 99K X

such that
� the open set ((G×X)rBase(ρ))∩ ({g}×X) is dense in {g}×X for every g ∈ G;
� the induced map ρg : X 99K X , p 7→ ρ(g, p) is birational for every g ∈ G;
� the map g 7→ ρg is a group morphism.

Theorem 3.58 ([Kra18]). — Let ρ : G→ Bir(X) be a rational action where X is affine. As-
sume that there exists a dense subgroup Γ ⊂ G such that ρ(Γ) ⊂ Aut(X). Then the G-action
on X is regular.

Definition. — Let X and Y be two varieties. Let ρ be a rational G-action on X . Let µ be a
rational G-action on Y .

A dominant rational map φ : X 99K Y is G-equivariant if the following holds: for every
(g, p) ∈ G×X such that
� ρ is defined in (g, p),
� φ is defined in p and in ρ(g, p),
� µ is defined in (g,φ(p)),

we have φ(ρ(g, p)) = µ(g,φ(p)).



3.5. REGULARIZATION OF RATIONAL GROUP ACTIONS 65

Remark 3.59. — The set of (g, p) ∈ G×X satisfying the previous assumptions is open and
dense in G×X and has the property that it meets all {g}×X in a dense open set.

Let X be a variety with a rational action ρ : G×X 99K X of an algebraic group G. Consider

ρ̃ : G×X 99K G×X , (g, p) 7→ (g,ρ(g, p)).

It is clear that (G× X)rBase(ρ̃) = (G× X)rBase(ρ). Furthermore ρ̃ is birational with
inverse ρ̃−1(g, p) = (g,ρ(g−1, p)), that is

ρ̃
−1 = τ◦ ρ̃◦ τ

where τ is the isomorphism

τ : G×X → G×X , (g, p) 7→ (g−1, p).

Definition. — A point x ∈ X is called G-regular for the rational G-action ρ on X if Breg(ρ̃)∩
(G×{p}) is dense in G×{p}.

In other words a point p ∈ X is called G-regular for the rational G-action ρ on X if ρ̃ is
biregular in (g, p) for all g in a dense open set of G.

Denote by Xreg ⊂ X the set of G-regular points.
Let λg : G ∼−→ G be the left multiplication with g ∈ G. For any h ∈ G the diagram

G×X
ρ̃
//

λh×id
��

G×X

λh×ρh
��

G×X
ρ̃

// G×X

commutes. This implies the following statement:

Lemma 3.60 ([Kra18]). — If ρ is defined in (g, p) and if ρh is defined in g · p, then ρ is defined
in (hg, p).

If ρ̃ is biregular in (g, p) and if ρh is biregular in g · p, then ρ̃ is biregular in (hg, p).

Proposition 3.61 ([Kra18]). — The set Xreg of G-regular points is open and dense in X.
If p belongs to Xreg and if ρ̃ is biregular in (g, p), then g · p belongs to Xreg.

Proof. — Let G = G0∪G1∪ . . .∪Gn be the decomposition into connected components. Then
Di = Breg(ρ)∩ (Gi×X) is open and dense for all i (Lemma 3.57); the same holds for the
image Di ⊆ X under the projection onto X . Since Xreg =

⋂
i

Di the set Xreg is open and dense

in X .



66 CHAPTER 3. ALGEBRAIC SUBGROUPS OF THE CREMONA GROUP

If ρ̃ is biregular in (g, p), then ρ̃−1 = τ ◦ ρ̃ ◦ τ is biregular in (g,g · p). As a consequence ρ̃

is biregular in τ(g,g · p) = (g−1,g · p). If p is G-regular, then ρh is biregular in p for all h in
a dense open subset G′ of G. According to the second assertion of Lemma 3.60 the birational
map ρ̃ is biregular in (hg−1,g · p) for all h ∈ G′. Hence g · p belongs to Xreg.

A consequence of Proposition 3.61 allows us to only consider the case of a rational G-action
such every point is G-regular.

Corollary 3.62 ([Kra18]). — For the rational G-action on Xreg every point is G-regular.

Lemma 3.63 ([Kra18]). — Assume that X = Xreg. If ρg is defined in p, i.e. if p ∈ X r
Base(ρg), then ρg is biregular in p.

Proof. — Suppose that ρg is defined in p ∈ X . As X = Xreg there exists a dense open subset
G′ of G such that for all h ∈ G′

� ρh is biregular in g · p,
� ρhg is biregular in p.

Since ρhg = ρh ◦ρg the map ρg is biregular in p.

Let us recall that if φ : X 99K Y is a rational map, its graph Γ(φ) is defined by

Γ(φ) =
{
(x,y) ∈ X×Y |x ∈ XrBase(φ) and φ(x) = y

}
.

In particular pr1(Γ(φ)) = XrBase(φ) and pr2(Γ(φ)) = φ(XrBase(φ)).

Lemma 3.64 ([Kra18]). — Let ρ be a rational G-action on a variety X. Suppose that every
point of X is G-regular, that is X = Xreg. Then for every g ∈ G the graph Γ(ρg) of ρg is closed
in X×X.

Proof. — Denote by Γ the closure Γ(ρg) of the graph of ρg in X ×X . Let us prove that for
any (x0,y0)∈ Γ the rational map ρg is defined in x0. It is equivalent to prove that the morphism
pr1|Γ : Γ→ X is biregular in (x0,y0).

Let h be an element of G such that ρhg is biregular in x0 and ρh is biregular in y0. Consider
the birational map

φ = (ρhg,ρh) : X×X 99K X×X .

If φ is defined in (x,y)∈Γ(ρg), y= g ·x, then φ(x,y) = ((hg) ·x,(hg) ·x) belongs to the diagonal

∆(X) =
{
(x,x) ∈ X |x ∈ X

}
of X ×X . It follows that φ(Γ) ⊆ ∆(X). Since φ is biregular in (x0,y0), the restriction ϕ =

φ|Γ : Γ 99K ∆(X) of φ to Γ is also biregular in (x0,y0). By construction

ρhg ◦pr1|Γ = pr1|∆(X) ◦ϕ;



3.5. REGULARIZATION OF RATIONAL GROUP ACTIONS 67

indeed

X×X
ρhg×ρh// X×X

Γ
ϕ
//

pr1|Γ
��

?�

OO

∆(X)

pr1|∆(X)

��

?�

OO

X
ρhg // X

But ρhg is biregular in pr1|Γ(x0,x0), ϕ is biregular in (x0,y0) and pr1|∆(X) is an isomorphism,
so pr1|Γ is biregular in (x0,y0).

Lemma 3.65 ([Kra18]). — Let ρ be a rational action of G on a variety X. Suppose that there
is a dense open subset U of X such that

ρ̃ : G×U→ G×X , (g, p) 7→
(
g,ρ(g, p)

)
defines an open immersion. Then the open dense subset Y =

⋃
g∈G

g ·U ⊆ X carries a regular

G-action.

Proof. — Any ρg induces an isomorphism U ∼−→ g ·U. Therefore,

Y =
⋃

g∈G

g ·X ⊂ X

is stable under all ρg. By assumption the induced map on G×U is a morphism, so the induced
map on G× g ·U is a morphism for all g ∈ G. As a result the induced map G×Y → Y is a
morphism.

3.5.2. Construction of a regular model. —

Theorem 3.66 ([Kra18]). — Let X be a variety with a rational action of G. Suppose that
every point of X is G-regular. Then there exists a variety Y with a regular G-action and a
G-equivariant open immersion.

Assume now that X is a variety with a rational G-action ρ such that Xreg = X . Consider a
finite subset S =

{
g0 = e, g1, g2, . . . , gm

}
of G. Denote by X (0), X (1), . . ., X (m) some copies of

X . Consider the disjoint union

X(S) = X (0)∪X (1)∪ . . .∪X (m).
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Let us define on X (i) the following relations{
∀ i pi ∼ p′i⇐⇒ pi = p′i
∀ i, j i 6= j pi ∼ p j⇐⇒ ρg−1

j gi
is defined in pi and sends pi to p j

This defines an equivalence relation (Lemma 3.63 is needed to prove the symmetry). Consider
X̃(S) = X(S)�∼ the set of equivalence classes endowed with the induced topology.

Lemma 3.67 ([Kra18]). — The maps ιi : X (i)→ X̃(S) are open immersions and endow X̃(S)
with the structure of a variety.

Let us fix the open immersion ι0 : X = X (0) ↪→ X̃(S). Then G acts rationally on X̃(S) via
ρ = ρS such that ι0 is G-equivariant. Consider any X (i) as the variety X with the rational
G-action

ρ
(i)(g, p) = ρ(gigg−1

i , p);

by construction of X̃(S) the open immersions

ιi : X (i) ↪→ X̃(S)

are all G-equivariant.

Lemma 3.68 ([Kra18]). — Let X̃ (i) be the image of the open immersion ιi : X (i) ↪→ X̃(S). For
all i the rational map ρgi

is defined on X̃ (0).
Furthermore ρgi

: X̃ (0) ∼→ X̃ (i) defines an isomorphism.

Proof. — Consider the open immersion

τi = ιi ◦ ι
−1
0 : X̃ (0) ↪→ X̃(S).

Note that imτi = X̃ (i). Let us check that τi(p) = gi p. It is sufficient to show that it holds on
an open dense subset of X̃ (0). Let U ⊆ X be the open dense set where gi · p is defined. Take p
in U. On the one hand by definition

ι0(gi · p) = ιi(p);

on the other hand
ι0(gi · p) = gi · ι0(p).

As a result gi · ι0(p) = ιi(p) and

τi(p) = ιi(ι
−1
0 (p)) = gi · ι0(ι

−1
0 (p)) = gi · p

for any p ∈ ι0(U).
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Proof of Theorem 3.66. — Set D = Breg(ρ)∩ (G×X). Since Xreg = X for any p ∈ X there is
an element g in G such that (g, p) ∈ D. As a consequence

⋃
g∈G

g ·D = G×X where G acts on

G×X by left-multiplication on G. Hence
⋃

i

giD = G×X for a suitable finite subset

S =
{

g0 = e, g1, g2, . . . , gm
}
.

Recall that X̃ (0) = im(ι0). Let D(0) ⊂ G× X̃ (0) be the image of D. Consider the rational map

ρ̃S : G× X̃ (0) 99K G× X̃(S).

The map (g, p) 7→ (g,g · p) is the composition of (g, p) 7→ (g,(g−1
i g) · p) and (g,y) 7→ (g,gi ·y).

The first one is biregular on gi ·D(0) and its image is contained in G× X̃ (0); the second is
biregular on G× X̃ (0) (Lemma 3.68). As G× X̃ (0) =

⋃
i

gi ·D(0) the map ρ̃S is biregular. As a

consequence the rational action ρ of G on X̃(S) has the property that

ρ̃S : G× X̃ (0) ↪→ G× X̃(S)

defines an open immersion. Lemma 3.65 allows to conclude.

3.5.3. Proof of Theorem 3.58. — Let us start with the following statement:

Lemma 3.69 ([Kra18]). — Let X, Y , Z be varieties. Assume that Z is affine. Let φ : X×Y 99K
Z be a rational map. Suppose that

� there exists an open dense subset U of Y such that φ is defined on X×U;
� there exists a dense subset X ′ of X such that the induced maps φp : {p}×Y → Z are

morphisms for all p ∈ X ′.

Then φ is a regular morphism.

Consider a rational action ρ : G→ Bir(X) of an algebraic group on a variety X . Assume
that there is a dense subgroup Γ of G such that ρ(Γ)⊂ Aut(X).

� Let us first prove that the rational G-action on the open dense set Xreg ⊆ X is regular.
For every p ∈ Xreg there is g ∈ Γ such that ρ̃ is biregular in (g, p). By assumption for any
h ∈ Γ the map ρh is biregular on X , hence the map ρ̃ is biregular in (h, p) for any h ∈ Γ

(Lemma 3.60). Furthermore h · p belongs to Xreg (Proposition 3.61), i.e. Xreg is stable
under Γ. According to Theorem 3.66 there exists a G-equivariant open immersion

Xreg ↪→ Y

where Y is a variety with a regular G-action. The complement Y rXreg is closed and
Γ-stable, so Y rXreg is stable under Γ = G.
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� From the previous point the rational map

ρ : G×X 99K X

has the following properties:
- there is a dense open set Xreg ⊆ X such that ρ is regular on G×Xreg;
- for every g ∈ Γ the rational map

ρg : X → X , p 7→ ρ(g, p)

is a regular isomorphism.
Lemma 3.69 implies that ρ is a regular action in case X is affine.

Remark 3.70. — All the statements of this section hold for an algebraically closed field.



CHAPTER 4

GENERATORS AND RELATIONS OF THE CREMONA
GROUP

As we already say

Theorem 4.1 ([Cas01]). — The group Bir(P2
C) is generated by Aut(P2

C) = PGL(3,C) and the
standard quadratic involution

σ2 : (z0 : z1 : z2) 99K (z1z2 : z0z2 : z0z1).

This result is well-known as the Theorem of Noether and Castelnuovo. Noether was the first
mathematician to state this result at the end of the XIXth century. Nevertheless the first exact
proof is due to Castelnuovo. Noether’s idea was the following. Let us consider a birational
self map φ of P2

C. Take a quadratic birational self map q of P2
C such that the three base-points

of q are three base-point of φ of highest multiplicity. Then deg(φ ◦ q) < degφ. By induction
one gets a birational map of degree 1. But such a quadratic birational map q may not exist.
This is for instance the case if one starts with the polynomial automorphism

(z0 : z1 : z2) 99K (z3
1− z0z2

2 : z1z2
2 : z3

2).

In [Ale16] Alexander fixes Noether’s proof by introducing the notion of complexity of a map:
start with a birational self map φ of the complex projective plane; one can find a quadratic
birational self map q of the complex projective plane such that

� either the complexity of φ◦q is strictly less that the complexity of φ;
� or the complexities of φ◦q and φ are equal but #Base(φ◦q)< #Base(φ).

Alexander’s proof is a proof by induction on these two integers.

Remark 4.2. — One consequence of Noether and Castelnuovo theorem is: the Jonquières
group and Aut(P2

C) = PGL(3,C) generate Bir(P2
C). This result is ”weaker” nevertheless it has

the following nice property:
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Theorem 4.3 ([AC02]). — Let φ be an element of Bir(P2
C). There exist j1, j2, . . ., jk in J

and A in PGL(3,C) such that

� φ = A◦ jk ◦ jk−1 ◦ . . .◦ j2 ◦ j1;
� for any 1≤ i≤ n−1

deg(A◦ jk ◦ jk−1 ◦ . . .◦ ji+1 ◦ ji)> deg(A◦ jk ◦ jk−1 ◦ . . .◦ ji+2 ◦ ji+1).

The first presentation of the plane Cremona group is given by Gizatullin:

Theorem 4.4 ([Giz82]). — The Cremona group Bir(P2
C) is generated by the set Q of all

quadratic maps.
The relations in Bir(P2

C) are consequences of relations of the form q1 ◦ q2 ◦ q3 = id where
q1, q2, q3 are quadratic birational self maps of P2

C. In other words we have the following
presentation

Bir(P2
C) = 〈Q |q1 ◦q2 ◦q3 = id ∀ q1, q2, q3 ∈ Q such that q1 ◦q2 ◦q3 = id in Bir(P2

C)〉

Two years later Iskovskikh proved the following statement:

Theorem 4.5 ([Isk83, Isk85]). — The group Bir(P1
C×P1

C) is generated by the group B of
birational maps preserving the fibration given by the first projection together with τ : (z0,z1) 7→
(z1,z0).

Moreover the following relations form a complete system of relations:

� relations inside the groups Aut(P1
C×P1

C) and B;

�
(

τ◦
(
(z0,z1) 7→

(
z0,

z0
z1

)))3
= id;

� (τ◦ ((z0,z1) 7→ (−z0,z1− z0)))
3 = id.

In 1994 Iskovskikh, Kabdykairov and Tregub present a list of generators and relations
of Bir(P2

k) over arbitrary perfect field k (see [IKT93]).
The group Bir(P2

C) hasn’t a structure of amalgamated product ([Cor13]). Nevertheless a
presentation of the plane Cremona group in the form of a generalized amalgam was given by
Wright:

Theorem 4.6 ([Wri92]). — The plane Cremona group is the free product of PGL(3,C),
Aut(P1

C×P1
C) and J amalgamated along their pairwise intersections in Bir(P2

C).

Twenty years later Blanc proved:

Theorem 4.7 ([Bla12]). — The group Bir(P2
C) is the amalgamated product of the Jonquières

group with the group of automorphisms of the plane along their intersection, divided by the
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relation σ2 ◦ τ = τ ◦σ2 where σ2 is the standard involution and τ is the involution (z0 : z1 :
z2) 7→ (z1 : z0 : z2).

As we have seen in Chapter 3 there is an Euclidean topology on the Cremona group
([BZ18]). With respect to this topology Bir(P2

C) is a Hausdorff topological group. Fur-
thermore the restriction of the Euclidean topology to any algebraic subgroup is the classical
Euclidean topology. To show that Bir(P2

C) is compactly presentable with respect to the
Euclidean topology Zimmermann established the following statement:

Theorem 4.8 ([Zim16]). — The group Bir(P2
C) is isomorphic to the amalgamated product

of Aut(P2
C), Aut(F2), Aut(P1

C×P1
C) along their pairwise intersection in Bir(P2

C) modulo the
relation τ◦σ2 ◦τ◦σ2 = id where σ2 is the standard involution and τ the involution τ : (z0 : z1 :
z2) 7→ (z1 : z0 : z2).

Urech and Zimmermann got a presentation of the plane Cremona group with respect to the
generators given by the Theorem of Noether and Castelnuovo:

Theorem 4.9 ([UZ19]). — The Cremona group Bir(P2
C) is isomorphic to

〈σ2, PGL(3,C) |(R1), (R2), (R3), (R4), (R5)〉

where

(R1) g1 ◦g2 ◦g−1
3 = id for all g1, g2, g3 ∈ PGL(3,C) such that g1 ◦g2 = g3;

(R2) σ
2
2 = id

(R3) σ2 ◦η◦ (η◦σ2)
−1 = id for all η in the symmetric group S3 ⊂ PGL(3,C)

of order 6 acting on P2
C by coordinate permutations

(R4) σ2 ◦d ◦σ2 ◦d = id for all diagonal automorphisms d in the subgroup

D2 ⊂ PGL(3,C) of diagonal automorphisms;

(R5) (σ2 ◦h)3 = id where h : (z0 : z1 : z2) 7→ (z2− z0 : z2− z1 : z2)

Remarks 4.10. — � The relations (R2), (R3) and (R4) occur in the group Aut(C∗×C∗)
which is given by the group of monomial maps GL(2,Z)nD2.
� (R5) is a relation from the group Aut(P1

C× P1
C)

0 ' PGL(2,C)× PGL(2,C) which is
considered as a subgroup of Bir(P2

C) by conjugation with the birational equivalence

P1
C×P1

C 99K P2
C(

(u0 : u1),(v0 : v1)
)

99K (u1v0 : u0v1 : u1v1)

Remark 4.11. — All the results are stated on C but indeed
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� [Cor13, UZ19, Giz82, Isk83, Isk85, Wri92, Bla12] work for the plane Cremona group
over an algebraically closed field,
� [Zim16] works for the plane Cremona group over a locally compact local field.

In the first section we recall the proof of Noether and Castelnuovo due to Alexander.
In the second section we give an outline of the proof of the result of [Cor13] that says that

the plane Cremona group does not decompose as a non-trivial amalgam. We also recall the
proof of Theorem 4.6.

The third section is devoted to generators and relations in the Cremona group. We first give
a sketch of the proof of Theorem 4.7. We also give a sketch of the proof of Theorem 4.9. We
then explain why there is no Noether and Castelnuovo theorem in higher dimension.

4.1. Noether and Castelnuovo theorem

Let us now deal with the proof of Theorem 4.1 given by Alexander ([Ale16]). Recall the
two following formulas proved in §1.3. Consider a birational self map φ of P2

C of degree ν;
denote by p1, p2, . . ., pk the base-points of φ and by mpi the multiplicity of pi. Then

k

∑
i=0

mpi = 3(ν−1) (4.1.1)

k

∑
i=0

m2
pi
= ν

2−1. (4.1.2)

From (4.1.2) and (4.1.1) one gets
k

∑
i=0

mpi

(
mpi−1

)
= (ν−1)(ν−2). (4.1.3)

Consider a birational self map of P2
C of degree ν. If ν = 1, then according to (4.1.1) the map

φ is an automorphism of P2
C. So let us now assume that ν > 1. Let Λφ be the linear system

associated to φ. Denote by p1, p2, . . ., pk the base-points (in P2
C or infinitely near) of φ and mpi

their multiplicity. Up to reindexation let us assume that

mp0 ≥ mp1 ≥ . . .≥ mpk ≥ 1.

Alexander introduced the notion of complexity: the complexity of Λφ is the integer 2c =

ν−mp0 . It is the number of points except p0 that belong to the intersection of a general line
passing through p0 and a curve of Λφ.

Remarks 4.12. — One has
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� 2c≥ 0: the degree of the hypersurfaces of Λφ is ν, so a point has multiplicity ≤ ν;
� furthermore 2c ≥ 1; indeed if an homogeneous polynomial of degree ν has a point of

multiplicity ν, then the hypersurface given by this polynomial is the union of ν lines.

Set
C =

{
p ∈ Base(φ)r{p0}|mp > c

}
and

n = #C.

Bezout theorem implies that the line through p0 and p1 intersects any curve of Λφ in ν points
(counted with multiplicity). Furthermore it intersects any curve of Λφ at p0 with multiplicity
mp0 . Consequently mp1 ≤ ν−mp0 = 2c and

c < mpk ≤ . . .≤ mp2 ≤ mp1 ≤ 2c (4.1.4)

Lemma 4.13. — There are at least three base-points of multiplicity > c =
ν−mp0

2 , i.e. n ≥ 2;
hence mp0 >

ν

3 .
Furthermore if ν≥ 3, then p1, p2, . . ., pn are not aligned.

Proof. — According to (4.1.2) and (4.1.3) one has on the one hand

c
k

∑
i=0

mpi(mpi−1)− (c−1)
k

∑
i=0

m2
pi
=

k

∑
i=0

mpi(cmpi− c− cmpi +mpi) =
k

∑
i=0

mpi(mpi− c)

and on the other hand

(ν−1)(ν−2)c− (ν2−1)(c−1) = (ν−1)(νc−2c−νc+ν− c+1) = (ν−1)(ν−3c+1).

As a result
k

∑
i=0

mpi(mpi− c) = (ν−1)(ν−3c+1) (4.1.5)

Since mpn+i ≤ c for any i > 0 one gets
n

∑
i=0

mpi(mpi− c)≥
k

∑
i=0

mpi(mpi− c).

According to (4.1.5)
n

∑
i=0

mpi(mpi− c)≥ (ν−1)(ν−3c+1) = ν(ν−3c)+3c−1.

But 3c−1≥ 1
2 > 0, so

n

∑
i=0

mpi(mpi− c)> ν(ν−3c) = ν(mp0− c).



76 CHAPTER 4. GENERATORS AND RELATIONS OF THE CREMONA GROUP

Consequently

n

∑
i=0

mpi(mpi− c)> ν(mp0− c)−mp0(mp0− c) = (ν−mp0)(mp0− c) = 2c(mp0− c).

As 2c≥ mpi for any i≥ 1 (see (4.1.4)) one gets 2c
n

∑
i=1

(mpi− c)> 2c(mp0− c) and

2c
n

∑
i=1

(mpi− c)> 2c(mp0− c)

that is

mpi− c > mp0− c (4.1.6)

since c > 0. But mp1 ≤ mp0 , so n≥ 2. Therefore, mp0 +mp1 +mp2 > 3
(

ν−mp0
2

)
and mp0 >

ν

3 .
Let us assume that n≥ 3; then (4.1.6) can be rewritten

n

∑
i=1

mpi−nc > mp0− c = ν−3c

and
n

∑
i=1

mpi > ν+(n−3)c≥ ν.

Definition. — A general quadratic birational self map of Bir(P2
C) centered at p, q r is the

map, up to linear automorphism, that blows up the three distinct points p, q, r of P2
C and blows

down the strict transform of the lines (pq), (qr) and (pr). These lines are thus sent onto points
denoted p′, q′ and r′.

The line (p′q′) (resp. (q′r′), resp. (p′r′)) corresponds to the exceptional line of the blow up
of r (resp. p, resp. q).

Lemma 4.14. — Compose φ with a general quadratic birational self map of P2
C centered at

p0, q and r where p0 is the base-point of φ of maximal multiplicity.
The complexity of the new system is equal to the complexity of the old system if and only if

p′0 is of maximal multiplicity.
If it is not the case, then the complexity of the new system is strictly less than the complexity

of the old one.
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Proof. — The complexity of the new system is 2c′ = ν′−m′max where m′max denotes the high-
est multiplicity of the base-points of the new system. Then

2c′ = ν
′−m′max

= 2ν−mp0−mq−mr−m′max

= ν−mp0 +(ν−mq−mr)−m′max

= ν−mp0 +mp′0
−m′max

= 2c+mp′0
−m′max.

Hence c′ ≤ c and c′ = c if and only if mp′0
= m′max.

Lemma 4.15. — If there exist two points pi and p j in C =
{

p1, p2, . . . , pn
}

such that

� pi and p j are not infinitely near;
� pi and p0 are not infinitely near;
� p j and p0 are not infinitely near.

Then there exists a general quadratic birational self map of P2
C such that after composition

with φ

� either the complexity of the system decreases,
� or #C = n decreases by 2.

Proof. — Suppose that there exist two points pi and p j in C =
{

p1, p2, . . . , pn
}

such that
� pi and p j are not infinitely near;
� pi and p0 are not infinitely near;
� p j and p0 are not infinitely near.

Let us now compose φ with a general quadratic birational self map of P2
C centered at p0, pi

and p j. The degree of the new linear system Λ′
φ

is ν′ = 2ν−mp0−mpi−mp j . Let us remark
that

ν
′ = 2ν−mp0−mpi−mp j

= ν+(ν−mp0−mpi−mp j)

= ν+(2c−mpi−mp j)

< ν

i.e. the degree has decreased.
The new linear system Λ′

φ
has complexity c′ and we denote by C′ the set of points of multi-

plicity > c′.
The points p0, pi and p j are no more points of indeterminacy; the other base-points and

their multiplicity do not change. There are three new base-points which are p′0, p′i and p′j. By
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definition the multiplicity of p′0 (resp. p′i, resp. p′j) is equal to the number of intersection points
(counted with multiplicity) between the corresponding contracted line and the strict transform
of a general curve of the linear system. From Bezout theorem we thus have

mp′0
= ν−mpi−mp j

mp′i
= ν−mp0−mp j

mp′j
= ν−mp0−mpi

� If p′0 is not the point of highest multiplicity, the complexity of the system decreases
(Lemma 4.14);
� otherwise if p′0 is the point of highest multiplicity, then the complexity remains constant

(Lemma 4.14). Furthermore p′0 belongs to C′ (Lemma 4.13). Since mpi > c, mp j > c
and ν−mp0 = 2c, then mp′i

< c and mp′j
< c, i.e. p′i 6∈C′ and p′j 6∈C′. As a consequence

n′ = n−2.

Lemma 4.16. — Assume there exists a base-point pk in C that is not infinitely near p0. Then
after composition by a general quadratic birational map, one can disperse the points above
p0 and pk.

The complexity of the system does not change, the cardinal of C does not change. There is
no point infinitely near p′0.

Proof. — Consider a point q of the complex projective plane such that

� the lines (p0q) and (pkq) contain no base-point;
� there is no point infinitely near p0 in the direction of the line (p0q);
� there is no point infinitely near pk in the direction of the line (pkq).

Compose φ with a general quadratic birational map centered at p0, pk and q. The degree of the
new linear system is

ν
′ = 2ν−mp0−mpk = ν+2c−mpk ≥ ν.

The point p′0 is the point of highest multiplicity:
mp′0

= ν−mpk ≥ ν−mp0 = 2c≥ mp1

mp′k
= ν−mp0 = 2c > c

mq′ = ν−mp0−mpk = 2c−mpk < c

hence the complexity remains constant (Lemma 4.14). Note that #C′ = #C.
The assumptions on q allow to say that a point infinitely near pk (resp. p0) is not transformed

in a point infinitely near p′0. Similarly a point infinitely near pk (resp. p0) is not transformed
in a point infinitely near q′.
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Lemma 4.17. — Assume that all the points of C are above the point of highest multiplicity p0.
Then one can disperse them with a general quadratic birational self map; in other words there
is no base-point of C′ infinitely near the point p′0 of highest multiplicity of the new system. The
cardinal n increases by 2 but the complexity of the system remains constant.

Proof. — Take two points q and r in P2
C such that the lines (p0r), (p0q) and (rq)

� do not contain base-points;
� are not in the direction of the points infinitely near p0.

The degree of the new linear system is ν′ = 2ν−mp0 > ν. Since the curves of the system do
not pass through q and r Bezout theorem implies that mp′0

= ν; it is thus the point of highest
multiplicity. Furthermore

2c′ = 2ν−mp0−ν = 2c.

Any curve of the linear system intersects (p0r) and (p0q) in ν−mp0 = 2c points. As a result
mr′ = mq′ = 2c > c = c′. Moreover r′ and q′ belong to C′ and n′ = n+2.

The points infinitely near p0 have been dispersed onto the line (q′r′). As there is no base-
point on the line (qr) there is no base-point infinitely near p′0.

Proof of Theorem 4.1. — Let us consider a birational self map φ of P2
C of degree ν. Denote

by p0, p1, . . ., pk its base-points and by Λφ the linear system associated to φ. Let mpi be the
multiplicity of pi and assume up to reindexation that

mp0 ≥ mp1 ≥ . . .≥ mpk .

Recall that the complexity of the system Λφ is c where 2c = ν−mp0 , that

C =
{

p ∈ Base(φ)r{p0}|mp > c
}

and that n = #C. We will now compose φ with a sequence of general quadratic birational maps
in order to decrease the complexity until the complexity equals to 1.

Step 1. — If all points of C are above p0, let us apply Lemma 4.17. One gets that p′0 has no
more infinitely near base-points and that n′ = n+ 2. Let us now apply Lemma 4.16 until the
points of C′ are all distinct; note that C′ and n′ do not change. According to Lemma 4.13 the
points of C′ are not aligned. Let us take two of these points, denoted by pi and p j such that
there exist two base-points pk and p` with the following property: pk and p` do not belong
to the lines (p′0 pi), (p′0 p j) and (pi p j). Apply two times Lemma 4.15 to the points pk and
p`. If the complexity decreases (the first or the second time anyway), then let us start this
process again; otherwise the first application of Lemma 4.15 yields to n′ = n and the second
to n′ = n− 2. Furthermore there is no more base-point of C′ infinitely near p′0 and we go to
Step 2.
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Step 2. — We distinguish two possibilities:
Step 2i. Either there are two base-points in C that are not infinitely near and one applies Lemma
4.15. If the complexity decreases, come back to Step 1, otherwise come back to Step 2.
Step 2ii. Or let us apply Lemma 4.16, then there are two base-points that are not infinitely near
and one can apply Step 2i.

According to Lemma 4.13 if ν > 1, then #C ≥ 3. As a result Step 1 and Step 2 allow to
decrease the complexity. When the complexity is 1, the point p′0 has the highest multiplicity
and from Lemmas 4.15, 4.16 and 4.17 one gets that #C decreases until 0. In other words our
system has at most one base-point. From (4.1.1) and (4.1.2) one gets that ν = 1 and that there
is no base-point.

4.2. Amalgamated product and Bir(P2
C)

4.2.1. It is not an amalgamated product of two groups. — Let us recall that the group
Aut(A2

C) ⊂ Bir(P2
C) of polynomial automorphisms of the plane is the amalgamated product

of the affine group Aff2 = Aut(P2
C)∩Aut(A2

C) and the group JA2
C
= J ∩Aut(A2

C) along their

intersection. On the contrary Bir(P2
C) is not the amalgamated product of Aut(P2

C) and J .
Indeed there exist elements of Bir(P2

C) of finite order which are neither conjugate to an element
of Aut(P2

C), nor to an element of J (see [Bla11a]), contrary to the case of amalgamated pro-
ducts.

More precisely Cornulier proved that the plane Cremona group does not decompose as a
non-trivial amalgam ([Cor13]); we will give a sketch of the proof in this section.

A graph Γ consists of two sets X and Y , and two applications

Y → X×X , y 7→ (o(y), t(y)) Y → Y, y 7→ y

such that:
∀y ∈ Y y = y, y 6= y, o(y) = t(y).

An element of X is a vertex of Γ; an element y ∈Y is an oriented edge , and y is the reversed
edge . The vertex o(y) = t(y) is the origin of y, and the vertex t(y) = o(y) is the terminal
vertice . These two vertices are called the extremities of y.

An orientation of a graph Γ is a part Y+ of Y such that Y is the disjoint union of Y+ and Y+.
An oriented graph is defined, up to isomorphism, by the data of two sets X and Y+, and an
application Y+→ X×X . The set of edges of the corresponding graph is Y = Y+

⊔
Y+.

A graph is connected if two vertices are the extremities of at least one path.

Examples 4. — � Let n be an integer. Let us consider the oriented graph
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It has n+ 1 vertices 0, 1, . . ., n and the orientation is given by the n egdes [i, i+ 1],
0≤ i < n with o([i, i+1]) = i and t([i, i+1]) = i+1.
� Let n≥ 1 be an integer. Consider the oriented graph given by

The set of vertices is Z�nZ, and the orientation is given by the n edges [i, i+ 1], i ∈
Z�nZ, with o([i, i+1]) = i and t([i, i+1]) = i+1.

Definitions. — A path of length n in a graph Γ is a morphism from Chn to Γ.
A cycle of length n in a graph is a subgraph isomorphic to Cirn.
A tree is a non-empty, connected graph without cycle.

Definition. — A group G is said to have property (FA) if every action of G on a tree has a
global fixed point.

Definitions. — A geodesic metric space is a metric space if given any two points there is a
path between them whose length equals the distance between the points.

A real tree can be defined in the following equivalent ways ([Chi01]):

� a geodesic metric space which is 0-hyperbolic in the sense of Gromov;
� a uniquely geodesic metric space for which [a,c]⊂ [a,b]∪ [b,c] for all a, b and c;
� a geodesic metric space with no subspace homeomorphic to the circle.

In a real tree a ray is a geodesic embedding of the half line. An end is an equivalence class
of rays modulo being at bounded distance.
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For a group of isometries of a real tree, to stably fix an end means to pointwise stabilize a
ray modulo eventual coincidence (i.e. it fixes the end as well as the corresponding Busemann
function(1)).

Definition. — A group has property (FR) if for every isometric action on a complete real tree
every element has a fixed point.

Remark 4.18. — Property (FR) implies property (FA).

Lemma 4.19 ([Cor13]). — Let G be a group. Property (FR) has the following equivalent
characterizations:
� for every isometric action of G on a complete real tree every finitely generated subgroup

has a fixed point;
� every isometric action of G on a complete real tree either has a fixed point, or stably fixes

a point at infinity.

Definition. — A group G decomposes as a non-trivial amalgam if G ' G1 ∗H G2 with G1 6=
H 6= G2.

Theorem 4.20 ([Ser77], Chapter 6). — A group G has property (FA) if and only if it does not
decompose as a non-trivial amalgam.

In the Appendix of [Cor13] the author has shown that Bir(P2
C) satisfies the first assertion of

Lemma 4.19, hence:

Theorem 4.21 ([Cor13]). — The Cremona group Bir(P2
C) has property (FR).

According to Remark 4.18 the group Bir(P2
C) thus has property (FA). From Theorem 4.20

one gets that:

Corollary 4.22 ([Cor13]). — The plane Cremona group does not decompose as a non-trivial
amalgam.

Let us give the main steps of the proof of Theorem 4.21. From now on T is a complete real
tree and all actions on T are isometric.

Step 1. — Let p0, p1, . . ., pk be points of T and s ≥ 0. Suppose that the following equality
holds

d(pi, p j) = s|i− j|
for all i, j such that |i− j| ≤ 2. Then it holds for all i and j.

(1)Let (X ,d) be a metric space. Given a ray γ the Busemann function Bγ : X → R is defined by Bγ(x) =
lim

t→+∞

(
d(γ(t),x)− t

)
.
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Step 2. — If d ≥ 3, then SL(d,C) has property (FR). In particular if d ≥ 3, then PGL(d,C)
has property (FR).

Step 3. — Let us recall that a torus T in a compact Lie group G is a compact, connected,
abelian Lie subgroup of G (and therefore isomorphic to the standard torus Tn for some integer
n). Given a torus T, the Weyl group of G with respect to T can be defined as the normalizer
of T modulo the centralizer of T. A Cartan subgroup of an algebraic group is one of the
subgroups whose Lie algebra is a Cartan subalgebra. For connected algebraic groups over C a
Cartan subgroup is usually defined as the centralizer of a maximal torus.

Let C be the normalizer of the standard Cartan subgroup of PGL(3,C), i.e. the semi-direct
product of the diagonal matrices by the Weyl group (of order 6). Set ς : (z0,z1) 7→ (1− z0,1−
z1). The group generated by ς and C coincides with PGL(3,C):

〈C,ς〉= PGL(3,C).

Step 4. — Let Bir(P2
C) act on T so that PGL(3,C) has no fixed point and has a (unique)

stably fixed end. Then Bir(P2
C) fixes this unique end.

Step 5. — Note that σ2 =
(
ς ◦ σ2

)
◦ ς ◦

(
ς ◦ σ2

)−1. Since Bir(P2
C) = 〈σ2, PGL(3,C)〉 the

groups H1 = PGL(3,C) and H2 = σ2 ◦PGL(3,C)◦σ
−1
2 generate Bir(P2

C). Let us consider an
action of Bir(P2

C) on T . By Steps 2 and 4 it is sufficient to consider the case when PGL(3,C)
has a fixed point. Let us prove that Bir(P2

C) has a fixed point; suppose by contradiction that
Bir(P2

C) has no fixed point. Denote by Ti the set of fixed points of Hi, i = 1, 2. These two
trees are exchanged by σ2, and as H1 and H2 generate Bir(P2

C) they are disjoint. Denote by
S = [p1, p2], pi ∈ Ti, the minimal segment joining the two trees, and by s > 0 its length. The
segment S is thus fixed by C⊂ H1∩H2, and reversed by σ2. Step 1 implies that for all k ≥ 1,
the distance between the points p1 and (σ2 ◦ ς)k p1 is exactly sk. This contradicts the fact that
(σ2 ◦ ς)3 = id.

4.2.2. It is an amalgamated product of three groups. — In [Wri92] the author shows that
Bir(P2

C) = AutCC(z0,z1) acts on a two-dimensional simplicial complex C, which has as ver-
tices certain models in the function field C(z0,z1) and whose fundamental domain consists of
one face F . This yields a structure description of Bir(P2

C) as an amalgamation of three sub-
groups along pairwise intersections. The subgroup Aut(A2

C) acts on C by restriction; more
precisely the face F has an edge E satisfying the following property: the Aut(A2

C)-translates
of E form a tree T , and the action of Aut(A2

C) on T yields the well-known structure theory for
Aut(A2

C) as an amalgamated product ([Jun42]).
Let us give some details. Recall that

Aut(P1
C×P1

C) =
(
PGL(2,C)×PGL(2,C)

)
oZ�2Z
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and
J = PGL(2,C)nPGL(2,C(z0)).

Proof of Theorem 4.6. — It is based on Theorem 4.5. Denote by G be the group obtained by
amalgamating PGL(3,C), Aut(P1

C×P1
C), J along their pairwise intersections in Bir(P2

C). Let
τ be the involution τ : (z0,z1) 7→ (z1,z0). Consider the group homomorphism α : G→ Bir(P2

C)

restricting to the identity on

PGL(3,C)∪Aut(P1
C×P1

C)∪ J .

As imα contains J and τ ∈ Aut(P1
C×P1

C) Theorem 4.5 implies that α is surjective.
Since

{
id, τ

}
⊂Aut(P1

C×P1
C) Theorem 4.5 gives a map β̃ from the free product

{
id, τ

}
∗J

to G. Since Aut(P1
C×P1

C)⊂ G the equality

τ◦ (ϕ0,ϕ1)◦ τ = (ϕ1,ϕ0) ∀(ϕ0,ϕ1)

also holds in G. Let us now prove that in G we have (τ◦ε)3 = σ2 where ε : (z0,z1) 7→
(

z0,
z0
z1

)
.

First note that the equality ε = ρ ◦σ2, where ρ : (z0,z1) 7→
(

1
z0
, z1

z0

)
, holds in J and so in G.

On the one hand σ2 and ρ commute in J so in G, on the other hand σ2 and τ commute in
Aut(P1

C×P1
C) hence in G. Therefore, one has the following equality in G

(τ◦ ε)3 = (τ◦ρ◦σ2)
3 = (τ◦ρ)3 ◦σ

3
2 (4.2.1)

The maps τ and ρ belong to PGL(3,C) and (τ◦ρ)3 = id in PGL(3,C); as a consequence (τ◦
ρ)3 = id in G. One has σ3

2 = σ2 in Aut(P1
C×P1

C) so in G. From (4.2.1) one gets (τ◦ε)3 = σ2 in
G. Consequently β̃ induces a map β : Bir(P2

C)→ G with the following property: β restricts to
the identity on J and

{
id, τ

}
. According to Theorem 4.5, α◦β = id. The image of β contains

J ⊂ G and τ ∈ (PGL(3,C)∩Aut(P1
C×P1

C)) ⊂ G. But both PGL(3,C) and Aut(P1
C×P1

C)

are generated by their intersection with J (in Bir(P2
C)) together with τ; hence PGL(3,C) and

Aut(P1
C× P1

C) belong to imβ. As G is generated by PGL(3,C)∪Aut(P1
C× P1

C)∪ J , β is
surjective. Therefore, α is an isomorphism (α−1 = β).

The amalgamated product group structure of Theorem 4.6 reflects the fact that it acts on
a simply connected two-dimensional simplicial complex. This follows from a higher dimen-
sional analogue of Serre’s tree theory (see for instance [Sou73, Swa71]). Let us detail it.

