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a b s t r a c t

In this note, we prove, for instance, that the automorphism group of a rational manifold
X which is obtained from Pk(C) by a finite sequence of blow-ups along smooth centers of
dimension at most r with k > 2r + 2 has finite image in GL(H∗(X, Z)). In particular, every
holomorphic automorphism f : X → X has zero topological entropy.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Dimensions of indeterminacy loci

Recall that a rational map admitting a rational inverse is called birational. Birational transformations are, in general, not
defined everywhere. The domain of definition of a birational map f :M → N is the largest Zariski-open subset on which f is
locally a well defined morphism. Its complement is the indeterminacy set Ind(f ); its codimension is always larger than, or
equal to, 2. The following statement shows that the dimension of Ind(f ) and Ind(f −1) cannot be too small simultaneously
unless f is an automorphism. This result is inspired by a nice argument of Nessim Sibony concerning the degrees of regular
automorphisms of the complex affine spaceCk (see [13]). Itmay be considered as an extension of a theoremdue toMatsusaka
and Mumford (see [10], and [7, Exercise 5.6]).

Theorem 1.1. Let k be a field. Let M be a smooth connected projective variety defined over k. Let f be a birational transformation
of M. Assume that the following two properties are satisfied.

(i) the Picard number of M is equal to 1;
(ii) the indeterminacy sets of f and its inverse satisfy

dim(Ind(f )) + dim(Ind(f −1)) < dim(M) − 2.

Then f is an automorphism of M.

Moreover, Aut(M) is an algebraic group because the Picard number ofM is equal to 1. As explained below, this statement
provides a direct proof of the following corollary, which was our initial motivation.
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Corollary 1.2. Let M0 be a smooth, connected, projective variety with Picard number 1. Let m be a positive integer, and
πi:Mi+1 → Mi, i = 0, . . . ,m − 1, be a sequence of blow-ups of smooth irreducible subvarieties of dimension at most r. If
dim(M0) > 2r + 2 then the number of connected components of Aut(Mm) is finite; moreover, the projection π :Mm → M0
conjugates Aut(Mm) to a subgroup of the algebraic group Aut(M0).

For instance, if M0 is the projective space (respectively a cubic hypersurface of P4
k) and if one modifies M0 by a finite

sequence of blow-ups of points, then Aut(M0) is isomorphic to a linear algebraic subgroup of PGL4(k) (respectively is finite).
This provides a sharp (and strong) answer to a question of Eric Bedford. In Section 3, we provide a second, simpler proof of
this last statement.

Remark 1.3. The initial question of E. Bedford concerned the existence of automorphisms of compact Kähler manifolds
with positive topological entropy in dimension > 2. This link with dynamical systems is described, for instance, in [4].
If a compact complex surface S admits an automorphism with positive entropy, then S is Kähler and is obtained from
the projective plane P2(C), a torus, a K3 surface or an Enriques surface, by a finite sequence of blow-ups (see [5,6,12]).
Examples of automorphismswith positive entropy are easily constructed on tori, K3 surfaces, or Enriques surfaces. Examples
of automorphisms with positive entropy on rational surfaces are given in [2,3,11]; these examples are obtained from
birational transformations f of the plane by a finite sequence of blow-ups that resolves all indeterminacies of f and its
iterates simultaneously. These results suggest looking for birational transformations of Pn

C, n ≥ 3, that can be lifted to
automorphisms with a nice dynamical behavior after a finite sequence of blow-ups; the above result shows that at least one
center of the blow-ups must have dimension ≥ n/2 − 1.

Remark 1.4. Recently, Tuyen Truong obtained results which are similar to Corollary 1.2, but with hypothesis on the Hodge
structure and nef classes ofM0 that replace our strong hypothesis on the Picard number (see [14,15]).

2. Dimensions of Indeterminacy loci

In this section, we prove Theorem 1.1 under a slightly more general assumption. Indeed, we replace assumption (i) with
the following assumption

(i’) There exists an ample line bundle L such that f ∗(L) ∼= L⊗d for some d > 1.

This property is implied by (i). Indeed, if M has Picard number 1, the torsion-free part of the Néron–Severi group of M is
isomorphic to Z, and is generated by the class [H] of an ample divisor H . Thus, [f ∗H] must be a multiple of [H].

In what follows, we assume that f satisfies property (i’) and property (ii). ReplacingH by a large enoughmultiple, wemay
and do assume that H is very ample. Thus, the complete linear system |H| provides an embedding ofM into some projective
space Pn

k, andwe identifyM with its image in Pn
k. With such a convention,members of |H| correspond to hyperplane sections

ofM .

2.1. Degrees

Denote by k the dimension ofM , and by deg(M) its degree, i.e. the number of intersections ofM with a generic subspace
of dimension n − k.

If H1, . . . ,Hk are hyperplane sections of M , and if f ∗(H1) denotes the total transform of H1 under the action of f , one
defines the degree of f by the following intersection of divisors ofM

deg(f ) =
1

deg(M)
f ∗(H1) · H2 · · ·Hk.

