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Abstract Let X be a quadratic complex given by the intersection of two nonsingular
quadrics in a projective space of dimension five. Let L be a line contained in X, and π

the projection from X to a projective three space with center L. When X is nonsingular the
map π is birational and the base locus scheme of π−1 is a smooth quintic curve of genus 2.
Now assume X is a singular irreducible and reduced quadratic complex and consider the
same set up. The purpose of this work is to classify quintic curves arising as the base locus
scheme of π−1 in the case where π is birational and the Cremona transformations obtained
by composing π−1 with another projection of the same type.
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1 Introduction

Let G denote a smooth hyperquadric in P
5 over the field of complex numbers, considered

as the Plücker hyperquadric parametrizing lines in P
3. A quadratic complex or to be more
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precise a quadratic line complex is by definition a complete intersection X = G ∩ F , with
a hyperquadric F ⊂ P

5 different from G. To give X is equivalent to give the pencil of
hyperquadrics defined by F and G in P

5. Such pencils of hyperquadrics are classified by a
so called Segre symbol (see Sect. 2.1).

Smooth quadratic complexes are classical objects that have been studied extensively
since the 19th century. In modern terms such a quadratic complex X is a Fano threefold
of Picard number 1 and index 2. So, as one may expect, the family of lines contained in
X is related deeply to geometric properties of X. For example, if L ⊂ X is a line and
π : X P

3 is the restriction to X of a linear projection of center L, then π is bira-
tional which shows X is rational. One may prove that the base locus scheme of π−1 is a
smooth quintic curve of genus 2. Furthermore, this quintic curve, say CL, may be identified
with the set BL of lines in X meeting L, and its Jacobian parametrizes the entire family of
lines in X (see [7, Chap. 6]).

Now we assume that X is a singular irreducible and reduced quadratic complex; let
Sing(X) denote the singular set of X. Let L ⊂ X be a line and consider a (general) pro-
jection π : X P

3 with center L. The purpose of this work is to classify quintic curves
arising as the base locus scheme CL of π−1 in the case where π is birational, and the Cre-
mona transformations obtained by composing π−1 with another projection of the same type.

More precisely, we first prove that π is birational if and only if L is not contained in
Sing(X); in this case CL is an arithmetical Cohen-Macaulay quintic curve of arithmetic
genus 2 (Proposition 3.3).

If L contains a singular point o ∈ Sing(X) then L belongs to the ruling of the cone
CLo(X) with vertex o which consists of lines in X going through o. We describe a di-
rectrix for such a cone, depending on the Segre symbol of X and on the singular point o

(Propositions 4.4 and 4.6). In this singular case X may contain planes (see Corollary 4.3
and Proposition 4.14). Moreover BL may contain a dimension 2 component and dimension
1 components of BL are sent to components of CL. In this situation BL and CL are dif-
ferent in general. For the most part and for simplicity, in this work we consider the cases
where the pencil defining X admits a unique cone of multiplicity ≥2 (see Sect. 2.2 and
Table 1).

Using the description of the cone above together with (Singular [6]) formal computations
we obtain the ideal defining CL for every such line L, and we describe the irreducible com-
ponents and the non reduced structures of these quintic curves. The classification of these
quintic curves associated to quadratic complexes are given in Theorems 5.2 for quadratic
complexes with isolated singularities, Theorems 5.4 and 5.5 for quadratic complexes sin-
gular along a dimension 1 subvariety, and Theorem 5.7 for quadratic complexes singular
along a plane. For a quick visualization these results are summarized in tables with figures,
following the theorems on dimension 0 and 1 cases.

Every such quintic curve is non reduced or non irreducible, contrary to the case where the
quadratic complex is smooth. Furthermore the types of directrices of CLo(X) and quintic
curves in fact characterize each Segre symbol.

In the last section we describe all Cremona transformations of P
3 which factorize via

a singular quadratic complex X as a product of two projections whose centers are lines
meeting Sing(X) (Theorems 6.4 and 6.10). As in [2] we obtain Cremona transformations of
bidegree (3,3) which are either determinantal or de Jonquières, according to whether, the
lines, centers of projection, are disjoint or intersecting in a smooth point of X, respectively.
However, in the case of a non normal quadratic complex (singular along a plane) all these
transformations are ruled; these do not appear when X is normal.
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On the other hand, all the cases of Cremona transformations of bidegree (2,2) are ob-
tained when the two lines, centers of projection, meet in a singular point of X. These Cre-
mona transformations do not appear when the quadratic complex is smooth (see [2]). We
also give numerous examples.

2 Quadratic complexes

Let G ⊂ P
5 be a smooth quadric which we fix in the sequel. We may consider G as the

Plücker quadric parametrizing lines in P
3. Let F denote a quadric in P

5, different from G.
The complete intersection

X = F ∩ G,

parametrizes a set of lines in P
3, which is classically called a quadratic line complex. We

consider only the cases where X is reduced and irreducible.
A quadratic line complex determines a pencil of quadrics in P

5 which we call the pencil
associated to the quadratic complex. Pencils of quadrics are classified according to their
Segre symbol. The Segre symbol of the quadratic complex is by definition the Segre symbol
of the associated pencil of quadrics.

2.1 Segre symbol of a pencil of quadrics

Let us recall the definition of the Segre symbol of a pencil of quadrics. Let (x1, . . . , xn+1) be
coordinates for C

n+1 and let

F =
∑

i,j=1,...,n+1

aij xixj , G =
∑

i,j=1,...,n+1

bij xixj

be quadratic polynomials where A = (aij ) and B = (bij ) are symmetric matrices. By a slight
abuse of notation we will identify such polynomials with the hyperquadrics in P

n defined
by them, so we also write F ⊂ P

n, G ⊂ P
n.

Consider the pencil

P = {
Q(λ:μ) = λF + μG | (λ : μ) ∈ P

1
}

of hyperquadrics in P
n. The discriminant of the pencil P is by definition the binary (n + 1)-

form

� = �(λ,μ) := det(λA + μB).

We assume in what follows that �(λ,μ) is not identically zero. So it has n+1 roots counting
multiplicities. The general element of the pencil is then a nonsingular quadric and to distinct
roots there correspond distinct cones in the pencil.

Suppose (λ̄ : μ̄) is a root of �. It may also happen that all the subdeterminants of λ̄A +
μ̄B of a certain order vanish. Suppose that all subdeterminants of order n+ 1 − d vanish for
some d ≥ 0, but not all subdeterminants of order n − d . This means that the quadric Q(λ̄:μ̄)

is a d-cone with vertex a linear space of dimension d and directrix a smooth quadric in a
linear subspace of dimension n − d − 1 in P

n.
Let li denote the minimum multiplicity of the root (λ̄ : μ̄) in the subdeterminants of order

n + 1 − i, for i = 0,1, . . . , d . Then li > li+1 for all i so that ei := li − li+1 > 0, and we have:

�(λ,μ) = (λμ̄ − λ̄μ)e0 · · · (λμ̄ − λ̄μ)ed �1(λ,μ),
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with �1(λ̄, μ̄) �= 0. The numbers ei are called the characteristic numbers of the root (λ̄ : μ̄)

and the factors (λμ̄ − λ̄μ)ei are called the elementary divisors of the pencil P .
If (λi : μi) for i = 1, . . . , r are the roots of � and e

j

0 , . . . , e
j

dj
the characteristic numbers

associated to the root (λj : μj) and d1 ≥ d2 ≥ · · · ≥ dr , then

σ(X) = σ(P) = [(
e1

0 · · · e1
d1

)(
e2

0 · · · e2
d2

) · · · (er
0 · · · er

dr

)]

is called the Segre symbol of the pencil of quadrics P . The parentheses are omitted if di = 1.
In order to make it unique, we assume that the expressions (ei

0, . . . , e
i
di
) are ordered lexi-

cographically if di = dj . We call these expressions the brackets of the Segre symbol of the
pencil P (even if the parentheses are omitted, i.e. di = 0).

It is a classical fact (see e.g. [8], p. 278) that 2 pencils of quadrics P1 and P2 in P
n,

whose discriminants have roots exactly at (λ1
i : μ1

i ) and (λ2
i : μ2

i ), are isomorphic, that is,
projectively equivalent in P

n, if and only if they have the same Segre symbol and there is an
automorphism of P

1 taking (λ1
i : μ1

i ) to (λ2
i : μ2

i ) for all i, where the brackets corresponding
to (λ1

i : μ1
i ) and (λ2

i : μ2
i ) are of the same type. This can be used to define a normal form for

those pencils P , whose discriminant is not identically zero (see [8], p. 280): For every ei
j

occurring in the Segre symbol of X suppose μi �= 0 and consider the (ei
j × ei

j )-matrices

Aij =

⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 1 λi

μi

0 . . . 1 λi

μi
0

. . . . . . . . . . . . . . .

1 λi

μi
0 . . . 0

λi

μi
0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎠
and

Bij =

⎛

⎜⎜⎜⎜⎝

0 0 . . . 0 1
0 0 . . . 1 0
. . . . . . . . . . . . . . .

0 1 . . . 0 0
1 0 . . . 0 0

⎞

⎟⎟⎟⎟⎠
.

The coordinates of P
n can be chosen in such a way that A and B are given as block diagonal

matrices as follows

A = diag(A10, . . . ,Ardr ) and B = diag(B10, . . . ,Brdr ). (1)

We call these coordinates Segre coordinates of the pencil of quadrics P . Note that Segre
coordinates are not uniquely determined.

In what follows, we will be interested in quadratic line complexes, i.e., the intersection
X of the Plücker quadric G parametrizing lines in P

3 with a second quadric F ⊂ P
5. The

quadratic line complex X is by definition the base locus of the pencil P . Thus X is the
intersection of any two different quadrics of the pencil. We will use here the Segre symbol
of the pencil λF + μG as defined above which is by definition the Segre symbol of X.

The brackets in the Segre Symbol correspond 1-1 to the cones in the pencil. We call
the cone Q(λi :μi) corresponding to the bracket (ei

0, . . . , e
i
di
) a cone of type (ei

0, . . . , e
i
di
). The

quadric Q(λi :μi ) is then a di -cone and the corresponding root in the discriminant � is a root
of multiplicity ei := ∑di

j=0 ei
j . By a slight abuse of notation we call Q(λi :μi) a d-cone of

multiplicity ei .
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2.2 Vertices and singularities

In the following, unless explicit mention to the contrary is made, we consider quadratic
complexes whose Segre symbols have only one bracket with a cone of multiplicity ≥2 in
the pencil. Let X be such a quadratic complex. We denote by V the vertex of the cone of
multiplicity ≥2 and let Vert(X) := V ∩ X.

Notice that a point x ∈ X is singular if and only if x ∈ X and x is a singular point of a
cone in the pencil, i.e. it belongs to its vertex. On the other hand, if there is another cone
K in the pencil, its multiplicity is 1 and it is a 0-cone. By using the Segre coordinates (1) it
follows that the vertex of K is not in X = K ∩ G. We deduce that Vert(X) is supported on
the singular set Sing(X) of X.

Recall that X is assumed reduced and irreducible. Then the Segre symbol of X can not
contain a d-cone with d ≥ 3, i.e. a bracket of length ≥4 (see [1, Lemma 4.1]). Table 1 gives
a list of results on the brackets occurring in this paper. Let us see how to prove some of the
last lines in this table. The rest is similar.

Consider first a pencil of quadrics P1 := λF1 +μG1 ⊂ P
5 with Segre symbol [(111)111].

Considering the normal form we can assume the generators to be given by: F1 = a(x2
1 +x2

2 +
x2

3 ) + a4x
2
4 + a5x

2
5 + a6x

2
6 and G1 = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6 . It follows that there is a

2-cone C1 in the pencil given by C1 = F1 − aG1 = (a4 − a)x2
4 + (a5 − a)x2

5 + (a6 − a)x2
6

whose vertex is the plane α given by x4 = x5 = x6 = 0.
The base locus X is singular along the non-singular conic in α given by x2

1 +x2
2 +x2

3 = 0.
Let P2, P3, P4 be pencils of quadrics ⊂ P

5 with generators Fi,Gi, i = 2,3,4 and Segre
symbols [(211)11], [(221)1] and [(222)] respectively. Here is a list of generators for Pi , i =
2,3,4:

F2 = 2ax1x2 + ax2
3 + x2

1 + ax2
4 + a5x

2
5 + a6x

2
6 and

G2 = 2x1x2 + x2
3 + x2

4 + x2
5 + x2

6 ,

F3 = 2ax1x2 + 2ax3x4 + x2
1 + x2

3 + ax2
5 + a6x

2
6 and

G3 = 2x1x2 + 2x3x4 + x2
5 + x2

6 ,

F4 = 2ax1x2 + 2ax3x4 + 2ax5x6 + x2
1 + x2

3 + x2
5 and

G4 = 2x1x2 + 2x3x4 + 2x5x6.

The corresponding 2-cones are:

C2 = x2
1 + (a5 − a)x2

5 + (a6 − a)x2
6 , C3 = x2

1 + x2
3 + (a6 − a)x2

6 ,

C4 = x2
1 + x2

3 + x2
5 .

Then Vert(Fi ∩ Gi), i = 2,3,4 are a singular conic, a double line and a whole plane respec-
tively.

Remark 2.1 If we consider a more general singular quadratic complex X whose Segre sym-
bol may have several brackets of multiplicity ≥ 2 we have the following cases:

(a) dim Sing(X) = 0 and #Sing(X) ≤ 6.
(b) dim Sing(X) = 1 and Sing(X) is supported on a line, a conic (possibly reducible) or two

smooth skew conics.
(c) dim Sing(X) = 2, Sing(X) is a plane and X has Segre symbol [(222)].
(d) Sing(X) is supported on a line or a conic plus either one or two points in general posi-

tion.
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Table 1 Segre symbols and vertices

Bracket dim of V Vert(X)

1 0 ∅
2 0 1 point

3 0 1 point

4 0 1 point

5 0 1 point

6 0 1 point

(11) 1 2 distinct points

(21) 1 1 double point

(31) 1 1 double point

(41) 1 1 double point

(51) 1 1 double point

Bracket dim of V Vert(X)

(22) 1 1 line

(32) 1 1 line

(42) 1 1 line

(33) 1 1 line

(111) 2 smooth conic

(211) 2 rank 2 conic

(311) 2 rank 2 conic

(411) 2 rank 2 conic

(221) 2 rank 1 conic

(321) 2 rank 1 conic

(222) 2 1 plane

3 The birational geometry of quadratic complexes

In this section we consider an arbitrary quadratic complex X = F ∩ G reduced and irre-
ducible, which may be singular. We denote by TpF the projective tangent hyperplane of F

at p ∈ F .

