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QUOTIENTS OF HIGHER DIMENSIONAL CREMONA GROUPS

JÉRÉMY BLANC, STÉPHANE LAMY & SUSANNA ZIMMERMANN

Abstract. We study large groups of birational transformations Bir(X), where
X is a variety of dimension at least 3, defined over C or a subfield of C.
Two prominent cases are when X is the projective space Pn, in which case
Bir(X) is the Cremona group of rank n, or when X ⊂ Pn+1 is a smooth cubic
hypersurface. In both cases, and more generally when X is birational to a
conic bundle, we produce infinitely many distinct group homomorphisms from
Bir(X) to Z/2. As a consequence we also obtain that the Cremona group of
rank n > 3 is not generated by linear and Jonquières elements.
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1. Introduction

1.A. Higher rank Cremona groups. The Cremona group of rank n, denoted
by Birk(Pn), or simply Bir(Pn) when the ground field k is implicit, is the group of
birational transformations of the projective space.

The classical case is n = 2, where the group is already quite complicated but
is now well described, at least when k is algebraically closed. In this case the
Noether-Castelnuovo Theorem [Cas01, Alb02] asserts that Bir(P2) is generated by
Aut(P2) and a single quadratic transformation. This fundamental result, together
with the strong factorisation of birational maps between surfaces helps to have a
good understanding of the group.

The dimension n > 3 is more difficult, as we do not have any analogue of the
Noether-Castelnuovo Theorem (see §1.C for more details) and also no strong fac-
torisation. Here is an extract from the article “Cremona group” in the Encyclopedia
of Mathematics, written by V. Iskovskikh in 1987 (who uses the notation Cr(Pnk)
for the Cremona group):

One of the most difficult problems in birational geometry is that

of describing the structure of the group Cr(P3
k), which is no longer

generated by the quadratic transformations. Almost all literature

on Cremona transformations of three-dimensional space is devoted

to concrete examples of such transformations. Finally, practically

nothing is known about the structure of the Cremona group for

spaces of dimension higher than 3. [Isk87]

Thirty years later, there are still very few results about the group structure of
Bir(Pn) for n > 3, even if there were exciting recent developments using a wide
range of techniques. After the pioneering work [Dem70] on the algebraic subgroups
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of rank n in Bir(Pn), we should mention the description of their lattices via p-
adic methods [CX18], the study of the Jordan property [PS16], and the fact that
Cremona groups of distinct ranks are non-isomorphic [Can14].

For n = 3, there is also a classification of the connected algebraic subgroups
[Ume85, BFT17], and partial classification of finite subgroups [Pro11, Pro12, Pro14].
There are also numerous articles devoted to the study of particular classes of ex-
amples of elements in Bir(Pn), especially for n small (we do not attempt to start a
list here, as it would always be very far from exhaustive).

The question of the non-simplicity of Cremona groups of higher rank was up
to now left open. Using modern tools such as the Minimal model programme and
factorisation into Sarkisov links, we will be able in this text to give new insight on
the structure of the Cremona groups Bir(Pn) and of its quotients.

1.B. Normal subgroups. The question of the non-simplicity of Bir(Pn) for each
n > 2 was also mentioned in the article of V. Iskovskikh in the Encyclopedia:

It is not known to date (1987) whether the Cremona group is simple.

[Isk87]

The question was in fact asked much earlier, and is explicitly mentioned in a book
by F. Enriques in 1895:

Tuttavia altre questioni d’indole gruppale relative al gruppo Cre-

mona nel piano (ed a più forte ragione in Sn n > 2) rimangono

ancora insolute; ad esempio l’importante questione se il gruppo Cre-

mona contenga alcun sottogruppo invariante (questione alla quale

sembra probabile si debba rispondere negativamente).
[Enr95, p. 116]1

The feeling expressed by F. Enriques that the Cremona group should be simple
was perhaps supported by the analogy with biregular automorphism groups of
projective varieties, such as Aut(Pn) = PGLn+1(k). In fact in the trivial case of
dimension n = 1, we have Bir(P1) = Aut(P1) = PGL2(k), which is indeed a simple
group when the ground field k is algebraically closed. Pushing further the analogy
with algebraic groups, it was proved by the first author that when considered as
a topological group, the Cremona group Bir(P2) is simple, in the sense that any
proper Zariski closed normal subgroup must be trivial [Bla10]. This result was
recently extended to arbitrary dimension by the first and third authors [BZ18].

The non-simplicity of Bir(P2) as an abstract group was proven, over an alge-
braically closed field, by S. Cantat and the second author [CL13]. The idea of proof
was to apply small cancellation theory to an action of Bir(P2) on a hyperbolic space.
A first instance of roughly the same idea was [Dan74], in the context of plane poly-
nomial automorphisms (see also [FL10]). The modern small cancellation machinery
as developed in [DGO17] allowed A. Lonjou to prove the non simplicity of Bir(P2)
over an arbitrary field, and the fact that every countable group is a subgroup of a
quotient of Bir(P2) [Lon16].

Another source of normal subgroups for Bir(P2), of a very different nature, was
discovered by the third author, when the ground field is R [Zim18]. In contrast

1“However, other group-theoretic questions related to the Cremona group of the plane (and,
even more so, of Pn, n > 2) remain unsolved; for example, the important question of whether
the Cremona group contains any normal subgroup (a question which seems likely to be answered
negatively).”
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with the case of an algebraically closed field where the Cremona group of rank 2 is
a perfect group, she proved that the abelianisation of BirR(P2) is an uncountable
direct sum of Z/2. Here the main idea is to use an explicit presentation by gen-
erators and relations. In fact a presentation of Bir(P2) over an arbitrary perfect
field is available since [IKT93], but because they insist in staying inside the group
Bir(P2), they obtain very long lists. In contrast, if one accepts to consider bira-
tional maps between non-isomorphic varieties, the Sarkisov programme provides
more tractable lists of generators. Using this idea together with results of A.-S.
Kaloghiros [Kal13], the existence of abelian quotients for Bir(P2) was extended to
the case of many non-closed perfect fields by the second and third authors [LZ17].

The present paper is a further extension in this direction, this time in arbitrary
dimension, and over any ground field k which is a subfield of C. Our first result is
the following:

Theorem A. For each subfield k ⊆ C and each n > 3, there is a group homomor-

phism

Birk(Pn) ⊕
I

Z/2

where the indexing set I has the same cardinality as k, and such that the restriction

to the subgroup of birational dilatations given locally by

{(x1, . . . , xn) (x1α(x2, · · · , xn), x2, . . . , xn) | α ∈ k(x2, . . . , xn)∗}

is surjective. In particular, the Cremona group Birk(Pn) is not perfect and thus not

simple.

We give below a few immediate comments, and a quick preview of the rest of the
introduction where we will present several statements that generalise or complement
Theorem A in different directions.

First we emphasise that this result contrasts with the situation in dimension 2
(over C). Indeed, as BirC(P2) is generated by the simple group Aut(P2) = PGL3(C)
and one quadratic map birationally conjugated to a linear map, every non-trivial
quotient of BirC(P2) is non-abelian and uncountable.

Another intriguing point at first sight is the indexing set I. We shall be more
precise later, but the reader should think of I as a kind of moduli space for some
varieties of dimension n− 2. Indeed to construct the group homomorphism we will
see Pn as being birational to a P1-bundle over Pn−1, and each factor Z/2 is related
to the choice of a general hypersurface in Pn−1 of sufficiently high degree, up to
some equivalence.

The next natural question is to understand the kernel of the group homomor-
phism. As will soon become clear, it turns out that Aut(Pn) = PGLn+1(k) is con-
tained in the kernel. This implies that the normal subgroup generated by Aut(Pn)
and any finite subset of elements in Birk(Pn) is proper. Theorem C below will be
a stronger version of this fact.

One can also ask about the possibility to get a homomorphism to a free product
of Z/2, instead of a direct sum. We will see that is is indeed possible, and is related
to the existence of many conic bundle models for Pn which are not pairwise square
birational. See Theorems D and E below.

Finally, one can ask about replacing Pn by a nonrational variety. In this di-
rection, we will prove the following result about the group Bir(X) of birational
transformations of a conic bundle X/B.
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Theorem B. Let B ⊆ Pm be a smooth projective complex variety, P Pm a

decomposable P2-bundle (projectivisation of a decomposable rank 3 vector bundle)
and X ⊂ P a smooth closed subvariety such that the projection to Pm gives a conic

bundle η : X B. Then there exists a group homomorphism

Bir(X) ⊕
Z

Z/2

which is surjective in restriction to Bir(X/B) = {ϕ ∈ Bir(X) | η ◦ ϕ = η}.

Moreover, if there exists a subfield k ⊆ C over which X,B and η are defined,

the image of elements of Bir(X/B) defined over k is also infinite.

Theorem B applies to any product X = P1 × B, to smooth cubic hypersurfaces
X ⊆ Pn (see Section 8.E and in particular Corollary 8.8 and Proposition 8.9), and
to many other varieties of dimension n > 3 which are very far from being rational
(see for instance [Kol17, Theorem 3] and [AO18, Theorem 1.1 and Corollary 1.2]).
Of course it also includes the case of X = P1 × Pn−1 which is birational to Pn, but
observe that Theorem A is slightly stronger in this case, since there the set indexing
the direct sum has the same cardinality as the ground field, and also because we
can give an explicit subgroup, easy to describe, whose image is surjective.

1.C. Generators. As already mentioned, the Noether-Castelnuovo theorem pro-
vides simple generators of Bir(P2) when k is algebraically closed. Using Sarkisov
links, there are also explicit (long) lists of generators of Bir(P2) for each field k

of characteristic zero or more generally for each perfect field k [Isk91, Isk96]. In
dimension n > 3, we do not have a complete list of all Sarkisov links and thus are
far from having an explicit list of generators for Bir(Pn). The lack of an analogue
to the Noether-Castelnuovo Theorem for Bir(Pn) and the question of finding good
generators was already cited in the article of the Encyclopedia above, in [HM13,
Question 1.6], and also in the book of Enriques:

Questo teorema non è estendibile senz’altro allo Sn dove n > 2;

resta quindi insoluta la questione capitale di assegnare le più sem-

pilici trasformazioni generatrici dell’intiero gruppo Cremona in Sn
per n > 2. [Enr95, p. 115]2

A classical result, due to H. Hudson and I. Pan [Hud27, Pan99], says that Bir(Pn),
for n > 3, is not generated by Aut(Pn) and finitely many elements, or more generally
by any set of elements of Bir(Pn) of bounded degree. The reason is that one needs
at least, for each irreducible variety Γ of dimension n− 2, one birational map that
contracts a hypersurface birational to P1 × Γ. These contractions can be realised in
Bir(Pn) by Jonquières elements, i.e. elements that preserve a family of lines through
a given point, which form a subgroup

PGL2(k(x2, . . . , xn)) ⋊ Bir(Pn−1) ⊆ Bir(Pn).

Hence, it is natural to ask whether the group Bir(Pn) is generated by Aut(Pn)
and by Jonquières elements (a question for instance asked in [PS15]).

We answer this question by the negative, in the following stronger form:

2“This theorem can not be easily extended to Pn where n > 2; therefore, the main question of
finding the most simple generating transformations of the entire Cremona group of Pn for n > 2
remains open.”
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Theorem C. Let k be a subfield of C, and n > 3. Let S be a set of elements

in the Cremona group Birk(Pn) that has cardinality smaller than the one of k (for

example S finite, or S countable if k is uncountable), and let G ⊆ Birk(Pn) be the

subgroup generated by Autk(Pn), by all Jonquières elements and by S.

Then, G is contained in the kernel of a surjective group homomorphism

Birk(Pn) Z/2.

In particular G is a proper subgroup of Birk(Pn), and the same is true for the

normal subgroup generated by G.

It is interesting to make a parallel between this statement and the classical
Tame Problem in the context of the affine Cremona group Aut(An), or group of
polynomial automorphisms. This is one of the “challenging problems” on the affine
spaces, described by H. Kraft in the Bourbaki seminar [Kra96]. Recall that the
tame subgroup Tame(An) ⊆ Aut(An) is defined as the subgroup generated by
affine automorphisms and by the subgroup of elementary automorphisms of the
form (x1, . . . , xn) (ax1 + P (x2, . . . , xn), x2, . . . , xn). This elementary subgroup
is an analogue of the PGL2(k(x1, . . . , xn)) factor in the Jonquières group, and of
course the affine group is PGLn+1(k) ∩ Aut(An). The Tame Problem asks whether
the inclusion Tame(An) ⊆ Aut(An) is strict in dimension n > 3. It was solved
in dimension 3 over a field of characteristic zero in [SU04], and remains an open
problem otherwise.

On the one hand, one could say that our Theorem C is much stronger, since
we consider the normal subgroup generated by these elements, and we allow some
extra generators. It is not known (even if not very likely) whether one can generate
Aut(A3) with linear automorphisms, elementary automorphisms and one single
automorphism, and not even whether the normal subgroup generated by these is the
whole group Aut(A3) (this last statement, even without the extra automorphism,
seems more plausible).