Since M has Picard number 1, we know that divisor class [f ∗(H1)] is proportional to [H]. Our definition of deg(f ) implies
that f ∗

[H1] = deg(f )[H1]. As a consequence,

f ∗(H1) · f ∗(H2) · · · f ∗(Hj) · Hj+1 · · ·Hk = deg(f )j deg(M)

for all 0 ≤ j ≤ k.

2.2. Degree bounds

Assume that the sum of the dimension of Ind(f ) and of Ind(f −1) is at most k − 3. Then there exist at least two integers
l ≥ 1 such that

dim(Ind(f )) ≤ k − l − 1;
dim(Ind(f −1)) ≤ l − 1.

Let H1, . . . ,Hl and H ′

1, . . . ,H
′

k−l be generic hyperplane sections ofM; by Bertini’s theorem,
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(a) H1, . . . ,Hl intersect transversally the algebraic variety Ind(f −1) (in particular, H1 ∩ · · · ∩ Hl does not intersect Ind(f −1)
because dim(Ind(f −1)) < l);

(b) H ′

1, . . . ,H
′

k−l intersect transversally the algebraic variety Ind(f ) (in particular, H ′

1 ∩ · · · ∩ H ′

k−l does not intersect Ind(f )
because dim(Ind(f )) < k − l).

For j ≤ l, consider the variety Vj = f ∗(H1 ∩ · · · ∩ Hj): In the complement of Ind(f ), Vj is smooth, of dimension k − j;
since j ≤ l and dim(Ind(f )) < k − l, Vj extends in a unique way as a subvariety of dimension k − j inM . The varieties Vj are
reduced and irreducible.

Since each Hi, 1 ≤ i ≤ l, intersects Ind(f −1) transversally, f ∗(Hi) is an irreducible hypersurface (it does not contain any
component of the exceptional locus of f ). Thus

Vj = f ∗(H1 ∩ · · · ∩ Hj)

= f ∗(H1) ∩ · · · ∩ f ∗(Hj)

is the intersection of j hypersurfaces of the same degree; for j = l one gets

deg(f )l deg(M) = f ∗(H1 ∩ · · · ∩ Hl) · (H ′

1 ∩ · · · ∩ H ′

k−l).

More precisely, since the H ′

i are generic, this intersection is transversal and Vj · (H ′

1 ∩ · · · ∩ H ′

k−l) is made of deg(f )l deg(M)
points, all of them with multiplicity 1, all of them in the complement of Ind(f ) (see property (b) above).

Similarly, one defines the subvarieties V ′

j = f∗(H ′

1 ∩ · · ·H ′

j ) with j ≤ k − l; as above, these subvarieties have dimension
k− j, are smooth in the complement of Ind(f −1), and uniquely extend to varieties of dimension k− j through Ind(f −1). Each
of them is equal to the intersection of the j irreducible divisors f∗(Hi), 1 ≤ i ≤ j. Hence,

(H1 ∩ · · · ∩ Hl) · V ′

k−l = deg(f −1)k−l deg(M).

If one applies the transformation f :M \ Ind(f ) → M to Vl and to (H ′

1 ∩ · · · ∩ H ′

k−l), one deduces that deg(f )l deg(M) ≤

deg(f −1)k−l deg(M), because all points of intersection of Vl with (H ′

1 ∩· · ·∩H ′

k−l) are contained in the complement of Ind(f ).
Applied to f −1, the same argument provides the opposite inequality. Thus,

deg(f )l = deg(f −1)k−l.

Since there are at least two distinct values of l for which this equation is satisfied, one concludes that

deg(f ) = deg(f −1) = 1.

As a consequence, f has degree 1 if it satisfies assumptions (i’) and (ii).

2.3. From birational transformations to automorphisms

To conclude the proof of Theorem 1.1, one applies the following lemma.

Lemma 2.1. Let M be a smooth projective variety and f a birational transformation of M. If there exists an ample divisor H such
that f ∗H and f∗(H) are numerically equivalent to H, then f is an automorphism.

Proof. Taking multiples, we assume that H is very ample. Consider the graph Z of f inM ×M , together with its two natural
projections π1 and π2 onto M .

The complete linear system |H| is mapped by f ∗ to a linear system |H ′
| with the same numerical class, and vice versa if

one applies f −1 to |H ′
|. Thus, |H ′

| is also a complete linear system, of the same dimension. Both of them are very ample (but
they may differ if the dimension of Pic0(M) is positive).

