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Abstract. We study the relation between Cremona transformations in space
and quadratic line complexes. We show that it is possible to associate a space
Cremona transformation to each smooth quadratic line complex once we
choose two distinct lines contained in the complex. Such Cremona transfor-
mations are cubo-cubic and we classify them in terms of the relative position
of the lines chosen. It turns out that the base locus of such a transformation
contains a smooth genus two quintic curve. Conversely, we show that given a
smooth quintic curve C of genus 2 in P3 every Cremona transformation con-
taining C in its base locus factorizes through a smooth quadratic line complex
as before. We consider also some cases where the curve C is singular, and we
give examples both when the quadratic line complex is smooth and singular.
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1 Introduction

Quadratic complexes and Cremona transformations are classical subjects. The
study of quadratic complexes goes back at least to F. Klein (see [21]). In the
beginning of the 20th century, Jessop, among others, studied extensively the
quadratic line complex and the associated Kummer surface (see [19],[18]).
More recently there has been a lot of research on the subject putting it in
the context of contemporary geometric invariant theory with applications to
vector bundles (see [24],[26] and [1]).

Cremona transformations appear also in the 19th century. The subject was
introduced by Luigi Cremona in [9] and extensively developed thereafter (see
for example [4],[25],[10],[11],[20],[3],[5]). The younger sister of the older
Hudson, Hilda Hudson, wrote a comprehensive book about Cremona trans-
formations in plane and space [17] and, as it was the case with quadratic
complexes, there has been a lot of contemporary research on the subject (for
higher dimension see for example [12],[7],[8], [27],[28],[30],[29],[15]).

But, to our knowledge, the relation between the two subjects has not been
studied before. This is the aim of this paper. The connection is the follow-
ing. Let Q1 denote a smooth hyperquadric in P5 over the field of complex
numbers, considered as the Plücker hyperquadric parameterizing lines in P3.
A quadratic complex or to be more precise a quadratic line complex is by
definition a complete intersection X =Q1∩Q2, with a hyperquadric Q2 ⊂ P5

different from Q1. We assume that X is smooth, unless stated otherwise. This
means that the pencil λ Q1+μQ2 is general, i.e., the roots of det(λ Q1+μQ2)
are all distinct (here, by abuse of notation, Qi represents both the quadric and
its associated matrix).

Take two lines L1,L2 ⊂ P5, L1 �= L2, both contained in X . Fix general
3-planes Mi ∼ P3, i = 1,2 in P5, and define projections πi : P5 Mi,
i= 1,2, with centers L1 and L2, respectively; we assume Mi∩Li = /0, i= 1,2.
The map ϕ = ϕL1 ,L2 := π2π−1

1 : P3
P

3 is a Cremona transformation
that is, as we shall see, a so-called cubo-cubic Cremona transformation, mean-
ing both ϕ and its inverse have (algebraic) degree 3. In §2 and §3 we recall
quadratic complexes and cubo-cubic Cremona transformations as well as the
classification of these Cremona transformations in space.

The nature of ϕL1 ,L2 depends on the relative position of the lines L1,L2 we
are projecting from; this map is a cubo-cubic Cremona transformation which
is determinantal if L1 and L2 do not meet and de Jonquières otherwise. In both
cases the base locus scheme contains a smooth quintic curve of genus 2 and a
line. This is the first main result of the paper (see Theorem 1 in §3).

Conversely, let C be a smooth, quintic curve of arithmetic genus 2 in P3.
In §4, we prove that every cubo-cubic Cremona transformation ϕ containing
C in its base locus factorizes through a quadratic complex X via two linear
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projections as above. Moreover the residual intersection of its base locus with
C classifies such Cremona . Finally, as a consequence, we obtain a Sarkisov
decomposition for these cubo-cubic Cremona transformations.

In the last section, we begin the study of some singular cases. We say that
we have a singular quadratic complex if the pencil λ Q1+μQ2 is not general
anymore and X is singular. Starting from a singular quintic curve of arithmetic
genus 2 we build examples of Cremona transformations which may be related
to singular quadratic complexes or to more general three dimensional vari-
eties. We give some relevant examples such as the three dimensional standard
Cremona transformation; we give also examples showing that singular quin-
tic curves as above may produce non cubo-cubic Cremona transformations as
well.

2 Quadratic complexes

Let Q1 denote a smooth hyperquadric in P5 over the field of complex num-
bers, considered as the Plücker hyperquadric parameterizing lines in P3. A
quadratic line complex is, as defined before, a complete intersection
X =Q1∩Q2, with a hyperquadric Q2⊂ P5 different from Q1. An introduction
to this subject may be found in [16, chap. 6].

Let us assume that X is smooth. We know that X is a Fano rational variety
whose canonical sheaf is ωX =OX(−2).

Take two lines L1,L2 ⊂ P5, L1 �= L2, both contained in X . Fix a general
3-plane M = P3 in P5, and define projections πi : P5

P
3, i= 1,2, with

centers L1 and L2, respectively; we assume M∩Li = /0, i= 1,2.

Lemma 1 The restriction of πi to X , i = 1,2 induces a birational map
X P

3, which we still denote by πi, whose inverse π−1
i is given by a lin-

ear system of cubics whose base locus scheme is a smooth irreducible curve
Ci ⊂ P3 of degree 5 and genus 2. In particular, π2π−1

1 : P3
P

3 is given
by a linear system of cubics vanishing on C1.

Proof Fix i ∈ {1,2} and let us denote L= Li and π = πi. Take a general point
y ∈ P3. Consider the 2-plane Hy := 〈L,y〉 generated by L and y. We have that
Hy∩Qi is the union of L with another line L′i. Since X is smooth, L′1∩L′2 �⊂ L,
and for general y we have L′1 �= L′2. Hence L′1∩L′2 is a point in Hy∩X\L, from
which it follows that π is birational.