On the other hand, even in dimension 3 we should stress that Theorem C does
not recover a solution to the Tame Problem. Indeed, it seems plausible that the
whole group Aut(An) lies in the kernel of the group homomorphism to Z/2 of Theo-
rem C. In fact, every element of Bir(Pn) that admits a decomposition into Sarkisov
links that contract only rational varieties (or more generally varieties birational to
P2 ×B for some variety B of dimension n− 3) is in the kernel of all our group ho-
momorphisms (all are given by the construction of Theorem D below), and it seems
natural to expect that elements of Aut(An) are of this type, but we leave this as
an open question. In fact we are not aware of any element of Aut(A3) which has
been proved to lie outside the group generated, in Bir(P3), by linear and Jonquières
maps: see [BH15, Proposition 6.8] for the case of the Nagata automorphism, which
can be generalised to any other automorphism given by a Ga action, as all algebraic
subgroups of Bir(P3) isomorphic to Ga are conjugate [BFT18].

1.D. Overwiew of the strategy. By the Minimal model programme, every va-
riety Z which is covered by rational curves is birational to a Mori fibre space,
and every birational map between two Mori fibre spaces is a composition of sim-
ple birational maps, called Sarkisov links (see Definition 3.8 and Theorem 4.29).
We associate to such a variety Z the groupoid BirMori(Z) of all birational maps
between Mori fibre spaces birational to Z. The main idea is that even if we are
primarily interested in describing morphisms from the group Bir(Z) to Z/2, it turns
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out to be easier to first define such a morphism on the larger groupoid BirMori(Z),
and then restrict to Bir(Z).

We concentrate on some special Sarkisov links, called Sarkisov links of conic

bundles of type II (see Definitions 3.8 and 3.9). To each such link, we associate a
marked conic bundle, which is a pair (X/B,Γ), where X/B is a conic bundle (a
terminal Mori fibre space with dimB = dimX − 1) and Γ ⊂ B is an irreducible
hypersurface (see Definition 3.22 and Lemma 3.23). We also define a natural equiv-
alence relation between marked conic bundles (Definition 3.22).

For each variety Z, we denote by CB(Z) the set of equivalence classes of conic
bundles X/B with X birational to Z, and for each class of conic bundles C ∈ CB(Z)
we denote by M(C) the set of equivalence classes of marked conic bundles (X/B,Γ),
where C is the class of X/B.

The Sarkisov programme is established in every dimension [HM13] and relations
among them are described in [Kal13]. Inspired by the latter, we define rank r fibra-

tions X/B (see Definition 3.1); rank 1 fibrations are Mori fibre spaces and rank 2
fibrations dominate Sarkisov links (see Lemma 3.7). We prove that the relations
among Sarkisov links are generated by elementary relations (Definition 4.4), which
we define as relations dominated by rank 3 fibrations (see Theorem 4.29).

We associate to each of these Sarkisov links χ an integer cov. gon(χ) that mea-
sures the degree of irrationality of the base locus of χ (see §2.G). The BAB conjec-
ture, proven in [Bir16a] and [Bir16b], tells us that the set of weak Fano terminal
varieties of dimension n form a bounded family and the degree of their images by a
(universal) multiple of the anticanonical system is bounded by a (universal) integer
d (see Proposition 5.1). As a consequence, we show that any Sarkisov link χ of
conic bundles of type II appearing in an elementary relation over a base of small
dimension satisfies cov. gon(χ) 6 d (see Proposition 5.3). This and the descrip-
tion of the elementary relations over a base of maximal dimension and including a
Sarkisov link of conic bundles of type II (Proposition 5.5) allows us to prove the
following statement in §5.C.

Theorem D. Let n > 3. There is an integer d > 1 depending only on n, such

that for every conic bundle X/B, where X is a terminal variety of dimension n,

we have a groupoid homomorphism

BirMori(X) ˚
C∈CB(X)

(

⊕
M(C)

Z/2

)

that sends each Sarkisov link of conic bundles χ of type II with cov. gon(χ) >
max{d, 8 conn. gon(X)} onto the generator indexed by its associated marked conic

bundle, and all other Sarkisov links and all automorphisms of Mori fibre spaces

birational to X onto zero.

Moreover it restricts to group homomorphisms

Bir(X) ˚
C∈CB(X)

(

⊕
M(C)

Z/2

)

, Bir(X/B) ⊕
M(X/B)

Z/2.

In order to deduce Theorem A, we study the image of the group homomorphism
from Bir(X) and Bir(X/B) provided by Theorem D, for some conic bundle X/B.
In particular, we must check that these restrictions are not the trivial morphism.
We give a criterion to compute the image in §6.A. We apply this criterion to show
that the image is very large if the generic fibre of X/B is P1 (or equivalently if
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X/B has a rational section, or is equivalent to (P1 × B)/B). This is done in §6.B
and allows us to prove Theorem A. Then in §6.C we study the more delicate case
where the generic fibre X/B is not P1 (or equivalently if X/B has no rational
section), and show that for each conic bundle X/B, the image of Bir(X/B) by
the group homomorphism of Theorem D contains an infinite direct sum of Z/2
(Proposition 6.9). This allows to prove Theorem B.

1.E. Non-equivalent conic bundle structures. Coming back to the case of Pn,
we study the free product structure appearing in Theorem D. We want to prove
that the indexing set CB(Pn) is large. This is equivalent to the question of existence
of many non-equivalent conic bundle structures on Pn. Using conic bundles over
P2 with discriminant an elliptic curve, we manage to produce such examples, and
we get the following.

Theorem E. Let n > 3 and let k ⊆ C be a subfield. There is a surjective group

homomorphism

Birk(Pn) ˚
J

Z/2,

where the indexing set J has the same cardinality as k. In particular, every group

generated by a set of involutions with cardinality smaller or equal than |k| is a

quotient of Birk(Pn). Moreover, the group homomorphism that we construct admits

a section, so Birk(Pn) is a semi-direct product with one factor being a free product.

A first consequence is Theorem C. Other complements are given in Section 8.
First we get the SQ-universality of Birk(Pn), meaning that any countable group

is a subgroup of a quotient of Birk(Pn). But in fact, many natural subgroups are
quotients of Birk(Pn), with no need to passing to a subgroup: this includes dihedral
and symmetric groups, linear groups, and the Cremona group of rank 2 (see §8.A).

Another consequence of our results is that the group Birk(Pn) is not hopfian
if it is generated by involutions, for each subfield k ⊆ C and each n > 3 (Corol-
lary 8.5). This is another difference with the dimension 2, as BirC(P2) is hopfian
and generated by involutions (see §8.B).

All our results hold over any field abstractly isomorphic to a subfield of C (§8.C).
This is the case of most field of characteristic zero that are encountered in algebraic
geometry. For instance, any field of rational functions of any algebraic variety
defined over a subfield of C.

Another feature of the Cremona groups in higher dimension is that the group
BirC(Pn) is a free product of uncountably many distinct subgroups, amalgamated
over the intersection of the subgroups, which is the same for any two subgroups.
This strong version of an amalgamated product (Theorem 8.6) is again very different
from BirC(P2) (which is not a non-trivial amalgam, as already explained) and
generalises to other varieties as soon as they have two non-equivalent conic bundle
structures. Again this result can be generalised to subfields of C.

Theorem 8.6 implies that Bir(Pn) acts non-trivially on a tree. More generally,
for each conic bundle X/B, we provide a natural action of Bir(X) on a graph
constructed from rank r fibrations birational to X (see §8.F).

Aknowledgements. We thank Hamid Ahmadinezhad, Marcello Bernardara, Cau-
cher Birkar, Christian Böhnig, Hans-Christian Graf von Bothmer, Serge Cantat,
Ivan Cheltsov, Tom Ducat, Andrea Fanelli, Enrica Floris, Jean-Philippe Furter,
Philipp Habegger, Anne-Sophie Kaloghiros, Vladimir Lazić, Zsolt Patakfalvi, Yuri
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2. Preliminaries

Unless explicitly stated otherwise, all ambient varieties are assumed to be pro-
jective, irreducible, reduced and defined over the field C of complex numbers.

This restriction on the ground field comes from the fact that this is the setting of
many references that we use, such as [BCHM10, HM13, Kal13, KKL16]. It seems to
be folklore that all the results in these papers are also valid over any algebraically
closed field of characteristic zero, but we let the reader take full responsibility if he
is willing to deduce that our results automatically hold over such a field. However,
in Sections 6 and 7, see also §8.C, we will show how to work over fields that can be
embedded in C.

General references for this section are [KM98, Laz04, BCHM10].

2.A. Divisors and curves. Let X be a normal variety, Div(X) the group of
Cartier divisors, and Pic(X) = Div(X)/ ∼ the Picard group of divisors modulo
linear equivalence. The Néron-Severi space N1(X) = Div(X) ⊗ R/ ≡ is the space
of R-divisors modulo numerical equivalence. This is a finite-dimensional vector
space whose dimension ρ(X) is called the Picard rank of X . We denote N1(X) the
dual space of 1-cycles with real coefficients modulo numerical equivalence. We have
a perfect pairing N1(X)×N1(X) R induced by intersection. If we need to work
with coefficients in Q we will use notation such as N1(X)Q := Div(X) ⊗ Q/ ≡ or
Pic(X)Q := Pic(X) ⊗ Q. We say that a Weil divisor D on X is Q-Cartier if mD
is Cartier for some integer m > 0. The variety X is Q-factorial if all Weil divisors
on X are Q-Cartier. An element in Div(X) ⊗ Q is called a Q-divisor.

First we recall a few classical geometric notions attached to a Q-divisor D. Let
m be a sufficiently large and divisible integer. D is effective, denoted D > 0, if all
coefficients of D are non negative, and D is movable if the base locus of the linear
system |mD| has codimension at least 2. D is big if the map associated with the
linear system |mD| is birational. Similarly, D is semiample if |mD| is base point
free, and D is ample if furthermore the associated map is an embedding. Finally,
D is nef if for any curve C we have D · C > 0.

Now we recall how the numerical counterparts of these notions define cones in
N1(X). The effective cone Eff(X) ⊆ N1(X) is the cone generated by effective
divisors on X . Its closure ĎEff(X) is the cone of pseudo-effective classes. Similarly
we denote NE(X) ⊆ N1(X) the cone of effective 1-cycles, and ĚNE(X) its closure.
By Kleiman’s criterion, a divisor D is ample if and only if D ·C > 0 for any 1-cycle
C ∈ ĚNE(X). It follows that the cone Ample(X) of ample classes if the interior
of the closed cone Nef(X) ⊆ N1(X) of nef classes. Similarly, the interior of the
pseudo-effective cone ĎEff(X) is the big cone Big(X): Indeed a class D is big if and
only if D ≡ A + E with A ample and E effective. A class is semiample if it is the
pull-back of an ample class by a morphism. Finally the movable cone ĘMov(X) is the
closure of the cone spanned by movable divisors, and we will denote by IntMov(X)
its interior.
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One should keep in mind the following inclusions between all these cones:

Ample(X) Semiample(X) Nef(X) ĘMov(X) ĎEff(X)

ĞAmple(X) ĚBig(X)

⊆ ⊆ ⊆

=

⊆

=

We say that a 1-cycle C ∈ ĚNE(X) is extremal if any equality C = C1 + C2 inside
ĚNE(X) implies that C,C1, C2 are proportional.

2.B. Maps. Let π : X Y be a surjective morphism between normal varieties.
We shall also denoteX/Y such a situation. The relative Picard group is the quotient
Pic(X/Y ) := Pic(X)/π∗ Pic(Y ).

We say that a curve C ⊆ X is contracted by π if π(C) is a point. The sub-
sets NE(X/Y ) ⊆ N1(X/Y ) ⊆ N1(X) are respectively the cone and the subspace
generated by curves contracted by π. The relative Néron-Severi space N1(X/Y )
is the quotient of N1(X) by the orthogonal of N1(X/Y ). The dimension ρ(X/Y )
of N1(X/Y ), or equivalently N1(X/Y ), is the relative Picard rank of π. If π has
connected fibres, then ρ(X/Y ) = 0 if and only if π is an isomorphism, because a
bijective morphism between normal varieties is an isomorphism.

We denote by Eff(X/Y ), Nef(X/Y ), Ample(X/Y ), Big(X/Y ), ĘMov(X/Y ) the
images of the corresponding cones of N1(X) in the quotient N1(X/Y ). If D ∈
N1(X) is a class that projects to an element in Nef(X/Y ), we says that D is π-nef.
Equivalently, D is π-nef if D ·C > 0 for any C ∈ NE(X/Y ). Similarly, we define the
notion of π-ample, π-big, π-effective. In particular a class D is π-ample if D ·C > 0
for any C ∈ ĚNE(X/Y ).

