
LENGTH IN THE CREMONA GROUP

JÉRÉMY BLANC AND JEAN-PHILIPPE FURTER

Abstract. The Cremona group is the group of birational transformations of the plane.
By the famous Noether-Castelnuovo theorem, every element f of the group is a prod-
uct of birational transformations, usually called Jonquières transformations, sending a
pencil of lines onto another pencil of lines. The minimal number of such elements will
be called the length, and written lgth(f). Even if this length is rather unpredictable, we
provide an explicit algorithm to compute it, which only depends on the multiplicities
of the linear system of f .

As an application of this computation, we give a few properties of the dynamical
length of f defined as the limit of the sequence n 7→ lgth(fn)/n. It follows for example
that all distorded elements of the Cremona group are algebraic. The computation of the
length may also be applied to the so called Wright complex associated with the Cremona
group: This is made by Lonjou in [Lon2018]. Moreover, we show that the restriction of
the length to the automorphism group of the affine plane is the classical length of this
latter group (the length coming from its amalgamated structure). We also compute the
lengths and dynamical lengths of all monoidal transformations, and of some Halphen
transformations. Finally, we show that the length is a lower semicontinuous map on
the Cremona group, endowed with its Zariski topology.
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1. Introduction

1.1. The length of elements of the Cremona group. Let us fix an algebraically
closed field k. The Cremona group over k, often written Cr2(k), is the group Bir(P2)
of k-birational transformations of the projective plane P2. Such transformations can be
written under the form

[x : y : z] 99K [p0(x, y, z) : p1(x, y, z) : p2(x, y, z)]

where p0, p1, p2 ∈ k[x, y, z] are homogeneous polynomials of the same degree, and this
degree is the degree of the map, if the polynomials have no common factor. The Cremona
transformations of degree 1 are the automorphisms of P2, i.e. elements of the group
Aut(P2) = PGL3(k), and Cremona transformations of degree 2 are called quadratic
maps.

The group Bir(P2) is generated by the automorphism group Aut(P2) and by the single
involution σ : [x : y : z] 99K [yz : xz : xy], called the standard quadratic transformation.
The proof of this result, made by G. Castelnuovo [Cas1901], first decomposes an element
of Bir(P2) into a product of Jonquières elements (also called Jonquières transformations).

These latter maps are defined as the birational maps f for which there exist points
p, q ∈ P2 such that f sends the pencil of lines passing through p to the pencil of lines
passing through q. In this text, the group of Jonquières transformations preserving the
pencil of lines passing through a given point p ∈ P2 is denoted by Jonqp ⊆ Bir(P2). The
set of all Jonquières transformations is then equal to

Jonq =
⋃
p∈P2

Aut(P2)Jonqp Aut(P2) =
⋃
p∈P2

Aut(P2)Jonqp = Aut(P2)Jonqp0 Aut(P2),

for any fixed point p0 ∈ P2. The above equalities follow from the equality α ◦ Jonqp ◦
α−1 = Jonqα(p), which holds for each α ∈ Aut(P2).

Nowadays, one can also see the proof of Castelnuovo theorem by using the Sarkisov
program (see [Cor1995]), and the number of Jonquières transformations needed corre-
sponds to the number of links involved, which do not preserve a fibration. The proof
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that every Jonquières transformation is a product of linear maps and σ is then an easy
exercise (see for example [Alb2002, §8.4]).

In order to study the complexity of an element of Bir(P2), according to the above
decomposition, one naturally defines the following:

Definition 1.1. For each Cremona transformation f ∈ Bir(P2) we define its length
lgth(f) in the following manner. If f ∈ Aut(P2), we set lgth(f) = 0. Otherwise, we set
lgth(f) = n where n is the least positive integer for which f admits a decomposition

f = ϕn ◦ · · · ◦ ϕ1, ∀ i, ϕi ∈ Jonq.

In the above definition, note that we have lgth(f−1) = lgth(f).
For any fixed point p0 ∈ P2 the group Bir(P2) is generated by its two subgroups

Aut(P2) and Jonqp0 . The length of f might also be seen as the least nonnegative integer
n for which f admits a decomposition

f = αn ◦ ϕn ◦ · · · ◦ α1 ◦ ϕ1 ◦ α0, ∀ i, αi ∈ Aut(P2) and ∀ j, ϕj ∈ Jonqp0 .

In particular, this least integer n is independent from p0. All this follows from the
equality Jonq = Aut(P2)Jonqp0 Aut(P2).

This notion of length is similar to the case of automorphisms of the affine plane.
Taking a linear embedding A2 ↪→ P2, the classical Jung-Van der Kulk theorem says that
Aut(A2) is generated by Aff2 := Aut(P2) ∩ Aut(A2) and Jonqp,A2 := Jonqp ∩ Aut(A2)
for any p ∈ P2 \ A2 [Jun1942, vdK53, Lam2002]. Moreover, there is no relation except
the trivial ones, i.e. the group Aut(A2) is the amalgamated product of Aff2 and Jonqp,A2

over their intersection.
The length in Aut(A2) is then easy to compute, by writing an element in a reduced

form (i.e. in a product of elements of Aff2 and Jonqp,A2 where two consecutive elements
do not belong to the same group). It has moreover natural properties, namely it is
lower semicontinuous for the Zariski topology on Aut(A2), as shown by [Fur2002] when
char(k) = 0 (in fact this result also holds in positive characteristic by Theorem 3 and
Proposition 4.2 below).

The case of Bir(P2) is more complicated, as Bir(P2) is not the amalgamated product
of Aut(P2) and Jonqp0 . There is only one relation, of very small length [Bla2012],
which makes the group Bir(P2) more complicated than the group Aut(A2) (see also
[Giz1982, Isk1985] for other presentations with generators and relations of Bir(P2)). In
particular, there exist elements of Bir(P2) of finite order (finitely many families up to
conjugacy) which are neither conjugate to an element of Aut(P2) nor to an element
of Jonqp [Bla2011], contrary to the case of amalgamated products. Another way to
see the difference is that Aut(A2) acts on a tree thanks to its amalgamated structure
[Ser1980, Lam2001], but Bir(P2) only acts on a simply connected simplicial complex
of dimension two [Wri1992]. The group Bir(P2) does not act (non-trivially) on a tree
because it is not a non-trivial amalgamated product [Cor2013].

Computing the length of an element f ∈ Bir(P2) is then more tricky than the case of
Aut(A2) and we cannot only take a reduced decomposition (i.e. a product f = ϕn◦· · ·◦ϕ1

of Jonquières elements such that ϕi+1 ◦ ϕi is not Jonquières for i = 1, . . . , n − 1). The
length of such reduced decompositions is unbounded (Proposition 4.10). One way to
give an upper bound for the length of an element is to follow the proof of Castelnuovo
and to apply successive Jonquières elements to decrease the degree (this is detailed in
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Algorithm 3.25). It is a priori not clear that it gives the length. However, this is one of
our main results and will be proven in Corollary 3.29.

Multiplying an element f ∈ Bir(P2) with a Jonquières element ϕ, we have lgth(f ◦
ϕ) ∈ {lgth(f)− 1, lgth(f), lgth(f) + 1}. The possibilities occur in a rather chaotic way
since there are examples where deg(f ◦ ϕ) > deg(f) but lgth(f ◦ ϕ) = lgth(f) − 1
(Proposition 4.3(3)). Moreover, the number of Jonquières elements ϕ such that lgth(f ◦
ϕ) = lgth(f) − 1 can be infinite, even up to right multiplication with an element of
Aut(P2) (Proposition 4.3(4)).

We will however show that there is a natural algorithm that yields the length. More-
over, we will show that the length only depends on combinatorial properties of the maps,
namely the multiplicities of the base-points. Recall that if f ∈ Bir(P2) is of degree d ≥ 1,
then its linear system consists of curves of degree d passing through finitely many points
p1, . . . , pr (lying on P2 or infinitely near) with some multiplicities m1, . . . ,mr such that∑
mi = 3(d − 1),

∑
(mi)

2 = d2 − 1 (see below, in particular Remark 2.11 and Lem-
mas 2.14 and 2.20). In particular, maps of degree 1 have no base-points and maps of
degree 2 have three base-points of multiplicity 1. We say that (m1, . . . ,mr) is the homa-
loidal type of f ; it is a finite sequence up to permutation, or equivalently a set with
multiple entries. We often write (d;m1, . . . ,mr) to see the degree, but this one is of
course uniquely determined by the multiplicities. We also define the comultiplicity of f
to be deg(f) − maximi. This notion is sometimes used in the literature, for instance
in the proof of the Noether-Castelnuovo theorem given by Alexander [Ale1916]. One
can observe that comult(f) = 1 if and only if f is a Jonquières element (follows from
Lemma 2.42 and Definition 2.40). To state our main result, we use the following notion:
Definition 1.2. Let f ∈ Bir(P2). A predecessor of f is an element of minimal degree
among the elements of the form f ◦ ϕ where ϕ is a Jonquières transformation.

A precise description of the predecessors of an element of Bir(P2) is algorithmic and
not very difficult to obtain. In particular, the following holds:
Lemma 1.3. Let f ∈ Bir(P2).

(1) The homaloidal type of a predecessor of f is uniquely determined by the homa-
loidal type of f .

(2) There are infinitely many predecessors of f , but only finitely many classes up to
right composition with an element of Aut(P2).

(3) If ϕ is a Jonquières transformation such that f ◦ ϕ is a predecessor of f , then
Base(ϕ−1) ⊆ Base(f).

Remark 1.4. Lemma 1.3(2) asserts that any Cremona transformation f ∈ Bir(P2) admits
finitely many predecessors up to right multiplication by an element of Aut(P2). However,
we will see in Lemma 4.6 that this number is not uniformly bounded on Bir(P2).

Computing a sequence of predecessors (which is algorithmic, as said before, and whose
homaloidal types are uniquely determined by the one of the map we start with) yields
then a finite algorithm to compute the length of any element of Bir(P2), as our main
theorem states:
Theorem 1. Let f0 ∈ Bir(P2), let n ≥ 1 be an integer, and let (fi)i∈N be a sequence of
elements of Bir(P2) such that fi is a predecessor of fi−1 for each i ≥ 1. For all Jonquières
elements ϕ1, . . . , ϕn ∈ Bir(P2), the element gn = f ◦ ϕ1 ◦ · · · ◦ ϕn satisfies
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(1) deg(fn) ≤ deg(gn);
(2) comult(fn) ≤ comult(gn);
(3) If deg(fn) = deg(gn), then fn and gn have the same homaloidal type.

In particular, lgth(f) = min{n | deg(fn) = 1}.

This allows to easily compute the length of all maps of some given degree (see §4.1
for tables).

Another consequence of Theorem 1 is that the length of an element of Aut(A2), viewed
as an element of Bir(P2), is the same as the classical length given by the amalgamated
product (Proposition 4.2).

Also, the distance in the connected simplicial complex (or simply the graph associated)
of [Wri1992] is given by the length in Bir(P2). Hence, Theorem 1 provides a way to
compute the distance in this graph. In particular, the graph of Wright is of unbounded
length (follows for instance from Lemma 4.11), a fact that does not follow directly from
the definition of the graph. Another application of Theorem 1, made by Lonjou is that
the graph of Wright is not hyperbolic, in the sense of Gromov [Lon2018].

In §4.7, we compute the length of all monomial elements of Bir(P2), and relate it to
the decomposition of elements in SL2(Z) and continued fractions.

1.2. Dynamical length. Since lgth(f ◦g) ≤ lgth(f)+lgth(g) for all f, g ∈ Bir(P2), the
sequence n 7→ lgth(fn) is subadditive so that the sequence n 7→ lgth(fn)

n
admits a limit

when n goes to infinity. This allows the following definition:

Definition 1.5. For each f ∈ Bir(P2), the dynamical length is defined as

dlgth(f) := lim
n→∞

lgth(fn)

n
∈ R+.

Note that dlgth(f) is invariant under conjugation (contrary to the length), and satisfies
0 ≤ dlgth(f) ≤ lgth(f). It is not very easy to compute dlgth(f) in general, but we will do
it precisely for all monomial elements of Bir(P2), and relate this to continued fractions
and decompositions in SL2(Z) (Section 4.7). We will also show that

1

2
Z≥0 ∪

1

3
Z≥0 ⊆ dlgth(Bir(P2)) = {dlgth(f) | f ∈ Bir(P2)}

(Corollary 4.13), but do not have any example of a Cremona transformation f ∈ Bir(P2)
such that dlgth(f) /∈ 1

2
Z≥0 ∪ 1

3
Z≥0. In particular, every monomial map of Bir(P2) has a

dynamical length in 1
2
Z≥0 (follows from Proposition 4.25.

Question 1.6. What does the set dlgth(Bir(P2)) = {dlgth(f) | f ∈ Bir(P2)} look like?

1.3. Distorted elements. We begin with the two following definitions.

Definition 1.7. If G is a group generated by a finite set F ⊆ G, an element g ∈ G

is said to be distorted if lim
n→∞

|gn|
n

= 0, where |gn| denotes the length of gn according to
F , i.e. the minimal number of elements of F necessary to write gn (word length). This
notion actually does not depend on the chosen F , but only on the pair (g,G).

If G is any group, an element g ∈ G is said to be distorted if it is distorted in some
finitely generated subgroup of G.
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Definition 1.8. An element f ∈ Bir(P2) is said to be algebraic (or elliptic) if it is
contained in an algebraic subgroup of Bir(P2), or equivalently if the sequence n 7→
deg(fn) is bounded ([BlaFur2013, §2.6]). By [BlaDés2015, Proposition 2.3], this is also
equivalent to saying that f is of finite order or conjugate to an element of Aut(P2).

It is proven in [CC2018] that any algebraic element of Bir(P2) is distorded. Using the
dynamical length, we will prove the converse statement:

Theorem 2. Any distorded element of Bir(P2) is algebraic.

A function S : Bir(P2) → R≥0 is said to be subadditive if it satisfies S(f ◦ g) ≤
S(f) + S(g) for all f, g ∈ Bir(P2). For such a function, the limit lim

n→∞
S(fn)
n
∈ R≥0 exists

for any f , and is moreover equal to zero when f is distorded.
It turns out that the three following functions are subadditive on Bir(P2): the length,

the number of base-points, and the logarithm of the degree. For any such S, the cor-
responding limit lim

n→∞
S(fn)
n

is: the dynamical length dlgth(f), the dynamical number of
base-points (written µ(f) in [BlaDés2015]), and the logarithm of the dynamical degree
log(λ(f)), where the dynamical degree is λ(f) = lim

n→∞
(deg(fn))1/n.

We will show that f is algebraic if and only if dlgth(f) = µ(f) = log(λ(f)) = 0, thus
proving Theorem 2. More precisely, we can decompose elements of Bir(P2) into five
disjoint subsets of elements (see §4.8), and the situation is as in Figure 1: In particular,

f dlgth(f) µ(f) log(λ(f))
Algebraic elements 0 0 0
Jonquières twists 0 > 0 0
Halphen twists > 0 (Corollary 4.32) 0 0

Regularisable loxodromic elements > 0 (Proposition 4.34) 0 > 0
Non-regularisable loxodromic elements sometimes > 0 (Lemma 4.11) > 0 > 0

Figure 1. Positivity of dlgth(f), µ(f), log(λ(f)) for elements f ∈ Bir(P2)

Corollary 4.32 is sufficient for showing that an element f of Bir(P2) is algebraic if and
only if dlgth(f) = µ(f) = log(λ(f)) = 0.

1.4. Lower semicontinuity of the length. Even if Bir(P2) is not naturally an ind-
group ([BlaFur2013, Theorem 1]), following [Dem1970, Ser2010], it admits a natural
Zariski topology (see Definition 5.8). We prove that the length is compatible with this
topology, and thus behaves well in families:

Theorem 3. The length map lgth : Bir(P2)→ N, f 7→ lgth(f) is lower semicontinuous.
In other words, for each integer ` ≥ 0, the set {f ∈ Bir(P2) | lgth(f) ≤ `} is closed.

As explained before, this implies the same result for automorphisms of A2, already
proven in [Fur2002] when char(k) = 0. It also shows that some degenerations of bi-
rational maps are not possible. For instance, it is not possible to have a family of
birational maps with homaloidal type (7; 34; 23) which degenerates to a birational map
of homaloidal type (7; 5, 25, 13) (see [BCM2015, BlaCal2016] for more details on this
question).
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2. Reminders

When we want to decompose a birational transformation of P2, we have to study the
multiplicities of the linear system at points, and also the position of the points (if one
is infinitely near to another, if they are on the same line, . . . ). A very fruitful approach
consists of looking at the (linear and faithful) action of Bir(P2) on the so called Picard-
Manin space. Forgetting the position of the points and studying only the arithmetic part
can be done by studying an infinite Weyl group W∞, as done in [BlaCan2016]. This
group still acts on the Picard-Manin space and contains Bir(P2). An analogous Weyl
group is used in [BlaCal2016], but with a slightly different definition.

2.1. The bubble space and the Picard-Manin space. Let us recall the following
classical notions.

Definition 2.1. Let Y be a smooth projective rational surface. We denote by B(Y )
the bubble space of Y . It is the set of points that belong, as proper or infinitely near
points to Y . More precisely, an element of B(Y ) is the equivalence class of a triple
(p,X, π), where X is a smooth projective surface, π : X → Y is a birational morphism
(a sequence of blow-ups) and p ∈ X. Two triples (p,X, π) and (p′, X ′, π′) are equivalent
if (π′)−1 ◦ π : X 99K X ′ restricts to an isomorphism U → U ′, where U ⊆ X, U ′ ⊆ X ′ are
two open neighbourhoods of p and p′, and if p is sent to p′ by this isomorphism.

Definition 2.2. There is a natural order on B(Y ). We say that (p,X, π) ≥ (p′, X ′, π′)
if (π′)−1 ◦π : X 99K X ′ restricts to a morphism U → X ′, where U ⊆ X is an open subset
containing p and if p is sent on p′ by this morphism.

Remark 2.3. We have an inclusion P2 ↪→ B(P2), that sends a point p ∈ P2 onto the
equivalence class of (p,P2, id). We will also see elements of B(P2) as points, the surfaces
and the morphisms being then implicit.

Every birational map ϕ : P2 99K P2 has a finite number of base-points. The set of
all such points is denoted Base(ϕ) ⊆ B(P2). Moreover, ϕ induces a bijection B(P2) \
Base(ϕ)→ B(P2) \ Base(ϕ−1).

Let us recall the following classical notions. See for example [Alb2002] and references
there.

Definition 2.4. Let p, q ∈ B(P2). We say that p is infinitely near q if p ≥ q (for the
order defined above). We say that p is in the first neighbourhood of q if p > q and if
there is no r ∈ B(P2) with p > r > q. We say that a point p ∈ B(P2) is a proper point
of P2 if p is minimal. This corresponds to saying that p ∈ P2 ⊆ B(P2).

Definition 2.5. Let Y be a smooth projective rational surface. Its Picard-Manin space
ZY is defined as the inductive limit of all the Picard groups Pic(X), where X is a smooth
projective rational surface and X → Y is a birational morphism.

More precisely, an element c ∈ ZY corresponds to an equivalence class of triples
(C,X, π), where X is a smooth projective rational surface, π : X → Y is a birational
morphism and C ∈ Pic(X). Two triples (C1, X1, π1) and (C2, X2, π2) are identified if
one can find another smooth projective rational X3 together with birational morphisms
π′1 : X3 → X1, π′2 : X3 → X2 such that π1 ◦ π′1 = π2 ◦ π′2, and such that (π′1)∗(C1) =
(π′2)∗(C2).
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The Z-module ZY is endowed with an intersection form and canonical form ω : ZY →
Z. The canonical form sends a triple (C,X, π) onto KX · C ∈ Z, where KX is the
canonical class of X. To intersect two classes, we take representants (C1, X, π) and
(C2, X, π) on the same surface by taking a common resolution and compute C1 ·C2 ∈ Z.

Remark 2.6. If (C,X, π) is a triple as in the above definition and ε : X ′ → X is a
birational morphism, then (ε∗(C), X ′, π◦ε) is equivalent to (C,X, π). Moreover, KX ·C =
ε∗(KX) · ε∗(C) = KX′ · ε∗(C).

Using this remark we obtain that the canonical form ω : ZY → Z defined above is
independent of the choice of the triple in the equivalence class of an element of ZY . The
intersection form is also well-defined, as ε∗(C) · ε∗(D) = C ·D for all C,D ∈ Pic(X).

Definition 2.7. Let Y be a smooth projective rational surface. For each point q ∈ B(Y ),
we define an element eq ∈ ZY as follows: the point q is the class of (p,X, π), and
eq ∈ ZY is the class of (Ep, X̂, π ◦ ε), where ε : X̂ → X is the blow-up of p ∈ X, and
Ep = ε−1(p) ∈ Pic(X) is the exceptional divisor.

Lemma 2.8. Let Y be a smooth projective rational surface. The group ZY is naturally
isomorphic to

ZY ' Pic(Y )⊕
⊕
p∈B(Y )

Zep.

Moreover, the restriction of the intersection form of ZY on Pic(Y ) is the classical one,
and we have

C · ep = 0, e2
p = −1, ep · eq = 0, ω(C) = C ·KY , ω(ep) = −1.

for all p, q ∈ B(Y ), C ∈ Pic(Y ), p 6= q.

Proof. The map sending C ∈ Pic(Y ) onto the class of (C, Y, id) yields an inclusion
Pic(Y ) ↪→ ZY . By definition, the restriction of the intersection form and the canonical
form of ZY on Pic(Y ) are the classical ones.

If ε : X̂ → X is the blow-up of a point p ∈ X, then Pic(X̂) = ε∗ Pic(X)⊕ Zep, where
the exceptional divisor ep ∈ X̂ satisfies e2

p = −1, ep · R = 0 for each R ∈ ε∗(Pic(X)).
Moreover, KX̂ = π∗(KX) + ep. This provides the result, as every birational morphism
X → Y , where X is a smooth projective rational surface, is a sequence of blow-ups of
finitely many points of B(Y ). �

Corollary 2.9. The group ZP2 is naturally isomorphic to

Ze0 ⊕
⊕

p∈B(P2)

Zep,

where e0 ∈ Pic(P2) is the class of a line and ep corresponds to the exceptional divisor of
p ∈ B(P2). Moreover, we have

(e0)2 = 1, e2
p = −1, ω(ep) = −1, ω(e0) = −3 and ep · eq = 0

for all p, q ∈ B(P2), p 6= q.

Proof. Follows from Lemma 2.8 and the fact that Pic(P2) = Ze0, (e0)2 = 1, KP2 = −3e0,
so ω(e0) = −3. �
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Definition 2.10. Let a ∈ ZP2 and q ∈ B(P2). We define the degree of a to be deg(a) =
e0 · a ∈ Z and the multiplicity of a at q to be mq(a) = eq · a ∈ Z. We then define the set
of base-points Base(a) of a to be {q ∈ B(P2) | mq(a) 6= 0}.

Remark 2.11. Let Λ be a linear system on P2 which we assume of positive dimension and
without fixed component. Denote by p1, . . . , pr its base-points and by π : X → P2 the
blow-up of the points pi on P2. Then, the strict transform Λ̃ of Λ on X is a base-point
free linear system and we have

(♦) Λ̃ = dπ∗(e0)−
r∑
i=1

miepi ∈ Pic(X),

where d is the degree of Λ, m1, . . . ,mr ≥ 1 are its multiplicities at the points p1, . . . , pr
and epi ∈ Pic(X) is the pull-back (or total transform) of the exceptional curve produced
by blowing-up pi.

Indeed, since we have Pic(X) = π∗(Pic(P2)) ⊕ (
⊕r

i=1 Zepi), there exist integers d,
m1, . . . ,mr for which the equality (♦) holds. We then compute

d = π∗(e0) · Λ̃ = π∗(e0) · π∗(Λ) = e0 · Λ = deg(Λ)

and we see that the multiplicity of Λ at pi is epi · Λ̃ = mi. Hence, the definition of
base-points, degree and multiplicities coincides with the classical one.

Definition 2.12. Let ϕ : Y1 99K Y2 be a birational map between two smooth projective
rational surfaces. We define an isomorphism ϕ• : ZY1 → ZY2 in the following way:

An element c ∈ ZY1 corresponds to the class of a triple (C,X, π1). By blowing-up
more points if necessary, we may assume that π1 is such that π2 := ϕ ◦ π1 : X → Y2 is a
birational morphism. We then define ϕ•(c) ∈ ZY2 to be the class of (C,X, π2).

Remark 2.13. If ϕ : Y1 99K Y2 and ψ : Y2 99K Y3 are two birational maps between smooth
projective rational surfaces, then (ψ ◦ ϕ)• = ψ• ◦ ϕ•. This implies that ϕ and ψ are
isomorphisms of Z-modules. They moreover preserve the intersection form and the
canonical form (which can be checked on blowing-ups).

We then obtain the following result:

Lemma 2.14. The group Bir(P2) acts faithfully on ZP2 and preserves the intersec-
tion form and the canonical form. Moreover, if f ∈ Bir(P2), then (f•)

−1(e0) = de0 −∑r
i=1miepi, where d = deg f , p1, . . . , pr ∈ B(P2) are the base-points of f andm1, . . . ,mr ≥

1 are their multiplicities.

Proof. We decompose every f ∈ Bir(P2) into f = η ◦π−1, where η : X → P2, π : X → P2

are blow-ups of the base-points of f−1 and f respectively.