Lemma 3.1 Assume F to be smooth and let L ⊂ F be a line. The following assertions
hold:

(a) The morphism L = P
1 → (P5)∨,p �→ TpF , is non constant and

⋃
p∈L TpF = P

5.
(b) The linear space V 3

F (L) := ⋂
p∈L TpF has dimension 3.

(c) If L is also contained in G and L ∩ Sing(X) contains at least two points, then V 3
F (L) =

V 3
G(L).

Proof For the first assertion we restrict to a general dimension 3 linear space containing L.
It follows that we are left with quadrics in a P

3 and the result follows.
To prove (b) note that the map p �→ TpF ∈ (P5)∨ is a linear immersion of L. If

p,q ∈ L,p �= q , then V 3
F (L) = TpF ∩ TqF , since every point in L is a linear combination

of p and q . And now (c) follows immediately. �

Lemma 3.2 Let Y ⊂ P
4 be a normal irreducible surface and let y ∈ Y be a smooth point.

Suppose Y is a complete intersection of degree 4. Then, the projection S ⊂ P
3 of Y from y

is a cubic normal surface. Moreover, if Y is smooth, then S has at most two double points.

Proof Since y is smooth, S is a cubic surface. Suppose it is not normal. Hence there is a
line L0 ⊂ S consisting of singular points. On the other hand, the intersection of Y with the
plane 〈y,L0〉 contains an irreducible curve D that projects onto L0.

The fact that S is singular along L0 implies ys intersects Y \ {y} at two (possibly coin-
cident) points of D, for general s ∈ L0. Notice that Y being normal a general point in D is
smooth in Y . Since Y is an intersection of hyperquadrics, then ys ⊂ Y for all s ∈ L0. Then



On singular quadratic complexes 207

〈y,L0〉 ⊂ Y which is not possible, since Y does not contain planes. This contradiction shows
that S is normal.

For the last statement, we note that if Y is smooth, then it is a del Pezzo surface of
degree 4. Hence, through y there passes at most two lines which are (−1)-curves in Y . By
projecting from y these lines contract to double points: indeed, denote by ν : Bly(Y ) → Y

the blow-up of Y at y. Then ν resolves the indeterminacy of the projection π : Y \ {y} → S,
that is, π ◦ ν is a morphism. Since the (inverse) strict transform by ν of those two lines are
(−2)-curves, we deduce π ◦ ν contracts them to double points. These are the only possible
singular points of S since this surface is normal and Bly(Y ) is a desingularization. �

Let L be a line contained in X. Fix a general 3-space M in P
5, and define a projection

π : P
5 M = P

3, with center L; we assume M ∩ L = ∅.

Proposition 3.3 The restriction of π to X induces a birational map X P
3, which we

denote also by π , if and only if L �⊂ Sing(X). Moreover, the inverse π−1 is given by a linear
system Λ of cubic surfaces whose base locus scheme is an arithmetically Cohen-Macaulay
quintic curve C ⊂ P

3 of arithmetic genus 2, such that a general element of Λ is:

(a) a normal cubic surface if dim Sing(X) ≤ 1, with at most two double points if
dim Sing(X) = 0,

(b) a non normal cubic surface if dim Sing(X) = 2.

Proof Take a general point y ∈ P
3. Consider the plane Hy := 〈L,y〉 generated by L and y.

Then

Hy ∩ F = L ∪ LF , Hy ∩ G = L ∪ LG,

for lines LF , LG ⊂ Hy ; occasionally LF = L or LG = L.
Suppose y ∈ TpF = TpG for a p ∈ L. Then Hy is tangent to F and G at p from which

we deduce that the lines LF and LG pass through p. Hence either Hy ∩ X = L or Hy ∩ X =
L ∪ L′ with L′ = LF = LG �= L.

On the other hand, the birationality of π : X P
3 is equivalent to the fact that for a

general y ∈ P
3 the lines LF and LG intersect at a point of X \ L. We deduce π is birational

if and only if for a general y ∈ P
3 we have

p ∈ L, TpF = TpG ⇒ y /∈ TpF.

In other words, since
⋃

p∈L TpF = P
5 (Lemma 3.1), π is birational if and only if dimTpF ∩

TpG = 3 for a general p ∈ L, which means L �⊂ Sing(X) and proves the first part of the
proposition.

Now we assume L �⊂ Sing(X). A general hyperplane section Y = H ∩ X is then an
irreducible degree 4 surface such that Sing(Y ) ∩ L = ∅. Hence, by projecting Y form L we
obtain a cubic surface. The general elements of the linear system Λ defining π−1 are, by
construction, these cubic surfaces.

Note that Sing(Y ) is either a line or a discrete set, depending on whether dim Sing(X) = 2
or less. Moreover, the surface Y = H ∩ X is a complete intersection of degree 4 in H = P

4.
Therefore a general hyperplane section H′ ∩Y of the surface Y is then an irreducible quartic
curve C of arithmetical genus 1, with at most a unique double point, and this curve is disjoint
from L. Since all chords of C are contained in H′ ∩ H = P

3, we deduce D := π(C) is a
(complete intersection) quartic curve in P

3 isomorphic to C.
Finally, take general irreducible cubic surfaces S1, S2 ∈ Λ, such that S1 ∩ S2 ⊃ D.
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Since degSi = 3, i = 1,2, then S1 ∩ S2 = Γ ∪ D where Γ is a curve of degree 9 − 4 = 5
containing the base locus scheme of π−1. Furthermore, since D is arithmetically Cohen-
Macaulay, by liason we get that Γ is also arithmetically Cohen-Macaulay of arithmetic
genus 2 and h0(IΓ (3)) = 6 (see [13, § 3]). Since the ideal sheaves of both Γ and Base(π−1)

are generated by six cubic global sections we conclude Γ = Base(π−1).
If dim Sing(X) ≤ 1, then Y , the general hyperplane section of X, is normal and it is

smooth when dim Sing(X) = 0. From Lemma 3.2 it follows π(Y ) ∈ Λ is a normal cubic
surface which has at most 2 double points if dim Sing(X) = 0. This proves (a).

If dim Sing(X) = 2, then Sing(X) is a plane. It follows that Y is singular along a line and
therefore π(Y ) ∈ Λ is also singular along a line and is therefore a non normal cubic surface
proving (b). �

It follows from the proposition above that all quadratic complexes X we are considering,
may be obtained as the image of a birational morphism ψ : Z → X where Z = BlC(P3)

is the blow-up of P
3 along an arithmetically Cohen Macaulay quintic curve C of arith-

metic genus 2. One constructs ψ by resolving the indeterminacy of the birational map
π−1 : P

3 X ⊂ P
5 whose base locus scheme is exactly the curve C.

The corollary below is then straightforward.

Corollary 3.4 Let X ⊂ P
5 be a quadratic complex containing a line L �⊂ Sing(X). Then

X is obtained from the blow-up of P
3 along an ACM quintic curve of arithmetic genus 2

in such a way that general planes in P
3 correspond to general hyperplane sections of X,

containing L.

4 Lines and planes in the quadratic complex

4.1 Lines in the quadratic complex

For a smooth hyperquadric F ⊂ P
5 we consider the (extended) Gauss map ∇F : P

5 → (P5)∨
defined by taking p to the polar hyperplane of F with respect to p. When p ∈ F we have
∇F(p) = TpF : it is a linear isomorphism. If L ⊂ P

5 is a line, then ∇F(L) is a line in (P5)∨.
We deduce the following result:

Lemma 4.1 Let X = F ∩ G be a quadratic complex where F ⊂ P
5 is another smooth

hyperquadric. Then Sing(X) = {p ∈ X;∇F(p) = ∇G(p)}. In particular, for a line L ⊂ X,
exactly one of the following assertions holds:

(a) L ⊂ Sing(X).
(b) L ∩ Sing(X) = ∅.
(c) #L ∩ Sing(X) = 1.
(d) #L ∩ Sing(X) = 2.

Proof The first assertion is clear. For the following ones we only note that ∇F(p) = ∇G(p)

if and only if p is a common zero of the 2×2 minors of the corresponding system on L = P
1:

the number of solutions for such a system of quadratic equations is 0,1,2 or ∞. �

Definition 4.2 Let o ∈ Sing(X) be a singular point of X. The cone of lines at o is the union
CLo(X) of lines in X passing through o.
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Since o is singular in X we have ToF = ToG. Take a general 4-space P
4 � V 4 ⊂ P

5,
o /∈ V 4. Hence XV 4 := X∩V 4 is a complete intersection in V 4 of the hyperquadrics F ∩V 4,
G ∩ V 4. If x ∈ XV 4 ∩ ToG, then the line ox is tangent to F and G at o from which we get
ox ⊂ F ∩ G = X. We deduce that the family of lines in X passing through o is made of the
generating lines of the cone with vertex o and directrix D = XV 4 ∩ToG. Moreover, we have

CLo(X) = X ∩ ToG.

We also have the following related result:

Corollary 4.3 Let X ⊂ P
5 be a quadratic complex and let α ⊂ P

5 be a plane. Then, X ⊃ α

implies Sing(X) ∩ α �= ∅. Moreover, if o ∈ Sing(X), then there is a plane in X containing o

if and only if XV 4 ∩ ToG contains a line, i.e., there is a plane in CLo(X) going through o.

Proof The second statement is trivial. For the first one notice that p ∈ α implies TpG ⊃ α

and TpF ⊃ α. Since the hyperplanes in P
5 which contain α are the points of a plane

α∨ in the dual space (P5)∨, the maps p �→ ∇F(p) and p �→ ∇G(p) induce linear maps
∇F |α : α → α∨,∇G|α : α → α∨. Lemma 3.1 implies these maps are both isomorphisms.
Then, the one to one correspondence ∇F(p) �→ ∇G(p) establishes an automorphism of α∨
which has, of course, (at least) a fixed point and the result follows from Lemma 4.1. �

Now we describe the quartic curve D = XV 4 ∩ ToG ⊂ V 4 ∩ ToG � P
3. We know it is a

complete intersection of quadrics so it is an arithmetic genus 1 (possibly reducible or non
reduced) curve. The next result is well known (see [8, Chap. XIII, § 11]).

Proposition 4.4 Let D ⊂ P
3 be the base locus scheme of a pencil P of smooth quadrics

in P
3. We assume dimD = 1 and denote by σ(P) the Segre symbol of P . Then exactly one

of the following situations occurs:

(a) D is an elliptic curve C4 and the Segre Symbol σ(P) is [1111].
(b) D is a rational curve C ′

4 with an ordinary double point and the Segre Symbol σ(P) is
[211].

(c) D is a rational curve C ′′
4 with a cusp and the Segre Symbol σ(P) is [31].

(d) D is the union of a twisted cubic and one of its chords C3 ∪ L and the Segre Symbol
σ(P) is [22].

(e) D is the union of a twisted cubic and one of its tangent lines C3 ∪ T and the Segre
Symbol σ(P) is [4].

(f) D is the union of two smooth conics C2 ∪C ′
2 intersecting transversely at two points and

the Segre Symbol σ(P) is [(11)11].
(g) D is the union of a smooth conic C2 and a rank 2 conic L1 ∪L2 such that |C2 ∩Li | = 1,

i = 1,2: here we have two possibilities depending on whether C2 ∩ L1 ∩ L2 = p is a
point, in which case the plane 〈L1,L2〉 is tangent to C2, or it is empty; and the Segre
Symbol σ(P) is [(31)] or [2(11)], respectively.

(h) D is a non degenerate union of 4 lines
⋃4

i=1 Li such that Li ∩ Lj �= ∅ if and only if
|i − j | = 1 and the Segre Symbol σ(P) is [(11)(11)].

(i) D is an open polygonal of three lines one of which supports a double structure 2L0 ∪
L1 ∪ L2 and the Segre Symbol σ(P) is [(22)].

(j) D is a double rank 2 conic 2(L1 ∪ L2) whose double structure lies over a plane and the
Segre Symbol σ(P) is [(211)].

(k) D is the union of two irreducible conics C2 ∪ C ′
2 intersecting at a (double) point and

the Segre Symbol σ(P) is [(21)1].
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(l) D is a conic C1 with a double structure lying over a plane and the Segre Symbol σ(P)

is [(111)1].

Remark 4.5 (a) The curve D in case (i) is the complete intersection of a smooth quadric
Q ⊂ P

3 and a reduced and reducible quadric H1 ∪ H2 such that H1 ∩ H2 ⊂ Q.
(b) The curve D in case (j) is the complete intersection of a smooth quadric Q ⊂ P

3 and
a double plane 2H such that H is tangent to Q at a point.

If o ∈ Sing(X) is a singular point as we saw before the ruling of the cone CLo(X)

is the set of lines in X passing through o. Proposition 4.4 applied to D = XV 4 ∩ ToG

gives us information about the singularity o ∈ X, and D depends on the quadratic complex
type.

Recall that if the pencil associated to X has a unique cone of multiplicity ≥2, then the
intersection of its vertex with X, Vert(X) (see Sect. 2.2), is supported on Sing(X).