Geometrically, a Q-divisor D is π-ample if the restriction of D to each fibre is
ample, and D is π-big if the restriction of D to the generic fibre is big. We have
the following characterisation for this last notion:

Lemma 2.1. Let π : X Y be a surjective morphism between normal varieties.

A divisor D on X is π-big if and only if we can write D as a sum

D = π-ample + effective.

Proof. Let D be a divisor on X , and F = π−1(p) a general fibre. By [Nak04,
Corollary 5.17] we have

D is π-big ⇐⇒ D|F is big ⇐⇒ D|F = ample + effective

⇐⇒ D = π-ample + π-effective.

We conclude by using the equivalence

π-effective ⇐⇒ π-numerically trivial + effective,

and absorbing the π-numerically trivial divisor in the π-ample factor to get the
result. �

When the morphism π : X Y is birational, the exceptional locus Ex(π) is the
set covered by all contracted curves. Assume moreover that ρ(X/Y ) = 1, and that
X is Q-factorial. Then we are in one of the following situations [KM98, Prop 2.5]:
either Ex(π) is a prime divisor, and we say that π is a divisorial contraction, or
Ex(π) has codimension at least 2 in X , and we say that π is a small contraction.
In this case, Y is not Q-factorial.
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In the context of a birational morphism, we have the following classical lemma.
Observe that here a class is π-effective if it can be represented by an effective divisor
with no component of the support in the exceptional locus of π.

Lemma 2.2 (Negativity Lemma, see [BCHM10, 3.6.2] or [Mat02, 13-1-4]). Let

π : X Y be a birational morphism from a smooth variety X, E a divisor with

support in the exceptional locus of ϕ, and assume that

E ≡ π-nef + π-effective.

Then −E > 0.

Given three normal varieties X,Y,W together with surjective morphisms X/W ,
Y/W , we say that ϕ : X Y is a rational map over W if we have a commutative
diagram

X Y

W

ϕ

Now let ϕ : X Y be a birational map. Any Weil divisor D on X is sent to a
well-defined cycle ϕ(D) on Y , and by removing all components of codimension > 2
we obtain a well-defined divisor ϕ∗D: one says that ϕ induces a map in codimen-
sion 1. If codimϕ(D) > 2 (and so ϕ∗D = 0), we say that ϕ contracts the divisor D.
A birational contraction is a birational map such that the inverse does not contract
any divisor, or equivalently a birational map which is surjective in codimension 1. A
pseudo-isomorphism is a birational map which is an isomorphism in codimension 1.
Birational morphisms and pseudo-isomorphisms (and compositions of those) are
examples of birational contractions.

We use a dashed arrow to denote a rational (or birational) map, a plain
arrow for a morphism, and a dotted arrow , or simply a dotted line ,
to indicate a pseudo-isomorphism.

We denote by Bir(X) the group of birational transformations of X . Given a
surjective morphism η : X B, we denote by Bir(X/B) the subgroup of Bir(X)
consisting of all birational transformations over B, i.e.

Bir(X/B) := {ϕ ∈ Bir(X) | η ◦ ϕ = η} ⊆ Bir(X).

2.C. Mori dream spaces and Cox sheaves. We shall use a relative version of
the usual definition of Mori dream space (compare with [KKL16, Definition 2.2]).
Before giving the definition we recall the following notions.

Let π : X Y be a surjective morphism, and F a sheaf on X . The higher direct

images of F are the sheaves Riπ∗F , i > 0, which are defined on each affine subset
U ⊂ Y as Riπ∗F(U) = Hi(π−1(U),F).

We say that a normal variety Y has rational singularities if for some (hence any)
desingularisation π : X Y , we have Riπ∗OX = 0 for all i > 0.

Recall also that a variety is rationally connected if any two general points are
contained in a rational curve (see [Kol96, IV.3]).

Definition 2.3. Let η : X B be a surjective morphism between normal varieties.
We say that X/B is a Mori dream space if the following conditions hold:

(MD1) X is Q-factorial, and both X,B have rational singularities.
(MD2) A general fibre of η is rationally connected and has rational singularities.
(MD3) Nef(X/B) is the convex cone generated by finitely many semiample di-

visors;
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(MD4) There exist finitely many pseudo-isomorphisms fi : X Xi overB, such
that each Xi is a Q-factorial variety satisfying (MD3), and

ĘMov(X/B) =
⋃

f∗
i (Nef(Xi/B)).

Lemma 2.4. Let η : X B be a surjective morphism between normal varieties,

and F a general fibre. Assume that X and B have rational singularities, and as-

sume:

(i) F is rationally connected and has rational singularities.

Then the following properties hold true:

(ii) Hi(F,OF ) = 0 for all i > 0;

(iii) η∗OX = OB and Riη∗OX = 0 for all i > 0;

(iv) H1(η−1(U),Oη−1(U)) = 0 for each affine open set U ⊂ B;

(v) Pic(X/B)Q = N1(X/B)Q.

Remark 2.5. Condition (i) from Lemma 2.4 is our condition (MD2). The lemma
implies that we would obtain a more general definition replacing (MD2) by Condi-
tion (iv), which is the choice of [BCHM10], or by Condition (v), which is a relative
version of the choice made in [KKL16]. However our more restrictive definition
suits to our purpose and seems easier to check in practice.

Proof. (i) =⇒ (ii). Consider a resolution of singularities π : F̂ F . Since F
has rational singularities, we have Riπ∗OF̂ = 0 for i > 0. Then [Har77, III,

Ex.8.1] implies that Hi(F̂ ,OF̂ ) ≃ Hi(F, π∗OF̂ ) = Hi(F,OF ) for all i > 0. Finally

Hi(F,OF ) = Hi(F̂ ,OF̂ ) = 0 by [Kol96, IV.3.8].
(i) =⇒ (iii). Since X has rational singularities, without loss in generality we

can replace X by a desingularisation and assume X smooth. We just saw that
Hi(F,OF ) = 0 for all i > 0, and since we assume that B has rational singularities,
the result follows from [Kol86, Theorem 7.1].

(iii) =⇒ (iv). This is just the definition of R1η∗OX = 0.
(iii) =⇒ (v). Let D ∈ Div(X)Q a divisor which is numerically trivial against

the contracted curves. We want to show that D is trivial in Pic(X/B)Q, that is, a
multiple of D is a pull-back. This is exactly the content of [KM92, 12.1.4]. Observe
that here again we only need the vanishing assumption for i = 1. �

Let η : X B be a surjective morphism between normal varieties, and L1, . . . ,
Lr some Q-divisors on X . We define the divisorial sheaf R(X/B;L1, . . . , Lr) to be
the sheaf of graded OB-algebras defined on every open affine set U ⊂ B as

R(X/B;L1, . . . , Lr)(U) = ⊕
(m1,...,mr)∈Nr

H0(η−1(U)/U,m1L1 + · · · +mrLr),

where for any D ∈ Pic(X)Q

H0(η−1(U)/U,D) =
{

f ∈ k(η−1(U))∗ | ∃L ∈ PicQ(U), div(f) + D + η∗L > 0
}

∪ {0}.

If moreover Eff(X/B) ⊆
∑

R+Li, which ensures that we would get the same
algebras using a Zr-grading instead of Nr, then we say that the sheaf is a Cox

sheaf, and we denote

Cox(X/B;L1, . . . , Lr) := R(X/B;L1, . . . , Lr).
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We say that a divisorial sheaf R(X/B;L1, . . . , Lr) is finitely generated if for ev-
ery affine set U the Nr-graded OB(U)-algebra R(X/B;L1, . . . , Lr)(U) is finitely
generated.

As the following lemma shows, for Cox sheaves this property of finite generation
is independent of the choice of the Li, and therefore we shall usually omit the
reference to such a choice and denote a Cox sheaf simply by Cox(X/B).

Lemma 2.6. Let η : X B be a surjective morphism between normal varieties,

L1, . . . , Lr ∈ Pic(X)Q such that Eff(X/B) ⊆
∑

R+Li, and Cox(X/B;L1, . . . , Lr)
the associated Cox sheaf. Let L′

1, . . . , L
′
s ∈ Pic(X)Q. If Cox(X/B;L1, . . . , Lr)

is finitely generated, then the divisorial sheaf R(X/B;L′
1, . . . , L

′
s) also is finitely

generated. In particular, the property of finite generation of a Cox sheaf of X/B
does not depend on the choice of the Li.

Proof. As already observed we can use a Zr-grading and write

Cox(X ;L1, . . . , Lr)(U) = ⊕
(n1,...,nr)∈Zr

H0(η−1(U)/U, n1L1 + · · · + nrLr)

Replacing the Li par 1
nLi for some sufficiently divisible n, which by [ADHL15,

I.1.2.2] does not affect the finite generation, we can assume that each L′
j is of the

form L′
j = n1L1 + · · · + nrLr + η∗V for some ni ∈ Z and some Q-divisor V on B.

So

R(X ;L′
1, . . . , L

′
r)(U) = ⊕

(m1,...,mr)∈Nr

H0(η−1(U)/U,m1L
′
1 + · · · +mrL

′
r)

is a Veronese subalgebra of Cox(X ;L1, . . . , Lr)(U), and is finitely generated again
by [ADHL15, I.1.2.2]. �

Lemma 2.7. Let X/B be a surjective morphism between normal varieties, whose

general fibres are rationally connected. Assume that X is Q-factorial, and that X,

B and the general fibres have rational singularities. Then X/B is a Mori dream

space if and only if its Cox sheaf is finitely generated.

Proof. The proof is similar to the proofs in the non-relative setting of [KKL16,
Corollaries 4.4 and 5.7]. �

Example 2.8. Standard examples of Mori dream spaces in the non relative case
(i.e. when B is a point) are toric varieties and Fano varieties. Both of these classes
of varieties are special examples of log Fano varieties, which are Mori dream spaces
by [BCHM10, Corollary 1.3.2]. If F is a log Fano variety, and B is any smooth
variety, then (F ×B)/B is a basic example of relative Mori dream space.

2.D. Minimal model programme. Let X be a normal variety, and C ∈ ĚNE(X)
an extremal class. We say that the contraction of C exists (and in that case it
is unique), if there exists a surjective morphism π : X Y with connected fibres
to a normal variety Y , with ρ(X/Y ) = 1, and such that any curve contracted by
π is numerically proportional to C. If π is a small contraction, we say that the
log-flip of C exists (and again, in that case it is unique) is there exists X X ′ a
pseudo-isomorphism over Y which is not an isomorphism, such that X ′ is normal
and X ′ Y is a small contraction that contracts curves proportional to a class
C′. For each D ∈ N1(X), if D′ is the image of D under the pseudo-isomorphism,
we have a sign change between D ·C and D′ ·C′. We say that X X ′ is a D-flip,
resp. a D-flop, resp. a D-antiflip when D · C < 0, resp. D ·C = 0, resp. D · C > 0.
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IfD is nef onX , we say thatX is a D-minimal model. If there exists a contraction
X Y with ρ(X/Y ) = 1, dim Y < dimX and −D relatively ample, we say that
X/Y is a D-Mori fibre space.

A step in the D-Minimal Model Programme (or in the D-MMP for short) is the
removal of an extremal class C with D · C < 0, either via a divisorial contraction,
or via a D-flip. In this paper we will ensure the existence of each step in a D-MMP
by working in one the following contexts. Either D = KX + ∆ will be an adjoint
divisor with ∆ ample and we can apply the main result of [BCHM10], or we will
assume that X is a Mori dream space, and rely on Lemma 2.9 below (which is
the reason for the name). By running a D-MMP from X , we mean performing a
sequence of such steps, replacing each time D by its image, until reaching one of
the following two possible outputs: a D-minimal model or a D-Mori fibre space.
In particular, observe that for us the output of a D-MMP is always of the same
dimension as the starting variety, and the whole process makes sense even for D
not pseudo-effective (in contrast with another possible convention which would be
to define the output of a D-MMP as Proj(⊕nH

0(X,nD)).
We will often work in a relative setting where all steps are maps over a base

variety B, and we will indicate such a setting by saying that we run a D-MMP over

B.
When D = KX is the canonical divisor, we usually omit the mention of the divi-

sor in the previous notations. So for instance given a small contraction contracting
the class of a curve C, we speak of the flip of C only if KX ·C < 0, of the D-flip of
C if D ·C < 0, and of the log-flip of C when we do not want to emphasise the sign
of the intersection against any divisor.

Lemma 2.9 (see [HK00, Proposition 1.11] or [KKL16, Theorem 5.4]). If X/B is

a Mori dream space, then for any class D ∈ N1(X) one can run a D-MMP from

X over B, and there are only finitely many possible outputs for such MMP.

2.E. Singularities. We have recalled the basic terminology of the MMP without
assumption on singularities, but as usual in practice we will make some drastic
restriction on the allowed singularities. A first basic fact is that Q-factoriality is
preserved under all operations of the MMP. Precisely, assume that X is a normal
Q-factorial variety. If π : X Y is a divisorial contraction or a Mori fibre space,
then Y is Q-factorial. If π : X Y is a small contraction and X X ′ is the
associated log-flip, then X ′ is Q-factorial, but Y is not (see [KM98, 3.36 & 3.37]).