A general hyperplane section S =H ∩X of X is a smooth surface S ⊂
P

4 which is a del Pezzo surface of degree 4, since ωS = OS(−1). Its image
via πi is the projection of S from the point in H ∩Li, i.e. a (smooth) cubic
surface. Thus π−1

i : P3 X ⊂ P5, and a posteriori π2π−1
1 and π1π−1

2 , are
all given by linear systems of cubics. By blowing up X along Li we obtain a
smooth three dimensional variety Xi and a birational morphism σi : Xi→ P

3.
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By construction σi contracts the strict transform, say R, of a line in X passing
through a point of Li; since the canonical divisor KX of X is linearly equivalent
to −2S, we infer KXi ·R= −1, which shows that σi is an extremal contraction
in the sense of Mori. By the classification of extremal contractions of a smooth
(projective) three dimensional variety (see [23, Thm. 3.3 and Cor. 3.4]) we
conclude that σi is the blow-up of P3 along a smooth irreducible curve Ci; in
particular all base points of πi : P3 X belong to Ci. Since cubic surfaces
in P3 containing Ci correspond by π−1

i to hyperplane sections of X we easily
deduce that the residual intersection of two such cubic surfaces with respect to
Ci is an elliptic quartic curve. By liaison Formulae (see [31, Prop. 3.1]) Ci has
degree 5 and genus 2. It is well known that such a curve is scheme-theoretical
intersection of six cubic surfaces (see for example Proposition 3 in §4), which
completes the proof. ��
Remark 1 Once we know the curve Ci is smooth we do not need to use Mori’s
results. In fact, in this case we may deduce that σi : Xi→ P

3 is a blow-up in
a more elementary form: see for example [12, Prop. 1]. On the other hand, in
[16, Chap. 4, §3] the smoothness of C is deduced from general constructions
on quadratic complexes.

Take two lines L1,L2 in the quadratic complex X = Q1 ∩Q2. Denote by
ϕ = ϕL1,L2 := π2π−1

1 : P3
P

3 the Cremona transformation given by
Lemma 1.

In the sequel, we describe the map ϕ in the case where X is smooth.

We begin with some intersection theory on the resolution of the indeter-
minacies of ϕ , which will be used in the proof of Theorem 1 in next section.

Let σ : W → Z be the blow up of a smooth dimension 3 variety along a
smooth curve C of genus g, with exceptional divisor E. The Segre class of C
as a subscheme of Z is given by (see [13, Cor. 4.2.2])

σ∗(E−E2+E3) =C−
∫

C
c1(NCZ),

where NCZ is the normal bundle of C in Z; here we use that the Chern class
of this bundle is the inverse of the Segre class of C (smooth case). Taking
into account the adjunction formula, we deduce that the self-intersections of
E satisfy

σ∗(E2) = −C, and σ∗(E3) = KZ ·C+2−2g (1)

where KX denotes, as usual, the canonical divisor of X .

We resolve the indeterminacies of ϕ in two different cases:

Case (c1) L1 ∩ L2 = /0. Consider the blow-up α : V → X of X along L1,
with exceptional divisor A; denote by L̃2 the strict transform of L2 under
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α and set pi := πiα , (i = 1,2); note that L̃2 is the base locus scheme of
p2 = π2α : V P

3.
Let β : W → V be the blow-up of V along L̃2, with exceptional divisor B,

and set q := p2β . By construction p1 and q are well defined and we obtain a
commutative diagram:

W
β

qV
p1 α

p2

P
3 X

π1 π2
P

3.

If HX is the restriction to X of a general hyperplane in P5, then p1 and p :=
p1β are defined by the complete linear systems |α∗HX −A| and |β ∗(α∗HX −
A)|, respectively.

Let’s denote D := β ∗α∗HX . By abuse of notation, we also denote by A
the strict transform of A under β . In the following lemma we keep the above
notations, in particular for the strict transform of exceptional divisors:

Lemma 2 A resolution of the indeterminacies of ϕ is given by the following
commutative diagram

W
p q

P
3

ϕ P
3.

Moreover, the Picard group of W is

Pic(W) = DZ⊕AZ⊕BZ,

with the following intersection numbers:

A3 = 0 A2 ·B= 0 A2 ·D=−1
A ·B2 = 0 B3 = 0 B2 ·D=−1
A ·D2 = 0 B ·D2 = 0 D3 = 4
A ·B ·D= 0.

Proof The first assertion follows from the argument above, and the intersec-
tion numbers are obtained using formulae (1). ��
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Case (c2) L1 ∩L2 = {x}. As before α : V → X and β : W → V are the blow-
ups of L1 and the strict transform L̃2 ⊂V of L2 respectively. Now consider the
blow-up γ :W ′ →W of W along the strict transform in W of L0 :=α−1(x)⊂A;
denote by P its exceptional divisor. Note that p1= π1α is a morphism but π2α
is well defined at z ∈V if and only if z �∈ L̃2 ∪L0.

As in the former case, we obtain a commutative diagram (q′ is well defined
by the next Lemma)

W ′
γ

q′
W

p

β

V

p1
α

P
3 Xπ1 π2

P
3.

Let p′ = pγ . Keeping the above notations, we obtain the following lemma:

Lemma 3 A resolution of the indeterminacies of ϕ is given by the following
commutative diagram

W ′
p′ q′

P
3

ϕ P
3.

Moreover, the Picard group of W ′ is

Pic(W ′) = DZ⊕PZ⊕AZ⊕BZ,

with the following intersection numbers:

A3 = 1 A2 ·B= −1 A2 ·D=−1 A2 ·P= 0
A ·B2 =−1 B3 = 1 B2 ·D=−1 B2 ·P= 0
A ·D2 = 0 B ·D2 = 0 D3 = 4 D2 ·P= 0
A ·P2 =−1 B ·P2 = −1 D ·P2 = 0 P3 = 2
A ·B ·D= 0 A ·B ·P= 1 A ·D ·P= 0 B ·D ·P= 0.