X
π

~~

η

  

P2 f
// P2

We have Pic(X) = π∗(Pic(P2)) ⊕ (
⊕r

i=1 Zepi), where ep1 , . . . , epr are the pull-backs in
Pic(X) of the exceptional divisors of the base-points p1, . . . , pr of f (or equivalently of π)
and can thus write η∗(e0) ∈ Pic(X) as η∗(e0) = d π∗(e0)−

∑
miepi , where d is the degree
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of the linear system and m1, . . . ,mr ≥ 1 are the multiplicities of the linear system at the
points p1, . . . , pr (see Remark 2.11). The fact that for each non-trivial f ∈ Bir(P2), we
can choose a general point p ∈ P2, sent by f onto another point q, yields f(ep) = eq 6= ep
and shows that the action is faithful. �

Example 2.15. Let σ : [x : y : z] 99K [yz : xz : xy] be the standard quadratic transforma-
tion of P2. Its base-points are p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1]. We then
write

X = {([x0 : x1 : x2], [y0 : y1 : y2]) | x0y0 = x1y1 = x2y2}
and denote by π : X → P2 and η : X → P2 the first and second projections, which are
blow-ups of p1, p2, p3 and satisfy η = σ◦π. There are six (−1)-curves E1, E2, E3, F1, F2, F3

on X, where Ei = π−1(pi) and Fi = η−1(pi) for i = 1, 2, 3.
The action of σ on ZP2 is given as follows. Firstly we have σ•(e0) = 2e0−ep1−ep2−ep3

(Lemma 2.14). Secondly we have σ•(ep1) = e0 − ep2 − ep3 thanks to the following
correspondant equality E1 = η∗(e0) − F2 − F3 holding in Pic(X). This latter equality
holds because E1 is the strict transform of the line through p2, p3 by η. Similarly, we
obtain σ•(ep2) = e0 − ep1 − ep3 and σ•(ep3) = e0 − ep1 − ep2 .

For all other points q ∈ B(P2) \ {p1, p2, p3}, we have σ(eq) = eq′ , for some q′ ∈ B(P2).

2.2. The infinite Weyl group.

Definition 2.16. Denote by Aut(ZP2) the group of linear automorphisms of the Z-
module ZP2 and define SymP2 ⊆ Aut(ZP2) to be the subgroup of elements that fix e0

and permute the ep, p ∈ B(P2).
We define W∞ ⊆ Aut(ZP2) to be the infinite Weyl group generated by Bir(P2) and

the group SymP2 .

Remark 2.17. Note that Aut(P2) = SymP2 ∩Bir(P2). Moreover, the Noether-Castelnuovo
theorem yields Bir(P2) = 〈Aut(P2), σ〉, which implies that W∞ = 〈SymP2 , σ〉. Later on
(see Corollary 2.28), we will prove that W∞ = SymP2 Bir(P2) SymP2 .

Definition 2.18. Let f ∈W∞ and q ∈ B(P2). We define the degree of f to be deg f =
e0 · f−1(e0) ∈ Z and the multiplicity of f at q to be mq(f) = eq · f−1(e0) ∈ Z. We denote
Base(f) ⊆ B(P2) the set of points q such that mq(f) 6= 0.

Remark 2.19. By construction, the degree, base-points and multiplicities of f ∈W∞ are
the same as for f−1(e0) ∈ ZP2 (which were defined in Definition 2.10). By Lemma 2.14,
this definition coincides with the classical definition if f ∈ Bir(P2).

Lemma 2.20.
(1) Every element of W∞ preserves the intersection form and the canonical form.
(2) For each f ∈W∞ we have

f−1(e0) = (deg f) · e0 −
∑

q ∈Base(f)

mq(f) · eq

and the following equalities hold (Noether equalities), where d = deg f :∑
q ∈Base(f)

mq(f) = 3(d− 1),
∑

q ∈Base(f)

(mq(f))2 = d2 − 1.

(3) For each f ∈W∞, we have deg f−1 = deg f .
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(4) SymP2 = {f ∈ W∞ | f(e0) = e0} = {f ∈ W∞ | deg(f) = 1} = {f ∈ W∞ |
deg(f) = ±1}.

(5) For each α ∈ SymP2, we have σ ◦α ◦σ ∈ SymP2 if and only if α preserves the set
{e[1:0:0], e[0:1:0], e[0:0:1]}.

Proof. (1): Follows from the fact that Bir(P2) and SymP2 preserve the intersection form
and the canonical form.

(2): The first equality follows from Definition 2.18 and from the next identity:

∀ a ∈ ZP2 , a = (a · e0) e0 −
∑

q ∈B(P2)

(a · eq) eq.

The Noether equalities follows from (1), since f−1(e0)2 = d2 −
∑

(mi)
2 = (e0)2 = 1 and

ω(f−1(e0)) = −3d+
∑
mi = ω(e0) = −3.

(3): We have deg f = e0 · f−1(e0) = f(e0) · e0 = deg f−1.
(4): Let f ∈ W∞ be such that deg f = d = ±1. It follows successively from the

Noether equalities that all multiplicities mq(f) are zero, d = 1 and f(e0) = e0. For each
p ∈ B(P2) we have f(ep) · e0 = 0, so f(ep) =

∑r
i=1 aieqi , for some q1, . . . , qr ∈ B(P2). As

−1 = (ep)
2 = (f(ep))

2 = −
∑

(ai)
2, we find that f(ep) = ±eqi for some i. Since ω(ep) =

ω(f(ep)), we get f(ep) = eqi . Hence, f ∈ SymP2 . (5): By (4), we have σ ◦ α ◦ σ ∈ SymP2

if and only σ ◦ α ◦ σ(e0) = e0. Since this corresponds to α ◦ σ(e0) = σ(e0), the result
follows from the equality σ(e0) = 2e0 − e[1:0:0] − e[0:1:0] − e[0:0:1] (Example 2.15). �

Corollary 2.21. Let f, g ∈W∞. The following conditions are equivalent:
(1) f−1(e0) = g−1(e0).
(2) There exists α ∈ SymP2 such that g = α ◦ f .

Proof. Let us write α = g ◦f−1. By Lemma 2.20(4), α ∈ SymP2 if and only if α(e0) = e0.
Applying g−1, this condition is equivalent to f−1(e0) = g−1(e0). �

Corollary 2.22. If f, g ∈W∞, we have

deg f ◦ g−1 = (deg f)(deg g)−
∑

q∈B(P2)

mq(f)mq(g).

Proof. We have deg f ◦ g−1 = e0 · (f ◦ g−1)−1(e0) = f−1(e0) · g−1(e0), so that the result
follows from Lemma 2.20(2). �

Lemma 2.23. Let g ∈W∞ and let q ∈ B(P2).
(1) If q ∈ Base(g), then g(eq) = mq(g)e0 −

∑
p∈Base(g−1) apep, ap ∈ Z.

(2) If q /∈ Base(g), then g(eq) = eq̃ for some q̃ ∈ B(P2) \ Base(g−1).
In particular, g induces a bijection B(P2) \ Base(g)→ B(P2) \ Base(g−1).

Proof. We write g(eq) = de0 +
∑
aiepi , for some {p1, . . . , pn} ⊆ B(P2). We then observe

that d = e0 · g(eq) = g−1(e0) · eq = mq(g).
If q /∈ Base(g), we then obtain g(eq) =

∑
aiepi . Since 1 = −ω(eq) = −ω(

∑
aiepi) =∑

ai and 1 = −(eq)
2 =

∑
(ai)

2, we find that g(eq) is equal to eq̃ for some q̃ ∈ B(P2).
Moreover, q̃ 6∈ Base(g−1), since mq̃(g

−1) = eq̃ · g(e0) = eq · e0 = 0. This yields (2).
To get (1), we consider the case q ∈ Base(g) and need to show that if pi /∈ Base(g−1),

then ai = 0. This is because ai = epi · g(eq) = g−1(epi) · eq and because g−1(epi) is equal
to ep̃i for some p̃i ∈ B(P2) \ Base(g) by (2). �
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Corollary 2.24. For each g ∈W∞ and each q ∈ B(P2), we have

q /∈ Base(g)⇔ g(eq) = eq̃ for some q̃ ∈ B(P2).

Proof. Follows from Lemma 2.23. �

Corollary 2.25. Let f, g ∈W∞ be such that Base(f) ⊆ Base(g−1), then we have

Base(f ◦ g) ⊆ Base(g).

Proof. Take q ∈ B(P2) \ Base(g). Then, by Lemma 2.23, we have g(eq) = eq̃ for some
q̃ ∈ B(P2) \ Base(g−1). It follows that q̃ ∈ B(P2) \ Base(f), so that f(eq̃) = e˜̃q for some
˜̃q ∈ B(P2), i.e. f ◦ g(eq) = e˜̃q, proving that q /∈ Base(f ◦ g). �

As explained before, the infinite Weyl group W∞ contains Bir(P2). In some sense,
this corresponds to forgetting the configuration of points. However, several properties
of the action of Bir(P2) on ZP2 extend to W∞. For instance, the Noether equalities
(Lemma 2.20(2)) are fulfilled by any element of W∞. A priori, the degree and multi-
plicities could be negative, but we will show that it is not the case (Lemma 2.26). Also,
there are some elements of ZP2 which satisfy the Noether equalities but which are not
in the orbit of e0. However, there is an algorithm to decide if an element is in this orbit
(Algorithm 3.7 below, corresponding to the classical Hudson test).

Lemma 2.26. Let f ∈W∞ r SymP2.
(1) For each finite set ∆ = {q1, . . . , qs} ⊆ B(P2) of s ≥ 1 points there exists a dense

open set U ⊆ (P2)s such that for each (p1, . . . , ps) ∈ U :
(i) The points p1, . . . , ps are distinct;
(ii) There exists an element g ∈ Bir(P2) satisfying

deg g = deg f and mpi(g) = mqi(f) for i = 1, . . . , s.

(2) The degree and multiplicities of f satisfy

deg f ≥ 2 and mq(f) ≥ 0 for each q ∈ B(P2).

(3) There exist α, β ∈ SymP2 and g ∈ Bir(P2), such that f = α ◦ g ◦ β.
Proof. Let us first observe that (2) and (3) follow from (1). Indeed, take for ∆ the
set Base(f) = {q1, . . . , qs} and let U be the corresponding open subset of (P2)s given
by (1). Choose (p1, . . . , ps) ∈ U and choose g ∈ Bir(P2) such that deg g = deg f and
mpi(g) = mqi(f) for i = 1, . . . , s. Then choose β ∈ SymP2 that sends eqi onto epi for each
i, and note that β ◦ f−1(e0) = g−1(e0). Hence, the element α = f ◦ β−1 ◦ g−1 belongs to
SymP2 by Lemma 2.20(4).

To prove (1), we write f = αl ◦ σ ◦ · · · ◦ α1 ◦ σ ◦ α0 where l ≥ 1, α0, . . . , αl ∈ SymP2

and prove the result by induction on l. As the result does not change under right or
left-multiplication by elements of SymP2 , we can moreover assume that α0 and αl are
equal to the identity. We can also always enlarge the set ∆.

If l = 1, then f = σ, so that f has degree 2 and three base-points of multiplicity 1 (see
Example 2.15). We may assume that q1, q2, q3 are the base-points of f . Then, we can
choose for U the open subset of points (p1, . . . , ps) in (P2)s where p1, . . . , ps are distinct
and where p1, p2, p3 are not collinear. For each (p1, . . . , ps) ∈ U , we choose an element
α ∈ Aut(P2) sending pi onto qi for i = 1, 2, 3 and choose g = f ◦ α.
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For l ≥ 2, we write f = f ′◦σ and apply the induction hypothesis to f ′. Up to enlarging
∆ = {q1, . . . , qs}, we may assume that q1 = [1 : 0 : 0], q2 = [0 : 1 : 0], q3 = [0 : 0 : 1]. For
each i ≥ 4, define q′i as the unique point of B(P2) such that σ(eqi) = eq′i . For i = 1, 2, 3,
set q′i = qi. One can assume that Base(f ′) ⊆ {q′1, . . . , q′s}. Let U ′ ⊆ (P2)s be an open
subset associated to f ′ and ∆′ = {q′1, . . . , q′s} via the induction hypothesis.

Let T ⊆ (P2)3 be the open subset given by

T =

([1 : a1 : a2], [1 : a3 : a4], [1 : a5 : a6]) | a1, . . . , a6 ∈ k, det

 1 1 1
a1 a3 a5

a2 a4 a6

 6= 0


and let ρ : T → Aut(P2) = PGL3(k) be the morphism defined by

ρ([1 : a1 : a2], [1 : a3 : a4], [1 : a5 : a6]) =

 1 1 1
a1 a3 a5

a2 a4 a6

 .

If T = (p1, p2, p3) belongs to T , we set

σT := ρ(T ) ◦ σ ◦ ρ(T )−1 ∈ Bir(P2).

Note that σT is a quadratic involution having base-points at p1, p2, p3.
We then denote by U ⊆ (P2)s the dense open subset of s-uples p = (p1, . . . , ps) such

that:
(1) No three of the points pi are collinear (so that in particular the points pi are

distinct) ;
(2) The triple T = (p1, p2, p3) belongs to T ;
(3) The s-uple p′ = (p′1, . . . , p

′
s) belongs to U ′, where the elements p′i are defined by

p′i := pi for i ≤ 3 and by p′i := σT (pi) ∈ P2 for i ≥ 4.
For each p ∈ U , the corresponding p′ ∈ U ′ yields an element g′ ∈ Bir(P2) satisfying

deg g′ = deg f ′ and mq′i
(f) = mp′i

(f ′) for each i. Taking β′ ∈ SymP2 that sends eq′i onto
ep′i for each i, the fact that Base(f ′) ⊆ {q′1, . . . , qs} implies as before that β′(f ′−1(e0)) =

g′−1(e0), so f ′ = α ◦ g′ ◦ β′, for some α ∈ SymP2 .
We write ν = ρ(T ) ∈ Aut(P2), σT = ν ◦ σ ◦ ν−1 ∈ Bir(P2) as before and obtain

f = f ′ ◦ σ = α ◦ g′ ◦ β′ ◦ σ = α ◦ g ◦ β,
where g = g′ ◦ σT ∈ Bir(P2) and β = σT ◦ β′ ◦ σ = ν ◦ σ ◦ ν−1 ◦ β′ ◦ σ ∈ W∞. For
i ∈ {1, 2, 3}, both ν and β′ send eqi to epi , hence ν−1 ◦ β′ fixes eqi . This shows that
β ∈ SymP2 (Lemma 2.20(5)), and thus that deg g = deg f .

It remains to observe that β sends eqi to epi for each i, to obtain mpi(g) = mqi(f)
for each i. The fact that ν−1 ◦ β′ fixes e0 − eq1 − eq2 implies that σ ◦ ν−1 ◦ β′ ◦ σ fixes
σ(e0 − eq1 − eq2) = eq3 (see Example 2.15) and thus that β sends eq3 to ep3 . The same
works for eq1 , eq2 . For i ≥ 4, we have

β(eqi) = σT ◦ β′ ◦ σ(eqi) = σT ◦ β′(eq′i) = σT (ep′i) = epi . �

The first two corollaries are stated for an easier reading. The first one is [BlaCal2016,
Proposition 2.4]:

Corollary 2.27. For each homaloidal type (d;m1, . . . ,ms), there exists a dense open
subset U ⊆ (P2)s such that for each (p1, . . . , ps) ∈ U the following holds:
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(1) The points p1, . . . , ps are distinct;
(2) There exists a Cremona transformation f ∈ Bir(P2) such that

f−1(e0) = de0 −
s∑
i=1

miepi .

Corollary 2.28. We have W∞ = SymP2 Bir(P2) SymP2.

In the next two corollaries, we give information on the orbits of e0, eq and e0 − eq,
where q is a point of B(P2). The first one is the following positivity result on the degree
and multiplicities of elements in the orbit of e0, which also follows from [BlaCan2016,
Lemma 5.3] (with another proof).

Corollary 2.29. Each element a ∈W∞(e0) can be written as
a = (deg a) · e0 −

∑
q∈Base(a) mq(a) · eq,

where deg a ≥ 1, mq(a) ≥ 1 for each q ∈ Base(a) and∑
q∈Base(a) mq(a) = 3(deg a− 1),

∑
q∈Base(a)(mq(a))2 = deg(a)2 − 1.

Moreover, for any two distinct q, q′ ∈ B(P2) we have mq(a) +mq′(a) ≤ deg a.

Proof. We write a ∈ W∞(e0) as a = f(e0) for some f ∈ W∞, and write f = α ◦ g ◦ β,
where α, β ∈ SymP2 and g ∈ Bir(P2), using Lemma 2.26(3). Hence, a = α ◦ g(e0). The
description above follows then from Lemmas 2.14 and 2.20. The inequality mq(a) +
mq′(a) ≤ deg(a) can be checked for g(e0), since α ∈ SymP2 . We can moreover assume
that q ∈ P2 and q′ is either in P2 or in the first blow-up of q (sincemq(g(e0)) ≤ mq′(g(e0))
if q ≥ q′). The result follows then from Bézout theorem, by intersecting the line through
q and q′ with the linear system corresponding to g(e0). �

The following result is obvious for orbits of Bir(P2) and here is generalised to orbits
of W∞. This allows to say that elements of W∞ have a behaviour “not too far” from
elements of Bir(P2). See also Lemma 2.26(3) for another result in this direction.

Corollary 2.30. Let q ∈ B(P2) and let a ∈W∞(e0).
(1) For each b ∈W∞(e0), we have a · b ≥ 1.
(2) For each b ∈W∞(e0 − eq), we have a · b ≥ 1.
(3) For each b ∈W∞(eq), we have a · b ≥ 0.

Proof. We apply an element of W∞ and assume that b is equal to e0, e0 − eq, eq re-
spectively. By Corollary 2.29, we have a = (deg a) · e0 −

∑
p∈Base(a) mp(a) · ep, where

deg a ≥ 1, mp(a) ≥ 1 for each p ∈ Base(a) and
∑

p∈Base(a)(mp(a))2 = deg(a)2 − 1. We
then find that a · b is equal to deg a, deg a −mq(a), mq(a) respectively. Assertions (1),
(2), (3) are then given by deg a ≥ 1, (mq(a))2 ≤ deg(a)2 − 1 and mq(a) ≥ 0. �

2.3. Jonquières elements viewed in the Weyl group. We now define the analogue
of the groups Jonqp ⊆ Bir(P2) in the Weyl group:

Definition 2.31. For each q ∈ B(P2) we define Jq ⊆W∞ as the subgroup
Jq = {ϕ ∈W∞ | ϕ(e0 − eq) = e0 − eq}.

Lemma 2.32. For each q ∈ P2, we have Jonqq = Jq ∩Bir(P2).
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Proof. Let π : P2 99K P1 be the projection from q, and let η : X → P2 be the blow-up
of q. The result follows from the fact that e0 − eq ∈ ZP2 corresponds to the divisor of
Pic(X) corresponding to the fibres of the morphism π ◦ η : X → P1. �

Definition 2.33. For each q ∈ B(P2) and for each finite set ∆ ⊆ B(P2) r {q} of even
order 2n, we define ιq,∆ ∈ Jq to be the involution given by

ιq,∆(e0) = (n+ 1)e0 − neq −
∑
r∈∆

er, ιq,∆(er) = e0 − eq − er, r ∈ ∆,

ιq,∆(eq) = ne0 − (n− 1)eq −
∑
r∈∆

er, ιq,∆(er) = er, r ∈ B(P2) \ (∆ ∪ {q}).

Remark 2.34. In order to see that the elements ιq,∆ belong to Jq ⊆W∞, we can observe
that ιq,∅ is the identity, that ιq,∆ is equal to σ, up to left and right-multiplication by
elements of SymP2 when ∆ contains 2 elements, and that ιq,∆ ◦ ιq,∆′ = ιq,(∆∪∆′)r(∆∩∆′).

Definition 2.35. Let p1, p2, p3 ∈ B(P2) be 3 distinct points. We define σp1,p2,p3 ∈ W∞
as the involution given by

σp1,p2,p3(e0) = 2e0 − ep1 − ep2 − ep3 , σp1,p2,p3(ep1) = e0 − ep2 − ep3
σp1,p2,p3(ep2) = e0 − ep1 − ep3 , σp1,p2,p3(ep3) = e0 − ep1 − ep2 ,
σp1,p2,p3(er) = er, r ∈ B(P2) \ {p1, p2, p3},

We observe that σp1,p2,p3 ∈ Jpi for i = 1, 2, 3, and that σp1,p2,p3 = τp2,p3 ◦ ιp1,{p2,p3}, where
τp2,p3 ∈ SymP2 is the transposition permuting p2 and p3.

Remark 2.36. When p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], we observe that
σp1,p2,p3 is similar to the standard quadratic involution σ : [x : y : z] 99K [yz : xz : xy]. It
is however not realised by an element of Bir(P2) as it fixes all points of P2 \ {p1, p2, p3}.
Moreover, σp1,p2,p3 and ιp1,{p2,p3} both belong to SymP2 σ = {α ◦ σ | α ∈ SymP2} ⊆W∞.

Lemma 2.37.
(1) For each q ∈ B(P2) and each ϕ ∈ Jq, we have mq(ϕ) = deg(ϕ)− 1.
(2) For each q ∈ B(P2) and each ϕ ∈ W∞ with mq(ϕ) = deg(ϕ) − 1, the set ∆ =

Base(ϕ) \ {q} has even cardinality 2n ≥ 0 and

ϕ−1(e0) = (ιq,∆)−1(e0) = (n+ 1)e0 − neq −
∑
r∈∆

er = e0 +
∑
r∈∆

(
e0 − eq

2
− er

)
.

This yields the existence of α ∈ SymP2 such that

ϕ = α ◦ ιq,∆.
Moreover, α ∈ Jq if and only if ϕ ∈ Jq.

Proof. (1) The fact that ϕ ∈ Jq implies that

deg(ϕ)−mq(ϕ) = (e0 − eq) · ϕ−1(e0) = (e0 − eq) · e0 = 1.

(2) Since ∆ = Base(ϕ) r {q} and mq(ϕ) = deg(ϕ)− 1, we can write

ϕ−1(e0) = (n+ 1)e0 − neq −
∑

r∈∆mrer

where n ≥ 0 and mr ≥ 1 for each r ∈ ∆ (Corollary 2.29). The Noether equalities
(Lemma 2.20(2)) yield

∑
r∈∆mr =

∑
r∈∆(mr)

2 = 2n, so mr = 1 for each r ∈ ∆, and
thus ∆ contains 2n elements.
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Since ϕ−1(e0) = (ιq,∆)−1(e0), we have ϕ = α◦ιq,∆ for some α ∈ SymP2 (Corollary 2.21).
Since ιq,∆ ∈ Jq, we have α ∈ Jq if and only ϕ ∈ Jq. �

Corollary 2.38. Any element ϕ ∈ Jq admits an expression

ϕ = α ◦ ιq,∆,

where ∆ := Base(ϕ)r{q} has even order and α ∈ SymP2 ∩ Jq = {β ∈ SymP2 , β(q) = q}.

Proof. Directly follows from Lemma 2.37. �

Corollary 2.39. If q, q′ ∈ B(P2) are two distinct points, then Jq ∩ Jq′ consists of ele-
ments of degree 1 or 2.

Proof. It follows from Lemma 2.37 that if ϕ ∈ Jq is a Jonquières element with degϕ ≥ 3,
the multiplicity at q is degϕ−1 ≥ 2 and q is the unique point having this multiplicity. �

We now give the following definition, which generalise the one of Jonquières elements
of Bir(P2), as Lemma 2.42 explains.

Definition 2.40. An element ϕ ∈W∞ is said to be a Jonquières element if there exists
a point q ∈ B(P2) such that mq(ϕ) = deg(ϕ)− 1.

Lemma 2.41. Let ψ ∈W∞. The following conditions are equivalent:
(1) ψ is a Jonquières element of W∞;
(2) There exist α, β ∈ SymP2, q ∈ B(P2) and ϕ ∈ Jq such that ψ = α ◦ ϕ ◦ β;
(3) There exist α ∈ SymP2, q ∈ B(P2) and ϕ ∈ Jq such that ψ = α ◦ ϕ;
(4) There exist α ∈ SymP2, q ∈ B(P2) and ϕ ∈ Jq such that ψ = ϕ ◦ α;
(5) There exist α ∈ SymP2, q ∈ B(P2) and a finite set of even order ∆ ⊆ B(P2) \ {q}

such that ψ = α ◦ ιq,∆.

Proof. (1)⇒ (5) is given by Lemma 2.37(2); (5)⇒ (3) is given by the fact that ιq,∆ ∈ Jq
and (3)⇒ (2) follows by taking β = id.

(2)⇒ (4): Writing ϕ′ = α◦ϕ◦α−1, we have ϕ′(e0−ep) = e0−ep where p ∈ B(P2) is the
element such that α(eq) = ep. Hence ψ = ϕ′ ◦ α′ where ϕ′ ∈ Jp and α′ = α ◦ β ∈ SymP2 .

(4)⇒ (1): Taking p ∈ B(P2) such that α(ep) = eq we get

mp(ψ) = ep · ψ−1(e0) = α(ep) · ϕ−1(e0) = eq · ϕ−1(e0) = mq(ϕ)
Lemma 2.37(1)

= deg(ϕ)− 1.

It remains to observe that

deg(ψ) = e0 · α−1(ϕ−1(e0)) = α(e0) · ϕ−1(e0) = e0 · ϕ−1(e0) = deg(ϕ). �

Lemma 2.42. Let f ∈ Bir(P2). The following conditions are equivalent:
(1) f is a Jonquières element of Bir(P2);
(2) f is a Jonquières element of W∞;
(3) There exist α, β ∈ Aut(P2), q ∈ P2, and ϕ ∈ Jonqq ⊆ Bir(P2) such that f =

α ◦ ϕ ◦ β;
(4) There exist α ∈ Aut(P2), q ∈ P2, and ϕ ∈ Jonqq ⊆ Bir(P2) such that f = α ◦ ϕ;
(5) There exist α ∈ Aut(P2), q ∈ P2, and ϕ ∈ Jonqq ⊆ Bir(P2) such that f = ϕ ◦ α.
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Proof. By definition, f is a Jonquières element of Bir(P2) if and only if there exist two
points p, q ∈ P2 such that the pencil of lines through p is sent to the pencil of lines through
q. Composing at the source or the target with a linear automorphism exchanging p and
q yields then an element of Jonqp or Jonqq. This yields the equivalence of (1),(3),(4),(5).
As Aut(P2) ⊆ SymP2 and every Jonquières element of Bir(P2) is a Jonquières element of
W∞, we have (3)⇒ (2) (Lemma 2.41). It remains then to prove (2)⇒ (1). Assertion (2)
implies that f has a base-point p of multiplicity deg(f) − 1. We can moreover assume
that p is a proper point of P2 (replacing p with the proper point p′ ∈ P2 above which p
lies only increases the multiplicity). The image of the pencil of lines through p is then
a pencil of lines, passing thus through a point q ∈ P2. This achieves the proof. �

Definition 2.43. Two elements a, a′ of ZP2 are said to be equal modulo SymP2 if there
exists an element α ∈ SymP2 such that a′ = α(a). This is written a ≡SymP2

a′.