Now let X be a normal variety such that the canonical divisor KX is Q-Cartier,
and let π : Z X be a resolution of singularities, with exceptional divisors E1,
. . . , Er. We say that X has terminal singularities, or that X is terminal, if in the
ramification formula

KZ = π∗KX +
∑

aiEi,

we have ai > 0 for each i. Similarly we say that X has Kawamata log terminal

(klt for short) singularities, or that X is klt, if ai > −1 for each i. Each coefficient
ai, which is often called the discrepancy of Ei, does not depend on a choice of
resolution in the sense that it is an invariant of the geometric valuation associated
to Ei. Let ∆ an effective Q-divisor on X . We call (X,∆) a klt pair if KX + ∆ is
Q-Cartier and if for a (and hence any) resolution of singularities π : Z X such
that the divisor (π−1)∗∆ ∪ Ex(π) has normal crossing support we have

KZ = π∗(KX + ∆) +
∑

aiEi
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where π∗(
∑

aiEi) + ∆ = 0 and ai > −1 for all i. Observe that if (X,∆) is a klt
pair, then for any ∆ > ∆′ > 0 the pair (X,∆′) also is klt. In particular taking
∆′ = 0 we get that X is klt.

Lemma 2.10. Let π : X Y be a divisorial contraction with exceptional divisor

E = Ex(π) that contracts the class of a curve C. If D ∈ Div(X) and D′ = π∗D,

then in the ramification formula

D = π∗D′ + aE,

the numbers a and D ·C have opposite signs. In particular, if X is Q-factorial and

terminal, then Y is Q-factorial and terminal if and only if KX · C < 0.

Proof. We have D ·C = aE ·C, so the claim follows from E ·C < 0. For this, see for
instance [Mat02, proof of 8-2-1(i)]. The last assertion follows by taking D = KX

and D′ = KY . �

If we start with a Q-factorial terminal variety and we run the classical MMP
(that is, relatively to the canonical divisor), then each step (divisorial contraction
or flip) of the MMP keeps us in the category of Q-factorial terminal varieties (for
divisorial contractions, this follows from Lemma 2.10). Moreover, when one reaches
a Mori fibre space X/B, the base B is Q-factorial as mentioned above, but might
not be terminal. However by the following result B has at worst klt singularities.

Proposition 2.11 ([Fuj99, Corollary 4.6]). Let X/B be a Mori fibre space, where

X is a Q-factorial klt variety. Then B also is a Q-factorial klt variety.

We will also use the following related result:

Proposition 2.12 ([Fuj15, Theorem 1.5]). Let (X,∆) be a klt pair, and set

Y = Proj
(

⊕
m
H0(X,m(KX + ∆))

)

where the sum is over all positive integers m such that m(KX+∆) is Cartier. Then

Y is klt.

The following class of Mori fibre spaces will be of special importance to us.

Definition 2.13. A conic bundle is a Q-factorial terminal Mori fibre space X/B
with dimB = dimX − 1. The discriminant locus of X/B is defined as the union of
irreducible hypersurfaces Γ ⊂ B such that the preimage of a general point of Γ is
not irreducible. We emphasise that the terminology of conic bundle is often used in
a broader sense (for instance, for any morphism whose general fibre is isomorphic
to P1, with no restriction on the singularities of X or on the relative Picard rank),
but for our purpose we will stick to the above more restricted definition.

We say that two conic bundles X/B and X ′/B′ are equivalent if there exists a
commutative diagram

X X ′

B B′

ψ

θ

where ψ, θ are birational.

The singular locus of a terminal variety has codimension at least 3 ([KM98,
5.18]). This fact is crucial in the following result.
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Lemma 2.14. Let π : X Y be a divisorial contraction between Q-factorial ter-

minal varieties, with exceptional divisor E, and assume that Γ = π(E) has codi-

mension 2 in Y . Then π is the blow-up of the symbolic powers of the sheaf of ideals

I defining the reduced scheme Γ. In particular, the fibre f over a general point of

Γ (precisely, a point that is smooth for both Γ and Y ) is a smooth rational curve

such that KX · f = E · f = −1.

Proof. The fact that π is the blow-up of the sheaf of ideals I follows from the
universal property of blowing-up ([Har77, II.7.14]) and the assumption ρ(X/Y ) = 1.
For the last assertion, it suffices to notice that since X and Y are terminal, there
exists a codimension 3 closed subset S ⊂ Y such that ΓrS, Y rS and Xrπ−1(S)
are smooth, so that the restriction of π to X r π−1(S) is the ordinary blow-up of
a smooth subvariety. �

Lemma 2.15. Let η : X B be a morphism between normal varieties with X
terminal (resp. klt). Then for a general point p ∈ B, the fibre η−1(p) also is

terminal (resp. klt), so in particular it has rational singularities.

Proof. The fact that η−1(p) is terminal (resp. klt) follows from [Kol97, 7.7] by taking
successive hyperplane sections on B locally defining p. As already mentioned klt
singularities are rational, see [KM98, 5.22]. �

Lemma 2.16.

(1) Let (X,∆) be a klt pair, and π : X Y be a morphism with connected fibres

such that −(KX + ∆) is π-big and π-nef. Then for every p ∈ Y the fibre π−1(p)
is covered by rational curves, and for a general p ∈ Y the fibre π−1(p) is rationally

connected with klt singularities.

(2) Let Y be a klt variety, and π : X Y a birational morphism. Then every

fibre of π is covered by rational curves.

(3) Let ϕ : X X ′ be a sequence of log-flips between klt varieties, and Γ ⊂ X
a codimension 2 subvariety contained in the base locus of ϕ. Then Γ is covered by

rational curves.

Proof. We first prove (1). By [HM07, Corollary 1.3(1)], every connected component
of every fibre of π is rationally chain connected. As π has connected fibres, every
fibre f is rationally chain connected. This implies that f is uniruled [Kol96, IV.3.3.4]
and thus that f is covered by rational curves [Kol96, IV.1.4.4]. The fact that a
general fibre f is klt is Lemma 2.15. As f is rationally chain connected, it is also
rationally connected by [HM07, Corollary 1.5(2)].

(2): By [HM07, Corollary 1.5(1)], each fibre f of Y X is rationally chain
connected. By the same argument as before, this implies that f is uniruled and
then covered by rational curves.

Finally we prove (3). It is sufficient to consider the case of a single log-flip
X X ′, associated to a small contraction X Y , and to prove that the excep-
tional locus of X/Y is covered by rational curves. If −KX is relatively ample, this
follows directly from (1), applied with ∆ = 0. Otherwise, denoting C, resp. C′, a
curve contracted by X/Y , resp. by X ′/Y , we have KX · C > 0 and KX′ · C′ 6 0.
We choose an effective ample divisor ∆′ on X ′ such that (KX′ + ∆′) · C′ > 0 and
(X ′,∆′) is a klt pair. Denote by ∆ the strict transform of ∆′ on X . Then (X,∆) is
a klt pair and (KX + ∆) ·C < 0 because a log-flip changes the sign of intersection,
and again we can apply (1). �
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Lemma 2.17. Let X/Y be a Mori dream space that factorises as a composition of

two morphisms X/W and W/Y via a Q-factorial klt variety W . Then W/Y is a

Mori dream space.

Proof. The general fibres of W/Y are rationally connected because they are images
of the rationally connected fibres of X/Y , and they have rational singularities by
Lemma 2.15. For any affine open subset U ⊂ Y , the algebra Cox(W/Y )(U) embeds
by pull-back as a subalgebra of Cox(X/Y )(U), hence is finitely generated by Lemma
2.6. We conclude by Lemma 2.7. �

2.F. Two-rays game. A reference for the notion of two-rays game is [Cor00, §2.2].
We use a slightly different setting in the discussion below. Namely, first we ensure
that all moves do exist by putting a Mori dream space assumption, and secondly we
do not put strong restrictions on singularities (this will come later in Definition 3.1).

Let Y X be a surjective morphism between normal varieties, with ρ(Y/X) =
2. Assume also that there exists a morphism X/B such that Y/B is a Mori dream
space. In particular, by Lemma 2.9 for any divisor D on Y one can run a D-MMP
over B, hence a fortiori over X . Then NE(Y/X) is a closed 2-dimensional cone,
generated by two extremal classes represented by curves C1, C2. Let D = −A where
A is an ample divisor on Y , so that a D-minimal model does not exist. Then by
Lemma 2.9 for each i = 1, 2 we can run a D-MMP from Y over X , which starts
by the divisorial contraction or log-flip of the class Ci, and produce a commutative
diagram that we call the two-rays game associated to Y/X (and which does not
depend on the choice of D):

Y1 Y Y2

X1 X2

X

Here Y Yi is a (possibly empty) sequence of D-flips, and Yi Xi is either a
divisorial contraction or a D-Mori fibre space.

Now we give a few direct consequences of the two-rays game construction.

Lemma 2.18. Let Y1/B be a Mori dream space, Y1 X1 a morphism over B with

ρ(Y1/X1) = 1, and X1 X2 a sequence of relative log-flips over B. Then there

exists a sequence of log-flips Y1 Y2 over B such that the induced map Y2 X2

is a morphism, of relative Picard rank 1 by construction. Moreover if Y1/X1 is a

divisorial contraction (resp. a Mori fibre space), then Y2/X2 also is.

Proof. By induction, it is sufficient to consider the case where X1 X2 is a single
log-flip over a non Q-factorial variety X dominating B, given by a diagram

X1 X2

X

B
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In this situation, the two-rays game Y1/X gives a diagram

Y1 Y2

X1 X ′

X

where Y1 Y2 is a sequence of log-flips and Y2 X ′ is a morphism of relative
Picard rank 1, with X ′ a Q-factorial variety. If Y1/X1 is a divisorial contraction,
then Y2/X

′ must be birational hence also is a divisorial contraction. On the other
hand if Y1/X1 is a Mori fibre space, then Y2/X

′ cannot be birational, otherwise
X ′/X would be a D-Mori fibre space for some divisor D; impossible since X ′ is Q-
factorial but notX . By uniqueness of the log-flip associated to the small contraction
X1 X , we conclude in both cases that X ′ = X2. �

We now recall the following result of [Cor95], which follows from the Negativity
Lemma 2.2, and then deduce from it Corollaries 2.20 and 2.21, similar to [Cor95,
Proposition 3.5].

Lemma 2.19 ([Cor95, Proposition 2.7]). Let ϕ : Y Y ′ be a pseudo-isomorphism

between Q-factorial varieties. If there is an ample divisor H on Y such that ϕ∗H
is ample on Y ′, then ϕ is an isomorphism.

In the following Corollary 2.20, the assumption ρ(X/B) = 1, which is part of the
definition of a Mori fibre space, is crucial. For instance if ρ(X/B) = 2, then any
Sarkisov diagram whose pseudo-isomorphism on the top row is not an isomorphism
provides a counter example (see Definition 3.8 and Figure 1).

Corollary 2.20. Let X/B and X ′/B be Mori fibre spaces over the same base

B, and ϕ : X X ′ a pseudo-isomorphism over B, that is, the following diagram

commutes:

X X ′

B

ϕ

η η′

Then ϕ is an isomorphism.

Proof. Let AB, AX be ample divisors respectively on B and X , and 0 < ε ≪ 1. If C
is a general curve contracted byX/B, then ϕ is an isomorphism in a neighborhood of
C, hence ϕ∗AX is relatively ample on X ′/B. Then η∗AB+εAX and η′∗AB+ϕ∗εAX
are both ample, and we conclude by Lemma 2.19. �

Corollary 2.21. Consider a commutative diagram

Y Y ′

X

ϕ

π π′

where X,Y, Y ′ are Q-factorial varieties, π and π′ are divisorial contractions, and

ϕ is a pseudo-isomorphism. Then ϕ is an isomorphism.

Proof. Let E and E′ be the exceptional divisors of π and π′, respectively. Observe
that ϕ∗E = E′. Pick A a general ample divisor on X and 0 < ε ≪ 1, and consider
H = π∗A − εE, H ′ = π′∗A − εE′. Both H and H ′ are ample, and we have
H ′ = ϕ∗H , so by Lemma 2.19 we conclude that Y Y ′ is an isomorphism. �
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Lemma 2.22. Let T Y and Y X be two divisorial contractions between Q-

factorial varieties, with respective exceptional divisors E and F . Assume that there

exists a morphism X B such that T/B is a Mori dream space. Then there exist

two others Q-factorial varieties T ′ and Y ′, with a pseudo-isomorphism T T ′

and birational contractions T ′ Y ′ X, with respective exceptional divisors the

strict transforms of F and E, such that the following diagram commutes:

T T ′

Y Y ′

X

E F

F E

Proof. The diagram comes from the two-rays game associated to T/X . The only
thing to prove is that the divisors are not contracted in the same order on the
two sides of the two-rays game. Assume that both π : Y X and π′ : Y ′ X
contract the strict transforms of the same divisor F . Then T Y and T ′ Y ′

both contract a same divisor E and T T ′ descends to a pseudo-isomorphism
Y Y ′. By Corollary 2.21 the pseudo-isomorphism Y Y ′ is an isomorphism.
Then applying again Corollary 2.21 to the two divisorial contractions from T, T ′

to Y ≃ Y ′, with same exceptional divisor E, we obtain that T T ′ also is an
isomorphism. The morphisms T/Y and T/Y ′ are then divisorial contractions of
the same extremal ray, contradicting the assumption that the diagram was produced
by a two-rays game. �

2.G. Gonality and covering gonality. Recal that the gonality gon(C) of a (pos-
sibly singular) curve C is defined to be the least degree of the field extension asso-
ciated to a dominant rational map C P1.