Proof We have p′ = p1β γ . To prove the first assertion it suffices to show that
π2π−1

1 p′ is a morphism, that is to say, that π2αβ γ is a morphism. The linear
system defining π2 is cut out by hyperplane sections of X passing through L2.



On Cremona transformations and quadratic complexes 359

Fig. 1 Incidences for exceptional divisors

Since the unique normal direction to L1 at x which is a tangent direction for
all such hyperplane sections is that defined by L2, it follows that π2α has no
infinitely near base points over L0. This proves the assertion.

For the intersection numbers we use formulae (1) relating the Segre class
and adjunction formula. Note first that the last row of numbers follows from
figure 1. The cubic powers may be computed taking into account the be-
havior of the canonical divisor in each blow-up. For the rest we use once
again formulae (1); for example let us compute A2 · P. Recalling the nota-
tions for strict transforms of exceptional divisors we have γ∗(A) = A+P, then
A2 ·P= (γ∗(A)−P)2 ·P=−2A · γ∗(P2)+P3, and γ∗(P2) =−L0, A ·L0=−1.
Thus A2 ·P=−2+P3 =−2+2 = 0. ��

For the following section we recall the definition of special lines on X (see
[16, Chap. 6, §4]).

Definition 1 Let L⊂ X be a line on the quadratic complex. The line L is said
to be special if either of the three equivalent conditions holds:

1. dim(∩x∈LTxX) = 2.
2. The locus Tx ∩X of lines in X through a generic point x ∈ L consists of

fewer than four lines.
3. The normal bundle of L = P1 in X is NL/X =OP1(1)⊕OP1(−1).

Remark 2 In fact, as shown in [16, Chap. 6, §4] the normal bundle of a non
special line in X is trivial, then the speciality of a line may be understood as
the form in which it is embedded in.
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3 Cremona transformations

Let ϕ : P3
P

3 be a rational map given by ϕ = ( f0 : · · · : f3), where the
fi are homogeneous polynomials of the same degree d and without common
factors; these polynomials define a subscheme Base(ϕ) of P3, the so-called
base locus scheme of ϕ .
The integer d is called the degree of ϕ and denoted by deg(ϕ). The Jacobian
Jac(ϕ) of ϕ is the effective divisor on P3 defined by the Jacobian determinant

det

(
∂ fi

∂x j

)
;

this determinant is a homogeneous polynomial of degree 4(deg(ϕ)−1). The
map ϕ is called a Cremona transformation if it has a rational inverse ϕ−1. If
both the Cremona transformation and its inverse have degree 3 then it is called
a cubo-cubic Cremona transformation.

In the following theorem, we will use, implicitly, the classification of cubo-
cubic Cremona transformations of P3. There are essentially, three kinds of
cubo-cubic Cremona transformations ϕ:

1. ϕ is called determinantal, if there exists a 4×3 matrix A with linear entries
such that ϕ is given by the four 3×3 minors of the matrix A. The inverse
ϕ−1 is also determinantal.

2. ϕ is de Jonquières if and only if the strict transform of a general line
under ϕ−1 is a singular plane rational cubic curve whose singular point
is fixed. For such a transformation there is always a quadric contracted
onto a point, the corresponding fixed point for ϕ−1, which is also a de
Jonquières transformation.

3. ϕ is ruled if the strict transform of a plane under ϕ−1 is a ruled cubic
surface.

We recall the following results which characterize cases (1) and (3) above.

Proposition 1 A cubo-cubic Cremona transformation is determinantal if and
only if its base locus scheme is an arithmetically Cohen-Macaulay curve of
degree 6 and (arithmetic) genus 3.

Proposition 2 A cubo-cubic Cremona transformation is ruled if and only if it
is defined by a linear system, Λ say, of non normal cubic surfaces; in particu-
lar, the dimension 1 part of its base locus scheme is a union of at most 3 lines,
one of which is a line of singular points for all surfaces in Λ .

Denoting by T D
33, T J

33 and T R
33 the (constructible and irreducible) sets of de-

terminantal, de Jonquières and ruled cubo-cubic transformations respectively,
these sets satisfy

T D
33∩T J

33 = /0 , T D
33∩T R

33 �= /0 , T J
33∩T R

33 �= /0.
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For more details on cubo-cubic transformations we refer the reader to [17]
or [27].

Theorem 1 Assume that the quadratic complex X is smooth and let L1, L2 be
two (distinct) lines in X. Then the map ϕ = ϕL1,L2 = π2π−1

1 is a cubo-cubic
Cremona transformation such that:

(a) The support of Base(ϕ) consists of an irreducible genus 2 quintic curve
C and a line L.

(b) If L1∩L2 = /0, then ϕ is a Cremona determinantal transformation, Jac(ϕ)
is the union of a quadric and a sextic irreducible surfaces, Base(ϕ) =
C∪L as schemes and L is a secant line to C which is not trisecant.

(c) If L1 ∩ L2 �= /0, then ϕ is a de Jonquières transformation, Jac(ϕ) is the
union of two quartic surfaces, one of these being irreducible, and the
other one supported on a quadric. In this case the base locus scheme has
an embedded point at π1(L2) ∈C∪L, Base(ϕ)red = C∪L is a complete
intersection of a cubic surface and the unique quadric surface containing
C, and L is a trisecant line to C.

Proof Recall notations in cases (c1) and (c2) from Section 2. In Lemma 1 we
proved that ϕ is cubo-cubic and Base(ϕ) contains C∪L as in our statement;
this proves (a). Moreover, denoting by V3 the 3-space generated by L2 and a
general line � ⊂ P3, there is a curve C of degree 3 (a priori not necessarily
irreducible or reduced) such that

V3∩X = V3∩Q1∩Q2 =C∪L2.

We deduce that π1(C) = ϕ−1∗ (�) and that C is irreducible. It follows that C
is a twisted cubic in V3, having L2 as a bisecant line, since the genus of C∪L2
is 1. Therefore, the restriction of π1 to C is injective if and only if L1∩L2 = /0;
in this case ϕ−1∗ (�) is a twisted cubic in P3 with π1(L2) as a bisecant line.
Otherwise ϕ−1∗ (�) is a plane singular cubic.