Assume that π2 contracts a curve C to a point q. Take a generic member H0 of |H|: It does not intersect q, and π∗

2 (H0)
does not intersect C . The projection (π1)∗(π

∗

2 (H0)) is equal to f ∗(H0); since f ∗ maps the complete linear system |H| to the
complete linear system |H ′

| and H0 is generic, we may assume that f ∗(H0) is a generic member of |H ′
|. As such, it does

not intersect the finite set π1(C) ∩ Ind(f ). Thus, there is no fiber of π1 that intersects simultaneously C and (π2)
∗(H0), and

(π1)∗(π
∗

2 (H0)) does not intersect C . This contradicts the fact that f ∗(H0) is ample. �

2.4. Conclusion, and Kähler manifolds

Under the assumptions of Theorem 1.1, Section 2.2 shows that f ∗H is numerically equivalent to H . Lemma 2.1 implies
that f is an automorphism. This concludes the proof of Theorem 1.1.

This proof is inspired by an argument of Sibony in [13] (see Proposition 2.3.2 and Remark 2.3.3); which makes use of
complex analysis: the theory of closed positive current, and intersection theory. With this viewpoint, one gets the following
statement.

Theorem 2.2. Let M be a compact Kähler manifold and f a bi-meromorphic transformation of M. Assume that



212 T. Bayraktar, S. Cantat / J. Math. Anal. Appl. 405 (2013) 209–213

(i) there exists a Kähler form ω such that the cohomology class of f ∗ω is proportional to the cohomology class of ω;
(ii) the indeterminacy locus of f and its inverse satisfy

dim(Ind(f )) + dim(Ind(f −1)) < dim(M) − 2.

Then f is an automorphism of M that fixes the cohomology class of ω.

Moreover, Lieberman’s theorem (see [8]) implies that a positive iterate f m of f is contained in the connected component
of the identity of the complex Lie group Aut(M).

2.5. Proof of Corollary 1.2

SinceMm is obtained fromM0 by a sequence of blow-ups of centers of dimension< dim(Mm)/2−1, all automorphisms f
ofMm are conjugate, through the obvious birational morphismπ :Mm → M0, to birational transformations ofM0 that satisfy

dim(Ind(f )) < dim(M0)/2 − 1 and dim(Ind(f −1)) < dim(M0)/2 − 1.

Thus, by Theorem 1.1 π conjugates Aut(M) to a subgroup of Aut(M0). Moreover, given any polarization of M0 by a very
ample class, all elements of Aut(M0) have degree 1 with respect to this polarization. Hence, Aut(M0) is an algebraic group,
and the kernel of the action of Aut(M0) on Pic0(M0) is a linear algebraic group; if Pic0(M0) is trivial, there is a projective
embedding of Θ:M0 → Pn

k that conjugates Aut(M0) to the group of linear projective transformations G ⊂ PGLn+1(k) that
preserve Θ(M).

3. Constraints on automorphisms from the structure of the intersection form

Let X be a smooth projective variety of dimension k over a field k. Denote by NS(X) the Néron–Severi group of X , i.e. the
group of classes of divisors for the numerical equivalence relation. We consider the multi-linear forms

Qd: NS(X)d → Z
which are defined by

Qd(u1, u2, . . . , ud) = u1 · u2 · · · ud · K k−d
X .

These forms are invariant under Aut(X)∗ and we shall derive new constraints on the size of Aut(X)∗ from this invariance.

Theorem 3.1. Let X be a smooth projective variety of dimension k ≥ 3, defined over a field k. Let d be an integer that satisfies
3 ≤ d ≤ k. If the projective variety

Wd(X) := {u ∈ P(NS(X) ⊗Z C)| Qd(u, u, . . . , u) = 0}

is smooth, then Aut(X)∗ is finite.

Proof. The group Aut(X)∗ acts by linear projective transformations on the projective space P(NS(X) ⊗Z C) and preserves
the smooth hypersurface Wd. Since d ≥ 3 it follows from [9] that the group of linear projective transformations preserving
a smooth hypersurface of degree d is finite. Hence, there is a finite index subgroup A of Aut(X)∗ which is contained in the
center of GL(NS(X)); since the later is a finite group of homotheties, this finishes the proof. �

As a corollary, let us state the following one, already obtained in the previous sections:

Corollary 3.2. Let X be a smooth projective variety of dimension k ≥ 3. Assume that there exists a birational morphism
π : X → V such that
• the Picard number of V is equal to 1
• π−1 is the blow-up of l distinct points of V .

Then Aut(X)∗ is a finite group.

Proof. We identify NS(V ) with Ze0 where e0 is the class of an ample divisor. Let a := ek0. Since X is obtained from V by
blowing up l distinct points p1, . . . , pl we have

NS(X) = Ze0 +


1≤i≤l

Zei

where ei is the class of the exceptional divisor Ei := π−1(pi). Then the form Qk is given by

Qk(u) = a(X0)
k
+ (−1)k+1

l
i=1

(Xi)
k

where u = X0e0 +


i Xiei and [X0 : · · · Xl] denotes the homogeneous coordinates on P(NS(X) ⊗Z C). Hence, the projective
variety defined by Qk in P(NS(X) ⊗Z C) is smooth and Aut(X)∗ is finite. �
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