Remark 2.44. Two elements a, a′ of ZP2 are equal modulo SymP2 if and only if they
have the same degree and if there exists a bijection t : Base(a) → Base(a′) such that
mt(p)(a

′) = mp(a) for each p ∈ Base(a).
In particular, the set W∞(e0)/ SymP2 of equivalence classes modulo SymP2 in W∞(e0)

corresponds to the set of homaloidal types of birational transformations of P2 (called
proper homaloidal types in [Alb2002, BlaCal2016]).

Lemma 2.45. For any element a ∈ ZP2 and any Jonquières element ϕ ∈ W∞, the
element ϕ(a) is equal to some element ιq,∆(a) modulo SymP2.

Proof. This is a direct consequence of Corollary 2.38 and Definition 2.43. �

We will use the following easy observation twice in the sequel.

Lemma 2.46. Let χ = (d;m0, . . . ,mr) be the homaloidal type of a birational transfor-
mation of P2, and let us assume that d ≥ 2 and that m0 ≥ · · · ≥ mr ≥ 1. If m0 +mr = d,
then χ = (d; d−1, 1, . . . , 1︸ ︷︷ ︸

2d−2

) is the homaloidal type of a Jonquières element. In particular,

we remark for later use that r = 2d− 2 is even.

Proof. As m0 +mi ≤ d for each i ≥ 1 (Corollary 2.29), we have m1 = m2 = · · · = mr =
d−m0. The second Noether equality (Lemma 2.20(2)) then gives d2−1 = (d−m1)2+rm2

1,
whence m1(2d−m1(r + 1)) = 1, so m1 = 1 and r = 2d− 2. �

3. The algorithm that computes the length and the proof of
Theorem 1

In this section, we give the proof of Theorem 1, by first working in the infinite Weyl
group introduced in Section 2 (in particular in §2.2) and get the analogue of Theorem 1
in W∞, namely Proposition 3.19. We then show (in Section 3.3) that the algorithm
given in W∞ can actually be applied in Bir(P2).

3.1. Degree, maximal multiplicity and comultiplicity.

Definition 3.1. Let a ∈W∞. We define the maximal multiplicity of a to be
mmax(a) = max{mq(a) | q ∈ B(P2)}

and say that a has maximal multiplicity at q ∈ B(P2) if mq(a) = mmax(a).
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We define the comultiplicity of a to be comult a = deg a−mmax(a).

Lemma 3.2. Let a ∈W∞(e0).
(1) If deg a = 1, then a = e0, mmax(a) = 0 and comult a = 1.
(2) If deg a > 1, then 1 ≤ mmax(a) ≤ deg a− 1 and 1 ≤ comult a ≤ deg a− 1.
(3) deg a = 2⇔ mmax(a) = 1.
(4) comult a = 1⇔ a = ϕ(e0) for some Jonquières ϕ ∈W∞.

Proof. If deg a = 1, then a = e0 (Corollary 2.29), so mmax(a) = 0 and comult a = 1.
If deg a > 1, then 1 ≤ mmax(a) ≤ deg a − 1 follows from Noether equalities and

positivity of multiplicities, see Corollary 2.29. This yields 1 ≤ comult a ≤ deg a − 1.
Moreover, we have mmax(a) = 1 if and only if deg a = 2 (again by Corollary 2.29), and
comult a = 1 if and only if a = ϕ(e0), where ϕ is Jonquières (Lemma 2.37(2)). �

We will often apply quadratic maps in the sequel, and need the following basic lemma.

Lemma 3.3. Let p1, p2, p3 ∈ B(P2) be three distinct points, let σp1,p2,p3 ∈ W∞ be as in
Definition 2.35 and let a ∈ ZP2. The following hold:

(1) σp1,p2,p3(a) = a⇔ deg σp1,p2,p3(a) = deg a⇔ deg(a) = mp1(a) +mp2(a) +mp3(a);
(2) deg(σp1,p2,p3(a)) < deg(a)⇔ deg(a) < mp1(a) +mp2(a) +mp3(a);
(3) deg(σp1,p2,p3(a)) < deg(a)⇒ comult(σp1,p2,p3(a)) ≤ comult(a).

Proof. Writing ξ = e0− ep1 − ep2 − ep3 , we prove that σp1,p2,p3(v) = v+ (ξ · v) · ξ for each
v ∈ ZP2 . As v 7→ (ξ · v) · ξ is Z-linear, it suffices to check this for v = e0 and v = eq,
q ∈ B(P2), and this follows directly from the definition given in Definition 2.35. We find

deg σp1,p2,p3(a) = e0 · (a+(ξ ·a) ·ξ) = deg(a)+ξ ·a = 2 deg(a)−mp1(a)−mp2(a)−mp3(b).

Hence, deg σp1,p2,p3(a) = deg a if and only if a ·ξ = 0, which is equivalent to σp1,p2,p3(a) =
a. This yields (1). Assertion (2) also follows from the above equalities. To prove (3),
we write b = σp1,p2,p3(a) = a− nξ where n = −(ξ · a) > 0 and choose a point q ∈ B(P2)
where a has maximal multiplicity. We have comult(a) = deg(a)−mq(a) = a · (e0−eq) =
b · (e0− eq) + λ(ξ · (e0− eq)). As b · (e0− eq) = deg(b)−mq(b) ≥ comult(b), it suffices to
observe that ξ · (e0 − eq) ∈ {0, 1}. �

Corollary 3.4. If p1, p2, p3 ∈ B(P2) are three distinct points and a ∈ ZP2 satisfies
deg(a) = mp1(a) + mp2(a) + mp3(a), then ιp1,{p2,p3}(a) = τ(a), where τ ∈ SymP2 is the
permutation of p2 and p3.

Proof. Follows from Lemma 3.3 and from the equality ιp1,{p2,p3} = τ ◦ σp1,p2,p3 . �

The following result is quite old, and was first showed by Max Noether. We give here
a proof inspired by [Alb2002, Proposition 2.6.4].

Lemma 3.5. Let a ∈ ZP2 be such that a2 = 1, ω(a) = −3, deg(a) ≥ 2 and mq(a) ≥ 0
for each q ∈ B(P2). Then, there exist three distinct points p1, p2, p3 ∈ Base(a) such that∑3

i=1 mpi(a) > deg(a) (Noether inequality).

Moreover, for all p1, p2, p3 as above, we have deg σp1,p2,p3(a) < deg a.
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Proof. We write a = de0−
∑r

i=1miqi where d = deg a ≥ 2, p1, . . . , pr ∈ B(P2) are distinct
points and mi = mqi(a) for each i, and m1 ≥ m2 ≥ · · · ≥ mr ≥ 0. The fact that a2 = 1
and ω(a) = −3 yield

∑
m2
i = d2 − 1,

∑
mi = 3(d − 1). This implies that mi < d for

each i, and thus that r ≥ 3 and m3 > 0. We then compute

(d− 1)(3m3 − (d+ 1)) = m3(
∑
mi)−

∑
m2
i =

∑
mi(m3 −mi) ≥

∑2
i=1 mi(m3 −mi).

Adding (d− 1)(m1 +m2 − 2m3) to both sides, we get

(d− 1)(m1 +m2 +m3 − (d+ 1)) ≥ (m1 −m3)(d− 1−m1) + (m2 −m3)(d− 1−m2).

The right hand side being non-negative, we obtain m1 +m2 +m3 > d, as expected. The
last part follows from Lemma 3.3(2). �

Corollary 3.6. Let a ∈ W∞(e0) be such that deg(a) ≥ 2 and let p ∈ B(P2) be a point
of maximal multiplicity of a. Then, there exists ϕ ∈ Jp such that deg(ϕ(a)) < deg(a).

Proof. By Lemma 3.5, there exist three distinct points p1, p2, p3 ∈ Base(a) such that∑3
i=1mpi(a) > deg(a). As p is a point of maximal multiplicity, we can assume p = p1.

We then choose ϕ = σp,p2,p3 ∈ Jp, which satisfies deg(ϕ(a)) < deg(a) (Lemma 3.5). �

Algorithm 3.7 (Hudson Test). Lemma 3.5 yields the following algorithm, that decides
whether an element of ZP2 belongs to W∞(e0) or not. If a belongs to W∞(e0), one
first needs to have a2 = 1, ω(a) = −3 (Noether equalities). If deg a = 1, then a =
e0 ∈ W∞(e0). Otherwise, one needs to have deg a ≥ 2 and mq(a) ≥ 0 for each q ∈
B(P2) (Corollary 2.29). Then one can apply Lemma 3.5 to obtain an element a′ ∈
W∞(a) of smaller degree, satisfying again the Noether equalities. If deg a′ ≥ 2 and the
multiplicities are again non-negative, one again applies the corollary and decreases the
degree. At some moment, either we obtain e0, and then a ∈ W∞(e0), or we get some
negative degree or multiplicity, and then a /∈W∞(e0) (by Corollary 2.29).

Example 3.8. Taking 12 different points q1, . . . , q12 ∈ B(P2).
The element a = −7e0 +

∑12
i=1 2eqi ∈ ZP2 satisfies the Noether equalities, but has

negative degree (and negative multiplicities), hence does not belong to W∞(e0).
The element a′ = 3e0 + eq1 −

∑11
i=4 eqi satisfies the Noether equalities, has positive

degree but has one negative multiplicity, hence does not belong to W∞(e0).
The element a′′ = σq1,q2,q3(a

′) = 7e0−3eq1−4eq2−4eq3−
∑11

i=4 eqi satisfies the Noether
equalities, has positive degree and non-negative multiplicities but does not belong to
W∞(e0), as a′ does not.

3.2. Predecessors.

Lemma 3.9. Let a ∈ W∞(e0), g ∈ W∞, and p1, p2 ∈ B(P2) be two distinct points.
Denote by τ ∈ SymP2 the transposition that exchanges p1 and p2. The comparison of the
two elements b = g(a) and c = τ ◦ g ◦ τ(a) of W∞(e0) is given as follows:

(♣) deg(c)− deg(b) = (mp1(a)−mp2(a))(mp1(g)−mp2(g)).

Moreover, the following hold:
(1) deg(b) = deg(c)⇔ b ≡SymP2

c;
(2) deg(b) > deg(c)⇒ comult(b) ≥ comult(c);
(3) deg(b) < deg(c)⇒ comult(b) ≤ comult(c).
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Proof. For all α ∈ ZP2 we have τ(α)− α = (mp1(α)−mp2(α))(ep1 − ep2). This yields
(♠) (τ(α)− α) · β = (mp1(α)−mp2(α))(mp1(β)−mp2(β)) for all α, β ∈ ZP2 .

We then write Λ = g−1(e0), and obtain mpi(Λ) = mpi(g) for i = 1, 2. As deg(c) =
deg(g ◦ τ(a)), we get

deg(c)− deg(b) = (g ◦ τ(a)− g(a)) · e0 = (τ(a)− a) · g−1(e0) = (τ(a)− a) · Λ
♠
= (mp1(a)−mp2(a))(mp1(Λ)−mp2(Λ))
= (mp1(a)−mp2(a))(mp1(g)−mp2(g)),

which achieves the proof of (♣).
(1): If b ≡SymP2

c, then c · e0 = b · e0, as e0 is fixed by SymP2 , i.e. deg(c) = deg(b).
Conversely, we suppose that deg(c) = deg(b), which implies that mp1(a) = mp2(a) or
mp1(g) = mp2(g) (by ♣), and we want to prove that b ≡SymP2

c. If mp1(a) = mp2(a),
then τ(a) = a, which yields c = τ ◦ g ◦ τ(a) = τ(g(a)) = τ(b). If mp1(g) = mp2(g), then
τ(Λ) = Λ, i.e. (g◦τ)−1(e0) = g−1(e0). There exists thus β ∈ SymP2 such that β◦g = g◦τ
(Corollary 2.21). This yields c = τ ◦ g ◦ τ(a) = τ ◦ β ◦ g(a) = (τ ◦ β)(b) ∈W∞(c).

(2): Assume that deg(b) > deg(c). Up to exchanging p1 and p2, we can assume that
mp1(a) > mp2(a) and mp1(g) < mp2(g) (by ♣). To show that comult b = comult g(a) ≥
comult τ ◦ g ◦ τ(a) = comult c, we denote by q ∈ B(P2) a point of maximal multiplicity
of b and write Γ = g−1(e0 − eq). This yields

comult b = (e0 − eq) · g(a) = g−1(e0 − eq) · a = Γ · a,
comult c ≤

(
e0 − τ(eq)

)
· c = (τ ◦ g ◦ τ)−1

(
e0 − τ(eq)

)
· a = τ(Γ) · a.

We then have comult c−comult b ≤ (τ(Γ)−Γ)·a ♠= (mp1(Γ)−mp2(Γ))·
(
mp1(a)−mp2(a)),

hence to prove the inequality comult b ≥ comult c, it remains to see that mp1(Γ) −
mp2(Γ) > 0 is impossible (as mp1(a) > mp2(a)). Indeed, this would yield (as mp1(Λ) <
mp2(Λ))

(τ(Γ)− Γ) · Λ ♠
= (mp1(Γ)−mp2(Γ)) · (mp1(Λ)−mp2(Λ)) < 0,

which implies that τ(Γ) · Λ < Γ · Λ = g−1(e0 − eq) · g−1(e0) = (e0 − eq) · e0 = 1. This is
impossible as τ(Γ) ∈W∞(e0 − eq) and Λ ∈W∞(e0) (see Corollary 2.30(2)).

Assertion (3) follows from (2) by replacing g with τ ◦g◦τ , which exchanges b and c. �

Definition 3.10. Let a ∈W∞(e0). A predecessor of a is an element of
{ϕ(a) | ϕ ∈W∞ is a Jonquières element}

of minimal degree.

If a ∈ W∞(e0) has degree at least 2 (i.e. a 6= e0, see Corollary 2.29), it follows from
Corollary 3.6 that the predecessors of a have degree smaller than a. The following
fundamental lemma establishes (among others) the uniqueness of a predecessor modulo
SymP2 , and gives an explicit way to compute a predecessor.

Lemma 3.11. Let a ∈W∞(e0) be an element of degree d > 1. Denote by (d;m0, . . . ,mr)
its homaloidal type, where we may assume that m0 ≥ · · · ≥ mr ≥ 1. Setting mi = 0
for i > r, we obtain an infinite non-increasing sequence (mi)i≥0. We will say that an
ordering p0, . . . , pr of the base-points of a is non-increasing if the (finite) sequence of
multiplicities i 7→ mpi(a) is non-increasing. Equivalently, this means that mpi(a) = mi

for 0 ≤ i ≤ r. Then, the following assertions are satisfied:
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(1) The set S = {s ≥ 1 | m0+m2s−1+m2s ≥ d ≥ m0+m2s+1+m2s+2} is a non-empty
subset of consecutive integers of the interval [1; r

2
] ⊆ R (whence r ≥ 2).

(2) All predecessors of a are equal modulo SymP2.
(3) Choose any non-increasing ordering p0, . . . , pr of the base-points of a. Then, for

each integer s ∈ [1; r
2
] and each α ∈ SymP2, the element α ◦ ιp0,{p1,...,p2s}(a) is a

predecessor of a if and only if s ∈ S.
(4) If ϕ ∈W∞ is a Jonquières element such that ϕ(a) is a predecessor of a, then ϕ

is equal to α ◦ ιp0,{p1,...,p2s} for some choice of a non-increasing ordering p0, . . . , pr
of the base-points of a, and for some α ∈ SymP2, s ∈ S. In particular, we have
Base(ϕ) ⊆ Base(a).

(5) If ϕ ∈W∞ is a Jonquières element, and c is a predecessor of a, then comult(ϕ(a)) ≥
comult(c). In particular, we have comult(a) ≥ comult(c).

Proof. We prove three assertions:
(I): Proof of (1). The inequality r ≥ 2 follows from Lemma 3.5. We now show that

the non-increasing sequence i 7→ ui defined by ui := m0 +m2i−1 +m2i for i ≥ 1 satisfies

(Ia) : u1 > d, and (Ib) : ui < d for i > r/2.

(Ia) : The inequality u1 = m0 +m1 +m2 > d is Noether inequality (Lemma 3.5).
(Ib) : The inequality 2i > r yields m2i = 0, which gives ui = m0 + m2i−1 ≤ m0 +

m2i−2 ≤ · · · ≤ m0+m1 ≤ d (Corollary 2.29). It remains to observe thatm1 = m2 = · · · =
m2i−1 = d−m0 and r = 2i− 1 is impossible (Lemma 2.46). Therefore, (Ia) and (Ib) are
proven. These assertions imply (1) because of the equality S = {s ≥ 1 | us ≥ d ≥ us+1}.
(II): For any non-increasing ordering p0, . . . , pr of the base-points of a, for

any α ∈ SymP2, and for any s ∈ S, the elements α ◦ ιp0,{p1,...,p2s}(a) are all equal
modulo SymP2.

Firstly, we fix a non-increasing ordering p0, . . . , pr of the base-points of a. Define
ιs = ιp0,{p1,...,p2s} and cs = ιs(a) for each integer s ∈ [1; r

2
], and show that cs ≡SymP2

cs′

for all s, s′ ∈ S. By (1), it suffices to prove this in the case where s′ = s + 1. The
fact that s, s + 1 ∈ S implies that d = us+1 = m0 + m2s+1 + m2s+2, which means
that (e0 − ep0 − ep2s+1 − ep2s+2) · a = 0 and implies that ιp0,{p2s+1,p2s+2}(a) = τ(a) where
τ ∈ SymP2 is the permutation of p2s+1 and p2s+2 (Corollary 3.4). We moreover observe
that ιs = ιp0,{p1,...,p2s} fixes p2s+1 and p2s+2, and thus commutes with τ . This yields
cs′ = ιs+1(a) = ιs(ιp0,{p2s+1,p2s+2}(a)) = ιs(τ(a)) = τ(ιs(a)) = τ(cs) as desired.

Secondly, we observe that the class of ιs(a) does not depend on the non-increasing
ordering p0, . . . , pr of the base-points of a. Indeed, two different orderings only differ by
some product of transpositions of two points having the same multiplicity. The result
then follows from Lemma 3.9.
(III): For each Jonquières element ϕ ∈W∞, one of the following holds:

(A) ϕ = α ◦ ιp0,{p1,...,p2s} for some non-increasing ordering p0, . . . , pr of the
base-points of a, for some α ∈ SymP2, and some s ∈ S.

(B) There exists a Jonquières element ϕ′ ∈ W∞ such that deg(ϕ′(a)) <
deg(ϕ(a)) and comult(ϕ′(a)) ≤ comult(ϕ(a)).

Moreover, for any non-increasing ordering p0, . . . , pr of the base-points of a,
for any α ∈ SymP2, and any integer s ∈ [1; r

2
] \ S, the assertion (B) is satisfied.
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We fix a Jonquières element ϕ ∈W∞ and choose l+1 distinct points p0, . . . , pl ∈ B(P2)
such that {p0, . . . , pl} = Base(ϕ) ∪ Base(a) (whence l ≥ r).

Suppose that there exist i, j ∈ {0, . . . , l} such that (mpi(a) − mpj(a))(mpi(ϕ) −
mpj(ϕ)) < 0. We denote by τ ∈ SymP2 the permutation of pi and pj, write ϕ′ =
τ ◦ ϕ ◦ τ (which is again a Jonquières element, by Lemma 2.41), and get deg(ϕ′(a)) −
deg(ϕ(a))

Lemma 3.9.♣
= (mpi(a)−mpj(a))(mpi(ϕ)−mpj(ϕ)) < 0. Moreover, Lemma 3.9(3)

yields comult(ϕ′(a)) ≤ comult(ϕ(a)). We are then in case (B).
We can therefore assume, after reordering the points pi, that

mp0(a) ≥ mp1(a) ≥ · · · ≥ mpl(a), mp0(ϕ) ≥ mp1(ϕ) ≥ · · · ≥ mpl(ϕ).

In particular, Base(a) = {pk | k ∈ {1, . . . , l} and mpk(a) > 0} = {p0, . . . , pr}, and the
base-points p0, . . . , pr of a are given in non-increasing order. Moreover, ϕ has maximal
multiplicity at p0. By Corollary 3.2(2), this implies that 1 ≤ mp0(ϕ) ≤ deg(ϕ) − 1.
Since ϕ is a Jonquières element of W∞, it has a point of multiplicity deg(ϕ)− 1, so that
we have mp0(ϕ) = deg(ϕ) − 1. There exists thus α ∈ SymP2 such that ϕ = α ◦ ιp0,∆,
where ∆ = Base(ϕ) \ {p0} = {pk | k ∈ {1, . . . , l} and mpk(ϕ) > 0} has even cardinality
(Lemma 2.37(2)). It follows that the set ∆ is equal to {p1, . . . , p2s} for some s ≥ 1. If
s ∈ S, we are in case (A).

We now assume that s 6∈ S, and show that we are in case (B), with ϕ′ = ϕp0,{p1,...,p2s′},
for some s′ ∈ {s ± 1}. We then only need to show that deg(cs′) < deg(cs) and
comult(cs′) ≤ comult(cs), where cs, cs′ are defined as in the proof of (II). As s 6∈ S,
we have either us < d or us+1 > d (where u is the sequence defined above, in the proof
of (I)).

If us < d, then s > 1 by (Ia), and we choose s′ = s− 1 ≥ 1. As cs′ = ιp0,{p2s−1,p2s}(cs)
is equal to σp0,p2s−1,p2s(cs) modulo SymP2 (Definition 2.35), it suffices to prove that (e0−
ep0 − ep2s−1 − ep2s) · cs < 0 (Lemma 3.3), which follows from

(e0 − ep0 − ep2s−1 − ep2s) · cs = ιs(e0 − ep0 − ep2s−1 − ep2s) · a
= −(e0 − ep0 − ep2s−1 − ep2s) · a = us − d.

If us+1 > d, we choose s′ = s + 1, which belongs to [1; r
2
] ⊆ [1; l

2
] by (Ib). As before,

it suffices to check that (e0 − ep0 − ep2s+1 − epst+2) · cs < 0, which follows from

(e0 − ep0 − ep2s+1 − ep2s+2) · cs = ιs(e0 − ep0 − ep2s+1 − ep2s+2) · a
= (e0 − ep0 − ep2s−1 − ep2s) · a = d− us+1.

This achieves the proof of (III), which gives (4). Together with (II) and since a admits
at least one predecessor, this also gives (2) and (3). It remains to prove (5). We do
it by induction on deg(ϕ(a)). The minimal case is when ϕ(a) is a predecessor of a, so
ϕ(a) ≡SymP2

c by (2), whence comult(ϕ(a)) = comult(c). If deg(ϕ(a)) > deg(c), then,
by (III), there exists a Jonquières element ϕ′ ∈ W∞ such that deg(ϕ(a)) > deg(ϕ′(a))
and comult(ϕ(a)) ≥ comult(ϕ′(a)). Since we have comult(ϕ′(a)) ≥ comult(c) by the
induction hypothesis, the result follows. �

Corollary 3.12. All predecessors of an element a ∈ W∞(e0) are equal modulo SymP2

and only depend on the class of a modulo SymP2.

Proof. We first observe that the predecessors of a ∈ W∞(e0) are equal modulo SymP2 .
If a = e0, this is because e0 is the only predecessor of a; otherwise, it follows from
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Lemma 3.11(2). We then observe that the sets of predecessors of a and of α(a) are
equal, for each α ∈ SymP2 . �

Remark 3.13. By Remark 2.44, a homaloidal type may be identified with an element
of W∞(e0)/ SymP2 . It follows from Corollary 3.12 that for each homaloidal type χ ∈
W∞(e0)/ SymP2 , one can define its (unique) predecessor χ1 ∈ W∞(e0)/ SymP2 in the
following way: Choose any representative a ∈W∞(e0) of the coset χ, then χ1 is defined
as the equivalence class modulo SymP2 in W∞(e0) of any predecessor a1 ∈W∞(e0) of a.

Assume that χ = (d;m0, . . . ,mr) with d ≥ 2 and m0 ≥ · · · ≥ mr ≥ 1. Choose an
integer s ∈ [1, r

2
] such that m0 +m2s−1 +m2s ≥ d ≥ m0 +m2s+1 +m2s+2 (this is doable

thanks to Lemma 3.11(1)). Then

χ1 = (d− ε;m0 − ε, d−m0 −m1, . . . , d−m0 −m2s,m2s+1, . . . ,mr)

where ε =
∑s

i=1(m0 + m2i−1 + m2i − d) is positive (the form of χ1 follows from Lem-
ma 3.11(3)). Of course, as usual, we can remove the multiplicities which are zero and
order the remaining ones in a non-decreasing manner.

Example 3.14. To simplify the notation, a sequence of smultiplicitiesm is writtenms. In
the following list, the notation χ→χ1 means that χ1 is the predecessor of the homaloidal
type χ.

(d; d− 1, 12d−2)→(1); (4; 23, 13)→(2; 13); (38; 18, 133, 124, 6)→(23; 12, 83, 73, 6, 3);
(16; 65; 53)→(12; 53, 44, 2); (5; 26)→(3; 2, 14); (74; 28, 275, 192, 18)→(58; 27, 196, 18, 12).

Lemma 3.15. Let f, g ∈ W∞ be elements such that Base(f) ∩ Base(g−1) = ∅ and
deg(g) = d > 1. Defining h = f ◦ g, the following hold:

(1) deg(h) = deg(f) · deg(g) and |Base(h)| = |Base(f)|+ |Base(g)|.
(2) If ϕ ∈ W∞ is a Jonquières element such that ϕ(g−1(e0)) is a predecessor of

g−1(e0), then ϕ(h−1(e0)) is a predecessor of h−1(e0).

Proof. If deg f = 1, we get Base(f) = ∅, f−1(e0) = e0 and h−1(e0) = g−1(e0), so that
there is nothing to check. We can then assume that deg(f) = D > 1. If (d;m0, . . . ,mr)
and (D;µr+1, . . . , µl) are the homaloidal types of g and f with m0 ≥ · · · ≥ mr ≥ 1 and
µr+1 ≥ · · · ≥ µl ≥ 1, choose orderings p0, . . . , pr and qr+1, . . . , ql of the base-points of g
and f such that

g−1(e0) = de0 −
∑r

i=0miepi and f−1(e0) = De0 −
∑l

i=r+1 µieqi .