Proposition 4.6 Let X = F ∩ G be a singular quadratic complex. For a point o ∈ Sing(X)

we think of D = XV 4 ∩ ToG as associated to a pencil P of quadrics in P
3 induced by the

pencil of X. The following statements hold:

(a) Suppose Vert(X) is discrete and σ(X) contains a unique bracket with a cone of multi-
plicity ≥2. Then:
(a1) If σ(X) = [21111] or [3111], then σ(P) = [1111].
(a2) If σ(X) = [411], [51] or [6], then σ(P) = [211], [31] or [4], respectively.
(a3) If σ(X) = [(11)1111] or [(21)111], then σ(P) = [1111].
(a4) If σ(X) = [(31)11], [(41)1] or [(51)], then σ(P) = [(11)11], [(21)1] or [(31)],

respectively.
(b) Suppose Vert(X) = R is a line and σ(X) contains a unique bracket with a cone of

multiplicity ≥2. Then:
(b1) If σ(X) = [(22)11], then there exist r1, r2 ∈ R such that σ(P) = [211] for o /∈

{r1, r2} and σ(P) = [(11)11] for o ∈ {r1, r2}.
(b2) If σ(X) = [(32)1], then there exists r ∈ R such that σ(P) = [31] for all o �= r and

σ(P) = [(21)1] for o = r .
(b3) If σ(X) = [(42)], then there exist r ∈ R such that σ(P) = [4] for all o �= r and

σ(P) = [(22)] for o = r .
(b4) If σ(X) = [(33)], then σ(P) = [(31)] for all o ∈ R.

(c) Suppose Vert(X) = C2 is a (possibly rank 1 or 2) conic and σ(X) contains a unique
bracket with a cone of multiplicity ≥2. Then:
(c1) If σ(X) = [(111)111], then σ(P) = [1111] for all o ∈ C2.
(c2) If σ(X) = [(211)11] (resp. [(411)], resp. [(311)1]), then there exists r ∈ C2 such

that σ(P) = [211] (resp. [4], resp. [(21)1]) for o �= r and σ(P) = [(11)11] (resp.
[(211)], resp. [(111)1]) for o = r .

(c3) If σ(X) = [(221)1], then there exist r1, r2 ∈ C2 such that σ(P) = [(21)1] for o /∈
{r1, r2} and σ(P) = [(111)1] for o ∈ {r1, r2}.

(c4) If [(321)], then there exists r ∈ C2 such that σ(P) = [(31)] for o �= r and σ(P) =
[(211)] for o = r .

(d) If Vert(X) = α is a plane, that is σ(X) = [(222)], then there exists a smooth conic
Cα ⊂ α such that σ(P) = [(211)] for o ∈ Cα and σ(P) = [(22)] otherwise.

Proof We first recall that CLo(X) = X ∩ ToG. We prove case by case and use notations as
in [10], where it is written the normal forms F and G associated to the (for example) Segre
symbol [(21)111] as if it were [111(12)].



On singular quadratic complexes 211

Case (a1): We prove case [3111], the other is similar. We may assume

G = x2
1 + x2

2 + x2
3 + x2

5 + 2x4x6,

F = λ1x
2
1 + λ2x

2
2 + λ3x

2
3 + λ4

(
x2

5 + 2x4x6

) + 2x4x5.

Hence one of the cones in the pencil defined by F and G is

K = (λ1 − λ4)x
2
1 + (λ2 − λ4)x

2
2 + (λ3 − λ4)x

2
3 + 2x4x5

with vertex o = (0 : 0 : 0 : 0 : 0 : 1) the only point in Sing(X). Therefore ToG is
defined by x4 = 0, from which it follows X ∩ ToG has equations

x2
1 + x2

2 + x3
3 + x2

5 = λ1x
2
1 + λ2x

2
2 + λ3x

3
3 + λ4x

2
5 = x4 = 0.

Then σ(P) = [1111].
Case (a2), σ(X) = [6]: We may assume

G = 2x1x6 + 2x2x5 + 2x3x4,

F = λ1(2x1x6 + 2x2x5 + 2x3x4) + 2x1x5 + 2x2x4 + x2
3

and K = 2x1x5 + 2x2x4 + x2
3 ; then o = (0 : 0 : 0 : 0 : 0 : 1) and ToG is defined by

x1 = 0. Hence X ∩ ToG has equations

x2x5 + x3x4 = λ1(2x2x5 + 2x3x4) + 2x2x4 + x2
3 = x1 = 0

from which the assertion follows.
σ(X) = [51]: Here

G = x2
1 + 2x2x6 + 2x3x5 + x2

4 ,

F = λ1x
2
1 + λ2

(
2x2x6 + 2x3x5 + x2

4

) + 2x2x5 + 2x3x4,

then o = (0 : 0 : 0 : 0 : 0 : 1) and ToG is defined by x2 = 0. We get X ∩ ToG is defined
by

x2
1 + 2x3x5 + x2

4 = λ1x
2
1 + λ2

(
2x3x5 + x2

4

) + 2x3x4 = x2 = 0,

proving the assertion.
The remaining Segre symbol is done similarly.

Case (a3) and Case (a4): Proof as in the preceding cases, we omit the details.
Case (b1): In this case

G = x2
1 + x2

2 + 2x3x4 + 2x5x6,

F = λ1x
2
1 + λ2x

2
2 + λ3(2x3x4 + 2x5x6) + x2

3 + x2
5

there is a cone in the pencil defined by K = (λ1 − λ3)x
2
1 + (λ2 − λ3)x

2
2 + x2

3 + x2
5 ,

then R = Sing(X) is given by x1 = x2 = x3 = x5 = 0; set o = (0 : 0 : 0 : a : 0 : b) ∈ L.
We have ToG is given by ax3 + bx5 = 0. If a �= 0 and t := −b/a we get X ∩ ToG is
defined by the equations

x2
1 + x2

2 + 2(tx4 + x6)x5 = λ1x
2
1 + λ2x

2
2 + 2λ3(tx4 + x6)x5 + (

t2 + 1
)
x2

5 = 0.

If t2 = −1, a straightforward computation shows σ(P) = [(11)11]. Now, suppose
t2 �= −1 and set x ′

4 := τ−1(tx4 + x6), where τ is a square root of t2 + 1. The system
of equations above becomes

x2
1 + x2

2 + 2τx ′
4x5 = λ1x

2
1 + λ2x

2
2 + 2λ3τx ′

4x5 + (
t2 + 1

)
x2

5 = 0.
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By setting x ′
5 := τx5 we obtain equations for X ∩ ToG of the form

x2
1 + x2

2 + 2x ′
4x

′
5 = λ1x

2
1 + λ2x

2
2 + 2λ3x

′
4x

′
5 + (

x ′
5

)2 = 0,

therefore σ(P) = [211] for such a t .
Finally, when a = 0 we also get σ(P) = [211].

Case (b2): In this case

G = 2x1x2 + 2x3x5 + x2
4 + x2

6 ,

F = λ1

(
2x1x2 + 2x3x5 + x2

4

) + λ2x
2
6 + x2

1 + 2x3x4.

There is a cone in the pencil defined by K = (λ2 − λ1)x
2
6 + x2

1 + 2x3x4, then R =
Sing(X) is given by x1 = x3 = x4 = x6 = 0; set o = (0 : a : 0 : 0 : b : 0) ∈ R. We have
ToG if given by ax1 + bx3 = 0. If a = 0 or b = 0, then ToG is defined by x3 = 0 or
x1 = 0. In the first case we see σ(P) = [31], in the second case σ(P) = [(21)1].
If ab �= 0 and t := −b/a we get X ∩ ToG is defined by the equations

2(tx2 + x5)x3 + x2
4 + x2

6 = 2λ1(tx2 + x5)x3 + λ1x
2
4 + λ2x

2
6 + x3

(
x3t

2 + 2x4

) = 0.

Setting x ′
5 = x5 + tx2 and x ′

3 = x3t
2 + 2x4 we get, as before, that the Segre symbol of

the corresponding pencil in the variables x ′
3, x4, x

′
5, x6 is [31].

Case (b3): Now

G = x1x2 + x3x6 + x4x5,

F = λ1(2x1x2 + 2x3x6 + 2x4x5) + x2
1 + 2x3x5 + x2

4 .

There is a unique cone in the pencil λF + μG given by K = x2
1 + 2x3x5 + x2

4 whose
vertex is the singular line R which in this case has equations x1 = x3 = x4 = x5 = 0.
Notice that X = G ∩ K . The tangent space ToG to G at a point o = (0 : a : 0 : 0 :
0 : b) ∈ R is given by ax1 + bx3 = 0.
If a = 0, then ToG is defined by x3 = 0, from which we deduce ToG ∩ X is defined
by

x1x2 + x4x5 = x2
1 + x2

4 = 0,

and we deduce σ(P) = [(22)].
If a �= 0, we may take o = (0 : 1 : 0 : 0 : 0 : b), then ToG is given by x1 = −bx3. We
obtain ToG ∩ X is the cone over the quartic curve

x2 = x3x6 + x4x5 = b2x2
3 + 2x3x5 + x2

4 = 0.

It is easy to see that it corresponds to the Segre symbol [4].
Case (b4): Now

G = 2x1x3 + x2
2 + 2x4x6 + x2

5 ,

F = λ1

(
2x1x3 + x2

2 + 2x4x6 + x2
5

) + 2x1x2 + 2x4x5.

There is a unique cone in the pencil λF + μG given by K = 2x1x2 + 2x4x5 whose
vertex is the singular line R, and is given by x1 = x2 = x4 = x5 = 0. The tangent space
ToG to G at a point o = (0 : 0 : a : 0 : 0 : b) ∈ R is given by ax1 + bx4 = 0.
Let us compute ToG ∩ X. If a = 0 or b = 0, then ToG is defined by x4 = 0 or x1 = 0,
respectively, and we see ToG ∩ X corresponds to a pencil of Segre symbol [(31)].
Now suppose ab �= 0. Replacing x1 = − b

a
x4 = tx4, we get:

2x4(x6 + tx3) + x2
2 + x2

5 , 2λ1x4(x6 + tx3) + λ1x
2
2 + λ1x

2
5 + 2x4(x5 + tx2).



On singular quadratic complexes 213

Replacing x ′
3 = x6 + tx3 and x ′

5 = x5 + tx2 we deduce G∩ToG and F ∩ToG are given
by

2x4x
′
3 + x2

2 + x2
5 ,2λ1

(
x4x

′
3 + x2

2 + x2
5

) + 2x4x
′
5

and we obtain the following quadrics in x2, x ′
3, x4, x ′

5:

G1 = 2x4x
′
3 + (

1 + t2
)
x2

2 + x ′2
5 − 2tx2x

′
5,

F1 = 2λ1

(
x4x

′
3 − tx ′

5x2

) + 2x4x
′
5 + λ1

(
1 + t2

)
x2

2 + λ1

(
x ′

5

)2
.

The associated symmetric matrix of the pencil F1 + sG1 is

A(s) :=

⎛

⎜⎜⎝

λ1(1 + t2) + s(1 + t2) 0 0 −λ1t − st

0 0 λ1 + s 0
0 λ1 + s 0 1

−λ1t − st 0 1 λ1 + s

⎞

⎟⎟⎠ .

The determinant of A(s) has a fourfold root s = −λ1. In the 3 × 3 minor A(s)22, −λ1

is a simple root. So the Segre Symbol is [(31)] because we have:

l0 = 4, l1 = 1, l2 = 0 and so e0 = l0 − l1 = 3, e1 = l1 − l2 = 1,

where l4−i is the minimum multiplicity of the root in the subdeterminant of order
4 − i.

Case (c1): Here

F = λ
(
x2

1 + x2
2 + x2

3

) + λ4x
2
4 + λ5x

2
5 + λ6x

2
6 ,

G = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6

and the smooth conic C2 is defined by

x2
1 + x2

2 + x2
3 = x4 = x5 = x6 = 0.

Take o = (a : b : c : 0 : 0 : 0) ∈ C2. By symmetry we may suppose a �= 0; set t :=
−b/a,u := −c/a, and note t2 + u2 = −1.
On the other hand, ToG is given by the ax1 + bx2 + cx3 = 0. To obtain equations for
X ∩ ToG we replace x1 by tx2 + ux3 in the F,G and get

F1 = λ1

(
2tux2x3 − u2x2

2 − t2x2
3

) + λ4x
2
4 + λ5x

2
5 + λ6x

2
6 ,

G1 = 2tux2x3 − u2x2
2 − t2x2

3 + x2
4 + x2

5 + x2
6 .

Since 2tux2x3 − u2x2
2 − t2x2

3 is a square we deduce the pencil defined by F1 and G1

has Segre symbol σ(P) = [1111] as we wanted.
Case (c2): If σ(X) = [(211)11] we have

F = λ1x
2
1 + λ2x

2
2 + λ3

(
x2

3 + x2
4 + 2x5x6

) + x2
5 ,

G = x2
1 + x2

2 + x2
3 + x2

4 + 2x5x6.

Then Sing(X) is the rank 2 conic given by x1 = x2 = x5 = 0 and x2
3 + x2

4 = 0. The
intersection of the two lines is the special point o = (0 : 0 : 0 : 0 : 0 : 1). Considering
CLo(X) we easily find σ(P) = [(11)11] and for a general point we find σ(P) = [211].
The other cases are similar.

Cases (c3), (c4): The proof here is similar as (c2) and will be omitted.
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Case (d): The quadratic complex is defined by

F = 2λ1(x1x2 + x3x4 + x5x6) + x2
1 + x2

3 + x2
5 ,

G = x1x2 + x3x4 + x5x6,
(2)

so that the singular plane α is given by x1 = x3 = x5 = 0. If o = (0 : a : 0 : b :
0 : c) ∈ α, then ToG = {ax1 + bx3 + cx5 = 0}, where, by symmetry, we may sup-
pose a �= 0. By making x1 = tx3 +ux5, t := −b/a, u := −c/a, the polynomials in (2)
become

F1 = 2λ1

(
x3(tx2 + x4) + x5(ux2 + x6)

) + (
t2 + 1

)
x2

3 + 2tux3x5 + (
u2 + 1

)
x2

5 ,

G1 = x3(tx2 + x4) + x5(ux2 + x6).