Note that gon(C) = 1 if and only if C is rational. Moreover, for each smooth
curve C ⊂ P2 of degree > 1 we have gon(C) = deg(C) − 1. Indeed, the inequality
gon(C) 6 deg(C) − 1 is given by the projection from a general point of C and the
other inequality is given by a result of Noether (see for instance [BDE+17]).

The following definitions are taken from [BDE+17] (with a slight change, see
Remark 2.24).

Definition 2.23. For each variety X we define the covering gonality of X to be

cov. gon(X) = min







c > 0

∣

∣

∣

∣

∣

∣

There is a dense open subset U ⊆ X such
that each point x ∈ U is contained in an

irreducible curve C ⊆ X with gon(C) 6 c.







.

Similarly we define the connecting gonality of X to be

conn. gon(X) = min















c > 0

∣

∣

∣

∣

∣

∣

∣

∣

There is a dense open subset U ⊆ X such
that any two points x, y ∈ U are contained

in an irreducible curve C ⊆ X with
gon(C) 6 c.















.

Remark 2.24.

(1) Our definitions of the covering and connecting gonality slightly differ from
those of [BDE+17], as we ask gon(C) 6 c where they ask gon(C) = c. Lemma 2.26
shows that the covering gonality is the same for both definitions. A similar argu-
ment should also work for the connecting gonality, but we do not need it here, as
we will not use any result of [BDE+17] involving the connecting gonality.
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(2) The covering gonality and connecting gonality are integers which are invari-
ant under birational maps.

(3) For each variety X , we have

cov. gon(X) 6 conn. gon(X).

Moreover, if dim(X) = 1, then cov. gon(X) = conn. gon(X) = gon(X).
(4) If cov. gon(X) = 1 one says that X is uniruled. This corresponds to asking

that the union of all rational curves on X contains an open subset of X . Similarly,
X is said to be rationally connected if conn. gon(X) = 1. As already mentioned in
§2.C, this corresponds to asking that a rational curve passes through two general
points.

(5) Each rationally connected variety is uniruled. However, the converse does
not hold in general. Indeed, for each variety B, we have cov. gon(B × Pn) = 1 for
each n > 1, but conn. gon(B × Pn) = conn. gon(B) as the following lemma shows:
Lemma 2.25(2) applied to B × Pn/B gives conn. gon(B × Pn) > conn. gon(B), and
the other inequality is given by taking sections in B × Pn of curves in B.

We recall the following classical facts:

Lemma 2.25. Let X,Y be varieties and ϕ : X Y a surjective morphism.

(1) If X and Y have dimension 1, then gon(X) > gon(Y ).
(2) We have conn. gon(X) > conn. gon(Y ) (but not cov. gon(X) > cov. gon(Y )

in general, see Remark 2.24(5)).
(3) If dimX = dimY , denote by deg(ϕ) the degree of the associated field exten-

sion C(Y ) ⊆ C(X). Then

cov. gon(X) 6 cov. gon(Y ) · deg(ϕ).

(4) If X ⊆ Pn is a closed subvariety, then cov. gon(X) 6 deg(X).

Proof. (1). See for instance [Poo07, Proposition A.1(vii)].
(2). We take two general points y1, y2 ∈ Y , choose then two general points

x1, x2 ∈ X with ϕ(xi) = yi for i = 1, 2, and take an irreducible curve C ⊂ X of
gonality 6 conn. gon(X) which contains x1 and x2. The image is an irreducible
curve ϕ(C) of gonality 6 conn. gon(X) (by (1)), containing y1 and y2.

(3). By definition of cov. gon(Y ), the union of irreducible curves C of Y with
gon(C) 6 cov. gon(Y ) covers a dense open subset of Y . Taking the preimages of
general such curves, we obtain a covering of a dense open subset of X by irreducible
curves D of X with gon(D) 6 cov. gon(Y ) · deg(ϕ).

(4). If X ⊆ Pn is a closed subvariety, we apply (3) to the projection onto a
general linear subspace Y ⊆ Pn of dimension dim(Y ) = dim(X). �

Lemma 2.26. Let X be a variety with cov. gon(X) = c. There is a smooth pro-

jective morphism C T over a quasi-projective irreducible base variety T , with

irreducible fibres of dimension one and of gonality c, together with a dominant

morphism C X such that a general fibre of C/T is birational to its image in X.

In particular, there is a dense open subset U of X such that through every point

p ∈ U there is an irreducible curve C ⊆ X with gon(C) = c.

Proof. The proof is analogue to the one of [GK17, Lemma 2.1]. We consider the
Hilbert Scheme H of all one-dimensional subschemes of X , which is not of finite
type, but has countably many components. One of the irreducible components
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contains enough curves of gonality 6 cov. gon(X) to get a dominant map to X .
We then look at the set of gonality i for each i and obtain algebraic varieties
parametrising these, as in [GK17, Lemma 2.1]. Having finitely many constructible
subsets in the image, at least one integer i 6 cov. gon(X) gives a dominant map to
X parametrising curves of gonality i. By definition of cov. gon(X), this integer i
has to be equal to cov. gon(X). �

The following result gives a bound from below that complements the easy bound
from above from Lemma 2.25.

Theorem 2.27 ([BDE+17, Theorem A]). Let X ⊂ Pn+1 be an irreducible hyper-

surface of degree d > n+2 with canonical singularities. Then, cov. gon(X) > d−n.

We now recall the following definition of [BDE+17], which is a birational version
of the classical p-very ampleness criterion, which asks that every subscheme of
length p+ 1 imposes independent conditions on the sections of a line bundle.

Definition 2.28. Let X be variety and let p > 0 be an integer.
A line bundle L on X satisfies property BVAp if there exists a proper Zariski-

closed subset Z = Z(L) $ X depending on L such that the restriction map
H0(X,L) H0(X,L⊗ Oξ) is surjective for every finite subscheme ξ ⊂ X of length
p+ 1 whose support is disjoint from Z.

The line bundle is moreover p-very ample if one can choose Z to be empty.

This notion is related to the covering gonality via the following result:

Theorem 2.29 ([BDE+17, Theorem 1.10]). Let X be a variety, and p > 0 an

integer. If KX satisfies BVAp, then cov. gon(X) > p+ 2.

We will use the following observations of [BDE+17] to check the hypothesis of
Theorem 2.29:

Lemma 2.30. Let X be a variety, L a line bundle on X and p > 0 an integer.

(1) If L satisfies BVAp and E is an effective divisor on X, then OX(L + E)
satisfies BVAp.

(2) Suppose that f : Y X is a morphism which is birational onto its image,

that L satisfies BVAp and that the closed set Z ⊆ X from Definition 2.28 does not

contain the image of f . Then, f∗L satisfies BVAp.

(3) For each d > 0, OPn(p) is p-very ample, i.e. satisfies BVAp with an empty

closed set Z ⊆ Pn.

Proof. The three assertions follow from the definition of BVAp, as mentioned in
[BDE+17, Example 1.2]. �

3. Rank r fibrations and Sarkisov links

In this section we introduce the notion of rank r fibration, recovering the notion
of Sarkisov link for r = 2. Then we focus on rank r fibrations and Sarkisov links
with general fibre a curve.

3.A. Rank r fibrations. The notion of rank r fibration is a key concept in this
paper. Essentially these are (relative) Mori dream spaces with strong constraints
on singularities. The cases of r = 1, 2, 3 will allow us to recover respectively the
notion of terminal Mori fibre spaces, of Sarkisov links, and of elementary relations
between those. The precise definition is as follows.
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Definition 3.1. Let r > 1 be an integer. A morphism η : X B is a rank r
fibration if the following conditions hold:

(RF1) X/B is a Mori dream space (see Definition 2.3);
(RF2) dimX > dimB > 0 and ρ(X/B) = r;
(RF3) X is Q-factorial and terminal, and for any divisor D on X , the output of

any D-MMP from X over B is still Q-factorial and terminal (recall that such an
output has the same dimension as X by definition, see §2.D);

(RF4) B is klt.
(RF5) The anticanonical divisor −KX is η-big (see Lemma 2.1).

We say that a rank r fibration X/B factorises through a rank r′ fibration X ′/B′,
or that X ′/B′ is dominated by X/B, if the fibrations X/B and X ′/B′ fit in a
commutative diagram

X B

X ′ B′

where X X ′ is a birational contraction, and B′ B is a morphism with con-
nected fibres. This implies r > r′.

Example 3.2.

(1) If X is a Q-factorial terminal Fano variety of rank r, then X/pt is a rank r
fibration. Indeed as already mentioned in Example 2.8, X is a Mori dream space,
and moreover for any divisorD the output of a D-MMP is Q-factorial and terminal.
Both assertions follow from the fact that we can pick a small rational number ε > 0
such that −KX + εD is ample, and then writing εD = KX + (−KX + εD) we see
that a D-MMP is also a (KX+ ample)-MMP.

(2) Let p1, p2 be two distinct points on a fibre f of P1 × P1/P1, and consider
S P1 × P1 the blow-up of p1 and p2. Then S is a weak del Pezzo toric surface
of Picard rank 4, hence in particular S/pt is a Mori dream space. However S/pt
is not a rank 4 fibration, because when contracting the strict transform of f one
gets a singular point (hence non terminal as we work here with surfaces), which is
forbidden by condition (RF3) of Definition 3.1.

Other basic examples are Mori fibre spaces:

Lemma 3.3. Let η : X B a surjective morphism between normal varieties.

Then X/B is a rank 1 fibration if and only if X/B is a terminal Mori fibre space.

Proof. Observe that if ρ(X/B) = 1, the notions of η-ample and η-big are equivalent.
So the implication

X/B is a rank 1 fibration =⇒ X/B is a Mori fibre space

is immediate from the definitions, and we need to check the converse.
Assume that X/B is a Mori fibre space. Then dimX > dimB and ρ(X/B) = 1,

which is (RF2), by Proposition 2.11 the base B is klt, which is (RF4), and −KX is
η-ample, which gives (RF5).

We now prove that X/B is a Mori dream space, which is (RF1). Condition
(MD1) holds by assumption. By Lemma 2.16(1) the general fibre of X/B is ra-
tionally connected with rational singularities, which gives (MD2). Moreover since
ρ(X/B) = 1, we have Ample(X/B) = Nef(X/B) = ĘMov(X/B) equal to a single
ray, and so conditions (MD3) and (MD4) are immediate.
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Finally we prove (RF3). By assumption X is terminal and Q-factorial. For any
divisor D, either D is η-nef and X/B is a D-minimal model, or −D is η-ample and
X/B is a D-Mori fibre space. So X is the only possible output for a D-MMP, which
proves the claim. �

Lemma 3.4. Let X/B be a rank r fibration.

(1) If X ′ is obtained from X by performing a log-flip (resp. a divisorial contrac-

tion) over B, then X ′/B is a rank r fibration (resp. a rank (r − 1)-fibration).
(2) Assume that X/B factorizes through a rank s fibration X ′/B′ such that the

birational map X X ′ is a morphism. Let t = ρ(X/B′). Then X/B′ is a rank t
fibration.

Proof. (1). Let π : X X ′ be a divisorial contraction over B, with exceptional
divisor E (the case of a log-flip, which is similar and easier, is left to the reader).

(RF1). The general fibre of X ′/B remains rationally connected, and is terminal
by Lemma 2.15, so it remains to show that a Cox sheaf of X ′/B is finitely generated
(Lemma 2.7).

Let L1, . . . , Lp ∈ Pic(X)Q and L′
1, . . . , L

′
q ∈ PicQ(X ′) such that Eff(X/B) ⊆

∑

R+Li and Eff(X ′/B) ⊆
∑

R+L
′
i. For each open set U ⊆ B, by pulling-back we

get an injective morphism of algebras

Cox(X ′/B;L′
1, . . . , L

′
q)(U) Cox(X/B;E, π∗L′

1, . . . , π
∗L′

q, L1, . . . , Lp)(U).

Since X/B is a rank r fibration, its Cox sheaf is finitely generated by Lemma 2.7,
and so Cox(X ′/B;L′

1, . . . , L
′
q) also is finitely generated by Lemma 2.6.