In the rest of the proof, we will use that through a smooth genus 2 quintic
curve C in P3 there pass smooth cubic surfaces and a (unique) quadric (see
Proposition 3 in §4).

(b) Suppose L1 ∩ L2 = /0. Here L = π1(L2). Take general cubic surfaces,
say S,S′, such that S∩ S′ = C∪ L∪ ϕ−1∗ (�). Since a twisted cubic curve is
arithmetically Cohen-Macaulay of genus 0, by liaison C∪L is an arithmeti-
cally Cohen-Macaulay curve of degree 6 and arithmetic genus 3, whose ideal
is generated by 4 independent cubic forms which are the maximal minors of a
4×3 matrix of linear forms ([31, §3]); in particular ϕ is determinantal. Using
adjunction on (a smooth surface) S, we have that arithmetic genus 3 for C∪L
implies L is a secant line to C which is not trisecant.
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To complete the proof of (b), we use Lemma 2. Let H1,H2 ⊂W be the
pullbacks of a hyperplane in P3, by p and q, respectively. We have

H1 ∼D−A , H2 ∼D−B.

We obtain:
A ·H2

1 = B ·H2
2 = 2, B ·H2

1 = A ·H2
2 = 0

from which we deduce that p(A) (resp. q(B)) is a quadric surface contracted
by ϕ (resp. ϕ−1). If E is the exceptional divisor of p1 we have

KW = p∗(KP3)+B+E.

Note that E is irreducible. We know that Jac(ϕ−1) has degree 8. Since

Jac(ϕ−1) = q∗(E+B),

we obtain
E ·H2

2 = 6,

showing that Jac(ϕ−1) is the union of a quadric and a sextic surfaces, both
irreducible. By symmetry, Jac(ϕ) has the same properties.

(c) Let us assume L1 ∩L2 �= /0. In this case π1(L2) is a point and ϕ−1∗ (�)
is a plane cubic. Then ϕ is de Jonquières. Moreover, as above we deduce that
C∪L is arithmetically Cohen Macaulay of degree 6 and genus 2; hence L is a
trisecant line to C. Since C contains a quadric, necessarily it contains L. The
existence of an embedded point follows from [28].

Let H1,H2 ⊂ W ′ be the pullbacks of a hyperplane in P3, by p′ and q′,
respectively. We have

H1 ∼D−A−P , H2 ∼D−B−P.

Since
A ·H2

1 = B ·H2
2 = 2, P ·H2

2 = 0, A ·H2
2 = B ·H2

1 = 0,

by lemma 3, then p′(A) (respectively q′(B)) is a quadric surface contracted by
ϕ (respectively ϕ−1), and P is contracted by q′.

Note that in this case the strict transform of L2 in V is contained in p−1
1 (C) =

E, hence β ∗(E) = E+B. Therefore KW ′ = (p′)∗(KP3)+γ∗(β ∗(E)+B)+P=
(p′)∗(KP3) +E+ 2B+P. We obtain the equality Jac(ϕ−1) = q′∗(2B+E) as
divisors. We complete the proof by arguing as in the former case showing that
Jac(ϕ−1) is the union of a double quadric and a quartic surfaces. ��
Remarks 3. a) As we have seen in the proof of part (b) of Theorem 1, the line
L is nothing but π1(L2). In part (c) of that result, the line L2 is contracted by π1
to a point P0 which is the embedded point of Base(ϕ); the line L, coinciding
with p1(L0), is then a trisecant to C containing P0. Thus the embedded point
is in C∩L.
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b) The lines L1 and L2 may be special, this is irrelevant for Theorem 1.
Indeed, all arguments (including the intersection numbers) used in the proof
do not depend on whether the lines are special or not.

c) On the other hand, the quadric surface p(A) containing the quintic curve
CL1 = C (see the proof of Theorem 1) is a quadratic cone if the line L1 is
special and is smooth if L1 is not special (see Definition 1 and Remark 2).
This quadric is the variety Sec3(CL1) of trisecant lines of CL1 .

The maps πi, i = 1,2, above, can be used to construct Cremona transfor-
mations in various ways. In this section, we suggested two ways in which
this can be done and in the next section we state a general theorem classi-
fying such Cremona transformations. We consider in the next two examples
X =Q1∩Q2 such that the pencil λ Q1+μQ2 is general (see §1). Let x0, . . . ,x5
be homogeneous coordinates on P5.

Example 1 Case where L1 ∩L2 = /0. Let Q1 := (x1x0− x3x2+ x5x4 = 0) and
Q2 := (x2

0− x2
1+2x2

2−2x2
3+4x2

4−4x2
5 = 0). Let M1 ∼ P3 be given by x0 =

x3 = 0 and M2 ∼ P3 be given by x2 = x5 = 0. Consider the tangent space TxX
to X at x = (1 : 1 : 1 : 1 : 0 : 0). We take L1 to be one of the four lines in
TxX ∩X , parameterized for example by:

(x0 :−3x0+4x3 :−2x0+3x3 : x3 :
√

3(x0−x3) :
√

3(x0−x3)), (x0 : x3) ∈ P1.

By intersecting X with the plane 〈y,L1〉 through the point y= (0 : y1 : y2 : 0 :
y4 : y5) ∈ M1 and the line L1, we get an expression for π−1

1 (y), given by six
cubic polynomials . To get a line L2 disjoint from L1, we consider the point
y= (0 : 0 : 1 : 1 : 1 : 1) and take one of the four lines in TyX ∩X , for example:

(
√

3(x2−x5) :−
√

3(x2−x5) : x2 :−3x2+4x5 :−2x2+3x5 : x5), (x2 : x5)∈P1.