We change coordinates as x ′
4 := tx2 + x4, x

′
6 := ux2 + x6 which allows to describe

X ∩ ToG, in a dimension three projective space with coordinates x3, x ′
4, x5, x ′

6, by the
equations

x3x
′
4 + x5x

′
6 = (

t2 + 1
)
x2

3 + 2tux3x5 + (
u2 + 1

)
x2

5 = 0.

First suppose (t2 + 1)(u2 + 1) �= 0 and choose square roots τ and μ from each factor
there. By making

y3 := τx3, y4 := μx ′
4, y5 := μx5, y6 := τx ′

6,

we obtain an equivalent linear system of equations

y3y4 + y5y6 = y2
3 + 2γy3y5 + y2

5 = 0,

where γ := tu/τμ. Notice

y2
3 + 2γy3y5 + y2

5 = (y3 − δ1y5)(y3 − δ2y5),

where δ1 = −γ + √
γ 2 − 1, δ1 = −γ − √

γ 2 − 1. Moreover, the plane y3 − δiy5 = 0
is tangent to the smooth quadric y3y4 + y5y6 at the point (0 : 1 : 0 : −δi), for i = 1,2.
We deduce σ(P) = [(22)] if δ1 �= δ2 (i.e. γ 2 �= 1) and σ(P) = [(211)] otherwise.

Second, if (t2 + 1)(u2 + 1) = 0, by arguing analogously we easily get the corresponding
Segre symbol is [(22)] again. Hence σ(P) = [(211)] if and only if γ 2 = 1, that is, a2 + b2 +
c2 = 0, from which we obtain the proof in this case. �

Remark 4.7 In the proposition above we did not consider the cases where Sing(X) is mixed,
that is, when σ(X) contains more brackets with a cone of multiplicity ≥ 2. For example,
the Segre symbols [(22)2], [(111)(11)1], [(111)21], [(111)(21)], [(111)3] [(211)2] and
[(211)(11)] contain two such brackets.

It is important to note that for mixed cases the nature of σ(P) can not be obtained from
that of the “pure cases”, as can be seen in the example below.

Example 4.8 If σ(X) = [(22)2], then Sing(X) = L ∪ {p}, where L a line and p a point,
p /∈ L. We will prove there exist p1,p2 ∈ L such that σ(P) = [(22)] if o = p, σ(P) =
[(11)2] for o ∈ {p1,p2} and σ(P) = [22] otherwise.

Indeed, we may write

G = x1x2 + x3x4 + x5x6, F = 2λ1x1x2 + 2λ2(x3x4 + x5x6) + x2
1 + x2

3 + x2
5 .

The pencil λF + μG contains two cones given by

K1 = 2(λ2 − λ1)(x3x4 + x5x6) + x2
1 + x2

3 + x2
5 , K2 = 2(λ1 − λ2)x1x2 + x2

1 + x2
3 + x2

5



On singular quadratic complexes 215

with vertices a point p = (0 : 1 : 0 : 0 : 0 : 0) and a line V2 given by (x1 = x2 = x3 = x5 = 0),
respectively. The tangent space TpG is given by x1 = 0, then we easily obtain σ(P) = [(22)].

For o = (0 : 0 : 0 : a : 0 : b) ∈ V2, the corresponding tangent space to G is given by
ax3 + bx4 = 0. If a = 0 then ToG is given by x5 = 0 and then ToG ∩ X is defined by the
equations

x1x2 + x3x4 = 2λ1x1x2 + 2λ2x3x4 + x2
1 + x2

3 = x5 = 0

which shows σ(P) = [22] in this case.
Finally, if a �= 0 we make x3 = tx5, with t := −b/a, and set x ′

4 = tx4 + x6. We obtain
ToG ∩ X is defined by the equations

x1x2 + x ′
4x5 = 2λ1x1x2 + 2λ2x

′
4x5 + x2

1 + (
t2 + 1

)
x2

5 = 0 (3)

in the dimension 3 linear space of coordinates x1, x2, x
′
4, x5.

On one hand, it t2 �= −1 we choose a square root τ of t2 +1 and by changing coordinates
as y1 := x1, y2 := x2, y4 := τ−1x ′

4 and y5 := τx5 we obtain an equivalent system of equations

y1y2 + y4y5 = 2λ1y1y2 + 2λ2y4y5 + y2
1 + y2

5 = 0

which shows σ(P) = [22].
On the other hand, if t2 = −1 the system of equations in (3) becomes

x1x2 + x ′
4x5 = 2λ1x1x2 + 2λ2x4x5 + x2

1 = 0;
by making a change of coordinates keeping x1 and x2 unchanged and in such a way that
x ′

4x5 is a sum of squares of the other two coordinates we easily deduce σ(P) = [(11)2].

Now we consider lines in X passing through a smooth point.

Proposition 4.9 Let X be a quadratic complex. For a point x ∈ X we denote by �(x) the
number of lines in X passing through x. We have:

(a) for o ∈ Sing(X), any line in X intersects a line of the ruling of CLo(X).
(b) x /∈ Sing(X) implies �(x) ≥ 1 and either �(x) ≤ 4 or �(x) = ∞; it follows that X

is covered by lines. Moreover, in the last case we have exactly one of the following
situations:
(b1) TxX ∩ X is either a plane or the union of a plane with a line passing through x.
(b2) TxX ∩ X is the union of two planes intersecting along a line passing through x.
(b3) TxX ∩ X is an irreducible quadratic cone with vertex at x.

Proof Statement (a) is promptly obtained: for a line L ⊂ X \ {o} there exists p �= o in
L ∩ ToG; the line op is contained in X ∩ ToG = CLo(X).

To prove (b) note that X ∩ TxX is the intersection of two quadric cones in TxX = P
3,

with vertex x. It is a cone whose directrix is the intersection of two coplanar conics. This
intersection may be a set of at most four points, a line, a line and a point, two lines or a
smooth conic from which we have the assertions. �

Remark 4.10 From Propositions 4.4 and 4.6 we obtain quadratic complexes with a unique
singular point but which contain either a plane or two planes intersecting along a line. In-
deed, it suffices to consider complexes with a singular point o such that a directrix of CLo(X)

contains either a line or two lines intersecting at a point.
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The remark together with the following examples show all possibilities in Proposition 4.9
really occur.

Example 4.11 Let X = F ∩ G be given by the (smooth) quadrics

F := x2
1 + x2

2 + x2
3 + x6x4 + x2

5 , G := x2
1 + x2

2 + x2
3 + x2

4 + x4x5 + x5x6.

Take the smooth point x = (0 : 0 : 0 : 0 : 0 : 1) in X. Then TxF and TxG are given by x4 = 0
and x5 = 0. It follows that TxX ∩ X = TxF ∩ F ∩ TxG ∩ G is the cone with vertex x over
the smooth conic in X with equation x2

1 + x2
2 + x2

3 = 0 contained in the plane V given by
x4 = x5 = x6 = 0; notice that V does not pass through x and it is contained in TxX. This
conic is the singular locus of X.

Furthermore, note that F − G is a cone in the pencil, with vertex V , V ∩ X is the conic
above, and the discriminant of the pencil has −1 as triple root and three other simple roots.
Then σ(X) = [(111)111].

Example 4.12 Consider the quadratic complex defined by

K = x1x2 + x4x5, G = x1x3 + x2x4 + x5x6.

In this case Sing(X) is the line x1 = x2 = x4 = x5 = 0.
Let x = (1 : 0 : 0 : 0 : 0 : 0). Hence x is a smooth point with TxX given by x2 = x3 = 0.

Therefore X ∩ TxX is the union of the plane x2 = x3 = x5 = 0 and the line x2 = x3 = x4 =
x6 = 0.

On the other hand, if x = (0 : 1 : 0 : 0 : 0 : 0), then TxX is given by x1 = x4 = 0 and
X ∩ TxX is the union of the two planes x1 = x4 = x5x6 = 0. The Segre symbol of this
quadratic complex X is [(321)].

Example 4.13 Consider the quadratic X such that Sing(X) is a plane α. According to the
table in Sect. 1 we know σ(X) = [(222)] and we can assume X = F ∩ G where

F = 2a(x1x2 + x3x4 + x5x6) + x2
1 + x2

3 + x2
5 and G = 2x1x2 + 2x3x4 + 2x5x6,

so that the singular plane α is given by x1 = x3 = x5 = 0.
On the other hand, the pencil λF +μG contains the cone x2

1 + x2
3 + x2

5 , which is the join
of α and the conic C given by x2 = x4 = x6 = x2

1 + x2
3 + x2

5 = 0.
Set o = (0 : u : 0 : v : 0 : w) ∈ α. The tangent space ToG given by ux1 + vx3 + wx5 = 0,

intersects C in two occasionally coinciding points, p,q say; these are coincident when
(u : 0 : v : 0 : w) ∈ C. By construction the lines op and oq are contained in X. It follows
that X is the union of these pairs of lines as o varies in α.

We conclude that for every point in α there passes two lines (counted with multiplicity)
meeting C and contained in X.

4.2 Planes in the quadratic complex

Let X be a singular quadratic complex. If α ⊂ X is a plane in X we know that there exists
o ∈ α ∩ Sing(X) (Corollary 4.3), we deduce α ⊂ CLo(X).

Conversely, if o ∈ Sing(X) and R ⊂ CLo(X) is a line with o /∈ R, then we get op ⊂ X

for all p ∈ R. Thus, the plane α := 〈o,R〉 is contained in X.
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The following result follows readily from the argument above and Propositions 4.4
and 4.6.

Proposition 4.14 X contains a plane if and only if there exists o ∈ Sing(X) such that a
directrix D of CLo(X) contains a line. Moreover, if σ(X) contains only one bracket of
multiplicity ≥ 2, this occurs when σ(X) is one of the following:

[6], [(51)
]
,
[
(21)111

]
,
[
(11)1111

]
,
[
(33)

]
,
[
(42)

]
,
[
(321)

]
,
[
(411)

]
,
[
(222)

]
.

Example 4.15 Consider the pencil generated by

K1 = x1x3 − x2x4 and G = x1x3 + x2x4 − 2x5x6.

Its Segre symbol is [(11)(11)(11)]. The cones in the pencil are K1 and

K2 = x1x3 − x5x6 and K3 = x2x4 − x5x6.

The corresponding vertices of these 1-cones are the lines V1,V2,V3 given, respectively, by

x1 = x2 = x3 = x4 = 0, x1 = x3 = x5 = x6 = 0, x2 = x4 = x5 = x6 = 0.

Note that X has 6 singular points, the intersection that we get intersecting G with Vi, i =
1,2,3:

p0 = (1 : 0 : 0 : 0 : 0 : 0), p1 = (0 : 0 : 1 : 0 : 0 : 0), p2 = (0 : 0 : 0 : 1 : 0 : 0),

p3 = (0 : 1 : 0 : 0 : 0 : 0), p4 = (0 : 0 : 0 : 0 : 0 : 1), p5 = (0 : 0 : 0 : 0 : 1 : 0).

On the other hand, we may see that X is the image of the rational map φ : P
3

P
5

defined by (see [2, Example 4])

φ = (
x2y : xy2 : yzw : xzw : xyw : xyz

)
.

A straightforward computation shows φ−1 is the projection of X from the line L = p1p2

that goes through the singular points p1 and p2.
Note that the quintic curve C in this case is reducible, a union of 5 distinct lines, and that

the quadratic complex X has six ordinary double points.
Let us explain how we get the five lines of the quintic C. A plane generated by 3 singular

points, one in each vertex, is contained in X. Hence, the quadratic complex contains the
following 8 planes:

024,025,034,035,124,125,134,135,

where 024 means p0p2p4 and similarly with the other planes. The P
3 generated by the line

L and the planes 024,025,134,135 project into 4 lines in P
3 from L. The remaining planes

are contracted since they contain the line L. The remaining component of C is the projection
of 〈L,V1〉.

5 Classification of the associated quintics

Let X = F ∩ G ⊂ P
5 be a singular quadratic line complex as in Sect. 2.2. Let L ⊂ X be a

line, L �⊂ Sing(X), to which we associate a projection π : X M = P
3 as in Proposi-

tion 3.3, C = Base(π−1).

Proposition 5.1 Let p ∈ L be a point such that TpF ∩ TpG ∩ X has dimension 2. Then, we
have at least one of the following:
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(a) C is reducible;
(b) C is supported on a line;
(c) Every dimension 2 component of TpF ∩ TpG ∩ X is a plane containing L.

It follows that if L ∩ Sing(X) �= ∅, then C is either reducible or non reduced.

Proof Suppose (c) does not occur. Then the image of the cone TpF ∩TpG∩X by π contains
an irreducible component of C, say C0, with degC0 ≤ 4. If C is irreducible we may write the
1-cycle associated to C as C = mC0 for a positive integer a. Then 5 = degC = mdegC0.
We deduce m = 5 and C0 is a line, which proves the statement.

For the last assertion suppose p ∈ Sing(X). If C satisfies (a) or (b) there is nothing to
prove. Otherwise C satisfies (c); in this case the directrix of the cone CLp(X) contains only
lines, at least two (see Propositions 4.4 and 4.6). It follows that C contains at least a line as
a component. �

In the following (Sects. 5.1, 5.2 and 5.3) we describe the components of the ACM quintic
curve C of arithmetic genus 2, base locus of the linear system of cubics defining π−1, giving
a classification in terms of the Segre symbols σ(X), first when Sing(X) is a discrete set, then
when it has dimension 1 and finally when it is a plane.

This classification is obtained in the following way. First the center of projection, the
line L, is chosen through a singular point o ∈ Sing(X) and a point p in a directrix D of
the cone CLo(X). Propositions 4.6 and 4.4 give the general and special positions for p to
consider. Next, since lines in X intersecting L correspond to points in the quintic C these
propositions give the part of C coming from lines going through o. This part of C, image by
π of CLo(X), is contained in a plane since L ⊂ CLo(X) ⊂ ToG � P

4. The complete results
are obtained by computing the cubic polynomials defining π−1 and the primary decomposi-
tion of the ideal generated by them.

5.1 Quadratic complexes with isolated singularities

Recall that the brackets for which Sing(X) has isolated singularities, and to which the fol-
lowing result refers, are classified in the list given in Table 1.