Definitions. — A simplicial complex K is a finite collection of non-empty finite sets such
that if X ∈K and /0 6= Y ⊆ X then Y ∈K .

The union of all members of K is denoted by V (K ).
The elements of V (K ) are called the vertices of K .
The elements of K are called the simplices of K .
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The dimension of a simplex S ∈K is dimS = |S|−1.
The dimension of K is the maximum dimension of any simplex in K .

Admissible models
A model is a reduced, irreducible, separatedC-scheme having function fieldC(z0,z1). Con-

sider the set of models S satisfying one of the three properties

� S' P2
C,

� S' P1
C×P1

C,
� S'P1

k for some subfield k ofC(z0,z1) necessarily of pure transcendance degree 1 overC.

Such a C-scheme S will be called an admissible model . In the first (resp. second, resp. third)
case, we say that S is P2

C (resp. S is a P1
C×P1

C, resp. S is a P1
k).

The complex C
It is constructed using as vertices the set of admissible models. The three models S, V and

R, where S is a P2
C, V is a P1

C×P1
C and R is a P1

k, determine a face when there exist two distinct
points p and q on S such that

� V is the P1
C×P1

C (' F0) obtained by blowing up S at p and q, then blowing down the
proper transform of the line in S containing p and q;
� R is the generic P1

C obtained by blowing up S at p.

If S is the standard P2
C, p = (0 : 1 : 0) and q = (1 : 0 : 0), then V is the standard P1

C×P1
C,

and R the standard P1
C(z0)

. The standard models form a face called the standard face in C.

Fundamental domain
Note that from the construction of C the group Bir(P2

C) acts on C without inverting any edge
or rotating any face. A fondamental domain for the action is given by any one face

If as before we choose S to be the standard P2
C, p = (0 : 1 : 0) et q = (1 : 0 : 0) one gets

the standard face. For this choice the centralizer of S, V and R are respectively PGL(3,C),
Aut(P1

C×P1
C), J .

Let us recall that two simplices S0 and Sn are k-connected if there is a sequence of simplices
S0, S1, S2, . . ., Sn such that any two consecutive ones share a k-face, i.e. they have at least k+1
vertices in common. The complex K is k-connected if any two simplices in K of dimension
≥ k are k-connected.
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Wright establishes the two following results ([Wri92]):
� the simplicial complex C is 1-connected;
� the complex C contains the Aut(A2)-tree.

4.3. Two presentations of the Cremona group

4.3.1. A simple set of generators and relations for Bir(P2
C). — In [Bla12] Blanc gives a

simple set of generators and relations for the plane Cremona group Bir(P2
C). Namely he shows:

Theorem 4.23 ([Bla12]). — The group Bir(P2
C) is the amalgamated product of the Jonquières

group with the group Aut(P2
C) of automorphisms of the plane, divided by the relation σ2 ◦ τ =

τ◦σ2 where τ : (z0 : z1 : z2) 7→ (z1 : z0 : z2).

Blanc’s proof is inspired by Iskovskikh’s proof but Blanc stays on P2
C. It is clear that σ2◦τ=

τ◦σ2, so it suffices to prove that no other relation holds.
Blanc first establishes the following statement:

Lemma 4.24 ([Bla12]). — Let ϕ be an element of J such that
{

p1 = (1 : 0 : 0), q
}
⊂ Base(ϕ)

where q is a proper point of P2
Cr{p1}. If ν ∈ Aut(P2

C) exchanges p1 and q, then
� ψ = ν◦ϕ◦ν−1 belongs to J ,
� the relation ν◦ϕ−1 = ψ−1 ◦ν is generated by the relation σ2 ◦ τ = τ◦σ2 in the amalga-

mated product of J and Aut(P2
C).

Let φ be an element of Aut(P2
C)∗Aut(P2

C)∩J J modulo the relation σ2 ◦ τ = τ◦σ2. Write φ as

jr ◦ar ◦ jr−1 ◦ar−1 ◦ . . .◦ j1 ◦a1

where ji ∈ J and ai ∈ Aut(P2
C) for i = 1, . . ., r. Note that this decomposition is of course not

unique.
Let Λ0 be the linear system of lines of P2

C. For any i = 1, . . ., r let us denote by Λi the linear
system ( ji ◦ai ◦ . . .◦ j1 ◦a1)(Λ0), and by di the degree of Λi. Set

D = max
{

di | i = 1, . . . , r
}
, n = max

{
i |di = D

}
, k =

n

∑
i=1

(
(deg ji)−1

)
.

Recall that ji belongs to J ⊂ Bir(P2
C) and satisfies the following property:

deg ji = deg ji(Λ0) = deg j−1
i (Λ0).

In particular deg ji = 1 if and only if ji ∈ Aut(P2
C).

Let us give an interpretation of k: the number k determines the complexity of the word
jn◦an◦ jn−1◦an−1◦ . . .◦ j1◦a1 which corresponds to the birational self map ji◦ai◦ . . .◦ j1◦a1

of the highest degree.
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Let us now give the strategy of the proof. If D = 1, then each ji is an automorphism of
P2
C and the word φ is equal to an element of Aut(P2

C) in the amalgamated product. Since
Aut(P2

C) ↪→ Bir(P2
C) this eventuality is clear. Assume now that D > 1, and prove the result by

induction on the pairs (D,k) (we consider the lexicographic order).

Fact. — We can suppose that

jn+1, jn ∈ J rAut(P2
C), an+1 ∈ Aut(P2

C)r J .

Remark. — The point p = (1 : 0 : 0) is the base-point of the pencil associated to J . As
an+1 6∈ J , one has an+1(p) 6= p.

Properties of the Jonquières maps. — Since jn, jn+1 do not belong to Aut(P2
C), then deg jn >

1, deg jn+1 > 1. Set DL = deg jn+1, DR = deg jn. The maps jn+1 and jn preserve the pencil
of lines through p. Furthermore p is a base-point of jn+1 (resp. jn) of multiplicity DL− 1
(resp. DR−1). Since j±n+1(Λ0) (resp. j±n (Λ0)) is the image of the system Λ0 it is a system of
rational curves with exactly one free intersection point. The system j±n+1(Λ0) (resp. j±n (Λ0))
has 2DL−2 (resp. 2DR−2) base-points distinct from p, which all have multiplicity 1.

Set ΩL = ( jn+1 ◦ an+1)
−1(Λ0) and ΩR = ( jn ◦ an)(Λ0). Since the automorphisms an+1, an

are changes of coordinates the following properties hold:

� degΩL = DL and `0 = a−1
n+1(p) 6= p is a base-point of ΩL of multiplicity DL−1;

� degΩR = DR and r0 = p is a base-point of ΩR of multiplicity DR−1.

The author uses these systems to compute the degrees dn+1, resp. dn−1 of the systems Λn+1 =

( jn+1 ◦ an+1)(Λn), resp. Λn−1 = (a−1
n ◦ j−1

n )(Λn). Indeed for any i the integer di coincides
with the degree of Λi which is on the one hand the intersection of Λi with a general line, on the
other hand the free intersection of Λi with Λ0. So dn+1 (resp. dn−1) is the free intersection of
Λn+1 = ( jn+1◦an+1)(Λn) (resp. Λn−1 = (a−1

n ◦ j−1
n )(Λn)) with Λ0 but also the free intersection

of Λn with ΩL (resp. ΩR).
Denote by m(q) the multiplicity of a point q as a base-point of Λn. Let `1, . . ., `2DL−2

(resp. r1, . . ., r2DR−2) be the base-points of ΩL (resp. ΩR). Assume that up to reindexation
m(`i) ≥ m(`i+1) (resp. m(ri) ≥ m(ri+1)) and if `i (resp. ri) is infinitely near to ` j (resp. r j),
then i > j. The following equalities hold:


dn+1 = DLdn− (DL−1)m(`0)−

2DL−2

∑
i=1

m(`i)< dn

dn−1 = DRdn− (DR−1)m(r0)−
2DR−2

∑
i=1

m(ri)< dn

(4.3.1)
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Inequalities (4.3.1) imply {
m(`0)+m(`1)+m(`2)> dn

m(r0)+m(r1)+m(r2)≥ dn

First case: m(`0)≥m(`1) and m(r0)≥m(r1). — Let q be a point in
{
`1, `2, r1, r2

}
r{`0, r0}

with the maximal multiplicity m(q) and so that q is a proper point of P2
C or infinitely near to

`0 or r0.

� Either `1 = r0, m(q) ≥ m(`2) and m(`0)+m(r0)+m(q) ≥ m(`0)+m(`1)+m(`2) > dn

by (4.3.1).
� Or `1 6= r0, m(q)≥ m(`1)≥ m(`2) hence m(`0)+m(q)> 2dn

3 . The inequalities m(r0)≥
m(r1)≥ m(r2) imply m(r0)≥ dn

3 and then m(`0)+m(r0)+m(q)> dn holds.
The inequality m(`0)+m(r0)+m(q)> dn implies that `0, r0 and q are not aligned and

there exists an element θ in J of degree 2 with base points `0, r0, q. Note that

degθ(Λn) = 2dn−m(`0)−m(r0)−m(q)< dn.

Let us recall that the automorphism an+1 of P2
C sends `0 onto r0 = p. Take ν ∈

Aut(P2
C)∩ J such that ν fixes r0 = p and sends an+1(r0) onto `0. Replace an+1 (resp.

jn+1) by ν◦an+1 (resp. jn+1 ◦ν−1); we can thus assume that an+1 exchanges `0 and r0.
As a consequence according to Lemma 4.24 and modulo the relation σ2 ◦ τ = τ◦σ2

jn+1 ◦an+1 ◦ jn = jn+1 ◦an+1 ◦θ
−1 ◦θ◦ jn = ( jn+1 ◦ θ̃

−1)◦an+1 ◦ (θ◦ jn)

where θ̃ = an+1 ◦θ◦a−1
n+1 ∈ J . Both jn+1 ◦ θ̃−1 and θ◦ jn belong to J , but an+1 belongs

to Aut(P2
C). Since θ(Λn) = (θ ◦ jn)(Λn−1) has degree < dn this rewriting decreases the

pair (D,k).

Second case: m(`0)< m(`1) or m(r0)< m(r1). — The author comes back to the first case by
changing the writing of φ in the amalgamated product and modulo the relation σ2 ◦ τ = τ◦σ2

without changing (D,k) but reversing the inequalities.

4.3.2. An other set of generators and relations for Bir(P2
C). — The idea of the proof of

Theorem 4.9 is the same as in [Isk83, Isk85, Bla12]. The authors study linear systems of
compositions of birational maps of the complex projective plane and use the presentation of
Bir(P2

C) given in Theorem 4.7. Before giving the proof of Theorem 4.9 let us state the follow-
ing:

Proposition 4.25 ([UZ19]). — Let φ1, φ2, . . ., φn be some elements of PGL(3,C)∩ J . Suppose
that φn ◦σ2 ◦φn−1 ◦σ2 ◦ . . .◦σ2 ◦φ1 = id as maps.

Then this expression is generated by relations (R1)-(R5).
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Proof of Theorem 4.9. — Let G be the group generated by σ2 and PGL(3,C) divided by the
relations (R1)-(R5)

G = 〈σ2, PGL(3,C) |(R1)− (R5)〉.
Denote by π : G→ Bir(P2

C) the canonical homomorphism that sends generators onto genera-
tors. Proposition 4.25 asserts that sending an element of J onto its corresponding word in G is
well defined. Hence there exists a homomorphism w : J → G such that

π◦w = idJ .

In particular w is injective.
The universal property of the amalgamated product implies that there exists a unique homo-

morphism
ϕ : PGL(3,C)∗PGL(3,C)∩J J → G

such that the following diagram commutes

G

J

00

w // PGL(3,C)∗PGL(3,C)∩J J

ϕ

66

PGL(3,C)∩ J
?�

OO

� � // PGL(3,C)
?�

OO

KK

According to Theorem 4.7 the plane Cremona group is isomorphic to

PGL(3,C)∗PGL(3,C)∩J J

divided by the relation τ ◦ σ2 ◦ τ ◦ σ2 where τ : (z0 : z1 : z2) 7→ (z1 : z0 : z2). Note that this
relation holds as well in G. As a consequence ϕ factors through the quotient

PGL(3,C)∗PGL(3,C)∩J J
/
〈τ◦σ2 ◦ τ◦σ2〉.

This yields a homomorphism ϕ : Bir(P2
C)→ G. More precisely the homomorphisms π : G→

Bir(P2
C) and ϕ : Bir(P2

C)→ G both send generators to generators{
π(σ2) = σ2 and π(A) = A ∀A ∈ PGL(3,C)
ϕ(σ2) = σ2 and ϕ(A) = A ∀A ∈ PGL(3,C)

The homomorphisms π and ϕ are thus isomorphisms that are inverse to each other.

Let us give some Lemmas and Remarks that allow to give a proof of Proposition 4.25.
In [AC02] the author gave a general formula for the degree of a composition of two elements

of Bir(P2
C) but the multiplicities of the base-points of the composition is hard to compute in

general. If we impose that one of the two maps has degree 2 then it is a rather straight forward
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computation ([AC02]). Denote by mp(φ) the multiplicity of φ at the point p. For any φ ∈ J of
degree d one has

� m(1:0:0)(φ) = d−1,
� mp(φ) = 1 ∀ p ∈ Base(φ)r{(1 : 0 : 0)},

so according to [AC02] one has:

Lemma 4.26 ([UZ19]). — Let φ, resp. ψ be a Jonquières map of degree 2, resp. d. Let p1, p2

be the base-points of φ different from (1 : 0 : 0) and q1, q2 be the base-points of φ−1 different
from (1 : 0 : 0) such that the pencil of lines through pi is sent by φ onto the pencil of lines
through qi.

Then

� deg(ψ◦φ) = d +1−mq1(ψ)−mq2(ψ),
� m(1:0:0)(ψ◦φ) = d−mq1(ψ)−mq2(ψ) = deg(ψ◦φ)−1,
� mpi(ψ◦φ) = 1−mq j(ψ) if i 6= j.

Remark 4.27 ([UZ19]). — These equalities can be translate as follows when Λψ denotes the
linear system of ψ:

� deg(ψ◦φ) = deg(φ−1(Λψ)) = d +1−mq1(Λψ)−mq2(Λψ),
� m(1:0:0)

(
φ−1(Λψ)

)
= d−mq1(Λψ)−mq2(Λψ) = deg

(
φ−1(Λψ)

)
−1,

� mpi

(
φ−1(Λψ)

)
= 1−mq j(Λψ) i 6= j.

But the multiplicity of Λψ in a point different from (1 : 0 : 0) is 0 or 1 so
eiter degφ−1(Λψ) = deg(Λψ)+1 and mq1(Λψ) = mq2(Λψ) = 0
or degφ−1(Λψ) = deg(Λψ) and mq1(Λψ)+mq2(Λψ) = 1
or degφ−1(Λψ) = deg(Λψ)−1 and mq1(Λψ) = mq2(Λψ) = 1

Furthermore Bezout theorem implies that (1 : 0 : 0) and any other base-points of ψ are not
collinear; indeed (1 : 0 : 0) is a base-point of multiplicity d− 1, all other base-points of mul-
tiplicity 1 (since ψ belongs to J ) and a general member of Λψ intersects a line in d points
counted with multiplicity.

Lemma 4.28 ([UZ19]). — Let φ be an element of PGL(3,C)∩ J . Suppose that σ2 ◦φ◦σ2 is
linear.

Then σ2 ◦φ◦σ2 is generated by the relations (R1), (R3) and (R4).

Proof. — By Lemma 4.26 to say that σ2 ◦φ◦σ2 is linear means that

Base(σ2 ◦φ) = Base(σ2) =
{
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)

}
.
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Since φ belongs to J it fixes the point (1 : 0 : 0), and so permutes (0 : 1 : 0) and (0 : 0 : 1). As
a result there exist ϕ in S3∩ J and d in D2 such that φ = d ◦ϕ. Hence

σ2 ◦φ◦σ2
(1)
= σ2 ◦d ◦ϕ◦σ2

(3),(4)
= d−1 ◦ϕ.

Lemma 4.29 ([UZ19]). — Let φ be an element of PGL(3,C)∩J . Suppose that no three of the
base-points of σ2 and σ2 ◦φ are collinear.

Then there exist ϕ, ψ in PGL(3,C)∩ J such that σ2 ◦φ◦σ2 = ϕ◦σ2 ◦ψ. Furthermore this
expression is generated by relations (R1), (R3), (R4) and (R5).

Proof. — The assumption deg(σ2 ◦ φ ◦σ2) = 2 implies that σ2 and σ2 ◦ φ have exactly two
common base-points (Lemma 4.26), among them (1 : 0 : 0) because σ2 ◦ φ and σ2 belong to
J . One can assume up to coordinate permutation that the second point is (0 : 1 : 0). More
precisely there exist t1, t2 in S3∩ J such that t1 ◦ t2 fixes (1 : 0 : 0) and (0 : 1 : 0). As a result

t1 ◦φ◦ t2 : (z0 : z1 : z2) 7→ (a1z0 +a2z2 : b1z1 +b2z2 : cz2)

for some complex numbers a1, a2, b1, b2, c. Since no three of the base-points of σ2 and σ2 ◦φ

are collinear, a2b2 is non-zero. There thus exist d1, d2 in D2 such that

t1 ◦φ◦ t2 = d1 ◦ζ◦d2.

We get

σ2 ◦φ◦σ2 = σ2 ◦ t−1
1 ◦ t1 ◦φ◦ t2 ◦ t−1

2 ◦σ2

(1)
= σ2 ◦ t−1

1 ◦d1 ◦ζ◦d2 ◦ t−1
2 ◦σ2

(3),(4)
= t−1

1 ◦d−1
1 ◦σ2 ◦ζ◦σ2 ◦d−1

2 ◦ t−1
2

(5)
= t−1

1 ◦d−1
1 ◦ζ◦σ2 ◦ζ◦d−1

2 ◦ t−1
2

Finally ϕ = t−1
1 ◦d−1

1 ◦ζ and ψ = ζ◦d−1
2 ◦ t−1

2 suit.

Lemma 4.30 ([UZ19]). — Let ϕ1, ϕ2, . . ., ϕn be elements of PGL(3,C)∩ J . Then there exist
ψ1, ψ2, . . ., ψn in PGL(3,C)∩ J and φ in J such that

φ◦ϕn ◦σ2 ◦ϕn−1 ◦σ2 ◦ . . .◦σ2 ◦ϕ1 ◦φ
−1 = ψn ◦σ2 ◦ψn−1 ◦ . . .◦σ2 ◦ψ1,

and

� the above relation is generated by relations (R1)-(R5),
� deg(σ2 ◦ψi ◦σ2 ◦ . . .◦σ2 ◦ψ1) = deg(σ2 ◦φi ◦σ2 ◦ . . .◦σ2 ◦φ1) for all 1≤ i≤ n,
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� (σ2 ◦ψi ◦σ2 ◦ψi−1 ◦ . . .◦σ2 ◦ψ1)
−1 does not have any infinitely near base-points for all

1≤ i≤ n.

Idea of the Proof of Proposition 4.25. — Let us introduce similar notations as in the proof of
Theorem 4.7. Let Λ0 be the complete linear system of lines in P2

C and for 1 ≤ i ≤ j let Λi be
the following linear system

Λi := σ2 ◦ϕi−1 ◦σ2 ◦ . . .◦σ2 ◦ϕ1(Λ0).

Set δi := degΛi, Di := max
{

δi | i = 1, 2, . . . , j
}

, n := max
{

i |δi = D
}

. Consider the lexico-
graphic order. Let us prove the result by induction on pairs of positive integers (D,n).

If D = 1, then j = 1, and there is nothing to prove.
Assume now that D > 1. We can suppose that for 1≤ i≤ j the map(

φi ◦σ2 ◦φi−1 ◦σ2 ◦ . . .◦σ2 ◦φ1
)−1

does not have any infinitely near base-points (Lemma 4.30). Furthermore we can do this
without increasing the pair (D,n). Hence any Λi, 1 ≤ i ≤ j, does not have any infinitely near
base-points.

The maps φi are Jonquières ones, so fix (1 : 0 : 0). The maps σ2 ◦ φi and σ2 always have
(1 : 0 : 0) as common base-points. In particular deg(σ2 ◦φi ◦σ2)≤ 3 for any 1≤ i≤ j (Lemma
4.26). Let us now deal with the three distinct cases: deg(σ2◦φn◦σ2)= 1, deg(σ2◦φn◦σ2)= 2,
deg(σ2 ◦φn ◦σ2) = 3.
� First case: deg(σ2 ◦φn ◦σ2) = 1. According to Lemma 4.28 the word σ2 ◦φn ◦σ2 can be

replaced by the linear map φ′n = σ2 ◦φn ◦σ2 using relations (R1), (R3) and (R4). We thus
get a new pair (D′,n′) with D′ ≤ D; moreover if D = D′, then n′ < n.
� Second case: deg(σ2 ◦φn ◦σ2) = 2. The maps σ2 and φn ◦σ2 have exactly two common

base-points, one of them being (1 : 0 : 0). One can assume that the other one is (0 : 1 :
0). More precisely there are two coordinate permutations t1 and t2 in S3 ∩ J such that
t1 ◦φn ◦ t2 fixes (1 : 0 : 0) and (0 : 1 : 0), that is

t1 ◦φn ◦ t2 : (z0 : z1 : z2) 7→ (a1z0 +a2z2 : b1z1 +b2z2 : cz2)

for some a1, a2, b1, b2, c in C. Using (R1) and (R3) we get

φ j ◦σ2 ◦ . . .◦φn+1 ◦σ2 ◦ t−1
1 ◦ t1 ◦φn ◦ t2 ◦ t−1

2 ◦σ2 ◦ . . .◦φ1

= φ j ◦σ2 ◦ . . .◦σ2 ◦ (φn+1 ◦ t−1
1 )◦σ2 ◦ (t1 ◦σ2 ◦ t2)◦σ2 ◦ (t−1

2 ◦φn−1)◦σ2 ◦ . . .◦φ1

The pair (D,n) is unchanged. Let us thus assume that t1 = t2 = id and

φn : (z0 : z1 : z2) 7→ (a1z0 +a2z2 : b1z1 +b2z2 : cz2).

Recall that by assumption for any 1≤ i≤ n the maps φi ◦σ2 ◦φi−1 ◦σ2 ◦ . . .◦σ2 ◦φ1 have
no infinitely other base-points. As a result Λn has no infinitely near base-points.
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Claim 4.31 ([UZ19]). — The product a2b2 is non-zero.

Proof. — Assume by contradiction that a2b2 = 0. Then q := φ−1
n (0 : 0 : 1) is a base-point

of σ2 ◦φn that lies on a line contracted by (σ2 ◦φn−1)
−1. By Remark 4.27 one has

D−1 = δn+1 = D+1−m(0:1:0)(Λn)−mq(Λn).

In particular mq(Λn) = 2−m(0:1:0)(Λn) = 1. As q 6∈ Base(σ2) one has: q 6∈ Base
(
(σ2 ◦

φn−1)
−1). Its proper image by (σ2 ◦φn−1)

−1 is thus a base-point of Λn−1. But a2b2 = 0;
as a result q is an infinitely near point: contradiction.

If a2b2 is non-zero, then no three of the base-points of σ2 and σ2 ◦ φn are collinear.
According to Lemma 4.30 there exist ψ and ϕ in PGL(3,C) such that the word σ2◦φn◦σ2

can be replaced by the word ψ ◦σ2 ◦ϕ using (R1), (R3), (R4) and (R5). We thus get a
new pair (D′,n′) where D′ ≤ D; moreover if D = D′, then n′ < n.
� Third case: deg(σ2 ◦φn ◦σ2) = 3. See [UZ19].

Let us give an application of this new presentation ([UZ19]). In [Giz99] Gizatullin has con-
sidered the following question: can a given group homomorphism ϕ : PGL(3,C)→ PGL(n+
1,C) be extended to a group homomorphism Φ : Bir(P2

C)→ Bir(Pn
C) ? He answers yes when

ϕ is the projective representation induced by the regular action of PGL(3,C) on the space
of plane conics, plane cubics, or plane quartics. To construct these homomorphisms Gizat-
ullin uses the following construction. Denote by Sym(n,C) the C-algebra of symmetric n×n
matrices. Define S(2,n) as the quotient

(
Sym(n,C)

)3/GL(n,C) where the regular action of
GL(n,C) is given by

C · (A0,A1,A2) =
(
CA0

tC,CA1
tC,CA2

tC
)
.

Lemma 4.32 ([UZ19]). — The variety S(2,n) is a rational variety, and

dimS(2,n) =
(n+1)(n+2)

2
−1.

Remark 4.33. — The variety S(2,n) has thus the same dimension as the space of plane curves
of degree n.

An element A = (A0,A1,A2) of PGL(3,C) induces an automorphism on (Sym(n,C))3 by

φ(A0,A1,A2) :=
(
φ0(A0,A1,A2),φ1(A0,A1,A2),φ2(A0,A1,A2)

)
.

This automorphism commutes with the action of GL(n,C); we thus obtain a regular action of
PGL(3,C) on S(2,n).

Theorem 4.9 allows to give a short proof of the following statement:
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Proposition 4.34 ([Giz99]). — The regular action of PGL(3,C) extends to a rational action
of Bir(P2

C).

Proof. — Define the birational action of σ2 on S(2,n) by

(A0,A1,A2) 99K (A−1
0 ,A−1

1 ,A−1
2 ).

According to Theorem 4.9 to see that this indeed defines a rational action of Bir(P2
C) on S(2,n)

it is sufficient to see that (R1)-(R5) are satisfied which is the case.

4.3.3. Why no Noether and Castelnuovo theorem in higher dimension ? — Let us give
an idea of the proof of the fact that there is no Noether and Castelnuovo theorem in higher
dimension:

Theorem 4.35 ([Hud27, Pan99]). — Any set of group generators of Bir(Pn
C), n≥ 3, contains

uncountably many elements of Bir(Pn
C)rPGL(n+1,C).

Let us first recall the following construction of Pan which given a birational self map of Pn
C

allows one to construct a birational self map of Pn+1
C . First introduce some notations: let

P ∈ C[z0,z1, . . . ,zn]d , Q ∈ C[z0,z1, . . . ,zn]` and R0, R1, . . ., Rn−1 ∈ C[z0,z1, . . . ,zn]d−` be some
homogeneous polynomials of degree d, resp. `, resp. d − `. Consider ψ̃P,Q,R and ψ̃R the
rational maps given by

ψ̃P,Q,R : (z0 : z1 : . . . : zn) 99K (QR0 : QR1 : . . . : QRn−1 : P),

ψ̃R : (z0 : z1 : . . . : zn) 99K (R0 : R1 : . . . : Rn−1).

Lemma 4.36 ([Pan99]). — Let d and ` be some integers such that d ≤ `+ 1 ≤ 2. Take
Q ∈ C[z0,z1, . . . ,zn]` and P ∈ C[z0,z1, . . . ,zn]d without common factors. Let R1, R2, . . ., Rn be
some elements of C[z0,z1, . . . ,zn−1]d−`. Assume that

P = znPd−1 +Pd Q = znQ`−1 +Q`

with Pd−1, Pd , Q`−1, Q` ∈ C[z0,z1, . . . ,zn−1] of degree d−1, resp. d, resp. `−1, resp. ` and
such that (Pd−1,Q`−1) 6= (0,0).

The map ψ̃P,Q,R is birational if and only if ψ̃R is.

This statement allows to prove that given a hypersurface of Pn
C one can construct a birational

self map of Pn
C that blows down this hypersurface:

Lemma 4.37 ([Pan99]). — Let n≥ 3. Let S be an hypersurface of Pn
C of degree `≥ 1 having

a point p of multiplicity ≥ `−1.
Then there exists a birational self map of Pn

C of degree d ≥ `+1 that blows down S onto a
point.
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Proof. — Let us assume without loss of generality that p = (0 : 0 : . . . : 0 : 1). Suppose that
S is given by (Q = 0). Take a generic plane passing through p given by (H = 0). Choose
P = znPd−1 +Pd such that
� Pd−1 ∈ C[z0,z1, . . . ,zn−1] of degree d−1 and 6= 0;
� Pd ∈ C[z0,z1, . . . ,zn−1] of degree d;
� pgcd(P,HQ) = 1.

Set Q̃ = Hd−`−1q and Ri = zi. The statement then follows from Lemma 4.36.

Proof of Theorem 4.35. — Consider the family of hypersurfaces given by Q(z1,z2,z3) = 0
where (Q = 0) defines a smooth curve CQ of degree ` on

{
z0 = z4 = z5 = . . . = zn = 0

}
.

Note that (Q = 0) is birationally equivalent to Pn−2
C ×CQ. Furthermore (Q = 0) and (Q′ = 0)

are birationally equivalent if and only if CQ and CQ′ are isomorphic. Take ` = 2; the set
of isomorphism classes of smooth cubics is a 1-parameter family. For any CQ there exists
a birational self map of Pn

C that blows down CQ onto a point (Lemma 4.37). As a result
any set of group generators of Bir(Pn

C), n ≥ 3, has to contain uncountably many elements of
Bir(Pn

C)rPGL(n+1,C).

As we have seen one consequence of Noether and Castelnuovo theorem is that the Jon-
quières group and Aut(P2

C) = PGL(3,C) generate Bir(P2
C). This statement does also not hold

in higher dimension ([BLZar]): let n≥ 3, the n-dimensional Cremona group is not generated
by Aut(Pn

C) and by Jonquières elements, i.e. elements that preserve a family of lines through
a given point, which form a subgroup

PGL(2,C(z2,z3, . . . ,zn))oBir(Pn−1
C )⊆ Bir(Pn

C).

A more precise statement has been established in dimension 3 in [BYar]: the 3-dimensional
Cremona group is not generated by birational maps preserving a linear fibration P3

C 99K P2
C.





CHAPTER 5

ALGEBRAIC PROPERTIES OF THE CREMONA
GROUP

The group Bir(P2
C) has many properties of linear groups, so we wonder if Bir(P2

C) has a
faithful linear representation; in the first section we show that the answer is no ([CD13, Cor]).
Still in the first section we give the proof of the following property: the plane Cremona group
contains non-linear finitely generated subgroups ([Cor]).

In the second section we give the proof of the facts that
� the normal subgroup generated by σ2 in Bir(P2

C) is Bir(P2
C).

� the normal subgroup, generated by a non-trivial element of PGL(3,C) = Aut(P2
C) in

Bir(P2
C) is Bir(P2

C).
As a consequence Bir(P2

C) is perfect ([CD13]), that is [Bir(P2
C),Bir(P2

C)] = Bir(P2
C).

We finish this chapter by the description of the endomorphisms of the plane Cremona group;
as a corollary we get the

Theorem 5.1 ([D0́7a]). — The plane Cremona group is hopfian, i.e. any surjective endomor-
phism of Bir(P2

C) is an automorphism.

We use for that the classification of the representations of SL(3,Z) in Bir(P2
C), we thus

recall and establish it in the third section:

Theorem 5.2 ([D0́6a]). — Let Γ be a finite index subgroup of SL(3,Z). Let υ be an injective
morphism from Γ to Bir(P2

C). Then, up to birational conjugacy, either υ is the canonical
embedding, or υ is the involution A 7→ (tA)−1.

As a result we obtain the:

Corollary 5.3 ([D0́6a]). — If a morphism from a subgroup of finite index of SL(n,Z) into
Bir(P2

C) has infinite image, then n≤ 3.
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5.1. The group Bir(P2
C) is not linear

Cantat and Lamy proved that Bir(P2
C) is not simple but the non-existence of a faithful repre-

sentation does not imply the non-existence of a non-trivial representation. So let us deal with
the following statement:

Proposition 5.4 ([CD13]). — The plane Cremona group has no faithful linear representation
in characteristic zero.

Before giving the proof let us mention that making an easy refinement of it provides the
following stronger result:

Proposition 5.5 ([Cor]). — If k is an algebraically closed field, then there is no non-trivial
finite dimensional linear representation for Bir(P2

k) over any field.

Let us recall the following statement due to Birkhoff:

Lemma 5.6 ([Bir36]). — Let k be a field of characteristic zero. Let A, B, and C be three
elements of GL(n,k) such that

� [A,B] =C, [A,C] = [B,C] = id,
� C has prime order p.

Then p≤ n.

Proof. — Assume that k is algebraically closed. Since C is of order p its eigenvalues are
p-rooth of unity.

If the eigenvalues of C are all equal to 1, then C is unipotent and p≤ n.
Otherwise C admits an eigenvalue α 6= 1. Consider the eigenspace Eα =

{
v |Cv = αv

}
of C associated to the eigenvalue α. By assumption A and B commute to C, so Eα is in-
variant by A and B. From [A,B] = C we get [A|Eα

,B|Eα
] = C|Eα

; but C|Eα
= αid|Eα

hence
[A|Eα

,B|Eα
] = αid|Eα

, that is (B−1AB)|Eα
= αA|Eα

. Note that (B−1AB)|Eα
and A|Eα

are conju-
gate thus (B−1AB)|Eα

and A|Eα
have the same eigenvalues. Furthermore these eigenvalues are

non-zero. If λ is an eigenvalue of A|Eα
, then αλ, α2λ, . . ., αp−1λ are also eigenvalues of A|Eα

.
As p is prime and α distinct from 1, the numbers α, α2, . . ., αp−1 are distinct, dimEα ≥ p, and
n≥ p.

Proof of Proposition 5.4. — Assume by contradiction that there exists an injective mor-
phism ζ from Bir(P2

C) into GL(n,k). For any prime p let us consider in the affine chart z2 = 1
the group generated by the maps

(z0,z1) 7→ (e−2iπ/pz0,z1), (z0,z1) 99K (z0,z0z1), (z0,z1) 7→ (z0,e−2iπ/pz1).
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The images of these three elements of Bir(P2
C) satisfy the assumptions of Birkhoff Lemma;

therefore, p≤ n for any prime p: contradiction.

In [Cor] Cornulier gives an example of a non-linear finitely generated subgroup of the plane
Cremona group. The existence of such subgroup is not new, for instance it follows from an
unpublished construction of Cantat. The example in [Cor] has the additional feature of being
3-solvable. To prove its non-linearity Cornulier proves that it contains nilpotent subgroups of
arbitrary large nilpotency length.

Let G be a group. Recall that [g,h] = g ◦ h ◦ g−1 ◦ h−1 denotes the commutator of g and h.
If H1 and H2 are two subgroups of G, then [H1,H2] is the subgroup of G generated by the
elements of the form [g,h] with g ∈ H1 and h ∈ H2. We defined the derived series of G by
setting G(0) = G and for all n≥ 0

G(n+1) = [G(n),G(n)].

The soluble length `(G) of G is defined by

`(G) = min
{

k ∈ N∪{0}|G(k) = {id}
}

with the convention: min /0=∞. We say that G is solvable if `(G)<∞. The descending central
series of a group G is defined by C0G = G and for all n≥ 0

Cn+1G = [G,CnG].

The group G is nilpotent if there exists j ≥ 0 such that C jG = {id}. If j is the minimum
non-negative number with such a property, we say that G is of nilpotent class j.

Take f in C(z0) and g in C(z0)
∗; define α f and µg by

α f : (z0,z1) 99K
(
z0,z1 + f (z0)

)
, µg : (z0,z1) 99K

(
z0,z1g(z0)

)
.

Note that
α f+ f ′ = α f ◦α f ′ µgg′ = µg ◦µg′ µg ◦α f ◦µ−1

g = α f g (5.1.1)

Take t ∈ C and consider st : (z0,z1) 7→ (z0 + t,z1). The following equalities hold

st ◦α f (z0) ◦ s−1
t = α f (z0−t), st ◦µg(z0) ◦ s−1

t = µg(z0−t) (5.1.2)

Let Γn be the subgroup of Bir(P2
C) defined for any n≥ 0 by

Γn = 〈s1, αzn
0
〉.

Remark that Γn is indeed a subgroup of the Jonquières group. It satisfies the following prop-
erties:

Lemma 5.7 ([Cor]). — The nilpotency length of Γn is exactly n+1, and Γn is torsion free.
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Proof. — Let An be the abelian subgroup of the Jonquières group consisting of all αP where P
ranges over polynomials of degree at most n. The group An is normalized by s1, and [s1,An]⊂
An−1 for n ≥ 1 while A0 = {id}. Therefore, the largest group generated by s1 and An is
nilpotent of class at most n+1, and so is Γn.

Consider now the n-iterated group commutator given by

[s1, [s1, . . . , [s1,αzn
0
] . . .]

It coincides with α∆nzn
0

where ∆ is the discrete differential operator ∆P(z0) =−P(z0)+P(z0−
1). Remark that ∆nzn

0 6= 0 and Γn is not n-nilpotent.
Clearly Γn is torsion-free.

The group

G = 〈s1, α1,µz0〉 ⊂ Bir(P2
Q)

satisfies the following properties:

Proposition 5.8 ([Cor]). — The group G⊂ Bir(P2
Q) is solvable of length 3, and is not linear

over any field.

A consequence of this statement is Proposition 5.4.

Proof. — Relations (5.1.1) and (5.1.2) imply that 〈s1, α f , µg | f ∈ C(z0), g ∈ C(z0)
∗〉 is solv-

able of length at most three. The subgroup

〈s1, α f , µg | f ∈ C(z0), g = ∏
n∈Z

(z0−n)kn , kn finitely supported 〉

contains Γn, and is torsion free.
As µn

z0
◦α1 ◦µ−n

z0
= αzn

0
, the group Γn is contained in G for all n. But Γn is nilpotent of length

exactly n+1, hence G has no linear representation over any field.

5.2. The Cremona group is perfect

In this section let us prove the following statement

Theorem 5.9 ([CD13]). — The plane Cremona group is perfect, i.e. the commutator subgroup
of Bir(P2

C) is Bir(P2
C): [

Bir(P2
C), Bir(P2

C)
]
= Bir(P2

C).
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Let G be a group, and let g be an element of G. We denote by� g�G the normal subgroup
of G generated by g:

� g�G= 〈h◦g◦h−1, h◦g−1 ◦h−1 |h ∈ G〉.

Since PGL(3,C) is simple then

� A�PGL(3,C)= PGL(3,C) (5.2.1)

for any non-trivial element A of PGL(3,C). Consider now a birational self map φ of Bir(P2
C).

The Noether and Castelnuovo Theorem implies that

φ = (A1)◦σ2 ◦A2 ◦σ2 ◦A3 ◦ . . .◦An ◦ (σ2) (5.2.2)

with Ai ∈ PGL(3,C). The relation (5.2.1) implies that

� (z0,z1) 7→ (−z0,−z1)�PGL(3,C)= PGL(3,C);

thus any Ai in (5.2.2) can be written

B1 ◦
(
(z0,z1) 7→ (−z0,−z1)

)
◦B−1

1 ◦B2 ◦
(
(z0,z1) 7→ (−z0,−z1)

)
◦B−1

2

◦ . . .◦Bn ◦
(
(z0,z1) 7→ (−z0,−z1)

)
◦B−1

n

with Bi ∈ PGL(3,C). The involutions (z0,z1) 7→ (−z0,−z1) and σ2 being conjugate via
(z0,z1) 7→

(
z0+1
z0−1 ,

z1+1
z1−1

)
∈ PGL(2,C)×PGL(2,C) any element of Bir(P2

C) can be written as a

composition of Bir(P2
C)-conjugates of σ2. As a consequence one has

Proposition 5.10 ([CD13]). — The normal subgroup of Bir(P2
C) generated by σ2 in Bir(P2

C)

is Bir(P2
C):

� σ2�Bir(P2
C)
= Bir(P2

C).

Consider now a non-trivial automorphism A of P2
C. As � A �PGL(3,C)= PGL(3,C)

(see (5.2.1)) the involution (z0,z1) 7→ (−z0,−z1) can be written as a composition of
PGL(3,C)-conjugates of A. Since (z0,z1) 7→ (−z0,−z1) and σ2 are conjugate via (z0,z1) 7→(

z0+1
z0−1 ,

z1+1
z1−1

)
∈ PGL(2,C)×PGL(2,C) one gets

σ2 = ϕ1 ◦A◦ϕ
−1
1 ◦ϕ2 ◦A◦ϕ

−1
2 ◦ . . .◦ϕn ◦A◦ϕ

−1
n

with ϕi ∈ Bir(P2
C). As a consequence the inclusion� σ2�Bir(P2

C)
⊂� A�Bir(P2

C)
holds. But

� σ2�Bir(P2
C)
= Bir(P2

C) (Proposition 5.10) hence

Proposition 5.11 ([CD13]). — Let A be a non-trivial automorphism of the complex projective
plane. Then

� A�Bir(P2
C)
= Bir(P2

C).
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According to (5.2.2) and Proposition 5.11 one has

Corollary 5.12. — Any birational self map of P2
C can be written as the composition of

Bir(P2
C)-conjugates of the translation (z0,z1) 7→ (z0,z1 +1).

But the translation (z0,z1) 7→ (z0,z1 +1) is a commutator(
(z0,z1) 7→ (z0,z1 +1)

)
=

[
(z0,z1) 7→ (z0,3z1), (z0,z1) 7→

(
z0,

z1 +1
2

)]
and Corollary 5.12 thus implies Theorem 5.9.

5.3. Representations of SL(n,Z) into Bir(P2
C) for n≥ 3

We will now give a sketch of the proofs of Theorem 5.2 and Corollary 5.3.
Let us introduce some notations. Given A ∈ Aut(P2

C) = PGL(3,C) we denote by tA the
linear transpose of A. The involution

A 7→ A∨ = (tA)−1

determines an exterior and algebraic automorphism of the group Aut(P2
C) (see [Die71]).

Let us recall some properties about the groups SL(n,Z) (see for instance [Ste85]). For any
integer q let us introduce the morphism

Θq : SL(n,Z)→ SL
(

n,Z�qZ
)

induced by the reduction modulo q morphism Z→ Z�qZ. Denote by Γ(n,q) the kernel of Θq

and by Γ̃(n,q) the reciprocical image of the subgroup of diagonal matrices of SL
(

n,Z�qZ
)

by Θq. The Γ(n,q) are normal subgroups called congruence subgroups .