By intersecting M2 with the plane 〈z,L2〉 through the point z ∈ P5 and the line
L2 we obtain π2(z). We compute π2π−1

1 (y) by replacing z= π−1
1 (y) and obtain

four cubic polynomials. We check that the line π1(L2) is bisecant to the quintic
curve C. Then these polynomials define a cubo-cubic determinantal Cremona
transformation. It may also be checked that Jac(ϕ) factorizes as a quadric
times a sextic.

Example 2 Case where L1 ∩L2 �= /0. Keep Q1, Q2 and L1 as before. Let now
L2 be the line in X containing the point x of L1, with parametrization as L1
but changing the sign in the last two coordinates. Consider the new projection
π2 on M1 with center L2. The composition with π−1

1 is a cubo-cubic Cremona
transformation ϕ , and the intersection of L = TxX ∩M with the quintic curve
C has three points, so L is trisecant to C. It follows that ϕ is a de Jonquières
transformation. It may also be checked that Jac(ϕ) factorizes as the square of
a quadric times a quartic.
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Example 3 Case where L1 is a special line. Keep the quadratic complex X
defined by Q1 and Q2 as above, and let z = (−2 : 2 : 2

√
5 : −2

√
5 : −4 :

4) ∈ X . Then the tangent space TzX intersects X in two lines, L1 and L2, such
that one of these lines, say L1, contains the point w = (2 : 2 :

√
5 :
√

5 : 1 :
1). The tangent spaces TzQ1 and TwQ2 coincide, so the line L1 is special,
as it can be verified since in this case one has dim(

⋂
p∈L1

TpX) = 2. On the
other hand dim(

⋂
p∈L2

TpX) = 1, so L2 is not a special line. The Cremona
transformation built from the projections from L1 and L2 to M defined by
x0 = x1 = 0 is, as expected, a de Jonquières cubo-cubic since L1 and L2 meet.
This may be verified by the factorization of the Jacobian, as before. In this
example the quadric surface of trisecants to the quintic curve CL1 given by the
first projection is a quadratic cone.

4 ACM quintic curves

In this section, the data we begin with is a smooth genus 2 quintic curve in P3

and we consider Cremona transformations containing this curve in the base
locus, to obtain its relation with a quadratic complex.

In the sequel we write ACM for arithmetically Cohen-Macaulay.

Proposition 3 Let C ⊂ P3 be a smooth genus 2 quintic curve, and JC the
ideal sheaf associated to C. There exist irreducible homogeneous polynomials
g, f1, f2 of degrees 2,3,3, respectively, such that:

(a) JC is generated by g, f1, f2.
(b) The surfaces Fi :=V( fi), i= 1,2 are smooth.
(c) The pencil generated by f1, f2 cuts out over Q :=V(g) the family of trise-

cant lines of C. The induced rational fibration Q P
1 cuts out either

a g1
3 or a g1

2 on C depending on whether Q is smooth or not.

Moreover, we have

h0(JC(2)) = 1, h0(JC(3)) = 6. (2)

Proof For n≥ 2 consider the exact sequence

0 JC(n) OP3(n) OC(n) 0.

Then we have h0(OC(n))≥
(n+3

3

)−h0(JC(n)), the Riemann-Roch Theorem
implies that h0(OC(n)) = 5n+1−2, and therefore

h0(JC(2))≥ 1, h0(JC(3))≥ 6

hence C is properly contained in a complete intersection of type (2,3). On
the other hand, by liaison theory ([31, §3]) we know that C is an ACM curve
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which is the theoretical scheme defined by the intersection of a unique quadric
Q and two cubic surfaces; in particular the equalities in (2) hold. The smooth-
ness of the Fi’s may be assumed by [31, Prop. 4.1]. By comparing the genus
formula for a complete intersection with that of an effective divisor on a
smooth surface, we conclude that this line is a trisecant line of C. Now, when
the cubic surfaces describe the linear system containing C, the residual inter-
sections with Q are the trisecant lines to C, and it follows that Q is the union
of these lines. Finally, consider the two trisecant lines S1,S2 such that

V( fi)∩Q=C∪Si, i= 1,2.

Since the rational map f1/ f2 : Q P
1 extends to Q− (S1∪S2) (there are

no embedded points in a complete intersection), then S1 and S2 are linearly
equivalent, as divisors on Q. This proves the proposition. ��

By Proposition 3, the homogeneous polynomials

X0g,X1g,X2g,X3g, f1, f2 ∈ C[X0, . . .,X3], (3)

generate the ideal sheafJC and the linear space H0(JC(3)).

Proposition 4 Let φ : P3
P

5 be the rational map associated to the lin-
ear system PH0(JC(3)), and σ : Z = BlC(P3)→ P

3 be the blow-up of P3

along C with E its exceptional divisor.
There is a commutative diagram

Z

σ
ψ

P
3

φ
P

5.

Moreover, the morphism ψ is birational onto its image X := ψ(Z), which
is a smooth codimension 2 subvariety of P5 of degree 4.

Proof The first assertion is clear since σ resolves the indeterminacies of φ .
Let H be the divisor in Z defined as the pullback of a general hyperplane

in P3.
The morphism ψ is defined by the complete linear system |3H−E|. By

formulae (1),
(3H−E)3 = 4, (4)

then the degree of X divides 4. Since X is not contained in a hyperplane,
deg X = 4. It follows that ψ is birational onto X .

To prove that X is smooth, take a sufficiently general plane Π ⊂ P3, i.e.
transversal to the quintic C and not containing any trisecant to C. The restric-
tion of φ to Π , induces a rational map Π P

5, defined by plane cubics
curves through five points in general position. Hence ψ∗σ−1∗ (Π) is a (smooth)
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del Pezzo surface of degree 4, which is a hyperplane section of X containing
the line into which Q is contracted. For each point of X there is such a smooth
hyperplane section. This completes the proof. ��
Remarks 4. (a) The rational map ψ is birational and contracts the strict trans-
forms by σ of trisecants to C onto the points of a line, say L1 ∈ P5. In the
case where Sec3(C) is a smooth quadric, one ruling of this quadric is given
by the trisecant lines to C and the lines in the second ruling are bisecant to
C. The strict transform by σ of each line of this second ruling is sent by ψ ,
isomorphically, onto L1.

