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Periodicities in Linear Fractional Recurrences:
Degree Growth of Birational Surface Maps

Eric Bedford & Kyounghee Kim

0. Introduction

Given complex numbers α0, . . . ,αp and β0, . . . ,βp, we consider the recurrence
relation

xn+p+1 =
α0 + α1xn+1+ · · · + αp xn+p
β0 + β1xn+1+ · · · + βp xn+p

. (0.1)

Thus a p-tuple (x1, . . . , xp) generates an infinite sequence (xn). We consider two
equivalent reformulations in terms of rational mappings: we may consider the map-
ping f : Cp → Cp given by

f(x1, . . . , xp) =
(
x2 , . . . , xp,

α0 + α1x1+ · · · + αp xp

β0 + β1x1+ · · · + βp xp

)
; (0.2)

or we may use the imbedding (x1, . . . , xp) �→ [1 : x1 : · · · : xp] ∈ Pp into projec-
tive space and consider the induced map f : Pp → Pp given by

fα,β[x0 : x1 : · · · : xp] = [x0β · x : x2β · x : · · · : xpβ · x : x0α · x], (0.3)

where α · x = α0x0 + · · · + αp xp.

Here we will study the degree growth of the iterates f k = f � · · · � f of f. In
particular, we are interested in the quantity

δ(α,β) := lim
k→∞(degree(f k

α,β))
1/k.

A natural question is: For what values of α and β can (0.1) generate a periodic re-
currence? In other words, when does (0.1) generate a periodic sequence (xn) for
all choices of x1, . . . , xp? This is equivalent to asking when there is an N such that
f N
α,β is the identity map. Periodicities in recurrences of the form (0.1) have been

studied in [CLa; GrL; KoL; KGo; Ly]. The question of determining the parame-
ter values α and β for which fα,β is periodic has been known for some time and is
posed explicitly in [GKP] and [GrL, p. 161]. Recent progress in this direction has
been obtained in [CLa]. The connection with our work here is that, if δ(α,β) >
1, then the degrees of the iterates of fα,β grow exponentially and fα,β is far from
periodic.

In the case p = 1, f is a linear (fractional) map of P1. The question of periodic-
ity for f is equivalent to determining when a 2× 2 matrix is a root of the identity.
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In this paper we address these questions in the case p = 2. In fact, our principal
efforts will be devoted to determining δ(α,β) for all of the mappings in the fam-
ily just described. In order to remove trivial cases, we will assume throughout this
paper that

(α0,α1,α2) is not a multiple of (β0,β1,β2);
(α1,β1) �= (0, 0) and (α2 ,β2) �= (0, 0);

(β1,β2) �= (0, 0).

(0.4)

Note that if the first condition in (0.4) is not satisfied, then the right-hand side of
(0.1) is constant. If the left-hand part of the second condition (0.4) is not satis-
fied, then f does not depend on x1 and thus has rank 1, so it cannot be periodic.
If the right-hand part of the second condition (0.4) is not satisfied, then f 2 is es-
sentially the 1-dimensional mapping ζ �→ α0+α1ζ

β0+β1ζ
. If the third condition in (0.4)

is not satisfied, then f is linear. In this case, the periodicity of f is a question of
linear algebra.

Since we consider all parameters satisfying (0.4), we must treat a number of
separate cases. Let V∗ be the set of (α,β) such that β1β2 �= 0 and f 3

α,β�β = p,
and let Vn denote the variety of parameters (α,β) such that

β2 = 0 and f n
α,β(q) = p,

where p = [β1α2 − β2α1 : −β0α2 + α0β2 : α1β0 − α0β1] (0.5)

and q = [β1(β1α2) : β1(α1β0 − α0β1) : α1(β1α2 − α1β2)].

The following two numbers are of special importance here:

φ (≈ 1.61803, the golden mean) is the largest root of x 2 − x − 1; (0.6)

δ� (≈ 1.32472) is the largest root of x3 − x − 1. (0.7)

Theorem 1. Suppose that (α,β) /∈⋃
n≥0Vn. Then fα,β is not birationally con-

jugate to an automorphism. If (α,β)∈V∗, then the degree of f n
α,β grows linearly

in n. Otherwise, φ ≥ δ(α,β) ≥ δ� > 1. For generic (α,β), the dynamic degree is
δ(α,β) = φ.

In particular, we see that fα,β has exponential degree growth in almost all of these
cases. The remaining possibilities are as follows.

Theorem 2. If (α,β) ∈ Vn for some n ≥ 0, then there is a complex manifold
X = Xα,β obtained by blowing up P2 at finitely many points, and fα,β induces a
biholomorphic map fα,β : X→ X. Furthermore, the following statements hold.

• If n = 0, then fα,β is periodic of period 6.
• If n = 1, then fα,β is periodic of period 5.
• If n = 2, then fα,β is periodic of period 8.
• If n = 3, then fα,β is periodic of period 12.
• If n = 4, then fα,β is periodic of period 18.
• If n = 5, then fα,β is periodic of period 30.
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• If n = 6, then the degree of f n
α,β is asymptotically quadratic in n.

• If n ≥ 7, then fα,β has exponential degree growth rate δ(α,β) = δn > 1, which
is given by the largest root of the polynomial xn+1(x3 − x − 1)+ x3 + x 2 − 1.
Also, δn increases to δ� as n→∞.

The family of maps

(x, y) �→
(
y,
a + y

x

)

has been studied by several authors (see [BGM2; CLa; KoL; KLR; Ly]). Within
this family, the case a = 0 corresponds toV0, a = 1 corresponds toV1, and all the
rest belong to the case V6 (see Section 6).

In the cases n ≥ 7, the entropy of fα,β is equal to log δn by Cantat [Ca]. The
number δ� is known (see [BDGPS, Chap. 7]) to be the infimum of all Pisot num-
bers. By Diller and Favre [DFa], if g is a birational surface map that is not bira-
tionally conjugate to a holomorphic automorphism, then δ(g) is a Pisot number.
So the maps f in the cases n ≥ 7 have smaller degree growth than any such g. Note
that projective surfaces with automorphisms of positive entropy are relatively rare:
Cantat [Ca] showed that, except for nonminimal rational surfaces (like X in Theo-
rem 2), the only possibilities are complex tori, K3 surfaces, or Enriques surfaces.

Figure 0.1 A map with (maximal) degree growth φ

Determining the dynamical degree for this family of mappings may be seen as
a first step toward the dynamical study of these maps. Figure 0.1 portrays stable
and unstable manifolds of a mapping of maximal degree growth within the fam-
ily fα,β.

This paper is organized as follows. In Section 1 we give the general proper-
ties of the family fα,β. In Section 2 we show that δ(fα,β) = φ if fα,β has only
two exceptional curves. Next we determine δ(fα,β) in the (generic) case where it
has three exceptional curves. This determination, however, threatens to involve a
large case-by-case analysis; we avoid this by adopting a more general approach.
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In Section 3 we show how δ(fα,β) may be derived from the set of numbers in open
and closed orbit lists, demonstrating that results of [BK] may be extended from
the “elementary” case to the general case. We use this in Section 4 to determine
δ(α,β) when the critical triangle is nondegenerate. In Section 5 we handle the
periodic cases in Theorem 2, and in Section 6 we discuss parameter space and the
varieties Vn for 0 ≤ n ≤ 6. We explain the computer pictures in the Appendix.