Since Base(f) ∩ Base(g−1), there exist points pr+1, . . . , pl ∈ B(P2) \ Base(g) = B(P2) \
{p0, . . . , pr} such that g−1(eqi) = epi for i = r + 1, . . . , l (Lemma 2.23). We then obtain

h−1(e0) = g−1(De0 −
∑l

i=r+1 µieqi) = Dg−1(e0)−
∑l

i=r+1 µiepi
= Dde0 −

∑r
i=0Dmiepi −

∑l
i=r+1 µiepi .

This already proves (1). It then remains to show (2). As ϕ(g−1(e0)) is a predecessor of
g−1(e0), Lemma 3.11(4) provides (up to a re-ordering of the points p0, . . . , pr) an element
α ∈ SymP2 and an integer s ∈ [1; r

2
] satisfying

(♥) m0 +m2s−1 +m2s ≥ d ≥ m0 +m2s+1 +m2s+2
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(wheremi = 0 if i > r) such that ϕ = α◦ιp0,{p1,...,p2s}. Since µr+1 ≤ D−1 (Corollary 2.29),
we have

mp0(h) = m0D ≥ · · · ≥ mpr(h) = mrD > mpr+1(h) = µr+1 ≥ · · · ≥ mpl(h) = µl.

According to Lemma 3.11(3) for showing that ϕ(h−1(e0)) is a predecessor of h−1(e0) it
is sufficient (and necessary) to prove that

mp0(h) +mp2s−1(h) +mp2s(h) ≥ Dd ≥ mp0(h) +mp2s+1(h) +mp2s+2(h).

If 2s+2 ≤ r, this is just (♥) multiplied byD. Let us therefore now assume that 2s+2 > r,
so that we have 2s+ 2 ∈ {r+ 1, r+ 2}. If 2s+ 2 = r+ 2, it suffices to prove that Dd ≥
Dm0 + µr+1 + µr+2. This follows from the inequalities µr+1 + µr+2 ≤ D and m0 ≤ d− 1
(Corollary 2.29). If 2s + 2 = r + 1, it suffices to prove that Dd ≥ Dm0 + Dmr + µr+1.
If m0 + mr ≤ d − 1, this follows from µr+1 ≤ D − 1. It remains to show that the
case m0 + mr ≥ d can not occur. Indeed, otherwise we would have m0 + mr = d
(Corollary 2.29) and then r should be even by Lemma 2.46. A contradiction. �

Algorithm 3.16 (Computing the length in W∞). To each a0 ∈W∞(e0) we can associate
a sequence a1, a2, . . . , of elements of W∞(e0) such that ai is a predecessor of ai−1 for
each i ≥ 1. We then say that ai is a i-th predecessor of a0.

At some step n ≥ 0, we have an = e0 and then aj = e0 for all j ≥ n. This provides then
a finite sequence (a0, . . . , an) ending with e0. Corollary 3.12 shows that this sequence is
unique modulo SymP2 , and Lemma 3.11 provides an explicit way to compute it.

The fact that the number n of steps is really the length in W∞ will be proven in
Proposition 3.19 below.

Example 3.17. As before, a sequence of s multiplicities m is written ms. We apply
Algorithm 3.16 to a list of homaloidal types:

• (11; 6, 5, 42, 32, 22, 1)→(5; 3, 23, 13)→(2; 13)→(1);
• (19; 77, 4, 1)→(13; 56, 4, 12)→(8; 4, 35, 12)→(4; 3, 16)→(1);
• (40; 18, 17, 142, 124, 32)→(25; 12, 103, 82, 5, 33)→(13; 8, 52, 36)→(5; 26)→(3; 2, 14)→(1);
• (38; 146, 112, 5)→(29; 13, 11, 105, 52)→(16; 65, 53)→(12; 53, 44, 2)→(7; 34, 23)
→(4; 23, 13)→(2; 13)→(1);

• (184; 75, 616, 60, 48)→(145; 60, 487, 36)→(112; 48, 376, 36, 27)→(82; 36, 277, 18)
→(58; 27, 196, 18, 12)→(37; 18, 127, 6)→(22; 12, 76, 6, 3)→(10; 6, 37)→(4; 3, 16)→(1).

Example 3.18. Applying Algorithm 3.16 to (17; 68) yields a sequence of homaloidal types
of particular interest:

(17; 68)→(14; 6, 56, 3)→(8; 37)→(5; 26)→(3; 2, 14)→(1)

It provides all the symmetric homaloidal types (symmetric means here that all multi-
plicities are the same) except the simplest one, namely (2; 13) [Alb2002, Lemma 2.5.5].
Note that (17; 68) and (8; 37) are the homaloidal types of classical Bertini and Geiser
involutions, associated to the blow-ups of 8, respectively 7 general points of P2.

We can now give the following result, which is the analogue of Theorem 1 for W∞.

Proposition 3.19. Let n ≥ 1, let a0 ∈W∞(e0) and let an ∈W∞(e0) be a n-th predeces-
sor of a0. For all Jonquières elements ψ1, . . . , ψn ∈W∞, the element bn = ψn◦· · ·◦ψ1(a0)
satisfies
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(1) deg(an) ≤ deg(bn);
(2) comult(an) ≤ comult(bn);
(3) If deg(an) = deg(bn), then an and bn are equal modulo SymP2.

Proof. We prove the result by induction on the triples (n, lgth(a0), deg(b1)), ordered
lexicographically, where b1 = ψ1(a0).

If n = 1, (1) is given by the definition of a predecessor, and (2) and (3) follow
respectively from Lemma 3.11(5) and Lemma 3.11(2). We will then assume that n > 1
in the sequel.

We write ψ = ψn ◦ · · · ◦ ψ1 ∈ W∞, and write Base(a0) ∪ Base(ψ) = {p1, . . . , pl}, for
some distinct points pi that we can assume to be such that mp1(a) ≥ · · · ≥ mpl(a) ≥ 0.

If there exist i, j ∈ {1, . . . , l} such that i < j and mpi(ψ) < mpj(ψ), we denote by
τ ∈ SymP2 the permutation of pi and pj, write b′n = τ◦ψ◦τ(a0) and replace bn with b′n and
ψi with τ ◦ ψi ◦ τ for i = 1, . . . , n, which are Jonquières elements of W∞ (Lemma 2.41).
To see that this is possible, we use

deg(b′n)− deg(bn)
Lemma 3.9.♣

= (mpi(a)−mpj(a))(mpi(ψ)−mpj(ψ)) ≤ 0.

If deg(b′n) = deg(bn) then bn and b′n are equal modulo SymP2 (Lemma 3.9(1)). And if
deg(b′n) < deg(b), then comult(b′n) ≤ comult(bn) (Lemma 3.9(2)). In both cases, proving
the result for b′n gives the result for bn. After finitely many steps, we then reduce to the
case where

mp1(a) ≥ · · · ≥ mpl(a) ≥ 0 and mp1(ψ) ≥ · · · ≥ mpl(ψ) ≥ 0.

In particular, both a and ψ have maximal multiplicity at p1.
For i = 1, . . . , n − 1, we define ai to be a i-th predecessor of a0, and write bi =

ψi◦· · ·◦ψ1(a0). If an = e0, all assertions hold, so we can assume that deg(an) ≥ 2, which
implies that comult(an−1) ≥ 2 (by Lemma 3.2(4) the equality comult(an−1) = 1 would
give an = e0). By induction hypothesis, we have comult(bn−1) ≥ comult(an−1) ≥ 2, so
bn 6= e0. As this is true for any choice of Jonquières elements ψ1, . . . , ψn, we find that

lgth(a0) ≥ n+ 1.

We now apply the algorithm to Λ0 = ψ−1(e0). As p1 is a point of Λ0 of maxi-
mal multiplicity, there exists θ1 ∈ Jp1 such that Λ1 = θ1(Λ0) is a predecessor of Λ0

(Lemma 3.11(3)). We then define a sequence (Λi)i≥2, and Jonquières elements (θi)i≥2

such that Λi = θi(Λi−1) is a predecessor of Λi−1 for each i ≥ 1. Since ψ is a prod-
uct of n Jonquières elements, we have lgth(Λ0) ≤ n < lgth(a0). The pair (n, lgth(a0))
is thus bigger than (n, lgth(Λ0)), so we find that deg Λn ≤ degψ(Λ0) = deg e0 = 1
by induction hypothesis. This yields Λn = e0, and thus θ = θn ◦ · · · ◦ θ1 satisfies
e0 = θ(Λ0) = θ(ψ−1(e0)), which yields θ ◦ ψ−1 ∈ SymP2 (Lemma 2.20(4)). Hence, we
can replace ψi with θi for i = 1, . . . , n, since bn = ψ(a0) is equal to θ(a0) modulo SymP2 .
This reduces to the case where ψ1 ∈ Jp1 .

Applying induction hypothesis to b1 and the n−1 Jonquières ψ2, . . . , ψn, we can reduce
to the case where bi is a predecessor of bi−1 for i = 2, . . . , n. We can moreover assume
that ψ2 ∈ Jq where q ∈ B(P2) is a base-point of b1 of maximal multiplicity (Lemma 3.11).

If deg(a1) = deg(b1), then a1 and b1 are equal modulo SymP2 (Lemma 3.11), so the
result follows, as in this case bi is a predecessor of bi−1 for i = 1, . . . , n, hence bi is equal
to ai modulo SymP2 for i = 1, . . . , n. We can then assume that deg(a1) < deg(b1).
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If b1 has maximal multiplicity at p1, then we can assume that ψ2 ∈ Jp1 (since b2 =
ψ2(b1) is a predecessor of b1), and apply the induction hypothesis to ψ2 ◦ ψ1, ψ3, . . . , ψn
to obtain that deg(an−1) ≤ deg(bn) and comult(an−1) ≤ comult(bn). The result follows
in this case from deg(an) ≤ deg(an−1) and comult(an) ≤ comult(an−1) (Lemma 3.11(5)).

We can then find a point q ∈ B(P2) \ {p1} such that b1 has maximal multiplicity at
q and ψ2 ∈ Jq. We claim that there exists r ∈ B(P2) \ {p1, q} such that deg(b1) <
mp1(b1) + mq(b1) + mr(b1). Let us first show why this claim achieves the proof, before
proving the claim. We choose the involution σp1,q,r ∈ Jp1 ∩ Jq as in Definition 2.35, write
ψ′1 = σp1,q,r ◦ψ1 ∈ Jp1 and ψ′2 = ψ2 ◦σp1,q,r ∈ Jq. We can thus replace ψ1 and ψ2 with the
Jonquières elements ψ′1 and ψ′2 respectively, without changing bi for i = 2, . . . , n. This
replaces b1 with b′1 = σp1,q,r(b1), which satisfies deg(b′1) < deg(b1) (Lemma 3.3(2)). The
result then follows by induction hypothesis.

It remains to prove the claim. As p1 is a point of maximal multiplicity of a0, there
exists ϕ1 ∈ Jp1 such that ϕ1(a0) is a predecessor of a0, so that ϕ1(a0) is equal to a1 mod
SymP2 (Lemma 3.11). We set ν = ϕ1 ◦ (ψ1)−1 ∈ Jp1 and find a set ∆ ⊆ B(P2) r {p1} of
even order, such that ν−1(e0) = e0 +

∑
r∈∆

e0−ep1
2
− er (Lemma 2.37). In particular,

degϕ1(a0) = deg ν ◦ ψ1(a) = ν−1(e0) · b1 = deg b1 +
∑

r∈∆

(
deg b1−mp1 (b1)

2
−mr(b1)

)
.

Since degϕ1(a0) < deg b1, there exist two distinct points r1, r2 ∈ ∆ such that

0 >
(

deg b1−mp1 (b1)

2
−mr1(b1)

)
+
(

deg b1−mp1 (b1)

2
−mr2(b1)

)
= deg b1 −mp1(b1)−mr1(b1)−mr2(b2).

Since mq(b1) ≥ max{mr1(b1),mr2(b1)} and q 6= p1, we can replace one of the two points
r1, r2 with q and denote by r the other one. This achieves the proof of the claim. �

3.3. From the Weyl group to the Cremona group. Starting from an element of
Bir(P2), Algorithm 3.16 yields a way to decompose it into a product of Jonquières ele-
ments of W∞, and the optimality of the algorithm in W∞ is given by Proposition 3.19.
We now show that the algorithm also works in Bir(P2). To do this, we first make the
following easy observation, which relates the two notions of predecessors already defined
for elements of Bir(P2) and for elements of W∞(e0) (Definitions 1.2 and 3.10 respec-
tively). We will then prove that the hypothesis of Lemma 3.20 is in fact always satisfied
(Proposition 3.26), and this will allow us to give a stronger version of Lemma 3.20
(Corollary 3.27 below).

Lemma 3.20. Let f ∈ Bir(P2). If there exists a Jonquières element ϕ ∈ Bir(P2) such
that ϕ(f−1(e0)) ∈ ZP2 is a predecessor of f−1(e0) (in the sense of Definition 3.10), then:

(1) f ◦ ϕ−1 ∈ Bir(P2) is a predecessor of f (in the sense of Definition 1.2).
(2) g−1(e0) is a predecessor of f−1(e0), for each predecessor g ∈ Bir(P2) of f .

Proof. (1): To prove that f ◦ ϕ−1 is a predecessor of f , we only need to show that
deg(f ◦ψ−1) ≥ deg(f ◦ϕ−1) (which is equivalent to deg(ϕ(f−1(e0))) ≤ deg(ψ(f−1(e0))))
for each Jonquières element ψ ∈ Bir(P2). As ϕ(f−1(e0)) is a predecessor of f−1(e0) it
satisfies deg(ϕ(f−1(e0))) ≤ deg(ψ(f−1(e0))) for each Jonquières element ψ ∈ W∞, and
thus in particular for each Jonquières element ψ ∈ Bir(P2) (Lemma 2.42).
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(2): If g ∈ Bir(P2) is a predecessor of f , then g = f ◦κ for some Jonquières transforma-
tion κ ∈ Bir(P2), and deg(g) = deg(f ◦ϕ−1) by (1). The element g−1(e0) = κ−1(f−1(e0))
has then the same degree as the predecessor ϕ(f−1(e0)) of f−1(e0), and is thus also a
predecessor of f−1(e0) (by Definition 3.10). �

We first recall the following famous result, corresponding to the algorithm defined in
[Alb2002, Chapter 8], adapting the proof of Castelnuovo [Cas1901].

Proposition 3.21 (Castelnuovo reduction). Let f ∈ Bir(P2) be of degree d > 1, let
p ∈ P2 be a base-point of f of maximal multiplicity. We define M = {q ∈ Base(f)\{p} |
mp + 2mq > d}. Then, M contains at least two elements, and the following hold:

(1) If |M | is even, there is an element ϕ ∈ Jonqp such that Base(ϕ) = {p} ∪M .
(2) If |M | is odd, there is q ∈ M of minimal multiplicity and an element ϕ ∈ Jonqp

such that Base(ϕ) = {p} ∪ (M \ {q}).
For each ϕ as above, we have deg(f ◦ ϕ−1) < deg(f).

Remark 3.22. In [Alb2002], the elements of M are called the major base-points of f and
their number |M | is written h (see [Alb2002, Definition 8.2.1]).

Proof. The proof of the proposition lies in Chapter 8 and especially in §8.3 of [Alb2002].
The fact that h = |M | ≥ 2 is [Alb2002, Lemma 8.2.6]. The existence of ϕ and the fact
that deg(f ◦ ϕ−1) < deg(f) is given at page 242, in the proof of [Alb2002, Theorem
8.3.4]. �

Definition 3.23. Let f ∈ Bir(P2). If deg(f) > 1, we define a Castelnuovo-predecessor of
f to be an element of the form f ◦ϕ−1 where the Jonquières transformation ϕ ∈ Bir(P2)
has been described in Proposition 3.21. If deg(f) = 1, we define f to be its own
Castelnuovo-predecessor.

Lemma 3.24. Let f ∈ Bir(P2) be a Jonquières element of degree d > 1. Then every
Castelnuovo-predecessor of f has degree 1.

Proof. Let g be a Castelnuovo-predecessor of f , equal to g = f ◦ϕ−1 for some Jonquières
transformation ϕ ∈ Jonqp as in Proposition 3.21, where p ∈ P2 is a base-point of f
of maximal multiplicity. We want to show that deg(g) = 1. As deg(g) < deg(f),
we can assume that d = deg(f) > 2. The element f is a Jonquières element of W∞
(Lemma 2.42), and is thus equal to α ◦ ιq,∆, where α ∈ SymP2 , q ∈ B(P2) and ∆ ⊆
B(P2) \ {q} is a finite set of even order 2n (Lemma 2.41). As f−1(e0) = ιq,∆(e0) =
(n + 1)e0 − neq −

∑
r∈∆

er, we get deg(f) = deg(ιq,∆) = n + 1, whence n ≥ 2 and q is the

unique base-point of f of maximal multiplicity. It follows that p = q. Moreover, the set
M := {r ∈ Base(f) \ {q} | mq + 2mr > d } which was defined in Proposition 3.21 is
equal to ∆ which has even order. This implies that ϕ ∈ Jonqq is such that Base(ϕ) =
{q} ∪M = Base(f). We then find ϕ = β ◦ ιq,∆ for some β ∈ SymP2 (Lemma 2.37). This
yields g = α ◦ β−1 ∈ SymP2 and deg(g) = 1 as desired. �

Algorithm 3.25 (Algorithm of Castelnuovo). Taking f0 ∈ Bir(P2) \ Aut(P2), Proposi-
tion 3.21 yields a Jonquières element ϕ1 ∈ Bir(P2) such that the Castelnuovo predecessor
f1 = f0 ◦ϕ−1

1 satisfies deg(f1) < deg(f0). Applying again the result finitely many times,
we find a sequence of Castelnuovo predecessors f0, f1, . . . , fn and a sequence of Jonquières



28 JÉRÉMY BLANC AND JEAN-PHILIPPE FURTER

elements ϕ1, ϕ2, . . . , ϕn, which lead to a decomposition of f0 into fn ◦ϕn ◦ · · · ◦ϕ1, where
fn ∈ Aut(P2). Since ϕ′n := fn ◦ ϕn is Jonquières, this algorithm actually provides a
decomposition of f0 into the product of n Jonquières elements

f0 = ϕ′n ◦ ϕn−1 ◦ · · · ◦ ϕ1.

As we will show in Corollary 3.29, this integer n (which is the integer n for which the
algorithm stops, i.e. for which deg fn = 1) is the length of f0.

Recall that a predecessor of an element a ∈W∞(e0) is an element of minimal degree
among all the elements of the form ϕ(a) where ϕ is a Jonquières element of W∞. The
next fundamental result shows that we can choose ϕ to be in Bir(P2) if a = f−1(e0) for
some f ∈ Bir(P2).

Proposition 3.26. Let f ∈ Bir(P2) \ Aut(P2) and let p0 ∈ P2 be a base-point of f of
maximal multiplicity.

(1) There exists a Jonquières element ψ ∈ Jonqp0 such that ψ(f−1(e0)) ∈ ZP2 is a
predecessor of f−1(e0). For each such ψ, the element f ◦ ψ−1 ∈ Bir(P2) is a
predecessor of f (Lemma 3.20).

(2) If ϕ ∈ Jonqp0 is a Jonquières element provided by the Castelnuovo reduction of f
(Proposition 3.21), one can choose ψ as above such that ψ ◦ ϕ−1 ∈ Jonqp′ for
some point p′ ∈ P2 of maximal multiplicity of ϕ(f−1(e0)).

Proof. Let ϕ ∈ Jonqp0 be a Jonquières element provided by the Castelnuovo reduction.
We choose r distinct points p1, . . . , pr ∈ B(P2) such that Base(f) = {p0, . . . , pr}, write
mi = mpi(f) for each i, and choose the order such that m0 ≥ m1 ≥ · · · ≥ mr, and such
that for any i ≥ 1, either pi is a proper point of P2 or pi is in the first neighbourhood
of some pj with j < i. We then define mi = 0 for each integer i > r, and write
M = {pi | i ≥ 1,m0 + 2mi > d} as in Proposition 3.21.

Suppose first that |M | is even. In this case, ϕ ∈ Jonqp0 satisfies Base(ϕ) = {p0} ∪
M (Proposition 3.21(1)) and is then equal to ϕ = α ◦ ιp0,M for some α ∈ SymP2

(Lemma 2.37(2)). Writing 2s = |M |, we find m0 + m2s−1 + m2s = ((m0 + 2m2s−1) +
(m0 + m2s))/2 > d ≥ ((m0 + 2m2s+1) + (m0 + m2s+2))/2 = m0 + m2s+1 + m2s+2, which
implies that ιp0,{p1,...,p2s}(f−1(e0)) is a predecessor of f−1(e0) Lemma 3.11(3), so the same
holds for ϕ(f−1(e0)). This achieves the proof, by choosing ψ = ϕ, whence ρ = id.

Suppose now that |M | is odd. In this case, ϕ ∈ Jonqp0 satisfies Base(ϕ) = {p0} ∪
(M \ {q}) for some q ∈M of minimal multiplicity (Proposition 3.21(2)) and is equal to
ϕ = α ◦ ιp0,M\{q} for some α ∈ SymP2 (Lemma 2.37(2)). Writing 2s + 1 = |M |, we can
assume that p2s+1 = q, which yields ιp0,M\{q} = ιp0,{p1,...,p2s}, and find m0 +m2s−1 +m2s =
((m0 + 2m2s−1) + (m0 +m2s))/2 > d. We then obtain two cases:

If d ≥ m0 + m2s+1 + m2s+2, then ιp0,{p1,...,p2s}(f
−1(e0)) is a predecessor of f−1(e0)

(Lemma 3.11(3)), so the same holds for ϕ(f−1(e0)). We then choose ψ = ϕ as before.
The last case is when d < m0 +m2s+1 +m2s+2, which implies that m2s+2 > 0 (Corol-

lary 2.29) and thus that 2s + 2 ≤ r. We can assume that p2s+2 is not infinitely near
to a point pi with i > 2s + 2 (otherwise we have mi = m2s+2, so we exchange p2s+2

with pi). Since d ≥ m0 + m2s+3 + m2s+4, the element as+1 = ιp0,{p1,...,p2s+2}(f
−1(e0)) is

a predecessor of f−1(e0) (Lemma 3.11(3)). Moreover, as = ιp0,{p1,...,p2s}(f
−1(e0)) is not
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a predecessor of f−1(e0) (Lemma 3.11(3)), which implies that deg(as) > deg(as+1). We
will prove the following numerical assertions:

(I) The point p2s+2 is a base-point of as+1 of maximal multiplicity;
(II) mp2s+2(as) > mpi(as) for i = 1, . . . , 2s;
(III) (e0 − ep0 − ep2s+1 − ep2s+2) · as = deg(as)−mp0(as)−mp2s+1(as)−mp2s+2(as) < 0;
(IV) The point p2s+1 is the unique base-point of as of maximal multiplicity.

Before proving these assertions, let us show how they imply the result.
We write Λ = ϕ(f−1(e0)), which corresponds to the linear system of f ◦ ϕ−1. For

i = 1, . . . , r, we then denote by qi ∈ B(P2) the point such that α(epi) = eqi . As
ϕ = α ◦ ιp0,{p1,...,p2s}, we find Base(Λ) ⊆ {q0, . . . , qr}. Moreover, ϕ and ιp0,{p1,...,p2s}
belong to Jp0 , so that α also belongs to Jp0 . This gives us α(e0 − ep0) = e0 − ep0 and
finally q0 = p0 is a proper point of P2. Assertion (IV) implies that q2s+1 is the unique
base-point of Λ of maximal multiplicity, so p′ := q2s+1 is a proper point of P2. We
then observe that q2s+2 is either a proper point of P2 or a point infinitely near p0 or
p′. Indeed, it cannot be infinitely near qi if i ∈ {1, . . . , 2s} by (II) and if i > 2s + 1,
because p2s+1 is not infinitely near pi. Moreover, p0, p

′, q2s+2 are not collinear because
of (III) and Bézout Theorem. Up to change of coordinates, we can thus assume that
{p0, p

′} = {[1 : 0 : 0], [0 : 1 : 0]} and that p0, p
′, q2s+2 are the three base-points of a

quadratic involution ρ ∈ Jonqp0 ∩ Jonqp′ ⊆ Bir(P2) which is one of the two following

[x : y : z] 99K [yz : xz : xy] or [x : y : z] 99K [z2 : xy : xz],

and satisfies then ρ = β ◦ σp0,p′,q2s+2 for some β ∈ SymP2 (see Definition 2.35). The
result then follows by setting ψ := ρ ◦ ϕ ∈ Jonqp0 . Indeed, as Base(β ◦ σp0,p′,q2s+2 ◦ α) =
{p0, p2s+1, p2s+2}, we have β ◦ σp0,p′,q2s+2 ◦ α = γ ◦ ιp0,{p2s+1,p2s+2} for some γ ∈ SymP2 ,
which yields ψ = β ◦ σp0,p′,q2s+2 ◦ α ◦ ιp0,{p1,...,p2s} = γ ◦ ιp0,{p1,...,p2s+2}, and implies that
ψ(f−1(e0)) = γ(as+1) is a predecessor of f−1(e0). Moreover, p′ = q2s+1 ∈ P2 is such that
ρ ∈ Jonqp′ and is a point of maximal multiplicity of ψ(f−1(e0)); this follows from (I)
and from γ(ep2s+2) = ep′ , which is given by e0 − ep′ = ρ(e0 − ep′) = ρ ◦ α(e0 − ep2s+1) =
γ ◦ ιp0,{p2s+1,p2s+2}(e0 − ep2s+1) = γ(e0 − ep2s+2) = e0 − γ(ep2s+2).