(b) The subvariety X of P5 is in fact a complete intersection of two hyper-
quadrics, as we will see in a more general setup with C not necessarily smooth
(see Proposition 5).

The following result proves that from the construction in Theorem 1 we
obtain every Cremona transformation whose base locus scheme contains a
smooth genus 2 quintic curve.

Theorem 2 Let ϕ : P3
P

3 be a cubo-cubic Cremona transformation
whose base locus scheme Base(ϕ) contains a smooth genus 2 quintic curve
C.

The map ϕ factorizes through a quadratic complex X, via two linear pro-
jections πLi : P5

P
3 with centers two lines L1,L2 contained in X.

Proof We keep the notations from Proposition 4. From this result and Re-
marks 4(b), we know that X = ψ(Z) is a quadratic complex and the image by
ψ of the strict transform of the quadric Q is a line L1. This line is the center
of a linear projection which is the inverse map of φ : P3

P
5

There exist homogeneous polynomials f0, f1, f2, f3 ∈C[x,y, z,w] of degree
3, without common factors, such that

ϕ = ( f0 : f1 : f2 : f3).

Since Base(ϕ) contains C the linear space, over C, generated by these polyno-
mials is a four dimensional subspace of H0(JC(3)). Then we may factorize
ϕ through φ by way of a linear projection πL2 whose center L2 ⊂ P5 is a line.
By Lemma 1 we only need to prove that L2 ⊂ X .

Suppose L2 �⊂ X . Then L2 intersects X in, say, k ≥ 0 points. We know
that k ≤ 2 since X is a complete intersection of two hyperquadrics. Then a
2-plane, general among those containing L2, intersects X\L2 in 4− k points,
contradicting the birationality of ϕ . ��

Theorem 2 shows that any cubo-cubic Cremona transformation, whose
base locus contains a smooth genus 2 quintic curve C, factorizes through
φ : P3

P
5 via a projection of P5 with center a line in X . Since the
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projection of a quadratic complex X from a line therein always leads to a bi-
rational map X P

3, we may describe the nature of the Cremona trans-
formations as in the Theorem above, in terms of what information from C that
line carries. We will do this in Theorem 3 below. To begin with, we show that
given a line L1 ⊂ X , there are two families of lines in X intersecting it:

i) those coming from the normal directions at points of C which yield de
Jonquières transformations, a dimension 1 family.

ii) those coming from bisecants L to C which yield determinantal trans-
formations when L �⊂Q, and a linear automorphism otherwise, a dimension 2
family.

To fix some notation, let σ : Z → P
3 be the blow-up of a smooth quintic

genus 2 curve C, as before, and ψ = φσ . Take two points x,y ∈ C not con-
tained in the same trisecant to C. Denote by Ex the rational curve σ−1(x) and
by Sx,y the strict transform by σ of the line which is bisecant to C at the points
x,y.

Lemma 4 Let L be a line in P5. Then L ⊂ X if and only if either L = ψ(Ex)
or L = ψ(Sx,y) for x,y ∈C.

Proof Let H be a general hyperplane in P5. Since ψ∗(H ) = 3H −E and
(3H−E) ·Ex = (3H−E) · Sx,y = 1, then we see that ψ(Ex) and ψ(Sx,y) are
lines in X .

For the converse assertion denote by L1 ⊂ X the line onto which the strict
transform of Q is contracted under ψ .

First suppose that L ⊂ X is a line which intersects L1. If L = L1 then it is
ψ(Sx,y) for a ruling in Q when this quadric is smooth (remark 4(a)), and is
ψ(Ex)where x is the vertex when the quadric is singular. If L �= L1 we already
know that L is contracted under πL1 onto a point of C and then it is ψ(Ex) for
a point x ∈C.

It remains to deal with the case where L∩L1 = /0. The 3-space generated
by these lines intersects X along four lines, the two additional lines meet L
and L1. It follows that the projection of L is a bisecant to C and this completes
the proof. ��
Theorem 3 Let L ⊂ P

5 be a line. Consider a rational map
ϕ = ϕL : P3

P
3 defined by the commutative diagram:

Z

σ

ψ
X

π|X
P

5

π

P
3

ϕ
P

3

where π = πL : P5
P

3 is a projection with center L. Then ϕ is a Cre-
mona transformation if and only if L ⊂ X. Moreover
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(a) If L = ψ(Sx,y), then ϕ is determinantal of bidegree (3,3) when σ(Sx,y) �⊂
Sec3(C), and it is a linear automorphism otherwise.

(b) If L = ψ(Ex), then ϕ is a de Jonquières transformation.

Proof The first assertion is contained in the last part of the proof of Theorem
2. We know also that ϕ is either an automorphism or a cubo-cubic transfor-
mation.

Theorem 1 together with Lemmas 1 and 4 give part (a) of the Theorem.

Let L = ψ(Ex), where x ∈ C. The pullback of a general hyperplane con-
taining L, by ψ , is a smooth surface, S say, containing Ex. Then F := σ(S) has
a singular point at x. This point is necessarily a double point and the trisecant
line in F ∩Q is forced to go through that point. Assertion (b) follows from
part (c) of Theorem 1 (see also part (a) of Remarks 3). ��
Remark 5 We have seen that the strict transform on Z of the quadric Q con-
taining C is contracted by ψ onto a line (the equation of Q is given by g= 0 in
(3)). This line is the line L1 ⊂ X appearing in Theorem 2. On the other hand
the line L2 ⊂ X in that theorem is L in both cases (a) and (b).