Acknowledgments. We wish to thank Curt McMullen and the referee for help-
ful comments on this paper as well as Takato Uehara for finding an error in an
earlier version of Theorem 1. We would like to draw the reader’s attention to
McMullen’s preprint, “Dynamics of blowups of the projective plane,” which is
available at 〈www.math.harvard.edu/∼ctm〉.

1. Setting and Basic Properties

In this section we review some basic properties of the map

f(x) = [x0β · x : x2β · x : x0α · x],

which is the map (0.3) in the case p = 2. (We refer to [BGM2] for a description
of f as a real map.) The indeterminacy locus is

I = {x ∈P2 : x0(β · x) = x2(β · x) = x0(α · x) = 0}
= {e1,p0,pγ},

where we set e1 = [0 : 1 : 0], p0 = [0 : −β2 : β1], and pγ = [β1α2 − β2α1 :
−β0α2+α0β2 : α1β0−α0β1]. Thus f is holomophic on P2−I, and its Jacobian
is 2x0(β · x)[β1(α · x)− α1(β · x)]. Set

γ = (β1α0 − α1β0, 0,β1α2 − α1β2)∈C3

and observe that the Jacobian vanishes on the curves

�0 = {x0 = 0}, �β = {β · x = 0}, �γ = {γ · x = 0}.
These curves are exceptional in the sense that they are mapped to points:

f(�0 − I ) = e1, f(�β − I ) = e2 := [0 : 0 : 1], f(�γ − I ) = q, (1.1)

where q is defined in (0.5). We write the set of exceptional curves as E(f ) =
{�0,�β ,�γ}.
Lemma 1.1.

f(P2 −�0 ∪�β) ∩�0 = ∅.
Moreover, if β2 �= 0, then

f(P2 −�0 ∪ {pγ}) ∩ {p0} = ∅.
Proof. In P2 − E(f ) ∪ I(f ), f is holomorphic. Hence for [x0 : x1 : x2 ] ∈
P2 − E(f ) ∪ I(f ) we have f([x0 : x1 : x2 ]) /∈ �0, since x0(β · x) �= 0. If
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β1 = 0 or β1α2 − α1β2 = 0, then either �γ = �β or �γ = �0. If both β1 and
β1α2 − α1β2 are nonzero, then f(�γ ) = q /∈ �0. In case β2 �= 0, for [x0 : x1 :
x2 ] ∈ �β we have seen that f([x0 : x1 : x2 ]) = e2 �= p0, which completes the
proof.

The inverse of f is given by the map

f −1(x) = [x0B · x : x0A · x − β2x1x2 : x1B · x],

where A = (α0,α2 ,−β0) and B = (−α1, 0,β1). In the special case β2 = 0, the
form of f −1 is similar to that of f. The indeterminacy locus I(f −1) = {e1, e2 , q}
consists of the three points that are the f -images of the exceptional lines for f.
The Jacobian of f −1 is

−2x0(α1β0x0 − α0β1x0 − α2β1x1+ α1β2x1)B · x.
Let us set C = (α1β0 − α0β1,α1β2 − α2β1, 0), and set �B = {x · B = 0} and
�C = {x · C = 0}. In fact, E(f −1) = {�0,�B ,�C}, and f −1 acts as: �0 �→ p0,
�B �→ e1, and �C �→ pγ .

To understand the behavior of f at I, we define the cluster set Clf (a) of a point
a ∈P2 by

Clf (a) =
{
x ∈P2 : x = lim

a ′→a
f(a ′), a ′ ∈P2 − I(f )

}
.

In general, a cluster set is connected and compact. In our case, we see that the
cluster set is a single point when a /∈ I, that is, when f is holomorpic. The cluster
sets of the points of indeterminacy are found by applying f −1; in particular, e1 �→
Clf (e1) = �B , p0 �→ Clf (p0) = �0, and pγ �→ Clf (pγ ) = �C. Thus f acts as
in Figure 1.1: the lines on the left-hand triangle are exceptional and are mapped to
the vertices of the right-hand triangle, and the vertices of the left-hand triangle are
blown up to the sides of the right-hand triangle.

p0 �→ �0 �→ e1 �→ �B �β �→ e2 �γ �→ q pγ �→ �C

Figure 1.1 Blowing-up/blowing-down behavior of f

Let
π : Y → P2 (1.2)

be the complex manifold obtained by blowing up P2 at e1. We will discuss the
induced birational map fY : Y → Y. Let E1 := π−1e1 denote the exceptional



652 Eric Bedford & Kyounghee Kim

blow-up fiber. The projection gives a biholomorphic map π : Y −E1 → P2 − e1.

For a complex curve " ⊂ P2, we use the notation " ⊂ Y to denote the strict trans-
form of " in Y. Namely, " denotes the closure of π−1("− e1) inside Y. Thus " is
a proper subset of π−1" = " ∪ E1.

We identify E1 with P1 in the following way. For [ξ0 : ξ2 ] ∈ P1, we associate
the point

[ξ0 : ξ2 ]E1 := lim
t→0

π−1[tξ0 : 1 : tξ2 ]∈E1.

We may now determine the map fY on �0. For x = [0 : x1 : x2 ] = lim t→0[t :
x1 : x2 ] ∈ �0, we assign fY x := lim t→0 f [t : x1 : x2 ] ∈ Y. That is, f [t : x1 :
x2 ] = [tβ · x : x2β · x : tα · x] and so taking the limit as t → 0 yields

fY [0 : x1 : x2 ] = [β · x : α · x]E1. (1.3)

Now we make a similar computation for a point [ξ0 : ξ2 ]E1 in the fiber E1 over
the point of indeterminacy e1. We set x = [tξ0 : 1 : tξ2 ] so that

fx = [tξ0β · x : tξ2β · x : tξ0α · x].

Taking the limit as t → 0, we find

fY ([ξ0 : ξ2 ]E1) = [ξ0β1 : ξ2β1 : ξ0α1]∈�B.

Thus we have the following lemma.

Lemma 1.2. The map fY has these properties:

(i) fY is a local diffeomorphism at points of �0 if and only if β1α2−α1β2 �= 0;
(ii) fY is a local diffeomorphism at points of E1 if and only if β1 �= 0.

2. Degenerate Critical Triangle

We will refer to the set {�0,�β ,�γ} of exceptional curves as the critical triangle;
we say that the critical triangle is nondegenerate if these three curves are distinct.
Since (β1,β2) �= (0, 0), it follows that�0 �= �β. Thus there are only two possibil-
ities for a degenerate triangle. The first is the case �γ = �β , which occurs when
β1 = 0. The second possibility is�γ = �0, which occurs when β1α2−α1β2 = 0.
(And since �0 �= �β , we have β1 �= 0 in this case.) We will show that δ(α,β) =
φ when the critical triangle is degenerate. This is different from the general case
(and easier), and we treat it in this section.