Theorem 5.13 ([Ste85]). — Let n≥ 3 be an integer. Let Γ be a subgroup of SL(n,Z).
If Γ has finite index, there exists an integer q such that the following inclusions hold

Γ(n,q)⊂ Γ⊂ Γ̃(n,q).

If Γ has infinite index, then Γ is finite.

Take 1≤ i, j≤ n, i 6= j. Let us denote by δi j the n×n Kronecker matrix and set ei j = id+δi, j.
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Proposition 5.14 ([Ste85]). — The group SL(3,Z) has the following presentation

〈ei j | [ei j,ek`] =


id if i 6= ` and j 6= k
ei` if i 6= ` and j = k
e−1

k j if i = ` and j 6= k
, (e12e−1

21 e12)
4 = id〉.

Remark 5.15. — The eq
i j’s generate Γ(3,q) and satisfy relations similar to those verified by

the ei j’s except (e12e−1
21 e12)

4 = id.

The eq
i j’s are called the standard generators of Γ(3,q).

Definition. — Let k be an integer. A k-Heisenberg group is a group with the following pre-
sentation

Hk = 〈 f , g, h | [ f ,g] = hk, [ f ,h] = [g,h] = id〉.

We will say that f , g and h are the standard generators of Hk .

Remarks 5.16. — � The subgroup of Hk generated by f , g and hk is a subgroup of index k.
� The groups Γ(3,q) contain a lot of k-Heisenberg groups; for instance if 1≤ i 6= j 6= `≤ 3,

then 〈eq
i j, eq

i`, eq
j`〉 is a q-Heisenberg group of Γ(3,q).

Let G be a finitely generated group, let
{

a1, a2, . . . , an
}

be a generating set of G, and let
g be an element of G. The length ||g|| of g is the smallest integer k for which there exists a
sequence (s1, s2, . . . , sk) with si ∈

{
a1, a2, . . . , an, a−1

1 , a−1
2 , . . . , a−1

n
}

for any 1 ≤ i≤ k, such
that

g = s1s2 . . .sk.

We say that

lim
k→+∞

||gk||
k

is the stable length of g. A distorted element of G is an element of infinite order of G whose
stable length is zero.

Lemma 5.17 ([D0́6a]). — Let Hk = 〈 f , g, h | [ f ,g] = hk, [ f ,h] = [g,h] = id〉 be a k-Heisenberg
group.

The element hk is distorted.
In particular the standard generators of Γ(3,q) are distorted.

Proof. — Since [ f ,g] = [g,h] = id on has [ f `,gm] = h`m for any integer `, m. In particular
hk`2

= [ f `,g`]. As a result ||hk`2|| ≤ 4`.
Each standard generator of Γ(3,q) satisfies eq2

i j = [eq
i`,e

q
` j].
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Lemma 5.18 ([D0́7b]). — Let G be a finitely generated group. Let υ be a morphism from G
to Bir(P2

C). Any distorted element g of G satisfies λ(υ(g)) = 1, i.e. υ(g) is an elliptic map or
a parabolic one.

Proof. — Let
{

a1, a2, . . . , an
}

be a generating set of G. The inequalities

λ(υ(g))k ≤ deg(υ(g)k)≤max
i

(
deg(υ(ai))

)||gk||

imply the following ones

0≤ log
(
λ(υ(g))

)
≤ ||g

k||
k

log
(

max
i

(
deg(υ(ai))

))
.

But since g is distorted lim
k→+∞

||gk||
k

= 0 and log
(
λ(υ(g))

)
= 0.

Remark 5.19. — We follow the proof of [D0́6a]; nevertheless it is possible to ”simplify it”
by using the following result: any distorted element of Bir(P2

C) is algebraic ([BF19, CdC20]).
According to Corollary 3.34 we thus have: any distorted element of Bir(P2

C) is elliptic.

Definition. — Let φ1, φ2, . . ., φk be some birational self maps of a rational surface S. Assume
that φ1, φ2, . . ., φk are virtually isotopic to the identity. We say that φ1, φ2, . . ., φk are simulta-
neously virtually isotopic to the identity if there exists a surface S̃, a birational map ψ : S̃ 99K S
such that for any 1≤ i≤ k the map ψ−1 ◦φi ◦ψ belongs to Aut(S̃) and ψ−1 ◦φ`i ◦ψ belongs to
Aut(S̃)0 for some integer `.

Proposition 5.20 ([D0́6a]). — Let υ be a representation from

Hk = 〈 f , g, h | [ f ,g] = hk, [ f ,h] = [g,h] = id〉

into Bir(P2
C). Assume that any standard generator υ( f ), υ(g) and υ(h) of υ(Hk) is virtually

isotopic to the identity. Then υ( f ), υ(g) and υ(h) are simultaneously virtually isotopic to the
identity.

Proof. — According to Proposition 2.12 the maps υ( f ) and υ(g) are simultaneously virtually
isotopic to the identity. Since g and h commute, Exc(υ(g)) and Ind(υ(g)) are invariant by
υ(h). The relation [ f ,g] = hk implies that both Exc(υ(g)) and Ind(υ(g)) are invariant by υ( f ).
A reasoning analogous to that of the proof of Proposition 2.12 and [DF01, Lemma 4.1] allows
us to establish the statement.

The second assertion of Remarks 5.16 leads us to study the representations of Heisenberg
k-groups into automorphisms groups of minimal rational surfaces. Let us deal with it.
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Lemma 5.21 ([D0́6a]). — Let υ be a morphism from Hk into Aut(P1
C×P1

C).
The morphism υ is not an embedding.

Proof. — We can assume that υ( f ), υ(g) and υ(h) fixe the two standard fibrations (if it is
not the case we can consider H2k instead of Hk); in other words we can assume that imυ is
contained in PGL(2,C)×PGL(2,C). Denote by pri, i ∈ {1, 2}, the i-th projection. Note that
pri(υ(H2k)) is a solvable subgroup of PGL(2,C). Furthermore pri(υ(h

k)) is a commutator.
Hence pri(υ(h

k)) is conjugate to the translation z 7→ z+βi. Let us prove by contradiction that
βi = 0; assume βi 6= 0. Then both pri(υ( f )) and pri(υ(g)) are also some translation since they
commute with pri(υ(h

k)). But then pri(υ(h
k))= [pri(υ( f )),pri(υ(g))] = id: contradiction with

βi 6= 0. As a result βi = 0 and υ is not an embedding.

Lemma 5.22 ([D0́6a]). — Let υ be a morphism from Hk into Aut(Fn) with n≥ 1.
Then up to birational conjugacy υ(Hk) is a subgroup of{

(z0,z1) 7→ (αz0 +P(z1),βz1 + γ) |α, β ∈ C∗, γ ∈ C, P ∈ C[z1]
}
.

Moreover up to birational conjugacy

υ(h2k) : (z0,z1) 7→ (z0 +P(z1),z1)

for some P ∈ C[z1].

Lemma 5.23 ([D0́6a]). — Let υ be an embedding of Hk into PGL(3,C). Up to linear conju-
gacy

υ( f ) : (z0,z1) 7→ (z0 +ζz1,z1 +β) υ(g) : (z0,z1) 7→ (z0 + γz1,z1 +δ)

υ(hk) : (z0,z1) 7→ (z0 + k,z1)

where ζ, δ, β γ denote complex numbers such that ζδ−βγ = k.

Proof. — The Zariski closure υ(Hk) of υ(Hk) is an algebraic unipotent subgroup of
PGL(3,C). By assumption υ is an embedding, so the Lie algebra of υ(Hk) is isomorphic to

h=


 0 ζ β

0 0 γ

0 0 0

 |ζ, β, γ ∈ C

 .

Let pr be the canonical projection from SL(3,C) into PGL(3,C). The Lie algebra of
pr−1(υ(Hk)) coincides with h up to conjugacy. Let us recall that the exponential map sends
h in the group H of upper triangular matrices and that H is a connected algebraic group. As
a consequence

(
pr−1(υ(Hk))

)0
= H. Any element of pr−1(υ(Hk)) acts by conjugation on H,

so belongs to 〈H, j · id | j3 = 1〉. As pr(j · id) = id, the restriction pr|H of pr to H is surjective

on υ(Hk). It is also injective. Hence it is an isomorphism. Therefore, υ can be lifted to a
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representation υ̃ from Hk into H. The map υ̃(hk) can be written as a commutator; it is thus
unipotent. The relations satisfied by the generators imply that up to conjugacy in SL(3,C)

υ( f ) : (z0,z1) 7→ (z0 +ζz1,z1 +β) υ(g) : (z0,z1) 7→ (z0 + γz1,z1 +δ)

υ(hk) : (z0,z1) 7→ (z0 + k,z1)

with ζδ−βγ = k.

Let ρ be an embedding of Γ(3,q) into Bir(P2
C). According to Lemma 5.17 and Lemma 5.18

for any standard generator ei j of SL(3,Z) one has λ(ρ(ei j)) = 1. Theorem 2.9 implies that

(i) either one of the ρ(eq
i j) preserves a unique fibration that is rational or elliptic,

(ii) or any standard generator of Γ(3,q) is virtually isotopic to the identity.

Let us first assume that (i) holds.

Lemma 5.24 ([D0́6a]). — Let Γ be a Kazhdan group that is finitely generated. Let ρ be a
morphism from Γ into PGL(2,C(z1)) (resp. PGL(2,C)). Then ρ has finite image.

Proof. — Denote by γi the generators of Γ and by
(

ai(z1) bi(z1)

ci(z1) di(z1)

)
their image by ρ. A

finitely generatedQ-group is isomorphic to a subfield ofC. HenceQ(ai(z0),bi(z0),ci(z0),di(z0))

is isomorphic to a subfield of C and one can assume that imρ ⊂ PGL(2,C) = Isom(H3). As
Γ is Kazhdan any continuous action of Γ by isometries of a real or complex hyperbolic space
has a fixed point. The image of ρ is thus up to conjugacy a subgroup of SO(3,R); according
to [dlHV89] the image of ρ is thus finite.

Proposition 5.25 ([D0́6a]). — Let ρ be a morphism from Γ(3,q) to Bir(P2
C). If one ρ(eq

i j)

preserves a unique fibration, then imρ is finite.

Proof. — Let us assume without loss of generality that ρ(eq
12) preserves a unique fibration F .

The relations satisfied by the eq
i j imply that F is invariant by any ρ(eq2

i j ). Hence for any ρ(eq2

i j )

there exist

� F : P2
C→ Aut(P1

C) that defines F ,
� and hi j ∈ PGL(2,C)

such that F ◦ρ(eq2

i j ) = hi j ◦F .
Let υ be the morphism defined by

υ : Γ(3,q2)→ PGL(2,C), eq2

i j 7→ hi j.

The group Γ(3,q2) is a Kazhdan group, so Γ = kerυ is of finite index (Lemma 5.24); as a
consequence Γ is a Kazhdan group.
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Remark that F can not be elliptic; indeed the group of birational maps that preserve fiber-
wise an elliptic fibration is metabelian and a subgroup of Γ(3,q2) of finite index can not be
metabelian.

Let us assume that F is a rational fibration. One can assume that F = (z1 = constant).
The group of birational maps of the complex projective plane that preserves F is identified
with PGL(2,C(z1))o PGL(2,C) hence ρ|Γ : Γ → PGL(2,C(z1)) has finite image (Lemma
5.24).

Consider now the case (ii), i.e. assume that any standard generator of Γ(3,q) is virtually
isotopic to the identity.

Remark 5.26. — Two irreducible homologous curves of negative self-intersection coincide.
As a consequence an automorphism ϕ of a surface S isotopic to the identity fixes any curve of
negative self-intersection. Furthermore for any sequence of blow-downs ψ from S to a minimal
model S̃ of S the map ψ◦ϕ◦ψ−1 is an automorphism of S̃ isotopic to the identity.

According to Remark 5.26, Proposition 5.20, Lemma 5.17 and Lemma 5.18 the maps
ρ(eqn

12), ρ(eqn
13), ρ(eqn

23) are, for some integer n, some automorphisms of a minimal rational
surface, that is of P2

C or of Fn, n≥ 2. Let us mention the case Fn, n≥ 2 (see [D0́6a] for more
details) and detail the case P2

C.

Lemma 5.27 ([D0́6a]). — Let ρ be a morphism from a congruence subgroup Γ(3,q) of
SL(3,Z) in the plane Cremona group.

Assume that ρ(eq`
12), ρ(eq`

13) and ρ(eq`
23) belong to Aut(Fn), n ≥ 2, for some integer `. Then

the image of ρ is

� either finite,
� or contained in PGL(3,C) = Aut(P2

C) up to conjugacy.

Lemma 5.28 ([D0́6a]). — Let ρ be an embedding of a congruence subgroup Γ(3,q)
of SL(3,Z) into Bir(P2

C). If ρ(eqn
12), ρ(eqn

13) and ρ(eqn
23) belong, for some integer n, to

PGL(3,C) = Aut(P2
C), then ρ(Γ(3,q2n2)) is a subgroup of PGL(3,C) = Aut(P2

C).

To establish this statement we will need the two following results; the first one was obtained
by Cantat and Lamy when they study the embeddings of lattices from simple Lie groups into
the group of polynomial automorphisms Aut(A2

C) whereas the second one is a technical one.

Theorem 5.29 ([CL06]). — Let G be a simple real Lie group. Let Γ be a lattice of G. If there
exists an embedding of Γ into Aut(A2

C), then G is isomorphic to either PSO(1,n) or PSU(1,n)
for some integer n.
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Lemma 5.30 ([D0́6a]). — Let φ be an element of the plane Cremona group. Assume that
Exc(φ) and Exc(φ2) are non-empty and contained in the line at infinity. If Ind(φ) is also
contained in the line at infinity, then φ is a polynomial automorphism of A2

C.

Proof of Lemma 5.28. — Lemma 5.23 allows us to assume that

ρ(eqn
13) : (z0,z1) 7→ (z0 +qn,z1), ρ(eqn

12) : (z0,z1) 7→ (z0 +ζz1,z1 +β),

ρ(eqn
23) : (z0,z1) 7→ (z0 + γz1,z1 +δ)

where ζδ−βγ = q2n2.

� Let us first suppose that βδ 6= 0. Since [ρ(eqn
13),ρ(e

qn
21)] = ρ(e−q2n2

23 ) the curves blown down
by ρ(eqn

21), if they exist, are of the type z1 = constant. As ρ(eqn
21) and ρ(eqn

23) commute,
the sets Exc(ρ(eqn

21)) and Ind(ρ(eqn
21)) are invariant by ρ(eqn

23). As a result Exc(ρ(eqn
21)),

Ind(ρ(eqn
21)) and Exc((ρ(eqn

21))
2) are contained in the line at infinity. Hence ρ(eqn

21) belongs
to either PGL(3,C) or Aut(A2

C) (Lemma 5.30). Note that if ρ(eqn
21) belongs to PGL(3,C),

then ρ(eqn
21) preserves the line at infinity because [ρ(eqn

21),ρ(e
qn
23)] = id. In other words

ρ(eqn
21) also belongs to Aut(A2

C). Using the relations [ρ(eqn
13),ρ(e

qn
32)] = ρ(eq2n2

12 ) and

[ρ(eqn
12),ρ(e

qn
32)] = id we get that ρ(eqn

23) belongs to Aut(A2
C). Finally any ρ(eq2n2

i j ) is a
polynomial automorphism of A2

C and ρ is not an embedding (Theorem 5.29).
� Assume that βδ = 0. Since ζδ−βγ = q2n2 one has (β,δ) 6= (0,0).

Suppose that β = 0. The conjugacy by

(z0,z1) 7→
(

z0 +
γ

2
z1−

γ

2δ
z2

1,z1

)
does change neither ρ(eqn

13), nor ρ(eqn
12), and sends ρ(eqn

23) onto (z0,z1) 7→ (z0,z1+δ). One
can thus assume that

ρ(eqn
13) : (z0,z1) 7→ (z0 +qn,z1), ρ(eqn

12) : (z0,z1) 7→ (z0 +ζz1,z1)

ρ(eqn
23) : (z0,z1) 7→ (z0,z1 +δ).

The map ρ(eqn
21) satisfies the relations [ρ(eqn

13),ρ(e
qn
21)] = ρ(e−q2n2

23 ), and [ρ(eqn
21),ρ(e

qn
23)] =

id so does the element ψ : (z0,z1) 7→ (z0,δnz0 + z1) of PGL(3,C). Remark that the map
φ = ρ(eqn

21)◦ψ−1 commute to both ρ(eqn
13) and ρ(eqn

23). As a consequence

φ : (z0,z1) 7→ (z0 +a,z1 +b)

for some a, b in C. Finally up to conjugacy by (z0,z1) 7→
(
z0 +

b
δ
,z1
)

one has

ρ(eqn
21) : (z0,z1) 7→ (z0 +a,δz0 + z1);
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in particular ρ(eqn
21) belongs to PGL(3,C). Similarly if ϕ is the map given by

(z0,z1) 7→
(

z0

1+ζz1
,

z1

1+ζz1

)
then the map ρ(eqn

32)◦ϕ−1 commute to both ρ(eqn
13) and ρ(eqn

12). Therefore

ρ(eqn
32)◦ϕ

−1 : (z0,z1) 7→ (z0 +b(z1),z1)

and

ρ(eqn
32) : (z0,z1) 7→

(
z0

1+ζz1
+b
(

z1

1+ζz1

)
,

z1

1+ζz1

)
.

Thanks to [ρ(eqn
23),ρ(e

qn
31)] = ρ(eq2n2

21 ), [ρ(eqn
21),ρ(e

qn
31)] = id and [ρ(eqn

12),ρ(e
qn
31)] =

ρ(e−q2n2

32 ) we get ρ(eqn
21) : (z0,z1) 7→ (z0,δz0 + z1). Finally since ρ(eqn

31) and ρ(eqn
32)

commute, b≡ 0 and imρ⊂ PGL(3,C).
Assume that δ = 0; using a similar reasoning we get a contradiction.

Proof of Theorem 5.2. — Any ρ(ei j) is virtually isotopic to the identity (Lemma 5.18 and
Proposition 5.25). The maps ρ(en

12), ρ(en
13) and ρ(en

23) are, for some integer n, conjugate
to automorphisms of a minimal rational surface (Proposition 5.20 and Remark 5.16). Up to
conjugacy one can assume that ρ(Γ(3,n2)) ⊂ PGL(3,C) (Lemmas 5.21, 5.27 and 5.28). The
restriction ρ|Γ(3,n2) of ρ to Γ(3,n2) can be extended to an endomorphism of PGL(3,C) (see
[Ste85]). But PGL(3,C) is simple, so this extension is both injective and surjective. The
automorphisms of PGL(3,C) are obtained from inner automorphisms, automorphisms of the
field C and the involution u 7→ u∨ (see [Die71, Chapter IV]). But automorphisms of the field
C do not act on Γ(3,n2); hence up to linear conjugacy ρ|Γ(3,n2) coincides with the identity or
the involution u 7→ u∨.

Let φ be an element of ρ(SL(3,Z))rρ(Γ(3,n2)) that blows down at least one curve C . The
group Γ(3,n2) is a normal subgroup of Γ. As a consequence C is invariant by ρ(Γ(3,n2)), and
so by ρ(Γ(3,n2)) = PGL(3,C) which is impossible. Finally φ does not blow down any curve,
and ρ(SL(3,Z))⊂ PGL(3,C).

Proof of Corollary 5.3. — � Let Γ be a subgroup of finite index of SL(4,Z), and let ρ be
a morphism from Γ into the plane Cremona group. We will prove that imρ is finite.
To simplify let us suppose that Γ = SL(4,Z). Denote by ei j the standard generators
of SL(4,Z). The morphism ρ induces a faithful representation ρ̃ from SL(3,Z) into
Bir(P2

C):

SL(4,Z)⊃
(

SL(3,Z) 0
0 1

)
ρ̃→ Bir(P2

C)
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According to Theorem 5.2 the map ρ̃ is, up to birational conjugacy, the identity or the
involution u 7→ u∨.

Let us first assume that up to birational conjugacy ρ̃= id. Assume that Exc(ρ(e34)) 6= /0.
Since [e34,e31] = [e34,e32] = id the map ρ(e34) commutes with

(z0,z1,z2) 7→ (z0,z1,az0 +bz1 + z2)

where a, b∈C and Exc(ρ(e34)) is invariant by (z0,z1,z2) 7→ (z0,z1,az0+bz1+z2). More-
over e34 commutes with e12 and e21, in other words e34 commutes with the following
copy of SL(2,Z)

SL(4,Z)⊃

 SL(2,Z) 0 0
0 1 0
0 0 1


The action of SL(2,Z) on C2 has no invariant curve, so Exc(ρ(e34)) is contained in
the line at infinity. But the image of this line by (z0,z1,z2) 7→ (z0,z1,az0 + bz1 + z2)

intersects C2: contradiction. Hence Exc(ρ(e34)) = /0 and ρ(e34) belongs to PGL(3,C).
Similarly we get that ρ(e43) belongs to PGL(3,C). The relations satisfied by the standard
generators thus imply that ρ(SL(4,Z)) is contained in PGL(3,C). As a consequence imρ

is finite.
A similar idea allows to conclude when ρ̃ is, up to conjugacy, the involution u 7→ u∨.

� Let n ≥ 4 be an integer. Consider a subgroup of finite index Γ of SL(n,Z). Let ρ be
a morphism from Γ to Bir(P2

C). According to Theorem 5.13 the group Γ contains a
congruence subgroup Γ(n,q). The morphism ρ induces a representation ρ̃ from Γ(4,q)
to Bir(P2

C). As we just see the kernel of this representation is infinite so does kerρ.

5.4. The group Bir(P2
C) is hopfian

Let V be a projective variety defined over a field k ⊂ C. The group Autk(C) of automor-
phisms of the field extension C�k acts on V (C), and on Bir(V ) as follows

κ
ψ(p) = (κ◦ψ◦κ

−1)(p) (5.4.1)

for any κ ∈ Autk(C), any ψ ∈ Bir(V ), and any point p ∈V (C) for which both sides of (5.4.1)
are well defined. As a consequence Autk(C) acts by automorphisms on Bir(V ). If κ : C→ C
is a field morphism, then this construction gives an injective morphism

Aut(Pn
C)→ Aut(Pn

C), g 7→ κg.
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Write C as the algebraic closure of a purely transcendental extension Q(xi, i ∈ I) of Q; if
f : I→ I is an injective map, then there exists a field morphism

κ : C→ C, xi 7→ x f (i).

Such a morphism is surjective if and only if f is onto.
The group Aut(Bir(P2

C)) has been described in [D0́6b] and [D0́6a] via two different me-
thods:

Theorem 5.31 ([D0́6b, D0́6a]). — Let ϕ be an element of Aut(Bir(P2
C)). Then there exist a

birational self map ψ of P2
C and an automorphism κ of the field C such that

ϕ(φ) = κ(ψ◦φ◦ψ
−1) ∀φ ∈ Bir(P2

C)

The proof of [D0́6b] will be deal with in §7.2. The proof of [D0́6a] can in fact be used to
describe the endomorphisms of the plane Cremona group:

Theorem 5.32 ([D0́7a]). — Let ϕ be a non-trivial endomorphism of Bir(P2
C). Then there

exist ψ in Bir(P2
C) and an immersion κ of the field C such that

ϕ(φ) = κ(ψ◦φ◦ψ
−1) ∀φ ∈ Bir(P2

C)

Let us work in the affine chart z2 = 1. The group of translations is

T =
{
(z0,z1) 7→ (z0 +α,z1 +β) |α, β ∈ C

}
.

Lemma 5.33 ([D0́7a]). — Let ϕ be a birational self map of P2
C. Assume that ϕ commutes with

both (z0,z1) 7→ (z0 +1,z1) and (z0,z1) 7→ (z0,z1 +1).
Then ϕ belongs to T.

Proof. — Let ϕ = (ϕ0,ϕ1) be an element of Bir(P2
C) that commutes with both (z0,z1) 7→

(z0 +1,z1) and (z0,z1) 7→ (z0,z1 +1). In particular{
ϕ0(z0 +1,z1) = ϕ0(z0,z1)+1
ϕ1(z0 +1,z1) = ϕ1(z0,z1)

From ϕ1(z0 + 1,z1) = ϕ1(z0,z1) we get that ϕ1 = ϕ1(z1). The equality ϕ0(z0 + 1,z1) =

ϕ0(z0,z1)+1 implies
∂ϕ0

∂z0
(z0 +1,z1) =

∂ϕ0

∂z0
(z0,z1);

as a consequence ∂ϕ0
∂z0

= a(z1) and ϕ0 = a(z1)z0 +b(z1) for some a, b in C(z1). Then

ϕ0(z0 +1,z1) = ϕ0(z0,z1)+1

yields a(z1) = 1. In other words ϕ : (z0,z1) 99K (z0 +b(z1),ϕ1(z1)).
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Let us now write that ϕ◦ (z0,z1 +1) : (z0,z1) 99K (z0,z1 +1)◦ϕ; we get that ϕ : (z0,z1) 99K
(ϕ0(z0),z1 + c(z0)).

Finally ϕ : (z0,z1) 99K (z0+b(z1),ϕ1(z1)) and ϕ : (z0,z1) 99K (ϕ0(z0),z1+c(z0)) imply that
ϕ belongs to T.

Proof of Theorem 5.32. — Since PGL(3,C) is simple the restriction ϕ|PGL(3,C) is either trivial
or injective.

Let us first suppose that ϕ|PGL(3,C) is trivial. Consider the element of PGL(3,C) given by

` : (z0,z1) 7→
(

z0

z0−1
,
z0− z1

z0−1

)
.

According to [Giz82] one has (`◦σ2)
3 = id.

As a result ϕ((` ◦σ2)
3) = id. Since ϕ(`) = ` (recall that ` belongs to PGL(3,C)) one gets

that ϕ(σ2) = id. As the plane Cremona group is generated by PGL(3,C) and σ2 one gets that
ϕ = id.

Assume now that ϕ|PGL(3,C) is injective. According to Theorem 5.2 the restriction ϕ|SL(3,Z)
of ϕ to SL(3,Z) is, up to inner conjugacy, the canonical embedding or A 7→ A∨.

� Suppose first that ϕ|SL(3,Z) is the canonical embedding. Denote by U the group of unipo-
tent upper triangular matrices. Set

fβ = ϕ(z0 +β,z1), gα = ϕ(z0 +α,z1), hγ = ϕ(z0,z1 + γ).

Since fβ and hγ commute to both (z0,z1) 7→ (z0 + 1,z1) and (z0,z1) 7→ (z0,z1 + 1) one
gets from Lemma 5.33 that

fβ : (z0,z1) 7→ (z0 +λ(β),z1 +ζ(β)) hγ : (z0,z1) 7→ (z0 +η(γ),z1 +µ(γ))

where λ, ζ, η and µ are additive morphisms fromC toC. As gγ commutes with (z0,z1) 7→
(z0 + z1,z1) and (z0,z1) 7→ (z0 +1,z1) there exists aα in C(y) such that

gγ : (z0,z1) 7→ (z0 +aα(z1),z1).

The equality

(z0 +αz1,z1)◦ (z0,z1 + γ)◦ (z0 +αz1,z1)
−1 ◦ (z0,z1 + γ)−1 = (z0 +αz1,z1)

implies that gα ◦hα = fαγ ◦hγ ◦gα for any α, γ in C. As a consequence

fβ : (z0,z1) 7→ (z0 +λ(β),z1) gα : (z0,z1) 7→ (z0 +θ(α)z1 +ζ(α),z1)

and θ(α)µ(α) = λ(αγ). From[(
(z0,z1) 7→ (z0 +α,z1)

)
,
(
(z0,z1) 7→ (z0,z1 +βz0)

)]
=
(
(z0,z1) 7→ (z0,z1−α)

)
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one gets hγ : (z0,z1) 7→ (z0,z1 +µ(γ)). In other words for any α, β ∈ C one has

ϕ(z0 +α,z1 +β) = fα ◦hβ = (z0,z1) 7→ (z0 +λ(α),z1 +µ(β)).

Therefore, ϕ(T) ⊂ T and ϕ(U) ⊂ U. Since PGL(3,C) = 〈U, SL(3,Z)〉 the inclusion
ϕ(PGL(3,C)) ⊂ PGL(3,C) holds. According to [BT73] the action of ϕ on PGL(3,C)
comes, up to inner conjugacy, from an embedding of the field C into itself.
� Assume now that ϕ|SL(3,Z) is A 7→ A∨. Similar computations and [BT73] imply that

ϕ|PGL(3,C) comes, up to inner conjugacy, from the composition of A 7→ A∨ and an embed-
ding of the field C into itself.

To finish let us assume for instance that ϕ|PGL(3,C) comes, up to inner conjugacy, from
the composition of A 7→ A∨ and an embedding of the field C into itself. Set (η1,η2) =

ϕ

(
(z0,z1) 7→

(
z0,

1
z1

))
. From(

(z0,z1) 99K

(
z0,

1
z1

))
◦((z0,z1) 7→ (αz0,βz1))◦

(
(z0,z1) 99K

(
z0,

1
z1

))
=

(
(z0,z1) 7→

(
αz0,

z1

β

))
one gets {

η1
(
λ(α−1)z0,λ(β

−1)z1
)
= λ(α−1)η1(z0,z1)

η2
(
λ(α−1)z0,λ(β

−1)z1
)
= λ(β)η2(z0,z1)

Hence ϕ

(
(z0,z1) 7→

(
z0,

1
z1

))
=
(
(z0,z1) 7→

(
±z0,± 1

z1

))
. But((

(z0,z1) 7→ (z1,z0)
)
◦
(
(z0,z1) 7→

(
z0,

1
z1

)))2

= σ2,

so ϕ(σ2)=±σ2. Furthermore ϕ(`)=
(
(z0,z1) 7→ (−z0−z1−1,z1)

)
as ϕ|SL(3,Z) coincides with

A 7→ A∨. Then the second component of ϕ
(
`◦σ2

)3 is± 1
z1

: contradiction with ϕ
(
`◦σ2

)3
= id.

If ϕ|PGL(3,C) comes, up to inner conjugacy, from an embedding of C similar computations
imply that ϕ(σ2) = σ2 and one concludes with Noether and Castelnuovo theorem.





CHAPTER 6

FINITE SUBGROUPS OF THE CREMONA GROUP

The classification of finite subgroups of Bir(P1
C) = PGL(2,C) is well known and goes back

to Klein. It consists of cyclic, dihedral, tetrahedral, octahedral and icosahedral groups. Groups
of the same type and same order constitute a unique conjugacy class in Bir(P1

C).
What about the two-dimensional case, i.e. what about the finite subgroups of Bir(P2

C) ?
The story starts a long time ago with Bertini ([Ber77]) who classified conjugacy classes of
subgroups of order 2 in Bir(P2

C). Already the answer is drastically different from the one-
dimensional case. The set of conjugacy classes is parameterized (see Theorem 6.3) by a dis-
connected algebraic variety whose connected components are respectively isomorphic to

� either the moduli spaces of hyperelliptic curves of genus g,
� or the moduli space of canonical curves of genus 3,
� or the moduli space of canonical curves of genus 4 with vanishing theta characteristic.

Bertini’s proof is considered to be incomplete; a complete and short proof was published
only a few years ago by Bayle and Beauville ([BB00]).

In 1894 Castelnuovo proved that any element of Bir(P2
C) of finite order leaves invariant

either a net of lines, or a pencil of lines, or a linear system of cubic curves with n ≤ 8 base-
points ([Cas01]). Kantor announced a similar result for arbitrary finite subgroups of Bir(P2

C);
his proof relies on a classification of possible groups in each case ([Kan95]). Unfortunately
Kantor’s classification, even with some corrections made by Wiman ([Wim96]), is incomplete
in the following sense:

� given some abstract finite group, it is not possible using their list to say whether this
group is isomorphic to a subgroup of Bir(P2

C);
� the possible conjugation between the groups of the list is not considered.
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The Russian school has made great progress since the 1960’s: Manin and Iskovskikh clas-
sified the minimal G-surfaces into automorphisms of del Pezzo surfaces and of conic bundles
([Man67, Isk79]). Many years after people come back to this problem. As we already mention
Bayle and Beauville classified groups of order 2. It is the first example of a precise description
of conjugacy classes; it is shown that the non-rational curves fixed by the groups determine the
conjugacy classes. Groups of prime order were also studied ([BB04, dF04, Zha01]). Zhang
applies Bayle and Beauville strategy to the case of birational automorphisms of prime order
p ≥ 3. It turns out that nonlinear automorphisms occur only for p = 3 and p = 5; the au-
thor describes them explicitly. The techniques of [BB00] are also generalized by de Fernex to
cyclic subgroups of prime order ([dF04]). The list is as precise as one can wish, except for two
classes of groups of order 5: the question of their conjugacy is not answered. Beauville and
Blanc completed this classification ([BB04]); they prove in particular that a birational self map
of the complex projective plane of prime order is not conjugate to a linear automorphism if and
only if it fixes some non-rational curve. Beauville classified p-elementary groups ([Bea07]).
Blanc classified all finite cyclic groups ([Bla07a]), and all finite abelian groups ([Bla06b]).
The goal of [DI09] is to update the list of Kantor and Wiman. The authors used the modern
theory of G-surfaces, the theory of elementary links, and the conjugacy classes of Weyl groups.

In the first section we recall the definitions of Geiser involutions, Bertini involutions and
Jonquières involutions. We give a sketch of the proof of the classification of birational involu-
tions of the complex projective plane due to Bayle and Beauville.

In the second section we deal with finite abelian subgroups of the plane Cremona group.
Results due to Dolgachev and Iskovskikh are recalled.

In the last section we state some results of Blanc about finite cyclic subgroups of Bir(P2
C),

isomorphism classes of finite abelian subgroups of Bir(P2
C) but also a generalization of a theo-

rem of Castelnuovo which states that an element of finite order which fixes a curve of geomet-
ric genus > 1 has order 2, 3 or 4.

6.1. Classification of subgroups of order 2 of Bir(P2
C)

6.1.1. Geiser involutions. — Let p1, p2, . . ., p7 be seven points of the complex projective
plane in general position. Denote by L the linear system of cubics through the pi’s. The linear
system L of cubic curves through the pi’s is two-dimensional. Take a general point p, and
consider the pencil of curves from L passing through p. A general pencil of cubic curves has
nine base-points; let us define IG(p) as the ninth base-point of the pencil. The map IG is a
Geiser involution ([Gei67]). The algebraic degree of a Geiser involution is equal to 8.
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One can also see a Geiser involution as follows. The linear system L defines a rational map
of degree 2,

ψ : P2
C 99K |L|∗ ' P2

C.

The points p and IG(p) lie in the same fibre. As a consequence IG is a birational deck map of
this cover. If we blow up p1, p2, . . ., p7 we get a del Pezzo surface S of degree 2 and a regular
map of degree 2 from S to P2

C. Furthermore the Geiser involution becomes an automorphism
of S.

Note that the fixed points of IG lie on the ramification curve of ψ. It is a curve of degree 6
with double points p1, p2, . . ., p7 and is birationally isomorphic to a canonical curve of genus 3.

A third way to see Geiser involutions is the following. Let S be a del Pezzo surface of
degree 2. The linear system | −KS| defines a double covering S → P2

C, branched along a
smooth quartic curve ([DPT80]). The involution ι which exchanges the two sheets of this
covering is called a Geiser involution; it satisfies

Pic(S)ι⊗Q' Pic(P2
C)⊗Q=Q.

The exceptional locus of a Geiser involution is the union of seven cubics passing through
the seven points of indeterminacy of IG and singular at one of these seven points.

6.1.2. Bertini involutions. — Let us fix in P2
C eight points p1, p2, . . ., p8 in general position.

Consider the pencil of cubic curves through these points. It has a ninth base-point p9. For any
general point p there is a unique cubic curve C (p) of the pencil passing through p. Take p9 as
the zero of the group law of the cubic C (p); define IB(p) as the negative −p with respect to
the group law. The map IB is a birational involution called Bertini involution ([Ber77]).

The algebraic degree of a Bertini involution is equal to 17. The fixed points of a Bertini
involution lie on a canonical curve of genus 4 with vanishing theta characteristic isomorphic
to a nonsingular intersection of a cubic surface and a quadratic cone in P3

C.
Another way to see a Bertini involution is the following. Consider a del Pezzo surface S of

degree 1. The map S→ P3
C defined by the linear system |−2KS| induces a degree 2 morphism

of S onto a quadratic cone Q⊂ P3
C, branched along the vertex of Q and a smooth genus 4 curve

([DPT80]). The corresponding involution, the Bertini involution, satisfies rkPic(S)IB = 1.

6.1.3. Jonquières involutions. — Let C be an irreducible curve of degree ν ≥ 3. Assume
that C has a unique singular point p and that p is an ordinary multiple point with multiplicity
ν− 2. To (C , p) we associate a birational involution IJ that fixes pointwise C and preserves
lines through p. Let m be a generic point of P2

CrC . Let rm, qm and p be the intersections of
the line (mp) and C . The point IJ(m) is the point such that the cross ratio of m, IJ(m), qm and
rm is equal to−1. The map IJ is a Jonquières involution of degree ν centered at p; it preserves
C . More precisely its fixed points are the curve C of genus ν−2 as soon as ν≥ 3.
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If ν = 2, then C is a smooth conic ; the same construction can be done by choosing a point p
that does not lie on C .

Lemma 6.1 ([DI09]). — Let G be a finite subgroup of Bir(P2
C). Let C1, C2, . . ., Ck be non-

rational irreducible curves on P2
C such that each of them contains an open subset C0

i whose
points are fixed under all g ∈ G.

Then the set of birational isomorphism classes of the curves Ci is an invariant of the conju-
gacy class of G in Bir(P2

C).

Proof. — Assume that G = ψ◦H◦ψ−1 for some subgroup H of Bir(P2
C) and some birational

self map ψ of the complex projective plane. Replacing C0
i by a smaller open subset if needed

we assume that ψ−1(C0
i ) is defined and consists of fixed points of H. As Ci is not rational,

ψ−1(C0
i ) is not a point. Its Zariski closure is thus a rational irreducible curve C′i birationally

isomorphic to Ci that contains an open subset of fixed points of H.

Corollary 6.2. — Jonquières involutions of degree ≥ 3 are not conjugate to each other, not
conjugate to projective involutions, not conjugate to Bertini involutions, not conjugate to
Geiser involutions.

Bertini involutions are not conjugate to Geiser involutions, not conjugate to projective in-
volutions.

Geiser involutions are not conjugate to projective involutions.

Proof. — The statement follows from Lemma 6.1 and the above properties:

� a connected component of the fixed locus of a projective map is a line or a point;
� the fixed points of a Geiser involution lie on a curve birationally isomorphic to a cano-

nical curve of genus 3;
� the fixed points of a Bertini involution lie on a canonical curve of genus 4 with vanishing

theta characteristic;
� the set of fixed points of a Jonquières involution of degree ν≥ 3 outside the base locus is

an hyperelliptic curve of degree ν−2.

We can thus introduce the following definition.

Definition. — An involution is of Jonquières type if it is birationally conjugate to a Jonquières
involution.

An involution is of Bertini type if it is birationally conjugate to a Bertini involution.
An involution is of Geiser type if it is birationally conjugate to a Geiser involution.

The classification of subgroups of Bir(P2
C) of order 2 is given by the following statement:
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Theorem 6.3 ([BB00]). — A non-trivial birational involution of the complex projective plane
is conjugate to one and only one of the following:

� a Jonquières involution of a given degree ν≥ 2;
� a Geiser involution;
� a Bertini involution.

More precisely the parameterization of each conjugacy class is known. Before stating it let
us give some definitions.

Remarks 6.4. — Let S, S′ be two rational surfaces and ι ∈ Bir(S), ι′ ∈ Bir(S′) be two invo-
lutions. They are birationally equivalent if there exists a birational map ϕ : S 99K S′ such that
ϕ ◦ ι = ι′ ◦ϕ. Note that in particular two involutions of Bir(P2

C) are equivalent if and only if
they are conjugate in Bir(P2

C). Assume that ι fixes a curve C. Then ι′ = ϕ ◦ ι ◦ϕ−1 fixes the
proper transform of C under ϕ which is a curve birational to C except possibly if C is rational;
indeed, if C is rational it may be contracted to a point. The normalized fixed curve of ι is the
union of the normalizations of the non-rational curves fixed by ι. This is an invariant of the
birational equivalence class of ι.

Proposition 6.5 ([BB00]). — The map which associates to a birational involution of P2
C its

normalized fixed curve establishes a one-to-one correspondence between

� conjugacy classes of Jonquières involutions of degree ν and isomorphism classes of hy-
perelliptic curves of genus ν−2 (ν≥ 3);
� conjugacy classes of Geiser involutions and isomorphism classes of non-hyperelliptic

curves of genus 3;
� conjugacy classes of Bertini involutions and isomorphism classes of non-hyperelliptic

curves of genus 4 whose canonical model lies on a singular quadric.

Jonquières involutions of degree 2 form one conjugacy class.

The approach of Bayle and Beauville is different from the approach of Castelnuovo. It
is based on the following observation: any birational involution of P2

C is conjugate, via an
appropriate birational isomorphism S

∼
99K P2

C to a biregular involution ι of a rational surface S.
Therefore, the authors are reduced to the birational classification of the pairs (S, ι). In [Man67]
Manin classified the pairs (S,G) where S is a surface and G a finite group. This question has
been simplified by the introduction of Mori theory. This theory allows Bayle and Beauville
to show that the minimal pairs (S, ι) fall into two categories, those which admit a ι-invariant
base-point free pencil of rational curves, and those with rkPic(S)ι = 1. The first case leads
to the so-called Jonquières involutions whereas the second one leads to the Geiser and Bertini
involutions.
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Let us now give some details. By a surface we mean a smooth, projective, connected surface
over C. We consider pairs (S, ι) where S is a rational surface and ι a non-trivial biregular
involution of S. Recall that the pair (S, ι) is minimal if any birational morphism ψ : S→ S′

such that there exists a biregular involution ι′ of S′ with ψ◦ ι = ι′ ◦ψ is an isomorphism.