Sarkisov decomposition. We keep the notations from the last sections. The-
orems 1 and 2 imply a very simple geometric description of the cubo-cubic
transformations arising from our construction. Indeed, we conclude that such
a Cremona transformation may be obtained from P

3 as a product of two ele-
mentary transformations or links: first one blows up a smooth quintic curve C
of genus 2 and contracts the strict transform of the quadric containing C onto
the line L1 in the Fano variety X ; second we blow up X along L2 and con-
tract the union of lines on X touching L2, which is a surface, onto the smooth
quintic curve contained in Base(ϕ−1), in P3. These elementary transforma-
tions are special cases of the so-called Sarkisov links: they are links of type II.
This description does not depend on whether the lines L1 and L2 intersect or
not. However, according to a theorem of Corti ([6] or [22]) on the algorithm
to reach the end of the Sarkisov program, we have also other possibilities to
obtain it. We may summarize this result (with the notations of Theorem 2):

Corollary 1 Let ϕ : P3
P

3 be a Cremona transformation arising from
a quadratic complex. Then ϕ admits a decomposition as a product of two
Sarkisov links of type II:

Z1
σ1 ψ1

Z2
ψ2 σ2

P
3

ϕ

X P
3

.
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5 On the singular case

Now we want to generalize the above construction. Given a singular ACM
quintic curve of genus 2, our goal is to obtain Cremona transformations. In
most cases we obtain codimension 2 quartics in P5, some of them being sin-
gular quadratic complexes and some which are not necessarily quadratic com-
plexes.

According to the Peskine-Szpiro Deformation Theorem [31, Thm. 6.2],
the family of ACM quintic curves of genus 2 is parameterized by a scheme
S over C, which is a dense open set of a projective space, and there exists an
S -scheme C of codimension 2 in P3

S = P
3×S , flat over S , such that

a) the ideal sheafJC admits a minimal resolution

0 O2
P

3
S
(−4) OP3

S
(−2)⊕O2

P
3
S
(−3) JC 0 . (5)

b) If s ∈ S , the fiber C (s) is an ACM subscheme of codimension 2 of
P

3 = P3×{s}, in such a way that its minimal resolution is obtained from (5)
by tensorizing with C(s) over OS .

c) If C is an ACM codimension 2 subscheme of P3, the ideal sheaf JC

admitting a minimal resolution of the form

0 O2
P3(−4) OP3(−2)⊕O2

P3(−3) JC 0 , (6)

then there exists a point s ∈S , such that C = C (s) and the resolution (6) is
obtained from (5) by tensorizing with C(s) over OS . Moreover, the set

Ssm := {s ∈S : C (s) is smooth}
is a dense open subset ofS .

We consider the blow-up Σ : Z = BlC (P3
S )→ P

3
S of P3

S along C . We
may define a rational map Φ : P3

S P
5
S and complete the following

commutative diagram with a morphism Ψ into P5
S .

Z

Σ
Ψ

P
3
S

Φ
P

5
S .

(7)

DenoteX :=Ψ(Z ). Now consider the set

S0 := {s ∈S : Ψs is generically finite} ⊃Ssm.

If s0 ∈S0, then Ψs0 :Z (s0)→X (s0) is a dominant morphism onto a dimen-
sion 3 variety.
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Proposition 5 Let s0 be a point inS0. Then Ψs0 is a birational morphism and
X (s0) is a 3-dimensional variety of degree 4. Moreover, if X (s0) is normal,
it is a complete intersection of two hyperquadrics in P5×{s0}.

Proof Fix a point s ∈ Ssm. We take the line T joining s0 to s and define
T0 := T ∩S0. This is a regular (integral) scheme whose generic point lies
in Ssm. Moreover, if X (s0) is normal, then X is a flat family over an open
set of T0 containing s, since an algebraic family, without multiple fibers, of
normal varieties is flat.

On the other hand, we know that there exists at least an element s ∈Ssm,
such that X (s) is a complete intersection, and for which the morphism Φs :
Z (s)→X (s) is birational.

By the conservation of numbers for flat deformations (see [13, Cor. 10.2.1]),
Proposition 4 implies that Ψs0 is birational andX (s0) has degree 4. A flat de-
formation of the intersection of 2 quadrics is a complete intersection as long
as the limit remains normal (see [2]). It follows that X (s) is an intersection
of two hyperquadrics whenS (s0) is a normal variety. ��

In particular, we have the following corollary:

Corollary 2 If s ∈Ssm then X (s) is a smooth complete intersection of two
quadric hypersurfaces in P5×{s}.

Specializing quadratic complexes. The deformation method, after Theorems
1 and 3, gives us a way to specialize quadratic complexes, thought as a com-
plete intersection of two smooth hyperquadrics in P5. In fact, every (smooth)
quadratic complex may be associated to an ACM smooth quintic in P3 by
fixing a diagram as in Theorem 2. On the other hand, as we saw, an ACM
deformation of such a quintic leads to a complete intersection of two hyper-
quadrics in P5, provided that this variety is normal. Therefore, the universal
diagram (7) may be used to obtain a deformation of a quadratic complex to a
singular normal one.

To construct degenerated ACM quintics we may use liaison theory. We
know that such a quintic C is linked to a line under a complete intersection of
a quadric and a cubic surface. The saturated ideal defining C is minimally gen-
erated by a quadratic polynomial q and two cubic polynomials f1, f2. Thus, to
obtain a (not necessary smooth) quadratic complex we may do the following.
Fix a line L⊂ P3 and take polynomials q and f of degree 2 and 3 respectively,
without common factors, vanishing along L. For example, if L has equations
x= y= 0, then q= a0x+b0y, f = f1 = a1x+b1y, where the a0,a1 and b0,b1
are homogeneous polynomials. The generators q, f1 and f2 are the maximal
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minors of the matrix (see [31, §3]):

N :=

⎛
⎝ y −x

a0 b0

a1 b1

⎞
⎠ .

We now give several relevant examples dealing with Cremona transforma-
tions having a singular quintic curve in the base locus. Some of them admit
a description in terms of a quadratic complex, as the so-called standard Cre-
mona transformation, a determinantal not ruled transformation which is re-
lated to a classical quadratic complex with six singular points. We also give
examples which can be associated to a 3-dimensional variety not contained in
any hyperquadric.