In order to determine the degree growth rate of f , we will consider the induced
pull-back f ∗ on H1,1. We will be working on compact, complex surfaces X for
which H1,1(X) is generated by the classes of divisors. If [D] is the divisor of a
curve D ⊂ X, then we define f ∗ [D] to be the class of the divisor f −1D. We say
that f is 1-regular if (f n)∗ = (f ∗)n for all n ≥ 0. Fornaess and Sibony showed
in [FSi] that if,

for every exceptional curve C and all n ≥ 0, f nC /∈ I, (2.1)

then f is 1-regular. We will use this criterion in the following.
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Proposition 2.1. If the critical triangle is degenerate, then the map fY : Y →
Y is 1-regular.

Proof. We treat the two possibilities separately. The first case is �γ = �β; see
Figure 2.1. In this case f has two exceptional lines �0 and �β and two points of
indeterminacy I = {e1,pγ}. After we blow up e1 to obtain Y, the line �0 is no
longer exceptional. (Our drawing convention in this and subsequent figures is that
exceptional curves are thick while points of indeterminacy are circled.) By (1.3),
we see that fY maps E1 to e2 = q, and thus the exceptional set becomes E(fY ) =
{E1,�β = �γ}. Now, in order to check condition (2.1), we need to follow the orbit
of e2. By (1.3) we see that e2 is part of a 2-cycle {e2 , [β2 : α2 ]E1}. On the other
hand, the points of indeterminacy for fY are pγ and [0 : 1]E1 = E1 ∩ �0. Since
β1 = 0 in this case, we have β2 �= 0 and so (2.1) holds.

Figure 2.1 The case �β = �γ

The second case is �γ = �0. Again, I = {e1,pγ}, but E(f ) = {�0,�β} and
the arrangement of exceptional curves and points of indeterminacy are as in Figure
2.2. In this case we have β1 �= 0, so by Lemma 1.2 it follows that I(fY ) = {p0 =
pγ} and E(fY ) = {�β}. As before, we need to track the orbit of e2. However, by
Lemma 1.1, we can never have f je2 = p0 for j ≥ 1. Thus (2.1) holds in this case,
too, and the proof is complete.

Figure 2.2 The case �0 = �γ

Now let us determine f ∗Y . The cohomology group H1,1(P2;Z) is 1-dimensional
and is generated by the class of a complex line. We denote this generator by L.

Let LY := π∗L∈H1,1(Y ;Z) be the class induced by the map (1.2). It follows that
{LY ,E1} is a basis for H1,1(Y ;Z). Now �0 = L∈H1,1(P2;Z). Pulling this back
by π yields
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LY = π∗�0 = �0 + E1.

Now f ∗Y acts by taking pre-images:

f ∗YE1 = [f −1E1] = �0 = LY − E1,

where the last equality follows from the previous equation.
Now e1 is indeterminate, and fe1 = �B. Since �B intersects any line L, it fol-

lows that e1∈ f −1L. Thus

π∗ [f −1L] = [f −1L]+ E1∈H1,1(Y ;Z).

On the other hand, f −1L = 2L∈H1,1(P2;Z). Therefore,

π∗ [f −1L] = π∗2L = 2LY .

Putting these last two equations together gives f ∗YLY = 2LY − E1. Hence

f ∗Y =
(

2 1
−1 −1

)
,

which is a matrix with spectral radius equal to φ. This yields the following.

Proposition 2.2. If the critical triangle is degenerate, then δ(α,β) = φ.

3. Regularization and Degree Growth

In this section we discuss a different but more general family of maps. ByJ : P2 →
P2 we denote the involution

J [x0 : x1 : x2 ] = [x−1
0 : x−1

1 : x−1
2 ] = [x1x2 : x0x2 : x0x1].

For an invertible linear map L of P2 we consider the map f := L � J. The excep-
tional curves are E = {�0, �1, �2}, where �j := {xj = 0} for j = 0,1, 2, and the
points of indeterminacy are I = {ε0, ε1, ε2}, where εi = �j ∩ �k with {i, j, k} =
{0,1, 2}. We define aj := f(�j − I ) = Lεj for j = 0,1, 2.

For p ∈ P2 we define the orbit O(p) as follows. If p ∈ E ∪ I, then O(p) =
{p}. If there exists an N ≥ 1 such that f jp /∈ E ∪ I for 0 ≤ j ≤ N − 1 and
f Np ∈ E ∪ I, then we set O(p) = {p, fp, . . . , f Np}. Otherwise f jp /∈ E ∪ I for
all j ≥ 0 and we set O(p) = {p, fp, f 2p, . . . }. The orbit O(p) is singular if it is
finite; otherwise, it is nonsingular. An orbit O(p) is elementary if it is nonsingu-
lar or if it ends at a point of indeterminacy. In other words, a nonelementary orbit
ends in a point of E − I. We say that f is elementary if all of its singular orbits
are elementary.

Write Oi = O(a i ) = O(f(�i − I )) for the orbit of an exceptional curve.
We set

S = {i ∈ {0,1, 2} : Oi is singular}
and

S0 = {i ∈ {0,1, 2} : Oi is singular and elementary}.
Lemma 3.1. If f is not 1-regular, then it has a singular orbit that is elementary.
Hence S0 �= ∅.
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Proof. Suppose Oi is nonsingular for all i ∈ S0. It follows that every orbit Oj (j /∈
S0) ends at a point in �i (i ∈ S0). Since all Oi (i ∈ S0) are nonsingular, it fol-
lows that �j (j /∈ S0) cannot end at a point of indeterminacy. This means that f
is 1-regular.

Henceforth, we will assume that f is not 1-regular. Let OS0 =
⋃

i∈S0
Oi . We

write X0 = P2 and let π : X1 → X0 be the complex manifold obtained by blow-
ing up the points of OS0 . Let f1 : X1 → X1 denote the induced birational mapping.
By Lemma 1.2, we see that the curves �i (i ∈ S0) are not exceptional for f1, and
the blowing-up operation constructed no new points of indeterminacy for f1. Thus
the exceptional curves for f1 are �i for i /∈ S0. If S0 is a proper subset of S then,
for i ∈ S − S0, we redefine Oi to be the f1-orbit of a i inside X1. Let us define
S1 = {i ∈ S − S0 : Oi is elementary for f1}. We may apply Lemma 3.1 to con-
clude that, if S − S0 �= ∅ and f1 is not regular, then S1 �= ∅. As before, we may
define OS1 =

⋃
i∈S1

Oi, and we construct the complex manifold π : X2 → X1 by
blowing up all the points of OS1. Doing this, we reach the situation where fk is
1-regular for some 1≤ k ≤ 3 and, for each i ∈⋃k−1

j=0 Sj , the orbit Oi has the form
Oi = {a i, . . . , ετ(i)} for some τ(i)∈ {0,1, 2}.

