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DYNAMICS OF RATIONAL SURFACE AUTOMORPHISMS:
ROTATION DOMAINS

By ERIC BEDFORD and KYOUNGHEE KIM

Abstract. A Fatou component is said to be a rotation domain if the automorphism induces a torus
action on it. We construct a rational surface automorphism with positive entropy and a rotation domain
which contains both a curve of fixed points and isolated fixed points. This Fatou component cannot be
imbedded into complex Euclidean space, so we introduce a global linear model space and show that
it can be globally linearized in this model.

Introduction. Let X denote a compact complex surface, and let f be a (bi-
holomorphic) automorphism of X. The regular part of the dynamics of f occurs
on the Fatou set F(f) ⊂X, where the forward iterates are equicontinuous. As in
[BS, U], we call a connected component U ⊂F(f) a rotation domain of rank d if
fp(U) = U for some p ≥ 1, and fp|U generates a (real torus) Td-action on U . In
dimension 1, rotation domains correspond to Siegel disks or Herman rings, which
have a (circle) T1-action. Here we consider surface automorphisms with the prop-
erty that the induced map f ∗ on H2(X,R) has an eigenvalue greater than one. This
is equivalent to the condition that f have positive entropy (see [C2]).

Let us consider generally the possibilities for Fatou sets of surface automor-
phisms. If X is a complex 2-torus, then an automorphism is affine. Positive en-
tropy implies that the eigenvalues of the linear part are |λ1|< 1 < |λ2|, and in this
case the Fatou set is empty. A second possibility is given by K3 surfaces (or their
unramified quotients called Enriques surfaces). Since there is an invariant volume
form, the only possible Fatou components are rotation domains (see Section 1).
McMullen [M1] has shown the existence of non-algebraic K3 surfaces with rota-
tion domains of rank 2 (see also [O]).

By Cantat [C1], the only other possibilities for compact surfaces with automor-
phisms of positive entropy are rational surfaces. In fact, by [BK2] there exist arbi-
trarily high dimensional families of rational surfaces which carry automorphisms
with positive entropy. By definition, a rational surface is birationally (or bimero-
morphically) equivalent to P2, and by Nagata [N, Theorem 5] we may assume that
it is obtained by iterated blowups of P2. Rotation domains of rank 1 and 2, as
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380 E. BEDFORD AND K. KIM

well as attracting/repelling basins are known to occur for rational surface automor-
phisms (see [M2, BK1]).

In this paper we show that a positive entropy automorphism can have a rotation
domain which is large in the sense that it contains a curve of fixed points as well
as isolated fixed points. To be more precise, we will use the birational maps of the
plane which are defined in affine coordinates (x,y) by

f(x,y) =
(

y,−δx+ cy+y−1),(0.1)

with c and δ to be specified. We choose δ to be a root of the polynomial

χn,m(t) =
t
(

tnm−1
)(

tn−2tn−1+1
)

(

tn−1
)

(t−1)
+1.(0.2)

For 1≤ j≤n−1, (j,n) = 1, we set c= 2
√
δ cos(jπ/n). Although there is apparent

ambiguity in the choice of ±
√
δ, the set of values obtained as we range over all

possible j will be the same. Let Σ0 denote the line at infinity in P2. With this choice
of c, the restriction f |Σ0 has period n, so the nth iterate fn fixes the line at infinity
Σ0 pointwise. Let p0 = Σ0∩{x = 0}, and let ps := f s(p0), 0 ≤ s ≤ n− 1 denote
its orbit. We construct a complex algebraic surface π : X → P2 by performing
iterated blowups to level 3. First we let F1

s denote the exceptional divisor obtained
by blowing up ps ∈Σ0, 0≤ s≤ n−1, and we let F2

s denote the exceptional divisor
obtained by blowing up a point qs =F1

s ∩Ls where Ls is the strict transform of the
line in P2 joining the origin and ps. In Theorem 2.3, we show that with this choice
of δ and c, we may blow up points rs,� ∈ F2

s , 0 ≤ s ≤ n− 1, 1 ≤ � ≤m, so that
the induced map fX := π−1 ◦f ◦π is an automorphism of X. We use Σ0 to denote
both the line at infinity in P2 and its strict transform in X.

THEOREM A. Let n ≥ 4, m ≥ 1, or if n = 3, m ≥ 2, and let δ, c, f , and X
be as above. Then f is a positive entropy automorphism of the rational surface X.
If |δ| = 1, h := fn has a rotation domain U which contains a curve of fixed points
Σ0 as well as invariant curves F1

0 , . . . ,F1
n−1. The domain U is a union of invariant

(Siegel) disks on each of which h acts as an irrational rotation.

The geometry of this rotation domain is illustrated in Figure 1. Here r indicates
a general point of Σ0, which is the center of a Siegel disk Sr for h. ByF js we denote
the exceptional divisor at level j over a point ps, 0≤ s≤ n−1. Theorem 3.3 shows
that, in addition, the two fixed points of f in C2 can be centers of rank 2 rotation
domains, in which case U is not dense in X.

Linearization is a useful technique to give the existence of rotation domains,
but it is a local technique. In order to understand the global nature of the Fatou
component U , we introduce a global model. We start with the linear map L= λ−1I

on C2, which is scalar times the identity transformation, with λ chosen as in (3.3).
L defines a holomorphic map of P2 which fixes the line at infinity Σ0, and the
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Σ0

Figure 1. Rotation domain: one parameter family of Siegel disks Sr .

multiplier in the normal direction is λ. We define a new manifold π : XL→ P2 by
blowing up the points ps ∈ Σ0 and then the points qs ∈ F1

s , the ps and qs being
the same points that are blown up to make X. After this, however, the procedure
differs from the construction of X: we blow up the second fixed point of L|F2

s (the
other fixed point is F1

s ∩F2
s ). At each stage, the centers of blowup are fixed by L,

so L extends to an automorphism of XL, and (L,XL) is our linear model space.
This rotation domain can be linearized globally on this model space:

THEOREM B. There is a domain Ω ⊂ XL and a biholomorphic conjugacy
Φ : U → Ω taking (h,U) to (L,Ω). In particular, h has no periodic points in
U −π−1Σ0. Further, π(Ω)−Σ0 is a pseudoconvex, circled domain in C2 which
is complete at infinity.

XL is well suited to the example h since it “contains” the whole rotation do-
main. On the other hand, we may replace the curve of fixed points, Σ0, by a single
pointO. This is because Σ0 has self-intersection 1−n< 0, so we may blow it down
to obtain a singular space X̌L. We may represent the quotient space X̌L locally in
a neighborhood of O as a neighborhood of 0 in the variety {x = (x0, . . . ,xn−1) ∈
Cn : xjxk = x�xm, ∀j+k = �+m} (see [L, p. 54]). In the x-coordinates near 0,
the induced map Ľ becomes multiplication by λ.

By Proposition 2.4, we may also blow down the variety Γ=Σ0∪
⋃

s(F1
s ∪F2

s )

to a point, so that X̃ := X/Γ is a complex space. There is an induced map f̃ on
X̃, and the variety Γ becomes a fixed point Õ for f̃ . Õ will be a normal singular
point, so f̃ will be holomorphic at Õ. However, the 2-form dx∧dy is holomorphic
on X−Γ but does not extend to be holomorphic on X, so this singularity is not a
quotient singularity (see [Du]).

If C2/σ is a quotient singularity, then a linear map commuting with σ can
be used to give a rotation domain with 0 as a fixed point. If we blow up 0 and
resolve the quotient singularity, then we obtain a rotation domain with an invariant
curve. The purpose of the preceding paragraph is to show that the rotation domains
constructed below are not, even locally, of this form.
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This paper is organized as follows: Section 1 discusses rotation domains gen-
erally and global linear models. Section 2 develops a number of the properties of
the maps (0.1). Section 3 treats linearization at the fixed points of h in C2, which
are non-resonant, and Σ0 is shown to be in the Fatou set. In Section 4 the resonant
fixed points F1

s ∩F2
s are linearized and shown to belong to the same Fatou com-

ponent as Σ0; Theorem A is a consequence of Theorem 4.9. Section 5 gives the
global linearization, and Theorem 5.1 yields Theorem B.

Acknowledgments. We wish to thank Serge Cantat for his inspiring conver-
sations, and we thank the referees for several comments and suggestions which
improved this paper.

1. Rotation domains. In this section we consider an automorphism f

of a general compact, complex manifold M of arbitrary dimension. We assume
throughout that f has infinite order, which is to say that fn is not the identity
map if n �= 0. Recall that the (forward) Fatou set consists of all points which have
neighborhoods U ′ such that the restrictions of the forward iterates {fn|U ′ , n≥ 0}
form a normal family. Let U denote an f -invariant, connected component of the
Fatou set. We define the set of all normal limits of subsequences

G = G(U) :=
{

g : U −→ U, g = limfnj , nj → ∞
}

and we consider the condition

For each g ∈ G(U),g(U) contains an open set.(*)

PROPOSITION 1.1. If f preserves a smooth volume form, then every Fatou
component satisfies (*). If (*) holds, then G is a subgroup of Aut(U).