Theorem 5.2 Let C be the base locus of the linear system of cubics defining π−1 as above.
Assume Sing(X) is discrete and let o ∈ Sing(X) ∩ L. We also denote by D a directrix of the
cone CLo(X). Then C contains a plane curve and we get the following assertions about the
genus two quintic curve C, depending on the choice of o and {p} = L ∩ D:

(a) If σ(X) is [21111], [3111],1 [(11)1111] or [(21)111], then C consists of an elliptic
cubic curve lying in a plane, and a conic (smooth in the two first cases and of rank 2 in
the other cases) in a different plane; these curves intersect in two points in the first and
third cases and in a double point in the other cases.

(b) If σ(X) is [411] (resp. [51]), then D is a quartic with a singular point s and we have
two cases:
(b1) If L goes through s then the quintic C consists of a smooth conic with a double

structure union a secant (resp. tangent) line.
(b2) If L goes through a general point of D then C consists of a nodal (resp. cuspidal)

cubic curve union a smooth conic through the singular point of the cubic.
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(c) If σ(X) is [6], then D is a twisted cubic union a tangent line C3 ∪ T . If L goes through
C3 ∩ T (resp. C3\T ; resp. T \C3), then C consists of a smooth conic with a double
structure union a tangent line (resp. two not coplanar smooth conics meeting in a point
union a tangent line to one of them at this point; resp. a cuspidal cubic union a smooth
conic through the cusp).

(d) If σ(X) is [(31)11] (resp. [(41)1]) then D is the union of two not coplanar smooth
conics meeting in two points (resp. a double point) and we have two cases:
(d1) If L goes through a general point of D then C consists of a smooth conic union

two lines one of them with a double structure which is secant (resp. tangent) to the
conic, the other line meeting only the double line.

(d2) If L goes through a singular point of D, then C consists of a rank 2 conic with
a double structure and a general secant line (resp. a coplanar line through the
singular point of the conic).

(e) If σ(X) is [(51)], then the directrix D consists of a smooth conic C2 union a rank 2
conic �1 ∪ �2 intersecting in a point s ∈ C2. If L goes through a general point of C2 then
C consists of three coplanar and concurrent lines, one of them with a double structure,
union a fourth line meeting the double line. If L goes through a general point on the
lines �i, i = 1,2, then C consists of a smooth conic union a tangent line with a double
structure union one more line meeting the double line. If L goes through s, then C

consists of two meeting lines, one with a double structure and the other with a triple
structure.

Proof First of all recall that the projection of CLo(X) is contained in a plane so C contains
a plane curve.

The different cases to consider for the line L = op follow from Propositions 4.6, part (a),
and Proposition 4.4.

We prove (a) and (b), the proof of the other cases are similar.
(a) According to Proposition 4.6 (a), in all these cases D corresponds to the Segre symbol

[1111]. It follows it is a nonsingular elliptic quartic curve by Proposition 4.4(a). Since we
project with center a line L meeting D, then the image of D is an elliptic plane cubic C3.
We deduce C = C3 ∪ C2 where C2 is a degree 2 curve.

On the other hand, recall that C is an ACM quintic curve of arithmetic genus 2 (Propo-
sition 3.3), it follows there exists a unique quadric Q containing C. Then Q = H1 ∪ H2 and
C3 is contained in one of these planes, say H1. Since C is contained in irreducible cubic
surfaces (in fact smooth), then C2 is contained in H2 and is a conic, maybe singular.

Since the arithmetic genus of C3 ∪ C2 is 2, we deduce that these curves intersect in
(counting multiplicities) two points.

The different cases in the statement occur as we may verify by a direct computation using
a computer algebra system.

(b) If σ(X) is [411] (resp. [51]), Proposition 4.6 implies D corresponds to the Segre
symbol σ(P) = [211] (resp. [31]). According to Proposition 4.4 the curve D is a rational
quartic C4 with an ordinary double point (resp. a cusp). We then have two cases:

If L intersects D at the singular point, then it projects to a smooth conic with a double
structure, and the quintic C contains also a secant line (resp. a tangent line) to this conic.
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If L intersects D in a smooth point, then it projects to a plane cubic curve with a node
(resp. cusp). As we saw in the proof of case (a) we have C is the union of this curve and
a conic C2. In this case C2 is smooth and goes through the singular point of the cubic
curve.

The two cases can be computed using a computer algebra system to find first the six cu-
bic polynomials given by π−1 and defining C, then the primary decomposition of the ideal
generated by them to obtain the components, multiple structure and their mutual intersec-
tions.

For example, for σ(X) = [51], the singular point of X is o = (0 : 0 : 0 : 0 : 0 : 1). By
using equations for CLo(X) as in Proposition 4.6, case (a2), we may choose D as CLo(X)∩
{x6 = 0}. The singular point of D is p = s = (0 : 0 : 0 : 0 : 1 : 0). If we project from L = op

to M � P
3 defined by (x5 = x6 = 0), disjoint from L, then we compute π−1 by substituting

the equations of the plane 〈L,m〉, m ∈ M , into the equations of X and eliminating x5 and x6.
We obtain

π−1 = (
2x1x

2
2 : 2x3

2 : 2x2
2x3 : 2x2

2x4 : −x2

(
λx2

1 + 2x3x4

) :
− x2

1x2 + λx2
1x3 + 2x2

3x4 − x2x
2
4

)
,

where λ = λ1 − λ2 is a nonzero parameter.
The primary decomposition gives the components of C, a reduced line defined by (x2, x3)

and a smooth conic defined by (x2, λx2
1 + 2x3x4) with a double structure whose ideal is

generated by x2
2 , λ2x2

1x3 + 2x2x3x4 + 2λx2
3x4 − λx2x

2
4 , λ2x2

1x2 + 2x2
2x4 + 2λx2x3x4, λ2x4

1 +
2x2

1x2x4 + 2λx2
1x3x4 + 2x2x

3
4 . Notice that the line is tangent to the conic. This proves (b1)

for σ(X) = [51].
A general point of D may be parametrized by

p(t) :=
(

t : 0 : 1 : −λt2

2
: −λt4

8
− t2

2
: 0

)

since D is defined by (λx2
1 + 2x3x4 = x2

1 + 2x3x5 +x2
4 = x2 = x6 = 0). Now we take the line

L = Lt = op(t) and project to M = (x3 = x6 = 0). We may suppose without loss of general-
ity that λ = 1. By a computation analogous to the preceding one we obtain the components
for C = Ct : if t �= 0, a cuspidal cubic defined by

x2 = (
t2 + 2

)
x2

1x4 + 2tx1x
2
4 + 2x3

4 − 2x2
1x5 = 0,

where the cusp is (x1 : x2 : x4 : x5) = (0 : 0 : 0 : 1), and a smooth conic defined by

8tx1 − (
t4 + 4t2

)
x2 + 8x4

= −(
t8 + 8t6 + 16t4

)
x2

2 + (
16t4 + 64t2

)
x2x4 − 64x2

4 − 128t2x2x5 = 0;
if t = 0, x2 = x2

1x4 + x3
4 − x2

1x5 = 0 and x4 = x2
1 + 2x2x5 = 0, respectively. The conic meets

the cubic at its cusp, and this proves (b2) for σ(X) = [51]. �

Remark 5.3 A special case where C contains a line as one of its components is when X

contains a plane α with o ∈ α and L �⊂ α.

Graphically, the conclusions of Theorem 5.2 may be summarized in Table 2.
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Table 2 Results for dim(Sing(X)) = 0

σ(X) Vert(X) Directrix D Quintic curve C

[21111] 1 point

[3111] 1 point

[(11)1111] 2 points

[(21)111] 1 double point

[411] 1 point

5.2 Quadratic complexes singular along a dimension 1 subvariety

Now we suppose dim Sing(X) = 1. Since Vert(X) is supported on Sing(X), Table 1 gives
the list of cases we consider in this paragraph. We have Vert(X) is either a line, a smooth
conic, a rank 2 conic or a rank 1 conic.

First suppose Vert(X) = R is a line. Let L ⊂ X be a line with L �⊂ Sing(X), L ∩
Sing(X) �= ∅ and π : X P

3 = M the projection with center L and M general.
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Table 2 (Continued)

σ(X) Vert(X) Directrix D Quintic curve C

[51] 1 point

[6] 1 point

[(31)11] 1 double point

[(41)1] 1 double point
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Table 2 (Continued)

σ(X) Vert(X) Directrix D Quintic curve C

[(51)] 1 double point

Under these conditions, we have:

Theorem 5.4 Let C be the base locus of the linear system of cubics defining π−1. We assume
L ∩ R = {o}. We also denote by D the directrix of the cone CLo(X). We get the following
assertions about the genus two quintic curve C, depending on the choice of o and {p} =
L ∩ D.

(a) Suppose σ(X) = [(22)11]. Then o has two special positions r1, r2, and we have:
(a1) If o ∈ {r1, r2}, then according to the choice of p ∈ D we have that C consists of

a rank 2 conic with a double structure, and a general chord; or a smooth conic
union one of its chords with a double structure and a line.

(a2) If o is general, then C consists of a plane nodal cubic curve union two lines through
the node.

(b) Suppose σ(X) = [(32)1]. Then o has one special position and there are two possibili-
ties:
(b1) If o = r is special, then C consists of a smooth conic union one of its tangents with

a double structure union a skew line through the point of tangency.
(b2) If o is general, then C consists of a plane cuspidal cubic curve union two skew

lines going through the cusp.
(c) Suppose σ(X) = [(42)]. Then o has one special position r and we have:

(c1) If o = r , then according to the choice of p ∈ D we have that C consists of a line
with a triple structure union a line with a double structure; or a rank 2 conic, each
of its components with a double structure union a special chord; or a line with a
triple structure union two simple lines.

(c2) If o is general, then C consists of a smooth conic union a tangent line union two
other lines through the point of tangency; or a plane cuspidal cubic curve union
two skew lines through the cusp.

(d) Suppose σ(X) = [(33)]. Then o has no special positions and there are two possibilities:
(d1) C consists of a conic union one of its tangent lines with a double structure union

a line going through the point of tangency.
(d2) C consists of four concurrent lines, one of them with a double structure.
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Proof As we said before, we keep notations as in Proposition 4.6 and its proof and each
time use this result together with Proposition 4.4.

(a) By Propositions 4.6 and 4.4 there exist r1, r2 ∈ R such that D is a rational quartic
curve with a node when o /∈ {r1, r2} and two skew conics intersecting at two points when
o ∈ {r1, r2}. Note that R and the center L of projection belong to the ruling of CLo(X).

(a1) Suppose D consists of two skew smooth conics intersecting at p1,p2. It is easy to
see that R goes through one of them, p1 say. It follows that L can go through p2 or
can intersect one of the conics outside {p1,p2}. In the first case each of these conics
projects to a line and in the second case one of these conics projects to a (smooth) conic
and the other one to a chord. More precisely:

In the first case, and according to the proof of case (b1) of Proposition 4.6, we have
o = (0 : 0 : 0 : 1 : 0 : −i), p1 = (0 : 0 : 0 : 0 : 0 : 1) ∈ R, p2 = (0 : 0 : i : 1 : 1 : −i) ∈ D.
Using some computer algebra system we may calculate π−1 to obtain the degree 3
homogeneous polynomials defining C. Recalling that the saturated ideal of an ACM
quintic curve is always generated by a quadric and two cubic polynomials, we can
compute the ideal of C to be

I(C) = (
x2

3 , x3

(
x2

1 − 2x2
2

)
, ix2

1x3 + ix2
2x3 + x6x

2
1 − 2x6x

2
2

)
,

in terms of the coordinates of the 3-space defined by (x4 = x5 = 0).
We get double structures supported on the lines x3 = x1 ± √

2x2 = 0, and a simple
line x3 = x6 = 0. When L is generated by o and a general point p ∈ D, D the union of
two smooth conics the computations are similar and we omit the details.

(a2) Suppose D is a rational quartic, then R contains its singular point, therefore L inter-
sects D at a smooth point. Then π projects CLo(X) onto a nodal plane cubic curve
union of two lines through the node. The details, which we omit, are similar to some
we give below, for example (b1) and (b2).

(b) In this case, for the special point r ∈ R, the curve D is the union of two skew irre-
ducible conics each in a tangent plane to the other, intersecting in a point of R. For a general
point of R we have a rational quartic curve with a cusp belonging to R.

(b1) Let L = op with o = r and p a general point of D. Then the part of C coming from
CLo(X) consists of a smooth conic union one of its tangent lines with a double struc-
ture; since C is a quintic curve it must contain another simple line.

More precisely, with the notations of Proposition 4.6(b2), let o = r = (0 : 0 : 0 :
0 : 1 : 0) be the special point. It follows that ToG = (x3 = 0) and D is the union of
two conics in the planes given by (x1 + x6 = 0) and (x1 − x6 = 0), where without
loss of generality we are assuming that λ2 = −1 and λ1 = 0. One of the conics can be
parametrized by p(t) = (1 : − 1

2 (t2 + 1) : 0 : t : 0 : 1).
Let Lt = op(t) and M = P

3 given by (x1 = x5 = 0). As before we may compute
π−1 and deduce the primary decomposition associated to C. We get the conic with
ideal (x3,−x2

4 + x2x6 + tx4x6), union the tangent line (x3, x6) with a double structure,
union the simple line (2x4 − tx6, t

2x3 − 2x4) if t �= 0 or (x4, x6) if t = 0, going through
the point of tangency (x2 : x3 : x4 : x6) = (1 : 0 : 0 : 0).

(b2) Let o = (0 : 1 : 0 : 0 : b : 0) be a general point of R = Sing(X). It follows that ToG is
given by x1 = −bx3. Intersecting the generators of X with ToG and x2 = 0 to avoid
the point o, we get the rational singular quartic curve D in P

3 with coordinates x3, x4,
x5, x6, given by the two equations:

b2x2
3 + 2x3x4 − x2

6 = 2x3x5 + x2
4 + x2

6 = 0.
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Outside its singular point (0 : 0 : 1 : 0), the rational quartic curve D can be
parametrized by:

x3 = 1, x4 = 1

2

(
t2 − b2

)
, x5 = −1

8
t4 + 1

4
b2t2 − 1

8
b4 − 1

2
t2, x6 = t.