Next we work with the map fk and organize the singular orbits Oi into lists. Two
orbits O1 = {a1, . . . , εj1} and O2 = {a2 , . . . , εj2} are in the same list if either j1 =
2 or j2 = 1—that is, if the ending index of one orbit is the same as the beginning
index of the other. (This definition is given in more detail in [BK, Sec. 4].) In our
case, the possible lists are as follows (modulo permutation of the indices {0,1, 2}).
If there is only one singular orbit, we have the list L = {Oi = {a i, . . . , ετ(i)}}. If
τ(i) = i, we say that L is a closed list; otherwise it is an open list. If there are two
singular orbits then we can have two closed lists,

L1 = {O0 = {a0, . . . , ε0}} and L2 = {O1 = {a1, . . . , ε1}},
or a closed list and an open list,

L1 = {O0 = {a0, . . . , ε0}} and L2 = {O1 = {a1, . . . , ε2}}.
We cannot have two open lists because there are only three orbits Oi . We can also
have a single list,

L = {O0 = {a0, . . . , ε1}, O1 = {a1, . . . , ετ(1)}},
which is a closed list if τ(1) = 0 and an open list otherwise. If there are three
singular orbits then the possibilities are

L = {O0 = {a0, . . . , ε1}, O1 = {a1, . . . , ε2}, O2 = {a2 , . . . , ε0}},
L1 = {O0 = {a0, . . . , ε0}}, L2 = {O1 = {a1, . . . , ε2}, O2 = {a2 , . . . , ε1}},

or L1 = {O0 = {a0, . . . , ε0}}, L2 = {O1 = {a1, . . . , ε1}},
L3 = {O2 = {a2 , . . . , ε2}},

where all the lists are closed.
For an orbit Oi, we let ni = |Oi | denote its length; and for an orbit list L =

{Oa , . . . , Oa+µ}, we denote the set of orbit lengths by |L| = {na , . . . , na+µ}. We
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put #Lc = {|Lj | : Lj is closed} and #Lo = {|Lj | : Lj is open}. The sets #Lc and
#Lo determine δ(f ), as is shown in the following lemma.

Lemma 3.2. The orbit structures #Lc and #Lo determine f ∗X up to conjugacy.

Proof. First let us suppose that f is elementary and show how to determine f ∗1
from #Lc and #Lo. In this case we have S = S0. We set X := X1. It follows from
(2.1) that fX : X → X is 1-regular. For p ∈ OS − I we let Fp = π−1p denote
the exceptional fiber over p. If εi ∈ OS ∩ I, then Ei will denote the exceptional
fiber over εi . We will feel free to identify curves with the classes they generate in
H1,1(X). Let H ∈H1,1(P2) denote the class of a line, and let HX = π∗H denote
the induced class in H1,1(X). For i ∈ S,

�i → a i → · · · → f ni−1a i = f ni(�i − I ) = ετ(i)

for some τ(i) ∈ {0,1, 2}. At each point f ja i (0 ≤ j ≤ ni − 1), f is locally bi-
holomorphic; hence fX induces a biholomorphic map

fX : Ffja i → Ffj+1a i for 0 ≤ j ≤ ni − 2 and

fX : Ff ni−1a i → Eτ(i).

It follows that

f ∗XFfj+1a i = Ffja i for 0 ≤ j ≤ ni − 2, i ∈ S,
(3.1)

f ∗XEτ(i) = Ff ni−1a i ,

and

f ∗XFa i = {�i} for i ∈ S, (3.2)

where {�i} is the class induced by �i in H1,1(X). Let 1 = I ∩ {ετ(i) = f ni−1a i,
i ∈ S}, the set of blow-up centers that belong to I. Let A denote the set of indices
i such that Oi is a singular orbit and is the first orbit in an open orbit list. For each
i, �i contains blow-up centers in the set 1 − {εi}. Notice that if i ∈ A then εi /∈
1; otherwise, εi ∈1. Using the identity π∗{�i} = {π−1�i}, we have

{�i} =
{
HX − E1 + Ei if i /∈A ,

HX − E1 if i ∈A ,
(3.3)

where E1 := ∑
εt∈1 Et . A generic hyperplane H in P2 does not contain any

blow-up centers and may be considered a subset of X. Let us restrict the map to
X−I. A generic hyperplane H intersects any line in P2. It follows that εi ∈ f −1

X H
for i ∈1 and so

2HX = π∗(f ∗H ) = π∗{f −1H} = f ∗XHX + E1.

Therefore, under f ∗X we have

f ∗XHX = 2HX − E1. (3.4)

From this we see that the linear transformation f ∗X is essentially determined by
#Lc and #Lo.
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Now let us suppose that f and g are two maps with the same orbit list structure,
#Lc and #Lo, but that f is elementary and g is not. We have shown that f ∗1 is rep-
resented by the transformation (3.1)–(3.4). Let gk denote the 1-regularization of g
as given after Lemma 3.1. We claim that, under an appropriate choice of basis, the
g∗k will be represented by the same matrix as f ∗1 . Rather than carry out the details
in general, we illustrate this with an example that appears later in the paper. (The
matrix computation for the other cases is similar.) We consider the case where the
list structures of f and g are both given by

#Lo = ∅, #Lc = {{1, 6}}.
For the elementary map f , we may suppose that the singular orbits are O1 =
{a1 = ε2} and O2 = {a2 , f a2 , f 2a2 , f 3a2 , f 4a2 , f 5a2 = ε1} with f ja2 /∈
�0 ∪ �1 ∪ �2 for 0 ≤ j ≤ 4. We construct X = Xf by blowing up both orbits,
and we fix the basis Bf = {HX,E2 ,E1 = Fε1, Ff 4a2 , Ff 3a2 , Ff 2 a2 , Ff a2 , Fa2}.

If g has the same list structure then we may suppose g has an orbit O1 = {a1 =
ε2}, and we construct X1 by blowing up ε2. Further, we may suppose that g1 =
gX1 has an orbit of the form O2 = {a2 , g1a2 ∈�1, g2

1 a2 ∈E2 , g3
1 a2 , g4

1 a2 , g5
1a2 =

ε1}. We let X2 be the space obtained from X1 by blowing up the orbit O2 and let
g2 : X2 → X2 be the induced map. The blow-up fibers are E2 and Fg

j

1 a2
(0 ≤ j ≤

5). The essential difference between Xf and X2 is that the exceptional (blow-up)
fiber Fg2

1 a2 is created over the blow-up fiber E2. We will use the ordered basis
Bg = {HX2 ,E2 ,E1 = Fε1, Fg4

1 a2 , Fg3
1 a2 , Fg2

1 a2 , Fg1a2 , Fa2}. By (3.1)–(3.4), f ∗X is
represented with respect to Bf by the matrix M1. Now we pass from f ∗ to g∗2 and
show how to go from M1 to M2. Since g2

1a2 ∈E2 , it lies over the point of indeter-
minacy ε2 and so we must add a −1 in the first column. Since g1a2 , g2

1a2 ∈�1 =
g∗1E2 , we must add two −1s to the second column. Thus g∗2 is represented with
respect to Bg by M2:

M1 =




2 1 0 0 0 0 0 1
−1 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 −1

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0



;

M2 =




2 1 0 0 0 0 0 1
−1 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 −1

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−1 −1 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 0 0 0 0 1 0



.
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Now define B̂g = {HX2 , Ê2 = E2 + Fg2
1 a2 ,E1 = Fε1, Fg4

1 a2 , Fg3
1 a2 , Fg2

1 a2 ,
Fg1a2 , Fa2}. We see that, with respect to the basis B̂g , g∗2 is represented by the
matrix M1. Hence M1 and M2 have the same characteristic polynomial.