Proof. Suppose that g is a normal limit of fnj . The jacobian determinant of
fnj has modulus one, and so this holds for g. Thus g is an open mapping, and
g(U) ⊂ U , and g satisfies (*). Next, suppose that ϕ= limj→∞ f

nj ∈ G. Passing to
a subsequence, we may assume that both mj = nj+1−nj and pj = nj+1− 2nj
converge to +∞ as j→ ∞. Passing to further subsequences, we may suppose that
there is convergence: fmj → g and fpj → h. Since fmj ◦ fnj = fnj+1, we may
use (*) to pass to the limit and conclude that g ◦ϕ= ϕ on an open subset of U , so
that g is the identity element. Similarly, fpj ◦ fnj = fmj , which by (*) converges
to h ◦ϕ = g on an open subset of U . Thus h is the inverse of ϕ. We conclude
that ϕ ∈ Aut(U). Now it is evident that G is closed under composition, so G is a
subgroup of Aut(U). �

Thus if (*) holds, then U is a Siegel domain in the terminology of Fornaess and
Sibony [FS]. By Proposition 1.2, we have a group action G×U → U . Since the it-
erates are a normal family, it follows that G is a compact group in the compact-open
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topology. Now we may apply the proof of a Theorem of H. Cartan (as presented,
for instance, in [N, Chapter IV]) to conclude:

THEOREM 1.2. If (*) holds, then G is a compact, abelian, Lie group, and the
action of G on U is real analytic.

We let G0 denote the connected component of the identity in G. Since G is a
compact, infinite abelian Lie group, G0 is a torus of positive dimension d. Thus if
(*) holds, then there is a real torus acting on U , and if there is such a torus action,
we call U a rotation domain of rank d.

THEOREM 1.3. IfU is a rotation domain, then the rank satisfies d≤ 2dimCM.
If d= 2dimCM, then U =M, andM is a torus.

Proof. Let T denote the torus acting on U , and let z0 ∈ U be a point where the
orbit T ·z0 has maximal dimension. If the dimension d of T is greater than the real
dimension ofM, then the stabilizer subgroup Sz0 = {g ∈ T : gz0 = z0} will have
positive dimension. We note that Sz0 is closed, and closed subgroups are rigid in
T . Since Sz depends continuously on z for z near z0, we conclude that S = Sz is
independent of z. It follows that for g ∈ S we have gz = z for z near z0, and thus
S acts trivially on U . This is a contradiction since we have taken T as a subgroup
of Aut(U).

Now suppose d = 2dimCM. Since the Lie algebra of G0 is abelian, we see
that a generic orbit T · z0 will be a d-torus. Thus we must have T · z0 =M, and so
U =M. �

THEOREM 1.4. If U is a rotation domain, then it is pseudoconvex.

Proof. Pseudoconvexity is a local property of the boundary. The Lie algebra
of G is generated by holomorphic vector fields. For a boundary point p ∈ ∂U , we
may write a vector field locally in terms of analytic functions

∑

aj∂zj . If U is not
pseudoconvex, then there will be a coordinate neighborhood on which the aj have
analytic continuations to a larger set. So the vector field, and thus the torus action,
extends to a larger open set Ũ ⊃U . The larger set Ũ , however, belongs to the Fatou
set, which contradicts the fact that U is a Fatou component. �

We may regard C2 as both an R-linear and a C-linear vector space. Every 2-
dimensional R-linear subspace S ⊂C2 is either complex, or it contains no nonzero
complex-linear subspace. In the second case it is said to be totally real.

THEOREM 1.5. Let X denote a compact, Kähler surface, and let f be an
automorphism of X with positive entropy. Then we have d ≤ 2. If d = 2, then
the generic orbit of G0 is a totally real 2-torus, which means that the tangent space
to the orbit is totally real at each point. If d= 1, then there is a holomorphic vector
field V , and each orbit of V is invariant under f .



384 E. BEDFORD AND K. KIM

Proof. Since f has positive entropy, U �= X. Thus by Theorem 1.3, d ≤ 3.
Now suppose that d = 3. We may suppose that the Lie algebra of G0 is generated
by ∂/∂θj , j = 1,2,3. Let Vj be the vector field on U induced by ∂/∂θj . Now
choose a generic point z0 ∈ U , so that the orbit T3 ·z0 is a 3-torus. If T denotes the
tangent space of the orbit at z0, then Hz0 = T ∩JT is the unique complex subspace
of T . Let Z �= 0 denote a (1,0) vector inHz0 . Since T3 acts on U by biholomorphic
maps, it follows that Z generates a (1,0) vector field on T3 ·z0. Let ν denote the T3-
invariant probability measure on T3 · z0. Now, since the vectors ∂/∂θj commute,
it follows that the current S := iZ ∧ Z̄ ν is a positive, closed (1,1)-current with
support on T3 · z0. We may move z0 to a nearby point z′0 so that T3 · z0 is disjoint
from T3 ·z′0. We have an invariant (1,0)-form Z ′ on this orbit and a corresponding
positive, closed (1,1)-current S′. Let {S} = {S′} ∈H1,1 represent the associated
cohomology class. Since the supports of S and S′ are disjoint, we have {S}2 = 0.

On the other hand, since f has positive entropy, there are a cohomology class
θ+ ∈ H1,1 and a λ > 1 such that f ∗θ+ = λθ+. By [DF] we must have θ+ · θ+ =

0. Let ω+ be a smooth (1,1)-form representing this cohomology class. We may
take the limit T+ = limn→∞λ

−nf ∗nω+ and obtain a current which represents the
cohomology class θ+. However, since the {fn,n ≥ 0} are a normal family on U ,
it follows that T+ = 0 on U . We conclude that θ+ ·S = 0. However, this makes a
2-dimensional linear subspace of {v : v ·v= 0}, which contradicts the Hodge Index
Theorem. Thus d≤ 2.

Now suppose that d = 2, and let V1 and V2 be vector fields which generate
the Lie algebra of G0. For generic p ∈X, the span of these vector fields will have
real dimension 2. If the span of these vector fields at a point p is not a complex 1-
dimensional subspace of the tangent space TX, then the G0-orbit will be a totally
real 2-torus. Otherwise, if there is an open set where it is complex, we may repeat
the argument above. (Actually, the argument above shows that an orbit of a complex
tangency is isolated.) Thus the generic G0-orbit of a point of U must be a totally
real 2-torus.

Finally, if d = 1, then there is a (holomorphic) vector field V which generates
the Lie algebra. That is, V generates a foliation of U by Riemann surfaces, and the
real part of V generates the action of G0. In particular, each leaf is invariant under
G0. �

Let us remark that there is always a semi-global model of a torus action since
we may linearize in the neighborhood of a totally real orbit. More precisely, sup-
pose that a 2-torus T acts on a complex surface, and z0 is a point whose orbit T ·z0

is a totally real 2-torus. Then there is a neighborhood Ω of T and an imbedding Φ

of Ω into C2 such that Φ(Ω) is a Reinhardt domain, then the T -action is taken to
the standard T2-action on C2 (see [BBD]). This does not require the T -action to
have a fixed point.

In Sections 3 and 4 we will use local linearization to show that certain fixed
points belong to the Fatou set. The converse is easier: linearization is always
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possible at a fixed point inside the Fatou set. We will recall the statement of an
easily proved result about domains in Ck (see [H]), in which Φ is defined on all
of U .

PROPOSITION 1.6. Suppose that U ⊂ Ck is bounded and invariant under a
holomorphic map h. Suppose that z0 = 0 is a fixed point for h; let A denote the dif-
ferential of h at z0, and suppose A is unitary. Then Φ= limN→∞

1
N

∑N−1
n=0 A

−nhn

defines a holomorphic map Φ : U → Ck such that Φ◦h=A◦Φ.

Global Linear Model. If U is not contained in C2, however, we must define a
global model if we want to have a global linearization. Let us give some examples
of (zero entropy) maps which illustrate some possibilities for global rotation. We
start with the linear map on P2 which is given as M [t : x : y] = [t : μ1x : μ2y]. M
has three fixed points on P2: [1 : 0 : 0], [0 : 1 : 0], and [0 : 0 : 1]. The multipliers at
[1 : 0 : 0] = (0,0) ∈ C2 are {μ1,μ2}, the multipliers at [0 : 1 : 0] (the point where
the x-axis intersects the line at infinity) are {μ−1

1 ,μ2/μ1}, and at [0 : 0 : 1], where
the y-axis intersects the line at infinity, the multipliers are {μ−1

2 ,μ1/μ2}. This is
shown on the left hand side of Figure 2. The fixed points are marked; the axes are
X and Y , and the multipliers at the fixed points are indicated.

Rank 2. We suppose now that |μ1|= |μ2|= 1, so M generates a torus action if
μ1 and μ2 are not both roots of unity. If μj1

1 μ
j2
2 �= 1 for all j1, j2 ∈Z, (j1, j2) �=(0,0),

then μ1 and μ2 are said to be multiplicatively independent, and in this case M
generates a T2 action on P2.