We then consider a line L joining a general point o ∈ R with pb(t) ∈ D as above and
the P

3 = M given by x2 = x3 = 0. Projecting X with center L onto M we get the
genus 2 quintic curve Ct,b . It decomposes as a plane cuspidal cubic curve Ct,b union
two skew lines �t,b, �

′
t,b going through the cusp as follows:

Ct,b = (
x1,2x3

4 − 2tx2
4x6 + (−b2 + t2 + 2

)
x4x

2
6 + 2x5x

2
6

)
,

�t,b = (
x4 + (b − t)x6, x1 + x6

)
and �′

t,b = (
x4 − (b + t)x6, x1 − x6

)
.

(c) In this case (see case (b3) of Proposition 4.4), there exists a special position r ∈ R

such that D is an open polygonal of three lines, the middle one with a double structure.
The singular line R intersects D in a point r0 belonging only to the middle line. For general
o ∈ R, the curve D is a twisted cubic union a tangent line and accordingly we have:

(c1) If we take the center of projection L as a line through the special point o = r and a point
p ∈ D \ {r0}, then according to the choice of p ∈ D, we have the various possibilities
for the quintic C, namely: if p is the intersection of the middle component with one of
the other two, then C is the union of two lines, one of them supporting a triple structure
and the other a double structure; if p is a general point of the middle component of
D \ {r0}, then C is the open polygonal of three lines, the middle one with a triple
structure; if p is a general point of the extreme lines of D then C is the union of a rank 2
conic supporting a double structure union a simple line through the singular point. The
details are similar to the previous cases we have already worked out and are omitted.

(c2) If the point o = (0 : 1 : 0 : 0 : 0 : b) is general in R, then the directrix D is a twisted
cubic C3 union a tangent line T . On obtains C3 ∩ T = {r} (the special point in R) and
we may parametrized C3 \ {r} by

pb(t) =
(

0 : 0 : 1 : t : − t2 + b2

2
: t3 + b2t

2

)
.

We then consider the line L joining o to pb(t) and M = P
3 given by x2 = x3 = 0

and obtain, as before, the quintic curve Ct,b . The ideal I(Ct,b) is generated by

bx2
1 + tx1x4 + x1x5, x1(x

2
1 + x2

4 ) and −2x2
1x6 − 2x2

4x6 + t2x2
1x4 + b2x2

1x4 + (b2 +
t2)x3

4 − 2tx2
1x5 + 2tx2

4x5 + 4bx1x4x5 + 4x4x
2
5 .

The primary decomposition of the ideal gives that, in this case, the quintic is a non
singular conic in the plane x1 = 0 union a tangent line to the conic in that plane union
two other skew lines going through the point of tangency.

If the center of projection L contains a general point of the tangent T then the
quintic C is the union of a cuspidal cubic and two lines through the cusp. We omit the
details.

(d) In this case D is the union of a conic and two lines, intersecting it at a point r0 ∈ R.
We have two possibilities: either L contains a point of the conic or of one of the two lines,
different from r0. In the former case C consists of four concurrent lines, one having a dou-
ble structure, and in the latter case it consists of a conic, one of its tangent lines with a
double structure and a skew line through tangency point. We omit the details of the compu-
tations. �
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Now suppose Vert(X) is a smooth (resp. rank 2; resp. rank 1) conic. Recall that Vert(X)

is supported on Sing(X).

Theorem 5.5 Let C be the base locus of the linear system of cubics defining π−1. We assume
L ∩ Sing(X) = {o}. We also denote by D the directrix of the cone CLo(X). We get the
following assertions about the genus two quintic curve C, depending on the choice of o and
{p} = L ∩ D:

(a) Suppose σ(X) = [(111)111]. The quintic C is an elliptic plane cubic union a skew line
with a double structure, through a point of the cubic.

(b) Suppose σ(X) = [(211)11]. Then o has one special position r and we have:
(b1) If o = r , then C consists of a smooth conic union a secant line supporting a triple

structure.
(b2) If o is general, then C consists of a plane nodal cubic curve union a skew line

through the node, the line supporting a double structure.
(c) Suppose σ(X) = [(311)1]. Then o has one special position r and we have:

(c1) If o = r , then C consists of the union of two lines one of them with a fourfold
structure.

(c2) If o is general, then C consists of a plane cuspidal cubic curve union a skew line
through the cusp, the line supporting a double structure.

(d) Suppose σ(X) = [(411)]. Then o has one special position r and we have:
(d1) If o = r , then according to the choice of p ∈ D the curve C consists of a unique

line supporting a fivefold structure, or the union two lines one of them supporting
a fourfold structure.

(d2) If o is general then according to the choice of p ∈ D, the curve C consists of a
plane cuspidal cubic curve union a skew line through the cusp supporting a double
structure, or a smooth conic union a tangent line union a skew line, through the
point of tangency, supporting a double structure.

(e) Suppose σ(X) = [(221)1]. Then, o has two special positions r1, r2, and we have:
(e1) If o ∈ {r1, r2}, then C consists of two lines one of them with a fourfold structure.
(e2) If o is general, then C consists of a conic union a secant with a triple structure.

(f) Suppose σ(X) = [(321)]. Then o has one special position r and we have:
(f1) If o = r then C consists of the union two lines one of them supporting a fourfold

structure.
(f2) If o is general, then according to the choice of p ∈ D, the curve C consists of a

smooth conic union a tangent line supporting a triple structure, or the union of
three concurrent lines one of these with a triple structure.

Proof Again we keep notations as in Proposition 4.6 and its proof and each time use this
result together with Proposition 4.4.

(a) In this case Sing(X) is a smooth conic. As follows from Proposition 4.6(c1) the
directrix D is a smooth elliptic quartic curve for all o ∈ Sing(X). We give the proof for
general o and p.

Without loss of generality and to simplify computations, we may choose the λ’s and the
variables in such a way that X = K ∩ G, where

K = x2
4 − x2

5 + 4x2
6 , G = x2

1 − x2
2 − x2

3 + x2
4 + x2

5 − 2x2
6 .

Hence Sing(X) is defined by (x2
1 − x2

2 − x2
3 = x4 = x5 = x6 = 0) and may be parametrized

by o = (b2 +1 : b2 −1 : 2b : 0 : 0 : 0). Therefore ToG is defined by (b2 +1)x1 − (b2 −1)x2 −
2bx3 = 0.
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On the other hand, we may take D = ToG ∩ X ∩ H , where H is the hyperplane not
containing o, defined by (x1 = x2); then D may be formally parametrized by

pb(t) = (
b

√
2
(
t4 − t2 + 1

) : b
√

2
(
t4 − t2 + 1

) :
√

2
(
t4 − t2 + 1

) : t2 − 1 : t2 + 1 : t).
If b �= 0 and t �= 0, we may choose M = P

3 defined by (x3 = x6 = 0). As in the proofs of
preceding results we compute π−1 and deduce the following generators for I(Ct,b):

((
t2 − 1

)
x4 − (

t2 + 1
)
x5

)((
1 − b2

)
x2 + (

b2 + 1
)
x1

)
,

t
(
x2

4 − x2
5

)((
1 − b2

)
x2 + (

b2 + 1
)
x1

)
,

(x4 + x5)
(
2x4x5 + x2

1 − x2
2

) + t2(x4 − x5)
(
2x4x5 − x2

1 + x2
2

)

+ b

√
2
(
t4 − t2 + 1

)
(x1 − x2)

(
x2

4 − x2
5

)
.

For t4 − t2 + 1 �= 0, by putting b = b′/
√

2(t4 − t2 + 1) and multiplying the two first gen-
erators above by t4 − t2 + 1 we obtain generators for I(Ct,b′) whose coefficients are poly-
nomials in t and b′. From this we obtain the primary decomposition of I(Ct,b′) verifying
statement (a).

(b) In this case Sing(X) is a rank 2 conic, the union of two lines, whose intersection r is
a special point.

(b1) If o = r the directrix D consists of two smooth conics meeting in two points lying in
Sing(X). Then L = rp, for p a smooth point in D. It follows C consists of a conic,
projection of one of the conics, union a secant line, projection of the other conic. This
line supports a triple structure. More precisely:

We can take X = K ∩ G with

K = x2
1 − x2

2 + x2
5 , G = x2

1 + x2
2 + x2

3 − x2
4 + 2x6x5.

Then Sing(X) is given by the two lines: x1 = x2 = x5 = x2
3 − x2

4 = 0. The special
singular point is the intersection of these two lines o = r = (0 : 0 : 0 : 0 : 0 : 1) and a
directrix D of CLo(X) may be given by (x5 = x6 = x2

1 − x2
2 = x2

1 + x2
2 + x2

3 − x2
4 = 0).

Then we may parametrize one of the conics, avoiding one of the singular points of D,
by p(t) := (t

√
2 : t

√
2 : t2 − 1 : t2 + 1 : 0 : 0), with t �= 0 to avoid the other singular

points of D. By taking M = P
3 defined by x1 = x6 = 0 we compute, as before, the

quintic Ct . We obtain the conic given by
(
x5,

(
t2 − 1

)
x2x3 − tx2

3 − (
t2 + 1

)
x2x4 + tx2

4

)

union the secant line (x5, x2) with the triple structure given by
(
x3

5 , x2x5,2tx2x
2
3 − 2tx2x

2
4 + (

t2 − 1
)
x3x

2
5 − (

t2 + 1
)
x4x

2
5 , x

2
2

)
.

This proves (b1).
(b2) For o general the quintic consists of a nodal cubic curve union a skew line through the

node supporting a double structure.
If the point o = (0 : 0 : 1 : ±1 : 0 : b) is general we find D is a rational quartic curve,

with an ordinary singular point at (0 : 0 : 0 : 0 : 0 : 1), given by x2
1 − x2

2 + x2
5 = 0 and

x2
1 + x2

2 − b2x2
5 + 2x6x5 = 0. Parametrizing this curve and considering the center of

projection L = op, p = p(t) ∈ D and M = (x3 = x4 = 0), we can compute the quintic
Ct and find it does not depend on the parameter b and is the plane nodal cubic curve

(
x5,−

(
t2 + 1

)
x2

1x2 + (
t2 − 1

)
x1x

2
2 − tx2

1x6 + tx2
2x6

)
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union the skew line going through the node:
(
2tx2 − (

t2 + 1
)
x5,

(−t2 + 1
)
x1 + (

t2 + 1
)
x2 − 2tx5

)

with the double structure given by:
((−4t2

)
x2

2 + (
4t3 + 4t

)
x2x5 − (

t4 + 2t2 + 1
)
x2

5 ,
(−t2 + 1

)
x1 + (

t2 + 1
)
x2 − 2tx5

)
.

(c) The proof here is similar to (b).
(d) In this case Sing(X) is a rank 2 conic, the union of two lines, whose intersection r is

a special point.

(d1) If o = r , a directrix D consists of a rank 2 conic with a double structure. If the line
L = rp, with p the singular point of D, let’s show that the quintic C consists of a line
with a fivefold structure. If p ∈ D general, then C consists of two meeting lines, one
with a fourfold structure.

The equations of X can be taken to be K = 2x1x3 + x2
2 and G = 2x1x4 + 2x2x3 +

x2
5 − x2

6 . Sing(X) is the rank 2 conic given by x1 = x2 = x3 = x2
5 − x2

6 = 0 and the
special point is the intersection of the two lines o = r = (0 : 0 : 0 : 1 : 0 : 0). The
intersection CLo(X) with the hyperplane (x4 = 0) gives a directrix D, which is the
rank 2 conic with double structure x1 = x4 = x2

2 = 2x2x3 + x2
5 − x2

6 = 0; notice that
Sing(X) ∩ D is supported on {(0 : 0 : 0 : 0 : 1 : ±1)}. Projecting from the line L = op,
with p = (0 : 0 : 1 : 0 : 0 : 0) being the intersection of the two lines of D, to M = P

3 =
(x3 = x4 = 0), we find the quintic C is the line (x1 = x2 = 0) with the fivefold structure
given by the ideal

(
x2

1 , x
3
2 − x1x

2
5 + x1x

2
6 , x1x

2
2

)
.

If, however, we take o = r to be special, p(t) to be general in one of the lines of the
support of D, and M defined by (x4 = x5 = 0), we find that the quintic Ct consists, for
each t �= 0, of the union the two lines defined by the ideals (tx2 − x6, x1) and (x2, x1),
the second with the fourfold structure given by

(
x4

2 ,−tx3
2 + x2

2x6 + 2x1x3x6 − tx1x
2
6 ,

− 2tx1x2x3 + t2x1x2x6 − x2
2x6 − 2x1x3x6 + tx1x

2
6 , x1x

2
2 , x

2
1

)
.

We note that if t = 0 the line op(0) is contained in Sing(X) and then π−1 is not bira-
tional in this case.

(d2) If o is general in Sing(X), then D consists of a twisted cubic union a tangent line. For
L = op, then according to the choice of p ∈ D we have the two possibilities for the
quintic as in the statement.

The proof is similar to other ones that have appeared before and we omit the details.

(e) This is also similar to the proofs that have been done elsewhere.
(f) Here Vert(X) is a rank one conic. There is a special position o = r ∈ Sing(X). In this

case a directrix D of CLo(X) consists of a double rank 2 conic, union of two lines meeting
at a point p0 ∈ Sing(X). For every line L = rp, p ∈ D \ {p0}, the quintic C consists of two
lines, one with a fourfold structure.