In general, we need to consider an analogous situation where we blow up a point
p0 ∈X0 to produce a fiber F1. Then we blow up p1 ∈ F1 and produce a fiber F2

(and so forth), resulting in a sequence of points pj ∈Fj (0 ≤ j ≤ h−1) and blow-
up fibers Fj+1 overpj . The exceptional fibers F1, . . . , Fh will appear in the basis B.
In order to pass to the basis B̂, we replace Fj by F̂j := Fj + Fj+1+ · · · + Fh.

For each orbit list L, let NL = na + · · ·+na+µ denote the sum of elements of |L|.
If L is closed we define TL(x) = xNL − 1, and if L is open we define TL(x) =
xNL . Define SL as follows:

SL(x) =




1 if |L| = {n1},
xn1 + xn2 + 2 if L is closed and |L| = {n1, n2},
xn1 + xn2 + 1 if L is open and |L| = {n1, n2},

3∑
i=1

[xNL−ni + xni ]+ 3 if L is closed and |L| = {n1, n2 , n3},

3∑
i=1

xNL−ni +
∑
i �=2

xni + 1 if L is open and |L| = {n1, n2 , n3}.

Theorem 3.3. If f = L�J, then the dynamic degree δ(f ) is the largest real zero
of the polynomial

χ(x) = (x − 2)
∏

L∈Lc∪Lo

TL(x)+ (x − 1)
∑

L∈Lc∪Lo

SL(x)
∏

L′ �=L
TL′(x). (3.5)

Here L runs over all orbit lists.

Proof. By Lemma 3.2, we may assume that the orbit list structure belongs to an
elementary map. The computation given in the Appendix of [BK] then shows that
(3.5) is the characteristic polynomial of f ∗X.

4. Nondegenerate Critical Triangle

In this section we will determine the degree growth rate of f with a nondegener-
ate critical triangle. As we noted at the beginning of Section 2, this is equivalent
to the condition

β1(β1α2 − α1β2) �= 0. (4.1)

In particular, the curves �γ ,�β ,�0 are distinct, as are {e1, e2 , q}, the points of
indeterminacy of f −1. Let us choose invertible linear maps M1 and M2 of P2

such that
M1�0 = �0, M1�1 = �β , M1�2 = �γ

and
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M2e1 = ε0, M2e2 = ε1, M2q = ε2.

It follows that M2 � fα,β �M1 is a quadratic map with �j ↔ ej and so is equal to
the map J. Thus fα,β is linearly conjugate to a mapping of the form L � J. When
we treat fα,β as a mapping L � J, we make the identifications

�0 = �0, �1 = �β , �2 = �γ ,

ε0 = pγ , ε1 = e1, ε2 = p0,

and

a0 = f(�0−I(f ))= e1, a1 = f(�1−I(f ))= e2 , a2 = f(�2−I(f ))= q.

In all cases, we have f(�0 − I ) = a0 = ε1, so the orbit O0 = {a0 = ε1} is
singular and has length 1. Let us start with the most exceptional case.

Theorem 4.1. If (α,β)∈V∗, then the critical triangle is nondegenerate and the
degree of f n

α,β is asymptotically linear in n.

Proof. Our first claim is that the critical triangle is nondegenerate. Since β1β2 �=
0, it follows that �β and �γ are distinct. Hence the only possibility for the tri-
angle to be degenerate is �γ = �0. But by Proposition 2.1 we have ε0 = ε2

and f j(a1) �= ε2 for all j ≥ 1. Therefore, f j+1�1 �= ε2 for all j ≥ 1 and so
(α,β) /∈V∗.

Since �0 → ε1, we blow up ε1 and obtain the space Y as in (1.2). The orbit of
�1 is now given by

fY : �1− I → a1 → [β2 : α2 ]E1 → ε0 ∈ I.
Let Z be the space obtained by blowing up this orbit in Y. By the second state-
ment in Lemma 1.1, the orbit O2 is not singular and so fZ is 1-regular. It follows
that, with respect to the ordered basis HZ ,E1,E0, Ff(a1), Fa1, we have

f ∗Z =




2 1 0 0 1
−1 −1 0 0 0
−1 0 0 0 −1
−1 −1 1 0 0

0 0 0 1 0


.

The eigenvalues of this matrix are 0 and ±1, and the canonical form contains a
2× 2 Jordan block

(
1 1
0 1

); hence it has linear growth.

If (α,β) /∈ V∗, then there are two possibilities for the exceptional component �1.

The first is that a1 ∈ �0 − I(f ), which occurs when β2 �= 0 (see Figure 4.1).
The second possibility is a1 = ε2 ∈ I, which occurs when β2 = 0 (Figure 4.2).
An analysis of the possibilities for O1 and O2 will yield the candidates for |O1|,
|O2|, and #Lc/o and will thus give the possibilities for δ(α,β). We will determine
δ(α,β) by finding the possibilities for #Lc/o and then applying Theorem 3.3.
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Figure 4.1 Nondegenerate critical triangle: case β2 �= 0

Figure 4.2 Nondegenerate critical triangle: case β2 = 0

Theorem 4.2. If the critical triangle is nondegenerate, β2 �= 0, and (α,β) /∈V∗,
then δ� ≤ δ(α,β) ≤ φ.

Proof. Let Y be as in (1.2), and let fY : Y → Y be the induced map. Since a1 =
e2 �= εi for i = 0,1, 2, we have

fY : �1− I → a1 → [β2 : α2 ]E1 → [β1β2 : β1α2 : α1β2 ]∈�B −�0. (4.2)

If f 2a1 = f 2
Y a1 = ε0, then the lines �2 and �B each contain ε1 and ε0. Since

a2 = �B ∩ �1 and ε0 = �2 ∩ �1, it follows that a2 = ε0. By the second state-
ment of Lemma 1.1, neither O1 nor O2 can end at ε2. Therefore, we have at most
two singular orbits. There are three cases.

The first case is where neither O1 nor O2 is singular. Here the orbit list struc-
ture is #Lc = ∅, #Lo = {{1}}. By Theoerm 3.3, δ(α,β) is the largest real root of
the polynomial

χ(x) = (x − 2)x + (x − 1) = x 2 − x − 1 (4.3)

and is thus equal to φ.
In the second case, both O0 and O1 are singular. In this case the orbit O2 cannot

be singular and so f 2a1 �= ε0. By the foregoing argument and (4.2), we have n1 =
|O1| ≥ 4 and O1 = {a1, . . . , ε0}. It follows that #Lo = ∅ and #Lc = {{1, n1}}. The
dynamic degree δ(α,β) is the largest root of the polynomial

χ(x) = (x−2)(x1+n1 −1)+ (x−1)(x+xn1 +2) = xn1(x 2−x−1)+x 2. (4.4)
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When n1 = 4, the characteristic polynomial is given by x6 − x 5 − x4 + 2 =
x 2(x − 1)(x3 − x − 1). Hence δ = δ� in this case. Observe that the comparison
principle [BK, Thm. 5.1] concerns the modulus of the largest zero of the character-
istic polynomial of f ∗. In Section 3 we showed that the characteristic polynomials
are the same in the elementary and the nonelementary cases. We may therefore
apply the comparison principle to conclude that δ(α,β) ≥ δ� if n1 ≥ 4.