Rank 1. In the case of multiplicative dependence, we have a T1 action. We
may suppose that μ1 = tp, μ2 = tq, where t is not a root of unity, and (p,q) = 1.
Thus μq1μ

−p
2 = 1. The standard (p,q)-action acts on a point (x,y)∈C2 according to

T1 � θ �→ (eipθx,eiqθy).M preserves the curves {xq = cyp} for any fixed c∈C. We
say that {μ1,μ2} are resonant if μk1

1 μ
k2
2 = μs with s = 1 or 2, and k1,k2 ≥ 0 with

k1 +k2 ≥ 2. There is a special case where the multipliers are {1, t}, but otherwise
in the resonant case, we have a (p,q)-action with pq < 0, which means that only
two of the invariant curves pass through the origin. In the non-resonant case, all of
the invariant curves pass through the origin.

If p > q > 0, then the fixed point [0 : 1 : 0] will be non-resonant, while the fixed
point [0 : 0 : 1] will be resonant. If p = q = 1, then (0,0) is non-resonant, but the
whole line at infinity Σ0 is fixed, with multipliers {1, t−1}, so all points of the fixed
line are resonant.

Blow up. Now let π : Z→ P2 be P2 blown up at a fixed point p with multipli-
ers {ν1,ν2}, corresponding to directions X and Y , respectively. This will induce
the map M̃ on Z . We denote the resulting exceptional divisor by P . We suppose
that ν1 �= ν2, so M̃ |P will have two fixed points. Since ν1 is the multiplier in the
direction X, the multipliers at the new fixed point X ∩P will be ν1 in the direc-
tion X and ν2/ν1 in the direction P . Similarly, the multipliers at Y ∩P will be
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Figure 2. Global linear models Mj at stage j of blowup; fixed points and multipliers.

{ν2,ν1/ν2}. The diagram in the middle of Figure 2 shows the invariant curves and
their multipliers after the intersection point Σ0 ∩X is blown up; the exceptional
divisor is denoted F1

X . The right hand side of Figure 2 shows the space obtained
after the further blow up of the point X ∩F1

X . The multipliers at the fixed points
are determined by the reasoning described above. We may repeat this process of
blowing up fixed points of M̃ and obtain a map with an arbitrary number of fixed
points. In the case of a rank 1 rotation (that is, μ1 = μ2) this produces both resonant
and non-resonant fixed points.

2. Rational automorphisms. Here we present a family of automorphisms
which are different from the ones given in [BK1, BK2, M2, D]. They are deter-
mined by a choice of m, n, δ, and j, and for different choices of these parameters,
we get maps that are not birationally equivalent. (This is because if we change
(m,n), we change the dynamical degree; the number δ is the rotation number
around Σ0; and j/n is the rotation number within Σ0.) Let us imbed C2 into P2

via the map (x,y) �→ [1 : x : y], and let us use coordinates t= x0, x= x1, y = x2.
Let δ be a root of the polynomial χn,m in (0.2) with n≥ 4,m≥ 1 or n≥ 3,m≥ 2
and δ3 �= −1, and let f(x,y) be a map of the form (0.1). In homogeneous coordi-
nates on P2, f takes the form

f [t : x : y] =
[

ty : y2 :−δxy+ cy2 + t2
]

.(2.1)

The exceptional curve for f is Σ2 = {y = 0}, and Σ1 = {x= 0} is the exceptional
curve for f−1.

f : Σ2 �−→ e2 = [0 : 0 : 1], f−1 : Σ1 �−→ e1 = [0 : 1 : 0]

Since f [0 : 1 : w] = [0 : 1 : c− δ/w], the line at infinity Σ0 = {t = 0} is invariant
and f |Σ0 is equivalent to the linear fractional transformation g(w) := c− δ/w. Let
us set

Cn(δ) :=
{

2
√
δ cos(jπ/n) : 0 < j < n,(j,n) = 1

}

.

Note that since 2
√
δ cos(jπ/n) = 2(−

√
δ)cos((n− j)π/n), Cn(δ) does not de-

pend on the choice of ±
√
δ.
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LEMMA 2.1. If c ∈ Cn(δ) then f |Σ0 is periodic with period n.

Proof. Let c = 2
√
δ cos(jπ/n) for some j relatively prime to n. The fixed

points of g, wfix = (c±
√
c2−4δ)/2. Since g′(wfix) = δ/w2

fix it follows from our
choices of c and δ that (g′(wfix))

n = 1, which means that the nth iterate of g is the
identity. �

Thus c ∈ Cn(δ) if and only if gn−1(c) = g−1(c) = ∞. Let us use the notation
ωs = gs−1(c) for 1≤ s≤ n−1, that is f se2 = [0 : 1 : ωs], 1≤ s≤ n−1.

LEMMA 2.2. Suppose c ∈ Cn(δ). For 1 ≤ j ≤ n− 2, ωjωn−1−j = δ. If n is
even, then ω1 · · ·ωn−2 = δ(n−2)/2. If n is odd, then we let ω∗ = ω(n−1)/2. In this

case, we have ω1 · · ·ωn−2 = δ(n−3)/2ω∗ and ω2
∗ = δ.

Proof. Note that g−1(w) = δ/(c−w). Since ωn−1 = 0, we have ωn−2 = δ/c.
It follows that ω1ωn−2 = c · δ/c = δ. If ωjωn−1−j = δ then ωj+1 = c− δ/ωj ,
ωn−1−(j+1) = g−1(δ/ωj) = δ/(c − δ/ωj), and thus ωj+1ωn−1−(j+1) = δ. The
Lemma follows by induction on j. �

Σ0

Σ2 Σ1

Figure 3. Construction of X .

For any δ and any c ∈ Cn(δ), we construct the manifold π1 : X1 → P2 by
blowing up the set of n points in the line at infinity f se2,0≤ s≤ n−1. Let F1

s :=
π−1

1 (f se2) denote the exceptional divisor. For F1
0 we will use π1(s1,η1)0 = [s1 :

s1η1 : 1] and for F1
s , 1≤ s≤ n−1, we use the coordinate chart π1(s1,η1)s = [s1 :

1 : s1η1 +ωs]. The induced map fX1 maps Σ2 to a point in the exceptional divisor
F1

0 :

fX1 [1 : x : y] =
(

s1,η1
)

0 =

(

y

1− δxy+ cy2 ,y

)

0
.

Letting y→ 0, we see that

fX1

(

Σ2
)

= (0,0)0 = F1
0 ∩{x= 0}.

Similarly we see that

f−1
X1

(

Σ1
)

= (0,0)n−1 = F1
n−1∩{y = 0}.
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If we map forward by fX1 from F1
s to F1

s+1, we have

fX1 :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F1
0 �

(

0,η1
)

0 �−→
(

0,−δη1
)

1 ∈ F
1
1

F1
s �

(

0,η1
)

s
�−→

(

0,δη1/ωs
)

s+1 ∈ F
1
s+1, 1≤ s≤ n−2

F1
n−1 �

(

0,η1
)

n−1 �−→
(

0,η1
)

0 ∈ F
1
0 .

(2.2)

Thus the orbit of the exceptional line Σ2 lands at the point of indeterminacy:

fX1 : F1
s ∩Ls � (0,0)s �−→ (0,0)s+1 ∈ F1

s+1∩Ls+1(2.3)

where L0 is the line {x= 0} and Ls is the line {y = ωsx}, 1≤ s≤ n−1.
Next, construct π2 :X2→X1 by blowing up the points (0,0)s =F1

s ∩Ls, for
all 0 ≤ s≤ n−1. Denote the new exceptional divisor by F2

s . For F2
s we use local

coordinates π2(ξ2,x2)s = (ξ2x2,x2)s = (s1,η1)s and we have

fX2 :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

ξ2,x2
)

0 �−→
(

ξ2

ξ2− δ
,x2
(

− δ+ ξ2
)

)

1
(

ξ2,x2
)

s
�−→

(

ω2ξ2

δx2
2ξ2 +ωs(ξ2 + δ)

,
x2(δx

2
2ξ2+ωs(ξ2+δ))

ωs(ωs+x2
2ξ2)

)

s+1
, 1≤s≤n−2

(

ξ2,x2
)

n−1 �−→
(

ξ2

ξ2− δ+ cx2
2ξ2

,x2

)

0
.

(2.4)

Thus the induced map fX2 maps exceptional divisors to other exceptional divisors:

fX2 :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F2
0 �

(

ξ2,0
)

0 �−→
(

ξ2/
(

ξ2− δ
)

,0
)

1 ∈ F
2
1

F2
s �

(

ξ2,0
)

s
�−→

(

ξ2/
(

ξ2 + δ),0
)

s+1 ∈ F
2
s+1, 1≤ s≤ n−2

F2
n−1 �

(

ξ2,0
)

n−1 �−→
(

ξ2/
(

ξ2− δ
)

,0
)

0 ∈ F
2
0 .

(2.5)

Near Σ2 we have

fX2 [1 : x : y] =
(

ξ2,x2
)

0 =
( 1

1− δxy+ cy2 ,y
)

0
.

The inverse map is f−1(x,y) = ((cx−y+ 1
x)/δ,x), which lifts to

f−1
X2(x,y) =

(

ξ2,x2
)

n−1 =
( δ

1+ cx− cyx,x
)

n−1
.