It remains to prove the assertions (I)–(IV).
(I): Writing µ = d−m0

2
, we have m0 ≥ · · · ≥ m2s ≥ m2s+1 > µ ≥ m2s+2 ≥ · · · ≥ mr

and 2µ = d − m0 < m2s+1 + m2s+2. This yields mp2s+2(as+1) = d − m0 − m2s+2 =
2µ − m2s+2 ≥ µ > 2µ − mi = d − m0 − mi = mpi(as+1) for each i ∈ {1, . . . , 2s + 1}.
We moreover have mp2s+2(as+1) ≥ µ ≥ mi = mpi(as+1) for each i ∈ {2s + 3, . . . , r}. It
then remains to show that mp2s+2(as+1) > mp0(as+1). This holds, because otherwise p0

would be a point of maximal multiplicity of as+1, which would yield the existence of
κ ∈ Jp0 such that deg(κ(a)) < deg(a) (Corollary 3.6), contradicting the fact that as+1 is
a predecessor of f−1(e0).

(II): Follows from mp2s+2(as) = m2s+2 > d −m0 −m2s+1 ≥ d −m0 −mi = mpi(as),
for i ∈ {1, . . . , 2s}.

(III)–(IV): Set ν = mp0(as) +mp2s+1(as) +mp2s+2(as)− deg(as). The equality as+1 =
ιp0,{p2s+1,p2s+2}(as) gives deg(as+1) = deg(as)−ν, whence ν > 0, i.e. (III). It also provides

mp0(as) = mp0(as+1) + ν,mp2s+1(as) = mp2s+2(as+1) + ν,mp2s+2(as) = mp2s+1(as+1) + ν,
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and mpi(as) = mpi(as+1) for i 6= 0, 2s + 1, 2s + 2. Since p2s+2 was a base-point of
maximal multiplicity of as (by (I)), it follows that p2s+1 is a base-point of maximal
multiplicity of as+1 and that such base-points of maximal multiplicity of as+1 are included
into the set {p0, p2s+1, p2s+2}. However, we have already seen in the proof of (I) that
mp2s+2(as+1) > mpi(as+1) for i = 0 or i = 2s+ 1. This proves (IV). �

Corollary 3.27. Let f, g ∈ Bir(P2). Then, the two following assertions are equivalent:
(1) g is a predecessor of f (Definition 1.2);
(2) g−1(e0) is a predecessor of f−1(e0) (Definition 3.10) and f−1◦g ∈ Jonq ⊆ Bir(P2).

Proof. By Proposition 3.26(1), the assumptions of Lemma 3.20 are always fulfilled.
Therefore, the implication (1) ⇒ (2) follows from Lemma 3.20(2) and the implication
(2)⇒ (1) follows from Lemma 3.20(1) applied with ϕ = g−1 ◦ f ∈ Jonq. �

We are now ready to give the proof of Lemma 1.3 and Theorem 1.

Proof of Lemma 1.3. Let f ∈ Bir(P2), and let g ∈ Bir(P2) be a predecessor of f , which
is then equal to g = f ◦ ϕ for some Jonquières element ϕ ∈ Bir(P2).

By Corollary 3.27, g−1(e0) = ϕ−1(f−1(e0)) is a predecessor of f−1(e0). This implies
that Base(ϕ−1) ⊆ Base(f−1(e0)) = Base(f) (Lemma 3.11(4)), and gives (3). More-
over, the homaloidal type of g, which is the class of g−1(e0) modulo SymP2 , is uniquely
determined by the homaloidal type of f (Corollary 3.12). This proves (1).

It remains to prove (2). The set of predecessors being invariant under right multipli-
cation by elements of Aut(P2), it is infinite. It remains to see that the number of classes
modulo Aut(P2) is finite. This corresponds to saying that the number of possibilities for
Base(ϕ−1) is finite, and is thus given by (3). �

Proof of Theorem 1. For each i ≥ 0, we set ai := (fi)
−1(e0) ∈ W∞(e0). By Corol-

lary 3.27, ai is a predecessor of ai−1 for each i ≥ 1, so ai is a i-th predecessor of a0 for
each i ≥ 1.

We then write bn = g−1
n (e0) = ϕ−1

n ◦· · ·◦ϕ−1
1 (a0). As ϕ1, . . . , ϕn are Jonquières elements

of Bir(P2), they are all the more Jonquières elements of W∞ (Lemma 2.42). Then, the
three assertions (1)-(2)-(3) of Theorem 1 directly follow from the three corresponding
assertions (1)-(2)-(3) of Proposition 3.19 that we now recall: (1) deg(an) ≤ deg(bn); (2)
comult(an) ≤ comult(bn); (3) if deg(an) = deg(bn), then an and bn are equal modulo
SymP2 .

It remains to observe that lgth(f0) = min{n | deg(fn) = 1}. To do this, we write
` = lgth(f0), m = min{n | deg(fn) = 1}, and prove ` ≥ m and m ≥ `.

The fact that ` = lgth(f) yields the existence of Jonquières elements ϕ1, . . . , ϕ` ∈
Bir(P2) such that deg(f ◦ ϕ1 ◦ · · · ◦ ϕ`) = 1. By (1), we find deg(f`) ≤ 1, which yields
` ≥ m.

Writing for each i a Jonquières element ψi ∈ Jonq such that fi−1 = fi ◦ ψi, we obtain
f0 = fm ◦ ψm ◦ · · · ◦ ψ1. As deg(fm) = 1, this implies that ` = lgth(f0) ≤ m. �

Corollary 3.28 (Length of predecessors, associated to any point of maximal multiplic-
ity). Let f ∈ Bir(P2) \ Aut(P2). For each point q ∈ P2 of maximal multiplicity of f ,
there exists ϕ ∈ Jonqq ⊆ Bir(P2) such that f ◦ ϕ is a predecessor of f . Moreover, every
predecessor g of f satisfies lgth(g) = lgth(f)− 1 and deg(g) < deg(f).
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Proof. The existence of ϕ is given by Proposition 3.26. Any predecessor g of f satisfies
deg(g) < deg(f) (Corollary 3.6). Finally, we have lgth(g) = lgth(f)− 1 by Theorem 1.

�

Corollary 3.29 (The Algorithm of Castelnuovo also provides the length). Let f ∈
Bir(P2) \ Aut(P2), let g ∈ Bir(P2) be a predecessor of f , and let h ∈ Bir(P2) be a
Castelnuovo predecessor of f . Then, the following hold:

(1) The predecessors of g and h have the same homaloidal type;
(2) lgth(g) = lgth(h) = lgth(f)− 1.

Hence, writing f = f0 and denoting by f1, f2, . . . elements of Bir(P2) such that fi is a
Castelnuovo-predecessor of fi−1 for i ≥ 1, we find lgth(f) = min{n | deg(fn) = 1}.

Proof. (1): By definition of a Castelnuovo predecessor there exists a proper base-point
p0 of maximal multiplicity of f and a Jonquières tranformation ϕ ∈ Jonqp0 such that
h = f ◦ ϕ−1. By Proposition 3.26 there exists a Jonquières tranformation ψ ∈ Jonqp0
such that the elements f1 := f ◦ ψ−1 and ρ := ψ ◦ ϕ−1 satisfy the following assertions:

(1) f1 is a predecessor of f ;
(2) ρ ∈ Jonqp′ for some point p′ ∈ P2 of maximal multiplicity of ψ(f−1(e0)).

By Lemma 1.3, f1 and g have the same homaloidal type. Applying Proposition 3.26 to
f1 and p′, we find κ ∈ Jonqp′ such that f2 := f1 ◦ κ ∈ Bir(P2) is a predecessor of f2.

We now prove that f2 is a predecessor of h. Firstly, f2 = f1 ◦ κ = f ◦ ψ−1 ◦ κ =
h◦ρ−1◦κ = h◦κ′, where κ′ = ρ−1◦κ ∈ Jonqp′ . Secondly, if ν ∈ Bir(P2) is any Jonquières
transformation, we prove that deg(f2) ≤ deg(h ◦ ν). This follows from Theorem 1,
because h ◦ ν = f ◦ ϕ−1 ◦ ν.

As f2 is a predecessor of h and a predecessor of f1, which has the same homaloidal
type as g, all predecessors of g and h have the same homaloidal type (Lemma 1.3). This
achieves the proof of (1). The situation is as follows:

f

f ◦ ϕ−1 = h

f1 = f ◦ ψ−1 = h ◦ ρ−1

f2 = h ◦ κ′ = f1 ◦ κ

PredecessorCastelnuovo-predecessor

Predecessor
Predecessor

ρ

(2): As f /∈ Aut(P2), we have deg(f) > 1. Corollary 3.28 yields lgth(f1) = lgth(g) =
lgth(f) − 1 ≥ 0, because g and f1 are predecessors of f . It remains to prove that
lgth(h) = lgth(f1).

If f is a Jonquières element, then lgth(f) = 1, whence lgth(f1) = 0. As deg(g) = 1 in
this case (Lemma 3.24), we also have lgth(g) = 0.

If f is not a Jonquières element, then deg(h) > 1 and deg(f1) > 1. We find lgth(f2) =
lgth(h)− 1 = lgth(f1)− 1, as f2 is a predecessor of f1 and h (Corollary 3.28).

The last sentence is a direct consequence of (2). �

4. Examples and applications

4.1. Length of birational maps of small degree. The next table gives all homaloidal
types of degree ≤ 6. The homaloidal types are given in the second column (as already
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said before, a sequence of s multiplicities m is written ms). In the first column (#)
a label is associated to each homaloidal type: This is the degree “d ” if the type is
Jonquières, or “d.i” for the others (the order, for each degree, being the anti-lexicographic
order according to the multiplicities). Then, the third column (`) gives the length and
the fourth (pr.) gives the predecessor (designated by its label). If the Castelnuovo-
predecessor is different from the predecessor, it is also given, but in parenthesis. We see
that the lengths are not directly related to the ordering of homaloidal types that we use.

# h. type ` pr.
1 1 0
2 13 1 1
3 2, 14 1 1
4 3, 16 1 1

# h. type ` pr.
4.1 23, 13 2 2
5 4, 18 1 1
5.1 3, 23, 13 2 2(3)
5.2 26 2 3

# h. type ` pr.
6 5, 110 1 1
6.1 4, 24, 13 2 2
6.2 33, 2, 14 2 3
6.3 32, 24, 1 2 3

The types of degree 7, 8, 9 are given below, and provide the first types of length 3:

# hom. type ` pr.
7 6, 112 1 1
7.1 5, 25, 13 2 2(3)
7.2 4, 33, 15 2 3(4)
7.3 4, 32, 23, 12 2 3
7.4 34, 23 3 4.1(5.1)
8 7, 114 1 1
8.1 6, 26, 13 2 2
8.2 5, 33, 22, 13 2 3

# hom. type ` pr.
8.3 5, 32, 25 2 3
8.4 43, 3, 16 2 4
8.5 43, 23, 13 3 4.1
8.6 42, 32, 23, 1 3 4.1(5.1)
8.7 4, 35, 12 2 4
8.8 37 3 5.2
9 8, 116 1 1
9.1 7, 27, 13 2 2(3)

# hom. type ` pr.
9.2 6, 34, 2, 14 2 3
9.3 6, 33, 24, 1 2 3
9.4 5, 43, 17 2 4(5)
9.5 5, 42, 3, 23, 12 3 4.1(5.1)
9.6 5, 4, 34, 13 2 4
9.7 5, 4, 33, 23 3 4.1
9.8 44, 24 3 5.1(6.1)
9.9 43, 33, 2, 1 3 5.1

There are then 17 types of degree 10 and 19 types of degree 11, each of length ≤ 3.

# hom. type ` pr.
10 9, 118 1 1
10.1 8, 28, 13 2 2
10.2 7, 35, 15 2 3(4)
10.3 7, 34, 23, 12 2 3
10.4 6, 43, 23, 13 3 4.1(6.1)
10.5 6, 42, 33, 14 2 4

# hom. type ` pr.
10.6 6,42,32,23,1 3 4.1
10.7 6, 37 2 4
10.8 53, 4, 18 2 5
10.9 53,3,23,13 3 5.1
10.10 53, 26 3 5.2
10.11 52,42,24,1 3 5.1(6.1)

# hom. type ` pr.
10.12 52,4,33,2,12 3 5.1
10.13 52, 35, 2 3 5.2
10.14 5, 43, 32, 22 3 5.1
10.15 46, 13 3 6.1
10.16 45, 32, 1 3 6.3

# hom. type ` pr.
11 10, 120 1 1
11.1 9, 29, 13 2 2(3)
11.2 8, 35, 22, 13 2 3
11.3 8, 34, 25 2 3
11.4 7, 43, 32, 15 2 4
11.5 7,43, 3,23,12 3 4.1
11.6 7, 42, 33, 23 3 4.1(5.1)

# hom. type ` pr.
11.7 7, 4, 36, 1 2 4
11.8 6, 53, 19 2 5(6)
11.9 6, 52, 4, 24,12 3 5.1(6.1)
11.10 6, 52, 33, 2,13 3 5.1
11.11 6, 52, 32, 24 3 5.2
11.12 6,5,42,32,22,1 3 5.1
11.13 6, 45, 14 2 5

# hom. type ` pr.
11.14 6, 43, 34 3 5.1
11.15 54, 25 3 6.1(7.1)
11.16 53, 4, 33, 12 3 6.2(7.2)
11.17 52, 44, 2, 12 3 6.1
11.18 52, 43, 32, 2 3 6.3

There are 29 types of degree 12, each of length ≤ 4.
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# hom. type ` pr.
12 11, 122 1 1
12.1 10, 210, 13 2 2
12.2 9, 36, 2, 14 2 3
12.3 9, 35, 24, 1 2 3
12.4 8, 44, 3, 16 2 4
12.5 8, 44, 23, 13 3 4.1
12.6 8,43,32,23,1 3 4.1(5.1)
12.7 8, 42, 35, 12 2 4
12.8 7, 53, 24, 13 3 5.1(7.1)
12.9 7,52,4,32,22,12 3 5.1

# hom. type ` pr.
12.10 7, 52, 34, 22 3 5.2
12.11 7, 5, 44, 15 2 5
12.12 7, 5, 43,3,23 3 5.1
12.13 7, 5, 42,34,1 3 5.1
12.14 63, 5, 110 2 6
12.15 63, 4, 24, 13 3 6.1
12.16 63, 33, 2, 14 3 6.2
12.17 63, 32, 24, 1 3 6.3
12.18 62, 52, 25, 1 3 6.1(7.1)
12.19 62, 5, 4, 33,13 3 6.2(7.2)

# hom. type ` pr.
12.20 62, 5, 4, 32, 23 3 6.3(7.3)
12.21 62, 44, 2, 13 3 6.1
12.22 62, 43, 32, 2, 1 3 6.3
12.23 6, 53, 33, 2, 1 3 6.2(8.2)
12.24 6, 52, 43, 22, 1 3 6.1
12.25 6, 5, 44, 32 3 6.3(7.3)
12.26 54, 42, 3, 12 3 7.3
12.27 54, 4, 33 4 7.4
12.28 53, 44, 2 4 7.4

We could of course continue like this but the number of homaloidal types grows very
quickly. We give below the homaloidal types of length ` ∈ {2, . . . , 7} of smallest degree:

` d mult.
2 4 23, 13

3 7 34, 23

` d mult.
4 12 54, 4, 33

4 12 53, 44, 2

` d mult.
5 16 65, 53

6 27 114, 10, 64

` d mult.
6 27 104, 94, 2
7 38 146, 112, 5

4.2. Automorphisms of the affine plane. As explained before, there is a natural
length in the group Aut(A2), since this one is an amalgamated product of Aff2 =
Aut(P2) ∩ Aut(A2) and Jonqp,A2 = Jonqp ∩ Aut(A2), where we fix a linear embedding
A2 ↪→ P2, and a point p ∈ P2 outside the image. By construction, the length of an
element of Aut(A2), viewed in the amalgamated product, is at least equal to its length
in Bir(P2). We show in Proposition 4.2 that the two lengths are in fact equal, using the
following result.

Lemma 4.1. Let f, g ∈ Bir(P2) be elements such that Base(f) ∩ Base(g−1) = ∅. Then,

deg(f ◦ g) = deg(f) · deg(g), |Base(f ◦ g)| = |Base(f)|+ |Base(g)| and
lgth(f ◦ g) = lgth(f) + lgth(g).

Proof. The two first equalities follow from Lemma 3.15(1). We prove the third one by
induction on lgth(g), the case where lgth(g) = 0 being obvious, since g ∈ Aut(P2) in
that case.

We then consider the case where d = deg(g) = deg(g−1) > 1, and take ϕ ∈ Jonq ⊆
Bir(P2) such that g1 = g ◦ ϕ−1 is a predecessor of g. Then, g−1

1 (e0) = ϕ(g−1(e0)) is a
predecessor of g−1(e0) (Corollary 3.27). This implies that ϕ((f◦g)−1(e0)) is a predecessor
of (f ◦ g)−1(e0) (Lemma 3.15) and thus that f ◦ g1 = f ◦ g ◦ϕ−1 is a predecessor of f ◦ g
(Corollary 3.27). Hence, we obtain lgth(g1) = lgth(g)−1 and lgth(f ◦g1) = lgth(f ◦g)−1
(Theorem 1).

Since Base(ϕ) ⊆ Base(g) (Lemma 1.3), we have Base(g−1
1 ) = Base(ϕ ◦ g−1) ⊆

Base(g−1) (Corollary 2.25), and thus Base(f) ∩ Base(g−1
1 ) = ∅. We can thus apply

the induction hypothesis to get lgth(f ◦ g1) = lgth(f) + lgth(g1). This achieves the
proof. �
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Proposition 4.2. Let f ∈ Aut(A2). Taking an inclusion Aut(A2) ↪→ Bir(P2) given by
a linear embedding A2 ↪→ P2, the length of f in Bir(P2) is equal to its length in the
amalgamated product of Aut(A2).

Proof. We write f = an ◦ jn ◦ · · · ◦ a1 ◦ j1 ◦ a0, where each ai is an element of Aff2 and
each ji is an element of Jonqp,A2 . If f belongs to A, then its length is 0 in Bir(P2) and
in the amalgamated product, so we can assume that n ≥ 1, that ji ∈ Jonqp,A2 \Aff2 for
i = 1, . . . , n and that ai ∈ Aff2 \Jonqp,A2 for i = 1, . . . , n − 1. We then need to prove
that lgth(f) = n. To do this, we first observe that ji and (ji)

−1 contract exactly one
curve of P2, namely the line L∞ = P2 \ A2. It implies that (ji)

−1 and ji have only one
proper base-point, and since both preserve lines through p, then p is the unique proper
base-point of ji and (ji)

−1. Moreover, each ai is an automorphism of P2 that does not fix
p, for i = 1, . . . , n−1. Hence by induction the element ai◦ji◦· · ·◦a1◦j1◦a0 contracts the
line L∞ onto ai(p) 6= p, which is the unique proper base-point of (ai◦ji◦· · ·◦a1◦j1◦a0)−1.
In particular, (ai ◦ ji ◦ · · · ◦ a1 ◦ j1 ◦ a0)−1 and ji+1 do not have any common base-point,
so lgth(ai+1 ◦ ji+1 ◦ · · · ◦ a1 ◦ j1 ◦ a0) = lgth(ai ◦ ji ◦ · · · ◦ a1 ◦ j1 ◦ a0) + 1 for each i. This
provides the result. �

4.3. Decreasing the length and increasing the degree via a single Jonquières
element. In this section, we mainly provide an example of a Cremona transformation
f and a Jonquières element ϕ such that lgth(f ◦ ϕ−1) = lgth(f)− 1 and deg(f ◦ ϕ−1) >
deg(f):

Proposition 4.3. Fixing 8 general points p0, . . . , p7 ∈ P2, the following hold:
(1) There exists a birational involution f ∈ Bir(P2) such that

f(e0) = 17e0 −
7∑
j=0

6epj and f(ei) = 6e0 − epi − 2
7∑
j=0

epj for i = 0, . . . , 7.

(2) For each general point q ∈ P2, there exists a Jonquières element ϕq such that

ϕ−1
q (e0) = 5e0 − 4ep0 − ep1 − · · · − ep7 − eq.

(3) For all f and ϕq as in (1) and (2), the birational map fq = f ◦ ϕ−1
q satisfies:

lgth(fq) = 4 < 5 = lgth(f) and deg(fq) = 19 > 17 = deg(f).

(4) For any two distinct general points q, q′ ∈ P2, and all choices of fq, f ′q as in (3),
we have

fq′ 6∈ fq Aut(P2).

Proof. (1)-(2): Let UD ⊆ (P2)8 the dense open subset such that for each (p0, . . . , p7) ∈
UD the points pi are pairwise distinct and the blow-up π : X → P2 of p0, . . . , p7 is a
Del Pezzo surface (see Lemma 4.4 below). For each (p0, . . . , p7) ∈ UD, we can then
define f̂ ∈ Aut(X) to be the Bertini involution (see [Dol2012, §8.8.2]) and obtain that
f = π ◦ f̂ ◦ π−1 ∈ Bir(P2) has degree 17 and satisfies the conditions given in (1). Since
(5; 4, 18) is a homaloidal type, Corollary 2.27 yields a dense open subset V9 ⊆ (P2)9 such
that for all each (p0, . . . , p7, q) ∈ V9 there exists ϕq ∈ Bir(P2) satisfying the condition
given in (2). The element ϕq is then Jonquières (Lemma 2.42). We then denote by
V the open set V = V9 ∩ (UD × P2) ⊆ (P2)9, by κ : (P2)9 → (P2)8 the projection on
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the first eight factors, and by U ⊆ (P2)8 the open set given by U = κ(V ). For each
(p0, . . . , p7) ∈ U , the assertions (1) and (2) are then satisfied.

(3): We take f and ϕq as in (1) and (2), write fq = f ◦ ϕ−1
q , and observe that

fq(e0) = f(5e0 − 4ep0 − ep1 − · · · − ep7 − eq) = 19e0 − 4ep0 − 7ep1 − · · · − 7ep7 − f(eq),

whence the homaloidal type of f−1
q is (19; 77, 4, 1). In particular, we have deg(fq) =

deg(f−1
q ) = 19. Recall that we also have lgth(fq) = lgth(f−1

q ). Therefore, to show
that lgth(f) = 5 and lgth(fq) = 4, it suffices to look at Examples 3.17 and 3.18, where
we already observed that Algorithm 3.16 applied to (19; 77, 4, 1) and (17; 68) yields the
following sequences of homaloidal types:

(17; 68) → (14; 6, 56, 3) → (8; 37) → (5; 26) → (3; 2, 14) → (1),
(19; 77, 4, 1) → (13; 56, 4, 12) → (8; 4, 35, 12) → (4; 3, 16) → (1).

One could also check that the homaloidal type of fq is (19; 11, 8, 57). However, it is
useless for the proof we propose.

(4): Take two general points q, q′ and suppose that fq′ = fq ◦α for some α ∈ Aut(P2).
Then, fq(e0) = fq′(e0), which implies that f(eq) = f(eq′), whence q = q′. �

The following result is classical:

Lemma 4.4. Let π : X → P2 be the blow-up of r distinct proper points, with 1 ≤ r ≤ 8.
Then, X is a Del Pezzo surface if and only if the following conditions are satisfied: no
3 of the points are collinear, no 6 lie on the same conic, and no 8 of the points lie on
the same cubic singular at one of the points. Moreover, these conditions correspond to
a dense open subset of (P2)r, and are thus satisfied for sufficiently general points.

Proof. Follows from [Dol2012, Proposition 8.1.25]. �

4.4. The number of predecessors is not uniformly bounded. Let f ∈ Bir(P2)
be a Cremona transformation. If deg(f) ≤ 4, one can check that f admits a unique
predecessor up to right multiplication by an element of Aut(P2). If deg(f) ≤ 5, then
f may admit more than one predecessor modulo Aut(P2) (but all having the same
homaloidal type, by Lemma 1.3). Example 4.5 gives an example of degree 5 with two
predecessors having distinct configurations of base-points, and Lemma 4.6 shows that
the number of predecessors modulo Aut(P2) is not uniformly bounded.

Example 4.5. Let us consider the birational involution g ∈ Bir(P2) given by

g : [x : y : z] 7→

[
x

− 1
x

+ 1
y

+ 1
z

:
y

1
x
− 1

y
+ 1

z

:
z

1
x

+ 1
y
− 1

z

]
= [xvw :yuw :zuv]

where u = −yz + xz + xy, v = yz − xz + xy, and w = yz + xz − xy. We see that
g is of degree 5. It has moreover 6 base-points of multiplicity 2, namely the 3 points
p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], and 3 other points q1, q2, q3, where each qi
is infinitely near to pi. The homaloidal type of g is therefore (5; 26).

The algorithm consists of applying a cubic birational transformation whose linear
system consists of cubics singular at one of the pi and passing through 4 of the remaining
5 base-points. The predecessors of g are thus of degree 3. However, we get distinct classes
up to automorphism of P2, depending on our choice of the 4 points.



36 JÉRÉMY BLANC AND JEAN-PHILIPPE FURTER

Denoting by ρ1, ρ2 ∈ Bir(P2) the birational maps of degree 3 given by

ρ1 : [x : y : z] 7→
[

z
x( 1

x
+ 1

y
− 1

z
)

: y : z

]
= [yz2 : yw : zw] and

ρ2 : [x : y : z] 7→
[

1
− 1

x
+ 1

y
+ 1

z

: y : z

]
= [xyz : yu : zu],

we observe that α1 = ρ1gρ1
−1 and α2 = ρ2gρ2

−1 are the two linear involutions

α1 : [x : y : z] 7→ [x : y : 2x− z] and α2 : [x : y : z] 7→ [x : 2x− y : 2x− z].

For each i ∈ {1, 2} the map ρi ∈ Bir(P2) is a Jonquières map, preserving a general
line through [1 : 0 : 0]. This implies that ψi = ρi

−1 ◦ αi = g ◦ ρi−1 is a predecessor of g.
The linear system of ρ1 consists of cubics singular at p1 and passing through p2, p3, q1, q2.

The linear system of ρ2 consists of cubics singular at p1 and passing through p2, p3, q2, q3.
The configuration of the points being different (for ρ2, there is a tangent direction fixed
at the singular point, contrary to ρ1), this shows that ψ1 /∈ Aut(P2) ◦ ψ2 ◦ Aut(P2).

Lemma 4.6. For each integer i ≥ 1, there exists f ∈ Bir(P2) which has at least i
predecessors up to left and right composition with elements of Aut(P2).