The last case is where both O0 and O2 are singular. We have n2 = |O2| ≥ 1
and O2 = {a2 , . . . , ε0}; hence the orbit list structure is #Lc = ∅, #Lo = {{n2 ,1}}.
By Theorem 3.3, the dynamic degree δ(α,β) is the largest root of the polynomial

χ(x) = (x− 2)x1+n2 + (x−1)(x+ xn2 +1) = xn2(x 2− x−1)+ x 2−1. (4.5)

If n2 = 1, then χ(x) = x3 − x − 1.

Theorem 4.3. Assume that the critical triangle is nondegenerate. If β2 = 0
and n2 = |O2| ≥ 8, then 1 < δ(α,β) ≤ δ�. If β2 = 0 and n2 = |O2| ≤ 7, then
δ(α,β) = 1.

Proof. If β2 = 0, we have a1 = ε2 and therefore

O0 = {a0 = ε1} and O1 = {a1 = ε2}.
If the orbit O2 is nonsingular then the orbit list structure is #Lo = {{1,1}}, #Lc = ∅.
By Theorem 3.3, the degree growth rate δ(α,β) is the largest root of the polynomial

χ(x) = (x − 2)x 2 + (x − 1)(x + x + 1) = x3 − x − 1. (4.6)

If the orbit O2 is singular, then the end point of the orbit must be the remaining
point of indeterminacy, ε0. Thus we have n2 = |O2| ≥ 1 and O2 = {a2 , . . . , ε0}.
It follows that the orbit list structure is #Lc = {{1,1, n2}}, #Lo = ∅. Using Theo-
rem 3.3, the dynamic degree is the largest root of the polynomial

χ(x) = (x − 2)(x 2+n2 − 1)+ (x − 1)(2x1+n2 + x 2 + xn2 + 2x + 3)

= xn2(x3 − x − 1)+ x3 + x 2 − 1. (4.7)

It follows from the comparison principle [BK, Thm. 5.1] that 1 ≤ δ(α,β) ≤ δ�.

For n2 = 7, we have χ(x) = (x 2 − 1)(x3 − 1)(x 5 − 1) and so δ(α,β) = 1. For
n2 = 8, we have χ(x) = (x−1)(x10 + x9 − x7 − x6 − x 5 − x4 − x3 + x+1) and
χ ′(1) < 0; therefore, the largest real root is strictly greater than 1. It then follows
from the comparison principle that δ(α,β) > 1 if n2 ≥ 8.

Observe that when the orbit of q lands on p and we blow up the orbit of q, then
we have removed the last exceptional curves for f and f −1. Hence our next result
follows.

Proposition 4.4. If (α,β) ∈ Vn, then the induced map fX : X → X is biholo-
morphic.

Figure 4.3 shows the arrangement of the exceptional varieties in X in the case
where the orbit of q does not enter �β.
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Figure 4.3 Nondegenerate critical triangle: elementary case (α, β)∈Vn

Proof of Theorem 1. The statements about degree growth follow from Theorems
4.1–4.3. It remains only to show that fα,β is not birationally conjugate to an auto-
morphism. We consider various cases. First, if (α,β) ∈V∗, then by Theorem 4.1
the degrees of the iterates grow linearly. It follows from [DFa, Thm. 0.2] that f is
not conjugate to an automorphism. The next case is where the orbit list structure
is #Lc = ∅ and #Lo = {{1}}—that is, the generic case for a nondegenerate trian-
gle and also the case of a degenerate triangle. In this case fY : Y → Y is 1-regular,
and f ∗Y = (

2 1
−1 −1

)
with ordered basis {H,E}. Then T = (

3+√5H
)
/2− E

represents the cohomology class of the expanded current, and the intersec-
tion product is T · T > 0. Thus, by [DFa, Thm. 0.4], f is not conjugate to an
automorphism.

Finally, let us suppose that g is an automorphism. Then the characteristic poly-
nomial of g∗ has the form xjp(x), where p(x) is symmetric; that is, if r is a root
of p then so is 1/r. This is an easy consequence of (g−1)∗ = (g∗)−1 and the re-
sult of [DF] that, if δ(g) > 1, then δ(g) is a simple eigenvalue and the unique
eigenvalue of modulus > 1. In particular, the minimal polynomial of δ(g) (which
is a birational invariant) must be symmetric. We have computed the characteristic
polynomial for f in all other cases for Theorem 1, and all of these show that the
minimal polynomial of δ(g) is not symmetric.

5. Periodic Mappings

Here we determine the precise degree growth rate when |O2| ≤ 7. In particular,
we show that the degree grows quadratically when |O2| = 7 and that f is peri-
odic when |O2| ≤ 6. We do this by showing first that f ∗ is periodic in this case
and then that the periodicity of f ∗ implies the periodicity of f.

Notice that, if |O2| = n, then f n(�γ ) = f n−1(q) = p and so (α,β) ∈ Vn−1.

To show the periodicity of f ∗X it suffices to show that all roots of (4.7) with n ≤
6 are roots of unity and are simple. For n ≤ 6 we list the characteristic polyno-
mials, together with the smallest polynomials of the form xm −1 that they divide,
as follows.
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V0 (n = 1): (x − 1)(x + 1)(x 2 + x + 1)|(x6 − 1).

V1 (n = 2): (x − 1)(x4 + x3 + x 2 + x + 1)|(x 5 − 1).

V2 (n = 3): (x − 1)(x + 1)(x4 + 1)|(x8 − 1).

V3 (n = 4): (x − 1)(x 2 + x + 1)(x4 − x 2 + 1)|(x12 − 1).

V4 (n = 5): (x − 1)(x + 1)(x6 − x3 + 1)|(x18 − 1).

V5 (n = 6): (x − 1)(x8 + x7 − x 5 − x4 − x3 + x + 1)|(x30 − 1).

We thus obtain our next result.

Lemma 5.1. Assume that the critical triangle is nondegenerate. If β2 = 0 and
n = |O2| ≤ 6, then f ∗X is periodic with period κn, where κn = 6, 5, 8,12,18, 30
(respectively).

When |O2| = 7, the largest root of equation (4.7) is 1 and has multiplicity 3. The
matrix representation from Section 3 has a 3× 3 Jordan block with eigenvalue 1.
This means that f ∗X has quadratic growth, which leads to the following.

Lemma 5.2. Assume that the critical triangle is nondegenerate. If β2 = 0 and
|O2| = 7, then f ∗X has quadratic growth.

Observe that |O2| = 1 if and only if q = pγ , which means that the parameters in
V0 satisfy α1β0 − α0β1 = −α2β0 = α1α2. With these conditions on α and β, f
has a period-6 cycle �β �→ e2 �→ �0 �→ e1 �→ �γ �→ pγ �→ �β , and it is not
hard to check that the map f is indeed periodic with period 6.