Thus f−1
X2(Σ1) = (δ,0)n−1 ∈ F2

n−1. So in order to have the exceptional curve Σ2

land on the point of indeterminacy after n steps, we must have
(

fX2

)n
Σ2 = f−1

X2Σ1 = (δ,0)n−1 ∈ F2
n−1.(2.6)

Now we use the first line of (2.5) to see that f 2
X2Σ2 = fX2(1,0)0 = (1/(1−δ),0)1 .

We map this point forward by iterating the second part of (2.5) n−2 times. Since
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F2
n−1
∼= P1, in homogeneous coordinates we can identify (δ,0)n−1 with [δ : 1] =

[1 : 1/δ]. So we may write equation (2.6) as:

(

1 0
1 δ

)n−2(
1

1− δ

)

=

(

1
δ−1

)

.

From this we see that (2.6) holds if and only if δ is a root of χn,1, as defined in
(0.2).

In case (2.6) does not hold, then fn
X2(Σ2) is not indeterminate, and fX2 will

map it to F2
0 , and we may map it through the sequence F2

0 → ··· → F2
n−1 again.

Since
( 1 0

1 −δ
)2( 1

0

)

=
(

1
1

)

, we derive an alternative to (2.6): the condition that fX2Σ2

ends up at the point of indeterminacy after m times through this cycle is given
(projectively) by

(

(

1 0
1 δ

)n−2(
1 0
1 −δ

)2
)m(

1
0

)

=

(

1
δ−1

)

.

This happens exactly when δ is a root of χn,m.
We now make the space π3 :X3→X2 by blowing up at the centers f j+1

X2 Σ2 ∈
F2
∗ for 0≤ j ≤ nm−1, and we denote the blowup fiber by F3

s,� as in Figure 3. We

set X := X3. Using a similar computation as above we see that the induced map
fX maps Σ2 to the third exceptional divisor:

fX : Σ2 � [t : x : 0] �−→
(

xδ

t
,0

)

0
∈ F3

0,1

and the mapping from F3
n−1,m to Σ1 is a local diffeomorphism. From our construc-

tion we conclude:

THEOREM 2.3. Let n≥ 3,m≥ 1 such that (n,m) �= (3,1), and let δ be a root
of polynomial χn,m in (0.2) such that δ3 �=−1. Let f be a map of the form (2.1). If
c∈Cn(δ), then the induced map fX :X→X is an automorphism. The exceptional
divisors are mapped according to:

Σ0 −→ Σ0, F j0 −→F
j
1 −→ ·· · −→F

j
n−1 −→F

j
0 , j = 1,2

Σ2 −→F3
0,1 −→ ·· · −→F3

n−1,1 −→F3
0,2 −→ ·· · −→F3

n−1,2

−→ ·· · −→F3
0,m −→ ·· · −→F3

n−1,m −→ Σ1.

We let Pic(X) denote the Picard group of integral divisors on X. The classes
of Σ0, and F js , 0≤ s≤ n−1, j = 1,2 and F3

s,�, 0 ≤ s ≤ n−1, 1 ≤ �≤m form a
basis of Pic(X). Let Zs,� ∈ Pic(X) be defined as

Zs,� =Σ0−F2
s −2F3

s,�−
∑

i�=�
F3
s,i+

∑

t�=s

[

F1
t +F2

t +

m
∑

i=1

F3
t,i

]

.
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It follows that Zs,� ·F3
s,� = 1 and the intersection product with every other element

of the basis of Pic(X) is zero. With the notation F j =
∑

sF
j
s for j = 1,2 and

F3 =
∑

s,�F3
s,�, we have

Z :=
∑

s,�

Zs,� =mnΣ0 +m(n−1)F1 +m(n−2)F2 +
(

m(n−2)−1
)

F3.

Let S denote the span in Pic(X) of Σ0 and F js , j = 1,2, 0 ≤ s ≤ n− 1. By
Theorem 2.3. we see that S is f ∗-invariant.

PROPOSITION 2.4. The intersection form on S is negative definite.

Proof. Since each Zs,� is orthogonal to S, it follows that Z ⊥ S. Further, we
observe that Z ·Z = mn(mn− 2m− 1) > 0, so by the Hodge Index Theorem,
there is no s ∈ S with s · s > 0. �

PROPOSITION 2.5. Let C be an effective divisor, and let {C} denote its class
in Pic(X). If {C} ∈ S, then there are nonnegative integers n0 and nj,s such that
C = n0Σ0 +

∑

s(n1,sF1
s +n2,sF2

s ).

Proof. C is linearly equivalent to A−B, where A and B are transverse effec-
tive divisors supported on the curves defining S. A must be nontrivial since C is
effective and cannot be linearly equivalent to the negative of an effective divisor.
Now suppose thatC =

∑

njVj , nj > 0, where Vj are transverse to the curves defin-
ing S. Then we have A ·(B+C) =A ·A< 0, but on the other handA ·(B+C)≥ 0
because A is transverse to B and C . �

For the next Proposition, we use rational coefficients on Pic(X). Let T := S⊥

be the orthogonal complement of S. By Proposition 2.4, we have S∩T = 0. Thus
Pic(X) =S⊕T . Let γs,� denote the projection to T of the class F3

s,� ∈ Pic(X), and

let λs denote the projection of the strict transform in X of the line Λs := 0ps ⊂ P2.

PROPOSITION 2.6. λs =
∑

�

(

−γs,�+
∑

t�=s γt,�
)

. Thus we may represent the
restriction fX∗|T as

λn−1 −→ γ0,1 −→ γ1,1 −→ ·· · −→ γn−1,1 −→ γ0,2

−→ ·· · −→ γn−1,m −→ λ0 =
∑

�

(

−γ0,�+
∑

s �=0

γs,�

)

.

The characteristic polynomial of fX∗|T is χn,m in (0.2). The spectral radius of fX∗
is the largest zero of the polynomial χn,m.

Proof. We may assume that s = 0, that is L0 =Σ1. Since Σ0 =Σ1 ∈ Pic(P2),
we pull back by π1 and have Σ1+F1

0 =Σ0+
∑

sF1
s ∈ Pic(X1). From (2.3) we see

that the center of the blowup for F2
0 is F1

0 ∩L0 and there are no centers of blowup
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of the second blowup fibers in Σ0. Thus we have Σ1+F1
0 +2F2

0 =Σ0+
∑

s(F1
s +

F2
s ) ∈ Pic(X2). Pulling back by π3 gives

Σ1 +F1
0 +2F2

0 +2
∑

�

F3
0,� =Σ0 +

∑

s

(

F1
s +F2

s +
∑

�

F3
s,�

)

∈ Pic(X).

When we project everything to T =S⊥, we have λ0 =
∑

�

(

−γ0,�+
∑

s �=0γs,�
)

. By
Proposition 2.3 we obtain our representation of the restriction fX∗|T . The eigenval-
ues of fX∗ |S lie in the unit circle since the intersection form is negative definite on
S. Thus the spectral radius is given by the restriction fX∗|T , and a direct computa-
tion shows that (0.2) is the characteristic polynomial of the transformation defined
by the restriction fX∗|T . �

Remark. Let λn,m denote the largest root of χn,m, so by Proposition 2.6,
λn,m = δ(f) is the dynamical degree. Since fX is an automorphism, it follows
that if λn,m > 1, then χn,m is a Salem polynomial, which means a polynomial
of degree ≥ 3 such that there are real roots λ = λn,m > 1 > λ−1, and all other
roots have modulus one. In fact, χn,m has at least one cyclotomic factor and is thus
reducible. Note that

χn,m+1(t) =
(

tn(m+1)−1
)(

tnm−1
)

χn,m(t)−
tnm
(

tn−1
)

tnm−1
,

and

χn+1,m(t) =

(

tnm−1
)(

tn−2tn−1 +1
)(

tn+1−1
)

(

t(n+1)m−1
)(

tn+1−2tn+1
)(

tn−1
)χn,m(t)

−
2(t−1)2tn−1

(

tn−1
)

(

t(n+1)m−1
)(

tn+1−2tn+1
)(

tn−1
) .

It follows that, if t∗ > 1 is the largest real root of χn,m(t) then χn,m+1(t∗) < 0
and χn+1,m(t∗) < 0 and therefore both the largest real root of χn,m+1(t) and the
largest real root of χn+1,m(t) are bigger than t∗. Thus we have if n ≥ 4, m ≥ 1,
or if n = 3, m≥ 2, then the dynamical degree of λn,m ≥ λ3,2 ≈ 1.55603 > 1. For
fixed n, λn,m increases to the largest real root of tn+1−2tn+1 and for each m≥ 1,
λn,m increases to 2 as n→ ∞.

COROLLARY 2.7. The only invariant curves are unions of Σ0 and F js with
0≤ s≤ n−1 and 1≤ j ≤ 2.

Proof. If C is an invariant curve, then {C} ∈ Pic(X) is an eigenvector with
eigenvalue 1. The number 1 is not a zero of χn,m, so by Proposition 2.6, 1 is not
an eigenvalue of f∗|T , so the projection of {C} to T is not fixed by f∗|T . Thus
{C} ∈ S, and so the corollary follows from Proposition 2.5. �
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As in [BK2, Theorem 5], we can use Corollary 2.7 to show that (f,X) is a
minimal dynamical system if n �= 2.