Proof. We choose n such that 2n − 1 ≥ i and 2n − 1 ≥ 5, and then observe that
χ = (n2 + 1;n2 − n + 1, n2n−1, 12n−1) is a homaloidal type, whose predecessor is χ1 =
(n;n − 1, 12n−2). We take 4n − 1 general points p0, p1, . . . , p2n−1, q1, . . . , q2n−1 ∈ P2 and
choose f ∈ Bir(P2) such that f−1(e0) = (n2+1)e0−(n2−n+1)ep0−

∑2n−1
i=1 nepi−

∑2n−1
i=1 eqi

(which exists by Lemma 2.26).
For each j ∈ {1, . . . , 2n − 1}, there exists a Jonquières element ϕj ∈ Bir(P2) such

that (ϕj)
−1(e0) = ne0 − (n − 1)ep0 −

∑2n−1
i=1 epi − eqj (again by Lemma 2.26). Then,

fj = f ◦ ϕ−1
j is a predecessor of f (follows from Lemma 3.11(3) and Lemma 3.20).

As Base(ϕj) ⊆ Base(f), we get Base(f−1
j ) = Base(ϕj ◦ f−1) ⊆ Base(f−1) (Corol-

lary 2.25). Moreover, fj is Jonquières of degree n (because of the type of χ1), so the
same holds for f−1

j .
It remains to see that if j, k ∈ {1, . . . , 2n − 1} are such that j 6= k, then there are

no elements α, β ∈ Aut(P2) such that fj = α ◦ fk ◦ β. Indeed, otherwise we would
have fj(e0) = α(fk(e0)), so α sends the 2n − 1 base-points of f−1

k onto those of f−1
j ,

respecting the multiplicities. Note that fj(e0) 6= fk(e0), because ϕ−1
j (e0) 6= ϕ−1

k (e0). The
map α ∈ Aut(P2) has then to send a sequence of 2n−1 points of Base(f−1) onto another
sequence of 2n − 1 points of Base(f−1). This is impossible, as the points are general
points and 2n− 1 ≥ 5. �

4.5. Reduced decompositions of arbitrary lengths. Recall that a reduced decom-
position of an element f ∈ Bir(P2) is a product f = ϕn ◦ · · · ◦ ϕ1 of Jonquières elements
such that ϕi+1◦ϕi is not Jonquières for i = 1, . . . , n−1. One can of course always obtain
a reduced decomposition by starting with any decomposition, simply replacing ϕi and
ϕi+1 with their product if this one is Jonquières. Proposition 4.10 shows that the length
of reduced decompositions is unbounded.

We begin with the following classical result:
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Lemma 4.7. Let p0, p1, p2 be three non-collinear points of P2. There is a quadratic
birational involution ν ∈ Bir(P2) preserving the pencil of lines through any of the three
base-points and satisfying Base(ν) = {p0, p1, p2}.

Proof. It suffices to change coordinates to have {p0, p1, p2} = {[1 : 0 : 0], [0 : 1 : 0], [0 :
0 : 1]} and to choose ν : [x : y : z] 99K [yz : xz : xy]. �

Lemma 4.8. Let p0, . . . , p5 ∈ P2 be six distinct points such that no 3 of them are collinear
and not all lie on the same conic. Then, there exist three quadratic birational involutions
ψ1, ψ2, ψ3 ∈ Bir(P2), each having (three) proper base-points, such that the following hold:

(1) Base(ψ1) = {p0, p1, p2};
(2) Base(ψ2) ∩ Base(ψ1) = Base(ψ3) ∩ Base(ψ2) = ∅;
(3) (ψ3 ◦ ψ2 ◦ ψ1)−1(e0) = 5e0 − 2

∑5
i=0 epi.

Proof. The blow-up π1 : X → P2 of the six points p0, . . . , p5 is a Del Pezzo surface
(Lemma 4.4) and there exists a quadratic birational involution ψ1 ∈ Bir(P2) with
Base(ψ1) = {p0, p1, p2} (Lemma 4.7). We then write qi = ψ1(pi) ∈ P2 for i = 3, 4, 5. We
now prove that π2 = ψ1 ◦ π1 : X → P2 is the blow-up of p0, p1, p2, q3, q4, q5: we have a
commutative diagram

Xπ1

��

π2

��

τ1

vv

τ2

((
Y

η

vv

ψ̂1

'
// Y

η

((P2 ψ1
// P2

where η is the blow-up of p0, p1, p2, ψ̂1 ∈ Aut(Y ) is an automorphism of order 2, τ1 is
the blow-up of {η−1(pi) | i = 3, 4, 5}, and τ2 is the blow-up of {η−1(qi) = ψ̂1(η−1(pi)) |
i = 3, 4, 5}.

Because X is a Del Pezzo surface, the points q3, q4, q5 are not collinear (Lemma 4.4),
so there is a quadratic birational involution ψ2 ∈ Bir(P2) with Base(ψ2) = {q3, q4, q5}
(Lemma 4.7). We then write qi = ψ2(pi) ∈ P2 for i = 0, 1, 2 and obtain similarly that
q0, . . . , q5 ∈ P2 are such that no 3 of them are collinear (since ψ2 ◦ ψ1 ◦ π1 : X → P2 is
the blow-up of q0, . . . , q5).

We now choose a quadratic birational involution ψ3 ∈ Bir(P2) with Base(ψ3) =
{q0, q1, q2} (again by Lemma 4.7). It remains to calculate

(ψ3 ◦ ψ2 ◦ ψ1)−1(e0) = ψ1(ψ2(2e0 − eq0 − eq1 − eq2))
= ψ1(4e0 − ep0 − ep1 − ep2 − 2eq3 − 2eq4 − 2eq5)

= 5e0 − 2
∑5

i=0 epi ,

where we have used the fact that ψ1(ep0) = e0 − ep1 − ep2 , ψ1(ep1) = e0 − ep0 − ep2 , and
ψ1(ep2) = e0 − ep0 − ep1 (see Example 2.15). �

Corollary 4.9. There exist quadratic birational maps ϕ1, . . . , ϕ6, each having (three)
proper base-points, such that

(1) ϕ6 ◦ ϕ5 ◦ ϕ4 ◦ ϕ3 ◦ ϕ2 ◦ ϕ1 = id;
(2) Base(ϕ−1

i ) ∩ Base(ϕi+1) = ∅ for i = 1, . . . , 5.
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Proof. Let p0, . . . , p5 ∈ P2 be six distinct points such that no 3 are collinear and not
all lie on the same conic. Then, choose ψ1, ψ2, ψ3 as in Lemma 4.8. Recall that
we have in particular (ψ3 ◦ ψ2 ◦ ψ1)−1(e0) = 5e0 − 2

∑5
i=0 epi . Applying Lemma 4.8

to the same points, but taken in the order p3, p4, p5, p0, p1, p2, we get quadratic bi-
rational involutions ψ′1, ψ′2, ψ′3 ∈ Bir(P2), each having three proper base-points, such
that Base(ψ′1) = {p3, p4, p5}, Base(ψ′2) ∩ Base(ψ′1) = Base(ψ′3) ∩ Base(ψ′2) = ∅ and
(ψ′3 ◦ ψ′2 ◦ ψ′1)−1(e0) = 5e0 − 2

∑5
i=0 epi .

The birational map α = ψ′3◦ψ′2◦ψ′1◦ψ1◦ψ2◦ψ3 satisfies then α−1(e0) = e0, so that it is
an automorphism of P2. It remains to choose (ϕ6, . . . , ϕ1) := (ψ′3, ψ

′
2, ψ

′
1, ψ1, ψ2, ψ3 ◦α−1)

to obtain the result. �

Proposition 4.10. For each f ∈ Bir(P2) the set of reduced decompositions of f has
unbounded length.

Proof. To prove the result, we start with a reduced decomposition f = ϕn ◦ · · · ◦ϕ1, and
construct another one, with length≥ n+5. To do this, we take quadratic birational maps
ψ1, . . . , ψ6 ∈ Bir(P2), each having three proper base-points, such that ψ6 ◦ · · · ◦ ψ1 = id
and Base(ψ−1

i ) ∩ Base(ψi+1) = ∅ for i = 1, . . . , 5 (which exist by Corollary 4.9). For
i = 1, . . . , 5, we observe that lgth(ψi+1 ◦ ψi) = 2 (Lemma 4.1), so ψi+1 ◦ ψi is not
Jonquières. Replacing all ψi with α ◦ ψi ◦ α−1 for some general α ∈ Aut(P2), we can
assume that Base(ϕ−1

n ) ∩Base(ψ1) = ∅, which implies that lgth(ψ1 ◦ ϕn) = lgth(ϕn) + 1
(Lemma 4.1) and is thus not Jonquières if ϕn 6∈ Aut(P2). In this latter case, we obtain
a reduced decomposition of f of length n+ 6 as f = ψ6 ◦ · · · ◦ψ1 ◦ϕn ◦ · · · ◦ϕ1. The last
case is when ϕn ∈ Aut(P2). This implies that n = 1, as otherwise ϕn ◦ ϕn−1 would be
Jonquières. Hence, f = ϕn ∈ Aut(P2). In this case, it suffices to write f = ψ′6◦ψ5 · · ·◦ψ1

with ψ′6 = f ◦ ψ6, to get a reduced decomposition of length 6 = n+ 5. �

4.6. Examples of dynamical lengths.

Lemma 4.11. The element κ ∈ Bir(P2) given by [x : y : z] 99K [yz + x2 : xz : z2]
satisfies

lgth(κa) = a, deg(κa) = 2a, |Base(κa)|= 3a

for each integer a ≥ 1. In particular, we have

dlgth(κm) = m, λ(κm) = 2m, µ(κm) = 3m

for each m ≥ 1.

Proof. As κ is a Jonquières element of degree 2, we have lgth(κ) = 1, deg(κ) = 2 and
|Base(κa)|= 3 (this last assertion follows from Noether equalities, see Lemma 2.20).

Denoting by L ⊂ P2 the line given by z = 0, the restriction of κ is automorphism of
P2 \ L ' A2, so the same holds for κa, for each a ∈ Z. There can then be at most one
proper base-point of κa, namely the image by κ−a of the line z = 0. We check that κ
contracts L onto q = [1 : 0 : 0], which is then the unique proper base-point of κ−1, and
that p = [0 : 1 : 0] is the unique proper base-point of κ. This implies that κa contracts
the line L onto q for each a ≥ 1, and thus q is the unique proper base-point of κ−a for
each a ≥ 1. We obtain, for each a ≥ 1, that Base(κ) ∩ Base(κ−a) = ∅. Lemma 4.1
then yields deg(κa+1) = deg(κ) · deg(κa), |Base(κa+1)| = |Base(κ)| + |Base(κa)| and
lgth(κa+1) = lgth(κ) + lgth(κa). This provides the result, by induction over a. �
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Lemma 4.12. Choosing σ, α2, α3 ∈ Bir(P2) as σ : [x : y : z] 99K [yz : xz : xy],

α2 : [x : y : z] 7→ [z + y : x+ z : y] and α3 : [x : y : z] 7→ [y + z : x : y]

we obtain dlgth(α2σ) = 1
2
and dlgth(α3σ) = 1

3
.

Proof. The birational involution σ = σ−1 is quadratic with base-points p1 = [1 : 0 : 0],
p2 = [0 : 1 : 0], p3 = [0 : 0 : 1] and its action on ZP2 satisfies

σ(e0) = 2e0 − ep1 − ep2 − ep3 , σ(epi) = e0 − ep1 − ep2 − ep3 + epi , i = 1, 2, 3,

as in Example 2.15. Writing p4 = [1 : 0 : 1], p5 = [1 : 1 : 0], one gets

α2(p1) = p2, α2(p2) = p4, α2(p3) = p5 and α3(p1) = p2, α3(p2) = p4, α3(p3) = p1.

Since p4 and p5 are general points of the lines contracted by σ onto respectively p2 and
p3, we find σ(ep4) = eq2 and σ(ep5) = eq3 , where q2, q3 are points infinitely near to p2 and
p3 respectively. In particular, writing

T2 = {
⊕

Zeq | q ∈ B(P2), q is infinitely near p4 or p5} ⊆ Z(P2),
T3 = {

⊕
Zeq | q ∈ B(P2), q is infinitely near p4} ⊆ Z(P2),

and writing Vi = Ze0 ⊕ Zep1 ⊕ Zep2 ⊕ Zep3 ⊕ Ti, one observes that

αiσ(Ti) ⊆ Ti and αiσ(Vi) ⊆ Vi for i = 2, 3.

We then get, for i = 2, 3, a linear map Vi/Ti → Vi/Ti given by a matrix Mi with respect
to the basis e0, ep1 , ep2 , ep3 , as follows :

M2 =


2 1 1 1
0 0 0 0
−1 0 −1 −1

0 0 0 0

 and M3 =


2 1 1 1
−1 −1 −1 0
−1 0 −1 −1

0 0 0 0

 .

We then compute

A := (M2)2 =


3 2 1 1
0 0 0 0
−1 −1 0 0

0 0 0 0

 and B := (M3)3 =


3 1 1 2
−1 0 −1 −1
−1 0 0 −1

0 0 0 0

 .

Let us check that f := (α2σ)2 and g := (α3σ)3 have dynamical lengths equal to 1.
The expression of A shows us that deg f = 3 and comult(f) ≤ 3 − 2 = 1, so that f

is a Jonquières transformation. Set d−1 = 0, d0 = 1 and dn = 3dn−1 − dn−2 for n ≥ 1.
A straightforward induction on n would show that for each nonnegative integer n, the
coefficients (1, 1) and (1, 3) of An satisfy:

(An)1,1 = dn, (An)1,3 = dn − dn−1.

Since 2(dn − dn−1) + 1 > dn, it follows from Corollary 2.29 that dn − dn−1 is the highest
multiplicity of fn. Therefore, a predecessor gn of fn satisfies

deg gn ≥ comult(fn) = dn − (dn − dn−1) = dn−1 = deg fn−1.

This proves that fn−1 is a predecessor of fn, so that lgth(fn) = lgth(fn−1) + 1, proving
that lgth(fn) = n and dlgth(f) = 1.
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One would prove analogously that g has dynamical degree 1, since the coefficients
(1, 1) and (1, 4) of Bn satisfy:

(Bn)1,1 = dn, (Bn)1,4 = dn − dn−1. �

Corollary 4.13. We have
1

2
Z≥0 ∪

1

3
Z≥0 ⊆ dlgth(Bir(P2)) = {dlgth(f) | f ∈ Bir(P2)}

Proof. Lemma 4.12 yields elements f2, f3 ∈ Bir(P2) such that dlgth(f2) = 1
2
and dlgth(f3) =

1
3
. We then get dlgth(f2

m) = m
2
and dlgth(f3

m) = m
3
for each m ≥ 0. �

4.7. Length of monomial transformations. Let us recall that the group GL2(Z) can

be viewed as the subgroup of monomial transformations of Bir(P2): a matrix
(
a b
c d

)
corresponds to the transformation [x : y : 1] 99K [xayb : xcyd : 1]. In this section, we give
an easy algorithm to compute the length and the dynamical length of any such element in
Bir(P2). We first study ordered elements of SL2(Z) (see Definition 4.15 and Lemma 4.16
for description of these elements, and the relation with continued fractions). Their
lengths are easy to compute (Proposition 4.19). We then give the length of every element
of GL2(Z), by reducing to the case of ordered elements (Lemma 4.21). The dynamical
length of every element of SL2(Z) is given in Proposition 4.25 at the end of the section.
This provides the dynamical length of every element of SL2(Z), as dlgth(M) = 1

2
dlgth(M2)

for each M ∈ GL2(Z).
We first recall the following :

Lemma 4.14. Writing SL2(Z)≥0 =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a, b, c, d ≥ 0

}
, we get:

(1) SL2(Z)≥0 is the free monoid generated by L =

(
1 0
1 1

)
and R =

(
1 1
0 1

)
.

(2) SL2(Z)≥0 = SL ] SR ] {id} (disjoint union), where

SL =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a ≥ b ≥ 0
c ≥ d ≥ 0

}
= SL2(Z)≥0 · L,

SR =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ 0 ≤ a ≤ b
0 ≤ c ≤ d

}
= SL2(Z)≥0 ·R.

(3) L · SL2(Z)≥0 ·R =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ 0 ≤ a ≤ b ≤ d
0 ≤ a ≤ c ≤ d

}
Proof. We write

SL =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a ≥ b ≥ 0
c ≥ d ≥ 0

}
, SR =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ 0 ≤ a ≤ b
0 ≤ c ≤ d

}
and obtain SL ∪ SR ⊆ SL2(Z)≥0. The sets SL, SR and {id} are pairwise disjoint. To

show SL2(Z)≥0 = SL ∪ SR ∪ {id}, we take M =

(
a b
c d

)
∈ SL2(Z)≥0 \ {id} and show

that M ∈ SL ∪ SR. As a, b, c, d ≥ 0 and ad − bc = 1, we have a, d > 0. If b = 0,
then a = d = 1 and c > 0, so M = Lc ∈ SL. Similarly, if c = 0, then M = Rb ∈ SR.
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We can thus assume that a, b, c, d > 0 and write 1 = ad − bc = (a − b)d − b(c − d), so
(a− b) · (c− d) ≥ 0, which yields M ∈ SL ∪ SR.

We then observe that SL2(Z)≥0 · L ⊆ SL and SL · L−1 ⊆ SL2(Z)≥0, which yield
SL2(Z)≥0 · L = SL. We similarly obtain SL2(Z)≥0 · R = SR. This yields (2), which
implies (1). Assertion (3) follows from
L ·SL2(Z)≥0 ·R = (L ·SL2(Z)≥0)∩ (SL2(Z)≥0 ·R) = t(SL2(Z)≥0 ·R)∩ (SL2(Z)≥0 ·R). �

Definition 4.15. We say that an element M ∈ SL2(Z) is ordered if M =

(
a b
c d

)
satisfies 0 ≤ a ≤ b ≤ d and 0 ≤ a ≤ c ≤ d. As noted in the previous proof, this implies
that a is positive, so that all coefficients of M are positive.

Lemma 4.16. A matrix M ∈ SL2(Z) =

(
a b
c d

)
is ordered if and only if it may be

written under the form M = LsnRsn−1 · · ·Rs3Ls2Rs1 for some integers s1, . . . , sn ≥ 1
with n ≥ 2 even. In this case, the integers s1, . . . , sn and a, b, c, d are linked by the
continued fractions

b

a
= s1 +

1

s2 +
1

. . . +
1

sn−1

and
d

c
= s1 +

1

s2 +
1

. . . +
1

sn

.

Proof. The fact that a matrixM ∈ SL2(Z) is ordered if and only if it can be writtenM =
LsnRsn−1 · · ·Rs3Ls2Rs1 with n ≥ 2 even and s1, . . . , sn ≥ 1 follows from Lemma 4.14.
We then prove the equalities given by the continued fractions by induction on n.

If n = 2, then Ls2Rs1 =

(
1 s1

s2 s1s2 + 1

)
, so b

a
= s1 and d

c
= s1s2+1

s2
= s1 + 1

s2
.

If n > 2, then
(
a b
c d

)
=

(
a′ b′

c′ d′

)
Ls2Rs1 , where b′

a′
= s3 + 1

...+ 1
sn−1

and d′

c′
=

s3 + 1

...+ 1
sn

. We replace these in c
d

= c′s1+d′(s1s2+1)
c′+d′s2

= s1 + 1

s2+ c′
d′

and b
a

= s1 + 1

s2+ b′
a′
. �

As we now explain, the length of ordered matrices of SL2(Z) is easy to calculate:

Definition 4.17. For each sequence (s1, . . . , sn) of positive integers, with n ≥ 1, we
denote by M(s1, . . . , sn) ∈ SL2(Z) the element given by

M(s1, . . . , sn) =

{
RsnLsn−1 · · ·Rs3Ls2Rs1 if n is odd,
LsnRsn−1 · · ·Rs3Ls2Rs1 if n is even,

where L =

(
1 0
1 1

)
, R =

(
1 1
0 1

)
∈ SL2(Z) and denote by `(s1, . . . , sn) the length of

M(s1, . . . , sn), viewed in Bir(P2).

Remark 4.18. The conjugation by τ =

(
0 1
1 0

)
∈ GL2(Z) exchanges L and R, so

`(s1, . . . , sn) is also the length of

τM(s1, . . . , sn)τ =

{
LsnRsn−1 · · ·Ls3Rs2Ls1 if n is odd,
RsnLsn−1 · · ·Ls3Rs2Ls1 if n is even.
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Hence, the following lemma gives the length of any element of SL2(Z)≥0.

Proposition 4.19. Let n ≥ 1. For each sequence (s1, . . . , sn) of positive integers,
M(s1, . . . , sn) is a product of `(s1, . . . , sn) elements of length 1 that are of the form
Rs, Ls, LRs or RLs for some s ≥ 1 and thus belong to SL2(Z)≥0. Moreover, we have:

`(s1, . . . , sn) =


1 if n = 1,
1 if n = 2 and s2 = 1,
2 if n = 2 and s2 6= 1,
`(s2 − 1, s3, . . . , sn) + 1 if n ≥ 3, s2 ≥ 2,
`(s3, . . . , sn) + 1 if n ≥ 3, s2 = 1.

Proof. We write M = M(s1, . . . , sn) = · · ·Ls2Rs1 . For each s ≥ 1, Rs, LRs are
Rs : [x : y : z] 7→ [xys : yzs : zs+1], LRs : [x : y : z] 99K [xysz : xys+1 : zs+2],

and thus have length equal to 1. The same holds for Ls, RLs (by conjugating with τ ,
see Remark 4.18). This gives the proof when n = 1 or (n, s2) = (2, 1). We thus assume
n ≥ 3, or n = 2 and s2 ≥ 2. Since lgth(LRs1) = 1, we have lgth(M) ≤ lgth(M ′) + 1,
where M ′ = M(LRs1)−1. It remains to show that equality holds to obtain the result
(using Remark 4.18). Applying Lemma 4.14, we can write

M =

(
a b
c d

)
,M ′ =

(
a′ b′

c′ d′

)
=

(
a+ (as1 − b) b− as1

c+ (cs1 − d) d− cs1

)
with b ≥ a ≥ 0, d ≥ c ≥ 0 and a′, b′, c′, d′ ≥ 0. The degrees of M and M ′, as birational
maps of P2, are respectively D = max{a+ b, c+ d} ≥ 2 and D′ = max{a′+ b′, c′+ d′} =
max{a, c}. The element M corresponds to the birational map

M : [x : y : z] 99K [xaybzD−a−b : xcydzD−c−d : zD],

which has degree D and exactly two proper base-points, namely p1 = [1 : 0 : 0] and
p2 = [0 : 1 : 0], having multiplicity m1 = D − max{a, c} and m2 = D − max{b, d}
respectively. Hence, p1 is a base-point of maximal multiplicity and every predecessor of
M has degree at least D −m1 = D′. �

Corollary 4.20. Let n ≥ 1. If s1, . . . , sn and s′1 are positive integers, we have

`(s1, . . . , sn) = `(s′1, s2, . . . , sn).

Proof. Directly follows from Proposition 4.19. �

We now give a way to compute the length of any element of GL2(Z), by reducing to
elements of SL2(Z) of the form M(s1, . . . , sn).

Lemma 4.21. For each M ∈ GL2(Z), the following hold:

(1) lgth(M) = 0 ⇔ M ∈ GL2(Z) ∩ Aut(P2) =

〈(
0 1
1 0

)
,

(
1 −1
0 −1

)〉
' Sym3.

(2) There exist A,B ∈ GL2(Z) ∩Aut(P2) such that either AMB or −AMB belongs
to SL2(Z)≥0.

(3) If lgth(M) ≥ 1, there exist A,B ∈ GL2(Z) ∩ Aut(P2) such that either AMB or
−AMB is equal toM ′ = M(s1, . . . , sn) for some n ≥ 1 and some positive integers
s1, . . . , sn ≥ 1. We then have lgth(M) = lgth(M ′) (which can be computed
directly by Proposition 4.19).
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Proof. (1): We observe that the group GL2(Z) ∩ Aut(P2) corresponds to the group
Sym3 of permutations of the coordinates, generated by [x : y : z] 7→ [y : x : z] and

[x : y : z] 7→ [x : z : y], which correspond to τ =

(
0 1
1 0

)
and ν =

(
1 −1
0 −1

)
.

(2): We consider the natural action of GL2(Z) on the circle P1(R) ' S1, via GL2(Z)→
PGL2(R). This action induces an isomorphism between Sym3 = GL2(Z) ∩Aut(P2) and
the group of permutations of the set ∆ = {[1 : 0], [0 : 1], [1 : 1]}. These three points
delimit the three closed intervals of P1(R) given by

I1 = {[α : β] | α ≥ β ≥ 0}, I2 = {[α : β] | 0 ≤ α ≤ β}, I3 = {[α : β] | α ≥ 0, β ≤ 0}.

[1 : 1]

[0 : 1]

[1 : 0] I1

I2

I3

Suppose first that M(∆) is contained in the union of two of these three intervals. Re-
placing M with AM where A ∈ Sym3, we can assume that M(∆) is contained in the
interval I1 ∪ I2 = {[α : β] | α, β ∈ R≥0}.

The open interval I̊3 being infinite,M−1(I̊3) contains elements of P1(R)\∆. Replacing
thenM withMB, with B ∈ Sym3, we can assume thatM−1(I̊3)∩ I̊3 6= ∅ or equivalently
M(I̊3) ∩ I̊3 6= ∅.

We finish by replacing M with ±M or ±τM , to assume moreover that det(M) = 1
and that the first column of M has non-negative coefficients. It remains to observe that

M ∈ SL2(Z)≥0. Indeed, we haveM =

(
a b
c d

)
∈ SL2(Z) with a, c ≥ 0 and bd ≥ 0 since

[b : d] ∈ I1∪I2. If b, d ≥ 0, we are done. Otherwise b, d ≤ 0, which yieldsM(I3) ⊆ I1∪I2,
contradicting M(I̊3) ∩ I̊3 6= ∅.