Theorem 5.3. Assume that the critical triangle is nondegenerate. If β2 = 0 and
|O2| ≤ 6, then f is periodic with period κn.

To prove Theorem 5.3, we use the following lemma.

Lemma 5.4. If f : P2 → P2 is a linear map with five invariant lines such that
no more than three of them meet at any point, then f is the identity.

Proof. Let li, i = 0,1, 2, 3, 4, denote the lines fixed by f. Three of these are in
general position, so we may assume that �i = {xi = 0} for i = 0,1, 2. It follows
that f is a linear map represented as a diagonal matrix in the affine coordinates
(x1/x0, x2/x0). One of the lines <3 or <4 does not pass through the origin, and f
can preserve this line only if it is the identity.

Proof of Theorem 5.3. It suffices to show that f κn has at least five invariant lines
for n = 2, . . . , 6. Consider the basis elements E1, E2 , Fq , and Fpγ . Since (f ∗X)κn
is the identity, it fixes these basis elements; hence f κn fixes the base points in P2.

Since f κn is linear, it leaves invariant every line through two of these base points.
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6. Parameter Regions

There is a natural group action on parameter space. Namely, for (λ, c,µ) ∈
C∗ × C∗ × C we have the following actions:

(α,β) �→ (λα, λβ); (6.1)

(α,β) �→ (α0, cα1, cα2 , cβ0, c2β1, c2β2); (6.2)

(α,β) �→ (α0 + µ(α1+ α2)− µ(β0 + µ(β1+ β2)),

α1− µβ1,α2 − µβ2 ,β0 + µ(β1+ β2),β1,β2). (6.3)

The first action corresponds to the homogeneity of fα,β. The other two are given by
linear conjugacies offα,β. To see them, we writef in affine coordinates, as in (0.2).
Action (6.2) is given by conjugation of the scaling map (x1, x2) �→ (cx1, cx2), and
(6.3) is given by conjugation of the translation (x1, x2) �→ (x1+ µ, x2 + µ).

We now comment on maps of the special form

f : (x, y) �→
(
y,

y

b + x + cy

)
, b �= 0. (6.4)

In this case we have α = (0, 0,1), β = (b,1, c), and γ = (0, 0,1). The parame-
ter set V∗ defined in the Introduction is the (6.1)–(6.3)-orbit of the map (6.4) for
the special case bc = −1, which is the case of linear degree growth. Let Y be as
in (1.2), and let fY : Y → Y be the induced map. Repeating the computation of
(1.3), we see that

�β �→ E2 �→ [c : 0 : 1]e1 ∈E1 �→ [c : 1 : 0]∈�γ . (6.5)

We conclude as follows that the subfamily (6.4) is critically finite the sense that
all exceptional curves have finite orbits.

Proposition 6.1. If f is as in (6.4), then q = (0, 0) is a fixed point and the ex-
ceptional curves are mapped to q. In particular, fY is 1-regular.

Proof. If c = 0, then the exceptional locus is �γ ; if c �= 0, then both �β and �γ

are exceptional. We see from (6.5) that in either case the exceptional curves are
mapped to the fixed point.

The variety Vn ⊂ {β2 = 0} corresponds to a dynamical property: an exceptional
line is mapped to a point of indeterminacy. Thus Vn is invariant under the actions
(6.1)–(6.3). For (α,β) ∈ Vn we have β2 = 0, and applying (6.3) yields α1 = 0.
Since by (0.4) we must have α2 �= 0 and β1 �= 0, applying (6.1) and (6.2) gives
α2 = β1 = 1. Therefore, each orbit withinVn is represented by a map that may be
written in affine coordinates as

(x, y) �→
(
y,
a + y

b + x

)
. (6.6)
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If f is of the form (6.6) then f −1 is conjugate, via the involution σ : x ↔ y and a
transformation (6.3), to the map

(x, y) �→
(
y,
a − b + y

−b + x

)
. (6.7)

Such a mapping is conjugate to its inverse if b = 0.
Now we suppose that f is given by (6.6). Thus q = (−a, 0) and p = (−b,−a),

and Vn is defined by the condition f nq = p. The coefficients of the equations
defining Vn are positive integers, and Vn is preserved under complex conjugation.
An inspection of the equations defining Vn yields the following.

V0: the orbit under (6.1)–(6.3) of (a, b) = (0, 0).
V1: the orbit of (a, b) = (1, 0).
V2: the orbits of (a, b) = ((1+ i)/2, i) and their conjugates.
V3: the orbits of (a, b)∈ {((

2+ i −√3
)
/2, i

)
,
((

2+ i +√3
)
/2, i

)}
and their

conjugates.

We solve for V4, V5, and V6 by using the resultant polynomials of the defining
equations.

V4: the orbits of (a, b) ≈ (0.8711 + 0.7309i,1.4619i), (0.6974 + 0.2538i,
0.5077i), (−0.06857+ 0.3889i, 0.7778i) and their conjugates.

The exact values are roots of 1− 3a + 9a2 − 24a3 + 36a4 − 27a5 + 9a6 and
1+ 6b2 + 9b4 + 3b6.

V5: the orbits of (a, b) ≈ (3.7007 + 1.2024, 2.4048i), (1.0353 + 0.3364i,
0.6728i), (0.4465 + 0.6146i,1.2293i), (−0.1826 + 0.2513i, 0.5027i), and
their conjugates.

The exact values are roots of 1+ 3a2 − 20a3+ 49a4− 60a5+ 37a6− 10a7+ a8

and 1+ 7b2 + 14b4 + 8b6 + b8.

V6: The defining equations for V6 are divisible by b2, so all points of the form
(a, 0), a �= 0,1, belong to V6. By (6.7), these parameters correspond to
maps that are conjugate to their inverses. In addition, V6 contains the or-
bits of

a = (
3±√5+ 2b

)
/4, b = i

√(
5±√5

)
/2,

and their conjugates.

By Theorem 2, mappings inV6 have quadratic degree growth, and by [Gi] such
mappings have invariant fibrations by elliptic curves. We shall demonstrate how
our approach yields these invariant fibrations.

Let us first consider parameters (a, 0). In this case, the fibration was obtained
classically in [Ly] and [KoL]. In the space Y of (1.2), the f -orbit {qj = f jq : j =
0,1, . . . , 6} is

q0 = (−a, 0)C2 = [1 : −a : 0], q1 = (0,−1)C2 = [1 : 0 : −1],

q2 = [0 : 0 : 1] = e2 , q3 = [0 : 1 : −1],

q4 = [1 : 0 : −1]e1, q5 = (−1, 0), q6 = (0,−a) = p,
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Figure 6.1 Points f jq = ‘j ’ (0 ≤ j ≤ 6) for V6: case b = 0 on left; b �= 0 on right

Figure 6.2 Space X for V6, b = 0

as shown in Figure 6.1. Here we use ‘j ’ to denote ‘qj ’. The construction of X is
shown in Figure 6.2, where ‘f jQ’denotes the blowup fiber over qj . In contrast, the
case corresponding to (a, b) ∈ V6, b �= 0, corresponds to Figure 4.3. Consulting
Figure 6.2, we see that the cohomology class 3HX−E1−E2−Q2−Q4−∑

Qj

is fixed under f ∗. We will find polynomials that correspond as closely as possible
to this class; these will be cubics that vanish on ei and qj . Looking for lines that
contain as many of the qj as possible, we see that L1 = {x + y + a = 0} contains
0, 3, 6. Mapping forward by f yields

L1 �→ L2 = {y + 1= 0} �→ L3 = {x + 1= 0} �→ L1.