Σ0

Figure 4. Manifold for Example 2.8.

Example 2.8. We consider the family of maps given by

k(x,y) =

(

y,−x+1+
a

y

)

.(2.7)

The restriction k|Σ0 interchanges e1 ↔ e2. As before, we find that k : Σ2 → e2,
and k−1 : Σ1→ e1, so we blow up the point e2 (resp. e1) and denote the resulting
exceptional divisor as F1

0 (resp. F1
1 ). On the new manifold, we have k : Σ2→ 0 ∈

F1
0 . The exceptional divisors map according to

F1
0 � ξ �−→ 1− ξ ∈ F1

1 , F1
1 � ξ �−→ ξ ∈ F1

0 .

The orbit of 0∈F1
0 ends up at the point of indeterminacy after going twice around:

0 ∈ F1
0 −→ 1 ∈ F1

1 −→ 1 ∈ F1
0 −→ 0 ∈ F1.

We blow up this orbit, and label the new exceptional divisors so that F2′
0 →F2′

1 →
F2′′

0 → F2′′
1 . We find that Σ2 is still exceptional for k; it is mapped to a ∈ F2′

0 .
Finally, we blow up this orbit and obtain an automorphism.

As in the previous case, we consider the invariant subspace S ⊂ Pic, which
is generated by Σ0 and the blowup fibers up to level 2. The intersection product
restricted to S is negative semidefinite but is not negative definite because it has a
zero eigenvalue. Thus T = S⊥ intersects S in a one-dimensional subspace. When
we compute k∗|T , we find a 3× 3 Jordan block with eigenvalues of modulus one,
so k∗ has quadratic growth.

3. First linearizations. The next three sections will be devoted to lineariza-
tions in various contexts; here we consider the more standard cases. First we will
show that in many cases the fixed points of f are centers of rank 2 rotation do-
mains. By itself, this result is not new because the possibility of such domains was
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shown already for K3 surfaces in [M1] and for rational surfaces in [M2] (see also
[BK1]), but the relevance for our map f is that the rotation domain U we have
constructed is not dense. At the end of this section, we note that Σ0 is the center of
a one parameter family of Siegel disks.

The map f has two isolated fixed points in C2. Choose one of them and let
λi, i = 1,2 be the multipliers of the differential at that point. Thus the λi are roots
of

P (t) = t2 +(1+ δ−2c)t+ δ.(3.1)

We will show that these multipliers are multiplicatively independent in certain
cases.

LEMMA 3.1. The multipliers have modulus 1 if and only if |Re
√
δ −

2cos(jπ/n)| ≤ 1.

Proof. By (3.1), λi = −((1 + δ)/2− c)±
√

−δ+((1+ δ)/2− c)2, i = 1,2.
Since |δ| = 1, we may set δ = eiθ . Using the expression c = 2

√
δ cos(jπ/n) and

trigonometric identities we can see that

λi =
√
δ

[

2cos(jπ/n)− cos(θ/2)±
√

(

cos(θ/2)−2cos(jπ/n)
)2−1

]

.

Since |δ| = 1, the two multipliers will have modulus 1 if and only if (cos(θ/2)−
2cos(jπ/n))2−1≤ 0. �

LEMMA 3.2. The multipliers λ1 and λ2 are multiplicatively independent.

Proof. Suppose λp1
1 λ

p2
2 = 1 for some integers p1,p2 ∈ Z. By (3.1), λ1λ2 = δ

and δ is not a root of unity, we may suppose that p1 < p2 ∈ Z and λ1 = δp2/(p2−p1)

and λ2 = (1/δ)p1/(p2−p1). Choose integers m,k such that (m,k) = 1 and p2/(p2−
p1) =m/k and set μ = δ1/k . It follows that μm and μk−m satisfy (3.1), so if we
evaluate P (μm) and use the definition of c ∈Cn(δ), we have

1
4

(

μm−k/2 +μk/2−m+μk/2 +μ−k/2)= cos(jπ/n).(3.2)

It is known (see [R, pages 6–7]) that the nth Chebyshev Polynomial Tn of the first
kind takes on its extrema ±1 at the points cos(jπ/n) for 1 ≤ j ≤ n− 1. Thus we
have

Tn(t)+1 = τ (1)n (t)
∏

j:odd

(

t− cos(jπ/n)
)2

and

Tn(t)−1 = τ (2)n (t)
∏

j:even

(

t− cos(jπ/n)
)2
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where τ (i)n (t), i = 1,2 are polynomials with no real root. Let us define ζ(t) =
(t2m−k+ tk−2m+ tk+ t−k)/4 so that ζ(

√
μ) is the left hand side of equation (3.2),

and let us set

Q(t) = 4ntkn
(

Tn
(

ζ(t)
)

±1
)

.

Since Tn is an integer polynomial of degree n, we see that Q(t) is a polynomial
with integer coefficients, and Q(

√
μ) = 0. Since μk = δ and δ is not a root of unity,

we conclude that the minimal polynomial of
√
μ contains exactly one real root, t∗

outside the unit circle. Since t∗ is positive real and strictly greater than 1, equation
(3.2) gives us

ζ(t∗) =
1
4

(

t2m−k∗ +
1

t2m−k∗
+ tk∗+

1
tk∗

)

> 1≥ cos(jπ/n),

which gives a contradiction. �

THEOREM 3.3. If |Re
√
δ−2cos(jπ/n)| ≤ 1, then each of the two fixed points

is the center of a rotation domain of rank 2.

Proof. By Lemma 3.1 the multipliers λ1,λ2 both have modulus 1, and by
Lemma 3.2 the two multipliers are multiplicatively independent. Thus there is
a formal power series solution to the linearization equation. Multiplicative inde-
pendence means that T (m1,m2) := m1 logλ1 +m2 logλ2 �= 0 for all m1,m2 ∈
Z, (m1,m2) �= (0,0). Since cos(jπ/n) and δ are algebraic, λ1 and λ2 are alge-
braic. It follows from [Ba, Theorem 3.1] that there are ε > 0 and μ < ∞ such that
|T (m1,m2)| ≥ ε(|m1|+ |m2|)−μ for all m1,m2 ∈ Z, (m1,m2) �= (0,0). This con-
dition is sufficient (see, for instance [P] or [Z]) to show that the formal power series
converges in a neighborhood of the origin. �

Remark. The condition in Theorem 3.3 can be restated as Re(
√
δ− 1)/2 ≤

cos(jπ/n) ≤ Re
√
δ/2+ 1/2. Since |δ| = 1, the length of the interval [Re(

√
δ−

1)/2,Re(
√
δ+1)/2]∩ [−1,1] is equal to 1. Using a computer, we see that for many

choices of n,m,δ, more than half of values of 0 < j < n satisfy this condition.

Now let us turn our attention to the question of linearizing the map fnX in
a neighborhood of a point of Σ0. To simplify the notation we set f := fX and
h := fn. Let us set

λ :=−δ−n/2 if n : even

λ :=−1/
(

δ(n−1)/2ω∗
)

if n : odd
(3.3)

where ω∗ is defined in Lemma 2.2.

LEMMA 3.4. Every point on Σ0 is fixed under h and the multipliers of h at
each point of Σ0 are 1 and λ.
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Proof. From Lemma 2.1 we see that Σ0 is a curve of fixed points for h = fn.
We have f(x,y) =M

(x
y

)

+O(1/y) with M :=
(

0 −δ
1 c

)

. We chose c so that the
restriction of h = fn to Σ0 will be the identity. Since h looks like Mn at Σ0,
we know that Mn should induce the identity map on Σ0. Thus Mn =

(

ν 0
0 ν

)

is a
multiple of the identity matrix, and this means that the multipliers at any point of
Σ0 will be {1,ν−1}. Since the determinant of M is δ, we conclude that ν2 = δn, or
ν =±δn/2. It remains to show that the correct sign is the one given in (3.3).

To get the multipliers at Σ0 we use π̃1(ξ1, t1)0 = [t1ξ1 : t1 : 1] for F1
0 . In these

local coordinates, {t1 = 0}=F1
0 and {ξ1 = 0}=Σ0. ForF1

s , 1≤ s≤n−1, we use
the coordinate chart π̃1(ξ1, t1)s = [t1ξ1 : 1 : t1+ωs]. We also set hs = π̃−1

1 ◦f ◦ π̃1 :
(ξ1, t1)s �→ (ξ′1, t

′
1)s+1 for 0≤ s≤n−2 and hn−1 : (ξ1, t1)n−1 �→ (ξ′1, t

′
1)0. It follows

that fn=hn−1◦hn−2 ◦· · ·◦h0 in Σ0\{e1}. Direct computation shows that we have

Dh0
(

t1,0
)

0 =

(

−1/δ 0
0 �

)

, Dhn−1
(

t1,0
)

=

(

1 0
0 �

)

,

Dhs
(

t1,0
)

=

(

ωs/δ 0
0 �

)

for 1≤ s≤ n−2. It follows that

Dh
((

t1,0
)

0

)

=

(

−
(

ω1 · · ·ωn−2
)

/δn−1 0
0 �

)

for all
(

t1,0
)

0 ∈ Σ0.