Example 4 We choose L= (x= y= 0)⊂ P3, q= xy and f1= (x+y)zw. Then

N =

⎛
⎝ y −x

y 0
zw zw

⎞
⎠ .

Hence f2 = yzw from which we obtain the 6 degree 3 generators forJC

qx,qy,qz,qw, f1, f2.

A set of degree 3 generators of the idealJC is then given by x2y,xy2,xyz,xyw,
yzw−xzw,yzw, or also x2y,xy2,xyz,xyw,xzw,yzw. Therefore we may consider
the rational map

φ = (x2y : xy2 : yzw : xzw : xyw : xyz),

whose image is a complete intersection X ⊂ P5 of the two hyperquadrics of
equations

x0x2−x1x3 = x0x2−x4x5 = 0.

Consider the line L2 := (x2 = x3 = x4 = x5 = 0)⊂ X . By projecting from
X with center L2 we obtain a birational map πL2 : X P

3 such that
πL2 φ : P3

P
3 is the Standard cubo-cubic transformation

ϕ = (yzw : xzw : xyw : xyz).

Note that the quintic curve C in this case is reducible, a union of 5 distinct
lines, and that the quadratic complex X has six ordinary double points. It is
the well known Tetrahedral Quadratic Complex.

In the two following examples, we show that the method above may fail
to give a singular quadratic complex when the ACM quintic curve is very
singular. If the variety X = ψ(Z) ⊂ P5 obtained from such a curve is still
irreducible and of codimension 2, it has degree 4 and it may be used to produce
cubic transformations. As we will also see, we may lose symmetry when we
leave the context of (singular) quadratic complex.
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Example 5 We choose L = (x = y = 0) ⊂ P3, q = xz+ yw and f1 = qx+ y3.
Then

N =

⎛
⎝ y −x

z w
q y2

⎞
⎠ .

Hence f2 = −qw+ y2z, from which we obtain the 6 degree 3 generators for
JC

qx,qy,qz,qw, f1, f2.

Another set of generators is then

qx,qy,qz,qw,y3,y2z.

Therefore we may consider the rational map

φ = (qx : qy : qz : qw : y3 : y2z);

denote by X its image. A straightforward computation shows that there are no
quadratic forms vanishing along X .

On the other hand, putting x = y and letting x tend to 0 we observe that X
contains the line

L2 := (x0 = x1 = x4 = x5 = 0).

Projecting from X with this line as center, on the 3-space (x2 = x3 = 0) we
deduce that the rational map ϕ := πL2 φ is defined by

ϕ = (qx : qy : y3 : y2z).

Finally, we note that this map is birational whose inverse is

ϕ−1 = (xz : yz : yw :−xw+y2).

This is a ruled cubo-quadric transformation. Moreover, ϕ is determinantal
with associated matrix as follows:⎛

⎜⎜⎝
y 0 0
−x 0 y

0 z −w
0 −y −x

⎞
⎟⎟⎠ .

Example 6 Now consider q = xz+ yw and f1 = x3+ y2z. As in the former
example we obtain f2 = x2w− y2z. We obtain a codimension 2 subvariety of
P

5 which is not contained in any hyperquadric. By projecting with center the
line

L2 := (x0 = x1 = x4 = x5 = 0)⊂ X ,

we obtain the rational map ϕ : P3
P

3 defined by

ϕ = ((xz+yw)x : (xz+yw)y : x3+y2z : x2w−y2z).
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It is a cubo-quintic Cremona transformation whose inverse map is

ϕ−1 = ((zy3+ zx3−y2x2+wy3)x : (zy3+ zx3−y2x2+wy3)y

: (−yw+x2)x3 : (y2+wx)x3).

Last, we give an example of a cubo-cubic Cremona transformation which
arises from a singular quadratic complex whose base locus scheme contains a
not generically reduced ACM quintic curve.

Example 7 Consider the singular quadratic complex X defined by the inter-
section of the two hyperquadrics

Q1 = (x0x1−x2x3+x4x5 = 0), Q2 = (x
2
0−x2

1+x2
2 = 0).

Choose the line L1 = (x0 = x1−x2 = x3 = x4 = 0) in X , parameterized by (0 :
x1 : x1 : 0 : 0 : x5) and the 3-space M ∼ P3 = (x2 = x4−x5 = 0) parameterized
by (y0 : y1 : 0 : y3 : y4 : y4). Then, by intersecting with X the 2-plane generated
by L1 and a point of M, and eliminating the parameters of L1 we obtain π−1

1 ,
the rational map φ : P3

P
5 whose components are generators for the

quintic curve C:

φ = (2y0y1y4 : (y0+y1)
2y4 : (y2

0−y2
1)y4 : 2y1y3y4

: 2y1y2
4 :−y0(y2

0+y2
1)+(y

2
0−y2

1)y3).

Projecting from X with center the line L2= (x2− ı x0 = x1= x3 = x5 = 0), and
composing with φ , we obtain the cubo-cubic Cremona transformation

ϕ = (ı y4(−ı y1+y0)
2 : (y2

0+y2
1)y4 : 2y1y3y4 :−y3

0−y0y2
1+y2

0y3−y2
1y3)

with inverse obtained in the same way

ϕ−1 = (y4(y
2
0+y2

1) : ı y4(−ı y1+y0)
2 : 2y0y3y4 :−y0y2

1−y3
1− ı y2

0y3+ ı y2
1y3).

The Jacobian of ϕ is −12(y3
0+y0y2

1−y2
0y3+y2

1y3)y1(−ı y1+y0)
2y2

4.
A last computation shows that the linear space generated by the entries of

ϕ is generated by the maximal minors of the following matrix
⎛
⎜⎜⎝

y0− ı y1 0 2y1

−y2 y0+ ı y1 0
0 −y1 y0−y2

0 0 −y3

⎞
⎟⎟⎠ .

Thus ϕ is a determinantal cubo-cubic transformation.
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