(RF2). By definition of a divisorial contraction we have dimX ′ = dimX >
dimB, and ρ(X ′) = ρ(X) − 1, so ρ(X ′/B) = r − 1.

(RF3). The output of any MMP from X ′ also is the output of a MMP from X ,
and so is Q-factorial and terminal by assumption.

(RF4) holds by assumption.
(RF5). Follows from the fact that the image of a big divisor by a birational

morphism is still big.
(2). The conditions of (RF2) and (RF4) hold by assumption. (RF3) follows

because any MMP over B′ also is a MMP over B. For (RF5) we observe that a
curve contracted by X/B′ also is contracted by X/B, so a divisor relatively ample
for X/B also is relatively ample for X/B′. Then we can restrict a decomposition
−KX = η-ample + effective for X/B to get a similar decomposition for X/B′.

Finally we show (RF1). Let L1, . . . , Lr be Q-divisors onX such that Eff(X/B) ⊆
∑

R+Li, which implies Eff(X/B′) ⊆
∑

R+Li. Let ϕ : B′ B the morphism
given by assumption. Then for each affine open set U ′ ⊂ B′, we have

Cox(X/B′;L1, . . . , Lr)(U
′) = Cox(X/B;L1, . . . , Lr)(ϕ(U ′)),

and the latter is finitely generated by assumption. A general fibre of X/B′ is
rationally connected because it is birational to a fibre of X ′/B′, and it has rational
singularities by Lemma 2.15. We conclude by Lemma 2.7. �

Lemma 3.5. Any rank r fibration X/B is pseudo-isomorphic, via a sequence of

log-flips over B, to another rank r fibration Y/B such that −KY is relatively nef

and big over B.

Proof. We run a (−K)-MMP from X over B (recall that by Lemma 2.9, one can
run a D-MMP for an arbitrary divisor D). It is not possible to have a divisorial
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contraction, because by Lemma 2.10 the resulting singularity would not be terminal,
in contradiction with assumption (RF3) in the definition of rank r fibration. If there
exists an extremal class that gives a small contraction, we anti-flip it. After finitely
many such steps, either −K is relatively nef, or there exists a fibration such that K
is relatively ample. But this last situation contradicts the assumption (RF5) that
the anti-canonical divisor is big over B. So finally −K is also relatively nef over B,
as expected. �

Corollary 3.6. Let η : Y B be a rank r fibration. Then for a general point

p ∈ B, the fibre Yp := η−1(p) is pseudo-isomorphic to a weak Fano terminal variety,

and the curves in Yp that are non-positive against the canonical divisor cover a

subset of codimension at least 2 in Yp.

Proof. By Lemma 3.5, by performing a sequence of log-flips over B, which only
affects a general fibre along a codimension 2 subset, we can assume that −KY is
relatively nef and big overB. The fact that Yp is terminal is Lemma 2.15. Let Γ ⊂ Y
be the subset covered by curves contracted by Y/B that are trivial against the
canonical divisor. Then consider the rational map ϕ := |−mKY |×η : Y PN ×B.
By [Kol93, Theorem 1.1], ϕ is a morphism, and it is a birational contraction onto
its image. If Γ contains a divisor E, then E is contracted by ϕ, and by Lemma 2.10
this would produce a non-terminal singularity, in contradiction with the definition
of rank r fibration. So Γ has codimension at least 2 in Y , hence Γp = Γ ∩ Yp has
codimension at least 2 in Yp for a general p. Since by adjunction KYp

= KY |Yp
, Γp

is exactly the locus of contracted curves in Yp with trivial intersection against KYp
.

The fact that −KYp
is big over B follows from Lemma 2.1, by restricting to Yp a

decomposition −KY = η-ample + effective. �

3.B. Sarkisov links. The notion of rank 2 fibration recovers the notion of Sarkisov
link:

Lemma 3.7. Let Y/B be a rank 2 fibration. Then Y/B factorises through exactly

two rank 1 fibrations X1/B1, X2/B2, which both fit into a diagram

Y

B

where the top dotted arrows are sequences of log-flips, and the other four arrows are

morphisms of relative Picard rank 1.

Proof. The diagram comes from the two-rays game associated to Y/B, as explained
in §2.F. Morever, since dim Y > dimB, on each side of the diagram exactly one
of the two descending arrows corresponds to a morphisms Xi Bi with dim Y =
dimXi > dimBi. If Bi = B then Xi/Bi is a rank 1 fibration by Lemma 3.4(1). If
ρ(Bi/B) = 1, we can use Lemma 3.4(2), or alternatively use the following simpler
argument. Since −KXi

is relatively big over B we have −KXi
· C > 0 for a

general contracted curve of Xi/Bi (write −KXi
= A + E with A relatively ample

and E effective, and take C not contained in E.) So −KXi
is relatively ample

over Bi, hence Xi/Bi is a Mori fibre space, or equivalently a rank 1 fibration
(Lemma 3.3). �
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Definition 3.8. In the situation of Lemma 3.7, we say that the birational map
χ : X1 X2 is a Sarkisov link. The diagram is called a Sarkisov diagram. Observe
that a rank 2 fibration uniquely defines a Sarkisov diagram, but the Sarkisov link
is only defined up to taking inverse.

If a rank r fibration factorises through Y/B, we equivalently say that it factorises

through the Sarkisov link associated to Y/B.
We say that the Sarkisov link associated with a rank 2 fibration Y/B is a Sarkisov

link of conic bundles if dimB = dimX − 1. Observe that in this situation both
X1/B1 and X2/B2 are indeed conic bundles in the sense of Definition 2.13.

Definition 3.9. In the diagram of Lemma 3.7, there are two possibilities for the
sequence of two morphisms on each side of the diagram: either the first arrow is
already a Mori fibre space, or it is divisorial and in this case the second arrow is a
Mori fibre space. This gives 4 possibilities, which correspond to the usual definition
of Sarkisov links of type I, II, III and IV, as illustrated on Figure 1.

X2

X1 B2

B1 = B

div fib
χ

fib

X1 X2

B1 = B = B2

div div

χ

fib fib

I II

X1

B1 X2

B = B2

χ
fib div

fib

X1 X2

B1 B2

B

χ
fib fib

III IV

Figure 1. The four types of Sarkisov links.

Remark 3.10. The definition of a Sarkisov link in the literature is usually not
very precise about the pseudo-isomorphism involved in the top row of the diagram.
An exception is [CPR00, Definition 3.1.4(b)], but even there they do not make
clear that there is at most one flop, and that all varieties admit morphisms to a
common B.

In fact, it follows from the definition that there are strong constraints about the
sequence of anti-flips, flops and flips (that is, about the sign of the intersection of
the exceptional curves against the canonical divisor). Precisely, the top row of a
Sarkisov diagram has the following form:

Ym . . . Y0 Y ′
0 . . . Y ′

n

B
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where Y0 Y ′
0 is a flop overB (or an isomorphism), m,n > 0, and each Yi Yi+1,

Y ′
i Y ′

i+1 is a flip over B. This follows from the fact that for Y = Yi or Y ′
i , a

general contracted curve C of the fibration Y/B satisfies KY ·C < 0, hence at least
one of the two extremal rays of the cone NE(Y/B) is strictly negative against KY .

Observe also that both Y0/B and Y ′
0/B are relatively weak Fano (or Fano if the

flop is an isomorphism) over B, as predicted by Lemma 3.5. All other Yi/B and
Y ′
i /B are not weak Fano over B, but still each is a rank 2 fibration that uniquely

defines the Sarkisov diagram.

Example 3.11. We give some simple examples of Sarkisov links of each type in
dimension 3. Here all varieties are smooth, and the pseudo-isomorphisms in the
top rows of the Sarkisov diagrams are isomorphisms. For more complicated (and
typical) examples, see §4.D. Observe that (1) and (2) are examples of Sarkisov links
of conic bundles, while (3) and (4) are not.

(1) Let X1/B1 = P1 × P2/P2, and let X2 X1 be the blow-up of one fibre.
Then X2 = P1 ×F1 is a Mori fibre space over the Hirzebruch surface B2 = F1. The
map χ : X1/B1 X2/B2 is a link of type I, or equivalently χ−1 : X2/B2 X1/B1

is a link of type III.
(2) Take again X1/B1 = P1 ×P2/P2, let L ⊂ P2 be a line, and Γ = {0}×L ⊂ X1.

Let Y X1 be the blow-up of Γ, and denote by D the strict transform on Y of
P1 × L ⊂ X1. Then there is a divisorial contraction Y X2 that contracts D
to a curve, and X2/P2 is still a P1-bundle (but not a trivial product). The map
χ : X1/P2 X2/P2 is a link of type II.

(3) A general cubo-cubic map in Bir(P3) provides an example of link of type II
with X1, X2 equal to P3 and B1 = B2 = pt a point. Indeed the resolution of such
a map consists in blowing-up a smooth curve of genus 3 and degree 6 in X1, and
then contracting a divisor onto a curve of the same kind in X2. This is the only
example of a link of type II from P3 to P3 starting with the blow-up of a smooth
curve where the pseudo-isomorphism is in fact an isomorphism: see [Kat87].

(4) Finally, take X1 = X2 = P1 × P2, B1 = P1, B2 = P2, and let X1/B1 and
X2/B2 be respectively the first and second projection. Then the identity map
id: X1/B1 X2/B2 is a link of type IV.

Lemma 3.12. Consider a Sarkisov link of type II:

Y1 Y2

X1 X2

B

ϕ

π1 π2

χ

and denote E1, E2 the respective exceptional divisors of π1, π2. Then ϕ∗E1 6= E2.

Proof. Assume that ϕ∗E1 = E2. Then χ : X1 X2 is a pseudo-isomorphism,
hence an isomorphism by Corollary 2.20. Then Corollary 2.21 implies that the
pseudo-isomorphism ϕ : Y1 Y2 also is an isomorphism. The morphisms Y1/X1

and Y1/X2 are then divisorial contractions of the same extremal ray, contradicting
the assumption that the diagram was the result of the two-rays game from Y1/B.

�

Lemma 3.13. Let X/B be a rank 2 fibration that factorises through a rank 1
fibration σ : X B′, with dimX− 1 = dimB′ > dimB. Then η : B′ B is a klt
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Mori fibre space, and in particular for each p ∈ B, the fibre η−1(p) is covered by

rational curves.

Proof. Recall that B′ is klt by (RF4). We need to show that −KB′ is η-ample, and
then the fibre η−1(p) is covered by rational curves for each p ∈ B by Lemma 2.16(1),
applied with ∆ = 0.

By assumption ρ(B′/B) = 1, so we only need to show that there exists a con-
tracted curve C ⊆ B′ such that −KB′ ·C > 0. Since dimB′ > dimB, the contracted
curves cover B′, so we can choose C sufficiently general in a fibre η−1(q) of a general
point q ∈ B such that the following holds:

(i) C is not contained in the discriminant locus ∆′ ⊂ B′ of the conic bundle
σ : X B′;

(ii) The surface σ−1(C) does not contain any of the curves C′ ⊆ X contracted
by η ◦ σ with −KX · C′ 6 0.

(iii) The fibre F = (η ◦σ)−1(q) of η ◦σ : X B containing the surface σ−1(C)
is general, so that (−KX)|F is big

More precisely, for (i) is suffices to choose η−1(q) not contained in the hypersurface
∆′ ⊂ B′. We can ensure (ii) because by Corollary 3.6 such curves cover at most a
codimension 2 subset of F . Finally for (iii) recall first that since X/B is a rank 2
fibration, −KX is relatively big by (RF5). Moreover the intersection (−KX)|F ·
σ−1(C) is a non-trivial effective 1-cycle. Indeed, since (−KX)|F is big, we can
take a large integer m > 0 and find that (−mKX)|F induces a rational morphism
contracting no curve on the complement of a divisor of F . It suffices then to choose
C such that σ−1(C) is not contained in this divisor.

As in [MM85, Corollary 4.6], we have −4KB′ ≡ σ∗(−KX)2 + ∆. Intersecting
with C, we obtain

−4KB′ · C = σ∗(−KX)2 · C + ∆ · C

> (−KX)|F · (−KX)|F · σ∗C

> 0 by our choice of C. �

3.C. Rank r fibrations with general fibre a curve. Let η : T B be a rank r
fibration, with dimB = dim T−1. If Γ ⊂ B is an irreducible hypersurface, we define
η♯(Γ) ⊆ T to be the Zariski closure of all fibres of dimension 1 over Γ. The reason
for introducing this notion is twofold: first B might not be Q-factorial, so we cannot
consider the pull-back of Γ as a Q-Cartier divisor, and second the preimage η−1(Γ)
might contain superfluous components (see Example 3.15).

Now we distinguish two classes of special divisors in T , and we shall show in
Proposition 3.16 below that they account for the relative rank of T/B. Let D ⊂ T
be a prime divisor. If η(D) has codimension at least 2 in B, we say that D is a
divisor of type I. If η(D) is a divisor in B, and the inclusion D ( η♯(η(D)) is strict,
we say that D is a divisor of type II.