Since every point in Σ0 is fixed by h, we conclude that the entry � in this matrix is
equal to 1. From Lemma 2.2. we see that −(ω1 · · ·ωn−2)/δ

n−1 = λ. �

Now we will linearize h semi-globally, i.e., in a neighborhood of Σ0. For this,
let λ be as in (3.3), and let L = λ−1I be the linear map which is defined by mul-
tiplication by λ−1 on C2. This map extends to P2 and fixes the line at infinity Σ0,
where the local multipliers are 1 and λ. Now let X̃ denote the space P2, blown up
at the points p0, . . . ,pn−1. Then L lifts to an automorphism of X̃. Let ι : X ��� X̃
be the birational map induced by the identity map on P2. It is evident that we may
consider ι to be the identity map in a neighborhood of Σ0. Let us consider a local
coordinate system (t,ξ), as in Lemma 3.4, in which {t= 0} ⊂ Σ0. h fixes Σ0, and
by Lemma 3.4, the multiplier normal to Σ0 at each point is λ. Thus if we write h
in the (t,ξ) coordinates, the second coordinate can have no term which is linear
in t, which gives us h(t,ξ) = (λt+ t2�,ξ+ t2�), where t2� denotes terms divis-
ible by t2. It is now not hard to solve for the higher order terms in the function
Φ(t,ξ) = (t,ξ)+ (t2�,t2�) = ι+O(t2) to obtain a formal solution of the equation
Φ◦h=L◦Φ. Similarly, we may work in the coordinate system (t,η), with ηξ = 1,
to obtain this result at all points of Σ0. Since λ is algebraic, it satisfies the correct
Diophantine condition, and so the series defining Φ is in fact locally convergent
(see [P, Ro] or [Ra]):
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PROPOSITION 3.5. For each p ∈ Σ0, there is a local holomorphic conjugacy
Φp at p taking h to a linear map. The condition of being tangent to the identity at
p defines the local germ Φp uniquely. Thus there is a neighborhood U0 of Σ0 in X
and a map Φ : U0→ X̃ which is tangent to the identity at each point of Σ0 such
that L◦Φ= Φ◦h.

4. Linearization at isolated resonant points. Suppose h is a local self-
map of C2 fixing the origin. Let η1, η2 be two resonant multipliers of modulus 1,
that is, |ηi|= 1 and there exist a non-negative integer pair (a,b) ∈N×N\{(0,0)}
such that ηa1η

b
2 = 1. It follows that there are infinitely many resonant monomials.

Let us define the following spaces spanned by non-resonant monomials, where
“Span” means that we take finite or infinite sums over j1, j2 ≥ 0 in the space of
polynomials, convergent power series, or formal power series, depending on the
situation:

S̆1 = Span
{

xj1yj2 : j1 = (a/b)j2 +1, j2 ≥ 1
}

S̆2 = Span
{

xj1yj2 : j2 = (b/a)j1 +1, j1 ≥ 1
}

S1 = Span
{

xj1yj2 : j1 > (a/b)j2 +1
}

Ŝ1 = Span
{

xj1yj2 : j1 ≥ (a/b)
(

j2−1
)}

(4.1)

with a similar definition for S2 and Ŝ2. Note that Ŝ1 ⊃ S1∪ S̆1∪ S̆2.

Figure 5. Regions of non-vanishing monomials.

LEMMA 4.1. Sk and Ŝk are closed under multiplication for k= 1,2. Let us set
μ1 = (a/b),μ2 = (b/a). Then for {k,�} = 1,2 we have:

(a) For n≥ 1, Snk = Span{xj1yj2 : jk > μkj�+n}.
(b) For n≥ 1, Ŝnk = Span{xj1yj2 : jk ≥ μk(j�−n)}.
(c) If j1 > (a/b)j2 +1 then (x+S1)

j1(y+ Ŝ1)
j2 ∈ S1.

(d) If j1 ≥ (a/b)(j2−1) then (x+S1)
j1(y+ Ŝ1)

j2 ∈ Ŝ1.
(e) If j2 > (b/a)j1 +1 then (x+ Ŝ2)

j1(y+S2)
j2 ∈ S2.

(f) If j2 ≥ (b/a)(j1−1) then (x+ Ŝ2)
j1(y+S2)

j2 ∈ Ŝ2.
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Proof. Let us suppose k= 1. An element in S1 has a form s=
∑m

q=1x
j1,qyj2,q ∈

S1, m≥ 1. Thus for n ≥ 1, an element in Sn1 is a sum of monomials xj1yj2 where
j1 = j1,q1 + · · ·+ j1,qn ≥ (a/b)(j2,q1 + · · ·+ j2,qn)+n = (a/b)j2 +n. This gives
part (a). A similar argument applies for the case (b). Using (a) and (b) it is clear
that Sk and Ŝk are closed under multiplication and we have

(

x+S1
)j1
(

y+ Ŝ1
)j2 =

(

∑

i1

xi1Sj1−i1
1

)

·
(

∑

i2

yi2Ŝj2−i2
1

)

.

Thus to prove (c) and (d), it suffices to check a monomial in xi1Sj1−i1
1 · yi2Ŝj2−i2

1

for each i1 ≤ j1, i2 ≤ j2. Consider xi1+α1+β1yi2+α2+β2 where xα1yα2 ∈ Sj1−i1
1 and

xβ1yβ2 ∈ Ŝj2−i2
1 . Using (a) and (b), we see that α1 > (a/b)α2 + j1− i1 and β1 ≥

(a/b)(β2− j2 + i2). It follows that if j1 > (a/b)j2 +1, we have

i1 +α1 +β1 ≥ (a/b)
(

α2 +β2 + i2
)

+ j1− (a/b)j2 > (a/b)
(

α2 +β2 + i2
)

+1

and therefore xi1+α1+β1yi2+α2+β2 ∈ S1. This gives part (c). Similarly if j1 ≥
(a/b)(j2−1) we have

i1 +α1 +β1 ≥ (a/b)
(

α2 +β2 + i2
)

+ j1− (a/b)j2 > (a/b)
(

α2 +β2 + i2−1
)

,

which gives us that xi1+α1+β1yi2+α2+β2 ∈ Ŝ1. The proof for the case k= 2 is similar.
�

PROPOSITION 4.2. Suppose both fi :M→M, i= 1,2, fix the origin and

fi(x,y) ∈
(

α
(i)
1 x, α

(i)
2 y
)

+S1×Ŝ1

where α(i)
1 ,α

(i)
2 ∈C\{0}. Then we have

f1 ◦f2 : (x,y) �−→
(

α
(1)
1 α

(2)
1 x, α

(1)
2 α

(2)
2 y
)

+S1×Ŝ1.

with a similar result for Ŝ2×S2. Further f−1
1 (x,y) ∈ (x/α

(i)
1 , y/α

(i)
2 )+S1×Ŝ1.

Proof. The statement about f1 ◦ f2 is a direct application of Lemma 4.1.
Now let us find f−1

1 as an infinite composition limn→∞ gn ◦ · · · ◦ g1, where

g1(x,y) = (x/α
(i)
1 , y/α

(i)
2 ). We may proceed by induction, supposing that we have

g1, . . . ,gn−1 such that gn−1 ◦· · ·◦g1 ◦f1(x,y) = (x,y)+ h̃n(x,y)∈ (x,y)+S1×Ŝ1

with h̃n = On. Now we set gn(x,y) = (x,y)− h̃n(x,y), so by the first part of
this proposition, we have gn ◦ · · · ◦ g1 ◦ f1 = (x,y)+ h̃n+1 ∈ (x,y)+S1×Ŝ1 with
h̃n+1 ∈On+1. It follows that limn→∞ gn ◦· · · ◦g1 converges as formal power series.
Since f1 is locally invertible, the power series for its inverse is convergent and
belongs to (x/α

(i)
1 , y/α

(i)
2 )+S1×Ŝ1. �
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THEOREM 4.3. If h has a local expansion of the form h(x,y) ∈ (η1x,η2y)+

S1 × Ŝ1 or h(x,y) ∈ (η1x,η2y) + Ŝ2 ×S2, then there is a formal power series
expansion Φ such that Φ ◦h = L ◦Φ where L(x,y) = (η1x,η2y). Furthermore if
η1, η2 are algebraic, then the formal series Φ is convergent, so h is analytically
linearizable.

Proof. It suffices to assume that the higher order terms are in S1× Ŝ1. For
j ≥ 2, we will define a sequence of maps Φj : (x,y) �→ (x,y)+ homogeneous
polynomials of degree j. Since h has no resonant monomials, we may follow the
Poincaré Linearization Theorem (see, for instance, [A, Section 25]) and find Φ2

such that

Φ−1
2 ◦h◦Φ2(x,y) = L(x,y)+ h̃3

where order of h̃3 ≥ 3. Since h(x,y) ∈ (η1x,η2y)+S1×Ŝ1, we may assume that
Φ2(x,y) ∈ (x,y) +S1× Ŝ1 by setting coefficient of all resonant terms equal to
zero. From Proposition 4.2 we see that h̃3 ∈ S1× Ŝ1 and thus it has no resonant
monomials. We proceed with an induction on j and find Φj such that

Φ−1
j ◦ · · · ◦Φ−1

2 ◦h◦Φ2 ◦ · · · ◦Φj = L+ h̃j+1

where order of h̃j+1 ≥ j+1 and h̃j+1 ∈ S1× Ŝ1. Thus we obtain a (formal) lin-
earization Φ= limn→∞Φ2 ◦Φ3 ◦ · · · ◦Φn.