Lemma 6.6 ([BB00]). — The pair (S, ι) is minimal if and only if for any exceptional curve(1)

E on S the following hold:

ι(E) 6= E E ∩ ι(E) 6= /0.

Proof. — Suppose that (S, ι) is not minimal. Then there exist a pair (S′, ι′) and a birational
morphism ψ : S→ S′ such that ψ◦ ι = ι′◦ψ and ψ contracts some exceptional curve E. Then ψ

contracts the divisor E + ι(E). Therefore, (E + ι(E))2 ≤ 0, and so E · ι(E)≤ 0, i.e. ι(E) = E
or E ∩ ι(E) = /0.

Conversely assume that there exists an exceptional curve E on S such that ι(E) = E (resp.
E ∩ ι(E) = /0). Let S′ be the surface obtained by blowing down E (resp. E ∪ ι(E)). Then ι

induces an involution ι′ of S′ so that (S, ι) is not minimal.

The only piece of Mori theory used by Bayle and Beauville is the following one:

Lemma 6.7 ([BB00]). — Let (S, ι) be a minimal pair with rkPic(S)ι > 1. Then S admits a
base-point free pencil stable under ι.

It allows them to establish the:

Theorem 6.8 ([BB00]). — Let (S, ι) be a minimal pair. One of the following holds:

(1) there exists a smooth P1
C-fibration f : S→ P1

C and a non-trivial involution I of P1
C such

that f ◦ ι = I ◦ f ;
(2) there exists a fibration f : S→ P1

C such that f ◦ ι = f , the smooth fibres of f are rational
curves on which ι induces a non-trivial involution, any singular fibre is the union of two
rational curves exchanged by ι, meeting at one point;

(3) S is isomorphic to P2
C;

(4) (S, ι) is isomorphic to P1
C×P1

C with the involution (z0,z1) 7→ (z1,z0);
(5) S is a del Pezzo surface of degree 2 and ι is the Geiser involution;
(6) S is a del Pezzo surface of degree 1 and ι is the Bertini involution.

Proof. — � Assume rkPic(S)ι = 1. As Pic(S)ι contains an ample class, −KS is ample, i.e.
S is a del Pezzo surface. If rkPic(S) = 1, then one obtains case (3).

(1)Recall that an exceptional curve E on a surface S is a smooth rational curve with E2 =−1.
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If rkPic(S)> 1, then −ι is the orthogonal reflection with respect to K⊥S . Such a reflec-
tion is of the form

x 7→ x−2
(α · x)
(α ·α)

α

with (α ·α) ∈ {1, 2} and KS proportional to α. If KS is divisible, then S is isomorphic to
P1
C×P1

C and since ι must act non-trivially on Pic(S) we get case (4). The only remaining
eventualities are K2

S ∈ {1, 2}. The Geiser and Bertini involutions have the required prop-
erties (§6.1.1, §6.1.2). An automorphism ϕ of S acting trivially on Pic(S) is the identity;
indeed S is the blow up of P2

C at 9−d points in general position, ϕ induces an automor-
phism of P2

C which must fix these points. Hence Geiser and Bertini involutions are the
only ones to have the required properties.
� Suppose now that rkPic(S)ι > 1. According to Lemma 6.7 the surface S admits a ι-

invariant pencil |F | of rational curves. This defines a fibration f : S→ P1
C with fibre F ,

and an involution I of P1
C such that f ◦ ι = I ◦ f .

If f is smooth, then this gives (1) or a particular case of (2).
If f is not smooth, let F0 be a singular fibre of f . It contains an exceptional divisor

E. Since (S, ι) is minimal, then ι(E) 6= E and E · ι(E)≥ 1. As a result (E + ι(E))2 ≥ 0,
so F0 = E + ι(E) and E · ι(E) = 1. Set p = E ∩ ι(E). The involution induced by ι

on TpS exchanges the directions of E and ι(E); it thus has eigenvalues 1 and −1. As a
consequence ι fixes a curve passing through p; this curve must be horizontal and I trivial.
Furthermore the fixed curve of ι being smooth, the involution induced by ι on a smooth
fibre cannot be trivial. We get case (2).

Bayle and Beauville precised which pairs in the list of Theorem 6.8 are indeed minimal
([BB00, Proposition 1.7]).

Let us now give the link between biregular involutions of rational surfaces and birational
involutions of the complex projective plane:

Lemma 6.9 ([BB00]). — Let ι be a birational involution of a surface S1. There exists a
birational morphism ϕ : S→ S1 and a biregular involution I of S such that ϕ◦ I = ι◦ϕ.

To prove it we need some results, let us state and prove them.

Theorem 6.10 (see for instance [Bea83], Theorem II.7). — Let S be a surface, and let X be
a projective variety. Let φ : S 99K X be a rational map.

Then there exist

� a surface S′,
� a morphism η : S′→ S which is the composition of a finite number of blow-ups,
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� a morphism ψ : S′→ X

such that

S′
ψ

��

η

��
S

φ

// X

commutes.

Proof. — As X lies in some projective space we may assume that X = Pm
C. Furthermore we

can suppose that φ(S) lies in no hypersurface of Pm
C. As a result φ corresponds to a linear

system P⊂ |D| of dimension m on S without fixed component.
If P has no base-point, then φ is a morphism and there is nothing to do.
Assume that P has at least one base-point p. Consider the blow up ε : BlpS→ S at p. Set

S1 = BlpS. The exceptional curve E occurs in the fixed part of the linear system ε∗P ⊂ |ε∗D|
with some multiplicity k ≥ 1; that is, the system P1 = |ε∗P− kE| ⊂ |ε∗D− kE| has no fixed
component. It thus defines a rational map φ1 = φ ◦ ε : S1 99K Pm

C. If φ1 is a morphism, then
the result is proved. If not, we repeat the ”same step”. We get by induction a sequence
εn : Sn → Sn−1 of blow ups and a linear system Pn ⊂ |Dn| = |ε∗nDn−1− knEn| on Sn with no
fixed part. On the one hand D2

n = D2
n−1−k2

n < D2
n−1; on the other hand Pn has no fixed part, so

D2
n ≥ 0 for any n. Consequently the process must end. More precisely after a finite number of

blow ups we obtain a system Pn with no base-points which defines a morphism ψ : Sn→ Pm
C

as required.

Lemma 6.11 (see for instance [Bea83]). — Let S be an irreducible surface. Let S′ be a
smooth surface. Let φ : S→ S′ be a birational morphism. Assume that the rational map φ−1 is
not defined at a point p ∈ S′.

Then φ−1(p) is a curve on S.

Proof. — We assume that S is affine so that there is an embedding j : S ↪→ An
C. The rational

map

j ◦φ
−1 : S′ 99K An

C

is defined by rational functions g1, g2, . . . gn. One of them, say for instance g1 is undefined
at p, that is g1 6∈ OS′,p. Set g1 =

u
v with u, v ∈ OS′,p, u and v coprime and v(p) = 0. Consider

the curve D on S given by φ∗v = 0. On S ⊂ An
C denote by z0 the first coordinate function. We

have φ∗u = z0φ∗v on S. Hence φ∗u = φ∗v = 0 on D. Consequently D = φ−1(Z) where

Z =
{

u = v = 0
}
⊂ S′.
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By assumption u and v are coprime, so Z is finite. Shrinking S′ if necessary we can assume
that Z = {p}. Finally D = φ−1(p).

Lemma 6.12 (see for instance [Bea83]). — Let S, S′ be two surfaces. Let φ : S 99K S′ be a
birational map such that φ−1 is not defined at p ∈ S′.

Then there exists a curve C on S such that φ(C) = {p}.

Proof. — The map φ corresponds to a morphism ψ : U→ S′ for some subset U of S. Denote
by

Γ =
{(

u,ψ(u)
)
|u ∈U

}
⊂U×S′

the graph of ψ. Let Γ be the closure of Γ in S× S′; it is an irreducible surface, possibly with
singularities. The projections

pr1 : Γ→ S, pr2 : Γ→ S′

are birational morphisms and the diagram

Γ

pr1

��

pr2

��
S

φ

// S′

is commutative.
By assumption φ−1 is not defined at p ∈ S′, so does pr−1

2 . There is an irreducible curve C′

on Γ such that pr2(C
′) = {p} (Lemma 6.11). As Γ⊂ S×S′ the image pr1(C

′) of C′ by pr1 is a
curve C in S such that φ(C) = {p}.

Proposition 6.13 (see for instance [Lam02]). — Let X and S be two surfaces. Let φ : X → S
be a birational morphism of surfaces. Suppose that the rational map φ−1 is not defined at a
point p of S.

Then
BlpS

ε

!!
X

ψ
==

φ

// S

where ψ : X → BlpS is a birational map and ε : BlpS→ S is the blow up at p.

Proof. — Set ψ = ε−1 ◦φ. Suppose that ψ is not a morphism, and let m be a point of X such
that ψ is not defined at m. On the one hand φ(m) = p and φ is not locally invertible at m; on
the other hand there exists a curve in BlpS blown down onto m by ψ−1 (Lemma 6.12). This
curve has to be the exceptional divisor E associated to ε. Let r and q be two distinct points of
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E at which ψ−1 is well defined; consider C, C′ two germs of smooth curves transverse to E
at r and q respectively. Then ε(C) and ε(C′) are two germs of smooth curves transverse at p,
which are images by φ of two germs of curves at m. The differential of φ at m has thus rank 2:
contradiction with the fact that φ is not invertible at m.

Proof of Lemma 6.9. — There exists a birational morphism ϕ : S→ S1 such that the rational
map ψ = ι◦ϕ is everywhere defined (Theorem 6.10). Furthermore ϕ can be written as

ϕ = εn−1 ◦ εn−2 ◦ . . .◦ ε1

where εi : Si+1→ Si, 1≤ i≤ n−1, is obtained by blowing up a point pi ∈ Si and S = Sn. The
map ι is not defined at p1, so ψ−1 = ϕ−1 ◦ ι is not defined at p1. Proposition 6.13 implies
that ψ factors as

S2
ε1

��
S

ψ
//

g1
@@

S1

Proceeding by induction we see that ψ factors as ϕ◦I where I is a birational morphism. Since
ϕ◦ I 2 = ϕ, the map I is an involution.

In other words Lemma 6.9 says that any birational involution of a surface is birationally
equivalent to a biregular involution ι : S→ S; furthermore (S, ι) can be assumed to be minimal.
Therefore, the classification of conjugacy classes of involutions in Bir(P2

C) is equivalent to the
classification of minimal pairs (S, ι) up to birational equivalence.

Remark 6.14. — Recall that the P1
C-bundles over P1

C are of the form

Fn = PP1
C

(
OP1

C
⊕OP1

C
(n)
)
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for some integers n≥ 0 (see §3.3.2).
For n≥ 1 the fibration

f : Fn→ P1
C

has a unique section of self-intersection −n. Consider a fibre F of f , and a point p of F .
Assume that ι is a birational involution of Fn regular in a neighborhood of F and fixing p.
After the elementary transformation at p we get a birational involution of Fn+1 regular in a
neighborhood of the new fibre.

Proof of Theorem 6.3. — The unicity assertion follows from Remark 6.4.
Using Lemma 6.9 we will prove that the involutions of Theorem 6.8 are birationally equiv-

alent to one of Theorem 6.3.

Cases (5) and (6) give by definition the Geiser and Bertini involutions.

An involution of type (4) is birationally equivalent to a Jonquières involution of degree 2.
Indeed let Q be a smooth conic in P2

C, and let p ∈ P2
CrQ be a point. Consider the birational

involution ι of P2
C that maps a point x to its harmonic conjugate on the line (px) through p and

x with respect to the two points of (px)∩Q. This involution is not defined at the following
three points: p and the two points q and r where the tangent line to Q passes through p.
Set S = Blp,q,rP2

C. The involution ι extends to a biregular involution I of S, the Jonquières
involution of degree 2.

In case (3) take a point p ∈ P2
C such that ι(p) 6= p. Let us blow up p, ι(p) and then blow

down the proper transform of the line (pι(p)) which is a ι-invariant exceptional curve. We get
a pair (T, ι′) with T ' P1

C×P1
C by stereographic projection and rkPic(T )ι′ = 1: we are thus in

case (4), so in the case of a Jonquières involution of degree 2.

Let us now deal with case (1). The surface S is isomorphic to Fn for some n ≥ 0. The
involution ι has two invariant fibres, any of them containing at least two fixed points. One of
these points does not belong to sn (section of self-intersection −n on Fn), hence after a (finite)
sequence of elementary transformations we get n = 1. Let us thus focus on the case n = 1.
Let F1 be the surface obtained by blowing up a point p ∈ P2

C. Projecting from p defines a
P1-bundle f : F1→ P1

C. Any biregular involution ι of F1 preserves this fibration hence defines
a pair (F1, ι) of case (1) or (2). The involution ι preserves the unique exceptional curve E1

of F1; the pair (F1, ι) is thus not minimal: ι induces a biregular involution of P2
C. We finally

get a Jonquières involution of degree 2 as we just see.

We now consider case (2). Let us distinguish two possibilities: denote by F1, F2, . . ., Fs

the singular fibres of f and by pi, 1 ≤ i ≤ s, the singular point of Fi. The fixed locus of ι is a
smooth curve C passing through p1, p2, . . ., ps. The degree 2 covering C→ P1

C induced by f
is ramified at p1, p2, . . ., ps.
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(2a) Either f is smooth, s = 0 and C is the union of two sections of f which do not intersect;
(2b) or f is not smooth, C is a hyperelliptic curve of genus g≥ 0 and s = 2g+2.

First assume that we are in case (2a). After elementary transformations we can suppose that
S = F1. The fixed locus of ι is the union of E1 and a section which does not meet E1. Blowing
down E1 one gets case (4).

Finally let us look at case (2b) for g≥ 0. Let us blow down one of the components in each
singular fibre. We thus have a birational involution on a surface Fn, the fixed curve C embedded
into Fn. After elementary transformations at general points of C one gets a birational involution
on a surface F1, the fixed curve C embedded into F1. The genus formula implies that E1 ·C = g.
Suppose that C is tangent to E1 at some point q ∈ F1. After an elementary transformation at q
then an elementary transformation at some general point of C the order of contact of C and E1

at q decreases by 1. Proceeding in this way we arrive at the following situation: E1 and C meet
transversally at g distinct points. Let blow down E1 to a point p of P2

C; the curve C maps to a
plane curve C of degree g+2 with an ordinary multiple point of multiplicity g at p and no other
singularity. This yields to a birational involution of P2

C which preserves the lines through p
and admits C as fixed curve, i.e. a Jonquières involution with center p and fixed curve C.

6.2. Finite abelian subgroups of the Cremona group

Dolgachev and Iskovskikh used a modern approach to the problem initiated in the works
of Manin and Iskovskikh who gave a clear understanding of the conjugacy problem via the
concept of a G-surface ([Man67, Isk79]). Let G be a finite group. A G-surface is a pair (S,ψ)
where S is a nonsingular projective surface and ψ is an isomorphism from G to Aut(S). A
morphism of the pairs (S,ψ)→ (S′,ψ′) is defined to be a morphism of surfaces φ : S→ S′

such that
ψ
′(G) = φ◦ψ(G)◦φ

−1.

In particular let us note that two subgroups of Aut(S) define isomorphic G-surfaces if and only
if they are conjugate inside Aut(S).

Let (S,ψ) be a rational G-surface. Take a birational map φ : S 99K P2
C. For any g ∈ G the

map φ◦g◦φ−1 belongs to Bir(P2
C). This yields to an injective homomorphism

ιφ : G→ Bir(P2
C).

Lemma 6.15 ([DI09]). — Let (S,ψ) and (S′,ψ′) be two rational G-surfaces. Let φ : S 99K P2
C

and φ′ : S 99K P2
C be two birational maps.

The subgroups ιφ(G) and ιφ′(G) are conjugate if and only if there exists a birational map of
G-surfaces S′ 99K S.



6.2. FINITE ABELIAN SUBGROUPS OF THE CREMONA GROUP 127

In other words a birational isomorphism class of G-surfaces defines a conjugacy class of
subgroups of Bir(P2

C) isomorphic to G. The following result shows that any conjugacy class
is obtained in this way:

Lemma 6.16 ([DI09]). — Let G be a finite subgroup of Bir(P2
C). There exist a rational G-

surface (S,ψ) and a birational map φ : S 99K P2
C such that

G = φ◦ψ(G)◦φ
−1.

Proof. — If φ belongs to G, we denote by dom(φ) an open subset on which φ is defined.
Set D =

⋂
φ∈G

dom(φ). Then U =
⋂

φ∈G

g(D) is an open invariant subset of P2
C on which φ acts

biregularly. Consider U′=U�G the orbit space; it is a normal algebraic surface. Let us choose
any normal projective completion X ′ of U′. Consider S′ the normalization of X ′ in the field
of rational functions of U. It is a normal projective surface on which G acts by biregular
transformations. A G-invariant resolution of singularities S of S′ suits ([dFE02]).

Hence one has:

Theorem 6.17 ([DI09]). — There is a natural bijective correspondence between birational
isomorphism classes of rational G-surfaces and conjugate classes of subgroups of Bir(P2

C)

isomorphic to G.

Therefore, the goal of Dolgachev and Iskovskikh is to classify G-surfaces up to birational
isomorphism of G-surfaces.

There is a G-equivariant analogue of minimal surfaces:

Definition. — A minimal G-surface is a G-surface (S,ψ) such that any birational morphism
of G-surfaces (S,ψ)→ (S′,ψ′) is an isomorphism.

Note that it is enough to classify minimal rational G-surfaces up to birational isomorphism
of G-surfaces. The authors can rely on the following fundamental result:

Theorem 6.18. — Let S be a minimal rational G-surface. Then

� either S admits a structure of a conic bundle with Pic(S)G ' Z2;
� or S is isomorphic to a del Pezzo surface with Pic(S)G ' Z.

An analogous result from the classical literature is showed by using the method of the termi-
nation of adjoints, first introduced for linear system of plane curves in the work of Castelnuovo.
This method is applied to find a G-invariant linear system of curves in the plane in [Kan95];
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Kantor essentially stated the result above but without the concept of minimality. A first mod-
ern proof can be found in [Man67] and [Isk79]. Nowadays Theorem 6.18 follows from a
G-equivariant version of Mori theory ([dF04]).

As a result to complete the classification Dolgachev and Iskovskikh need

(i) to classify all finite groups G that may occur in a minimal G-pair;
(ii) to determine when two minimal G-surfaces are birationally isomorphic.

To achieve (i) the authors computed the full automorphisms group of a conic bundle surface
on a del Pezzo surface and then made a list of all finite subgroups acting minimally on the
surface.

To achieve (ii) the authors used the ideas of Mori theory to decompose a birational map of
rational G-surfaces into elementary links.

6.3. Finite cyclic subgroups of Bir(P2
C)

In [Bla07a] the author gave the list of finite cyclic subgroups of the plane Cremona group,
up to conjugation. The curves fixed by one element of the group, and the action of the whole
group on these curves, are often sufficient to distinguish the conjugacy classes. It was done
in [Bla06b] in many cases, but some remain unsolved. In [Bla06b] the author completed this
classification with the case of abelian non-cyclic groups.

Its classification implies several results we will now mention.

Theorem 6.19 ([Bla07a]). — For any integer n ≥ 1 there are infinitely many conjugacy
classes of elements of Bir(P2

C) of order 2n, that are non-conjugate to a linear automorphism.

If n > 15, a birational map of P2
C of order 2n is a n-th root of a Jonquières involution and

preserves a pencil of rational curves.

If an element of Bir(P2
C) is of finite odd order and is not conjugate to a linear automorphism

of P2
C, then its order is 3, 5, 9 or 15. In particular any birational map of P2

C of odd order > 15
is conjugate to a linear automorphism of the plane.

Then Blanc generalized a theorem of Castelnuovo which states that an element of finite
order which fixes a curve of geometric genus > 1 has order 2, 3 or 4 (see [Cas01]):

Theorem 6.20 ([Bla07a]). — Let G be a finite abelian group which fixes some curve of posi-
tive geometric genus.

Then G is cyclic, of order 2, 3, 4, 5 or 6, and all these cases occur.
If the curve has geometric genus > 1, then G is of order 2 or 3.

Theorem 6.21 ([Bla07a]). — Let G be a finite abelian subgroup of Bir(P2
C).
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The following assertions are equivalent:

� any g ∈ Gr
{

id
}

does not fix a curve of positive geometric genus;
� the group G is birationally conjugate to a subgroup of Aut(P2

C), or to a subgroup of
Aut(P1

C×P1
C), or to the group isomorphic to Z�2Z×

Z�4Z generated by the two follo-
wing elements

(z0 : z1 : z2) 7→
(
z1z2 : z0z1 :−z0z2

)
,

(z0 : z1 : z2) 7→
(
z1z2(z1− z2) : z0z2(z1 + z2) : z0z1(z1 + z2)

)
.

Furthermore this last group is conjugate neither to a subgroup of Aut(P2
C), nor to a subgroup

of Aut(P1
C×P1

C).

In [Bea07] Beauville gave the isomorphism classes of p-elementary subgroups of the plane
Cremona group. Blanc generalized it as follows:

Theorem 6.22 ([Bla07a]). — The isomorphism classes of finite abelian subgroups of the
plane Cremona group are the following:

� Z�mZ×
Z�nZ for any integers m, n≥ 1,

� Z�2nZ×
(
Z�2Z

)2
for any integer n≥ 1,

�
(
Z�4Z

)2
×Z�2Z,

�
(
Z�3Z

)3
,

�
(
Z�2Z

)4
.

In [Bla11a] the author finished the classification of cyclic subgroups of finite order of the
Cremona group, up to conjugation. He gave natural parameterizations of conjugacy classes,
related to fixed curves of positive genus. The classification of finite cyclic subgroups that
are not of Jonquières type was almost achieved in [DI09]. Let us explain what we mean by
”almost”:

� a list of representative elements is available;
� explicit forms are given;
� the dimension of the varieties which parameterize the conjugacy classes are provided.

What is missing ? A finer geometric description of the algebraic variety parameterizing
conjugacy classes according to [DI09].
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The case of groups conjugate to subgroups of Aut(P2
C) was studied in [BB04]: there is

exactly one conjugacy class for each order n, representated by

〈(z0 : z1 : z2) 7→ (z0 : z1 : e2iπ/nz2)〉.

Blanc completed the classification of cyclic subgroups of Bir(P2
C) of finite order ([Bla11a]).

For groups of Jonquières type he applied cohomology group theory and algebraic tools to the
group J and got:

Theorem 6.23 ([Bla11a]). — � For any positive integer m, there exists a unique conju-
gacy class of linearisable elements of order n, represented by the automorphism

(z0 : z1 : z2) 7→ (z0 : z1 : e2iπ/nz2).

� Any non-linearisable Jonquières element of finite order of Bir(P2
C) has order 2n, for

some positive integer n, and is conjugate to an element φ, such that φ and φn are of the
following form

φ : (z0,z1) 99K

(
e2iπ/nz0,

a(z0)z1 +(−1)δ p(zn
0)b(z0)

b(z0)z1 +(−1)δa(z0)

)

φ
n : (z0,z1) 99K

(
z0,

p(zn
0)

z1

)
where a, b belongs to C(z0), δ to

{
0,±1

}
, and p ∈ C[z0] is a polynomial with simple

roots.
The curve Γ of equation z2

1 = p(zn
0), pointwise fixed by φn, is hyperelliptic, of positive

geometric genus, and admits a (2 : 1)-map φ2
1 : Γ→ P1

C. The action of φ on Γ has order
n, and is not a root of the involution associated to any φ2

1.
Furthermore the above association yields a parameterization of the conjugacy classes

of non-linearisable Jonquières elements of order 2n of Bir(P2
C) by isomorphism classes

of pairs (Γ,ψ), where
� Γ is a smooth hyperelliptic curve of positive genus,
� ψ∈Aut(Γ) is an automorphism of order n, which preserves the fibres of the φ2

1 and
is not a root of the involution associated to the φ2

1.

The analogous result for finite Jonquières cyclic groups holds, and follows directly from this
statement.

Note that if the curve Γ has geometric genus ≥ 2, the φ2
1 is unique, otherwise it is not.

Blanc also dealt with cyclic subgroups of Bir(P2
C) that are not of Jonquières type. Using

the classification of [DI09] and some classical tools on surfaces and curves he provided the
parameterization of the 29 families of such groups.
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The classification is divided in two parts:
� find representative families and prove that each group is conjugate to one of these;
� parameterize the conjugacy classes in each families by algebraic varieties.

For cyclic groups of prime order the varieties parameterizing the conjugacy classes are the
moduli spaces of the non-rational curves fixed by the groups. Blanc needs to generalize it,
by looking for the non-rational curves fixed by the non-trivial elements of the group. Let us
give the definition of this invariant which provides a simple way to decide whether two cyclic
groups are conjugate. Recall that a birational map of the complex projective plane fixes a curve
if it restricts to the identity on the curve.

Definition. — Let φ be a non-trivial element of Bir(P2
C) of finite order.

If no curve of positive geometric genus is (pointwise) fixed by φ, then NFC(φ) = /0; oth-
erwise φ fixes exactly one curve of positive genus ([BB00, dF04]), and NFC(φ) is then the
isomorphism class of the normalization of this curve.

Two involutions φ, ψ of Bir(P2
C) are conjugate if and only if NFC(φ) = NFC(ψ) (see §6.1).

If φ, ψ are elements of Bir(P2
C) of the same prime order, then 〈φ〉 and 〈ψ〉 are conjugate if

and only if NFC(φ) = NFC(ψ) (see [BB04, dF04]). This is no longer the case for cyclic
groups of composite order as observed in [BB04]: the automorphism φ of the cubic surface
z3

0 + z3
1 + z3

2 + z3
3 = 0 in P3

C given by

φ : (z0 : z1 : z2 : z3) 7→
(
z1 : z0 : z2 : ζz3

)
where ζ3 = 1, ζ 6= 1 has only four fixed points while φ2 fixes the elliptic curve z3 = 0.

Definition. — Let φ ∈ Bir(P2
C) be a non-trivial element of finite order n. Then NFCA(φ) is

the sequence of isomorphism classes of pairs(
NFC(φk),φ|NFC(φk)

)n−1

k=1

where φ|NFC(φk) is the automorphism induced by φ on the curve NFC(φk) (if NFC(φk) = /0,
then φ acts trivially on it).

Let us now give a simple way to decide whether two cyclic subgroups of finite order of
Bir(P2

C) are conjugate:

Theorem 6.24 ([Bla11a]). — Let G and H be two cyclic subgroups of Bir(P2
C) of the same

finite order. Then G and H are conjugate in Bir(P2
C) if and only if NFCA(φ) = NFCA(ψ) for

some generators φ of G and ψ of H.





CHAPTER 7

UNCOUNTABLE SUBGROUPS OF THE CREMONA
GROUP

All the results of this Chapter have been proved without the construction of the action of
the isometric action of Bir(P2

C) on the hyperbolic space H∞ and we keep this point of view.
Different ideas and tools are used in any section: foliations and group theory are the main
ingredients.

The study of the automorphis groups starts a long time ago. For instance for classical groups
let us see [Die71]. Consider the automorphism group of the complex projective space Pn

C; it
is PGL(n+1,C). The automorphism group of PGL(n+1,C) is generated by the inner auto-
morphisms, the involution M 7→M∨ and the action of the field automorphisms of C. In 1963
Whittaker showed that any isomorphism between homeomorphism groups of connex topolog-
ical varieties is induced by an homeomorphism between the varieties themselves ([Whi63]).
In 1982 Filipkiewicz proved a similar statement for differentiable varieties.

Theorem 7.1 ([Fil82]). — Let V , W be two connected varieties of class C k, resp. C j. Let
Diffk(V ) be the group of C k-diffeomorphisms of V . Let φ : Diffk(V )→Diff j(V ) be an isomor-
phism group. Then k = j and there exists a C k-difffeomorphism ψ : V →W such that

φ(ϕ) = ψ◦ϕ◦ψ
−1 ∀ϕ ∈ Bir(P2

C).

The description of uncountable maximal abelian subgroups of the plane Cremona group
allows to characterize the automorphisms group of Bir(P2

C):

Theorem 7.2 ([D0́6b]). — Let ϕ be an automorphism of Bir(P2
C). There exist a birational self

map ψ of the complex projective plane and an automorphism κ of the field C such that

ϕ(φ) = κ(ψ◦φ◦ψ
−1) ∀φ ∈ Bir(P2

C).

In other words the non-inner automorphism group of Bir(P2
C) can be identified with the auto-

morphisms of the field C.
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In the first section we study uncountable maximal abelian subgroups of Bir(P2
C); let G be

such a group. We give an outline of the proofs of the following results:
� any element of G preserves at least one singular holomorphic foliation;
� either no element of G is torsion-free, or G leaves invariant a holomorphic foliation;
� if G is torsion-free, then G is conjugate to a subgroup of the Jonquières group.

In the second section we describe the automorphism group of Bir(P2
C). A study of the

torsion-free maximal abelian subgroups of the Jonquières group shows that the group

Ja =
{
(z0,z1) 99K (z0 +a(z1),z1) |a ∈ C(z1)

}
is invariant by any automorphism of Bir(P2

C). Some work on special subgroups of Ja achieves
the description of Aut(Bir(P2

C)).
In a session problems during the International Congress of Mathematicians Mumford pro-

posed the following ([Mum76]):
”Let G =AutCC(z0,z1) be the Cremona group (...) the problem is to topologize
G and associate to it a Lie algebra consisting, roughly, of those meromorphic
vector fields D on P2

C which ”integrate” into an analytic family of Cremona
transformations.”

In the third section we deal with a contribution in that direction: the description of 1-
parameter subgroups of quadratic birational self maps of P2

C.
In [Ghy93] Ghys showed that any nilpotent subgroup of Diffω(S2) is metabelian; as a con-

sequence he got that if Γ is a subgroup of finite index of SL(n,Z), n ≥ 4, then any morphism
from Γ into Diffω(S2) has finite image. In the same spirit the nilpotent subgroups of the plane
Cremona group are described in the fourth section: if Γ is a strongly nilpotent group of length
> 1, then either G is metabelian up to finite index, or G is a torsion group. As a consequence
as soon as n≥ 5 no subgroup of SL(n,Z) of finite index embeds into Bir(P2

C).
The description of centralizers of discrete dynamical systems is an important problem in

real/complex dynamics. Julia ([Jul22, Jul68]) then Ritt ([Rit23]) show that the set

Cent(φ) =
{

ψ : P1
C→ P1

C |ψ◦φ = φ◦ψ
}

of rational functions that commute to a rational function φ coincide in general (1) with
{

φn
0 |n∈

N
}

where φ0 is an element of Cent(φ). In the 60’s Smale considered generic diffeomorphisms
φ of compact manifolds and asked if its centralizer coincides with

{
φn |n ∈ Z

}
. Many mathe-

maticians have considered this question (for instance [BCW09, Pal78, PY89a, PY89b]). The
fifth section deals with centralizers of elliptic birational maps, Jonquières twists and Halphen
twists.

(1)except monomial maps z 7→ zk, Tchebychev polynomials, Lattès examples ...
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7.1. Uncountable maximal abelian subgroups of Bir(P2
C)

Let S be a complex compact surface. A foliation F on S is given by a family (χi)i of
holomorphic vector fields with isolated zero defined on some open cover (Ui)i of S. The
vector fields χi have to satisfy the following conditions: there exist gi j ∈ O∗(Ui ∩U j) such
that χi = gi jχ j on Ui ∩U j. Let us remark that a non-trivial meromorphic vector field on S
defines such a foliation.

Lemma 7.3 ([D0́6b]). — Let G be an uncountable abelian subgroup of Bir(P2
C). There exists

a rational vector field χ such that

ϕ∗χ = χ ∀ϕ ∈ G.

In particular G preserves a foliation.

Proof. — Since G is uncountable, there exists an integer d such that

Gd = G∩Bird(P2
C)

is uncountable. Hence the Zariski closure Gd of Gd in Bir≤d(P2
C) is an algebraic set of dimen-

sion ≥ 1. Consider a curve in Gd , i.e. a map

η : D→ Gd, t 7→ η(t).

Remark that elements of Gd are rational maps that commute. Let us define the rational vector
field χ at any m ∈ P2

Cr Ind(η(0)−1) by

χ(m) =
∂η(s)

∂s

∣∣∣
s=0

(
η(0)−1(m)

)
.

Let ϕ be an element of Gd . If we differentiate the equality

ϕη(s)ϕ−1(m) = η(s)(m)

with respect to s, m being fixed, one gets: ϕ∗χ = χ. In other words χ is invariant by the
elements of Gd , and so by any element of G.

As a result for any uncountable abelian subgroup G of Bir(P2
C), there exists a foliation on P2

C
invariant by G. Brunella, McQuillan and Mendes have classified, up to birational equivalence,
singular holomorphic foliations on projective, compact, complex surfaces ([Bru15, McQ98,
Men00]). If S is a projective surface endowed with a foliation F , we denote by Bir(S,F )

(resp. Aut(S,F )) the group of birational maps (resp. holomorphic maps) of S preserving the
foliation F . In general Bir(S,F ) coincides with Aut(S,F ) and is finite. In [CF03] the authors
dealt with the opposite case and got a classification.
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Theorem 7.4 ([CF03]). — Let F be a foliation on S such that Aut(X ,ϕ∗F ) ( Bir(X ,ϕ∗F )

for any birational map ϕ : X 99K S. Then, up to conjugacy, there exists an element of infinite
order in Bir(S,F ) and

� either F is a rational fibration,
� or up to a finite cover there exist some integers p, q, r, s such that

Bir(P2
C,F ) =

{
(z0,z1) 99K (z

p
0zq

1,z
r
0zs

1), (z0,z1) 7→ (αz0,βz1) |α, β ∈ C∗
}
.

Before stating the opposite case Aut(S,F ) infinite, let us give some definitions. Let Λ be a

lattice in C2; it induces a complex torus T = C
2
�Λ of dimension 2. For instance the product

of an elliptic curve by itself is a complex torus. An affine map ψ that preserves Λ induces an
automorphism of the torus T. If the linear part of ψ is of infinite order, then

� either the linear part of ψ is hyperbolic and ψ induces an Anosov automorphism that
preserves two linear foliations;
� or the linear part of ψ is unipotent and ψ preserves an elliptic fibration.

Sometimes there is a finite automorphism group of T normalized by ψ. Denote by T̃�G the

desingularization of T�G. The automorphism induced by ψ on T̃�G preserves

� the foliations induced the stable and unstable foliations preserved by ψ when ψ is hyper-
bolic;
� an elliptic fibration when the linear part of ψ is unipotent.

If G =
{

id, (z0,z1) 7→ (−z0,−z1)
}

we say that T̃�G is a Kummer surface; otherwise T̃�G is a
generalized Kummer surface .

Theorem 7.5 ([CF03]). — Let F be a singular holomorphic foliation on a projective sur-
face S. Assume that Aut(S,F ) is infinite. Then Aut(S,F ) contains at least one element ϕ of
infinite order and one of the following holds:

� F is invariant by an holomorphic vector field;
� F is an elliptic fibration;
� the surface S is a generalized Kummer surface, ϕ can be lifted to an Anosov automor-

phism ϕ̃ of the torus and F is the projection on S of the unstable or stable foliation
of ϕ̃.

Remarks 7.6. — � The foliations invariant by an holomorphic vector field are described
in [CF03, Proposition 3.8].
� The last two cases are mutually exclusive.

Using these two statements one can prove the following one:
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Theorem 7.7 ([D0́6b]). — Let G be an uncountable maximal abelian subgroup of Bir(P2
C).

Then:

� either G has an element of finite order;
� or G is up to conjugacy a subgroup of the Jonquières group.

Idea of the proof. — Assume first that Aut(X ,φ∗F ) ( Bir(X ,φ∗F ) for any birational map
φ : X 99K S. Then according to Theorem 7.4 either G preserves a rational fibration, and then G
is up to birational conjugacy contained in the Jonquières group; or G is up to conjugacy and
finite cover a subgroup of{

(z0,z1) 99K (z
p
0zq

1,z
r
0zs

1), (z0,z1) 7→ (αz0,βz1) |α, β ∈ C∗, α = α
p
β

q, β = α
r
β

s}.
If G is conjugate to the diagonal group D=

{
(z0,z1) 7→ (αz0,βz1) |α, β∈C∗

}
, then G contains

elements of finite order. Otherwise since G is uncountable it can not be reduced to

〈(z0,z1) 99K (z
p
0zq

1,z
r
0zs

1)〉.

Therefore, there exists a non-trivial element (z0,z1) 7→ (λz0,µz1) in G such that λ = λpµq and
µ = λrµs. For any ` the map (z0,z1) 7→ (λ`z0,µ`z1) satisfies these equalities, so belongs to G.

Consider ` such that λ` = i; then µ` = eiπ 1−p
2q is also a root of unity and (z0,z1) 7→ (λ`z0,µ`z1)

is thus an element of finite order of G. More precisely G contains periodic elements of any
order.

Suppose now that there exist a surface S and a birational map ψ : S 99K P2
C such that

Aut(S,ψ∗F ) = Bir(S,ψ∗F ). According to Theorem 7.5

� either ψ∗F is invariant by an holomorphic vector field on S;
� or ψ∗F is an elliptic fibration.

Since G is uncountable the last eventuality can not occur ([BHPVdV04]). Let us thus
assume that ψ∗F is invariant by an holomorphic vector field on S. According to [CF03] one
can assume up to conjugacy that G is a subgroup of Aut(S̃) where S̃ is a minimal model of
S. But minimal rational surfaces are P2

C, P1
C×P1

C and the Hirzebruch surfaces Fn, n≥ 2, and
their automorphisms groups are known (see Chapter 3).

The description of the uncountable maximal abelian subgroups of minimal rational surfaces
gives:

Proposition 7.8 ([D0́6b]). — Let S be a minimal rational surface. Let G be an uncountable
abelian subgroup of Aut(S) maximal in Bir(S). Then:

� either G contains an element of finite order,
� or G coincides with

{
(z0,z1) 7→ (z0 +P(z1),z1) |P ∈ C[z1], degP≤ n

}
,

� or G =
{
(z0,z1) 7→ (z0 +α,z1 +β) |α, β ∈ C

}
.
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A study of the uncountable maximal abelian subgroups of the Jonquières group allows to
refine Theorem 7.7 as follows:

Theorem 7.9 ([D0́6b]). — Let G be an uncountable maximal abelian subgroup of the plane
Cremona group. Then up to conjugacy:

� either G contains an element of finite order,
� or G =

{
(z0,z1) 99K (z0 +a(z1),z1) |a ∈ C(z1)

}
,

� or G =
{
(z0,z1) 7→ (z0 +α,z1 +β) |α, β ∈ C

}
,

� or any subgroup of Bir(P2
C) acting by conjugacy on G is, up to finite index, solvable.

7.2. Description of the automorphisms group of the Cremona group

Let us give an idea of the proof of Theorem 7.2. The description of uncountable maximal
abelian subgroups of Bir(P2

C) yields to

Corollary 7.10 ([D0́6b]). — Let ϕ be an automorphism of Bir(P2
C). Set

Ja =
{
(z0,z1) 99K (z0 +a(z1),z1) |a ∈ C(z1)

}
.

Up to birational conjugacy ϕ(Ja) = Ja and (z0,z1) 7→ (z0 +1,z1) is invariant by ϕ.

Let us consider

T1 =
{
(z0,z1) 7→ (z0 +α,z1) |α ∈ C

}
, T2 =

{
(z0,z1) 7→ (z0,z1 +β) |β ∈ C

}
,

and

D1 =
{
(z0,z1) 7→ (αz0,z1) |α ∈ C∗

}
, D2 =

{
(z0,z1) 7→ (z0,βz1) |α ∈ C

}
.

Proposition 7.11 ([D0́6b]). — Let ϕ be an automorphism of Bir(P2
C). Assume that ϕ(Ja) = Ja

and (z0,z1) 7→ (z0 +1,z1) is invariant by ϕ. Then up to birational conjugacy:

� ϕ(Ja) = Ja,
� (z0,z1) 7→ (z0 +1,z1) is invariant by ϕ,
� ϕ(T1) = T1 and ϕ(T2) = T2,
� ϕ(D1) = D1 and ϕ(D2) = D2.

As a consequence an automorphism of Bir(P2
C) induces two automorphisms of the group

Aff(C) of affine maps of the complex line.

Lemma 7.12. — Let ϕ be an automorphism of Aff(C). Then ϕ is the composition of an inner
automorphism and an automorphism of the field C.
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Sketch of the proof. — The maximal abelian subgroups of Aff(C) are the group of translations

T =
{

z 7→ z+β |β ∈ C
}

and the groups of affine maps that preserve a point

Dz0 =
{

z 7→ α(z− z0)+ z0 |α ∈ C∗
}
.

Since T does not contain element of finite order, ϕ sends T onto T. In other words there exists
an additive bijection κ2 : C→C such that ϕ(z+β) = z+κ2(β). Up to conjugacy by an element
of T one can assume that ϕ(D0) = D0. In other words there exists a multiplicative bijection
κ1 : C∗→ C∗ such that ϕ(αz) = κ1(α)z. On the one hand

ϕ
(
z 7→ αz+α

)
= ϕ

(
z 7→ z+α

)
◦ϕ
(
z 7→ αz

)
=
(
z 7→ κ1(α)z+κ2(α)

)
and on the other hand

ϕ
(
z 7→ αz+α

)
= ϕ

(
z 7→ αz

)
◦ϕ
(
z 7→ z+1

)
=
(
z 7→ κ1(α)z+κ1(α)κ2(1)

)
.

Hence for any α the equality z 7→ κ1(α)z+κ2(α) = z 7→ κ1(α)z+κ1(α)κ2(1) holds. Since
µ = κ2(1) is non-zero, κ2 is additive and multiplicative. As a result κ2 is an isomorphism of
the field C and

ϕ
(
z 7→ αz+β) =

(
z 7→ κ1αz+ κ2β

)
=

(
z 7→ κ1αz+µκ1β

)
=

(
z 7→ κ1

(
αz+ κ

−1
1 µβ

))
=

(
z 7→ κ1

(
(κ
−1
1 µz)◦ (αz+β)◦ (κ1µz)

))
=

(
z 7→ κ1

(
(κ1µz)−1 ◦ (αz+β)◦ (κ1µz)

))
.