If o ∈ Sing(X) is general, then D consists of a smooth conic C2 union two lines meeting
C2 in a point p1 ∈ Sing(X). When we project from L = op, p ∈ D \ {p1}, the quintic C is
either a union of three lines meeting in a point, one of them supporting a triple structure, if
p ∈ C2; or is a smooth conic union a tangent line supporting a triple structure if p lies in
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Table 3 Results for dim(Sing(X)) = 1

σ(X) Vert(X) Directrix D Quintic curve C

[(22)11]

[(32)1]

either one of the two lines in D. We omit the details similar to what we prove in the other
items. �

Graphically, the conclusions of Theorems 5.4 and 5.5 may be summarized in Table 3.

5.3 Quadratic complexes singular along a plane

Finally, we consider the case where Sing(X) is a plane. Then we have σ(X) = [(222)], and
we may take X = K ∩ G with K = x2

1 + x2
3 + x2

5 and G = x1x2 + x3x4 + x5x6.
The complex X is singular along the plane α given by x1 = x3 = x5 = 0, with a conic

of special singular points Cα ⊂ α given by x1 = x3 = x5 = x2
2 + x2

4 + x2
6 = 0. Let C̄ be the

conic directrix of the cone K given by x2 = x4 = x6 = x2
1 + x2

3 + x2
5 = 0. We then have:
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Table 3 (Continued)

σ(X) Vert(X) Directrix D Quintic curve C

[(42)]

[(33)]

[(111)111]
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Table 3 (Continued)

σ(X) Vert(X) Directrix D Quintic curve C

[(211)11]

[(311)1]

[(411)]
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Table 3 (Continued)

σ(X) Vert(X) Directrix D Quintic curve C

[(221)1]

[(321)]

Lemma 5.6

(a) Consider the map ϕ : C̄ −→ Cα given by (a : 0 : b : 0 : c : 0) �→ (0 : a : 0 : b : 0 : c). Then
we have

X =
⋃

ō∈C̄

〈ō, tϕ(ō)〉,

where tϕ(ō) is the tangent line to Cα at ϕ(ō) and 〈ō, tϕ(ō)〉 is the plane spanned by ō and
tϕ(ō).

The set of these planes and α is the set of all the planes contained in X. In particular
every line in X meets α.

(b) The complex X parametrizes the set of lines in P
3 intersecting a smooth conic. If

α∗ ⊂ P
3 denotes the plane containing this smooth conic Cα∗ , then the singular plane α

parametrizes the set of lines in α∗, and Cα parametrizes the set of tangent lines to Cα∗ .
(c) The group of automorphisms of X, Aut(X), acts transitively on Cα , on α \ Cα , and on

X \ α.
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Proof (a) Let ō = (a : 0 : b : 0 : c : 0) be a point in C̄, then a2 + b2 + c2 = 0, and ϕ(ō) =
(0 : a : 0 : b : 0 : c) ∈ C̄α . Since TōX is given by ax1 + bx3 + cx5 = ax2 + bx4 + cx6 = 0,
then TōX ∩ X contains the plane 〈ō, tϕ(ō)〉. If p ∈ X \ (α ∪ C̄) there are points ōp ∈ C̄ and
pα ∈ α such that p is in the line ōppα ⊂ X. Then p ∈ 〈ōp, tϕ(ōp)〉, and this is the only plane
in X through p. We deduce (a).

(b) Now we want to view G as the Plücker quadric parametrizing the lines in P
3. If we

let the Plücker coordinates be (p12 : p13 : p14 : p23 : p24 : p34) = (y1 : y2 : y3 : y4 : y5 : y6),
then we compose with the automorphism A of P

5 given by

(y1 : y2 : y3 : y4 : y5 : y6) �→ (y3 : y4 : y5 : −y2 : y6 : y1) = (x1 : x2 : x3 : x4 : x5 : x6).

This takes the usual Plücker quadric given by p12p34 − p13p24 + p14p23 = y1y6 − y2y5 +
y3y4 = 0 to G given by x1x2 + x3x4 + x5x6 = 0. Let (x : y : z : w) be coordinates for P

3

and consider the plane α∗ ⊂ P
3 given by w = 0 and the conic Cα∗ ⊂ α∗ given by x2 + y2 +

z2 = w = 0. Let (a : b : c : 0) ∈ Cα∗ be an arbitrary point and take the line joining it to
(0 : 0 : 0 : 1), and let us compute its image under the Plücker embedding Φ followed by A.
We find:

Φ

(
a b c 0
0 0 0 1

)
= (0 : 0 : a : 0 : b : c) A�→ (a : 0 : b : 0 : c : 0).

Keeping in mind that a2 +b2 + c2 = 0 we find that the cone of lines in P
3 with vertex (0 : 0 :

0 : 1) and directrix the conic Cα∗ maps to the conic C̄ ⊂ P
5 in the plane x2 = x4 = x6 = 0.

In a similar way, we prove that the set of tangent lines to Cα∗ (the dual curve) maps to
the curve Cα ⊂ P

5, in the plane x1 = x3 = x5 = 0:

Φ

(
a b 1 0
b −a 0 0

)
= (1 : −b : 0 : a : 0 : 0)

A�→ (0 : a : 0 : b : 0 : 1),

which is in Cα if a2 + b2 + 1 = 0. Similarly for the two missing points of Cα∗ when c = 0.

Φ

(
1 ±i 0 0
0 0 1 0

)
= (0 : 1 : 0 : ±i : 0 : 0) = (0 : ∓i : 0 : 1 : 0 : 0)

A�→ (0 : 1 : 0 : ±i : 0 : 0).

Therefore, if t(a:b:c:0) is the tangent line to Cα∗ at (a : b : c : 0) ∈ Cα∗ , we have Φ(t(a:b:c:0)) =
(c : −b : 0 : a : 0 : 0)

A�→ (0 : a : 0 : b : 0 : c) = ϕ((a : 0 : b : 0 : c : 0)), where ϕ : C̄ −→ Cα is
defined in (a).
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In the same way we see that the set of lines in α∗ maps to α, and for each point of Cα∗
the set of lines in P

3 meeting this point maps to the plane in X different from α through a
point of Cα . Then (b) follows from (a).

(c) Any automorphism of P
3 stabilizing the conic Cα∗ stabilizes the set of lines meeting

this conic, so it induces an automorphism of X, by the description of X given in (b). The
subgroup of such automorphisms of P

3 stabilizes also the plane α∗, and acts transitively on
P

3 \ α∗. It follows that it acts transitively on the set of tangent lines to Cα∗ as well as on the
set of lines in α∗ not tangent to Cα∗ , and on the set of lines not contained in α∗ meeting Cα∗ .
The result then follows from (b). �

Theorem 5.7 Let X be a quadratic complex with σ(X) = [(222)]. For any singular point
o ∈ α, special or general, and for any line L in X through o not contained in α, the base
locus C of the linear system of cubics defining π−1

L consists of two meeting lines, one of
them supporting a fourfold structure.

Proof First note that by the description and the properties of X given in the previous lemma,
for each point o ∈ α, the subgroup of Aut(X) fixing o acts transitively on the set of lines in
X through o not contained in α. In fact such a line in X parametrizes a pencil of lines in P

3

with focus a point of Cα∗ , and the pencil is in a plane different from α∗ and containing the
line �o in α∗ corresponding to o. The line �o is a tangent line or a secant line to Cα∗ if o is
a special or a general singular point respectively, and the focus of each pencil of lines we
consider is a point in �o ∩Cα∗ . Since the subgroup of automorphisms of P

3 considered in the
proof of (c) acts transitively on P

3 \α∗, then the subgroup stabilizing also �o acts transitively
on the set of pencils of lines we consider.

Since Aut(X) also acts transitively on Cα and on α \ Cα , then it is sufficient to consider
only one special singular point o1 and one general singular point o2, and for each one a line
L in X not contained in α trough that point.

Let o1 = (0 : 1 : 0 : i : 0 : 0) ∈ Cα , and L = o1p, with p = (1 : 0 : i : 0 : 0 : 0) ∈ CLo1(X).
Then L �⊂ α and we find that the ideal of the base locus C of π−1

L is

I(C) = (
x2

3 , x3

(
x2

3 + x2
5

)
, x4x

2
3 − x4x

2
5 + 2x6x5x3

)

in terms of the coordinates of the 3-space given by x1 = x2 = 0. It follows that C consists of
two lines, with ideals (x3, x4) and (x3, x5), the second one with the fourfold structure:

(
x2

3 , x
3
5 , x3x

2
5 ,−x4x

2
5 + 2x3x5x6

)
.

Let o2 = (0 : 0 : 0 : 0 : 0 : 1) ∈ α \ Cα , and L = o2p, with p = (1 : 0 : i : 0 : 0 : 0) ∈ CLo2(X).
Then L �⊂ α and we find that the ideal of the base locus C of π−1

L is

I(C) = (
x3x5, x5

(
x2

3 + x2
5

)
, ix2

(
x2

3 + x2
5

) + x4
(
x2

3 − x2
5

))

in terms of the coordinates of the 3-space given by x1 = x6 = 0. It follows that C consists of
two lines, with ideals (x5, x2 − ix4) and (x3, x5), the second one with the fourfold structure:

(
x3x5, x

3
3 , x

3
5 , x2x

2
3 − ix2

3x4 + x2x
2
5 + ix4x

2
5

)
.

This completes the proof. �

6 Cremona transformations and quadratic complexes

6.1 Generalities

A Cremona transformation of P
3 is a birational map φ : P

3
P

3. Such a φ is defined by
four pairwise relatively prime homogeneous polynomials of the same degree; this common
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degree is the degree of φ which we denote by deg(φ), and the linear system associated to
φ is, by definition, the linear system whose general member is the zero scheme of a linear
combination of these four polynomials. The pair (deg(φ),deg(φ−1)) is, by definition, the
bidegree of φ.

If Y ⊂ P
3 is an irreducible subvariety along which φ restricts birationally, the strict trans-

form φ∗(Y ) of Y , with respect to φ, is the closure of φ(Y − Base(φ)).
One may prove deg(φ) (respectively, deg(φ−1)) is the degree of the strict transform of a

general plane (respectively, general line).
As always in this work let X be a singular quadratic complex. We take two lines

L1,L2 ⊂ X in such a way that Li �⊂ Sing(X), i = 1,2. Denote by πi : X Mi � P
3 the

projection from X with center Li , i = 1,2. We identify M1 and M2 with a fixed 3-space P
3.

Since π1 and π2 are birational, we know ϕ12 := π2 ◦π−1
1 : P

3
P

3 is a Cremona trans-
formation.

The Cremona transformations of bidegree (2,2) and (3,3) were extensively studied by
classic geometers (see for example [3–5, 9], or [11, 12] for more recent references). For the
convenience of the reader we briefly describe the different types of such transformations.

Transformations of bidegree (2,2) The base locus scheme of such a transformation is
supported on a conic and a point which does not belong to its plane. This conic may be
smooth or have rank 1 or 2, and the point may be either a “proper” point or an infinitely near
point lying over the conic. In fact, up to change of coordinates at the domain and the target,
there are seven types of transformations of bidegree (2,2) (see [12, Table 1]). Furthermore,
the inverse of such a map belongs to the same class. The set of all Cremona transformations
of bidegree (2,2) is an irreducible variety of dimension 26 ([12, Proposition 2.4.1]).

Transformations of bidegree (3,3) The set of Cremona transformations of bidegree (3,3)

is the union of three irreducible varieties of dimensions 39, 38 and 31, respectively. The
largest variety consists of transformations whose base locus scheme is an ACM sextic curve
of arithmetic genus 3; such a transformation is called determinantal, since such a scheme
is defined by the maximal minors of a 4 × 3 matrix of linear forms. The dimension 38
variety consists of transformations φ whose base locus scheme has an embedded point (then
it is not ACM) and may be characterized by saying that φ∗(R) is a singular cubic curve
for a general line R; we call φ a de Jonquières transformation. Finally, the smallest variety
consists of transformations whose associated linear system consists of cubic surfaces with a
line of double points. By Bertini Theorem this line is common to all members of that linear
system; we call such a transformation a ruled transformation (of bidegree (3,3)) since a
cubic surface of P

3 with a line of double points is necessarily ruled. While there is no
Cremona transformation which is both determinantal and de Jonquières, there exist ruled
ones belonging to these two classes (see [11]).

Definition 6.1 Let φ : P
3

P
3 be a Cremona transformation. We say φ comes from

quadratic complexes if there exist a quadratic complex X and lines L1,L2 ⊂ X such that φ =
π2 ◦π−1

1 . In this case, we also say φ comes from X, from (X,L1) or even from (X,L1,L2).

If φ : P
3

P
3 comes from a quadratic complex, as in Definition 6.1, then it is asso-

ciated to a quadratic complex X, the two lines L1,L2 ⊂ X and the two ACM quintic curves
C1,C2 ⊂ P

3, base loci of the projections π1 and π2, respectively; notice that in this case
Li �⊂ Sing(X) for i = 1,2.
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Proposition 6.2 Let φ : P
3

P
3 be a Cremona transformation coming from a

quadratic complex X, with associated lines L1,L2 and ACM quintic curves C1,C2. We
have:

(a) If L1 and L2 intersect at a singular point of X, then φ has bidegree (2,2).
(b) If L1 ∩ L2 ∩ Sing(X) = ∅, then φ has bidegree (3,3).
(c) If deg(φ) = 3, then C1 ⊂ Base(φ).
(d) If deg(φ) = 2, then there exists a plane H ⊂ P

3 such that C1 ⊂ H ∪ Base(φ) and H

contains (at least) a component of C1.

Proof Let H ⊂ P
3 be a general plane. The strict transform (π−1

2 )∗(H) is a quartic surface
S := H ∩ X where H is a hyperplane in P

5 general among those containing L2. Notice that
L1 intersects S at a unique point. Then (π1)∗(S) ⊂ P

3 is a surface of degree 4 − μ where μ

is the multiplicity of S at that point, 1 ≤ μ ≤ 2. If L1 intersects L2 at a singular point of X,
then μ = 2 and deg(φ) = 2. Otherwise deg(φ) = 3. By symmetry, we obtain the proof of (a)
and (b) may be proved similarly.