We define T (m1,m2) = m1 logη1 +m2 logη2. Because of resonances in the
multipliers, T (m1,m2) can vanish, but by our construction there are no nonvan-
ishing resonant monomials, which means that the coefficient of xm1ym2 will also
vanish when T (m1,m2) vanishes. Since η1 and η2 are algebraic, by [Ba, Theo-
rem 3.1] we will have |T (m1,m2)| ≥ ε(|m1|+ |m2|)−μ for all values for which
T (m1,m2) does not vanish. Thus this estimate holds whenever the coefficient of
xm1ym2 , does not vanish. By [P, Z] it follows that the power series of Φ actually
converges, and thus h is linearizable. �

Remark. A related linearization, at resonant points with invariant manifolds, is
given by Raissy [Ra].

Example. Let λ be a number of modulus 1 which is not a root of unity, and
consider the map

f(x,y) =
(

λx+x5y2,λ−1y+x2 +x3y
)

.

The multipliers at the origin exhibit the resonance corresponding to λa(λ−1)b = 1
with a = b= 1. Thus the monomials in f belong to S1, so by Theorem 4.3, f can
be formally linearized at the origin. If λ is algebraic, then the formal conjugacy
actually converges and gives a holomorphic linearization of f .

We may reformulate Theorem 4.3 to give non-linearizability.
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COROLLARY 4.4. Suppose the local expansion is h = (η1x,η2y)+ (h1,h2).
Suppose that for k= 1 or k= 2, h1,h2 ∈ Ŝk and hk �∈ Sk then h is not linearizable.

Proof. Suppose n is the smallest integer such that hk has a monomial of order
n in S̆k. Using Theorem 4.3. we see that there are Φ2, . . . ,Φn−1 such that

Φ−1
n−1 ◦ · · · ◦Φ−1

2 ◦h◦Φ2 ◦ · · · ◦Φn−1 = L+ h̃n+1

where h̃n has resonant monomials. It follows that there is no formal power series
expansion Φ such that Φ◦h= L◦Φ and thus h is not linearizable. �

Let us apply this discussion to the map h := fn. By Theorem 2.3. we see
that the exceptional fibers F js , 0 ≤ s ≤ n− 1, j = 1,2 are invariant under h. Thus
F1
s ∩F2

s is fixed by h.

LEMMA 4.5. The multipliers of h at F1
s ∩F2

s are λ2 and 1/λ, where λ is
defined in (3.3).

Proof. Let us rewrite f near F1
s ∩F2

s for 0 ≤ s ≤ n− 1 using the local co-
ordinates (ξ2,x2)s defined in Section 2, so {ξ2 = 0} = F1

s and {x2 = 0} = F2
s .

Using the expression in (2.4) we see that differential at the origin of each mapping
is diagonal and thus we have

dh|(0,0)s =
(−1/δ 0

0 −δ

)(

1/δ 0
0 δ/ω1

)

· · ·
(

1/δ 0
0 δ/ωn−2

)(−1/δ 0
0 1

)

=

(

1/δn 0

0 −δn−1/
(

ω1 · · ·ωn−2
)

)

=

(

λ2 0
0 1/λ

)

.

The last equality in the second line comes from Lemma 2.2. �

LEMMA 4.6. For c,δ ∈C and g(w) = c−δ/w, let gn = gn(c) for n≥ 0. Then
we have

gn = c− δ
c
− δ2

c2g1
− δ3

c2g2
1g2
−·· ·− δn

c2g2
1 · · ·g2

n−2gn−1
.

Proof. Note that c= g0. The conclusion is equivalent to

gn− gn−1 =−δn/
(

g2
0g

2
1 · · ·g2

n−2gn−1
)

.

Since g1 = c−δ/c, it is easy to see that g1−g0 =−δ/g0. We proceed by induction
on n:

gn+1− gn = g
(

gn
)

− g
(

gn−1
)

=−
δ
(

gn−1− gn
)

gn−1gn
.

Replacing gn−1− gn by δn/(g2
0g

2
1 · · ·g2

n−2gn−1) we have the conclusion. �
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LEMMA 4.7. The local expansion of h at the fixed point F1
s ∩F2

s is given by

h(ξ,x) ∈
(

λ2ξ,
1
λ
x

)

+S1×Ŝ1.

Proof. Using the expression (2.4), we can rewrite the mappings near fixed
points F1

s ∩F2
s as following:

fX2 :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

ξ2,x2
)

0 �−→
(

− ξ2

δ
+S1,−δx2 + Ŝ1

)

1

(

ξ2,x2
)

s
�−→

( ∞
∑

m=0

(−1)m

δωms
x2m

2 ξm+1
2 +S1,

δ

ωs
x2+Ŝ1

)

s+1

, 1≤s≤n−2

(

ξ2,x2
)

n−1 �−→
(

−
∞
∑

m=0

cm

δm+1x
2m
2 ξm+1

2 +S1, x2

)

0

.

Using Lemma 4.1. it suffices to show that the first component of h is in S1. First
note that if j1 = (a/b)j2 +1 then for ξα1

2 xα2
2 ∈ S

j1
1 and ξβ1

2 x
β2
2 ∈ Ŝ

j2
1 we have α1 +

β1 > (1/2)α2 + j1 +(1/2)(β2− j2) = (1/2)(α2 +β2)+1. It follows that

Sj1
1 Ŝ

j2
1 ∈ S1 for j1 = (a/b)j2 +1.(4.2)

Using (4.2) we see that

f 2(ξ2,x2
)

0 =

(

−
∞
∑

m=0

δm−2

ωm1
x2m

2 ξm+1
2 +S1,−

δ2

ω1
x2 + Ŝ1

)

2

.

Using the binomial expansion we can keep track of the coefficient of x2n
2 ξn+1

2 in
the first coordinate:

f 3(ξ2,x2
)

0 =

(

−
∞
∑

m=0

δm−3
(

ω1ω2 + δ

ω2
1ω2

)m

x2m
2 ξm+1

2 +S1,−
δ3

ω1ω2
x2 + Ŝ1

)

3

.

Again by the binomial expansion we see that the first coordinate of fn(ξ2,x2)0 is
given by

−
∞
∑

m=0

δm+1−n
(

−c+ δ

ω1
+

δ2

ω2
1ω2

+ · · ·+ δn

ω2
1 · · ·ω2

n−3ωn−2

)m

x2m
2 ξm+1

2 +S1.

Since c= ω1 and ωj = gj−1(c), from Lemma 4.6 the coefficient of x2m
2 ξm+1

2 van-
ishes for all m≥ 1 if and only if gn−2(c) = 0. Recall that c ∈ Cn(δ) if and only if
gn−2(c) = 0. Since c ∈ Cn(δ) we have the desired conclusion. �

PROPOSITION 4.8. There is a holomorphic conjugacy Φ defined in a neigh-
borhood of F1

s ∩F2
s taking h to a linear map.
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Proof. Using Lemma 4.6 and Theorem 4.3, we see that there is a formal expan-
sion of Φ such that Φ◦h=L◦Φ. The multipliers are powers of a root of the Salem
polynomial χn,m, and are not roots of unity. It follows that Φ is holomorphic. �

THEOREM 4.9. If |δ| = 1, there is a Fatou component U which is a rotation
domain of rank 1 and which contains Σ0∪F1

0 ∪·· ·∪F1
n−1. In particular U contains

a curve Σ0 of fixed points as well as isolated fixed points {q0, . . . ,qn−1}.

Proof. We will show that there is a neighborhood U0 containing Σ0 ∪
⋃

sF1
s

and a unique conjugacy which is tangent to the identity along Σ0 ∪
⋃

s{qs} tak-
ing (h,U0) to (L,Φ(U0)). Let Φ′ denote the local conjugacy from Proposition 4.8,
which is defined in a neighborhood of qs = F1

s ∩F2
s . Let Φ′′ denote the local con-

jugacy from Proposition 3.5, which is defined in a neighborhood U0 containing
ps = Σ0 ∩F1

s . It suffices to show that these two conjugacies may be analytically
continued together to one conjugacy which is defined in a neighborhood of F1

s .
We use coordinates (ξ,x) such that qs = (0,0), and F1

s = {ξ = 0}. The series
expressing Φ′ has the form

∑

k

∑

j≤2k+1aj,kx
jξk, and we may assume that it con-

verges for {|x|, |ξ|< 1}. Thus if R<∞ and we set ε=R−2, and it follows that the
series for Φ′ converges in V ′ which contains {|ξ|< ε, |x|<R}.