Sketch of the proof of Theorem 7.2. — Proposition 7.11 and Lemma 7.12 imply that for any
α, β in C∗, for any γ, δ in C one has

ϕ
(
(z0,z1) 7→ (αz0 + γ,βz1 +δ)

)
=
(
(z0,z1) 7→ (κ1αz0 +µκ1γ,κ2βz1 +η

κ2δ)
)

where η, µ are two non-zero complex numbers and κ1, κ2 two automorphisms of the field C.
Since (z0,z1) 7→ (z0 + z1,z1) and (z0,z1) 7→ (αz0,αz1) commute their image by ϕ also, and so
κ1 = κ2. As a consequence up to conjugacy by an inner automorphism and an automorphism
of the field C, the groups

T =
{
(z0,z1) 7→ (z0 +α,z1 +β) |α, β ∈ C

}
and

D =
{
(z0,z1) 7→ (αz0,βz1) |α, β ∈ C∗

}
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are pointwise invariant. Then one can check that the involutions (z0,z1) 7→
(

z0,
1
z1

)
and

(z0,z1) 7→ (z1,z0) are invariant by ϕ. But the group generated by T, D, (z0,z1) 7→
(

z0,
1
z1

)
and (z0,z1) 7→ (z1,z0) contains PGL(3,C). Furthermore

σ2 =

((
(z0,z1) 7→

(
z0,

1
z1

))
◦ ((z0,z1) 7→ (z1,z0))

)2

hence ϕ(σ2) = σ2. We conclude thanks to the Noether and Castelnuovo Theorem.

Corollary 7.13 ([D0́6b]). — An isomorphism of the semi-group of rational self maps of P2
C is

inner up to the action of an automorphism of the field C.

In the spirit of the result of Filipkiewicz (Theorem 7.1) one has:

Corollary 7.14 ([D0́6b]). — Let S be a complex projective surface. Let ϕ be an isomorphism
between Bir(S) and Bir(P2

C). There exist a birational map ψ : S 99K P2
C and an automorphism

of the field C such that

ϕ(φ) = κ(ψ◦φ◦ψ
−1) ∀φ ∈ Bir(S).

Corollary 7.15 ([D0́6b]). — The automorphism group of C(z0,z1) is isomorphic to the auto-
morphisms group of Bir(P2

C).

Remark 7.16. — According to [Bea07] the groups Bir(Pn
C) and Bir(P2

C) are isomorphic if
and only if n = 2.

Note that there is no description of Aut(Bir(Pn
C)) for n ≥ 3. Nevertheless there are two

results in that direction:
� the first one is

Theorem 7.17 ([D1́5b]). — Let ϕ be an automorphism of Bir(Pn
C); there exist an auto-

morphism κ of the field C, and a birational self map ψ of Pn
C such that

ϕ(φ) = κ(ψ◦φ◦ψ
−1) ∀φ ∈ G(n,C) = 〈σn, PGL(n+1,C)〉.

� the second one is

Theorem 7.18 ([Can14]). — Let V be a smooth connected complex projective variety
of dimension n. Let r be a positive integer and let ρ : Aut(Pr

C)→ Bir(V ) be an injective
morphism of groups. Then n≤ r.

Furthermore if n = r, there exist a field morphism κ : C→ C and a birational map
ψ : V 99K Pn

C such that
� either ψ◦ρ(A)◦ψ−1 = κA for all A ∈ Aut(Pn

C),
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� or ψ◦ρ(A)◦ψ−1 = (κA)∨ for all A ∈ Aut(Pn
C).

In particular V is rational. Moreover κ is an automorphism of C if ρ is an isomorphism.

Before giving an idea of the proof of this last result let us state two corollaries of it. The
first shows that the Cremona groups Bir(Pn

C) are pairwise non-isomorphic, thereby solving an
open problem for n≥ 4.

Corollary 7.19 ([Can14]). — Let n and k be natural integers. The group Bir(Pn
C) embeds into

Bir(Pk
C) if and only if n≤ k.

In particular Bir(Pn
C) is isomorphic to Bir(Pk

C) if and only if n = k.

The second characterizes rational varieties V by the structure of Bir(V ), as an abstract group:

Corollary 7.20 ([Can14]). — Let V be an irreducible complex projective variety of dimen-
sion n. The following properties are equivalent:

� V is rational,
� Bir(V ) is isomorphic to Bir(Pn

C) as an abstract group,
� there is a non-trivial morphism from PGL(n+1,C) to Bir(V ).

The strategy that leads to the proof of Theorem 7.18 is similar to the proof of Theorem 7.2
but requires several new ideas:

� Weil’s regularization Theorem (Theorem 3.56), that transforms a group of birational
maps of V with uniformly bounded degrees into a group of automorphisms of a new
variety by a birational change of variables;
� Epstein and Thurston work on nilpotent Lie subalgebras in the Lie algebra of smooth

vector fields of a compact manifold ([ET79]).

7.3. One-parameter subgroups of Bir(P2
C)

7.3.1. Description of 1-parameter subgroups of quadratic birational maps of P2
C. — A

germ of flow in Bir≤2(P2
C) is a germ of holomorphic application t 7→ φt ∈ Bir≤2(P2

C) such that{
φt+s = φt ◦φs

φ0 = id

Since a germ of flow can be generalized we speak about flow. The set of lines blown down
by the flow φt is a germ of analytic sets in the Grassmaniann of lines in P2

C, i.e. in the dual
space (P2

C)
∨. Similarly the set of indeterminacy points of the φt is a germ of analytic sets

of P2
C.
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We call family of contracted curves a continuous map (indeed an analytic one) defined over
a germ of closed sector ∆ of vertex 0 in C

D : ∆→ (P2
C)
∨

such that for any t ∈ ∆ the lines Dt coincide with a line D(t) blown down by φt .
Similarly a family of indeterminacy points is a continuous map t 7→ pt defined on a sector ∆

such that any pt is an indeterminacy point of φt .
Let φt be a flow. Let Dt (resp. pt) be a family of curves blown down by φt (resp. a family

of indeterminacy points of φt). If Dt (resp. pt) is independent of t, the family is unmobile ,
otherwise it is mobile .

A rational vector field χ on P2
C is rationally integrable if its flow is a flow of birational maps.

A germ of flow in Bir2(P2
C) is the flow of a rationally integrable vector field χ = ∂φt

∂t

∣∣∣
t=0

called infinitesimal generator of φt . To this vector field is associated a foliation whose leaves
are ”grosso modo” the trajectories of χ. Recall that a fibration by lines L of P2

C is given by

λ`1 +µ`2 = 0

where `1, `2 are linear forms that are not proportional. The base-point is the intersection
point p of all these lines. We also say that L is a pencil of lines through p, or L is a foliation
by lines singular at p. Recall that a birational self map of P2

C that preserves a rational fibration
belongs up to birational conjugacy to J .

Let φt be a germ of flow in Bir2(P2
C). Then the following properties hold:

� assume that φt blows down a mobile line, then φt preserves a fibration by lines, more
precisely the family of contracted lines belongs to a fibration invariant by any element of
the flow ([CD13, Proposition 2.5, Remark 2.6]);
� there is at most one unmobile line blown down by φt (see [CD13, Lemma 2.10]);
� if φt blows down a unique line that is moreover unmobile, then there exists an invariant

affine chart C2 such that φt|C2 : C2→C2 is polynomial for any t (see [CD13, Proposition
2.12]);
� assume that there exists an invariant affine chart C2 such that φt|C2 : C2 → C2 is poly-

nomial for any t. Then φt preserves a pencil of lines. Furthermore either φt is affine, or
there exists a normal form for φt up to linear conjugacy ([CD13, Proposition 2.15]).

Combining all these properties one can state the following result:

Theorem 7.21 ([CD13]). — A germ of flow in Bir2(P2
C) preserves a fibration by lines.

Let φt be a quadratic birational flow, and let χ be its infinitesimal generator. A strong
symmetry Y of χ is a rationally integrable vector field of flow ψs such that
� φt and ψs commute, i.e. [χ,Y ] = 0,



7.3. ONE-PARAMETER SUBGROUPS OF Bir(P2
C) 143

� ψs ∈ Bir2(P2
C) for all s,

� χ and Y are not C-colinear.

Let φt be a flow in Bir2(P2
C), and let χ (resp. Fχ) be the associated vector field (resp.

foliation). We denote by 〈φt〉
Z ⊂ Bir2(P2

C) the Zariski closure of 〈φt〉 in Bir2(P2
C). Let G(χ)

be the maximal algebraic abelian subgroup of Bir2(P2
C) that contains 〈φt〉

Z
.

Theorem 7.22 ([CD13]). — Let φt be a germ of flow in Bir2(P2
C), and let χ be its infinitesimal

generator.

� If dimG(χ) = 1, then Fχ is a rational fibration.
� If dimG(χ)≥ 2, then Fχ has a strong symmetry.

In both cases Fχ is defined by a rational closed 1-form.

Proof. — Let us prove the first assertion. If dimG(χ) = 1, then 〈φt〉
Z

is the component of
G(χ) that contains the identity. This group viewed as a Lie group is isomorphic to C, or C∗, or
C�Λ. According to Theorem 7.21 the group 〈φt〉

Z
preserves a fibration by lines; let us assume

that this fibration is given by z1 = constant. One yields a morphism

π : 〈φt〉
Z → PGL(2,C)

that describes the action of φt on the fibers.
If π is trivial (i.e. if the fibration is preserved fiberwise), then Fχ =

{
z1 = constant

}
and

the result holds.
Otherwise 〈φt〉

Z
is not isomorphic to C�Λ because there is no C�Λ among the subgroup

of PGL(2,C). Hence the topological closure of 〈φt〉
Z

in P17
C ' Rat2 is a rational curve. But

according to Darboux a foliation of P2
C whose the closure of all leaves are algebraic curves has

a non-constant rational first integral ([Jou79]). In our case the curves are rational, so Fχ is a
rational fibration.

Let us now prove the second assertion. Assume dimG(χ) ≥ 2. One can find a germ of
1-parameter group ψs in G(χ) not contained in 〈φt〉. Let Y be the infinitesimal generator of ψs.
The vector fields χ and Y commute and are not C-colinear. Let us consider ω a rational 1-form
that define Fχ, i.e. iχω = 0. If χ and Y are generically independent, then Ω = ω

iY ω
is closed

and define Fχ. If χ and Y are not generically independent, then Y = f χ with f rational and
non-constant. Since [χ,Y ] = 0 one has χ( f ) = 0. As a result d f defines Fχ and is closed.

Remark 7.23. — The last two statements can be generalized as follows:
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Theorem 7.24 ([CD13]). — Let φt be a germ of flow in Birn(P2
C), and let χ be its infinitesimal

generator. Denote by G(χ) the abelian maximal algebraic group contained in Birn(P2
C) and

that contains 〈φt〉
Z
. Then

� if dimG(χ) = 1, then Fχ is either a rational fibration or an elliptic fibration;
� if dimG(χ)≥ 2, then χ has a strong symmetry.

In both cases Fχ is defined by a closed rational 1-form.

Theorem 7.25 ([CD13]). — Any germ of birational flow in Birn(P2
C) preserves a rational

fibration.

7.3.2. A few words about the classification of germs of quadratic birational flows. —
Let φt be a germ of flow in Bir2(P2

C); then φt preserves a fibration by lines ([CD13, Theorem
2.16]). In other words up to linear conjugacy

φt : (z0,z1) 99K

(
A(z1, t)z0 +B(z1, t)
C(z1, t)z0 +D(z1, t)

,ν(z1, t)
)

with

� ν(z1, t) = z1, or z1 + t, or eβtz1;
� A, B, C, D are polynomials in z1 and degz1

A≤ 1, degz1
B≤ 2, degz1

C = 0, degz1
D≤ 1,

� B(z1,0) =C(z1,0) = 0 and A(z1,0) = D(z1,0).

The infinitesimal generator χ = ∂φt
∂t

∣∣∣
t=0

of φt can be written

αz2
0 + `(z1)z0 +P(z1)

az1 +b
∂

∂z0
+ ε(z1)

∂

∂z1

with α, a, b ∈ C, `, P ∈ C[z1], deg` = 1, degP = 2 and up to linear conjugacy and scalar
multiplication ε ∈ {0, 1, z1}.

The above vector fields are classified up to automorphisms of P2
C and renormalization in

[CD13, Chapter 2, §2]; such vector fields are detected via the following methods:

� compute explicitely the flow by integration;
� or degenerate χ on another vector field χ0 that is not rationally integrable;
� or show that a birational model of Fχ has an isolated degenerate resonnant singular point

(one and only one non-zero eigenvalue), and so Fχ has no rational first integral. Then
prove that there is no strong symmetry hence χ is not rationally integrable (Theorem
7.22).
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7.4. Nilpotent subgroups of the Cremona group

In [D0́7b] are described the nilpotent subgroups of the plane Cremona group:

Theorem 7.26 ([D0́7b]). — Let N be a nilpotent subgroup of Bir(P2
C). Assume that, up to

finite index, N is not abelian. Then

� either N is a torsion group;
� or N is metabelian up to finite index, i.e. [N,N] is abelian up to finite index.

Examples 5. — Let α and β be two non zero complex numbers; the group

〈(z0,z1) 7→ (z0 +αβ,z1), (z0,z1) 7→ (z0 +αz1,z1), (z0,z1) 7→ (z0,z1 +β)〉

is a non-abelian, non-finite and nilpotent subgroup of Bir(P2
C).

If a belongs to C(z1), then

〈(z0,z1) 7→ (z0 +1,z1), (z0,z1) 7→ (z0 + z1,z1), (z0,z1) 7→ (z0 +a(z1),z1−1)〉,

is a non-abelian, non-finite and nilpotent subgroup of Bir(P2
C).

Corollary 7.27 ([D0́7b]). — Let G be a group. Assume that G contains a subgroup N such
that

� N is of nilpotent class > 1,
� N has no torsion,
� N is not metabelian up to finite index.

Then there is no faithfull representation of G into Bir(P2
C).

Remark 7.28. — Let G be a nilpotent group of nilpotent class n. Take f in G, g in C(n−2)G
and consider h = [ f ,g] ∈C(n−1)G. Since G is of nilpotent class n, then [ f ,h] = [g,h] = id. In
other words any nilpotent group contains a distorted element.

According to Remark 7.28 and Lemma 5.18 one has:

Proposition 7.29. — Let N be a nilpotent subgroup of the plane Cremona group. It contains
a distorted element which is elliptic or parabolic.

Idea of the proof of Theorem 7.26. — Take G ⊂ Bir(P2
C) a nilpotent subgroup of class k

which is not up to finite index of nilpotent class k− 1. Denote by ΣG the set of finitely
generated nilpotent subgroups of G that are, up to finite index, not abelian. Then

� either any element of ΣG is finite and G is a torsion group;
� or ΣG contains a non-finite element H.

Claim 7.30 ([D0́6a]). — The group H preserves a fibration F that is rational or elliptic.
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Any element of C(k−1)H preserves fiberwise F . Let φ be in C(k−1)H. As [φ,G] = id, then

a) either φ preserves fiberwise two distinct fibrations;
b) of G preserves fiberwise F .

If a) holds, then φ is of finite order; if it is the case for any φ ∈ C(k−1)H, then H is, up to
finite index, of nilpotent class k−1: contradiction.

If b) holds, then G is, up to finite index, metabelian. Let us detail why when F is rational. In
that case G is, up to conjugacy, a subgroup of the Jonquières group J . Let pr2 be the projection
J → PGL(2,C). A non-finite nilpotent subgroup of PGL(2,k), where k = C or C(z1), is up
to finite index abelian. The group pr2(G) is thus, up to finite index, abelian. Consequently we
can assume that pr2(C

(i)G) = {id} for 1≤ i≤ k. In particular C(1)G is a nilpotent subgroup of
PGL(2,C(z1)) and as a result is, up to finite index, abelian.

Idea of the proof of the Claim 7.30. — Let us recall that H is a non-finite nilpotent subgroup
of Bir(P2

C) with the following properties:

� H is finitely generated,
� H is nilpotent of class k > 0,
� H is not, up to finite index, of nilpotent class k−1.

Assume C(k−1)H is not a torsion group. Then H preserves a fibration that is rational or
elliptic. According to Lemma 5.18 a non-trivial element of C(k−1)G either preserves a unique
fibration F that is rational or elliptic, or is an elliptic birational map. We have the following
alternative:

a) either C(k−1)G contains an element h that preserves a unique fibration F ,
b) or any element of C(k−1)Gr{id} is elliptic.

Let us look at these eventualities:

a) Since [h,G] = {id} any element of G preserves F .
b) The group C(k−1)G is finitely generated and abelian. Let

{
a1, a2, . . . , an

}
be a genera-

ting set of C(k−1)G. The ai’s are elliptic maps, so there exist a surface Si, a birational
map ηi : Si 99K P2

C and an integer ki > 0 such that η
−1
i ◦ aki

i ◦ηi belongs to the neutral
component Aut(Si)

0 of Aut(Si). In particular the ai’s fix any curve of negative self-
intersection, we can thus assume that Si is a minimal rational surface. A priori all the
Si are distinct. Nevertheless according to Proposition 2.12 there exist a minimal rational
surface S, a birational map η : S 99K P2

C and an integer k > 0 such that for any 1≤ i≤ n
the map η−1 ◦ak

i ◦η belongs to the neutral component Aut(S)0 of Aut(S).
Minimal rational surfaces are P2

C, P1
C×P1

C and Hirzebruch surfaces Fn, n≥ 2. Using
� on the one hand the description of the automorphisms groups of minimal rational

surfaces (see Chapter 3),
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� and on the other hand the fact that if K is an algebraic Lie subgroup of GL(n,C),
then the semi-simple and nilpotent parts of any element of K belong to K,

we prove that G is, up to finite index and up to conjugacy, contained in the Jonquières
group J (see [D0́7b]).

It remains to consider the case ”C(k−1)G is a torsion group”; the ideas are similar (see [D0́7b,
Proposition 4.5]).

7.5. Centralizers in Bir(P2
C)

7.5.1. Centralizers of elliptic birational maps. — We will focus on the case of birational
self maps of P2

C of infinite order. Note for instance that for birational self map of P2
C of

finite order the situation is wild: consider for instance a birational involution φ of P2
C. If φ is

conjugate to an automorphism of P2
C, then the centralizer of φ in Bir(P2

C) is uncountable but
if φ is conjugate to a Bertini (or a Geiser) involution, then the centralizer is finite ([BPV09]).

According to [BD15] an elliptic birational self map of P2
C of infinite order is conjugate to

an automorphism of P2
C which restricts to one of the following automorphisms on some open

subset isomorphic to C2:

� (z0,z1) 7→ (αz0,βz1) where α, β belong to C∗ and where the kernel of the group homo-
morphism

Z2→ C2 (i, j) 7→ α
i
β

j

is generated by (k,0) for some k ∈ Z;
� (z0,z1) 7→ (αz0,z1 +1) where α ∈ C∗.

We can describe the centralizers of such maps; let us start with the centralizer of (z0,z1) 7→
(αz0,βz1) where α, β belong to C∗ and where the kernel of the group homomorphism

Z2→ C2 (i, j) 7→ α
i
β

j

is generated by (k,0) for some k ∈ Z. Recall that PGL(2,C) is the group of automorphisms
of P1

C or equivalently the group of Möbius transformations

z0 99K
az0 +b
cz0 +d

A direct computation implies the following: for any α ∈ C∗

{
η ∈ PGL(2,C) |η(αz0) = αη(z0)

}
=


PGL(2,C) if α = 1{

z0 99K γz±1
0 |γ ∈ C∗

}
if α =−1{

z0 7→ γz0 |γ ∈ C∗
}

if α2 6= 1
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Lemma 7.31. — Let us consider φ : (z0,z1) 7→ (αz0,βz1) where α, β belongs to C∗ and where
the kernel of the group homomorphism

Z2→ C2 (i, j) 7→ α
i
β

j

is generated by (k,0) for some k ∈ Z.
The centralizer of φ in Bir(P2

C) is{
(z0,z1) 99K (η(z0),z1a(zk

0)) |a ∈ C(z0), η ∈ PGL(2,C), η(αz0) = αη(z0)
}
.

Proof. — Let ψ : (z0,z1) 99K (ψ0(z0,z1),ψ1(z0,z1)) be a birational self map of P2
C that com-

mutes with φ. Then
ψ0(αz0,βz1) = αψ0(z0,z1) (7.5.1)

and
ψ1(αz0,βz1) = βψ1(z0,z1) (7.5.2)

hold. Denote by φ∗ the linear automorphism of the C-vector space C[z0,z1] given by

φ
∗ : ϕ(z0,z1) 7→ ϕ(αz0,βz1).

Let us write ψi as Pi
Qi

for i = 0, 1 where Pi, Qi are polynomials without common factor. Note
that P0, P1, Q0, Q1 are eigenvectors of φ∗, i.e. any of the Pi, Qi is a product of a monomial in
z0, z1 with an element of C[zk

0]. Using (7.5.1) and (7.5.2) we get that{
ψ0(z0,z1) = z0a0(zk

0)

ψ1(z0,z1) = z1a1(zk
0)

But ψ is birational, so ψ0 belongs to PGL(2,C). Furthemore ψ0 satisfies ψ0(αz0) = αψ0(z0).

Let us now deal with the other possibility:

Lemma 7.32. — Let φ be the automorphism of P2
C given by

φ : (z0,z1) 7→ (αz0,z1 +β)

where α ∈ C∗, β ∈ C. The centralizer of φ in Bir(P2
C) is{

(z0,z1) 99K (η(z0),z1 +a(z0)) |η ∈ PGL(2,C), η(αz0) = αη(z0), a ∈ C(z0), a(αz0) = a(z0)
}

Proof. — After conjugacy by (z0,z1) 7→ (z0,βz1) we can assume that β = 1.
If ψ : (z0,z1) 99K (ψ0(z0,z1),ψ1(z0,z1)) is a birational map that commutes with φ, then

ψ0(αz0,z1 +1) = αψ0(z0,z1) (7.5.3)

and
ψ1(αz0,z1 +1) = ψ1(z0,z1)+1 (7.5.4)



7.5. CENTRALIZERS IN Bir(P2
C) 149

From (7.5.3) and [Bla06a] we get that ψ0 only depends on z0. Hence ψ0 belongs to PGL(2,C)
and commutes with z0 7→ αz0. From (7.5.4) we get{

∂ψ1
∂z1

(αz0,z1 +1) = ∂ψ1
∂z1

(z0,z1)
∂ψ1
∂z0

(αz0,z1 +1) = 1
α

∂ψ1
∂z0

(z0,z1)

which again means that both ∂ψ1
∂z0

and ∂ψ1
∂z1

only depend on z0. Therefore, ψ1 : (z0,z1) 7→ γz1 +

b(z0) with γ ∈ C∗ and b ∈ C(z0). Then (7.5.4) can be rewritten

b(αz0) = b(z0)+1− γ

which implies that

∂b
∂z0

(αz0) =
1
α

∂b
∂z0

(z0)

and that z0
∂b
∂z0

(z0) is invariant under z0 7→ αz0.

If α is not a root of unity, then ∂b
∂z0

= δ

z0
for some δ ∈ C. As b is rational, δ is zero and b is

constant. As a consequence b(αz0) = b(z0)+1−γ implies γ= 1, that is ψ1 : (z0,z1) 99K z0+β.
Assume that α is a primitive k-th root of unity. The map ψ : (z0,z1) 99K (η(z0),γz1 +b(z0))

commutes with

φ
k : (z0,z1) 99K (z0,z1 + k)

if and only if γ(z1 + k)+ b(z0) = γz1 + b(z0)+ k, i.e. if and only if γ = 1. Then b(αz0) =

b(z0)+1−1 can be rewritten b(z0) = b(αz0).

7.5.2. Centralizers of Jonquières twists. — Recall that the subgroup J of Jonquières maps
is isomorphic to PGL(2,C(z1))oPGL(2,C). Let us denote by pr2 the morphism

pr2 : J → PGL(2,C).

Geometrically it corresponds to look at the action of φ∈ J on the basis of the invariant fibration
z1 = cst. The kernel of pr2, i.e. the elements of J which preserve the fibration z1 = cst
fiberwise, is a normal subgroup J0 ' PGL(2,C(z1)) of J . Up to a birational conjugacy an
element φ of J0 is of one of the following form ([D0́6b])

(z0,z1) 99K (z0 +a(z1),z1), (z0,z1) 99K (b(z1)z0,z1),

(z0,z1) 99K

(
c(z1)z0 +F(z1)

z0 + c(z1)
,z1

)
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with a ∈C(z1), b ∈C(z1)
∗, c ∈C(z1), F ∈C[z1] and F not a square. Still according to [D0́6b]

the non-finite maximal abelian subgroups of J0 are

Ja =
{
(z0,z1) 99K (z0 +a(z1)) |a ∈ C(z1)

}
Jm =

{
(z0,z1) 99K (b(z1)z0,z1) |a ∈ C(z1)

}
JF =

{
(z0,z1) 99K

(
c(z1)z0 +F(z1)

z0 + c(z1)
,z1

)
|a ∈ C(z1)

}
where F denotes an element of C[z1] which is not a square. Note that we can assume up to
conjugacy that F is a polynomial with roots of multiplicity 1.

If φ belongs to J0, let us denote by Ab(φ) the non-finite maximal abelian subgroup of J0 that
contains φ. Up to conjugacy

� either (z0,z1) 99K (z0 +a(z1),z1) and Ab(φ) = Ja;
� or (z0,z1) 99K (b(z1)z0,z1) and Ab(φ) = Jm;
� or (z0,z1) 99K

(
c(z1)z0+F(z1)

z0+c(z1)
,z1

)
and Ab(φ) = JF .

Proposition 7.33 ([CD12b]). — Let φ be an element of J0 that is a Jonquières twist. Then the
centralizer of φ in Bir(P2

C) is contained in J .

Proof. — Consider a birational self map ϕ : (z0,z1) 99K (ϕ0(z0,z1),ϕ1(z0,z1)) of P2
C that com-

mutes with φ. If ϕ does not belong to J , then ϕ1 = cst is a fibration invariant by φ distinct from
z1 = cst. Then φ is of finite order (Lemma 8.17): contradiction with the fact that φ is a Jon-
quières twist.

7.5.2.1. Centralizers of elements of Ja. — Note that elements of Ja are not Jonquières twists
but elliptic maps. Hence their centralizers are described in §7.5.1. Let us give some details. Let
φ : (z0,z1) 99K (z0 +a(z1),z1) be a non-trivial element of Ja (i.e. a 6≡ 0). Up to conjugacy by
(z0,z1) 99K (a(z1)z0,z1) one can assume that a≡ 1. The centralizer of (z0,z1) 99K (z0 +1,z1)

is isomorphic to JaoPGL(2,C) (see §7.5.1). Hence

Corollary 7.34. — The centralizer of a non-trivial element of Ja is isomorphic to Ja o
PGL(2,C).

7.5.2.2. centralizers of twists of Jm. — An element φ of Jm is a Jonquières twist if and only
if up to birational conjugacy

(z0,z1) 99K (a(z1)z0,z1)

with a ∈ C(z1)rC∗.
Remark that if a belongs toC∗, then (z0,z1) 99K (az0,z1) is an elliptic map whose centralizer

is described in §7.5.1. Assume now that φ ∈ Jm is a Jonquières twist. Let a ∈ C(z1)rC∗.
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Denote by
Stab(a) =

{
ν ∈ PGL(2,C) |a(ν(z1)) = a(z1)

±1}
the subgroup of PGL(2,C) and by

stab(a) =
{

ν ∈ PGL(2,C) |a(ν(z1)) = a(z1)
}

the normal subgroup of Stab(a). Consider also

stab(a) =
{
(z0,ν(z1)) |ν ∈ stab(a)

}
and Stab(a) the group generated by stab(a) and the elements

(z0,z1) 99K

(
1
z0
,ν(z1)

)
with ν ∈ Stab(a)r stab(a).

Proposition 7.35 ([CD12b]). — Let φ be a Jonquières twist in Jm. The centralizer of φ in
Bir(P2

C) is JmoStab(a); in particular it is a finite extension of Ab(φ) = Jm.

Remark 7.36. — One can write φ as (z0,z1) 99K (a(z1)z0,z1) with a ∈ C(z1)rC∗. For
generic a the group Stab(a) is trivial, so for generic φ ∈ Jm the centralizer of φ in Bir(P2

C)

coincides with Jm = Ab(φ).

Proof. — Write φ as (z0,z1) 99K (a(z1)z0,z1) with a ∈ C(z1)rC∗. If ψ commutes with φ,
then ψ preserves the fibration z1 = cst (Proposition 7.33), i.e.

ψ : (z0,z1) 99K

(
A(z1)z0 +B(z1)

C(z1)z0 +D(z1)
,ν(z1)

)
with

(
A B
C D

)
∈ PGL(2,C(z1)) and ν ∈ PGL(2,C). Since ψ and φ commute, the following

hold {
A(z1)C(z1)

(
1−a(ν(z1))

)
= 0

B(z1)D(z1)
(
1−a(ν(z1))

)
= 0

Therefore, AC ≡ 0 and BD≡ 0, i.e. B =C = 0 or A = D = 0.
Assume first that B =C = 0, i.e. that

ψ : (z0,z1) 99K (A(z1)z0,ν(z1)).

The condition φ◦ψ = ψ◦φ implies a(ν(z1)) = a(z1). As stab(a) is contained in the centralizer
of φ in Bir(P2

C) the map φ belongs to Jmo stab(a).

Suppose now that A = D = 0, i.e. that ψ : (z0,z1) 99K
(

B(z1)
z0

,ν(z1)
)

. The equality ψ◦ϕ =

ϕ ◦ψ implies that a(ν(z1)) = a(z1)
−1. But Stab(a) is contained in the centralizer of φ in

Bir(P2
C), so ψ belongs to JmoStab(a).
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7.5.2.3. Centralizers of elements of JF . — Let φ be a twist in JF . Let us write φ as

(z0,z1) 99K

(
c(z1)z0 +F(z1)

z0 + c(z1)
,z1

)
with c ∈C(z1)

∗ and F ∈C[z1] whose roots have multiplicity 1. The curve C of fixed points of
φ is given by z2

0 = F(z1). Since F has simple roots one has
C is rational when 1≤ degF ≤ 2;
the genus of C is 1 when 3≤ degF ≤ 4;
the genus of C is ≥ 2 when degF ≥ 5.

� Assume first that the genus of C is positive.

Lemma 7.37 ([CD12b]). — Let

φ : (z0,z1) 99K

(
c(z1)z0 +F(z1)

z0 + c(z1)
,z1

)
c ∈ C(z1)

∗, F ∈ C[z1]

be a twist in JF . The curve z2
0 = F(z1) and the fibers z1 =cst are invariant and there is no

other invariant curves.

Proof. — The map φ has two fixed points on a generic fiber which correspond to the
intersection of the fiber with the curve z2

0 = F(z1). Assume by contradiction that there is
an other invariant curve C . The curve C intersects a generic fiber in a finite number of
points that are invariant by φ. But a Möbius transformation that preserves more than three
points is periodic: contradiction with the fact that φ is a Jonquières twist, so of infinite
order.

Proposition 7.38 ([CD12b]). — Let

φ : (z0,z1) 99K

(
c(z1)z0 +F(z1)

z0 + c(z1)
,z1

)
c ∈ C(z1)

∗, F ∈ C[z1]

be a twist in JF . Assume that F has only simple roots and degF ≥ 3, i.e. the curve
z2

0 = F(z1) has genus ≥ 1. Then the centralizer of φ in Bir(P2
C) is a finite extension of

Ab(φ) = JF .

Proof. — Take α ∈C such that F(α) 6= 0. The restriction φ|z1=α of φ on the fiber z1 = α

has two fixed points: (±
√

F(α),α). Note that the centralizer Cent(φ) of φ in Bir(P2
C) is

contained in J (Proposition 7.33). We will focus on elements ψ of Cent(φ) that preserve
the fibration z1 =cst fiberwise, i.e. on the kernel of

pr2|Cent(φ) : Cent(φ)→ PGL(2,C).
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Remark that any ψ ∈ Cent(φ) preserves C and that the automorphism ψ|C of C pre-
serves

{
(±
√

F(α),α)
}

. Hence either ψ|C = id, that is ψ ∈ JF , or ψ|C is the involu-

tion (z0,z1) 7→ (−z0,z1) of C . Note that the restriction of τ : (z0,z1) 99K
(
−F(z1)

z0
,z1

)
to C is τ|C : (z0,z1) 99K (−z0,z1). Therefore, any birational self map of P2

C that pre-
serves both C and the fibration z1 =cst fiberwise belongs either to JF or to τ ◦ JF . But
τ◦φ◦ τ−1 = τ◦φ◦ τ = φ−1, so τ does not belong to Cent(φ). As a result kerpr2|Cent(φ) =

JF . Any ϕ ∈ Cent(φ) has to preserve C and the fibration z1 =cst; the restriction ϕ|C
of ϕ to C is an automorphism of C that commutes with the involution τ|C . The group
Autτ(C ) of such automorphisms is a finite group (more precisely if F is generic, then
Autτ(C ) = {id, τ|C}).

� Assume that C is rational.

Lemma 7.39 ([CD12b]). — Let φ ∈ JF be a Jonquières twist such that the curve C of
fixed points of φ is rational. Any element that commutes with φ belongs to J and preserves
C .

Proof. — The curve of fixed points of φ is given by z2
0 = F(z1). Let ψ be a birational self

map of P2
C such that φ ◦ψ = ψ ◦φ. According to Proposition 7.33 the map ψ preserves

the fibration z1 =cst. Either ψ contracts C or ψ preserves C . But C is transverse to
the fibration z1 =cst, so ψ can not contract C . As a result ϕ is an element of J that
preserves C .

Note that the case degF ≥ 3 has already been studied, so let us assume that degF ≤ 2.
Remark that if

φ : (z0,z1) 99K

(
c(z1)z0 + z1

z0 + c(z1)
,z1

)
and if

ϕ : (z0,z1) 99K

(
z0

γz1 +δ
,
αz1 +β

γz1 +δ

)
then ϕ−1 ◦φ◦ϕ is of the following type

(z0,z1) 99K

(
c̃(z1)z0 +(αz1 +β)(γz1 +δ)

z0 + c̃(z1)
,z1

)
.

In other words thanks to

(z0,z1) 99K

(
c(z1)z0 + z1

z0 + c(z1)
,z1

)



154 CHAPTER 7. UNCOUNTABLE SUBGROUPS OF THE CREMONA GROUP

we obtain all polynomials (αz1 +β)(γz1 + δ) of degree 2 with simple roots. So one can
suppose that degF = 1. Note that if degF = 1, i.e. F(z1) = αz1+β, then up to conjugacy
by (z0,z1) 7→

(
z0,

z1−β

α

)
one can assume that F : z1 7→ z1.

Lemma 7.40 ([CD12b]). — Consider the birational self map of P2
C given by

φ : (z0,z1) 99K

(
c(z1)z0 + z1

z0 + c(z1)
,z1

)
with c ∈ C(z1)

∗. If ψ is a birational self map of P2
C that commutes with φ, then

� either pr2(ψ) =
α

z1
with α ∈ C∗;

� or pr2(ψ) = ζz1 with ζ root of unity.

Furthermore pr2(ψ) belongs to the finite group stab
(

4c2(z1)
c2(z1)−z1

)
.

For any α non-zero consider the dihedral group

D∞(α) = 〈z1 7→
α

z1
, z1 7→ ζz1 |ζ root of unity〉

Note that all the D∞(α) are conjugate to D∞(1).

Proposition 7.41 ([CD12b]). — Let φ ∈ JF be a Jonquières twist such that the fixed
curve of φ is rational. Up to conjugacy we can assume that

φ : (z0,z1) 99K

(
c(z1)z0 + z1

z0 + c(z1)
,z1

)
with c ∈ C(z1)rC. The centralizer of φ in Bir(P2

C) is

Jz1o
(

stab
(

4c2(z1)

c2(z1)− z1

)
∩D∞(α)

)
for some α ∈ C∗.

Proof. — Denote by Cent(φ) the centralizer of φ in Bir(P2
C), and by C the fixed curve

of φ.
� Let us first assume that any element of Cent(φ) preserves the fibration z1 =cst

fiberwise. Then Cent(φ) = Jz1 .
� Assume now that there exists an element ψ in Cent(φ) that does not preserve the

fibration z1 =cst fiberwise. According to Lemma 7.40 either pr2(ψ) = ζz1 with ζ

root of unity, or pr2(ψ) =
α

z1
with α in C∗.

If pr2(ψ) = ζz1 with ζ root of unity, then

4c2(ζz1)

c2(ζz1)−ζz1
=

4c2(z1)

c2(z1)− z1
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i.e. c2(ζz1) = ζc2(z1). There exists υ such that υ2 = ζ and c(υ2z1) = υc(z1). Note
that ϕ : (z0,z1) 7→ (υz0,υ

2z1) belongs to Cent(φ). Remark that pr2(ψ ◦ϕ−1) = id,
so ψ◦ϕ−1 belongs to Jz1 .
If pr2(ψ) =

α

z1
, then

4c2
(

α

z1

)
c2
(

α

z1

)
− z1

=
4c2(z1)

c2(z1)− z1

i.e. c2
(

α

z1

)
= α

z2
1
c2(z1). There exists β in C such that β2 = α and c

(
β2

z1

)
= β

z1
c(z1).

Remark that the map (z0,z1) 7→
(

βz0
z1
, β2

z1

)
commutes with φ. The map ψ ◦ ϕ−1

belongs to Cent(φ) and preserves the fibration z1 =cst fiberwise; hence ψ ◦ϕ−1

belongs to Jz1 .

We thus have established:

Proposition 7.42 ([CD12b]). — The centralizer of a Jonquières twist φ that preserves fiber-
wise the fibration in the plane Cremona group is a finite extension of Ab(φ).

7.5.2.4. Centralizers of elements of J rJ0. — The description of the centralizers of elements
of J0 (Proposition 7.42) allows to describe, up to finite index, the centralizer of elements of J .
Generically these maps have a trivial centralizer ([CD12b]). A consequence of the study of
the centralizers of elements of J is:

Corollary 7.43 ([CD12b]). — The centralizer of a Jonquières twist is virtually solvable.

Zhao has refined this statement:

Proposition 7.44 ([Zha19]). — The centralizer of a Jonquières twist whose action on the
basis of the rational fibration is of infinite order is virtually abelian.

7.5.3. What about the others ? —

7.5.3.1. — Let φ be an Halphen twist. Up to birational conjugacy one can assume that φ is
an element of a rational surface S with an elliptic fibration and that this fibration is φ-invariant
(§2.3). Furthermore we can assume that there is no smooth curve of self-intersection −1 in
the fibers, i.e. that the fibration is minimal, and so that φ is an automorphism. The elliptic
fibration is the unique φ-invariant fibration ([DF01]). As a result the fibration is invariant by
all elements that commute with φ, and the centralizer of φ is contained in Aut(S).
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Since the fibration is minimal, the surface S is obtained by blowing up the complex projec-
tive plane in the nine base-points of an Halphen pencil and the rank of its Néron-Severi group
is equal to 10. The group Aut(S) can be embedded in the endomorphisms of H2(S,Z) for
the intersection form and preserves the class [KS] of the canonical divisor, that is the class of
the fibration. The dimension of the orthogonal hyperplane to [KS] is 9, and the restriction of
the intersection form on its hyperplane is semi-negative: its kernel coincides with Z[KS]. As
a consequence Aut(S) contains an abelian group of finite index with rank ≤ 8. We can thus
state:

Proposition 7.45 ([Giz80]). — Let φ be an Halphen twist. The centralizer of φ in Bir(P2
C)

contains a subgroup of finite index which is abelian, free and of rank ≤ 8.

7.5.3.2. — We finish the description of the centralizers of birational maps with the case of
loxodromic maps in §8.1.2.



CHAPTER 8

CONSEQUENCES OF THE ACTION OF THE
CREMONA GROUP ON AN INFINITE DIMENSIONAL

HYPERBOLIC SPACE

As we will see in this chapter one of the main techniques to better understand infinite sub-
groups of Bir(P2

C) is the construction of the action by isometries of the plane Cremona group
on an infinite dimensional hyperbolic space detailed in Chapter 2 and the use of results from
hyperbolic geometry and group theory.

In the first section we recall results of Demazure and Beauville that suggest that the plane
Cremona group behaves like a rank 2 group. We give an outline of the proof of the description
of the centralizer of a loxodromic element of Bir(P2

C). On the one hand it finishes the descrip-
tion of the centralizer of the elements of Bir(P2

C), on the other hand it suggests that Bir(P2
C)

behaves as a group of rank 1. We end this section by recalling the description of the mor-
phisms from a countable group with Kazhdan property (T ) into Bir(P2

C) which also insinuates
that Bir(P2

C) behaves as a group of rank 1.
In the second section we give an outline of the proofs of the description of elliptic subgroups

of Bir(P2
C), i.e. the subgroups of Bir(P2

C) whose all elements are elliptic: if G is such a group,
either G is a bounded subgroup of Bir(P2

C), or G is a torsion subgroup ([Ure]). It is thus
natural to describe torsion subgroups of Bir(P2

C). In the third section we give an outline of the
proof of the fact that if G is a torsion subgroup of Bir(P2

C), then G is isomorphic to a bounded
subgroup of Bir(P2

C); furthermore it is isomorphic to a subgroup of GL(48,C). Let us mention
the surprising fact that the proof uses model theory as Malcev already did in [Mal40].