To finish the proof of (2), we suppose that M(∆) is not contained in the union of two
of the three intervals I1, I2, I3 and derive a contradiction. This implies that the three
points of M(∆) are in the interiors of three distinct intervals. Replacing M with ±AM ,
with A ∈ Sym3, we can assume that M([0 : 1]) ∈ I1,M([1 : 0]) ∈ I2,M([1 : 1]) ∈ I3,
and that the coefficients of the first column of M are positive. The second column has

then negative coefficients. We get M =

(
a −b
c −d

)
with 0 < a < c and b > d > 0. This

yields det(M) = −ad+ bc = a(b− d) + b(c− a) ≥ 2, a contradiction.
(3): Using (2), we find A,B ∈ GL2(Z) ∩ Aut(P2) such that M ′ = ±AMB belongs

to SL2(Z)≥0. Since lgth(M) ≥ 1, then M ′ is not the identity. We can thus replace M ′

with τM ′τ if needed and assume that M ′ ∈ SR = SL2(Z)≥0 · R is an ordered matrix
(follows from Lemma 4.14). This implies that M ′ has the desired form. It remains to
prove that lgth(M) = lgth(M ′). If M ′ = ABM , this is because lgth(A) = lgth(B) = 0.
If M ′ = −ABM , we observe that −M ′ is a product of lgth(−M ′) elements of length 1
of the form Rs, Ls, LRs or RLs, s ≥ 1 (Proposition 4.19). Since

−Rs : [x : y : z] 7→ [zs+1 : xys−1z : xys], −LRs : [x : y : z] 99K [zs+1 : yzs : xys]

have length 1, the same hold for −Ls, −RLs (using conjugation by τ as in Remark 4.18).
We thus get lgth(M ′) = lgth(−M ′) = lgth(M). �
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We now compute the dynamical length of elements of GL2(Z). The case of ordered
elements of SL2(Z) is the easiest, as we now show:

Lemma 4.22. Let m,n ≥ 1 and let (s1, . . . , sn), (t1, . . . , tm) be two sequences of positive
integers, such that t1 ≥ 2 and m ≥ 2. We then have

`(s1, . . . , sn, t1, . . . , tm) = `(s1, . . . , sn) + `(t1, . . . , tm).

Proof. We prove the result by induction on n.
If n = 1, then Proposition 4.19 yields `(s1, t1, . . . , tm) = `(t1−1, t2, . . . , tm)+1

Corollary 4.20
=

`(t1, t2, . . . , tm) + 1 = `(s1) + `(t1, . . . , tm).
If n = 2 and s2 = 1, then Proposition 4.19 yields `(s1, s2, t1, . . . , tm) = `(t1, . . . , tm) +

1 = `(t1, . . . , tm) + `(s1, s2). If n = 2 and s2 ≥ 2, then Proposition 4.19 yields
`(s1, s2, t1, . . . , tm) = `(s2 − 1, t1, . . . , tm) + 1, which is equal to `(t1, . . . , tm) + 2 by
induction hypothesis. This achieves the proof since `(s1, s2) = 2 by Proposition 4.19.

If n ≥ 3, then Proposition 4.19 yields

`(s1, . . . , sn, t1, . . . , tm) =

{
`(s2 − 1, s3, . . . , sn, t1, . . . , tm) + 1 if s2 ≥ 2,
`(s3, . . . , sn, t1, . . . , tm) + 1 if s2 = 1.

`(s1, . . . , sn) =

{
`(s2 − 1, s3, . . . , sn) + 1 if s2 ≥ 2,
`(s3, . . . , sn) + 1 if s2 = 1,

so the result follows by induction. �

Corollary 4.23. Let n ≥ 2 be an even integer and let (s1, . . . , sn) be a sequence of
positive integers such that either s1 ≥ 2 or s1 = · · · = sn = 1. Then, the ordered element
M = M(s1, . . . , sn) ∈ SL2(Z) satisfies

dlgth(M) = lgth(M).

Proof. If s1 = 2, then Lemma 4.22 yields lgth(Mm) = m · lgth(M) for each m ≥ 1, which
yields dlgth(M) = lgth(M).

If s1 = · · · = sn = 1, thenMm = ((LR)n)m. It then suffices to show that lgth((LR)n) =
n for each n ≥ 1. For n = 1, this is directly given by Proposition 4.19. For n ≥ 1, we
also apply Proposition 4.19 and get lgth((LR)n) = lgth((LR)n−1) + 1, which yields the
result by induction. �

Remark 4.24. Note thatM(s1, . . . , sn) is conjugate in SL2(Z) toM(s2, . . . , sn, s1). Hence,
each element M(s1, . . . , sn) admits a conjugate which satisfies the hypotheses of Corol-
lary 4.23.

The general case is provided by the next result.

Proposition 4.25. Let M ∈ SL2(Z).
(1) If trace(M) ∈ {0,±1} then M has order m ∈ {3, 4, 6} so dlgth(M) = 0.

(2) If trace(M) ∈ {±2} then M is conjugate to ±
(

1 a
0 1

)
for some a ∈ Z, so

dlgth(M) = 0.
(3) If |trace(M)| ≥ 3 then ±M is conjugate to an ordered element M ′, so dlgth(M) =

dlgth(M ′) is a positive integer.
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Proof. Writing λ = trace(M), the characteristic polynomial of M is equal to χM =
X2−λX + 1. If λ ∈ {0,±1}, we obtain then orders 3, 4, 6, yielding (1). If λ = ±2, then
χM = (X ± 1)2, so there is an eigenvector of eigenvalue ±1, which can be choosen in Z2

with coprime coefficients. This yields (2).
In case (3) we can replaceM with −M if needed and assume that λ ≥ 3. We will then

show thatM is conjugate to an ordered matrix. The fact that λ = trace(M) ≥ 3 implies
that M has distinct positive real eigenvalues µ, µ−1 with max{µ, µ−1} = λ+

√
λ2−4
2

> 2.

Write M =

(
a b
c d

)
. The two eigenspaces are spanned by two vectors (1, ξ1) and

(1, ξ2), where ξ1, ξ2 are nonzero reals (note that (1, 0) and (0, 1) are not eigenvectors of
M since bc 6= 0).

(a) If ξ1ξ2 < 0, then we may assume without loss of generality that ξ1 > 0 and
ξ2 < 0 (by exchanging the names of ξ1 and ξ2). Up to replacing M with M−1, we may
furthermore assume that we have µ > 1, where we have used the two following facts:

(i) We have trace(M−1) = trace(M);
(ii) The inverse of an ordered matrix is conjugate to an ordered matrix since the

matrix P =

(
0 1
−1 0

)
satisfies PR−1P−1 = L and PL−1P−1 = R.

Then, we have


a+ bξ1 = µ
c+ dξ1 = µξ1

a+ bξ2 = µ−1

c+ dξ2 = µ−1ξ2

which yields


b(ξ1 − ξ2) = µ− µ−1

c(ξ−1
1 − ξ−1

2 ) = µ− µ−1

a = µ−1 − bξ2

d = µ−1 − ξ−1
2 c

which in

turn proves that b, c > 0, and then a, d > 0. Therefore, M belongs to the monoid
generated by L and R (Lemma 4.14). As trace(M) 6= 2, M is not conjugate to a matrix
of the form Ls or Rs for some s ∈ Z and is thus conjugate to an element which starts
with L and ends with R, hence to an ordered element (Lemma 4.14). The result then
follows from Corollary 4.23.

(b) If there exists s ∈ Z such that (ξ1 + s)(ξ2 + s) < 0, we conjugate M with Ls. This
replaces ξi with ξi + s and reduces to case (a).

(c) If (b) is not possible, there exists s ∈ Z such that 0 < ξi + s < 1 for i = 1, 2.
Replacing s with s− 1 if needed, we can rather assume that |ξi + s| < 1 for both i and
that |ξi + s| < 1

2
for at least one i, which we will assume to be 1 (by exchanging the

names of ξ1 and ξ2). Therefore, by conjugating M with Ls we may assume that |ξ1| < 1
2

and |ξ2| < 1. We then conjugate M with
(

0 1
−1 0

)
. This replaces ξi with ξ′i = − 1

ξi
for

i = 1, 2 and we have |ξ′1 − ξ′2| = |ξ1 − ξ2| · | 1
ξ1
| · | 1

ξ2
| > 2 · |ξ1 − ξ2|. After finitely many

such steps we obtain |ξ1 − ξ2| > 1, which then gives case (b). �

Corollary 4.26. For each M ∈ GL2(Z), the following conditions are equivalent:
(1) We have dlgth(M) = 1

2
.

(2) The matrix M is conjugate in GL2(Z) to ±
(

0 1
1 1

)
.

(3) We have det(M) = −1 and trace(M) ∈ {±1}.

Proof. (2) ⇒ (3) is obvious.
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(3) ⇒ (1). If M satisfies (3), we have trace(M2) = (trace(M))2 − 2 det(M) = 3, so
thatM2 is conjugate to an ordered element of trace 3 by Proposition 4.25(3). The unique

ordered element of trace 3 being the matrix
(

1 1
1 2

)
= LR = M(1, 1) of dynamical

length 1, this proves (1).
(1) ⇒ (2). If M satisfies (1), we necessarily have det(M) = −1 and dlgth(M2) = 1

(Proposition 4.25). By Proposition 4.25 and up to conjugation of M into GL2(Z),
there exists an element ε ∈ {±1} such that M ′ := εM2 is an ordered matrix satisfying
dlgth(M ′) = lgth(M ′) = 1. This yields the existence of an integer s ≥ 1 such that

M ′ = LRs =

(
1 s
1 s+ 1

)
. Writing M =

(
a b
c d

)
, we obtain

M2 =

(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
= ε

(
1 s
1 s+ 1

)
.

The equality c(a+d) = ε gives us trace(M) = a+d = ±1, so that (as above) trace(M2) =
(trace(M))2 − 2 det(M) = 3. This implies ε(s + 2) = 3, so that ε = s = 1. This proves
that b = c = a + d ∈ {±1} and since a2 + bc = 1, we finally obtain a = 0 and

b = c = d ∈ {±1}, proving that M = ±
(

0 1
1 1

)
. �

4.8. Dynamical length of regularisable elements and the proof of Theorem 2.
Recall the two following definitions:

Definition 4.27. An element f ∈ Bir(P2) is said to be regularisable if there exists a
birational map η : X 99K P2, where X is a smooth projective surface, such that η−1 ◦
f ◦ η ∈ Aut(X). By [BlaDés2015, Theorem B], this is equivalent to µ(f) = 0 (where µ
denotes the dynamical number of base-points, as explained in the introduction).

Definition 4.28. An element f ∈ Bir(P2) is said to be loxodromic if log(λ(f)) >
0 (where λ(f) = lim

n→∞
(deg(fn))1/n is the dynamical degree of f , as explained in the

introduction).

It follows from [Giz1980, DF2001, BlaDés2015] that a Cremona transformation f ∈
Bir(P2) belongs to exactly one of the five following categories:

(1) Algebraic elements ;
(2) Jonquières twists: f ∈ Bir(P2) is a Jonquière twist if the sequence n 7→

deg(fn) grows linearly, i.e. if the sequence n 7→ deg(fn)
n

admits a nonzero limit
when n goes to infinity. Equivalently, f preserves a rational fibration P2 99K P1

and is not algebraic;
(3) Halphen twists: f ∈ Bir(P2) is a Halphen twist if the sequence n 7→ deg(fn)

grows quadratically, i.e. if the sequence n 7→ deg(fn)
n2 admits a nonzero limit when

n goes to infinity. Equivalently, f preserves an elliptic fibration P2 99K P1 and is
not algebraic;

(4) Regularisable loxodromic elements: In this case, λ(f) is a Salem number or
a reciprocical quadratic integer (see [DF2001, BlaCan2016]);

(5) Non-regularisable loxodromic elements: In this case, λ(f) is a Pisot number
by [BlaCan2016].
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If f is a Halphen twist or a regularisable loxodromic element, we will prove that
the dynamical length dlgth(f) is positive in Corollary 4.32 and Proposition 4.34. In
Lemma 4.11, an example of non-regularisable loxodromic element f ∈ Bir(P2) whose
dynamical length dlgth(f) is positive was given. These results are summarised in Figure 1
and achieve the proof of Theorem 2.

The following result follows from the proof of [BlaCan2016, Lemma5.10].

Lemma 4.29. Let f1, f2 ∈W∞ be two elements such that Base(f1) ∪Base(f2) contains
at most 9 points. Then,√

deg(f1 ◦ f−1
2 ) ≤

√
deg(f1) +

√
deg(f2)

Lemma 4.30. Let ψ ∈ Bir(P2) \ Aut(P2) be a birational map, and let r be its number
of base-points. Recall that we have r ≥ 3 by Lemma 3.5. Then, the following hold:

(1) lgth(ψ) ≥ log(deg(ψ))

log( r+1
2

)
.

(2) If r ≤ 9, then lgth(ψ) ≥
√

deg(ψ)
5

.

Proof. We prove the result by induction on lgth(ψ). When lgth(ψ) = 1, then ψ is a
Jonquières transformation of degree d = deg(ψ) > 1, which implies that r = 2 deg(ψ)−1.
Hence, (1) is an equality and (2) holds, as r ≤ 9 yields deg(ψ) ≤ 5.

Suppose now that lgth(ψ) > 1, and let ϕ ∈ Bir(P2) be a Jonquières element such that
ψ′ = ψ ◦ϕ is a predecessor of ψ (which implies in particular that lgth(ψ′) = lgth(ψ)−1).
We then have Base(ϕ−1) ⊆ Base(ψ) (Lemma 1.3), which yields Base(ψ′−1) ⊆ Base(ψ−1)
(Corollary 2.25). This proves that ϕ and ψ′ have at most r base-points. In particular,
we have deg(ϕ) ≤ r+1

2
.

To prove (1) we start with deg(ψ) ≤ deg(ψ′) · deg(ϕ) ≤ deg(ψ′) · r+1
2
, which yields

log(deg(ψ)) ≤ log(deg(ψ′))+log( r+1
2

). Applying induction to ψ′, we then get log(deg(ψ))

log( r+1
2

)
≤

log(deg(ψ′))

log( r+1
2

)
+ 1 ≤ lgth(ψ′) + 1 = lgth(ψ), as desired.

To prove (2), we denote by π : Z → P2 the blow-up of the base-points of ϕ−1. As
Base(ϕ−1) ⊆ Base(ψ), there is a birational morphism ε : X → Z, such that π ◦ ε is the
blow-up of the base-points of ψ. We then get a commutative diagram

X
ε��

η′

$$

Z
π��

η

uuP2

ψ′

22
ϕ

// P2 ψ
// P2,

where η, η′ are the blow-ups of the base-points of ϕ and ψ−1 respectively. As η′ blows-up
r points, the same holds for η◦ε. Hence, we find that Base(ψ′)∪Base(ϕ) ⊆ Base((η◦ε)−1)

contains at most r ≤ 9 points. We can then apply Lemma 4.29, which yields
√

deg(ψ) =√
deg(ψ′ ◦ ϕ−1) ≤

√
deg(ψ′) +

√
deg(ϕ) ≤

√
deg(ψ′) +

√
5. Applying induction to ψ′,

we find √
deg(ψ)

5
≤
√

deg(ψ′)

5
+ 1 ≤ lgth(ψ′) + 1 = lgth(ψ). �
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Proposition 4.31. Let π : X → P2 be a birational morphism which is the blow-up of at
most 9 points and let ϕ ∈ πAut(X)π−1 ⊆ Bir(P2) be a Cremona transformation. Then,
the sequence n 7→ deg(ϕn)

n2 admits a limit L ∈ R when n goes to infinity and we have

dlgth(ϕ) ≥
√

L
5
.

Proof. Denote by ∆ ⊆ B(P2) the set of points blown-up by π. For each n ∈ Z, we
have Base(ϕn) ⊆ ∆. In particular we have

√
deg(ϕm+n) =

√
deg(ϕm ◦ (ϕ−n)−1) ≤√

deg(ϕm)+
√

deg(ϕ−n) =
√

deg(ϕm)+
√

deg(ϕn) for all m,n ≥ 1 (Lemma 4.29). This

means that the sequence n 7→
√

deg(ϕn) is subadditive, so lim
n→∞

√
deg(ϕn)

n
exists, which

is equivalent to saying that lim
n→∞

deg(ϕn)
n2 exists.

For each n ≥ 1, the number of base-points of ϕn is at most 9. This yields lgth(ϕn) ≥√
deg(ϕn)

5
(Lemma 4.30(2)), whence lgth(ϕn)

n
≥
√

deg(ϕn)
5n2 and the result follows by taking

the limit when n goes to infinity. �

Corollary 4.32. If ϕ ∈ Bir(P2) is a birational transformation such that (deg(ϕn))n≥1

grows quadratically (i.e. ϕ is a Halphen twist), then dlgth(ϕ) ≥
√

1
5
· lim
n→∞

deg(ϕn)
n2 > 0.

Proof. A birational transformation of P2 has a quadratic growth if and only if it is
conjugate to an automorphism of a Halphen surface, obtained by blowing-up 9 points
of P2 [Giz1980]. The result then follows from Proposition 4.31. �

Remark 4.33. Using an analogue method as in [BlaDés2015, Proposition 5.1] we are
able to give a uniform lower bound C > 0 such that dlgth(ϕ) ≥ C for all Halphen twists.
However, this bound is far from being reached from the known examples.

Proposition 4.34. Let ϕ ∈ Bir(P2) be a loxodromic birational map which is regularis-
able, i.e. such that there exists a birational map κ : P2 99K X that conjugates ϕ to an
automorphism g = κ ◦ ϕ ◦ κ−1 ∈ Aut(X) where X is a smooth projective surface.

Then, each X as above is isomorphic to the blow-up of finitely many points p1, . . . , pr ∈
B(P2) with r ≥ 10, and the dynamical length of ϕ satisfies dlgth(ϕ) ≥ log(λ(ϕ))

log( r+1
2

)
> 0.

Proof. We first show that there exists a birational morphism η : X → P2. Suppose the
converse, for contradiction. Then, [Har1987, Corollary 1.2] implies that the action of
Aut(X) on Pic(X) is finite (i.e. factorises through the action of a finite group). This is
impossible: the dynamical degree of g, equal to the one of ϕ as both are conjugate, is
the spectral radius of the action of g on Pic(X)⊗Z C (see the introductions of [DF2001]
and [BlaCan2016] for details on these two facts). This dynamical degree is therefore
equal to 1, contradicting the fact that ϕ is loxodromic.

We then obtain the existence of a birational morphism η : X → P2 which is the blow-
up of finitely many points p1, . . . , pr ∈ B(P2). Observe moreover that r ≥ 10 because
ϕ is loxodromic. One way to see this classical fact is to use Proposition 4.31 which
implies that {deg(ϕ̃n)}n≥1 grows at most quadratically if r ≤ 9, where ϕ̃ = η ◦ g ◦ η−1.
This isimpossible since {deg(ϕn)}n≥1 grows exponentially and because ϕ, ϕ̃ ∈ Bir(P2)
are conjugate (by η ◦ κ ∈ Bir(P2)).
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We then replace ϕ with its conjugate η ◦ g ◦ η−1 ∈ Bir(P2). After this, we get ϕn =
η ◦ gn ◦ η−1 for each n ≥ 1, so Base(ϕn) ⊆ {p1, . . . , pr}. By Lemma 4.30(1) we have
lgth(ϕn) ≥ log(deg(ϕn))

log( r+1
2

)
. From lim

n→∞
(deg(ϕn))1/n = λ(ϕ), we deduce lim

n→∞
log(deg(ϕn))

n
=

log(λ(ϕ)), which then yields

dlgth(ϕ) = lim
n→∞

lgth(ϕn)

n
≥ lim

n→∞

log(deg(ϕn))

n log( r+1
2

)
=

log(λ(ϕ))

log( r+1
2

)
> 0

as desired. �

5. Lower semicontinuity of the length: the proof of Theorem 3

Throughout this section, Π: P2 99K P1 will denote the standard linear projection
P2 99K P1

[x : y : z] 7→ [x : y].

5.1. Variables. The proof of Theorem 3 uses the notion of variables, that we now define.

Definition 5.1. A rational map v : P2 99K P1 is called a variable, if there exists a
birational map f ∈ Bir(P2) such that Π ◦ f = v.

P2 f
//

v
  

P2

Π
��

P1

Writing a variable v : P2 99K P1 as [x : y : z] 99K [v0(x, y, z) : v1(x, y, z)] where v0, v1 ∈
k[x, y, z] are homogeneous of the same degree, without common factor, we define its
degree as the common degree of v0 and v1 (which is also the degree of a general fibre
of v).

Remark 5.2. Let us make the following observations:
(1) A rational map v : P2 99K P1 is a variable if and only if there exists a rational

map w : P2 99K P1 such that the rational map (v, w) : P2 99K P1×P1 is birational.
(2) Writing a rational map v : P2 99K P1 as [x : y : z] 99K [v0(x, y, z) : v1(x, y, z)]

where v0, v1 ∈ k[x, y, z] are homogeneous of the same degree d, then v is a
variable if and only if there exist an integer D ≥ d and homogeneous polynomials
h, v2 ∈ k[x, y, z] of degrees D − d and D, such that [x : y : z] 99K [hv0 : hv1 : v2]
is an element of Bir(P2).

(3) For each p ∈ P2, every projection πp : P2 99K P1 away from p is a variable of
degree 1. Conversely, all variables of degree 1 are obtained like this.

(4) The group Bir(P2) acts transitively on the set of variables by right-composition.
Similarly, Aut(P1) acts on the set of variables by left-composition.

Definition 5.3. Let v : P2 99K P1 be a variable. We define the length of v, written
lgth(v), to be the minimum of the lengths of the birational maps ϕ ∈ Bir(P2) such that
Π ◦ ϕ = v.

Lemma 5.4. Let v : P2 99K P1 be a variable. For each ϕ ∈ Bir(P2) such that Π ◦ϕ = v,
we have

lgth(ϕ) ∈ {lgth(v), lgth(v) + 1}.
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Proof. By definition, there exists ψ ∈ Bir(P2) such that Π◦ψ = v and lgth(ψ) = lgth(v).
Since Π◦ϕ◦ (ψ)−1 = Π, the map ϕ◦ (ψ)−1 is a Jonquières transformation, which implies
that the lengths of ϕ and ψ differ at most by one. As lgth(v) ≤ lgth(ϕ) by definition,
we get the result. �

Lemma 5.5. Let v : P2 99K P1 be a variable, and let θ : P1 → P1 be a morphism. Then,
the following are equivalent:

(1) The rational map θ ◦ v : P2 99K P1 is a variable.
(2) The morphism θ : P1 → P1 is an automorphism.

Proof. (1)⇒(2): If θ ◦ v is a variable, its general scheme theoretic fibre is irreducible, so
that the general scheme theoretic fibre of θ also. This proves that θ has degree 0 or 1.
As θ ◦ v is non-constant, so is θ, which is thus an automorphism.

(2)⇒(1): If θ is an automorphism of P1, we have already noted in Remark 5.2(4) that
θ ◦ v is a variable. �

Lemma 5.6. Let f : P2 99K P2 be a non-dominant and non-constant rational map and
let v : P2 99K P1 be a variable. Then, the following are equivalent:

(1) There exists a morphism κ : P1 → P2 such that κ ◦ v = f .
(2) For each linear projection π : P2 99K P1, there exists a morphism θ : P1 → P1

such that π ◦ f = θ ◦ v.
(3) There exists a linear projection π : P2 99K P1 and a non-constant morphism

θ : P1 → P1 such that π ◦ f = θ ◦ v.

Proof. As f is non-constant, π ◦ f : P2 99K P1 is a well-defined rational map for each
linear projection π : P2 99K P1.

(1)⇒ (2): For each linear projection π : P2 99K P1 we get π ◦ f = (π ◦ κ) ◦ v.
(2)⇒ (3): Since f is not constant, there is a linear projection π : P2 99K P1 such that

π ◦ f is not constant.
(3) ⇒ (1): Let us choose α ∈ Aut(P2), β ∈ Aut(P1), and g ∈ Bir(P2) such that

β ◦ π ◦α = v ◦ g = Π. We then replace (π, f, θ, v) with (β ◦ π ◦α, α−1 ◦ f ◦ g, β ◦ θ, v ◦ g)
and can assume that π = v = Π.

We write locally the non-constant morphism θ : P1 → P1 as [1 : t] 99K [1 : r(t)] for
some r(t) ∈ k(t) \ k. The equation Π ◦ f = θ ◦ Π implies that f is locally given as

[1 : t : u] 99K [1 : r(t) : s(t, u)]

for some rational function s ∈ k(t, u). As f is not dominant, the two elements s(t, u)
and r(t) are algebraically dependent over k. Since k(t) is algebraically closed in k(t, u),
this shows that s ∈ k(t). We can thus write f as

[x : y : z] 99K [f0(x, y) : f1(x, y) : f2(x, y)]

for some homogeneous polynomials f0, f1, f2 ∈ k[x, y], and can choose κ : P1 → P2 to be
[u : v] 7→ [f0(u, v) : f1(u, v) : f2(u, v)]. �

5.2. Definition of the Zariski topology on Bir(P2) and basic properties. Follow-
ing [Dem1970, Ser2010], the notion of families of birational maps is defined, and used in
Definition 5.8 for describing the natural Zariski topology on Bir(X).
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Definition 5.7. Let A,X be irreducible algebraic varieties, and let f be a A-birational
map of the A-variety A × X, inducing an isomorphism U → V , where U, V are open
subsets of A×X, whose projections on A are surjective.

The rational map f is given by (a, x) 99K (a, p2(f(a, x))), where p2 is the second
projection, and for each k-point a ∈ A, the birational map x 99K p2(f(a, x)) corresponds
to an element fa ∈ Bir(X). The map a 7→ fa represents a map from A (more precisely
from the k-points of A) to Bir(X), and will be called a morphism from A to Bir(X).

Definition 5.8. A subset F ⊆ Bir(X) is closed in the Zariski topology if for any
algebraic variety A and any morphism A→ Bir(X) the preimage of F is closed.

If d is a positive integer, we set Bir(P2)d := {f ∈ Bir(P2), deg(f) ≤ d}. We will use
the following result, which is [BlaFur2013, Proposition 2.10]:

Lemma 5.9. A subset F ⊆ Bir(P2) is closed if and only if F ∩ Bir(P2)d is closed in
Bir(P2)d for any d.