Now let us use coordinates (s,η) so that ps = (0,0), and {s = 0} = F1
s . We

may assume that Φ′′ is defined in V ′′ := {|s|< ε, |η|< 1}. Choosing R sufficiently
large, we may assume that V ′ ⊃ V0 := {|s|< ε, 1

2 < |η|< 1}. Now with an appro-
priate coordinate change both Φ′ and Φ′′ conjugate the map h|V0 to the linear map
L(x,y) = (x,λy). It follows that φ̃(x,y) := Φ′ ◦Φ′′−1 commutes with L. In other
words, if we write φ̃ as a Laurent series on {|x|< ε,r1 < |y|< r2}, then the second
coordinate of φ̃ satisfies λφ̃2(x,y) = φ̃2(x,λy). Since λ is not a root of unity, we
conclude that there is a c(x) so that φ̃(x,y) = (x,c(x)y). Thus φ̃ extends holomor-
phically to V ′′. Since we have Φ′ = φ̃ ◦Φ′′, it follows that Φ′ extends analytically
to V ′ ∪V ′′, which is a neighborhood of F1

s .
Finally, since Φ′′ and the extended map Φ′ are both tangent to the identity at

ps, they agree in a neighborhood of ps, so they combine to give a conjugacy in a
neighborhood of Σ0∪

⋃

sF1
s . �

5. Global linearization. Our global model (L,XL) is defined as follows.
Let L be the linear map of C2 given by the diagonal matrix L = diag(λ−1,λ−1)

with λ as in (3.3), and extend L to an automorphism of P2. To construct XL, we
blow up the points p0, . . . ,pn−1 ∈ Σ0 as in the construction of the manifold X̃ for
Proposition 3.5. The fixed points of L|F1

s
are {ps,qs}, so we continue as with the

construction of X and blow up the points qs ∈ F1
s , 0≤ s ≤ n−1. So far, we have

completed the first two steps of the construction of X. The restriction of L to F2
s

fixes a second point rs ∈F2
s , and we construct XL by blowing up rs, 0≤ s≤n−1.

The exceptional divisor is written F̃3
s . This is shown in Figure 6, where we put three

hollow dots in F2
s to denote the m points which would have been blown up if we
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Σ0

Λ

Λ

Figure 6. Global linear model XL.

wanted to make X. For x ∈ Σ0 we let Λx denote the strict transform in XL of the
line 0x⊂ P2. We denote Λps by Λs; Figure 6 shows the difference between Λx and
Λs. We note that X may be considered to coincide with XL in a neighborhood of
Σ0∪F1

0 ∪ ·· ·∪F1
n−1.

THEOREM 5.1. There is a domain Ω ⊂ XL and a holomorphic conjugacy
Φ : U → Ω taking (h,U) to (L,Ω). In particular, h has no periodic points in U ∩
π−1C2.

One consequence is the following:

COROLLARY 5.2. The domains Ω−
⋃

s(F1
s ∪F2

s ∪
⋃

�F3
s,�) and Ω′ := π(Ω)−

Σ0 ⊂ C2 are pseudoconvex. Further, Ω′ has the complete-circular property that if
(x,y) ∈ Ω′, and if ζ ∈ C, |ζ| ≥ 1, then (ζx,ζy) ∈Ω′.

The rest of this section will be devoted to proving Theorem 5.1. First we
note that since the conjugacies obtained in Proposition 3.5 and Theorem 4.9 are
uniquely determined by being tangent to the identity at the fixed points, we have
the following:

LEMMA 5.3. There is a neighborhood U0 containing Σ0∪
⋃

sF1
s and a unique

conjugacy Φ : U0 → Φ(U0) which is tangent to the identity along Σ0 ∪
⋃

s{qs}
taking (h,U0) to (L,Φ(U0)).

For x ∈ Σ0, the curve Λx ⊂ XL is invariant under L. The restriction
Φ−1|Φ(U0)∩Λx

is analytic in a neighborhood of x, and we let ωx ⊂ Λx denote a
maximal domain such that Φ−1 has an analytic continuation to a map ψx : ωx→U .
Since ψx preserves the circle action, ωx ⊂ Λx is a disk centered at x. The sets ωqs
and ωrs are defined analogously.

LEMMA 5.4. For x ∈ Σ′0, ωx is a relatively compact sub-disk of Λx−{0}.

Proof. First we observe that ψx(ωx) cannot be contained in an algebraic curve.
For, since x is fixed, and ψx commutes with the group action, it follows that this
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algebraic curve is invariant. But by Corollary 2.7, the only invariant curves are Σ0,
F1
s and F2

s , which do not contain ψx(ωx).
Now if ωx = Λx−{0}, we define

Ar :=
1
#r

∫ r

0

dt

t

[

ψx
(

Dt

)]

where Dt = Λx ∩{|(x,y)| > 1/t}, and #r is chosen so that Ar has mass 1. Since
ψx(ωx) is not contained in an algebraic curve, we may pass to a subsequence
rj → ∞ which converges to a closed (Ahlfors) current A. Since x is fixed, and
ψx commutes with the circle action, we have a current satisfying h∗(A) = A. The
corresponding class {A} ∈ Pic(X) is fixed under h∗. By Section 2, then, we have
{A} ∈ S, and the intersection form is negative definite on S. On the other hand, a
property of the Ahlfors current is that it has nonnegative self-intersection {A}2 ≥ 0
(see [Br, Lemme 1, where the current Φ is the same is A but in different notation]).
This contradiction shows that ωx must be a proper sub-disk of Λx. �

Recall that by Section 1, there is a holomorphic vector field V on U whose
real part gives the T1 action on U . We let V denote the foliation of U by complex
manifolds which are the complexifications of the orbits of the T1 action. The leaves
of V are the same as the complex orbits of V . For x ∈ U , we let Vx denote the leaf
of V containing x. By the maximality of ωx we have ψx(ωx) = Vx for x ∈Σ′0.

LEMMA 5.5. For x∈Σ′0, the map ψx :ωx→U is proper. Thus Vx is a properly
embedded disk, and ψx is a bijection between ωx and Vx.

Proof. If K ⊂ U is compact, there exists η > 0 such that for each y0 ∈ K ,
the leaf of V passing through y0 has inner radius at least η. We may assume that
η is less than the distance from K to ∂U and let K̃ denote the closure of an η-
neighborhood of K. Thus K̃ is a compact subset of U . The circle action on Λx
is generated by the vector field iζ ∂

∂ζ , and ψx maps this to a constant multiple of

V . Since V is bounded on K̃, it follows that there is a constant M such that the
differential of ψx at ζ0 is bounded by M for all ζ0 ∈ ωx such that ψx(ζ0) ∈ K̃. It
follows that if ζ0 ∈ ψ−1

x K, then ψx extends to the disk of radius η/M centered at
ζ0. Thus the distance of ψ−1

x K to ∂ωx is at least η/M , so ψx is proper. �

Following the recipe for determining multipliers in Figure 2, we have:

LEMMA 5.6. The local multipliers of (L,XL) at qs are {λ−1,λ2}, and at rs
they are {λ3,λ−2}.

Proof of Theorem 5.1. First we assume that F2
s �⊂ U , and define

Ω=
⋃

x∈Σ′0

ωx∪
n−1
⋃

s=0

(

F1
s ∪ωqs

)

.
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Let us set U ′ :=
⋃

x∈Σ′0
Vx and Ω′ :=

⋃

x∈Σ′0
ωx. By Lemma 5.5, we may extend

the definition of Φ from Vx ∩U0, x ∈ Σ′0, to Vx by setting Φ = ψ−1
x . Now by

equivariance, Φ satisfies the holomorphic differential equation Φ∗V = ciζ∂ζ for
some real constant c. Thus holomorphicity propagates along the leaves of V , so Φ

is holomorphic on U ′. By Lemma 5.3, Φ is holomorphic on all of Ω. Since the sets
ωx are disjoint, Φ is an injection, so it follows that Φ :U→Ω is a biholomorphism.

Now if F2
s ⊂ U , then we define

Ω=
⋃

x∈Σ′0

ωx∪
n−1
⋃

s=0

(

F1
s ∪F2

s ∪ωrs
)

.

All of the previous arguments apply in this case, except that we need to show that
Φ is holomorphic in a neighborhood of rs. This is similar to the proof of Theorem
4.9. We may choose coordinates so that F2

s = {x = 0}, and rs = (0,0). We may
suppose that the map Φ is holomorphic on the set {|x|> 1, |y|< 1}. Further, since
rs is in the Fatou set, we know that H can be linearized in a neighborhood of rs.
Thus we have another map Φ′ conjugating H to its linear part, which by Lemma
5.6 is diag(λ−2,λ3). We may assume that Φ′ is analytic on {|x| < 2, |y| < 1},
and that Ξ := Φ′ ◦Φ−1 =

∑

ai,jx
iyj commutes with this linear map on the set

{1 < |x| < 2, |y| < 1}. We then have that the first coordinate is λ−2Ξ(1)(x,y) =

Ξ(1)(λ−2x,λ3y), from which we conclude that λ−2 = λ−2i+3j for all nonvanishing
coefficients ai,j . Since we have j ≥ 0, and λ is not a root of unity, it follows that
we must have i≥ 1. Looking at the second coordinate, we get λ3 = λ−2i+3j , so in
this case, we cannot have i < 0. It follows that all exponents i,j in Ξ are positive,
so Ξ is analytic in {|x|< 2, |y|< 1}. Thus we conclude that Ξ, and thus Φ extends
holomorphically through rs. �
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