The fourth section deals with Tits alternative and Burnside problem. We recall the Ping
Pong Lemma and give a sketch of the proof of the Tits alternative for the Cremona group, i.e.
the proof of

Theorem 8.1 ([Can11, Ure]). — Every subgroup of Bir(P2
C) either is virtually solvable, or

contains a non-abelian free group.
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One consequence is a positive answer to the Burnside problem for the Cremona group: every
finitely generated torsion subgroup of Bir(P2

C) is finite.
The study of solvable groups is a very old problem. For instance let us recall the Lie-Kolchin

theorem: any linear solvable subgroup is up to finite index triangularizable ([KM79]). Note
that the assumption ”up to finite index” is essential: for instance the subgroup

〈
(

1 0
1 −1

)
,

(
−1 1
0 1

)
〉

of PGL(2,C) is isomorphic to S3, so is solvable but is not triangularizable. The fifth section
dedicated to a sketch of the proof of the characterization of the solvable subgroups of the plane
Cremona group ([D1́5a, Ure]).

Let us recall a very old question, already asked in 1895 in [Enr95]:
”Tuttavia altre questioni d’indole gruppale relative al
gruppo Cremona nel piano (ed a più forte ragione in Sn,
n > 2) rimangono ancora insolute; ad esempio l’importante
questione se il gruppo Cremona contenga alcun sottogruppo
invariante (questione alla quale sembra probabile si debba
rispondere negativamente)”.

In 2013 Cantat and Lamy established that Bir(P2
k) is not simple as soon as k is algebraically

closed ([CL13]). Then in 2016 Lonjou proved that Bir(P2
k) is not simple over any field

([Lon16]). The sixth section is devoted to normal subgroups of Bir(P2
C) and the non-simplicity

of Bir(P2
C). Strategies of [CL13] and [Lon16] are evoked. A consequence of one result of

[Lon16] is the following property: the Cremona group contains infinitely many characteristic
subgroups ([Can13]).

Taking the results of the sixth section as a starting point Urech gives a classification of all
simple groups that act non-trivially by birational maps on complex compact Kähler surfaces.
In particular he gets the two following statements:

Theorem 8.2 ([Ure20]). — A simple group G acts non-trivially by birational maps on a ra-
tional complex projective surface if and only if G is isomorphic to a subgroup of PGL(3,C).

Theorem 8.3 ([Ure20]). — Let G be a simple subgroup of Bir(P2
C). Then

� G does not contain loxodromic elements;
� if G contains a parabolic element, then G is conjugate to a subgroup of J ;
� if G is an elliptic subgroup, then G is either a simple subgroup of an algebraic subgroup

of Bir(P2
C), or conjugate to a subgroup of G.

In the last section we give a sketch of the proof of these results.



8.1. A GROUP OF RANK 1.5 159

8.1. A group of rank 1.5

8.1.1. Rank 2 phenomenon. — Let k be a field. Consider a connected semi-simple algebraic
group G defined over k. Let Ψ : G→ Aut(G) be the mapping g 7→ Ψg where Ψg denotes the
inner automorphism given by

Ψg : G→ G, h 7→ ghg−1.

For each g in G one can define Adg to be the derivative of Ψg at the origin

Adg = (DΨg)id : g→ g

where D is the differential and g= TidG is the tangent space of G at the identity element of G.
The map

Ad: G→ Aut(g), g 7→ Adg

is a group representation called the adjoint representation of G. The k-rank of G is the maximal
dimension of a connected algebraic subgroup of G which is diagonalizable over k in GL(g).
Such a maximal diagonalizable subgroup is a maximal torus .

Theorem 8.4 ([Dem70, Enr93]). — Let Gm be the multiplicative group over C. Let r be an
integer.

IfGr
m embeds as an algebraic subgroup in Bir(Pn

C), then r≤ n. If r = n, then the embedding
is conjugate to an embedding into the group of diagonal matrices in PGL(n+1,C).

Remark 8.5. — Theorem 8.4 not only holds forC but also for any algebraically closed field k.

In other words the group of diagonal automorphisms Dn plays the role of a maximal torus
in Bir(Pn

C) and the Cremona group ”looks like” a group of rank n.
Furthermore Beauville has shown a finite version of Theorem 8.4 in dimension 2:

Theorem 8.6 ([Bea07]). — Let p≥ 5 be a prime.
If the abelian group

(
Z�pZ

)r
embeds into Bir(P2

C), then r ≤ 2. Moreover if r = 2, then

the image of
(
Z�pZ

)r
is conjugate to a subgroup of the group D2 of diagonal automorphisms

of P2
C.

Remark 8.7. — This statement not only holds for C but also for any algebraically closed
field k.

Let us give an idea of the proof. Consider a finite group G of Bir(P2
C). It can be realized as

a group of automorphisms of a rational surface S (see for instance [dFE02]). Moreover one
can assume that every birational G-equivariant morphism of S onto a smooth surface with a
G-action is an isomorphism. Then according to [Man66]
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� either G preserves a fibration π : S→ P1 with rational fibers,
� or Pic(S)G has rank 1.

In the first case G embeds in the group of automorphisms of the generic fibre P1
C(t) of π and

Beauville classified the p-elementary subgroups of Aut(P1
C(t)).

In the last case S is a del Pezzo surface and the group Aut(S) is well known. Beauville also
classified the p-elementary subgroups of such groups.

Combining this result of those recalled in Chapter 7, §7.5 Zhao get:

Theorem 8.8. — Let φ ∈ Bir(P2
C) be an element of infinite order. If the centralizer of φ is

not virtually abelian, then either φ is an elliptic map, or a power of φ is conjugate to an
automorphism of C2 of the form (z0,z1) 7→ (z0,z1 +1) or (z0,z1) 7→ (z0,βz1) with β ∈ C∗.

Remark 8.9. — This statement also holds for Bir(P2
k) where k is an algebraically closed field

([Zha19]).

8.1.2. Rank 1 phenomenon. — Generic elements of degree ≥ 2 of Bir(P2
C) are loxodromic

and hence can not be conjugate to elements of the maximal torus D2. The description of their
centralizer is given by:

Theorem 8.10 ([Can11, BC16]). — Let φ be a loxodromic element of Bir(P2
C).

The infinite cyclic subgroup of Bir(P2
C) generated by φ has finite index in the centralizer

Cent(φ) =
{

ψ ∈ Bir(P2
C) |ψ◦φ = φ◦ψ

}
of φ.

Remark 8.11. — Theorem 8.10 holds for any field k.

The centralizer of a generic element of SL(n+1,C) is isomorphic to (C∗)n; Theorem 8.10
suggests that Bir(P2

C) behaves as a group of rank 1.

Sketch of the proof. — If ψ commutes to φ, then the isometry ψ∗ of H∞ preserves the axis
Ax(φ) of φ∗ and its two endpoints. Consider the morphism Θ which maps Cent(φ) to the
group of isometries of Ax(φ). View it as a morphism into the group of translations R of the
line. On the one hand the translation lengths are bounded from below by log(λL) where λL is
the Lehmer number, i.e. the unique root > 1 of the irreducible polynomial x10+x9−x7−x6−
x5− x4− x3 + x+1 (see [BC16]). On the other hand every discrete subgroup of R is trivial or
cyclic. As a result the image of Θ is a cyclic group. Its kernel is made of elliptic elements of
Cent(φ) fixing all points of Ax(φ). Denote by eφ the projection of e0 on Ax(φ). Since kerΘ

fixes eφ, the inequality
dist(ψ∗e0,e0)≤ 2dist(e0,eφ)
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holds. As a consequence kerΘ is a group of birational maps of bounded degree. From [BF13]
the Zariski closure of kerΘ in Bir(P2

C) is an algebraic subgroup of Bir(P2
C). Let us denote

by G the connected component of the identity in this group. Assume that kerΘ is infinite.
Then dimG is positive and G is contained, after conjugacy, in the group of automorphisms of
a minimal, rational surface ([Bla09b, Enr93]). Therefore, G contains a Zariski closed abelian
subgroup whose orbits have dimension 1. Those orbits are organised in a pencil of curves that
is invariant under the action of φ: contradiction with the fact that φ∗ is loxodromic. As a result
kerΘ is finite.

8.1.3. Rank 1 phenomenon. — To generalize Margulis work on linear representations of
lattices of simple real Lie groups to non-linear representations Zimmer proposed to study the
actions of lattices on compact varieties ([Zim86, Zim84, Zim87a, Zim87b]). One of the main
conjectures of the program drawn by Zimmer is: let G be a connex, simple, real Lie group and
let Γ be a lattice of G. If there exists a morphism from Γ into the diffeomorphisms group of a
compact variety V with infinite image, then the real rank of G is less or equal to the dimension
of V .

In the context of birational self maps one has the following statement that can be see as
another rank one phenomenum:

Theorem 8.12 ([Can11, D0́6a]). — Let S be a complex projective surface. Let Γ be a count-
able group with Kazhdan property (T ).

If υ : Γ→ Bir(P2
C) is a morphism with infinite image, then υ is conjugate to a morphism

into PGL(3,C).

Remark 8.13. — Theorem 8.12 indeed holds for any algebraically closed field k.

Sketch of the proof. — The first step is based on a fixed point property: since Γ has Kazhdan
property (T), then υ(Γ) acts by isometries onH∞ and (υ(Γ))∗ has a fixed point. Then according
to [dlHV89] all its orbits have bounded diameter. Hence ρ(Γ) has bounded degree. There thus
exists a birational map π : X 99K P2

C such that

� ΓS = π−1 ◦Γ◦π is a subgroup of Aut(S);
� Aut(S)0∩ΓS has finite index in ΓS.

The classification of algebraic groups of maps of surfaces and the fact that every subgroup
of SL(2,C) having Kazhdan property (T) is finite allow to prove that: since Aut(S)0 contains
an infinite group with Kazhdan property (T) the surface S is isomorphic to the projective plane
P2
C.
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8.2. Subgroups of elliptic elements of Bir(P2
C)

A subgroup G of the plane Cremona group is elliptic if any element of G is an elliptic
birational map.

Let us give an example: a bounded subgroup of Bir(P2
C) is elliptic. But not all elliptic

subgroups are bounded; indeed for instance

� all elements of
{
(z0,z1 +a(z0)) |a ∈C(z0)

}
are elliptic but

{
(z0,z1 +a(z0)) |a ∈C(z0)

}
contains elements of arbitrarily high degrees;
� Wright gives examples of subgroups of Bir(P2

C) isomorphic to a subgroup of roots of
unity of C∗ that are not bounded ([Wri79]). Let us be more precise. Set ψ0 : (z0,z1) 7→
(−z0,−z1) and for any k ≥ 1

αk = exp
(

iπ
2k

)
, φk : (z0,z1) 7→ (z1,ckz2k+1

1 + z0), ϕk = φ
2
k ◦φ

2
k−1 ◦ . . .◦φ

2
1

where ck denotes an element of C∗. Consider

ψk = ϕ
−1
k ◦

(
(z0,z1) 7→ (αkz0,α

p
k z1)

)
◦ϕk

where p is an odd integer. The group

G =
⋃
k≥0

〈ψk〉

is an abelian group obtained as a growing union of finite cyclic groups that does not
preserve any fibration ([Lam01a]).

This gives all the possibilities for elliptic subgroups of Bir(P2
C):

Theorem 8.14 ([Ure]). — Let G be an elliptic subgroup of the plane Cremona group. Then
one of the following holds:

� G is a bounded subgroup;
� G preserves a rational fibration;
� G is a torsion group.

Furthermore he characterizes torsion subgroups of Bir(P2
C):

Theorem 8.15 ([Ure]). — Let G ⊂ Bir(P2
C) be a torsion group. Then G is isomorphic to a

bounded subgroup of Bir(P2
C).

Furthermore G is isomorphic to a subgroup of GL(48,C).

As a consequence he gets an analogue of the Theorem of Jordan and Schur:

Corollary 8.16 ([Ure]). — There exists a constant γ such that every torsion subgroup of
Bir(P2

C) contains a commutative normal subgroup of index ≤ γ.
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Theorems 8.14 and 8.15 allow to refine

� the result of Cantat about Tits alternative (§8.4);
� the description of solvable subgroups of Bir(P2

C) (see §8.5).

The aim of the section is to prove Theorem 8.14. We need the following technical lemmas.

Lemma 8.17 ([CD12b]). — Let φ be a birational self map of the complex projective plane
that fixes pointwise two different rational fibrations. Then φ is of finite order.

Proof. — The intersections of the generic fibres of these two fibrations are finite, uniformly
bounded. But these intersections are invariant by φ so φ is of finite order.

Lemma 8.18 ([Ure]). — An algebraic subgroup G of Bir(P2
C) of dimension ≤ 9 preserves a

unique rational fibration.

Proof. — According to Theorem 3.46 the group G is conjugate to a subgroup of Aut(Fn)

for some Hirzebruch surface Fn, n ≥ 2. As a consequence G preserves a rational fibration
π : Fn→ P1

C. The fibres of π are permuted by G, this yields to a homomorphism

f : G→ PGL(2,C)

such that dimker f ≥ 6.
Assume by contradiction that there exists a second rational fibration π′ : Fn→ P1

C preserved
by G; this yields to a second homomorphism

g : G→ PGL(2,C).

One has dimkerπ′|kerπ
> 0; therefore, dim(ker f ∩kerg)> 0. In particular ker f ∩kerg contains

an element of infinite order: contradiction with Lemma 8.17.

Lemma 8.19 ([Ure]). — Let G ⊂ Bir(P2
C) be an algebraic subgroup isomorphic as an alge-

braic group to C∗.
There exists a constant K(G) such that any elliptic element of

Cent(G) =
{

ϕ ∈ Bir(P2
C) |ϕ◦ψ = ψ◦ϕ ∀ψ ∈ G

}
has degree ≤ K(G).

Proof. — Up to conjugacy by an element ψ ∈ Bir(P2
C) one can assume that

G =
{
(z0,z1) 7→ (αz0,z1) |α ∈ C∗

}
.

An elliptic element of Cent(G) is of the following form

ϕ : (z0,z1) 99K (z0ϕ1(z1),ϕ2(z1))
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where ϕ1, ϕ2 are rational functions. Since (degϕn)n is bounded, ϕ1 is constant, and so

ϕ2 : z1 7→ az1+b
cz1+d for some matrix

(
a b
c d

)
of PGL(2,C). In particular degϕ≤ 2. The constant

K(G) thus only depends on the degree of ψ.

Lemma 8.20 ([Ure]). — A group G⊂ Bir(P2
C) of monomial elliptic elements is bounded.

Proof. — The group G is contained in GL(2,Z)n (C∗)2. Consider the projection π : G→
GL(2,Z). On the one hand kerπ is bounded, on the other hand all elements of π(G) are
bounded. All elliptic elements in GL(2,Z) ⊂ Bir(P2

C) are of finite order, so π(G) is a torsion
subgroup of GL(2,Z). Since there are only finitely many conjugacy classes of finite subgroups
in GL(2,Z) the group π(G) is finite. Therefore, G is a finite extension of a bounded subgroup
hence G is bounded.

Lemma 8.21 ([Ure]). — Let H be a semi-simple algebraic subgroup of Bir(P2
C). Let G ⊂

Bir(P2
C) be a group of elliptic elements that normalizes H. Then G is bounded.

Proof. — The group H is semi-simple; in particular its group of inner automorphisms has
finite index in its group of algebraic automorphisms. As a result there exists N ∈ Z such that
for any φ in G conjugation by φN induces an inner automorphism of H. Hence, there exists an
element ψ in H such that φN ◦ψ centralizes H. By assumption H is semi-simple, so H contains
a closed subgroup D isomorphic as an algebraic group to C∗ and this group is centralized by
φN ◦ψ. From Lemma 8.19 we get that deg(φN ◦ψ) is bounded by a constant that depends
neither on φ, nor on N. As H is an algebraic group both degψ and degφ are also bounded
independently of φ and N. Finally G is bounded.

Lemma 8.22 ([Ure]). — Let G be a subgroup of Bir(P2
C) that fixes a point of H∞. Then

� the degree of all elements in G is uniformly bounded;
� there exist a smooth projective surface S and a birational map ϕ : P2

C 99K S such that
ϕ◦G◦ϕ−1 ⊂ Aut(S).

Proof. — Denote by p ∈ H∞ the fixed point of G, and by e0 ∈ H∞ the class of a line in P2
C.

Take an element ψ of G. The action of G onH∞ is isometric hence d(ψ(e0), p) = d(e0, p), and
so d(ψ(e0), p)≤ 2d(e0, p). This implies

〈ψ(e0),e0〉 ≤ cosh(2d(e0, p)) ∀ψ ∈ G.

Since 〈ψ(e0),e0〉= degψ the previous inequality can be rewritten as follows

degψ≤ cosh(2d(e0, p)) ∀ψ ∈ G,

i.e. the degrees of all elements in G are uniformly bounded.
According to Weil G can be regularized (§3.5).
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Let us recall the following statement due to Cantat:

Proposition 8.23 ([Can11]). — Let Γ be a finitely generated subgroup of Bir(P2
C) of elliptic

elements. Then

� either Γ is bounded,
� or Γ preserves a rational fibration, i.e. Γ⊂ J up to birational conjugacy.

Lemma 8.24 ([Ure]). — Let G ⊂ Bir(P2
C) be a group of elliptic elements. Then one of the

following holds:

� G preserves a fibration, and so up to birational conjugacy either G ⊂ J , or G ⊂ Aut(S)
where S is a Halphen surface.
� every finitely generated subgroup of G is bounded.

Furthermore if G fixes a point p ∈ ∂H∞ that does not correspond to the class of a rational
fibration, then the second assertion holds.

Proof. — The group G fixes a point p ∈H∞∪∂H∞ (Theorem 8.44).
If p belongs to H∞, then G is bounded.
Let us now assume that p belongs to ∂H∞. Then either p corresponds to the class of a

general fibre of some fibration, or not.

� If p corresponds to the class of a general fibre of some fibration π : Y → P1
C where Y is a

rational surface, then G preserves this fibration and is thus conjugate to a subgroup of J
(if the fibration is rational), or to a subgroup of Aut(S) where S is a Halphen surface (if
the fibration consists of curves of genus 1).
� Suppose now that p does not correspond to the class of a fibration. Let Γ be a finitely

generated subgroup of G. Then either Γ is bounded, or Γ preserves a rational fibration
(Proposition 8.23). If Γ preserves a rational fibration F , then Γ fixes a point q ∈ ∂H∞

that corresponds to the class of F . Hence p and q are two distinct points preserved by G
and G fixes the geodesic line through p and q. In particular G fixes a point in H∞ and
according to Lemma 8.22 the degrees of all elements in G are uniformly bounded.

Proof of Theorem 8.14. — Consider a subgroup G of Bir(P2
C) of elliptic elements. According

to Lemma 8.22 either G preserves a rational fibration, or any finitely generated subgroup of G
is bounded.

Assume that any finitely generated subgroup of G is bounded. Set

n := sup
{

dimΓ |Γ⊂ G finitely generated
}
.

� If n = 0, then G is a torsion group.
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� If n = +∞, then take Γ a finitely generated subgroup of G such that dimΓ ≥ 9. By
Lemma 8.18 the group Γ preserves a unique fibration and this fibration is, again by
Lemma 8.18, preserved as well by 〈Γ, φ〉 for any φ in G.
� Assume now n ∈ N∗. Let Γ be a finitely generated subgroup of G such that dimΓ = n.

Let Γ
0 be the neutral component of Γ. For any ϕ ∈G the group 〈Γ0

,ϕ◦Γ
0 ◦ϕ−1〉 is con-

nected and contained in 〈Γ,ϕ◦Γ◦ϕ−1〉which is finitely generated and thus of dimension
less or equal to n. As a consequence 〈Γ0

,ϕ◦Γ
0 ◦ϕ−1〉= Γ

0 for any ϕ ∈G and Γ
0 is nor-

malized by G. If Γ
0 is semi-simple, Lemma 8.21 allows to conclude. Assume that Γ

0 is
not semi-simple. Denote by R the radical of Γ

0, i.e. R is the maximal connected normal
solvable subgroup of Γ

0. Since Γ
0 is semi-simple the inequality dimR > 0 holds. The

radical is unique hence preserved by Aut(Γ0
) and in particular normalized by G. Denote

by

R(`+1) =
{

id
}
( R(`) ⊂ . . .⊂ R(2) ⊂ R(1) ⊂ R(0) = R

the derived series of R (i.e. R(k+1) = [R(k),R(k)]). Note that dimR(`) > 0 and R(`) is
abelian. This series is invariant under Aut(Γ0

), and so invariant under conjugation by
elements of G. In particular G normalizes R(`). Since R(`) is bounded, R(`) is conjugate
to one of the groups of Theorem 3.46; in particular R(`) can be regularized. In other
words, up to birational conjugacy, G is a subgroup of Bir(S) for some smooth projective
surface S on which R(`) acts regularly. If all the orbits of R(`) have dimension ≤ 1, then
G preserves a rational fibration. Assume that R(`) has an open orbit O. The group G
normalizes R(`), so G acts regularly on O. The action of R(`) is faithful; as a result
dimR(`) = 1 and R(`) ' C2, or R(`) ' C∗×C, or R(`) ' C∗×C∗. If R(`) ' C2, then O
is isomorphic to the affine plane, and the action of R(`) on O is given by translations.
But the normalizer of C2 in Aut(A2

C) is the group of affine maps GL(2,C)nC2 hence
G is bounded. If R(`) ' C∗×C, then we similarly get the inclusion G ⊂ Aut(C∗×C).
The C-fibration of C∗×C is given by the invertible functions; it is thus preserved by
Aut(C∗×C). In particular G preserves a rational fibration. If R(`) ' C∗×C∗, then
elements of G are monomial maps, and Lemma 8.20 allows to conclude.

8.3. Torsion subgroups of the Cremona group

As we have seen at the beginning of §8.2 some torsion groups can be embedded into Bir(P2
C)

in such a way that they neither are bounded, nor preserve any fibration. However the group
structure of torsion subgroups can be specified:
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Theorem 8.25 ([Ure]). — A torsion subgroup G of Bir(P2
C) is isomorphic to a bounded sub-

group of Bir(P2
C).

Furthermore G is isomorphic to a subgroup of GL(48,C).

Malcev used model theory to prove that if for a given group G every finitely generated
subgroup can be embedded into GL(n,k) for some field k, then there exists a field k′ such
that G can be embedded into GL(n,k′). Let us briefly introduce the compactness theory from
model theory; it states that a set of first order sentences has a model if and only if any of its
finite subsets has a model.

Definition. — Let {xi}i∈I be a set of variables. A condition is an expression of the form

P(xi1,xi2, . . . ,xik) = 0

or an expression of the form(
P1(xi1,xi2 , . . . ,xik) 6= 0

)
∨
(
P2(xi1,xi2, . . . ,xik) 6= 0

)
∨ . . .∨

(
P̀ (xi1,xi2, . . . ,xik) 6= 0

)
where P and the Pi’s are polynomials with integer coefficients.

Definition. — A mixed system is a set of conditions.

Definition. — A mixed system S is compatible if there exists a field k which contains values
{yi}i∈I that satisfy S.

Theorem 8.26 ([Mal40]). — If every finite subset of a mixed system S is compatible, then S
is compatible.

Let us now explain the proof of Theorem 8.25. Let G be a torsion subgroup of Bir(P2
C). If G

is finite, then G is bounded; we can thus assume that G is infinite. Following Theorem 3.46
we will deal with different cases.

� First assume that every finitely generated subgroup of G is isomorphic to a subgroup
of PGL(3,C). Consider the closed embedding ρ of PGL(3,C) into GL(8,C) given by
the adjoint representation. Let P1, P2, . . ., Pn be polynomials in the set of variables
{xi j}1≤i, j≤8 such that ρ(PGL(3,C))⊂ GL(8,C) is the zero set of P1, P2, . . ., Pn. To any
element g ∈ G we associate a 8× 8 matrix of variables (xg

i j). Consider the following
mixed system S defined by

(1) the equations (x f
i j)(x

g
i j) = (xh

i j) for all f , g, h ∈ G such that f ◦g = h;

(2) the conditions
(∨

i

xg
ii−1 6= 0

)
∨
(∨

i 6= j

xg
i j−1 6= 0

)
;

(3) xid
ii −1 = 0 and xid

i j = 0 for all 1≤ i 6= j ≤ N;
(4) Pk({xi j}) = 0 for all 1≤ k ≤ n, for all g ∈ G;
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(5) p 6= 0 for all p ∈ Z+ primes.

Lemma 8.27 ([Ure]). — The system S is compatible.

Proof. — According to Theorem 8.26 it suffices to show that every finite subset of S
is compatible. Let c1, c2, . . ., cn ∈ S be finitely many conditions. Only finitely many
variables xg

i j appear in c1, c2, . . ., cn. Let
{

g1, g2, . . . , g`
}
⊂ G be the finite set of all

elements g ∈ G such that for some 1 ≤ i, j ≤ 8 the variable xg
i j appears in one of the

conditions c1, c2, . . ., cn.
Consider the finitely generated subgroup Γ = 〈g1, g2, . . . , g`〉 of G. By Theorem 8.48

the group Γ is finite. Therefore, by assumption Γ has a faithful representation to
PGL(3,C). This representation implies that C contains values that satisfy the conditions
c1, c2, . . ., cn. In other words S is compatible.

As a result there exists a field k such that k contains values yg
i j for all 1≤ i, j ≤ 8 and

all g ∈ G satisfying conditions (1) to (5). Condition (5) asserts that the characteristic
of k is 0. The group G has at most the cardinality of the continuum since G ⊂ Bir(P2

C);
the values {yg

i j} are thus contained in a subfield k′ of k that has the same cardinality as
C. Hence k′ can be embedded into C as a subfield. Hence we may suppose that k = C.
Consider the map

ϕ : G→ PGL(3,C), g 7→ (yg
i j)i, j.

Note that
- conditions (1) imply that the image of any element of G is an invertible matrix and

that ϕ is a group automorphism;
- conditions (2) lead that this automorphism is injective;
- conditions (3) imply ϕ(id) = id;
- conditions (4) lead that ϕ(G)⊂ PGL(3,C)⊂ GL(8,C).

� Denote by S6 the del Pezzo surface of degree 6. If any finitely generated subgroup of G
can be embedded into Aut(S6) ' D2o

(
Z�2Z×S3

)
a similar reasoning leads to: G is

isomorphic to a subgroup of Aut(S6).
� If any finitely generated subgroup of G can be embedded into

Aut(P1
C×P1

C)'
(
PGL(2,C)×PGL(2,C)

)
oZ�2Z,

then G is isomorphic to a subgroup of Aut(P1
C×P1

C).
� If any finitely generated subgroup of G can be embedded into

Aut(F2n)' C[z0,z1]2noGL(2,C)�µ2n
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for some n > 0 (and not necessarily the same for all finitely generated subgroups of G),
then G is isomorphic to a subgroup of GL(2,C) and thus can be embedded in PGL(3,C).
� It remains to consider the case where G contains

- a finitely generated subgroup Γ1 that can not be embedded into Aut(P2
C),

- a finitely generated subgroup Γ2 that can not be embedded into Aut(S6),
- a finitely generated subgroup Γ3 that can not be embedded into Aut(P1

C×P1
C),

- a finitely generated subgroup Γ4 that can not be embedded into Aut(F2n) for all
n > 0.

The finitely generated subgroup Γ = 〈Γ1, Γ2, Γ3, Γ4〉 is not isomorphic to any subgroup
of infinite automorphisms group of a del Pezzo surface. Adding finitely many elements if
needed we may assume that Γ has order > 648; as a consequence Γ is isomorphic neither
to any subgroup of an automorphisms group of a del Pezzo surface (Theorem 3.39), nor
to a subgroup of Aut(F2n) for all n > 0. Consider a finitely generated subgroup H of G.
The finitely generated subgroup 〈Γ, H〉, and in particular H, is isomorphic to a subgroup
of (Theorem 3.46)
• either Aut(S,π) where π : S→ P1

C is an exceptional conic bundle,

• or Aut(S,π) where (S,π) is a
(
Z�2Z

)2
-conic bundle and S is not a del Pezzo sur-

face,
• or Aut(F2n+1) for some n > 0.

According to Lemmas 3.42, 3.43 and 3.44 the group H is isomorphic to a subgroup of
PGL(2,C)×PGL(2,C). Therefore, every finitely generated subgroup of G is isomorphic
to a subgroup of PGL(2,C)×PGL(2,C). The group G is thus isomorphic to a subgroup
of PGL(2,C)×PGL(2,C) (Theorem 8.26) and hence to a subgroup of Aut(P1

C×P1
C).

Lemma 8.28 ([Ure]). — Every torsion subgroup of Bir(P2
C) is isomorphic to a subgroup of

GL(48,C).

Proof. — Let G be a torsion group of Bir(P2
C).

� Assume that G is infinite. As we just see G is isomorphic to a subgroup of Aut(P2
C),

Aut(P1
C × P1

C), Aut(S6) or Aut(Fn) for some n ≥ 2. According to the structure of
Aut(Fn) and Lemma 3.42 all torsion subgroups of Aut(Fn) are isomorphic to a subgroup
of GL(2,C) or PGL(2,C)×C∗. But PGL(2,C) can be embedded into GL(3,C) and
PGL(3,C) into GL(8,C), and Aut(S6) into GL(6,C) (Lemma 3.41); the group G is thus
isomorphic to a subgroup of GL(8,C).
� Suppose that G is finite and not contained in an infinite bounded subgroup. Then G is

contained in the automorphism group (Theorem 3.46)
• either of a del Pezzo surface,
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• or of an exceptional fibration,
• or of a (Z�2Z)

2-fibration.
In the first case we get from Lemma 3.47 that G is isomorphic to a subgroup of GL(8,C).

In the second case the group G can be embedded into PGL(2,C)×PGL(2,C) (Lemma
3.43).

In the last case G is isomorphic to a subgroup of GL(48,C) according to [Ure17,
Lemma 6.2.12].

8.4. Tits alternative and Burnside problem

A group G is virtually solvable if G contains a finite index solvable subgroup.
A group G satisfies Tits alternative if every subgroup of G either is virtually solvable or

contains a non-abelian free subgroup.
A group G satisfies Tits alternative for finitely generated subgroups if every finitely gene-

rated subgroup of G either is virtually solvable or contains a non-abelian free subgroup.
Tits showed that linear groups over fields of characteristic zero satisfy the Tits alternative

and that linear groups over fields of positive characteristic satisfy the Tits alternative for finitely
generated subgroups ([Tit72]). Other well-known examples of groups that satisfy Tits alter-
native include mapping class groups of surfaces ([Iva84]), the outer automorphisms group
of the free group of finite rank n ([BFH00]), or hyperbolic groups in the sense of Gromov
([Gro87]). Lamy studied the group Aut(A2

C); in particular using its amalgamated product
structure he showed that Tits alternative holds for Aut(A2

C) (see [Lam01b]). In [Can11] Can-
tat established that Bir(P2

C) satisfies Tits alternative for finitely generated subgroups. Then
Urech proved that Bir(P2

C) satisfies Tits alternative ([Ure20]).
On the contrary the group of C ∞-diffeomorphisms of the circle does not satisfy Tits alterna-

tive ([BS85, GS87]).
Note that since solvable subgroups have either polynomial or exponential growth, if G sa-

tisfies Tits alternative, G does not contain groups with intermediate growth.

The main technique to prove that a group contains a non-abelian free group is the ping-pong
Lemma (for instance [dlH00]):

Lemma 8.29. — Let S be a set. Let g1 and g2 be two bijections of S. Assume that S contains
two non-empty disjoint subsets S1 and S2 such that

gm
1 (S2)⊂ S1 gm

2 (S1)⊂ S2 ∀m ∈ Zr{0}.

Then 〈g1, g2〉 is a free group on two generators.
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Sketch of the Proof. — Let w = w(a,b) be a reduced word that represents a non-trivial ele-
ment in the free group F2 = 〈a, b〉. Let us prove that w(g1,g2) is a non-trivial map of S. Up to
conjugacy by a power of g1 assume that w(g1,g2) starts and ends with a power of g1:

w(g1,g2) = g`n
1 gmn

2 . . .gm1
2 g`0

1 .

One checks that g`0
1 maps S2 into S1, then gm1

2 g`0
1 maps S2 into S2, . . . and w maps S2 into S1.

As S2 is disjoint from S1 one gets that w(g1,g2) is non-trivial.

Consider a group Γ that acts on a hyperbolic space H∞ and that contains two loxodromic
isometries ψ1 and ψ2 whose fixed points in ∂H∞ form two disjoint pairs. Let us take disjoint
neighborhoods Si ⊂ H∞ of the fixed point sets of ψi, i = 1, 2. Then Lemma 8.29 applied to
sufficiently high powers ψn

1 and ψn
2 of ψ1 and ψ2 respectively produces a free subgroup of

Γ. This strategy can be used for the Cremona group acting by isometries on H∞(P2
C). More

precisely Cantat obtained the following result:

Theorem 8.30 ([Can11]). — Let S be a projective surface S over a field k. The group Bir(S)
satisfies Tits alternative for finitely generated subgroups.

Then Urech proves:

Theorem 8.31 ([Ure]). — Let S be a complex Kähler surface. Then Bir(S) satisfies Tits alter-
native.

Let us now give a sketch of the proof of this result in the case S = P2
C.

8.4.1. Subgroups of Bir(P2
C) that contain a loxodromic element. — Recall that

� the subgroup of diagonal automorphisms

D2 =
{
(z0,z1) 7→ (αz0,βz1) |α, β ∈ C∗

}
⊂ PGL(3,C) = Aut(P2

C)

is a real torus of rank 2;
� a matrix A = (ai j) ∈ GL(2,Z) determines a birational map of P2

C

(z0,z1) 99K
(
za00

0 za01
1 ,za10

0 za11
1
)

The normalizer of D2 in Bir(P2
C) is the semidirect product

Norm
(
D2,Bir(P2

C)
)
=
{

φ ∈ Bir(P2
C) |φ◦D2 ◦φ

−1 = D2
}
= GL(2,Z)nD2.

If M ∈ GL(2,Z) has spectral radius strictly larger than 1, the associated birational map is
loxodromic. In particular there exist loxodromic elements that normalize an infinite elliptic
subgroup. Up to conjugacy these are the only examples with this property:
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Theorem 8.32 ([DP12]). — Let G be a subgroup of Bir(P2
C) containing at least one loxo-

dromic element. Assume that there exists a short exact sequence

1−→ A−→ G−→ B−→ 1

where A is infinite and of bounded degree.
Then G is conjugate to a subgroup of GL(2,Z)nD2.

Urech generalizes this result to the case where A is an infinite group of elliptic elements
([Ure]):

Theorem 8.33 ([Ure]). — Let G be a subgroup of Bir(P2
C) containing at least one loxodromic

element. Suppose that there exists a short sequence

1−→ A−→ G−→ B−→ 1

where A is an infinite group of elliptic elements.
Then G is conjugate to a subgroup of GL(2,Z)nD2.

In order to give the proof of Theorem 8.33 we need to establish some results.

Lemma 8.34 ([Ure]). — Let φ be a loxodromic monomial map of the complex projective
plane. Let ∆2 be an infinite subgroup of D2 normalized by φ.

Then ∆2 is dense in D2 with respect to the Zariski topology.

Proof. — Denote by ∆2
0 the neutral component of the Zariski closure of ∆2.

If ∆2
0 has a dense orbit on P2

C, then ∆2 is dense in D2. Otherwise the dimension of the
generic orbits of ∆2

0 is 1. But φ normalizes ∆2
0, so preserves its orbits. In particular φ thus

preserves a rational fibration: contradiction with the fact that φ is loxodromic.

In [SB13] the classification of tight elements of Bir(P2
C) is given:

Theorem 8.35 ([SB13]). — Every loxodromic element of the plane Cremona group is rigid.
Let φ be a loxodromic birational self map of the complex projective plane; then

� if φ is conjugate to a monomial map, no power of φ is tight;
� otherwise φn is tight for some integer n.

Consider a subgroup G of Bir(P2
C). Let φ ∈ G be a rigid element; then φ is also a rigid ele-

ment in G. The same holds for tight elements but the converse does not: there exist loxodromic
maps φ ∈ G such that φ is tight in G but not in Bir(P2

C).
Proof of Theorem 8.35 and Lemma 8.34 imply the following:

Theorem 8.36 ([Ure]). — Let G be a subgroup of Bir(P2
C). Let φ be a loxodromic element.

The following assertions are equivalent:
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� no power of φ is tight in G;
� there is a subgroup ∆2⊂G that is normalized by φ and a birational self map ψ of P2

C such
that ψ◦∆2 ◦ψ−1 is a dense subgroup of D2 and ψ◦ϕ◦ψ−1 belongs to GL(2,Z)nD2.

Proof of Theorem 8.33. — The group A fixes a point p ∈ ∂H∞ ∪H∞ (Theorem 8.44). Note
that if p belongs to H∞, then A is bounded and Theorem 8.32 allows to conclude. Let us
assume that p belongs to ∂H∞. Remark that if A fixes an other point q on ∂H∞, then A fixes
the geodesic between p and q, and so A would be bounded again. Suppose thus that p is
the only fixed point of A in ∂H∞. Consider a loxodromic map φ of N. It normalizes A and
so φ fixes p. As φ is loxodromic, φ does not preserve any fibration; consequently p does not
correspond to the class of a fibration. From Lemma 8.24 any finitely generated group of elliptic
elements that fixes p is bounded. Let G be the subgroup of birational self maps of P2

C that fix p.
Denote by L the one-dimensional subspace of Z(P2

C) corresponding to p. The group G fixes p;
hence its linear action on Z(P2

C) acts on L by automorphisms preserving the orientation. This
implies the existence of a group homomorphism ρ : G→R∗+. Note that G does not contain any
parabolic element because p does not correspond to the class of a fibration and that loxodromic
elements do not fix any vector in Z(P2

C). As a result kerρ consists of elliptic elements. But 1
is the only eigenvalue of a map of Z(P2

C) induced by an elliptic birational self map ([Can11]);
as a consequence any elliptic birational map of G is contained in kerρ.

Take a loxodromic map φ in G. Let us show by contradiction that no power of φ is tight
in G. So assume that there exists n ∈ Z such that φn is tight in G. The subgroup N of G is
infinite and 〈φ〉 has finite index in Cent(φ) (Theorem 8.10); there thus exists ψ ∈ G that do
not commute with φn. Since all non trivial elements of� φn� are loxodromic ([CL13]) the
map ψ◦φn ◦ψ−1 ◦φ−n is loxodromic. But ρ

(
ψ◦φn ◦ψ−1 ◦φ−n)= 1, i.e. ψ◦φn ◦ψ−1 ◦φ−n is

elliptic: contradiction. Finally no power of φ is tight in G. According to Theorem 8.36 there
exist ϕ ∈ Bir(P2

C) and ∆2 an algebraic subgroup of G such that

– ϕ◦φ◦ϕ−1 is monomial;
– ϕ◦∆2 ◦ϕ−1 = D2.

Consider a finitely generated subgroup Γ of kerρ. The Zariski closure Γ of Γ is an algebraic
subgroup of G because Γ is bounded. Set

d = sup{dimΓ |Γ⊂ kerρ finitely generated}

We will distinguish the cases d is finite and d is infinite.

– First consider the case d < ∞. Note that kerρ contains a subgroup conjugated to D2, so
d ≥ 2. Take Γ a finitely generated subgroup of kerρ such that dimΓ = d. Let Γ

0 be the
neutral component of the algebraic group Γ. Let φ be an element of G. The group φ◦Γ

0 ◦
φ−1 is again an algebraic subgroup and 〈Γ0

, φ◦Γ
0 ◦φ−1〉 is contained in 〈Γ, φ◦Γ◦φ−1〉.
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According to [Hum75] the group 〈Γ0
, φ ◦ Γ

0 ◦ φ−1〉 is closed and connected. On the
one hand dim〈Γ0

, φ ◦Γ
0 ◦ φ−1〉 ≤ d and on the other hand Γ

0 ⊂ 〈Γ0
, φ ◦Γ

0 ◦ φ−1〉. As
a consequence 〈Γ0

, φ ◦ Γ
0 ◦ φ−1〉 = Γ

0. In other words φ normalizes Γ
0. But Γ∩ Γ

0

is infinite, so there exists a birational self map ψ of Bir(P2
C) such that ψ ◦G ◦ψ−1 ⊂

GL(2,Z)nD2 (Theorem 8.32) and hence ψ◦N◦ψ−1 ⊂ GL(2,Z)nD2.
– Now assume d = ∞. Let Γ be a finitely generated subgroup of kerρ such that dimΓ≥ 9.

The closure Γ of Γ preserves a unique rational fibration given by a rational map π : P2
C 99K

P1
C (Lemma 8.18). Consider an element φ of kerρ. The algebraic group 〈Γ, φ〉 also

preserves a unique rational fibration; since Γ ⊂ 〈Γ, φ〉 this fibration is given by π. As a
result kerρ preserves a rational fibration. Hence kerρ is bounded and the group φ ◦G ◦
φ−1 is contained in GL(2,Z)nD2 (Theorem 8.32); in particular φ◦N◦φ−1 is a subgroup
of GL(2,Z)nD2.

Lemma 8.37 ([Ure]). — Let φ and ψ be two loxodromic elements of Bir(P2
C) such that

Ax(φ) 6= Ax(ψ). Then

� either φ and ψ have not a common fixed point on ∂H∞,
� or 〈φ, ψ〉 contains a subgroup G and there exists a birational self map ϕ of the complex

projective plane such that
- ϕ◦ 〈φ, ψ〉 ◦ϕ−1 ⊂ GL(2,Z)nD2,
- ϕ◦G◦ϕ−1 is a dense subgroup of D2.

Proof. — Suppose that φ and ψ have a common fixed point p ∈ ∂H∞. Denote by L the one-
dimensional subspace of Z(P2

C) corresponding to p. The group 〈φ, ψ〉 generated by φ and ψ

fixes p, so its linear action on Z(P2
C) acts on L by automorphisms preserving the orientation.

A reasoning analogous to that of the proof of Theorem 8.33 implies the existence of a group
homomorphism

ρ : 〈φ, ψ〉 → R∗+
whose kernel consists of elliptic birational maps (see Proof of Theorem 8.33).