We know φ = (f1 : f2 : f3 : f4) for homogeneous polynomials fi ’s of degree deg(φ).
Since φ = π2 ◦ π−1

1 , we deduce there are f ′
1, f

′
2, f

′
3, f

′
4 ∈ H0(IC1(3)), where IC1 is the ideal

sheaf associated to C1 (see Proposition 3.3), such that φ coincides with the rational map
φ′ : P

3
P

3 defined as φ′ = (f ′
1 : f ′

2 : f ′
3 : f ′

4).
If deg(φ) = 3, then f1, f2, f3, f4 ∈ H0(IC1(3)) and (c) follows.
If deg(φ) = 2, then there exists a linear form h such that hfi is proportional to f ′

i for
all i, from which it follows C1 ⊂ H ∪ Base(φ), where H = (h = 0). On the other hand, the
dimension 1 part of Base(φ) defines a 1-cycle of degree 2: indeed, for two general quadrics
Q1,Q2 in the linear system associated to φ, we have Q1 ∩ Q2 = Base(φ) ∪ D, where D is
a smooth conic. Since deg(C1) = 5, we conclude H contains some component of C1 which
proves (d) and completes the proof of the proposition. �

Remark 6.3 (a) There are Cremona transformations of bidegree (2,3) and (2,4). The propo-
sition above implies they do not come from quadratic complexes.

(b) If φ comes from quadratic complexes, then φ−1 comes too. More precisely, if φ comes
from (X,L1,L2), then φ−1 comes from (X,L2,L1).

6.2 Cremona transformations coming from quadratic complexes

6.2.1 Bidegree (3,3) case

If Y ⊂ P
3 is a pure dimension 1 subscheme, we denote by Cyc(Y ) the 1-cycle defined by it.

Theorem 6.4 Let X be a quadratic complex and let L1,L2 ⊂ X be lines with Li �⊂ Sing(X),
i = 1,2. Let φ : P

3
P

3 be a Cremona transformation of degree 3 which comes from
(X,L1,L2). Then:

(a) If L1 ∩L2 = ∅, then φ is determinantal. In this case L := π1(L2) is a line and Base(φ) =
C1 ∪ L.

(b) If L1 ∩ L2 �= ∅, then φ is a de Jonquières transformation. In this case there exists a line
L ⊂ P

3 such that Cyc(Base(φ)) = C1 +L is the complete intersection of a cubic surface
and a quadric, both containing C1, and π1(L2) is an embedded point of Base(φ).

Furthermore, φ is ruled if and only if σ(X) = [(222)].
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Proof Parts (a) and (b) may be proven as in [2, Theorem 1].
Suppose φ is ruled and σ(X) �= [(222)]. The first assumption implies there is a line

L0 ⊂ P
3 such that all S ∈ Λφ is singular along L0.

On the other hand, the second assumption implies dim Sing(X) ≤ 1. Therefore, if H ⊂ P
5

is a general hyperplane containing L2, the hyperplane section H ∩ X of X is a normal
surface: indeed, otherwise Bertini Theorem applied to π2 implies H ∩X is singular along L2,
and then X should be singular there, which is not possible. We deduce (π1)∗(H ∩ X) is also
normal (Lemma 3.2). By construction (π1)∗(H ∩ X) ∈ Λφ which gives a contradiction.

Conversely, suppose σ(X) = [(222)]. Then dim Sing(X) = 2. Since Λφ is contained in
the linear system associated to π1, the assertion follows from Proposition 3.3. �

Remark 6.5 In the case where Base(φ) is contained in a smooth surface of P
3, the genus

formula implies that the line whose existence is assured by Theorem 6.4 intersects C1 at a
point scheme of either length 2 or length 3, depending on whether φ is determinantal or de
Jonquières.

Example 6.6 Keep notations as in the proof of Theorem 5.5, part (d1), and take L1 to be the
line rp therein. If π1 is the projection with center L1 to the 3-space given by x3 = x4 = 0,
with coordinates x1, x2, x5, x6, we find

π−1
1 = (

2x3
1 : 2x2

1x2 : −x1x
2
2 : x3

2 − x2
5x1 + x2

6x1 : 2x5x
2
1 : 2x6x

2
1

)
.

Now we consider a second projection π2 : X −→ M ′ centered at a line L2 ⊂ X to see
what kind of bidegree (3,3) Cremona transformation we get. There are two possibilities:

(1) L1 ∩ L2 = ∅. We can take for instance L2 = (x1 : 0 : 0 : 0 : x5 : x5) ⊂ X and M ′ the
3-subspace given by x1 = x5 = 0. By identifying M = M ′ we get:

π2π
−1
1 = (

2x2
1x2 : −x1x

2
2 : x3

2 − x2
5x1 + x2

6x1 : 2x5x
2
1 − 2x6x

2
1

)
.

We find the base locus of this map is a sextic that decomposes as a single line union a
fivefold line.

(2) L1 ∩L2 �= ∅. More interestingly we can take L2 = (0 : 0 : x3 : 0 : x5 : x5) intersecting L1

at (0 : 0 : 1 : 0 : 0 : 0) and project to M = (x3 = x5 = 0). We get:

π2π
−1
1 = (

2x3
1 : 2x2

1x2 : x3
2 − x2

5x1 + x2
6x1 : 2x5x

2
1 − 2x6x

2
1

)
.

We find the base locus of this map is a line with a sixfold structure with an embedded
point. Here is the ideal defining the sixfold structure supported at (x1, x2):

(
x6

2 ,−x3
2 + x1x

2
5 − x1x

2
6 , x1x

3
2 , x

2
1

)
.

And here is the primary ideal with associated prime (x1, x2, x5 − x6):
(
x5 − x6, x

3
2 , x

2
1x2, x

3
1

)
.

In the first case we get a determinantal transformation and in the second a de Jonquières.

Example 6.7 Consider X with σ(X) = [(222)] and defined by way of

F = x2
1 + x2

3 + x2
5 and G = x1x2 + x3x4 + x5x6.

If L1 and L2 are given by x2 = x3 = x6 = 0, x5 = ix1 and x1 = x4 = x6 = 0, x5 = ix3,
respectively, and M = M ′ is given by x1 = x4 = 0, then
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π2π
−1
1 = (

ix3

(
x2

3 + x2
5

)
,−i

(
x2x

2
3 + x2x

2
5 + ix6x

2
3 − ix6x

2
5

)
,

− 2ix2
3x5 − x3

(
x2

3 − x2
5

)
,2x3x5x6

)

is a ruled determinantal Cremona transformation. A ruled de Jonquières transformation may
be obtained analogously.

6.2.2 Bidegree (2,2) case

Let φ : P
3

P
3 be a Cremona transformation of bidegree (2,2) which comes from

(X,L1,L2) where σ(X) is one of the given in Table 1. Then L1 ∩ L2 = {o} ⊂ Sing(X).
Denote by πo : X Q ⊂ P

4 the map induced by the projection of P
5 from o to a

general 4-space P
4 containing M , its image Q is then a hyperquadric in P

4. If pi denotes
the image of Li under πo, i = 1,2, we denote by πpi

: Q P
3 the map induced by the

projection of P
4 from pi , i = 1,2.

Since φ = π2 ◦ π−1
1 we deduce there is a commutative diagram of the form

(4)

Note that since φ is birational p1 and p2 must be smooth points in Q. From this description
it is clear that φ is not defined only at πp1(p2) and at points lying in the image under πp1 of
lines in Q going through p1. We deduce that Base(φ) is defined by the ruling structure of
the cone of lines in Q going through p1 together with an additional structure supported on a
special point; this special point is infinitely near to a point in the support of Base(φ) if and
only if the line p1p2 is contained in Q.

Recall that the singular set of a reduced and irreducible hyperquadric in P
4 may be empty

or consists of a point or a line; in particular such a hyperquadric is normal. In the first case
the cone of lines going through a smooth point, p say, is a quadratic cone in its tangent space
at p; in the second case it is the union of two planes intersecting along the line joining p

with the singular point; in the last case it is the “double” plane spanned by p and the singular
line.

Let η : Blo(P
5) → P

5 be the blowing up of P
5 at o; then πoη is a morphism which identi-

fies the exceptional divisor E of η with P
4. Denote by X̃ ⊂ Blo(P

5) the strict transform of X

by η. We set Sing(1)(X) := Sing(X̃) ∩ E and say a point in Sing(1)(X) is an infinitely near
singularity of X.

Lemma 6.8 Let X, Q, p1,p2 be as in diagram (4). Then every singular point in Q is
the projection under πo of a line going through o which either is contained in CLo(X)

or meets another singularity (possibly infinitely near). Moreover, if K is the (unique) cone
of multiplicity 2 in the pencil defining X, then πo(K \ {o}) = Q.

Proof Let T ⊂ P
5 be a line going through o and not contained in X = F ∩G. Then T meets

X \ {o} in k points with k = 0 or k = 1. Assume πoη maps the strict transform T̃ of T in a
point of Q.
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Let us prove the first statement.
First suppose k = 1 and denote by p the point in T ∩ (X \ {o}). Since Q is normal,

Zariski Main Theorem implies the restriction of πo to X defines a local isomorphism at p.
We deduce πo(T ) is singular in Q if and only if p ∈ Sing(X).

Now suppose k = 0. By construction we have Q = πo(X \ {o}) ∪ πoη(X̃ ∩ E). Since
πoη contracts T̃ to a point in Q we deduce T̃ ∩ X̃ consists of a point, p′ say. Therefore
the restriction of πoη to X̃ induces a local isomorphism at p′. We conclude that πoη(p′) is
singular in Q if and only if p′ ∈ Sing(1)(X).

For the last assertion we notice that πo(K \ {o}) is a dimension 3 irreducible variety
containing πo(X \ {o}) = Q. �

It follows (recall Table 1):

Corollary 6.9 If Vert(X) is a point (resp. two points, a double point or a line; resp. a conic
or a plane), then Sing(Q) is empty (resp. consists of a point; resp. is a line).

By using Lemma 6.8 together with the geometric description of CLo(X) for each possible
Segre symbol we may obtain the classification of bidegree (2,2) Cremona transformation
coming from the corresponding quadratic complex. To simplify we only give the following:

Theorem 6.10 Let φ : P
3

P
3 be a Cremona transformation of bidegree (2,2). There

exists τ1, τ2 ∈ Aut(P3) such that τ1φτ2 comes from a singular quadratic complex.

Proof It suffices to prove that if φ = πp2π
−1
p1

comes from the diagram (4), then we obtain
seven non projectively equivalent types for Base(φ). We keep notations from diagram (4)
and employ Lemma 6.8 and its corollary without explicit reference to them.

First suppose Vert(X) is a point, o ∈ Sing(X). Then Q is smooth. In this case the directrix
of CLo(X) may contain a line or not (Propositions 4.4 and 4.6). Then we may choose lines
in X going through o in such a way that their projection under πo define points p1,p2 which
may either belong to a same line in Q or not. Since the cone of lines in Q going through
a point is a cone over a smooth conic we deduce Base(φ) consists of a conic together with
either an infinitely near point not belonging to the conic plane, when p1p2 ⊂ Q, or a point
outside the conic plane. Hence we have two non projectively equivalent types of base locus
schemes for φ.

Now suppose Vert(X) consists of two points (counting multiplicity) or it is a line, o ∈
Sing(X). Then Q has a unique singular point and the directrix of CLo(X) may contain a
line or not. Moreover, a linear component in this directrix may either intersects Sing(X) or
not. We deduce that Q has a unique singularity and p1,p2 may be chosen either to be in the
same line which may go through the singularity or not, or do not lie in a same line of Q.
Since the cone of lines in Q going through a smooth point is a cone over a rank 2 conic we
deduce Base(φ) consists of a rank 2 conic together with either an infinitely near point not
belonging to the conic plane lying over a smooth (resp. the singular) point of the conic, or
a point outside the conic plane. The two first cases occur when the line p1p2 ⊂ Q does not
contain (resp. contains) the singular point of Q. Hence we have three new non projectively
equivalent types of base locus schemes for φ.

By considering the case where Vert(X) is a conic or a plane we likewise obtain two
new non projectively equivalent types of base locus schemes for φ which completes the
proof. �
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Example 6.11 If σ(X) = [(222)] we may suppose K = (x2
1 + x2

3 + x2
5 = 0). If o = (0 : 1 :

0 : 0 : 0 : 0), by projecting onto P
4 with coordinates x1, x3, x4, x5, x6 we obtain Q = (x2

1 +
x2

3 + x2
5 = 0) ⊂ P

4, which is singular along the line R = (x1 = x3 = x5 = 0) in P
4; note that

a line in Q necessarily meets R: indeed, a hyperplane section of Q which is general among
those containing a line L �= R is a quadratic cone containing L in its ruling. If L1,L2 ⊂ P

5

are lines going through o, then their projection under πo gives p1,p2 ∈ Q − R. Consider
ϕ = πp2π

−1
p1

: P
3

P
3.

The strict transform of a general hyperplane in P
4 under π−1

p1
is a general hyperplane

section of Q going through p1. Hence it is a quadratic cone in a 3-dimensional linear space
of P

4 which does not contain p2. Therefore the strict transform of a general plane under ϕ

is a quadratic cone whose vertex varies along the line Ro := πp2(R) ⊂ P
3. Moreover, since

every line joining p2 to a point in R is contained in Q we deduce that Ro is the dimension
1 part of Base(ϕ). From [12, Theorem 3.1.1], and with notations as loc. cit, it follows ϕ

is a bidegree (2,2) Cremona transformation of type either tan[2](//), when p1p2 ⊂ Q, or
gen[2](//) otherwise.

Finally, with notations as in Sect. 5.3, if o ∈ Cα , then 〈L1,L2〉 ⊂ X from which we
deduce p1p2 ⊂ Q, that is ϕ is of type tan[2](//). If o ∈ α\Cα , then we may choose L1,L2

with either 〈L1,L2〉 ⊂ X or 〈L1,L2〉∩X = L1 ∪L2; hence p1p2 ⊂ Q or p1p2 �⊂ Q, in other
words, ϕ is of type tan[2](//) or gen[2](//), respectively.
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