Remark 3.14. The similarity between the terminology for Sarkisov links and for
special divisors of type I or II is intentional. See Lemma 3.19(2) below.

Example 3.15. We give an example illustrating the definitions above, which also
shows that the inclusion η♯(Γ) ⊆ η−1(Γ) might be strict. For B an arbitrary smooth
variety, consider Y = P1 × B with Y/B the second projection. Let Γ ⊂ B be any
irreducible smooth divisor, D = P1 × Γ the pull-back of Γ in Y , Γ′ = {t} × Γ ⊂ D
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a section and p ∈ D r Γ′ a point. Let T Y be the blow-up of Γ′ and p, with
respective exceptional divisors D′ and E, and denote again D the strict transform
of P1 × Γ in T . Then one can check that the induced morphism η : T B is a
rank 3 fibration (see Example 4.34 for the case B = P2), E is a divisor of type I,
D ∪D′ is a pair of divisors of type II, and

η♯(Γ) = D ∪D′ ( D ∪D′ ∪E = η−1(Γ).

Proposition 3.16. Let η : T B be a rank r fibration, with dimB = dim T − 1.

(1) For any rank r′ fibration T ′/B′ such that T/B factorises through T ′/B′, any

divisor contracted by the birational contraction T T ′ is a divisor of type I or II
for T/B.

(2) Divisors of type II always come in pairs: for each divisor D1 of type II, there

exists another divisor D2 of type II such that

D1 ∪D2 = η♯(η(D1)) = η♯(η(D2)).

(3) If D1 ∪D2 is a pair of divisors of type II, and p a general point of η(D1) =
η(D2), then η−1(p) = f1 ∪ f2 with fi ⊆ Di, i = 1, 2, some smooth rational curves

satisfying

KT · fi = −1, Di · fi = −1, D1 · f2 = D2 · f1 = 1.

(4) Let D ⊂ T be a divisor of type I or II. Then there exists a birational con-

traction over B
T X B

that contracts D and such that ρ(X) = ρ(T ) − 1.

(5) Assume B is Q-factorial. Let d1 (resp. d2) be the number of divisors of type I
(resp. the number of pairs of divisors of type II). Then

r = 1 + d1 + d2.

Proof. (1). Let D be a prime divisor contracted by T T ′ and suppose that it is
neither of type I nor of type II for T/B. By running a D-MMP over B we produce
a sequence of log-flips (which do not change the type of special divisors) and then
a divisorial contraction. Replacing T by the result of the sequence of log-flips, and
T ′ by the image of the divisorial contraction, we can assume T T ′ is a divisorial
contraction. By Lemma 2.14, a general fibre f in the exceptional divisor D is a
smooth irreducible rational curve. Now η(D) ⊂ B is a divisor because D is not of
type I, and D = η♯(η(D)) because D is a prime divisor and is not of type II. But
then f = η−1(p) for some p ∈ η(D), so f is proportional to a general fibre of η, in
contradiction with the fact that the extremal contraction of f is divisorial.

(2) and (3). Let D1 be a divisor of type II, and let D2, . . . , Ds be the other
divisors of type II such that

η♯(η(D1)) = D1 ∪ · · · ∪Ds.

By definition we have s > 2, and want to prove s = 2. By definition of η♯, each Di is
a hypersurface and the general fibres of Di η(Di) are curves. Hence, the image
of Di is a hypersurface in B. In particular, η(Di) = η(Dj) for all i, j ∈ {1, . . . , s}.
Let p ∈ η(D1) be a general point, and write η−1(p) = f1 ∪ · · · ∪ fs with fi a curve
in Di. Let f be a general fibre of η. We have Di · f = 0 for each i, Di · fj > 0 for
at least one j (because η−1(p) is connected) and f ≡ f1 + · · · + fs, which gives

Di · fi < 0.



QUOTIENTS OF HIGHER DIMENSIONAL CREMONA GROUPS 29

Then by running a Di-MMP from T over B, one obtains a sequence of log-flips
that does not affect the general fibre η−1(p), and then a divisorial contraction
between Q-factorial and terminal varieties, with exceptional divisor Di and center
of codimension 2. By Lemma 2.14, this implies that fi is smooth with KT · fi =
Di ·fi = −1. But KT ·f = −2, so we conclude that s = 2 as expected. The equality
D1 · f2 = 1 (and similarly D2 · f1 = 1) follows from D1 · f = 0, f ≡ f1 + f2 and
D1 · f1 = −1.

To prove (4), it suffices to show that the divisor D is covered by curves ℓ such
that D ·ℓ < 0, since then we can get the expected birational contraction by running
a D-MMP. When D has type II we already showed in (3) that D is covered by such
curves. Now let D be a divisor of type I, p a general point in η(D), and let d > 0
be the dimension of η(D). By definition of a divisor of type I we have n − 3 > d,
where n = dim T (In particular divisors of type I do not exist on surfaces). Now
consider the surface S ⊂ T obtained by taking the following intersection of n − 2
divisors:

S =
n−2−d

⋂

i=1

Hi ∩
d

⋂

j=1

η∗H ′
j ,

where the Hi are general hyperplane sections of T , and the H ′
j general hyperplane

sections of B through p. By construction, one of the irreducible components of
S ∩ D is a curve ℓ contracted to p by η. Moreover η(S) is a surface; indeed the
general fibres of η are curves and H1 is transverse to the fibres so the morphism
from H1 to η(H1) has finite fibres. The same then holds for S, as n−2−d > 1. We
obtain D · ℓ = (ℓ · ℓ)S < 0 as expected (a curve contracted by a morphism between
two surfaces has negative self-intersection).

To prove (5), observe first that the contraction of a divisor of type I does not
affect the other divisors of type I or II, and the contraction of a divisor of type II
only affects the other divisor in the pair, which is not a divisor of type II anymore.
So after applying several times (4), we may assume d1 = d2 = 0, and we want
to show r = 1, or equivalently, that T/B is a Mori fibre space. Then we run a
MMP from T over B. A flip does not change d1 nor d2, so we can assume that
we have a divisorial contraction or a Mori fibre space. A divisorial contraction
would produce a divisor of type I or II by (1) (depending on the codimension of the
centre), in contradiction with our assumption d1 = d2 = 0. On the other hand, if
T B′ is a Mori fibre space, then both B′ and B are (n−1) dimensional varieties,
and B′ is Q-factorial klt by Proposition 2.11. If the birational morphism B′ B
is not an isomorphism, it must contracts at least one divisor D because B is Q-
factorial by assumption. By Lemma 2.17 B′/B is a Mori dream space, so we can
run a D-MMP from B′ over B. After a sequence of D-flips this has to produce a
divisorial contraction, hence a divisor of type I in T by pulling-back, and again a
contradiction. In conclusion, B′ ∼ B is an isomorphism and we have a Mori fibre
space T/B, as expected. �

Lemma 3.17. Let η : T B be a rank r fibration with dimB = dim T−1. Assume

that D is a divisor of type II for T/B, with cov. gon(η(D)) > 1. Then for any rank r′

fibration T ′/B′ that factorises through T/B, with dimB′ = dim T ′ − 1 = dimB,

the strict transform of D is a divisor of type II for T ′/B′.

Proof. Recall that T ′ T is a birational contraction and π : B B′ is a mor-
phism with connected fibres between klt varieties (Definition 3.1), which in our
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situation is birational as dim(B) = dim(B′). We write D = D1 and by Propo-
sition 3.16(2) we have a pair D1 ∪ D2 of divisors of type II for T/B, where
Γ = η(D1) = η(D2) is a divisor of B and D1 ∪D2 = η♯(Γ).

We first observe that the image of Γ in B′ is again a divisor Γ′ ⊂ B′. Indeed
otherwise, the divisor Γ ⊂ B is one of the divisors contracted by the birational
morphism π : B B′. By Lemma 2.16(2), this implies that Γ is covered by rational
curves, in contradiction with our assumption cov. gon(Γ) > 1.

Writing η′ : T ′ B′ the rank r′ fibration, one observe that the strict transforms
D̃1 and D̃2 of D1 and D2 are such that D̃1 ∪ D̃2 ⊆ η♯(Γ′). Hence, D̃1 and D̃2 are
divisors of type II for T ′/B′. �

Lemma 3.18. Let T/B be a rank r fibration with dimB = dim T − 1 and B
Q-factorial. Assume that for each divisor D of type II for T/B, we have

cov. gon(η(D)) > 1.

Then T/B factorises through a rank 1 fibration T ′/B′ such that T T ′ is a pseudo-

isomorphism if and only if T/B does not admit any divisor of type II.
If this holds, then dimB′ = dim T − 1, B′ B is a birational morphism and

ρ(B′/B) = r − 1.

Proof. If T/B factorises through a rank r′ fibration T ′/B′ such that T T ′ is a
pseudo-isomorphism, first observe that ρ(B′/B) = r−r′, and B′ B is birational,
since dim(B) = dim(B′), which follows from

dim(T ) = dim(T ′) > dim(B′) > dim(B) = dim(T ) − 1.

If D1 ∪ D2 is a pair of divisors of type II for T/B, then their strict transforms
D̃1, D̃2 have the same image in B′, which is a divisor because B′ B is birational.
So if T/B admits at least one divisor of type II, then by Proposition 3.16(3) some
fibres of T ′/B′ have the form f1 + f2 with f1, f2 non proportional. In particular
r′ = ρ(T ′/B′) > 2 and so T ′/B′ is not a Mori fibre space.

To prove the converse, we assume that T/B does not admit any divisor of type II,
and we proceed by induction on the number d1 of divisors of type I. If d1 = 0 then by
Proposition 3.16(5), T/B is already a rank 1 fibration, so we just take T ′/B′ = T/B.
Now if d1 > 0, by Proposition 3.16(4) there exists a birational contraction over B,
T X1 B, which contracts one divisor D of type I. Since the contraction is ob-
tained by running a D-MMP, in fact it factorises as T T1 X1, where T T1

is a sequence of D-flips and T1 X1 is a divisorial contraction. Then by induc-
tion hypothesis X1/B factorises through a rank 1 fibration X2/B2 with X1 X2

a pseudo-isomorphism (here we use Lemma 3.17, which shows that X1/B does not
admit any divisor of type II). By Lemma 2.18, there exist a pseudo-isomorphism
T1 T2 and a divisorial contraction T2 X2 that makes the diagram on Fig-
ure 2 commute. Finally we play the two-rays game T2/B2. Since T2/B2 admits
one divisor of type I and no divisor of type II (by our assumption on the covering
gonality and by Lemma 3.17), the other side of the two-rays game must be a Mori
fibre space, which gives the expected rank 1 fibration T ′/B′. �

3.D. Sarkisov links of conic bundles. In this subsection, by applying Proposi-
tion 3.16 to the case r = 2, we classify Sarkisov links of conic bundles.

Lemma 3.19. Let Y/B be a rank 2 fibration with dimB = dim Y − 1, and χ the

associated Sarkisov link, well-defined up to taking inverse.
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T T1 T2 T ′

X1 X2 B′

B2

B

Figure 2

(1) χ has type IV if and only if B is not Q-factorial.

(2) If B is Q-factorial, let d1 (resp. d2) be the number of special divisors of type

I (resp. of type II) for Y/B. Then
• χ has type I or III if and only if (d1, d2) = (1, 0).
• χ has type II if and only if (d1, d2) = (0, 1).

Proof. (1). If B is not Q-factorial, then it follows directly that χ has type IV,
from the fact that the base of a terminal Mori fibre space if always Q-factorial
(Proposition 2.11), and by inspection of the diagrams in Figure 1. Conversely,
assuming that χ : X1/B1 X2/B2 is a link of type IV, we show that B is not
Q-factorial. As dimB = dim Y − 1, the morphisms B1/B, B2/B are birational. If
B is Q-factorial, then B1/B and B2/B are birational contractions with respective
exceptional divisors E1 and E2. If the birational map B1 B2 sends E1 onto
E2, then the map is a pseudo-isomorphism, hence an isomorphism by Corollary
2.21, and then X1 X2 also is an isomorphism by Corollary 2.20, a contradiction.
Otherwise, the pull-backs of E1, E2 together with the choice of any ample divisor
give three independent classes in N1(Y/B), in contradiction with ρ(Y/B) = 2.

To prove (2), first we observe that Proposition 3.16(5) gives d1 + d2 = 1, hence
the two possibilities (d1, d2) = (1, 0) or (0, 1). Recall also from Proposition 3.16(1)
that any divisor contracted by a birational contraction from Y over B must be
of type I or II. If the link χ is of type II, then Lemma 3.12 gives two birational
contractions from Y contracting distinct prime divisors, and this is possible only
in the case (d1, d2) = (0, 1) where there is a pair of divisors of type II available.
Conversely, if (d1, d2) = (0, 1), we have two distinct prime divisors, that we can
contract via two distinct birational contractions (Proposition 3.16(4)). These are
the two starting moves of a 2-ray game which provides a link of type II. �

Corollary 3.20. Let χ be a Sarkisov link of conic bundles of type I:

Y1 X2

X1 B2

B1

π1 η2
χ

η1

Let E1 be the exceptional divisor of the divisorial contraction π1. Then η1 ◦ π1(E1)
has codimension at least 2 in B1.