Assume that φn is tight for some n. Since Ax(φ) 6= Ax(ψ) the maps φn and ψ do not com-
mute. According to [CL13] any non trivial element of� φn� is loxodromic. Therefore, on
the one hand ψ◦φn◦ψ−1◦φ−n is loxodromic, and on the other hand ρ(ψ◦ϕn◦ψ−1) = 1 hence
ψ ◦ϕn ◦ψ−1 is elliptic: contradiction. As a result for any k the map φk is not tight in 〈φ, ψ〉.
Theorem 8.36 implies that there exist a birational self map ϕ of P2

C and a bounded subgroup
∆2 ⊂ 〈φ, ψ〉 such that

� ϕ◦φ◦ϕ−1 is monomial;
� ϕ◦∆2 ◦ϕ−1 is a dense subgroup of D2.
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In particular kerρ⊃ ∆2 is thus infinite. Theorem 8.33 allows to conclude.

Lemma 8.38 ([Ure]). — Let φ and ψ be two loxodromic elements of Bir(P2
C) such that

Ax(φ) 6= Ax(ψ). Then φ and ψ have not a common fixed point on ∂H∞.

Proof. — Assume by contradiction that φ and ψ have no common fixed point on ∂H∞.
Lemma 8.37 thus implies that up to birational conjugacy

� ϕ◦ 〈φ, ψ〉 ◦ϕ−1 ⊂ GL(2,Z)nD2,
� ϕ◦G◦ϕ−1 ⊂ D2 is a dense subgroup.

Let us write

φ = d1 ◦m1 ψ = d2 ◦m2

with di ∈ D2 and mi ∈ GL(2,Z). The group D2 fixes the axes of all the monomial loxodromic
elements; in particular m1 and m2 have the same fixed points on ∂H∞ as φ and ψ. But the
group 〈m1, m2〉 does not contain any infinite abelian group, so according to Lemma 8.37 the
birational maps m1 and m2 have not a common fixed point on ∂H∞: contradiction.

Lemma 8.39 ([Ure]). — Let G be a subgroup of the plane Cremona group that contains a
loxodromic element. Then one of the following holds:

� G is conjugate to a subgroup of GL(2,Z)nD2;
� G contains a subgroup of index at most 2 that is isomorphic to ZnH where H is a finite

group;
� G contains a non-abelian free subgroup.

Proof. — Let φ be a loxodromic map of G.

� Assume first that all elements in G preserve the axis Ax(φ) of φ. The group G contains a
subgroup H of index at most 2 with the following property: H preserves the orientation
of the axis. As a result any element ψ ∈ H translates the points on Ax(φ) by a constant
cψ. This yields a group morphism

π : H→ R, ψ 7→ cψ

such that kerπ is a bounded group. From Theorem 8.32 either kerπ is finite, or G is
conjugate to a subgroup of GL(2,Z)nD2.
� Suppose that there is an element ψ ∈ G that does not preserve Ax(φ). Denote by α(φ)

and ω(φ) (resp. α(ψ) and ω(ψ)) the attractive and repulsive fixed points of φ• (resp.
ψ•). Let U+

1 (resp. U−1 , resp. U+
2 , resp. U−2 ) be a small neighborhood of α(φ) (resp.

ω(φ), resp. α(ψ), resp. ω(ψ)) in ∂H∞. We can assume that U+
1 , U−1 , U+

2 and U−2 are



176 CHAPTER 8. CONSEQUENCES OF THE ACTION OF Bir(P2
C) ON H∞

pairwise disjoint. Set U1 = U+
1 ∪U−1 and U2 = U+

2 ∪U−2 . There exist n1, n2, n3, n4

some positive integers such that

φ
n1(U2)⊂U+

1 , φ
−n2(U2)⊂U−1 , ψ

n3(U1)⊂U+
2 , ψ

−n4(U1)⊂U−2 .

Set n = max(n1,n2,n3,n4). Since

φ(U+
1 )⊂U+

1 φ
−1(U−1 )⊂U−1 ψ(U+

2 )⊂U+
2 ψ

−1(U−2 )⊂U−2
one gets that for any k ≤ n

φ
k(U2)⊂U1 φ

−k(U2)⊂U1 ψ
k(U1)⊂U2 ψ

−k(U1)⊂U2

According to Ping Pong Lemma applied to φn, ψn together with U1 and U2 we get that 〈ψn, φn〉
generates a non-abelian free subgroup of G.

8.4.2. Tits alternative for finitely generated subgroups for automorphisms groups and
Jonquières group. —

Lemma 8.40 ([Can11]). — Let G be a finitely generated group. Assume that G is an extension
of a virtually solvable group R of length r by an other virtually solvable group Q of length q

1−→ R−→ G−→ Q−→ 1.

Then G is virtually solvable of length ≤ q+ r+1.

Hence one has the following statement:

Proposition 8.41 ([Can11]). — Let G1 and G2 be two groups that satisfy Tits alternative.
If G is an extension of G1 by G2, then G satisfies Tits alternative.

Proof. — Let Γ be a subgroup of G that does not contain a non abelian free subgroup. For
i∈ {1, 2} denote by pri : G→Gi the canonical projection. Since pri(G) does not contain a non
abelian free subgroup pri(Γ) = Γ∩Gi is virtually solvable (Gi satisfies Tits alternative). Then
according to Lemma 8.40 the group Γ is virtually solvable.

A first consequence of this result is the following one:

Theorem 8.42 ([Can11]). — Let V be a Kähler compact manifold. Its automorphism group
satisfies Tits alternative.

Proof. — The group Aut(V ) acts on the cohomology of V . This yields to a morphism ρ from
Aut(V ) to GL(H∗(V,Z)) where H∗(V,Z) denotes the direct sum of the cohomology groups of
V . According to [Lie78]

� the kernel of ρ is a complex Lie group with a finite number of connected components;
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� its connected component Aut0(V ) is an extension of a compact complex torus by a com-
plex algebraic group. We get the result from Proposition 8.41 and classical Tits alterna-
tive.

A direct consequence of Proposition 8.41 and Tits alternative for linear groups is:

Proposition 8.43 ([Can11]). — The Jonquières group

J ' PGL(2,C)oPGL(2,C(z0))

satisfies Tits alternative.

8.4.3. ”Weak alternative” for isometries of H∞. — Let us recall some notations and defi-
nitions introduced in Chapter 2.

Let H be a seperable Hilbert space. Let us fix a Hilbert basis B = (ei)i on H . Consider the
scalar product defined on H by

〈v, v〉= v2
0−

∞

∑
i=1

v2
i

where the coordinates vi are the coordinates of v in B . The light cone of H is the set

L(H ) =
{

v ∈H | 〈v, v〉= 0
}
.

Let H∞ be the connected component of the hyperboloid{
v ∈H | 〈v, v〉= 1

}
that contains e0. Consider the metric defined on H∞ by

d(u,v) := arccos(〈u, v〉).

The space H∞ is a complete CAT(−1) space, so is hyperbolic (Chapter 2). Its boundary ∂H∞

can be identified to P(L(H )).

Theorem 8.44 ([Can11]). — Let Γ be a subgroup of O(1,∞).

1. If Γ contains a loxodromic isometry ψ, then one of the following properties holds:
� Γ contains a non-abelian free group,
� Γ permutes the two fixed points of ψ that lie on ∂H∞.

2. If Γ contains no loxodromic isometry, then Γ fixes a point of H∞∪∂H∞.

Proof. — � Assume first that Γ contains two loxodromic isometries φ and ψ such that the
fixed points of φ and ψ on ∂H∞ are pairwise distinct. According to the ping-pong Lemma
(Lemma 8.29) there are two integers n and m such that φn and ψm generate a subgroup
of Γ isomorphic to the free group F2.
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� Suppose that Γ contains at least one loxodromic isometry φ. Let α(φ) and ω(φ) be the
fixed points of φ on ∂H∞. If Γ contains an element ψ such that{

α(φ), ω(φ)
}
∩
{

α(ψ), ω(ψ)
}
= /0

then φ and ψ◦φ◦ψ−1 are two loxodromic isometries to which we can apply the previous
argument. Otherwise Γ fixes either

{
α(φ), ω(φ)

}
, or {α(φ)}, or {ω(φ)}. Then Γ contains

a subgroup of index 2 that fixes α(φ) of ω(φ).
� Assume that Γ contains two parabolic isometries φ and ψ whose fixed points α(φ)∈ ∂H∞

and α(ψ) ∈ ∂H∞ are distinct. Take two elements of L(H ) still denoted α(φ) and α(ψ)

that represent these two points of ∂H∞. Let ` be a point of H such that

〈α(φ), `〉< 0 〈α(ψ), `〉> 0.

The hyperplane of H orthogonal to ` intersectsH∞ in a subspace L that ”separates” α(φ)

and α(ψ). As a result there exist integers n and m such that φm(L), φ−m(L), ψn(L) and
ψ−n(L) don’t pairwise intersect. The isometry φm ◦ψn has thus two distinct fixed points
on ∂H∞; hence it is a loxodromic one. Applying the above argument we get that 〈φ, ψ〉
contains a free group. Therefore, if Γ contains at least one parabolic isometry, then

- either Γ contains a non-abelian free group;
- or Γ fixes a point of ∂H∞ that is the unique fixed point of the parabolic isometries

of Γ.
� Let us finish by assuming that all elements of Γ are elliptic ones. According to [GdlH90,

Chapter 8, Lemma 35 and Corollary 36]
- either the orbit of any point of H∞ is bounded;
- or the limit set of Γ is a point.

From [dlHV89, Chapter 2, §b.8] one gets the following alternative: Γ fixes
- either a point of H∞;
- or a point of ∂H∞.

8.4.4. Proof of Theorem 8.31. —

8.4.4.1. Assume that G contains a loxodromic element. — Let G be a subgroup of Bir(P2
C)

that contains a loxodromic element. According to Lemma 8.39 we have to consider the three
following cases:

� G is conjugate to a subgroup of GL(2,Z)nD2 and Tits alternative holds by Proposi-
tion 8.41;
� G contains a subgroup of index at most 2 that is isomorphic to ZnH where H is a finite

group, in other words G is cyclic up to finite index, so Tits alternative holds;
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� G contains a non-abelian free subgroup, and Tits alternative holds.

We can thus state:

Corollary 8.45 ([Can11, Ure]). — Let G be a subgroup of Bir(P2
C) that contains a loxodromic

element. Then G satisfies Tits alternative.

8.4.4.2. Assume that G contains a parabolic element but no loxodromic element. —

Lemma 8.46 ([Ure]). — Let G be a subgroup of Bir(P2
C) that does not contain any loxodromic

element but contains a parabolic element. Then G is conjugate to a subgroup of J or Aut(S),
where S is a Halphen surface.

Proof. — By Theorem 8.44 the group G fixes a point p ∈ H∞ ∪ ∂H∞. Consider a parabolic
element ϕ of G; then ϕ has no fixed point in H∞ and a unique fixed point q in ∂H∞. As
a consequence p = q. According to Theorem 2.9 there exist a surface S, a birational map
ψ : P2

C 99K S, a curve C, and a fibration π : S→ C such that ψ ◦ϕ ◦ψ−1 permutes the fibres
of π. In particular ψ ◦ ϕ ◦ψ−1 preserves the divisor class of a fibre F of π. Since F is a
class of a fibre, F ·F = 0. The point m ∈ Z(P2

C) corresponding to F , so satisfies m ·m = 0.
Therefore, q ∈ ∂H∞ corresponds to the line passing through the origin and m. It follows that
any element in G fixes m, and so preserves the divisor class of F . In other words any element
in ϕ◦G◦ϕ−1 permutes the fibres of the fibration π : S→C. If the fibration is rational, then up
to birational conjugacy G ⊂ J . If the fibration is a fibration of genus 1 curves, there exists a
Halphen surface S′ such that up to birational conjugacy G is contained in Bir(S′) and preserves
the Halphen fibration. By Lemma 2.6 the group G is contained in Aut(S′).

Assume first that up to birational conjugacy G ⊂ J ' PGL(2,C(z1))o PGL(2,C). Tits
alternative for linear groups in characteristic 0 and Proposition 8.41 imply Tits alternative
for G.

Finally suppose that G⊂ Aut(S) where S is a Halphen surface. The automorphisms groups
of Halphen surfaces have been studied ([Giz80, CD12a, Gri16]). In particular Cantat and
Dolgachev prove

Theorem 8.47 ([CD12a]). — Let S be a Halphen surface. There exists a homomorphism
ρ : Aut(S)→ PGL(2,C) with finite image such that kerρ is an extension of an abelian group
of rank ≤ 8 by a cyclic group of order dividing 24.

In other words the automorphism group of a Halphen surface is virtually abelian hence G is
solvable up to finite index.
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8.4.4.3. Assume that G is a group of elliptic elements. — According to Theorems 8.14 and
8.15 one of the following holds:

� G is isomorphic to a bounded subgroup;
� G preserves a rational fibration.

Suppose that G is isomorphic to a bounded subgroup; in particular G is isomorphic to a
subgroup of linear groups, and so satisfies Tits alternative.

If G preserves a rational fibration, then G satisfies Tits alternative (Proposition 8.43).

8.4.5. A consequence of Tits alternative: the Burnside problem. — The Burnside prob-
lem posed by Burnside in 1902 asks whether a finitely generated torsion group is finite. Schur
showed in 1911 that any finitely generated torsion group that is a subgroup of invertible n×n
complex matrices is finite ([Sch11]). One of the tool of the proof is the Jordan-Schur Theorem.

In the 1930’s Burnside asked another related question called the restricted Burnside prob-
lem: if it is known that a group G with m generators and exponent n is finite, can one conclude
that the order of G is bounded by some constant depending only on n and m ? In other words
are there only finitely many finite groups with m generators of exponent n up to isomorphism
?

In 1958 Kostrikin was able to prove that among the finite groups with a given number of
generators and a given prime exponent, there exists a largest one: this provides a solution for
the restricted Burnside problem for the case of prime exponent ([Kos58]).

Later Zelmanov solved the restricted Burnside problem for an arbitrary exponent ([Zel90,
Zel91]).

Golod gave a negative answer to the Burnside problem for groups that have a complete
system of linear representations ([Gol64]).

Later many examples of infinite, finitely generated and torsion groups with even bounded
ordres were exhibited ([NA68a, NA68b, NA68c, Ol’82, Iva94, Lys96]).

The problem raised by Burnside is still open for homeomorphism (resp. diffeomorphism)
groups on closed manifolds. Very few examples are known.

Cantat gave a positive answer to the Burnside problem for the Cremona group:

Theorem 8.48 ([Can11]). — Every finitely generated torsion subgroup of Bir(P2
C) is finite.

Proof. — Let G be a finitely generated torsion subgroup of Bir(P2
C). From Tits alternative

(Theorem 8.30) G is solvable up to finite index. Since any torsion, solvable, finitely generated
group is finite, G is finite.
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8.5. Solvable subgroups of Bir(P2
C)

The study of the solvable subgroups of the plane Cremona group starts in [D1́5a] and goes
on in [Ure].

Theorem 8.49 ([Ure]). — Let G be a solvable subgroup of Bir(P2
C). Then one of the following

holds:
� G is a subgroup of elliptic elements, in particular G is isomorphic either to a solvable

subgroup of J , or to a solvable subgroup of a bounded group;
� G is conjugate to a subgroup of J ;
� G is conjugate to a subgroup of the automorphism group of a Halphen surface;
� G is conjugate to a subgroup of GL(2,Z)nD2 where

D2 =
{
(z0,z1) 7→ (αz0,βz1) |α, β ∈ C∗

}
;

� G contains a loxodromic element and there exists a finite subgroup H of Bir(P2
C) such

that G = ZnH.

Remark 8.50. — A solvable subgroup of a bounded group is a solvable subgroup from one
of the groups that appear in Theorem 3.46.

Remark 8.51. — The centralizer of a birational self map of P2
C that preserves a unique fibra-

tion that is rational is virtually solvable (§7.5.2.4); this example illustrates the second case.

Before giving the proof let us state some consequences.
The soluble length of a nilpotent subgroup of Bir(P2

C) can be bounded by the dimension
of P2

C as Epstein and Thurston did in the context of Lie algebras and rational vector fields on a
connected complex manifold ([ET79]):

Corollary 8.52 ([D1́5a]). — Let G be a nilpotent subgroup of Bir(P2
C) that is not a torsion

group. The soluble length of G is bounded by 2.

Theorem 3.46 allows to prove:

Corollary 8.53 ([Ure]). — The derived length of a bounded solvable subgroup of Bir(P2
C) is

≤ 5.
The derived length of a solvable subgroup of Bir(P2

C) is at most 8.

Proof of Theorem 8.49. — It decomposes into three parts: G contains a loxodromic element;
G does not contain a loxodromic element but G contains a parabolic element; G is a group of
elliptic elements.

1. Assume first that G contains a loxodromic element. Then Tits alternative and Lemma
8.39 imply the following alternative
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� either G is conjugate to a subgroup of GL(2,Z)nD2,
� or G contains a subgroup of index at most two that is isomorphic to ZnH where

H is a finite group.
2. Suppose now that G does not contain a loxodromic element but G contains a parabolic

element φ. The map φ preserves a unique fibration F that is elliptic or rational. Let us
prove that any element of G preserves F . Denote by α(φ) ∈ ∂H∞ the fixed point of φ∗.
Take one element in the light cone

LZ(P2
C) =

{
d ∈ Z(P2

C) |d ·d = 0
}

of Z(P2
C) still denoted by α(φ) that represents α(φ). Assume by contradiction that there

exists ϕ in G such that ϕ(α(φ)) 6= α(φ). The map ψ = ϕ◦φ◦ϕ−1 is parabolic and fixes
the unique element α(ψ) of LZ(P2

C) proportional to ϕ(α(φ)). If ε > 0 let us denote by
U
(
α,ε
)

the set
U
(
α,ε
)
=
{
` ∈ LZ(P2

C) |α · ` < ε
}
.

Take ε> 0 such that U
(
α(φ),ε

)
∩U

(
α(ψ),ε

)
= /0. Since ψ∗ is parabolic, ψn

∗
(
U
(
α(φ),ε

))
is contained in U

(
α(ψ),ε

)
for n large enough. For m sufficiently large the following

inclusions hold

φ
m
∗ ◦ψ

n
∗
(
U
(
α(φ),ε

))
⊂U

(
α(φ),

ε

2

)
(U

(
α(φ),ε

)
.

This implies that φm
∗ ◦ψn

∗ is loxodromic: contradiction. So α(φ∗) = α(ϕ∗) for any ϕ ∈G.
Finally G is a subgroup either of J , or of the automorphism group of a Halphen surface.

3. If G is a group of elliptic elements, then according to Theorems 8.14 and 8.15 either G is
a bounded subgroup, or G preserves a rational fibration.

8.6. Normal subgroups of the Cremona group

The strategy of Cantat and Lamy to produce strict, non-trivial, normal subgroups of Bir(P2
k)

is to let Bir(P2
k) act on the hyperbolic space H∞(P2

k). In the first part of their paper they define
the notion of tight element: an element φ of Bir(P2

k) is tight if it satisfies the following three
properties:

� φ∗ ∈ Isom(H∞) is hyperbolic;
� there exists a positive number ε such that: if ψ belongs to Bir(P2

k) and ψ∗(Ax(φ))
contains two points at distance ε which are at distance at most 1 from Ax(φ), then
ψ∗(Ax(φ)) = Ax(φ);
� if ψ belongs to Bir(P2

k) and ψ∗(Ax(φ)) = Ax(φ), then ψ ◦ φ ◦ ψ−1 = φ or ψ ◦ φ ◦
ψ−1 = φ−1.
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The second property is a rigidity property of Ax(φ) with respect to isometries ψ∗ for ψ ∈
Bir(P2

k); we say that Ax(φ) is rigid under the action of Bir(P2
k). The third property means that

the stabilizer of Ax(φ) coincides with the normalizer of the cyclic group 〈φ〉.
Here since there is no confusion we write� φ� for� φ�Bir(P2

k)
.

Cantat and Lamy established the following statement:

Theorem 8.54 ([CL13]). — Let k be an algebraically closed field. If φ ∈ Bir(P2
k) is tight,

then there exists a non-zero integer n such that for any non-trivial element ψ of� φn�

degψ≥ deg(φn).

In particular� φn� is a proper subgroup of Bir(P2
k).

In the second part of their article Cantat and Lamy showed that Bir(P2
k) contains tight el-

ements. They distinguished two cases: k = C and k 6= C. Let us focus on the case k = C.
They proved that an element φ of Bir(P2

C) of the form a ◦ j, where a is a general element of
PGL(3,C) and j is a Jonquières twist, is tight. Let us explain what general means in this
context: any element of PGL(3,C) suits after removing a countable number of Zariski closed
subsets of PGL(3,C). More precisely they needed the two following conditions:

� the base-points of φ and φ−1 belong to P2
C;

� Base(φk)∩Base(φ−i) = /0 for any k, i > 0.

In [Lon16] Lonjou proved the following statement:

Theorem 8.55 ([Lon16]). — For any field k the plane Cremona group Bir(P2
k) is not simple.

She did not use the notion of tight element but uses the WPD (weakly properly discon-
tinuous) property. This property was proposed in the context of the mapping class group in
[BF02]. An element g of a group G satisfies the WPD property if for any ε ≥ 0 for any point
p ∈H∞ there exists a positive integer N such that the set

S(ε, p;N) =
{

h ∈ G |dist(h(p), p)≤ ε, dist(h(gN(p)),gN(p))≤ ε
}

is finite. Since the elements studied by Lonjou have an axis she followed the terminology
introduced in [Cou16] and said that the group G acts discretely along the axis of g.

In [DGO17] the authors generalized the small cancellation theory for groups acting by
isometries on δ-hyperbolic spaces.

Small cancellation theory and the WPD property are connected:

� in the normal group generated by a family satisfying the small cancellation property
elements have a large translation length ([Gui14]);
� if some element g satisfies WPD property then the conjugates of 〈gn〉 form a family

satisfying the small cancellation property.
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Combining these two statements the following holds:

Theorem 8.56 ([DGO17]). — Let ε be a positive real number. Let G be a group acting by
isometries on a δ-hyperbolic space X. Let g be a loxodromic element of G. If G acts discretely
along the axis of g, then there exists n ∈N such that for any h ∈� gn�r{id} the translation
length L(h) of h satisfies L(h)> ε.

In particular, for n big enough� gn� is a proper subgroup of G. Furthermore this sub-
group is free.

As a result to prove Theorem 8.55 Lonjou needed to exhibit elements satisfying the WPD
property:

Proposition 8.57 ([Lon16]). — Let n≥ 2 and let k be a field of characteristic which does not
divide n. Consider the action of Bir(P2

k) on H∞(P2
k) where k is the algebraic closure of k. The

group Bir(P2
k) acts discretely along the axis of the loxodromic map

hn : (z0 : z1 : z2) 99K
(
z1zn−1

2 : zn
1− z0zn−1

2 : zn
2
)
.

Remark 8.58. — If k is an algebraically closed field of characteristic p > 0, then for any `≥ 1
one has ([CD13])

� h`p�= Bir(P2
k).

Let us explain why when k= C.
Let us first establish that

� σ2�= Bir(P2
C). (8.6.1)

Let φ be a birational self map of the complex projective plane. According to the Noether and
Castelnuovo Theorem

φ = (A1)◦σ2 ◦A2 ◦σ2 ◦A3 ◦ . . .◦An ◦ (σ2)

where the Ai’s belong to PGL(3,C). The group PGL(3,C) is simple; as a result any Ai can be
written as

B1◦
(
(z0,z1) 7→ (−z0,−z1)

)
◦B−1

1 ◦B2◦
(
(z0,z1) 7→ (−z0,−z1)

)
◦B−1

2 ◦ . . .◦Bn◦
(
(z0,z1) 7→ (−z0,−z1)

)
◦B−1

n

with Bi in PGL(3,C). The involutions (z0,z1) 7→ (−z0,−z1) and σ2 are conjugate; therefore,
φ can be written as a composition of conjugates of σ2.

Since PGL(3,C) is simple, for any non-trivial element A of PGL(3,C) the involution
ι : (z0,z1) 7→ (−z0,z1) can be written as a composition of conjugates of A. The involutions ι

and σ2 being conjugate one has

σ2 = ϕ1 ◦A◦ϕ
−1
1 ◦ϕ2 ◦A◦ϕ

−1
2 ◦ . . .◦ϕn ◦A◦ϕ

−1
n
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where the ϕi’s are some elements of Bir(P2
C). As a result� σ2�⊂� A�. But� σ2�=

Bir(P2
C) (see (8.6.1)), so

� A�= Bir(P2
C). (8.6.2)

If φ belongs to PGL(2,C(z1)), then

� φ�= Bir(P2
C) (8.6.3)

Indeed since PGL(2,C(z1)) is simple, the involution ι can be written as a composition of
conjugates of φ. But according to (8.6.2) one has� ι�= Bir(P2

C) hence� φ�= Bir(P2
C).

If φ belongs to J , then

� φ�= Bir(P2
C) (8.6.4)

Indeed up to birational conjugacy φ : (z0,z1) 99K
(

φ1(z0,z1),γ(z1)
)

where γ is an homothety

or a translation. Consider an element ψ : (z0,z1) 99K
(

ψ1(z0,z1),z1

)
of PGL(2,C(z1)). The

map ϕ = [φ,ψ] belongs to

� φ�∩PGL(2,C(z1)).

If ψ is well chosen, then ϕ is non trivial and from (8.6.3) one gets

� φ�= Bir(P2
C).

As a result if φ is a birational self map of the complex projective plane such that there exists
ψ ∈ Bir(P2

C) for which [φ,ψ] preserves a rational fibration, then from (8.6.4)

� φ�= Bir(P2
C) (8.6.5)

Let φ : (z0,z1) 7→ (z1,P(z1)− δz0), δ ∈ C∗, P ∈ C[z1], degP ≥ 2, be a Hénon map. Then
� φ�= Bir(P2

C). Indeed if ψ : (z0,z1) 7→ (z0,2z1), then [φ,ψ] preserves the rational fibration
z0 =cst; one concludes with (8.6.5).

More generally over any infinite field of characteristic which does not divide n the map hn

does not satisfy the WPD property: this explains the assumptions of Proposition 8.57.
Let us mention that Lonjou got not only the non-simplicity of the plane Cremona group

from [DGO17] but also the following result:

Theorem 8.59 ([Lon16]). — Let k be a field. The plane Cremona group

� contains free normal subgroups;
� is SQ-universal, that is any countable subgroup embeds in a quotient of Bir(P2

k).



186 CHAPTER 8. CONSEQUENCES OF THE ACTION OF Bir(P2
C) ON H∞

In [SB13] the author proved that any loxodromic element in the Cremona group over any
field k generates a proper normal subgroup; as a result the group Bir(P2

k) is not a simple group.
He also gave a criterion in terms of the translation length of a loxodromic map φ to know if φ

is tight and hence if� φn� is a proper subgroup of Bir(P2
k) for some n.

Remark 8.60. — Let us give the relationship between tight element and element that satisfies
WPD property. When we study the action of the Cremona group on H∞(P2

k) the axis of any
loxodromic element φ is rigid and the stabiliser

Stab(Ax(φ)) =
{

ψ ∈ Bir(P2
k) |ψ(Ax(φ)) = Ax(φ)

}
of the axis Ax(φ) is virtually cyclic if and only if some positive iterate of φ is tight ([CL13,
Lon16, SB13]). As a result for N large the set S(ε, p;N) is contained in Stab(Ax(φ)). The
map φ thus satisfies the WPD property if and only if some positive iterate of φ is tight.

Remark 8.61. — Let us recall that a subgroup H of a group G is called a characteristic sub-
group of G if for every automorphism ϕ of G the inclusion ϕ(H)⊂ H holds.

Recall that the examples of elements having the WPD property given by Lonjou are the
Hénon maps

hn : (z0 : z1 : z2) 99K
(
z1zn−1

2 : zn
1− z0zn−1

2 : zn
2
)

of degree n which is not divisible by the characteristic of k. The group of automorphisms of
Bir(P2

C) is generated by inner automorphisms and the action of Aut(C,+, ·) (see §7.2). As hn

is defined over Z the subgroup� hm� is a characteristic subgroup of Bir(P2
C). One has the

following result:

Proposition 8.62 ([Can13]). — The plane Cremona group contains infinitely many charac-
teristic subgroups.

8.7. Simple groups of Bir(P2
C)

This section is devoted to the classification of simple subgroups of Bir(P2
C) (Theorems 8.2

and 8.3) but also to the proof of the following statement:

Theorem 8.63 ([Ure20]). — Let S be a complex surface.
If G is a finitely generated simple subgroup of Bir(S), then G is finite.
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8.7.1. Simple subgroups of Bir(P2
C). — Let us first prove Theorem 8.2. Consider a simple

group acting non-trivially on a rational complex surface. Then according to Theorems 8.3 and
3.46 the group G is isomorphic to a subgroup of PGL(3,C).

Conversely the group PGL(3,C) = Aut(P2
C) acts by birational maps on S.

Let us now deal with the proof of Theorem 8.3. Let G be a simple subgroup of the plane
Cremona group. We distinguish three cases:

(i) G contains no loxodromic element but a parabolic one;
(ii) G is an elliptic group;

(iii) G contains a loxodromic element.

(i) Assume that G contains no loxodromic element but a parabolic one.

Lemma 8.64 ([Ure20]). — Consider a simple subgroup G of Bir(P2
C) that contains no

loxodromic element but a parabolic element.
Then G is conjugate to a subgroup of J and is isomorphic to a subgroup of PGL(2,C).

Proof. — According to Lemma 8.46 one has the following alternative: G is conjugate
• either to a subgroup of the automorphisms group of a Halphen surface,
• or to a subgroup of J .

But automorphisms groups of Halphen surfaces are finite extensions of abelian sub-
groups (Theorem 8.47), so do not contain infinite simple subgroups. As a result G is
conjugate to a subgroup of J . The short exact sequence from the semi-direct product
of J is

1−→ PGL(2,C(z1))−→ J f−→ PGL(2,C)−→ 1

The group G is simple thus contained in the kernel of the image of f . In both cases G is
isomorphic to a subgroup of PGL(2,C).

(ii) Suppose that G is an elliptic group.

Lemma 8.65 ([Ure20]). — Let G be a simple subgroup of the plane Cremona group of
elliptic elements. Then
� either G is a subgroup of an algebraic group of Bir(P2

C),
� or G is conjugate to a subgroup of J .

Proof. — According to Theorems 8.14 and 8.15 one of the following holds:
� G is conjugate to a subgroup of an algebraic group;
� G preserves a rational fibration;
� G is a torsion group and G is isomorphic to a subgroup of an algebraic group.
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In the first two cases we are done. Let us assume that we are in the third one. Then G is
a linear group and according to the Theorem of Jordan and Schur G has a normal abelian
subgroup of finite index. As a consequence G is finite, and so algebraic.

(iii) Finally we give a sketch of the proof of

Theorem 8.66 ([Ure20]). — A simple subgroup of Bir(P2
C) does not contain any loxo-

dromic element.

Let G be a simple subgroup of Bir(P2
C). Assume by contradiction that G contains

a loxodromic map φ. Theorems 8.54 and 8.36 imply that φ is a monomial map up to
birational conjugacy. Looking at the curves contracted by elements of G Urech gets that
all loxodromic elements of G are contained in GL(2,Z)nD2 ([Ure, Lemmas 3.17. and
3.18.]). Consider ψ in G. As ψ ◦ φ ◦ψ−1 is loxodromic it is monomial. The axis of
ψ ◦ φ ◦ψ−1 is fixed pointwise by both ψ ◦D2 ◦ψ−1 and D2. The group H generated
by ψ ◦ φ ◦ψ−1 and D2 is thus bounded and according to Theorem 8.33 conjugate to a
subgroup of D2. Hence ψ◦D2 ◦ψ−1 is contained in D2 and ψ belongs to GL(2,Z)nD2.
Consequently we have the inclusion G ⊂ GL(2,Z)nD2 and get a non trivial morphism
υ : G→ GL(2,Z). The kernel of υ contains an infinite subgroup of D2 normalized by φ

(Lemma 8.34): contradiction with the fact that G is simple.

8.7.2. Finitely generated simple subgroups of Bir(P2
C). — We finish the chapter by giving

a sketch of the proof of the following statement:

Theorem 8.67 ([Ure20]). — Any finitely generated simple subgroup of the plane Cremona
group is finite.

This result and the classification of finite subgroups of Bir(P2
C) (see [DI09]) imply:

Corollary 8.68 ([Ure20]). — A finitely generated simple subgroup of Bir(P2
C) is isomorphic to

� either Z�pZ for some prime p;
� or A5;
� or A6;
� or PSL(2,C).

Note that the conjugacy classes of these finite groups are also described in [DI09].

Remark 8.69. — Theorem 8.67 also holds for the group of birational self maps of a surface
over a field k.

Let G be a finitely generated subgroup of Bir(P2
C). Let first see that G does not contain

loxodromic elements:
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Proposition 8.70 ([Ure20]). — Let G be a finitely generated subgroup of Bir(P2
C). If G con-

tains a loxodromic element, then G is not simple.

To prove it we need the following statement.

Proposition 8.71 ([Ure20]). — Let G be a finitely generated subgroup of Bir(P2
C). There

exist a finite field k and a non trivial morphism υ : G→ Bir(P2
k) such that for any φ in G the

following inequality holds: degυ(φ)≤ degφ.

Proof of Proposition 8.70. — Let φ be a loxodromic element of G.
If φn is tight in G for some integer n, then Theorem 8.54 allows to conclude.
If no power of φ is tight, then G contains an infinite subgroup ∆2 that is normalized by φ

and that is conjugate either to a subgroup of D2, or to a subgroup of C2 (Theorem 8.36). In
particular the degrees of the elements of ∆2 are uniformly bounded by an integer N. According
to Proposition 8.71 there exist a finite field k and a non trivial morphism υ : G→ Bir(P2

k) such
that for all φ in G

degυ(φ)≤ degφ.

In Bir(P2
k) there exist only finitely many elements of degree ≤ N. As a result υ(∆2) is finite.

The morphism υ has thus a proper kernel and G is not simple: contradiction.

We now have the following alternative

(i) G contains a parabolic element,
(ii) G is an elliptic subgroup.

Let us look at these two possibilities.

(i) If G contains a parabolic element, then G is conjugate either to a subgroup of the auto-
morphism group Aut(S) of a Halphen surface, or to a subgroup of the Jonquières group
J .
� Assume first that, up to conjugacy, G⊂ Aut(S) where S is a Halphen surface.

Recall that a group G satisfies Malcev property if every finitely generated subgroup
Γ of G is residually finite, i.e. for any g ∈ Γ there exist a finite group H and a
morphism υ : Γ→ H such that g does not belong to kerυ.
Malcev showed that linear groups satisfy this property ([Mal40]). In [BL83] the
authors proved that automorphism groups of scheme over any commutative ring
also satisfy this property. Consequently if G contains a parabolic element, then G
is, up to conjugacy, a subgroup of J .
� Suppose that G⊂ J up to birational conjugacy. Then G is finite. Indeed:
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Lemma 8.72 ([Ure20]). — Let C be a curve and let G⊂ Bir(P1
C×C ) be a finitely

generated simple subgroup that preserves the P1
C-fibration given by the projection

to C .
Then G is finite.

Proof. — The group G being simple, G is isomorphic either to a subgroup of
PGL(2,C), or to a subgroup of Aut(C ). But both PGL(2,C) and Aut(C ) satisfy
Malcev property, so G is finite.

(ii) It remains to look at G when G is a finitely generated, simple, elliptic subgroup
of Bir(P2

C). Proposition 8.23 asserts that either G is conjugate to a subgroup of J , or G
is contained in an algebraic subgroup of Bir(P2

C). In the first case Lemma 8.72 allows
to conclude. Let us focus on the last case: algebraic subgroups of Bir(P2

C) are linear
hence G is linear and therefore finite since linear groups satisfy Malcev property.



CHAPTER 9

BIG SUBGROUPS OF AUTOMORPHISMS ”OF
POSITIVE ENTROPY”

In this chapter we will focus on automorphisms of surfaces with positive entropy. Recall
that a K3 surface(1) is a complex, compact, simply connected surface S with a trivial canoni-
cal bundle. Equivalently there exists a holomorphic 2-form ω on S which is never zero; ω is
unique modulo multiplication by a scalar. Let S be a K3 surface with a holomorphic involu-
tion ι. If ι has no fixed point, the quotient of S by 〈ι〉 is an Enriques surface , otherwise it is
a rational surface. Recall that every non-minimal rational surface can be obtained by repeat-
edly blowing up a minimal rational surface. The minimal rational surfaces are the complex
projective plane, P1

C×P1
C and the Hirzebruch surfaces Fn, n ≥ 2. If S is a complex, compact

surface carrying a biholomorphism of positive topological entropy, then S is either a complex
torus, or a K3 surface, or an Enriques surface, or a non-minimal rational surface ([Can99]).
Although automorphisms of complex tori are easy to describe, it is rather difficult to construct
automorphisms on K3 surfaces or rational surfaces. Constructions and dynamical properties
of automorphisms of K3 surfaces can be found in [Can01] and [McM02]. The first examples
of rational surfaces endowed with biholomorphisms of positive entropy are due to Coble and
Kummer ([Cob61]):

� the Coble surfaces are obtained by blowing up the ten nodes of a nodal sextic in P2
C;

� the Kummer surfaces are desingularizations of quotients of complex 2-tori by involutions
with fixed points.

Obstructions to the existence of such biholomorphisms on rational surfaces are also known:
if φ is a biholomorphism of a rational surface S such that htop(φ)> 0, then the representation

Aut(S)→ GL(Pic(S)) g 7→ g∗

(1)”so named in honor of Kummer, Kähler, Kodaira and of the beautiful mountain K2 in Kashmir” ([Wei79]).



192 CHAPTER 9. BIG SUBGROUPS OF AUTOMORPHISMS ”OF POSITIVE ENTROPY”

has infinite image. Hence according to [Har87] its kernel is finite so that S has no non-zero
holomorphic vector field. A second obstruction follows from [Nag60]: the surface S has to be
obtained by successive blowups from the complex projective plane and the number of blowups
must be at least ten. The first infinite families of examples have been constructed independently
in [McM07] and [BK09] by different methods. Since then many constructions have emerged
(see for instance [BK10, BK12, Dil11, DG11, Ueh16, McM07]).

In the first section we give three answers to the question ”When is a birational self map of a
complex projective surface birationally conjugate to an automorphism ?” In the second section
we deal with constructions of automorphisms of rational surfaces with positive entropy. In the
last section we explain how SL(2,Z) is realized as a subgroup of automorphisms of a rational
surface with the property that every element of infinite order has positive entropy.

9.1. Birational maps and automorphisms

9.1.1. Definitions. — Given a birational map φ : S 99K S of a projective complex surface its
dynamical degree λ(φ) is a positive real number that measures the complexity of the dynamics
of φ (see §2.3). The neperian logarithm logλ(φ) provides an upper bound for the topological
entropy of φ : S 99K S and is equal to it under natural assumptions ([BD05, DS05]). Let us
give an alternative but equivalent definition to that of §2.3. A birational map φ : S 99K S of a
projective complex surface determines an endomorphism φ∗ : NS(S)→ NS(S); the dynamical
degree λ(φ) of φ is defined as the spectral radius of the sequence of endomorphisms (φn)∗ as
n goes to infinity:

λ(φ) = lim
n→+∞

||(φn)∗||1/n

where || · || denotes a norm on the real vector space End(NS(S)). This limit exists and does not
depend on the choice of the norm. For any ample divisor D⊂ S

λ(φ) = lim
n→+∞

(D · (φn)∗D)1/n.

The Néron-Severi group of P2
C coincides with the Picard group of P2

C, has rank 1, and is
generated by the class e0 of a line

NS(P2
C) = Pic(P2

C) = Ze0.

A map φ ∈ Bir(P2
C) acts on Pic(P2

C) by multiplication by degφ.

9.1.2. Pisot and Salem numbers. — We will give the definitions of Pisot and Salem num-
bers, for more details see [BDGGH+92].

A Pisot number is an algebraic integer λ ∈]1,+∞[ whose other Galois conjugates lie in the
unit disk. Let us denote by Pis the set of Pisot numbers. It includes all integers ≥ 2 as well
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as all reciprocical quadratic integers λ > 1. The set Pis is a closed subset of the real line;
its infimum is equal to the unique root λP > 1 of the cubic equation x3 = x+1. The smallest
accumultation point of Pis is the golden mean λG = 1+

√
5

2 . Note that all Pisot numbers between
λP and λG have been listed.

A Salem number is an algebraic integer λ ∈]1,+∞[ whose other Galois conjugates are in
the closed unit disk with at least one on the boundary. The minimal polynomial of λ has thus
at least two complex conjugate roots on the unit circle, its roots are permuted by the involution
z 7→ 1

z and has degree at least 4. Let Sal be the set of Salem numbers. The unique root λL > 1
of the irreducible polynomial x10 + x9− x7− x6− x5− x4− x3 + x + 1 is a Salem number.
Conjecturally the infimum of Sal is larger than 1 and should be equal to λL.

Remark that Pis is contained in the closure of Sal.

9.1.3. Dynamical degrees and Pisot and Salem numbers. — Let us recall that a birational
map φ : S 99K S of a compact complex surface is algebraically stable if (φ∗)n = (φn)∗ for all
n≥ 0 (see §2.3). If φ is algebraically stable, then so does φ−1 and λ(φ) is an algebraic integer.
Any birational map of a compact complex surface is conjugate by a birational morphism to
an algebraically stable map (Proposition 2.10). From this fact and the Hodge index theorem
according to which the intersection form has signature (1,rS− 1), where rS denotes the rank
of S, Diller and Favre get the following statement:

Theorem 9.1 ([DF01]). — Let φ be a birational self map of a complex projective surface. If
λ(φ) is distinct from 1, i.e. if φ is loxodromic, then λ(φ) is a Pisot or a Salem number.

9.1.4. When is a birational map conjugate to an automorphism ? — A natural question
is the following one; when is a birational self map of a complex projective surface birationally
conjugate to an automorphism ? There are three answers to this question and we will detail it.