The aim of this whole section 5 is to prove that for each nonnegative integer ` the set
Bir(P2)` := {f ∈ Bir(P2), lgth(f) ≤ `}

is closed in Bir(P2). By Lemma 5.9, this is equivalent to proving that Bir(P2)`d :=
Bir(P2)d ∩Bir(P2)` is closed in Bir(P2)d for any d. We will now describe the topology of
Bir(P2)d. A convenient way to handle this topology is through the map πd : Bir(P2)d →
Bir(P2)d that we introduce in the next definition and whose properties are given in
Lemma 5.13 below.

Let us now fix the integer d ≥ 1. We will constantly use the following piece of notation:

Definition 5.10. Denote by Rat(P2)d the projective space associated with the vector
space of triples (f0, f1, f2) where f0, f1, f2 ∈ k[x, y, z] are homogeneous polynomials of
degree d. The equivalence class of (f0, f1, f2) will be denoted by [f0 : f1 : f2].

For each f = [f0 : f1 : f2] ∈ Rat(P2)d, we denote by ψf the rational map P2 99K P2

defined by
[x0 : x1 : x2] 7→ [f0(x0, x1, x2) : f1(x0, x1, x2) : f2(x0, x1, x2)].

Writing Rat(P2) the set of rational maps from P2 to P2 and setting Rat(P2)d := {h ∈
Rat(P2), deg(h) ≤ d}, we obtain a surjective map

Ψd : Rat(P2)d → Rat(P2)d, f 7→ ψf .

This map induces a surjective map πd : Bir(P2)d → Bir(P2)d, where Bir(P2)d is defined
to be Ψ−1

d (Bir(P2)d).

Remark 5.11. For each field extension k ⊆ k′, we can similarly associate to each f ∈
Rat(P2)d(k

′) a rational transformation ψf : P2
k′ 99K P2

k′ defined over k′. This will be
needed in the sequel to use a valuative criterium.

We will need the following result:

Proposition 5.12. The set Bir(P2)d is locally closed in Rat(P2)d and thus inherits from
Rat(P2)d the structure of an algebraic variety. Moreover, the following assertions hold:

(1) For each f ∈ Bir(P2)d \ Bir(P2)d, the rational map ψf : P2 99K P2 is non-
dominant.



52 JÉRÉMY BLANC AND JEAN-PHILIPPE FURTER

(2) For each field extension k ⊆ k′, the set Bir(P2)d(k
′) of k′-points of Bir(P2)d is

equal to the set {f ∈ Rat(P2)d(k
′), ψf : P2

k′ 99K P2
k′ is birational }.

Proof. Even if the first assertion is [BlaFur2013, Lemma 2.4(2)], we recall the argument
since this one will be used to prove the rest of the proposition. Denote by F ⊆ Rat(P2)d×
Rat(P2)d the closed algebraic variety corresponding to pairs ([g0 : g1 : g2], [f0 : f1 : f2])
such that the “formal composition”

g ◦ f = [h0 : h1 : h2] = [g0(f0, f1, f2) : g1(f0, f1, f2) : g0(f0, f1, f2)]

is a “multiple” (maybe zero) of the identity. This corresponds to ask that h0y = h1x,
h0z = h2x, h1z = h2y. We then define F0 ⊆ F to be the closed subset such that the
formal composition is zero. If (g, f) ∈ F0, let us observe that the formal composition
g ◦ f is zero, so that the rational map ψf : P2 99K P2 is non-dominant. Conversely,
if (g, f) ∈ F \ F0, the formal composition g ◦ f is non-zero, so that the rational map
ψf : P2 99K P2 is birational.

The second projection pr2 : Rat(P2)d×Rat(P2)d → Rat(P2)d yields two closed subva-
rieties

G0 = pr2(F0) ⊆ G = pr2(F ) ⊆ Rat(P2)d.

By what has been said above, ψf is non-dominant when f ∈ G0 and birational when
f ∈ G \ G0. It follows that (G \ G0) ⊆ Bir(P2)d. Since deg(ϕ−1) = deg(ϕ) for each
ϕ ∈ Bir(P2) (Lemma 2.20(3)), we even get the equality Bir(P2)d = G \G0. This shows
that Bir(P2)d is locally closed in Rat(P2)d, and also gives (1). To obtain (2), we observe
that the construction made in the proof is defined over k′, and that the inverse of any
birational transformation of P2 defined over k′ is still defined over k′. �

The following result, which is [BlaFur2013, Corollary 2.9], will be crucial for us since it
provides us a bridge from the “weird” topological space Bir(P2)d to the “nice” topological
space Bir(P2)d which is an algebraic variety.

Lemma 5.13. The map πd : Bir(P2)d → Bir(P2)d is continuous and closed. In partic-
ular, it is a quotient topological map: A subset F ⊆ Bir(P2)d is closed if and only if its
preimage π−1

d (F ) is closed.

Recall that our aim is to prove that Bir(P2)`d = {f ∈ Bir(P2)d, lgth(f) ≤ `} is closed
in Bir(P2)d. By Lemma 5.13, this reduces to prove that Bir(P2)`d := π−1

d (Bir(P2)`d) is
closed in (the algebraic variety) Bir(P2)d.

We conclude this section by noting that the conjonction of Lemmas 5.9 and 5.13
gives us the following usefull characterisation (already contained in [BlaFur2013, Corol-
lary 2.7]) of closed subsets of Bir(P2):

Lemma 5.14. A subset F ⊆ Bir(P2) is closed if and only if π−1
d (F∩Bir(P2)d) ⊆ Bir(P2)d

is closed for any d.

5.3. The use of a valuative criterion. Let us set

R := k[[t]], and K := k((t)).

We will also write K =
⋃
a≥1 k((t1/a)) since this latter field is an algebraic closure of

K by Newton-Puiseux theorem [Rui1993, Proposition 4.4].
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Definition 5.15. Let n ≥ 1 be an integer and let a = a(t) = [a0 : · · · : an] ∈ Pn(K) be a
K-point of the n-th projective space Pn. Then, up to multiplying (a0, . . . , an) with some
power of t, we may assume that all coefficients ai belong to R and that the evaluation
(a0(0), . . . , an(0)) at t = 0 is nonzero. This enables us to define non ambigously the
element a(0) ∈ Pn, also denoted lim

t→0
a(t), by

a(0) = lim
t→0

a(t) := [a0(0) : · · · : an(0)].

Remark 5.16. More generally, if X is a complete k-variety and x = x(t) ∈ X(K) is
a K-point of X, one can define x(0) = lim

t→0
x(t) ∈ X in the following way: The mor-

phism x : Spec(K) → X admits a unique factorisation under the form x = x̃ ◦ ι where
ι : Spec(K) ↪→ Spec(R) is the open immersion induced by the natural injection R ↪→ K
and where x̃ : Spec(R) → X is a k-morphism (see the valuative criterion of properness
given in [Har1977, (II, Theorem 4.7), page 101]).

The following valuative criterion is classical, see e.g. [MFK1994, chap. 2, §1, pp 52-
54]. We refer to [Fur2009] for a proof in characteristic zero and to [Bla2016] for a proof
in any characteristic.

Lemma 5.17. Let ϕ : X → Y be a morphism between algebraic k-varieties, X being
quasi-projective, and Y being projective. Let y0 be a (closed) point of Y . Then, the two
following assertions are equivalent:

(1) We have y0 ∈ ϕ(X);
(2) There exists a K-point x = x(t) ∈ X(K) such that the K-point y = y(t) :=

ϕ(x(t)) ∈ Y (K) satisfied y0 = y(0).

Remark 5.18. Lemma 5.17 is analogue to the case of a continuous map ϕ : X → Y
between metric spaces where a point y0 of Y belongs to ϕ(X) if and only if there exists
a sequence (xn)n≥1 of X such that y0 = lim

n→+∞
ϕ(xn).

Remark 5.19. Applying Definition 5.15 to an element f = f(t) = [f0 : f1 : f2] of
Rat(P2)d(K) allows us to define f(0) ∈ Rat(P2)d. If we assume furthermore that
f ∈ Bir(P2)d(K) ⊆ Rat(P2)d(K), note that f(0) necessarily belongs to Bir(P2)d by
Lemma 5.17, so that ψf(0) : P2 → P2 is either birational or non-dominant by Proposi-
tion 5.12. Let us recall for clarity that for any f ∈ Rat(P2)d(K), we have defined a
K-rational transformation ψf : P2

K 99K P2
K in Remark 5.11, and that this transformation

is moreover birational if we assume that f ∈ Bir(P2)d(K) by Proposition 5.12(2).

We will prove that Bir(P2)`d is closed in Bir(P2)d. For this, we will prove that its
closureBir(P2)`d inRat(P2)d is such thatBir(P2)`d∩Bir(P2)d = Bir(P2)`d. We begin with
the following result which is just a (technical) application of the valuative criterium given
above. If k′ is an extension field of k, Autk′(P2) ' PGL3(k′), resp. Birk′(P2), denotes
the group of automorphisms, resp. birational transformations, of P2 defined over k′.
Actually, we will only consider the cases where k′ = K (since we will use the valuative
criterium given in Lemma 5.17) and where k′ = K (since we need an algebraically closed
field in order to apply the machinery about the length that we have developped).
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Proposition 5.20. For any h ∈ Bir(P2)`d there exists f ∈ Bir(P2)d(K) such that
h = f(0), and such that the birational map ψf ∈ BirK(P2) associated to f ∈ Bir(P2)d(K)
has length at most `.

The proof of Proposition 5.20 relies on the two following lemmas:

Lemma 5.21. For each p ∈ P2, the set Jonqp,d := Ψ−1
d (Jonqp ∩ Bir(P2)d) is closed in

Bir(P2)d.

Proof. Up to applying an automorphism of P2, we may assume that p = [0 : 0 : 1].
Denote by L the projective space (of dimension 3) associated with the vector space
of pairs (g0, g1) where g0, g1 ∈ k[x, y] are homogeneous polynomials of degree 1. The
equivalence class of (g0, g1) will be denoted by [g0 : g1]. Denote by Y ⊆ Bir(P2)d × L
the closed subvariety given by elements ([f0 : f1 : f2], [g0 : g1]) satisfying f0g1 = f1g0.
Since the first projection pr1 : Bir(P2)d×L→ Bir(P2)d is a closed morphism, the lemma
follows from the equality Jonqp,d = pr1(Y ). �

Remark 5.22. Lemma 5.21 asserts that Jonqp,d = π−1
d (Jonqp ∩ Bir(P2)d) is closed in

Bir(P2)d for each d. By Lemma 5.14, this means that Jonqp is closed in Bir(P2).

Lemma 5.23. Any Cremona transformation g ∈ Bir(P2) of length ` admits an expres-
sion of the form

g = a1 ◦ ϕ1 ◦ · · · ◦ a` ◦ ϕ` ◦ a`+1,

where a1, . . . , a`+1 ∈ Aut(P2), ϕ1, . . . , ϕ` ∈ Jonqp, and deg(ϕi) ≤ deg(g) for each i.

Proof. This follows from Theorem 1 and the fact that if ϕ is a Jonquières transformation
such that g ◦ ϕ is a predecessor of g, then Base(ϕ−1) ⊆ Base(g) (Lemma 1.3(3)), which
implies that g hast at least 2 deg(ϕ)− 1 base-points, so deg(g) ≥ deg(ϕ) (every element
of Bir(P2) of degree d ≥ 2 has at most 2d − 1 points, and equality holds if and only if
the map is Jonquières [BCM2015, Lemma 13]). �

Proof of Proposition 5.20. In order to use Lemma 5.17, we realise Bir(P2)`d as the image
of a morphism of algebraic varieties. Let us fix p = [0 : 0 : 1] ∈ P2. By Lemma 5.23, an
element f of Bir(P2)d belongs to Bir(P2)`d if and only if the birational transformation
ψf admits an expression of the form

ψf = a1 ◦ ϕ1 ◦ · · · ◦ a` ◦ ϕ` ◦ a`+1,

where a1, . . . , a`+1 ∈ Aut(P2), ϕ1, . . . , ϕ` ∈ Jonqp, and degϕi ≤ d for each i.
We now use the closed subvariety Jonqp,d ⊆ Bir(P2)d given in Lemma 5.21. Define

the product P := (PGL3)`+1 × (Jonqp,d)
` and let Comp : P → Bir(P2)d` be the formal

composition morphism defined by
(ai)1≤ i≤ `+1 × (ϕi)1≤ i≤ ` 7→ a1 ◦ ϕ1 ◦ · · · ◦ a` ◦ ϕ` ◦ a`+1.

Let ∆ ⊆ Bir(P2)d × Bir(P2)d` be the pseudo-diagonal, i.e. the set of pairs (f, g)
such that ψf = ψg. Being given by the equations figj = fjgi, for all i, j, where f =
[f0 : f1 : f2] ∈ Bir(P2)d, g = [g0 : g1 : g2] ∈ Bir(P2)d` , the set ∆ is closed into
Bir(P2)d ×Bir(P2)d` .

Denote by id×Comp : Bir(P2)d ×P → Bir(P2)d ×Bir(P2)d` , the morphism sending
(f, p) to (f,Comp(p)) and by ∆′ the closed variety defined by

∆′ := (id×Comp)−1(∆) ⊆ Bir(P2)d ×P.
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By what has been said above, we have Bir(P2)`d = pr1(∆′) where pr1 : Bir(P2)d ×P→
Bir(P2)d is the first projection. Setting ϕ = ι◦pr1 where ι : Bir(P2)d ↪→ Rat(P2)d is the
natural injection, we also have Bir(P2)`d = ϕ(∆′).

Since h ∈ ϕ(∆′), Lemma 5.17 yields us the existence of an element (f, p) = (f(t), p(t)) ∈
∆′(K) ⊆ Bir(P2)d(K)×P(K) such that h = f(0). We observe that the birational map
ψf ∈ BirK(P2) associated to f ∈ Bir(P2)d(K) has length at most `. �

5.4. The end of the proof of Theorem 3. The main result of the previous section
(Proposition 5.20) asserts that any element h ∈ Bir(P2)`d is equal to f(0) for a certain
element f ∈ Bir(P2)d(K) such that the length of ψf ∈ BirK(P2) is at most `. The
main technical result of the present section is Proposition 5.25 which establishes that
the limit ψf(0) : P2 99K P2 is either birational of length ≤ ` or non-dominant (however,
in the non-dominant case, we need to prove a stronger statement in order to make an
induction). This information is sufficient for showing that Bir(P2)`d is closed in Bir(P2)d
thus proving Theorem 3. We begin with the following simple lemma to be used in the
proof of Proposition 5.25.

Lemma 5.24. Let V be a finite dimensional vector space over k and let u, v ∈ K ⊗k V
be two vectors such that

(1) The vectors u, v are linearly independent over K;
(2) The vector v belongs to R⊗k V and its evaluation v(0) at t = 0 is nonzero.

Then, there exist α, β ∈ K such that:
(1) The vector ũ := αu+ βv belongs to R⊗k V ;
(2) The vectors ũ(0) and v(0) are linearly independent over k.

Proof. Let us complete the vector e1 := v(0) in a basis e1, . . . , en of V . Decomposing
the vectors u, v in this basis, we obtain expressions

u =
∑
i

uiei, v =
∑
i

viei,

where u1, . . . , un ∈ K, v1, . . . , vn ∈ R and v1(0) = 1, vi(0) = 0 for i = 2, . . . , n. The
vector w := u− u1

v1
v is nonzero and admits an expression

w =
∑
i

wiei,

where w1, . . . , wn ∈ K and w1 = 0. Let j be the unique integer such that the vector
w̃ := tjw belongs to R ⊗k V and its evaluation w̃(0) at t = 0 is nonzero. The vectors
w̃(0) and v(0) = e1 are linearly independent over k because w̃(0) ∈ (ke2⊕· · ·⊕ken)\{0}.
Since w̃ = tj(u− u1

v1
v), it is enough to set α = tj and β = −tj u1

v1
. �

Proposition 5.25. Let f = f(t) ∈ Bir(P2)d(K) ⊆ Bir(P2)d(K) be an element such
that the associated birational map ψf ∈ BirK(P2) has length ` ≥ 0 and denote by f(0) ∈
Bir(P2)d ⊆ Rat(P2)d the evaluation of f = f(t) at t = 0 (see Definition 5.15 and
Remark 5.19). Then, the following implications are satisfied:

(1) If f(0) ∈ Bir(P2)d, then the birational map ψf(0) is of length ≤ `.
(2) If f(0) ∈ Bir(P2)d \Bir(P2)d, then the rational map ψf(0) is equal to κ ◦ v for

some variable v : P2 99K P1 of length ≤ ` and some morphism κ : P1 → P2.



56 JÉRÉMY BLANC AND JEAN-PHILIPPE FURTER

In particular, for each linear projection π : P2 99K P1, the composition π◦ψf(0) : P2 99K P1

is either not defined or equal to ρ ◦ v for some variable v : P2 99K P1 of length ≤ ` and
some endomorphism ρ : P1 → P1.

Proof. We prove the result by induction on `.
Case of length ` = 0. The equality ` = 0 corresponds exactly to ask that ψf ∈

AutK(P2). We write f = [ha0 : ha1 : ha2], where h ∈ K[x, y, z] is homogeneous of degree
d − 1 and [a0 : a1 : a2] ∈ Bir(P2)1(K) ' PGL3(K). We can moreover assume that the
coefficients of h belong to R ⊆ K and that the evaluation h(0) of h at t = 0 is non-zero.
Similarly, we can assume that a0, a1, a2 have coefficients in R and that at least one of
these has a non-zero value at t = 0. The element [a0(0) : a1(0) : a2(0)] ∈ Rat(P2)1

corresponds to a 3 × 3-matrix. If the matrix is of rank 3, the element f(0) ∈ Bir(P2)d
corresponds to a linear automorphism ψf(0) ∈ Bir(P2) of length 0. If the matrix is of
rank 2, then ψf(0) admits a decomposition under the form κ ◦ v where κ : P1 → P2 is a
linear morphism and v : P2 99K P1 is a linear variable, i.e. of degree 1. The last case is
when the matrix has rank 1, which corresponds to the case where ψf(0) : P2 → P2 is the
constant map to some point a ∈ P2. Let κ : P1 → P2 be the constant map to a and let
v be any variable of length 0, then we have ψf(0) = κ ◦ v.
Case of length ` ≥ 1.
This implies that the birational transformation (ψf )

−1 ∈ BirK(P2) admits at least one
base-point. The proof is divided into the following steps:
Reduction to the case where all base-points are defined over K:
By assumption, the birational map ψf ∈ BirK(P2) has length `. Replacing t with t

1
a

for some a ≥ 1, we can thus assume that all base-points of (ψf )
−1 are defined over K.

Denote by p ∈ P2(K) a base-point of maximal multiplicity of (ψf )
−1.

Reduction to the case where p = [0 : 0 : 1].
Write p = [p0 : p1 : p2] where each pi belongs to K. Up to multiplying (p0, p1, p2) by ti

for some well chosen (and unique) integer i, we may assume that p0, p1, p2 ∈ R and that
pi(0) 6= 0 for some i. Let us choose coefficients bij in the field k such that the following
matrix has nonzero determinant:

M =

 b00 b01 p0(0)
b10 b11 p1(0)
b20 b21 p2(0)

 .

In other words, we have M ∈ GL3(k). This implies that the matrix

B(t) =

 b00 b01 p0

b10 b11 p1

b20 b21 p2

 ∈ Mat3(R)

is invertible in Mat3(R) (because its determinant is invertible). The evaluation at t =
0 of the corresponding automorphism β ∈ AutK(P2) = PGL3(K) is the element of
PGL3(k) = GL3(k)/k∗ given by the class of the matrix M ∈ GL3(k). We can replace f
with f̃ = β−1 ◦ f ∈ B′d(K) (formal composition), because we have f̃(0) = β(0)−1 ◦ f(0),
where β(0) belongs to PGL3(k). After this change, the point p is equal to [0 : 0 : 1] ∈
P2 ⊆ P2(K).
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As in Definition 5.15 (see also Remark 5.19), we write f = [f0 : f1 : f2] where the
components fi ∈ R[x, y, z] satisfy (f0(0), f1(0), f2(0)) 6= (0, 0, 0).

If (f0(0), f1(0)) = (0, 0), then ψf(0) is the constant map to p: Hence we have f(0) 6∈
Bir(P2)d and the result is trivially true by taking κ : P1 → P2 the constant map to p and
v : P2 99K P1 any variable of length ≤ `. We can thus assume that (f0(0), f1(0)) 6= (0, 0),
which means that ψf(0) is not the constant map to p, and can consider the rational map
Π ◦ ψf(0) : P2 99K P1, given by [x : y : z] 99K [f0(0)(x, y, z) : f1(0)(x, y, z)]. We achieve
the proof by studying two cases, depending on whether this rational map is constant or
not.
Case A: The rational map Π ◦ ψf(0) is not constant – construction of an

element of length `− 1.
Since p = [0 : 0 : 1] is a base-point of maximal multiplicity of (ψf )

−1 ∈ BirK(P2), by
Corollary 3.28 there exists an element ϕ ∈ Jonqp(K) (i.e. an element of BirK(P2) which
preserves the pencil of lines through p) such that ϕ ◦ ψf ∈ BirK(P2) is of length ` − 1
and of degree smaller than deg(ψf ) ≤ d.

We may moreover assume that ϕ satisfies the two following assertions:

(i) ϕ is defined over K, i.e. ϕ ∈ Jonqp(K).
(ii) ϕ preserves a general line through p, i.e. Π ◦ ϕ = Π.

To obtain (i), we could use the fact that all base-points of ϕ are defined over K (since
they are included into the base-points of (ψf )

−1). Alternatively, we can use the same
trick as above: Since ϕ is defined over k((t1/a)) for some integer a ≥ 1, it is enough to
replace t with t1/a.

To obtain (ii), it is enough to note that any element ϕ ∈ Jonqp may be written as a
composition α ◦ ϕ̃ where α ∈ Aut(P2) ∩ Jonqp and ϕ̃ ∈ Jonqp preserves a general line
through p.

Let g ∈ Bir(P2)d(K) be such that ψg = ϕ ◦ ψf . Note that the assumption (ii)
above shows us that Π ◦ ψf = Π ◦ ψg. As before, write g = [g0 : g1 : g2] where the
components gi ∈ R[x, y, z] satisfy (g0(0), g1(0), g2(0)) 6= (0, 0, 0). The fact that ψf(0) is
not the constant map to p corresponds exactly to saying that (f0(0), f1(0)) 6= (0, 0).
Replacing ϕ with its composition with [x : y : z] 7→ [t−ix : t−iy : z] for some well chosen
integer i ≥ 0 we may replace (g0, g1, g2) with (t−ig0, t

−ig1, g2) and then assume that
(g0(0), g1(0)) 6= (0, 0). We obtain then a rational map

ν : P2 99K P1

[x : y : z] 7→ [f0(0)(x, y, z) : f1(0)(x, y, z)] = [g0(0)(x, y, z) : g1(0)(x, y, z)]

which satisfies ν = Π ◦ ψf(0) = Π ◦ ψg(0) and is thus non-constant by hypothesis.
Applying the induction hypothesis to g (and g(0)), the map ν = Π ◦ ψg(0) = Π ◦ ψf(0)

is equal to θ ◦ v, where v : P2 99K P1 is a variable of length at most `− 1 and θ : P1 → P1

is an endomorphism. Moreover, θ is non-constant since ν is non-constant.
a) If ψf(0) is a birational map, then ν = Π ◦ ψf(0) is a variable. Since ν = θ ◦ v, this

implies that θ ∈ Aut(P1) (Lemma 5.5) and thus that lgth(ν) = lgth(v) ≤ ` − 1. In
particular, lgth(ψf(0)) ≤ ` since ν = Π ◦ ψf(0) (Lemma 5.4) as we wanted.

b) If ψf(0) is not a birational map, then it is non-dominant (see Remark 5.19). The
equality ν = Π ◦ ψf(0) = θ ◦ v yields the existence of a morphism κ : P1 → P2 such that
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κ ◦ v = ψf(0) (Lemma 5.6). This achieves the proof in this case.

Case B: The rational map Π ◦ ψf(0) is constant.
Let [λ : µ] ∈ P1 be the constant value of the map Π◦ψf(0). There exists a homogeneous

polynomial h ∈ k[x, y, z] such that (f1(0), f2(0)) = (λh, µh). Up to replacing f with α◦f ,
where α ∈ Aut(P2) is of the form [x : y : z] 7→ [ax + by : cy + dy : z], we can assume
that (λ, µ) = (0, 1), which implies that f0(0) = 0 and f1(0) 6= 0.

In this case, we have f(0) /∈ Bir(P2)d and ψf(0) is the rational map [x : y : z] 99K [0 :
f1(0)(x, y, z) : f2(0)(x, y, z)]. Writing π : P2 99K P1, [x : y : z] 7→ [y : z] the projection
away from [1 : 0 : 0], it remains to see that the rational map π ◦ ψf(0) : P2 99K P1,
[x : y : z] 99K [f1(0)(x, y, z) : f2(0)(x, y, z)] is the composition of a variable P2 99K P1 of
length ≤ ` and an endomorphism of P1.

To show this, let us note that by Lemma 5.24, there exist α, β ∈ K such that f̃0 =
αf0 + βf1 ∈ R[x, y, z] and f̃0(0) does not belong to k · f1(0).

We observe that the result holds for f̃ := [f̃0 : f1 : f2] ∈ Bir(P2)d(K). Indeed, ψf̃ and
ψf only differ by an element of Aut(P2)(K) that fixes p = [0 : 0 : 1], so ψf̃ and ψf have
the same length, p is a base-point of ψ−1

f̃
of maximal multiplicity, and all base-points of

ψ−1

f̃
are defined over K. Moreover, f̃ satisfies Case A. The result then holds for f , since

π ◦ ψf̃(0) = π ◦ ψf(0). �

Proof of Theorem 3. We have already explained why Proposition 5.25 implies Theo-
rem 3. Let us however summarise the proof. We want to show that Bir(P2)` = {f ∈
Bir(P2), lgth(f) ≤ `} is closed in Bir(P2) for each integer ` ≥ 0. By Lemma 5.14, this
is equivalent to saying that Bir(P2)`d = π−1

d (Bir(P2)`d) is closed in Bir(P2)d for each d.
This latter point directly follows from Propositions 5.20 and 5.25. �
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