In addition, the points qj (j = 2, 3, 4) are contained in the line at infinity M1 =
�0. This maps forward as

M1 �→ e1 �→ M2 = {y = 0} �→ M3 = {x = 0} �→ e2 �→ M1.

The cubic c1 = (x + y + at)(x + t)(y + t) defines L1+L2 +L3 in P2, and c2 =
xyt defines M1 +M2 +M3. Setting t = 1 and taking the quotient, we find the
classical invariant h(x, y) = c1/c2.
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Now we consider the other four parameters (a, b) in V6. Inspecting the defin-
ing equations of V6, we find that a and b satisfy −2a + a2 + b − ab = 0 and
−b2 − 1+ b − 2a = 0. Given these relations, the f -orbit of q is

q0 = (−a, 0), q1 = (0,1− a), q2 = (1− a,1/b),

q3 = (1/b, a(1+ ab)/(ab − b2)), q4 = (a(1+ ab)/(ab − b2),1− a),

q5 = (1− a,−b), q6 = (−b,−a).
Looking again at the points qj (j = 0, 3, 6), we see that they are contained in a
line L1 = {x + (1− b/a)y + a = 0}. Mapping L1 forward under f , we find that

L1 �→ L2 = {y + a − 1= 0} �→ L3 = {x + a − 1= 0} �→ L1.

We multiply these linear functions together to obtain a cubic c1, which defines∑
Li. We see, too, that the points qj (j = 1, 3, 5) are contained in the line M1 =

{(a − b − 1)x + (a − 1)y + (a − 1)2 = 0}. Mapping forward then yields

M1 �→ M2 = {(a − 1)xy + (b2 + 1)y + (a − b − 1)x + (a − b) = 0} �→ M1.

Multiplying the defining functions, we obtain a cubic c2 that defines M1 +M2.

Now we define k(x, y) = c1/c2. Inspection shows that k � f = ωk, where ω is a
fifth root of unity. Hence f is a period-5 mapping of the set of cubics {k = const}
to itself.

Appendix. Explanation of the Computer Graphics

It is useful to have visual representations for rational mappings. A number of in-
teresting computer graphic representations of the behavior of rational mappings of
the real plane have been given in various works by Bischi, Gardini, and Mira; we
cite [BGM1] as an example. The pictures here have a somewhat different origin;
they are made following a scheme used earlier by one of the authors and Jeff Diller
(see [BD1; BD3]) and are motivated by the theory of dynamics of complex sur-
face maps. Let f be a birational map of a Kähler surface. If δ(f ) > 1, then there
are positive, closed, (1,1)-currents T ± such that f ∗T + = δ(f )T + and f ∗T − =
δ(f )−1T − (see [DFa]). These currents have the additional property that, for any
complex curve ", there exists a number c > 0 such that

cT + = lim
n→∞

1

δn
f n∗ ["], (A.1)

and similarly for T −. By work of Dujardin [Du1] these currents have the structure
of a generalized lamination. We let Ls/u denote the generalized laminations corre-
sponding to T ±. It was shown in [BD2] that the wedge product T + ∧ T − defines
an invariant measure in many cases, and Dujardin [Du2] showed that this invari-
ant measure may be found by taking the “geometric intersection” of the measured
laminations Ls and Lu.

When one of our mappings f has real coefficients, it defines a birational map
of the real plane, and we can hope that there might be real analogues for the re-
sults of the theory of complex surfaces. In [BD1; BD3] this was proved to be the
case for certain maps, but is not known to hold for the maps studied in this paper.
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Figure 0.1 was drawn as follows. We work in the affine coordinate chart (x, y)
on R2 given by x0 = 1, x = x1/x0 = x1, y = x2/x0 = x2. We start with a long
segment L ⊂ R2 and map it forward several times. The resulting curve is col-
ored black and “represents” Lu. After the first few iterations, the computer picture
seems to “stabilize”, and further iteration serves to “fill out” the lamination. The
appearance of the computer picture obtained in this manner is independent of the
choice of initial lineL. To represent Ls, we repeat this procedure for f −1 and color
the resulting picture gray. In Figure 0.1 we presented Ls in gray in the left-hand
frame; then we presented Ls and Lu together in the right-hand frame in order to
show the set where they intersect.

We also want the graphic to have the appearance of a subset of P2, so we rescale
the distance to the origin. The resulting “disk” is a compactification of R2. In fact,
this is real projective space, since antipodal points of the circle are identified. The
circle forming the boundary of this disk is the line �0 at infinity.

Figure 0.1 was obtained using the map of the form (6.4):

(x, y) �→
(
y,

y

0.1+ x + 0.3y

)
.

By Proposition 6.1, f is critically finite and so δ(f ) = φ by Theorem 4.2. On
the left half of Figure A.1, we have redrawn Ls together with the points of inde-
terminacy of f and f −1. Pictured, for instance, are e1, e2 , p0 = [0 : −0.3 : 1],
pγ = (−0.1, 0), and q = (0, 0). The exceptional curves are lines connecting cer-
tain pairs of these points and may be found easily using Figure 1.1 as a guide. As
we expect, Ls is “bunched” at the points of indeterminacy of f (i.e., p0, e1, and
pγ ). Let us track the backward orbits of these points. First, p0 = f −1p0 is fixed
under f −1, and f −1pγ = e1. Now let Y and fY be as in (1.2). Repeating the cal-
culations at equation (1.3), we see that f −1

Y takes pγ to the fiber point [1 : 0 :
−0.1]E1 over e1. This fiber point is then mapped under f −1 to the point s = [0 :
1.03 : −0.1]∈�0. The next pre-image is f −1s = p0, so f −1 is critically finite in
the sense that the exceptional curves all have finite orbits. This explains why Ls

is bunched at only four points.

Figure A.1 Explanation of Figure 0.1 (left); a mapping from V7 (right)
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To explain the points where Lu is bunched, we have plotted the point r :=
f 3�β = (10/3, 0) from (6.5). If we superimpose the picture of Lu on the left
panel of Figure A.1, we find that Lu is bunched exactly on the set e1, e2 , q, r. The
“eye” that appears in the first quadrant is due to an attracting fixed point.

The right-hand side of Figure A.1 is obtained by using the map

(x, y) �→
(
y,
−0.499497+ y

−0.415761+ x

)
,

which corresponds to a real parameter (a, b) ∈ V7. By “j ” (j = 0, . . . , 7) we
denote the point f jq. Thus “7” is the point of indeterminacy p = f 7q. We let
π : X → P2 be the manifold obtained by blowing up e1, e2 , and “j ” for j =
0, . . . , 7. The lamina of Lu are then separated in X, and the apparent intersections
may be viewed as artifacts of the projection π.
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