9.1.4.1. A first answer. — Diller and Favre give the first characterization of loxodromic bira-
tional maps which are conjugate to an automorphism of a projective surface:

Theorem 9.2 ([DF01]). — Let φ ∈ Bir(P2
C) be a loxodromic map. Assume that φ is alge-

braically stable. The action of φ on H1,1(P2
C) admits the eigenvalue λ(φ)> 1 with eigenvector

Θ(φ).
The map φ is birationally conjugate to an automorphism if and only if Θ(φ) ·Θ(φ) = 0.

When φ is an automorphism, it is easy to check that Θ(φ) ·Θ(φ) = 0. We will thus deal
with the reciprocical property. Let φ be a birational self map of a complex projective surface
S. Assume that φ is algebraically stable. Hence λ(φ) is equal to the spectral radius of φ∗ ∈
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End(NS(R,S)) but also to the spectral radius of φ∗ = (φ−1)∗; indeed these endomorphisms are
adjoint for the intersection form:

φ∗C ·D =C ·φ∗D

for all C, D divisor classes. One can factorize φ as φ = η ◦ π−1 where η : Z → S and π =

π1 ◦ . . .◦πm : Z→ S are two sequences of point blowups. Denote by Fj ⊂ Z the total transform
of the indeterminacy point of π

−1
j under the map π j ◦ . . . ◦ πm. For 1 ≤ j ≤ m let E j be the

direct image of Fj by η. Each E j, if not zero, is an effective divisor. According to [DF01] we
get the following formula called push-pull formula

φ∗φ
∗C =C+

m

∑
j=1

(C ·E j)E j (9.1.1)

for all curves (resp. divisor classes) C in S. Since φ∗ and φ∗ are adjoint endomorphisms of
NS(R,S) for the intersection form we get

φ
∗C ·φ∗C =C ·C

m

∑
j=1

(E j ·C)2 (9.1.2)

This formula and the Hodge index theorem imply that λ(φ) is a Pisot number or Salem number.
The endomorphisms φ∗ and φ∗ preserve both the pseudo effective and nef cones of NS(R,S).

Suppose that λ(φ)> 1. According to the Perron-Frobenius theorem there exists an eigenvector
Θ(φ) for φ∗ in the nef cone of NS(S) such that

φ
∗
Θ(φ) = λ(φ)Θ(φ) (9.1.3)

Note that furthermore this vector is unique up to scalar form ([DF01]). Both (9.1.2) and (9.1.3)
imply that

(λ(φ)2−1)Θ(φ) ·Θ(φ) =
m

∑
j=1

(E j ·Θ(φ))2.

As a result for all E j

Θ(φ) ·Θ(φ) = 0 ⇐⇒ Θ(φ) ·E j = 0.

Assume now that Θ(φ) ·Θ(φ) = 0; then Θ(φ) ·E j = 0 for all E j. As the E j’s are effective and
Θ(φ) is nef the Q-vector subspace of NS(Q,S) generated by the irreducible components of
the divisors E j is contained in Θ(φ)⊥. On the orthogonal complement Θ(φ)⊥ of the isotropic
vector Θ(φ) the intersection form is negative and its kernel is the line generated by Θ(φ).
Equation (9.1.1) implies

φ
k
∗Θ(φ) =

1
λ(φ)k Θ(φ).
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But λ(φ) > 1 and φ∗ preserves the lattice NS(Z,S), so Θ(φ) is irrational. Consequently the
intersection form is negative definite on the Q-vector space generated by all classes of irre-
ducible components of the divisors E j. According to the Grauert-Mumford contraction theo-
rem ([BHPVdV04]) there exists a birational morphism η : S→Y that contracts simultaneously
all these components. Set ϕ = η◦φ◦η−1. As Θ(φ) does not intersect the curves contracted by
η the class η∗Θ(φ) ∈ NS(R,Y ) is

� isotropic, and
� an eigenvector for ϕ∗ with eigenvalue λ(φ).

Let us iterate this process until ϕ−1 does not contract any curve, that is ϕ ∈ Aut(Y ). If Y is
singular, then consider the minimal desingularization Ỹ of Y ; the automorphism ϕ lifts to an
automorphism ϕ̃ of Ỹ .

As a result one can state

Theorem 9.3 ([DF01]). — Let S be a complex projective surface. Let φ be a loxodromic
birational self map of S. Then

� all divisors E j are orthogonal to Θ(φ) if and only if Θ(φ) is an isotropic vector;
� if Θ(φ) is an isotropic vector, then there exists a birational morphism η : S→Y such that

η◦φ◦η−1 is an automorphism of Y .

Then Diller and Favre prove the following statement:

Theorem 9.4 ([DF01]). — Let φ ∈ Bir(S) (resp. ψ ∈ Bir(S̃)) be an algebraically stable map
of a complex projective surface S (resp. S̃). Assume that φ and ψ are conjugate via a proper
modification. Suppose that λ(φ)> 1 (or equivalently that λ(ψ)> 1). Then Θ(φ) ·Θ(φ) = 0 if
and only if Θ(ψ) ·Θ(ψ) = 0.

Theorem 9.2 follows from Theorems 9.3 and 9.4.

9.1.4.2. A second answer. — The following statement gives another characterization of bira-
tional maps conjugate to an automorphism of a smooth projective rational surface:

Theorem 9.5 ([DF01, BC16]). — Let φ be a birational map of a complex projective surface S.

� If λ(φ) is a Salem number, then there exists a birational map ψ : S̃ 99K S that conjugates φ

to an automorphism of S̃;
� if φ is conjugate to an automorphism, then λ(φ) is a quadratic integer or a Salem number.

Assume that λ(φ) is a Salem number. Denote by P(t)∈Z[t] the minimal polynomial of λ(φ).
But λ(φ) is a Salem number, so there exists a root of P with modulus 1, denote it α. Hence fix
an automorphism κ of the fieldC such that κ(λ(φ)) =α. According to Proposition 2.10 we can
suppose that φ is algebraically stable up to birational conjugacy. The eigenvector Θ(φ) thus
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corresponds to the eigenvalue λ(φ), and so may be taken in NS(L,S) where L is the splitting
field of P. The automorphism κ acts on NS(C,S) preserving NS(S) pointwise. Since φ∗ is
defined over Z and φ∗Θ(φ) = λ(φ)Θ(φ) one obtains

φ
∗(κ(Θ(φ)) = κ(λ(φ))κ(Θ(φ)) = ακ(Θ(φ))

that is φ∗Θ̃ = αΘ̃ where Θ̃ = κ(Θ(φ)). The divisor classes of the E j’s belong to NS(S), so they
are κ-invariant. As a consequence (9.1.1) implies

φ∗φ
∗
Θ̃ = Θ̃+

m

∑
j=1

(Θ̃ ·E j)E j (9.1.4)

Denote by Θ̃ the conjugate of Θ̃ and by α the conjugate of α; from (9.1.4) one gets

(αα)θ̃ · θ̃ = φ
∗
Θ̃ ·φ∗Θ̃

As |α|=αα= 1 one gets that E j ·Θ̃= 0 for any 1≤ j≤m and E j ·Θ(φ) = 0 for any 1≤ j≤m.
Theorem 9.5 follows from Theorem 9.3.

Remark 9.6. — Theorem 9.5 does not extend to quadratic integers (see [BC16]).

9.1.4.3. A third answer. — As we have seen in §1.1 if S is a projective smooth surface, then
every φ ∈ Bir(S) admits a minimal resolution, i.e. there exist π1 : Z → S, π2 : Z → S two
sequences of blow ups such that

� no (−1)-curves of Z is contracted by both π1 and π2;
� φ = π2 ◦π

−1
1 .

Denote by b(φ) the number of base points of φ; note that b(φ) is equal to the difference of
the ranks of Pic(Z) and Pic(S); thus b(φ) is equal to b(φ−1). Let us introduce the dynamical
number of the base-points of φ: it is

µ(φ) = lim
k→+∞

b(φk)

k
Since b(φ ◦ψ) ≤ b(φ)+b(ψ) for any φ, ψ in Bir(S), µ(φ) is a non-negative real number. As
b(φ) = b(φ−1) one gets µ(φk) = |kµ(φ)| for any k∈Z. Furthermore if ψ : S 99K Z is a birational
map between smooth projective surfaces and if φ ∈ Bir(S), then for all n ∈ Z

−2b(ψ)+b(φn)≤ b(ψ◦ϕ
n ◦ψ

−1)≤ 2b(ψ)+b(φn);

hence µ(φ) = µ(ψ◦φ◦ψ−1). One can thus state the following result:

Lemma 9.7 ([BD15]). — The dynamical number of base-points is an invariant of conjugation.
In particular if φ is conjugate to an automorphism of a smooth projective surface, then µ(φ) =
0.
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A base-point p of φ is a persistent base-point if there exists an integer N such that for any
k ≥ N {

p ∈ Base(φk)

p 6∈ Base(φ−k)

Let p be a point of S or a point infinitely near S such that p 6∈ Base(φ). Consider a minimal
resolution of φ

Z
π1

��

π2

��
S

φ

// S

Because p is not a base-point of φ it corresponds via π1 to a point of Z or infinitely near; using
π2 we view this point on S again maybe infinitely near and denote it φ•(p). For instance if
S = P2

C, p = (1 : 0 : 0) and φ is the birational self map of P2
C given by

(z0 : z1 : z2) 99K (z1z2 + z2
0 : z0z2 : z2

2)

the point φ•(p) is not equal to p = φ(p) but is infinitely near to it. Note that if φ, ψ are two
birational self maps of S and p is a point of S such that p 6∈ Base(φ), φ(p) 6∈ Base(ψ), then
(ψ ◦ φ)•(p) = ψ•(φ•(p)). One can put an equivalence relation on the set of points of S or
infinitely near S: the point p is equivalent to the point q if there exists an integer k such that
(φk)•(p) = q; in particular p 6∈ Base(φk) and q 6∈ Base(φ−k). Note that the equivalence class is
the generalization of set of orbits for birational maps.

A base-point is periodic if
– either (φk)•(q) = q for some k ≥ 0,
– or q ∈ Base(φk) for any k ∈ Zr{0} (in particular (φk)•(p) is never defined for k 6= 0).

Let P be the set of periodic base-points of φ. Denote by P̂ the finite set of points equivalent to a
point of P . Both b(φ) and b(φ−1) are finite, so there exists n∈N such that for any p∈Base(φ)
non periodic and for any j, `≥ N{

p ∈ Base(φ j) ⇐⇒ p ∈ Base(φ`)
p ∈ Base(φ− j) ⇐⇒ p ∈ Base(φ−`)

Let us decompose Base(φ) into five disjoint sets:

B++ =
{

p | p 6∈ P , p ∈ Base(φ j), p ∈ Base(φ− j) ∀ j ≥ N
}

B+− =
{

p | p 6∈ P , p ∈ Base(φ j), p 6∈ Base(φ− j) ∀ j ≥ N
}

B−+ =
{

p | p 6∈ P , p 6∈ Base(φ j), p ∈ Base(φ− j) ∀ j ≥ N
}

B−− =
{

p | p 6∈ P , p 6∈ Base(φ j), p 6∈ Base(φ− j) ∀ j ≥ N
}

and P .
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Remarks 9.8. — Note that:

� B+− is the set of persistent base-points of φ;
� B−+ is the set of persistent base-points of φ−1;
� two equivalent base-points of φ belong to the same subsets of Base(φ).

Take k ≥ 2N an integer. Let us compute b(φk). Any base-point of φk is equivalent to a
base-point of φ. Let us thus consider a base-point p of φ and determine the number mp,k of
base-points of φk which are equivalent to p.

a) If p belongs to P , then the number of points equivalent to p is less than #P and mp,k≤ #P .
b) If p does not belong to P , then any point equivalent to p is equal to (φi)•(p) for some i;

furthermore these points all are distinct. Hence mp,k = #Ip,k where

Ip,k =
{

i ∈ Z | p 6∈ Base(φi), p ∈ Base(φi+k)
}
.

b)i) Suppose that p belongs to B++. Since p does not belong to Base(φi), the following
inequalities hold: −N < i < N, and so mp,k < 2N.

b)ii) If p belongs to B−−, then p belongs to Base(φi+k) hence −N < i+ k < N and
mp,k < 2N.

b)iii) Assume that p belongs to B−+. As p 6∈ Base(φi) (resp. p ∈ Base(φi+k)), one has
−N < i (resp. i+k≤N). These two conditions imply−N < i≤N−k. But k > 2N,
so mp,k = 0.

b)iv) Finally consider a point p in B+−. The fact that p 6∈Base(φi) (resp. p∈Base(φi+k))
yields i < N (resp. −N < i+ k). As a result −N− k < i < N and mp,k ≤ 2N + k.
Conversely if i ≤ −N and i+ k ≥ N, then p 6∈ Base(φi) and p ∈ Base(φi+k), i.e.
i ∈ Ip,k. As a consequence mp,k ≥ #[N− k,−N] = k−2N +1. Finally

−2N ≤ mp,k− k ≤ 2N.

Consequently there exist two constants α, β (independent on k) such that for all k ≥ 2N

νk+α≤ b(φk)≤ νk+β

where ν is the number of equivalence classes of persistent base-points of φ (recall that B+−

is the set of persistent base-points of φ). But µ(φ) = lim
k→+∞

b(φk)

k
, so µ(φ) = ν. One can thus

state:

Proposition 9.9 ([BD15]). — Let S be a smooth projective surface. Let φ be a birational self
map of S.

Then µ(φ) coincides with the number of equivalence classes of persistent base-points of φ.
In particular µ(φ) is an integer.
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The following statement gives another characterization of birational maps which are conju-
gate to an automorphism of a projective surface; contrary to the two previous one it works for
all maps of Bir(S).

Theorem 9.10 ([BD15]). — Let φ be a birational self map of a smooth projective surface.
Then φ is conjugate to an automorphism of a smooth projective surface if and only if µ(φ) = 0.

Remark 9.11. — This characterization was implicitely used in [BK09, BK10, BK12, DG11].
Let us give an example of [DG11]. Consider the birational self map of P2

C given by

ψ : (z0 : z1 : z2) 99K (z0z2
2 + z3

1 : z1z2
2 : z3

2);

it has five base-points: p=(1 : 0 : 0) and four points infinitely near. Denote by P̂1 the collection
of these points. Similarly ψ−1 has five base-points: (1 : 0 : 0) and four points infinitely near;
let P̂2 be the collection of these points. Consider the automorphism A given by

A : (z0 : z1 : z2) 7→
(
αz0 +2(1−α)z1 +(2+α−α

2)z2 :−z0 +(α+1)z2 : z0−2z1 +(1−α)z2
)

with α ∈ Cr{0, 1}. Then

� P̂1, A(P̂2), and (A◦ψ◦A)(P̂2) have distinct supports;
� P̂1 = (A◦ψ)2 ◦A(P̂2).

As a result the base-points of φ=A◦ψ are non-persistent, so φ is conjugate to an automorphism
of a rational surface; this rational surface is P2

C blown up in P̂1, A(P̂2), and (A ◦ψ ◦A)(P̂2).
Furthermore λ(A◦ψ)> 1.

Proof of Theorem 9.10. — Lemma 9.7 shows that if φ is conjugate to an automorphism of a
smooth projective surface, then µ(φ) = 0.

Let us prove the converse. Assume that µ(φ) = 0. One can suppose that by blowing-up
points φ is algebraically stable (Proposition 2.10). Therefore, φ has no periodic base point and
B++ = /0. Furthermore µ(φ) = 0 corresponds to B+− = B−+ = /0. All base-points thus belong
to B−−. Assume that φ is not an automorphism of S. Let τ : Z → S be the blow-up of the
base-points of φ. The morphism χ = φ ◦ τ : Z → S is the blow-up of the base-points of φ−1.
Consider a (−1)-curve E ⊂ Z contracted by χ. The image χ(E) of E is a proper point of S that
belongs to Base(φ−1). Since φ is algebraically stable, then for all k ≥ 0

χ(E) 6∈ Base(φk).

As a result φk ◦χ : Z 99K S is well-defined at any point of E. The curve C = τ(E) is thus an
irreducible curve of S contracted by φk+1; any base-point of φk+1 that belongs to C as proper
of infinitely near point is also a base-point of φ. This finite set of points is contained in B−−;
so there is n > 0 such that no base-point of φn belongs to C. Since C is blown down by φn,
C is a (−1)-curve of S. Contracting C conjugates φ to an algebraically stable birational map
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whose all base-points are in B−−. The rank of the Picard group of this new surface is strictly
less than the rank of Pic(S). Consequently if we repeat this process, it has to stop. In other
words φ is conjugate to an automorphism of a smooth projective surface.

9.2. Constructions of automorphisms with positive entropy

9.2.1. McMullen’s idea. — In [McM07] McMullen establishes a result similar to Torelli’s
theorem for K3 surfaces: he constructs automorphisms on some rational surfaces prescribing
the action of the automorphisms on cohomological groups of the surface.

The relationship between the Coxeter group and the birational geometry of the plane, used
by McMullen, is discussed since 1895 (see [Kan95]) and has been much developed since then
(see for instance [Cob61, DO88, DZ01, Har88, Giz80]).

A rational surface S is a marked blow-up of P2
C if it is presented as a blow-up π : S→ P2

C of
P2
C at n distinct points p1, p2, . . ., pn. The marking determines the basis for Pic(S) given by the

hyperplane bundle and the classes of the exceptional curves over the p j. The first step toward
finding an automorphism φ of S is to construct a plausible candidate for its linear action φ∗ on
the Picard group. Note that candidate actions must preserve the intersection form, the class of
the canonical divisor, and the set of effective classes. Let us mention two sorts of involutions
on Pic(S) that satisfy these restrictions:

� an abstraction of the involution σ2,
� the involution that swaps the basis elements corresponding to two different exceptional

curves.

If we compose such involutions one gets a Coxeter group Wn

� that is infinite as soon as n≥ 9,
� has elements with positive spectral radius when n≥ 10.

Furthermore except in some degenerate situations an element w ∈Wn transforms the basis
of Pic(S) corresponding to the given marking into a basis corresponding to some other marking
ϕ′ : S→ P2

C. If the base-points of the new marking coincide, up to an element of Aut(P2
C), with

those of the original, then one obtains an automorphism φ = ϕ−1 ◦ϕ′ of S with φ∗ = w. The
main problem with this approach is that it is not easy, given w ∈Wn, to see how the base-
points of the two markings are related. The problem is easier if the base-points of the original
marking lie along an elliptic curve; indeed in that case the new base-points also lie on this
elliptic curve. Computations are thus computations on a curve so simpler. The best case is the
case of a cuspidal cubic as there is a one-parameter subgroup of Aut(P2

C) fixing such a curve.
McMullen proved
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Theorem 9.12 ([McM07]). — For any n≥ 10 the standard element w of Wn may be realized
by an automorphism φ of a marked blow-up S with an invariant cuspidal anticanonical curve.
The entropy of φ is the spectral radius of w which is positive.

The following question ”What are the elements of w∈Wn which may be realized by rational
surface automorphisms ?” was also considered in [Dil11] and [Ueh16]. Diller gave a rather
thorough enumeration of the possibilities for quadratic birational maps which have an invariant
curve. Such maps are determined by the data consisting of three orbit lengths (n1,n2,n3) and
a permutation of {1, 2, 3}. Diller also showed that not all orbit data, and not all w ∈Wn, are
realizable by maps with invariant curve. Uehara established the following statement:

Theorem 9.13 ([Ueh16]). — For every w ∈Wn with spectral radius > 1 there is a rational
surface automorphism φ such that the spectral radius of φ∗ is the same as the spectral radius
of w.

Uehara’s method combines elements of McMullen’s and Diller’s approaches. Given w ∈
Wn he prescribed a set of orbit data and proved that these orbit data can be realized by an
automorphism φ. The induced φ∗ has the same spectral radius as w, although the two may not
be conjugate.

Remark 9.14. — While McMullen’s and Diller’s constructions involve automorphisms with
invariant curves note that in [BK09] the authors showed that rational surface automorphisms
of positive entropy do not necessarily possess invariant curves.

9.2.2. Bedford and Kim construction. — In [BK06] and [BK09] the authors found auto-
morphisms within a specific two-parameters family of plane birational maps. The initial ob-
servation in the two papers is the same: for certain parameter pairs all points of indeterminacy
for all iterates of the map in question can be eliminated by performing finitely many point
blow-ups. The map then lifts to an automorphism of the resulting rational surface. This idea
was ”systematized” in [DG11].

In [BK09] the authors prove that essentially all examples of rational surfaces automor-
phisms associated to Coxeter elements can be found within the two-parameter birational family
( fa,b)(a,b) given by fa,b(z0,z1) =

(
z1,

z1+a
z0+b

)
.

9.3. Automorphisms are pervasive

9.3.1. Automorphisms of del Pezzo surfaces. — Any del Pezzo surface S contains a finite
number of (−1)-curves (i.e. smooth curves isomorphic to P1

C and of self-intersection −1).
Each of them can be contracted to get another del Pezzo surface of degree (KS)

2 + 1. There
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are, moreover, the only reducible curves of S of negative self-intersection. If S 6= P2
C, then

there is a finite number of conic bundles S→ P1
C up to automorphism of P1

C and each of them
has exactly 8− (KS)

2 singular fibers.
This latter fact can be found by contracting one component in each singular fiber which

is the union of two (−1)-curves, obtaining a line bundle on a del Pezzo surface, isomorphic
to P1

C×P1
C or to the Hirzebruch surface F1 and having degree 8.

For more details see [Dem70, Man86].

Automorphisms of del Pezzo surfaces of order 4. — Set

S =
{
(z0 : z1 : z2 : z3) ∈ P(2,1,1,1) |z2

0− z4
1 = z2z3(z2 + z3)(z2 +µz3)

}
where µ belongs toCr{0, 1}. The surface S is a del Pezzo one of degree 2. The automorphism
β given by

β : (z0 : z1 : z2 : z3) 7→ (z0 : iz1 : z2 : z3)

fixes pointwise the elliptic curve given by z0 = 0. When µ varies all possible elliptic curves are
obtained. Moreover rkPic(S)β = 1.

There are other automorphisms β of order 4 of rational surfaces S such that β2 fixes an
elliptic curve but none for which rkPic(S)β = 1 (see [Bla11a]).

Automorphisms of del Pezzo surfaces of order 6. — Let us give explicit possibilities for auto-
morphisms of order 6.

i) Set

S =
{
(z0 : z1 : z2 : z3) ∈ P(3,1,1,2) |z2

0 = z3
3 +µz4

1z3 + z6
1 + z6

2
}

for some general µ ∈ C such that S is smooth. The surface S is a del Pezzo surface of
degree 1. Consider on S

α : (z0 : z1 : z2 : z3) 7→ (z0 : z1 :−jz2 : z3)

where j = e2iπ/3.
The automorphism α fixes pointwise the elliptic curve given by z2 = 0. When µ varies

all possible elliptic curves are obtained. The equality rkPic(S)α = 1 holds (see [DI09,
Corollary 6.11]).

ii) Set

S =
{
(z0 : z1 : z2 : z3) ∈ P3

C |z0z2
1 + z3

0 + z3
2 + z3

3 +µz0z2z3 = 0
}

where µ is such that the cubic surface is smooth. The surface is a del Pezzo surface of
degree 3. Consider on S the automorphism α given by

α : (z0 : z1 : z2 : z3) 7→ (z0 :−z1 : jz2 : j2z3).
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Remark that α3 fixes pointwise the elliptic curve z1 = 0 and α acts on it via a translation of
order 3. When µ varies all possible elliptic curves are obtained. The equality rkPic(S)α =

1 holds ([DI09]).
iii) Set

S =
{
(z0 : z1 : z2 : z3) ∈ P3

C |z
3
0 + z3

1 + z3
2 +(z1 +µz2)z2

3 = 0
}

where µ ∈ C is such that the cubic surface is smooth. It is a del Pezzo surface of degree
3. Consider α defined by α : (z0 : z1 : z2 : z3) 7→ (jz0 : z1 : z2 : z3). The automorphism α3

fixes pointwise the elliptic curve z3 = 0 and α acts on it via an automorphism of order
3 with three fixed points. When µ varies the birational class of α changes but not the
isomorphism class of the elliptic curve fixed by α3.

9.3.2. Outline of the construction. —

9.3.2.1. The central involution of SL(2,Z) and its image into Bir(P2
C). — Set A =

(
1 1
0 1

)
and B =

(
0 1
−1 0

)
. A presentation of SL(2,Z) is given by (see [New72])

〈A, B |B4 = (AB)3 = 1, B2(AB) = (AB)B2〉.

As as result the quotient of SL(2,Z) by its center is a free product of Z�2Z and Z�3Z generated
by the classes [B] of B and [AB] of AB

PSL(2,Z) = 〈[B], [AB] | [B]2 = [AB]3 = id〉.

Recall that SL(2,R) acts on the upper half plane

H=
{

x+ iy ∈ C |x, y ∈ R, y > 0
}

by Möbius transformations

SL(2,R)×H→H,
((

a b
c d

)
,z
)
7→ az+b

cz+d

the hyperbolic structure of H being preserved. This yields to a natural notion of elliptic,
parabolic and loxodromic elements of SL(2,R). If M belongs to SL(2,Z) one can be more
precise and check the following observations:

� M is elliptic if and only if M has finite order;
� M is parabolic if and only if M has infinite order and its trace is ±2;
� M is loxodromic if and only if M has infinite order and its trace is 6=±2.
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Up to conjugacy the elliptic elements of SL(2,Z) are(
−1 0
0 −1

)
,

(
0 1
−1 −1

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)
,

(
0 −1
1 1

)
.

In particular an element of finite order is of order 2, 3, 4 or 6.
A parabolic element of SL(2,Z) is up to conjugacy one of the following one(

1 a
0 1

) (
−1 a
0 −1

)
with a ∈ Z.

Since B2 ∈ SL(2,Z) is an involution its image by any embedding θ : SL(2,Z)→ Bir(P2
C) is

a birational involution. As we have seen in §6.1 an element of order 2 of the Cremona group
is up to conjugacy one of the following

� an automorphism of P2
C,

� a Jonquières involution of degree ≥ 2,
� a Bertini involution,
� a Geiser involution.

Since B2 commutes with SL(2,Z) the group θ
(
SL(2,Z)

)
is contained in the centralizer of

θ(B2). But if θ(B2) is a Bertini involution or a Geiser involution, then the centralizer of θ(B2)

is finite ([BPV09]). As a result θ(B2) is conjugate either to an automorphism of P2
C, or to

a Jonquières involution. Assume that θ(B2) is not linearisable; θ(B2) fixes thus pointwise a
unique irreducible curve Γ of genus≥ 1. Denote by G the image of θ. The group G preserves Γ

and the action of G on Γ gives the exact sequence

1−→ G′ −→ G−→ H−→ 1

where H is a subgroup of Aut(Γ) and G′ contains θ(B2) and fixes Γ. The genus of Γ is positive;
hence H cannot coincide with G�〈θ(B2)〉, a free product of Z�2Z and Z�3Z. As a consequence

G′ /G strictly contains 〈θ(B2)〉; thus G′ is infinite and not abelian. In particular the group of
birational maps fixing pointwise Γ is infinite and not abelian. So according to [BPV08] the
curve Γ has genus 1. One can now state:

Lemma 9.15 ([BD12]). — Let θ be an embedding of SL(2,Z) into the plane Cremona group.
Then up to birational conjugacy

� either θ(B2) is an automorphism of P2
C of order 2,

� or θ(B2) is a Jonquières involution of degree 3 fixing (pointwise) an elliptic curve.
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9.3.2.2. Existence of infinitely many loxodromic embeddings of SL(2,Z) into Bir(P2
C). — Let

us consider the standard embedding

θe : SL(2,Z)→ Bir(P2
C)

(
a b
c d

)
7→
(
(z0 : z1 : z2) 7→ (az0 +bz1 : cz0 +dz1 : z2)

)
.

Note that θe
(
SL(2,Z)

)
is a subgroup of PGL(3,C) that preserves the line Lz2 of equation

z2 = 0 and acts on it via the maps

SL(2,Z)→ PSL(2,Z)⊂ PSL(2,C) = Aut(Lz2).

Pick µ∈C∗ such that the point p = (µ : 1 : 0)∈ Lz2 has a trivial isotropy group under the action
of PSL(2,Z). Fix an even integer k > 0; consider ψ the conjugation of

ψ
′ : (z0 : z1 : z2) 99K (zk

0 : zk−1
0 z1 + zk

2 : zk−1
0 z2)

by (z0 : z1 : z2) 7→ (z0 + µz1 : z1 : z2). Then define the morphism θk : SL(2,Z)→ Bir(P2
C) as

follows

θk(B) = θe(B) : (z0 : z1 : z2) 7→ (z1 :−z0 : z2) θk(AB) = ψ◦θe(AB)◦ψ
−1.

The map ψ′ restricts to an automorphism of the affine plane where z0 6= 0, commutes with
θk(B2) = θe(B2) = (z0 : z1 :−z2) ∈Aut(P2

C) and acts trivially on Lz2 . Since ψ commutes with
θk(B2) the map θk(AB) commutes with θk(B2). As a result θk is a well-defined morphism. As
ψ|Lz2r{p} = id the actions of θe and θk on Lz2 are the same; θk is thus an embedding.

Lemma 9.16 ([BD12]). — Let n be a positive integer. Let a1, . . ., an, b1, . . ., bn be 2n elements
in {−1, 1}. The birational self map of P2

C

θk
(
Bbn(AB)anBbn−1(AB)an−1 . . .Bb1(AB)a1

)
has degree k2n and has exactly 2n proper base-points, all lying on Lz2 .

More precisely the base-points are

p,
(
(AB)a1

)−1
(p),

(
Bb1(AB)a1

)−1
(p),(

(AB)a2Bb1(AB)a1
)−1

(p), . . . ,
(
(AB)anBbn−1(AB)an−1 . . .Bb1(AB)a1

)−1
(p),(

Bbn(AB)anBbn−1(AB)an−1 . . .Bb1(AB)a1
)−1

(p).

This result implies the existence of infinitely many loxodromic embeddings of SL(2,Z) into
Bir(P2

C):

Corollary 9.17 ([BD12]). — Let n be a positive integer. Let a1, a2, . . ., an, b1, b2, . . ., bn be
2n elements in {−1, 1}. The birational self map of P2

C

θk
(
Bbn(AB)anBbn−1(AB)an−1 . . .Bb1(AB)a1

)
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has dynamical degree k2n.
In particular, θk is a loxodromic embedding and{

λ(φ) |φ ∈ θk
(
SL(2,Z)

)}
=
{

1, k2, k4, k6, . . .
}
.

Proof. — Let us consider an element of infinite order of SL(2,Z); it is conjugate to

ϕ = Bbn(AB)anBbn−1(AB)an−1 . . .Bb1(AB)a1

where a1, a2, . . ., an, b1, b2, . . ., bn ∈ {−1, 1}. According to Lemma 9.16 the degree of θk(ϕ
r)

is equal to k2nr. As a consequence λ
(
θk(ϕ)

)
= k2n.

Idea of the proof of Lemma 9.16. — We proceed by induction on n. Let us detail the case
n = 1. The birational map ψ has degree k and has a unique proper base-point p = (µ : 1 : 0) ∈
Lz2 . The same holds for ψ−1. Moreover ψ|Lz2r{p}=ψ

−1
|Lz2r{p}= id. Since θe(AB)a1 ∈Aut(P2

C)

moves the point p onto another point of Lz2 , the map θk
(
(AB)a1

)
has degree k2 and exactly

two proper base-points which are p and
(
(AB)a1

)−1
(p) = (ψ◦θe)(AB)−a1 . As θk(S) belongs

to Aut(P2
C), θk(Bb1(AB)a1) has also degree k2 and two proper base-points which are p and(

(AB)a1
)−1

(p).

9.3.2.3. Description of loxodromic embeddings for which the central element fixes (pointwise)
an elliptic curve. — Let us note that

SL(2,Z) = 〈α, β |β4 = id, α
3 = β

2〉

(take the presentation we gave before and set α2 = AB, β = B) and that

SL(2,Z) = 〈α, β |α6 = β
4 = α

3
β

2 = id〉.

In this section we will use this last presentation.
We say that a curve is fixed by a birational map if it is pointwise fixed, and say that a curve

is invariant or preserved if the map induces a birational action on the curve.
All conjugacy classes of elements of order 4 and 6 in Bir(P2

C) have been classified in
[Bla11b]. Many of them can act on del Pezzo surfaces of degree 1, 2, 3 or 4.

del Pezzo surfaces X , Y of degree ≤ 4 and automorphisms α ∈Aut(X), resp. β ∈Aut(Y ) of
order 6, resp. 4 so that

� α3 and β2 fix pointwise an elliptic curve,
� and that Pic(X)α, Pic(Y )β both have rank 1

are defined to create the embedding. Contracting (−1)-curves invariant by the involutions
α3 and β2 (but not by α, β which act minimally on X and Y ) we get rational morphisms
X → X4 and Y → Y4 where X4, Y4 are del Pezzo surfaces on which α3 and β2 act minimally.
Furthermore X4 and Y4 are del Pezzo surfaces of degree 4, both Pic(X4)

α3
and Pic(Y4)

β2
have
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rank 2 and are generated by the fibers of the two conic bundles on X4 and Y4. Choosing a
birational map X4 99K Y4 conjugating α3 to β2 (which exists if and only if the elliptic curves
are isomorphic), which is general enough, we obtain a loxodromic embedding

SL(2,Z)→ Bir(P2
C).

To prove that there is no other relation in 〈α, β〉 and that all elements of infinite order are loxo-
dromic the morphisms X→X4 and Y→Y4 and the actions of α and β on Pic(X)α3

and Pic(Y )β2

are described ; furthermore the composition of the elements does what is expected.
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Index

k-rank, 159(
Z�2Z

)2
-conic bundle, 56

δ-hyperbolic space, 15
δ-slim, 15
CAT(−1) inequality, 16
CAT(−1) space, 16
CAT(0) inequality, 17
CAT(0) space, 17
G-equivariant (birational map), 53
G-equivariant (rational map), 64
G-regular (point), 65
G-surface, 126
k-connected (complex), 85
k-connected (simplices), 85

above (morphism), 18
above (surface), 3
adjoint representation, 159
admissible (model), 85
algebraic birational map, 47
algebraic subgroup of Bir(Pn

C), 37
algebraically stable (birational map of P2

C),
25

algebraically stable (birational map of a
surface), 25

axis (of a birational map), 23

base-point (birational map), 3
base-point (fibration by lines), 142
base-point (linear system), 9
Bertini involution, 117
Bertini type, 118
birational map, 1
birationally equivalent (maps), 119
biregular (rational map), 63
blow-up of a point, 1
boundary of H∞, 17

bounded degree (group of), 37
bubble space, 2

Cartan subgroup, 82
characteristic (group), 186
closed subset (of Bir(Pn

C)), 33
comparison point, 16
comparison triangle, 16
compatible (mixed system), 167
complete (linear system), 9
complexity (linear system), 74
condition, 167
congruence subgroups of SL(n,Z), 102
conic bundle, 53
connected (graph), 80
Cremona group, 2
Cremona map, viii
cycle (of a graph), 81

degree (of a del Pezzo surface), 53
degree (of a rational map), 2
del Pezzo surface, 53
derived series, 99
descending central series, 99
dimension (linear system), 9
dimension (of a simplex), 84
dimension (of a simplicial complex), 84
discrete action along an axis, 183
distorted (element), 103
dynamical degree, 23
dynamical number of the base-points, 196

elementary transformation, 55
elliptic (birational map), 23
elliptic (isometry), 17
end (of a tree), 81
Enriques surface, 191
equivalent (point), 197
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Euclidean topology on Bir(Pn
C), 43

Euclidean topology on Bir≤d(Pn
C), 40

exceptional (divisor), 2
exceptional conic bundle, 56
extremities (of an edge), 80

family (of birational maps), 33
family (of contracted curves), 142
family (of indeterminacy points), 142
fibration, 4
fibration (by lines), 142
fixed (curve), 206
fixed component (linear system), 9
fixed part (linear system), 9
flow, 141
foliation, 135
foliation (by lines), 142

Geiser involution, 116
Geiser type, 118
general quadratic birational self map cen-

tered at three points, 76
generalized Kummer surface, 136
geodesic metric space, 81
geodesic triangle, 15
germ (of flow), 141
graph, 80
Gromov hyperbolic space, 15

Halphen pencil, 22
Halphen surface, 22
Halphen surface of index m, 22
Halphen twist, 21
Hirzebruch surfaces, 55

indeterminacy points (of a birational map),
3

indeterminacy set (of a rational map), 1
infinitely near (point), 3
infinitesimal generator, 142
invariant (curve), 206

Jonquières group, 4
Jonquières involution, 117
Jonquières twist, 21
Jonquières type, 118

K3 surface, 191
Kummer surface, 136

light cone (of a seperable Hilbert space),
177

linear system, 9
linear system (birational map), 9
linearly equivalent (divisors), 6
locally compact (topological space), 41
loxodromic (birational map), 23
loxodromic (isometry), 17

Malcev property, 189
marked blow-up, 200
maximal torus, 159
minimal (G-surface), 127
minimal (pair), 53
minimal (rational surface), 191
minimal (resolution), 3
mixed system, 167
mobile (family), 142
model, 84
monomial maps, 5
morphism (between two varieties), 1
morphism (from a parameter space to

Bir(Pn
C)), 33

morphism (of G-surfaces), 126
multiplicity (of a curve at a point), 7
multiplicity (of a rational function at a

prime divisor), 6

Néron-Severi group, 18
nef cone, 9
nilpotent (group), 99
nilpotent class (of a group), 99
non-trivial amalgam, 82
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normal subgroup generated by an element,
101

normalized fixed curve, 119

orientation (of a graph), 80
oriented (graph), 80
oriented edge (of a graph), 80
origin (of an edge), 80

pair, 53
parabolic (birational map), 23
parabolic (isometry), 17
path (of a graph), 81
pencil, 9
pencil of lines, 142
periodic base-point, 197
persistent base-point, 197
Picard group, 6
Picard number, 18
Pisot number, 192
plane Cremona group, viii
point at infinity, 17
polynomial automorphisms of the affine

space, 2
preserved (curve), 206
preserved (fibration), 4
prime (divisor), 6
principal (divisor), 6
proper (map), 41
proper (point), 3
property (FA), 81
property (FR), 81

rational action of a group on a variety, 64
rational fibration, 4
rational map, 1
rationally integrable (flow), 142
ray, 81
real (tree), 81
regular (map), 1
regularizable (birational map), 25

reversed edge (of a graph), 80
rigid (axis), 182

Salem number, 193
simplices (of a simplicial complex), 84
simplicial complex, 84
simultaneously virtually isotopic to the

identity, 104
soluble length (of a group), 99
solvable (group), 99
stable length (word), 103
stably fix an end, 81
standard generators (congruence group),

103
standard generators (k-Heisenberg group),

103
strict transform (of a curve), 7
strong symmetry, 142
superrigid, 57

terminal vertice (of an edge), 80
tight (birational map), 182
Tits alternative, 170
Tits alternative for finitely generated sub-

groups, 170
torus, 82
translation length (of an isometry), 18
tree, 81

unmobile (family), 142

vertex (of a graph), 80
vertex (of a simplicial complex), 84
virtually isotopic to the identity (map), 21
virtually solvable (group), 170

Weil divisor, 6
Weyl group, 82

Zariski topology, 33
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Index notations

(C ·D)p, 7
Hd , 34
S(ε, p;N), 183
V (K ), 84
Wd , 34
Xreg, 65
[H1,H2], 99
[g,h], 99
Γ(n,q), 102
ΛL, 160
Λφ, 9
λ(φ), 23
λG, 193
λL, 193
λP, 192
� g�G, 101
H∞, 19
B(S), 2
Fχ, 143
Hk, 103
IB, 117
IG, 116
J , 4
JA2

C
, 80

Z(S), 18
b(φ), 196
Aff(C), 138
Aff2, 80
Aut(S,F ), 135
Aut(An

C), 2
Ax(φ), 23
Base(φ), 3
Bir(S,F ), 135
Bir(Pn

C), 2
Bir(Pn

C)alg, 47
Bird(Pn

C), 34
Bir≤d(Pn

C), 34

Breg(φ), 64
Div(V ), 6
Dn, 3
G(χ), 143
Ind(φ), 1
NS(S), 18
Nef(V ), 9
Pic(V ), 6
Pis, 192
Sal, 193
div( f ), 6
ei j, 102
µ(φ), 196
ν f (D), 6
φt

Z , 143
∂H∞, 17
φ•, 197
φ•, 3
πd , 34
Γ̃(n,q), 102
∨, 102
mp(C), 7
mp(φ), 89
t , 102
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Boston, Inc., Boston, MA, 2010.

[Bro76] F. E. Browder, editor. Mathematical developments arising from Hilbert prob-
lems. Proceedings of Symposia in Pure Mathematics, Vol. XXVIII. American
Mathematical Society, Providence, R. I., 1976.

[Bru15] M. Brunella. Birational geometry of foliations, volume 1 of IMPA Mono-
graphs. Springer, Cham, 2015.

[BS85] M. G. Brin and C. C. Squier. Groups of piecewise linear homeomorphisms of
the real line. Invent. Math., 79(3):485–498, 1985.

[BT73] A. Borel and J. Tits. Homomorphismes “abstraits” de groupes algébriques sim-
ples. Ann. of Math. (2), 97:499–571, 1973.

[ByB66] A. Biał ynicki Birula. Remarks on the action of an algebraic torus on kn. Bull.
Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 14:177–181, 1966.

[BYar] J. Blanc and E. Yasinsky. Quotients of groups of birational transformations of
cubic del pezzo fibrations. J. Éc. polytech. Math., to appear.
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[CdC20] S. Cantat and Y. de Cornulier. Distortion in Cremona groups. Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5), 20(2):827–858, 2020.

[CDP90] M. Coornaert, T. Delzant, and A. Papadopoulos. Géométrie et théorie des
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volume 652 of Lecture Notes in Math., pages 114–121. Springer, Berlin, 1978.
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