Proof. Follows from the fact that E1 is a divisor of type I for Y1/B1. �
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Remark 3.21. There are examples of link of type IV as in Lemma 3.19(1) only
when dimB > 3, hence dim Y > 4. See the discussion on the two subtypes of
type IV links in [HM13, p. 391 after Theorem 1.5]. For instance, take B1 and B2

that differ by a log-flip, and B the non Q-factorial target of the associated small
contractions. Then the birational map from (P1 ×B1)/B1 to (P1 ×B2)/B2 induced
by the log-flip is a link of type IV.

Now we focus on the case of Sarkisov links of conic bundles of type II. First we
introduce the following definition.

Definition 3.22. A marked conic bundle is a triple (X/B,Γ), where X/B is a conic
bundle in the sense of Definition 2.13, and Γ ⊂ B is an irreducible hypersurface,
not contained in the discriminant locus of X/B (i.e. the fibre of a general point of
Γ is isomorphic to P1). The marking of the marked conic bundle is defined to be Γ.

We say that two marked conic bundles (X/B,Γ), and (X ′/B′,Γ′) are equivalent

if there exists a commutative diagram

X X ′

B B′

ψ

θ

where ψ, θ are birational and such that the restriction of θ induces a birational
map Γ Γ′ between the markings. In particular, if (X/B,Γ), and (X ′/B′,Γ′) are
equivalent, then the conic bundles X/B and X ′/B′ are equivalent in the sense of
Definition 2.13.

For each variety Z, we denote by CB(Z) the set of equivalence classes of conic
bundles X/B with X birational to Z and denote, for each class of conic bundles
C ∈ CB(Z) by M(C) the set of equivalence classes of marked conic bundles (X/B,Γ)
where C is the class of X/B.

The next lemma explains how a Sarkisov link of conic bundles of type II gives
rise to an equivalence class of marked conic bundles.

Lemma 3.23. Let χ be a Sarkisov link of conic bundles of type II between varieties

of dimension n > 2. Recall that χ fits in a commutative diagram of the form

Y1 Y2

X1 X2

B

ϕ

π1 π2

χ

η1 η2

where X1, X2, Y1, Y2 are Q-factorial terminal varieties of dimension n, B is a Q-

factorial klt variety of dimension n − 1, ϕ is a sequence of log-flips over B, and

each πi is a divisorial contraction with exceptional divisor Ei ⊂ Yi and centre

Γi = πi(Ei) ⊂ Xi.

Then there exists an irreducible hypersurface Γ ⊂ B (of dimension n − 2) such

that

(1) for i = 1, 2, the centre Γi = πi(Ei) has codimension 2 in Xi, and the restric-

tion ηi|Γi
: Γi Γ is birational. In particular, for each i we have ηi ◦ πi(Ei) = Γ,

and the marked conic bundles (X1/B,Γ) and (X2/B,Γ) are equivalent.

(2) Let Y be equal to Y1, Y2, or any one of the intermediate varieties in the

sequence of log-flips ϕ. Then E1 ∪E2 is a pair of divisors of type II for Y/B.
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(3) Γ is not contained in the discriminant locus of η1, or equivalently of η2,

which means that a general fibre of ηi : η
−1
i (Γ) Γ is isomorphic to P1.

(4) At a general point x ∈ Γi, the fibre of Xi/B through x is transverse to Γi.

Proof. (1) and (2). By Lemma 3.19, Y1/B admits no divisor of type I, and exactly
one pair of divisors of type II. By Lemma 3.12 we have ϕ∗E1 6= E2, so the birational
contractions Y1 X1 and Y1 X2 contract distinct divisors. It follows from
Proposition 3.16 that the pair of divisors of type II is E1 ∪ E2. So by definition
E1 and E2 projects to the same hypersurface Γ ⊂ B. By Proposition 3.16(3) both
finite maps Γi Γ are birational, otherwise the fibre in Yi over a general point of
Γ would have more than two components.

(3) and (4) follow from Proposition 3.16(3). Indeed if Γ was in the discriminant
locus of η1 then the preimage in Y1 of a general point p ∈ B would have 3 irreducible
components, instead of 2. Moreover writing f1∪f2 the fibre through x, with fi ⊆ Ei,
the fact that the fibre is transverse to Γi is equivalent to f1 ·E2 = f2 ·E1 = 1. �

Definition 3.24. By Lemma 3.23(1), to each Sarkisov link of conic bundles of
type II χ : X1 X2, we can associate the equivalence class of the marked conic
bundle (X1/B,Γ) given in this lemma. We define the marking of χ to be Γ ⊂ B.
We say that two Sarkisov links of conic bundles of type II are equivalent if their
corresponding marked conic bundles are equivalent.

We also extend the notion of covering gonality (see §2.G) to Sarkisov links of
conic bundles of type II.

Definition 3.25. Let χ be a Sarkisov of conic bundles of type II between varieties
of dimension n > 3. We define cov. gon(χ) to be cov. gon(Γ), where Γ is the marking
of χ.

Remark 3.26. If two Sarkisov links of conic bundles of type II are equivalent, then
their markings are birational to each other. In particular the number cov. gon(χ)
only depends on the equivalence class of χ.

The above definition makes sense if the varieties Xi have dimension > 2, but it
is not a very good invariant if the dimension is 2, as the centre is always a point,
and there is only one class of marked conic bundles, given by a point in the base
of a Hirzebruch surface. However, the analogue definition over Q or over a finite
field, instead of over C, is interesting even for surfaces.

4. Relations between Sarkisov links

The fact that one can give a definition of Sarkisov links in terms of relative
Mori dream spaces of Picard rank 2 as in the previous section was independently
observed in [AZ16, §2] and [LZ17, §2.3]. Our next aim is to extend this observation
to associate some relations between Sarkisov links to each rank 3 fibration. First
we define elementary relations, and then we relate this notion to the work of A.-S.
Kaloghiros about relations in the Sarkisov programme.

4.A. Elementary relations.

Definition 4.1. Let X/B and X ′/B′ be two rank r fibrations, and T X ,
T X ′ two birational maps from the same variety T . We say that X/B and
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X ′/B′ are T -equivalent (the birational maps being implicit) if there exist a pseudo-
isomorphism X X ′ and an isomorphism B ∼ B′ such that all these maps fit
in a commutative diagram:

T

X X ′

B B′∼

Lemma 4.2. Let X3/B3 be a rank 3 fibration that factorises through a rank 1
fibration X1/B1. Then up to X3-equivalence there exist exactly two rank 2 fibrations

that factorise through X1/B1, and that are dominated by X3/B3.

Proof. We distinguish three cases according to ρ(B1/B3).
If ρ(B1/B3) = 2, then B1 – being the base of a Mori fibre space – is Q-factorial

klt (Proposition 2.11), and B1/B3 is a Mori dream space by Lemma 2.17. The as-
sociated two-rays game yields exactly two non-isomorphic B2, B

′
2 with ρ(B2/B3) =

ρ(B′
2/B3) = 1. Then Lemma 2.18 provides sequences of log-flips over B3, X1 X2

and X1 X ′
2, such that X2/B2, X ′

2/B
′
2 are the expected rank 2 fibrations.

If ρ(B1/B3) = 1, then the base B2 of any of the expected rank 2 fibrations must
be equal to B1 or B3, because by assumption we have morphisms B1 B2 B3.
By Lemma 3.4(1) X1/B3 is the first expected rank 2 fibration, and up to equiva-
lence it is the only one with base B3, because any rank 2 fibration X2/B3 satisfies
ρ(X2) = ρ(X1), so the birational contraction X2 X1 is a pseudo-isomorphism.
Let D be the pull-back on X3 of an ample divisor on X1. The birational contraction
X3 X1 is a D-MMP over B3, and as ρ(X3) − ρ(X1) = 1, it decomposes as a
sequence of D-flips X3 X ′

3, a divisorial contraction X ′
3 X ′

1, and a sequence
of D-flips X ′

1 X1. Then Lemma 2.18 provides a sequence of log-flips over B3,
X ′

3 X2, such thatX2 X1 is a divisorial contraction, and by Lemma 3.4X2/B1

is the second expected rank 2 fibrations. Any other rank 2 fibration X ′
2/B1 satis-

fying the lemma is equivalent to X2/B1, because as before the condition on Picard
numbers forces X2 X ′

2 to be a pseudo-isomorphism.
If ρ(B1/B3) = 0, then ρ(X3)−ρ(X1) = 2, andB1 = B3 must be the base of any of

the expected rank 2 fibrations. By applying several times Lemma 2.18 we construct
a sequence of log-flips over B3, X3 X ′

3, such that X ′
3 X1 is a morphism. The

associated two-rays game yields exactly two divisorial contractions X2 X1 and
X ′

2 X1. Moreover X2 and X ′
2 are not pseudo-isomorphic by Lemma 2.22, and

are uniquely determined up to equivalence by Corollary 2.21. Then X2/B1 and
X ′

2/B1 are the expected rank 2 fibrations. �

Proposition 4.3. Let T/B be a rank 3 fibration. Then there are only finitely many

Sarkisov links χi dominated by T/B, and they fit in a relation

χt ◦ · · · ◦ χ1 = id.

Proof. Since T/B is a Mori dream space, by Lemma 2.9 there are only finitely
many rank 1 or 2 fibrations dominated by T/B. We construct a bicolored graph
Γ as follows. Vertices are rank 1 or 2 fibrations dominated by T/B, up to T -
equivalence, and we put an edge between X2/B2 and X1/B1 if X2/B2 is a rank
2 fibration that factorises through the rank 1 fibration X1/B1. By construction,
two vertices of rank 1 of Γ are at distance 2 if and only if there is a Sarkisov link
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between them. Then by Lemmas 3.7 and 4.2 we obtain that Γ is a circular graph,
giving the expected relation. �

Definition 4.4. In the situation of Proposition 4.3, we say that

χt ◦ · · · ◦ χ1 = id

is an elementary relation between Sarkisov links, coming from the rank 3 fibration
T/B. Observe that the elementary relation is uniquely defined by T/B, up to
taking the inverse, cyclic permutations and insertion of isomorphisms.

4.B. Geography of ample models. In this section, we recall some preliminary
material from [BCHM10, HM13]. The aim is to explain the construction of a
polyhedral complex attached with the choice of some ample divisors on a smooth
variety, and to state some properties (Proposition 4.10 and Lemma 4.15) that we
will use in the next section to understand relations between Sarkisov links.

Definition 4.5 ([BCHM10, Definition 3.6.5]). Let Z be a terminal Q-factorial
variety, D be a R-divisor on Z and ϕ : Z Y a dominant rational map to a
normal variety Y . We take a resolution

W

Z Y

p q

ϕ

where W is smooth, p is a birational morphism and q a morphism with connected
fibres. We say that ϕ is an ample model of D if there exists an ample divisor H
on Y such that p∗D is linearly equivalent to q∗H +E where E > 0, and if for each
effective R-divisor R linearly equivalent to p∗D we have R > E.

If ϕ is a birational contraction, we say that ϕ is a semiample model of D if
H = ϕ∗D is semiample (hence in particular R-Cartier) and if p∗D = q∗H + E
where E > 0 is q-exceptional.

Lemma 4.6 ([BCHM10, Lemma 3.6.6]). Let Z be a terminal Q-factorial variety

and D a R-divisor on Z.

(1) If ϕi : Z Yi, i = 1, 2, are two ample models of D, there exists an isomor-

phism θ : Y1
∼ Y2 such that ϕ2 = θ ◦ ϕ1.

(2) If a birational map ψ : Z X is a semiample model of D, the ample model

ϕ : Z Y exists and ϕ = θ ◦ψ for some morphism θ : X Y . Moreover, ψ∗D =
θ∗H, where H is the ample divisor H = ϕ∗D.

(3) A birational map ϕ : Z Y is the ample model of D if and only if it is a

semiample model of D and ϕ∗D is ample.

Remark 4.7. Note that composing with an isomorphism of the target does not
change the notion of ample or semiample model, so it is natural to say that two
ample or semiample models ϕ1 : Z Y1, ϕ2 : Z Y2 are equivalent if there is an
isomorphism θ : Y1

∼ Y2 such that ϕ2 = θ ◦ ϕ1. Then Lemma 4.6(1) says that
up to equivalence, if an ample model exists then it is unique. This justifies that we
can speak of the ample model of a divisor D.

Definition 4.8. We say that two divisors D and D′ are Mori equivalent if they
have the same ample model.

Remark 4.9. For a Q-divisor, the ample model of D, if it factorises through a
semiample model, is the rational map ϕD associated with the linear system |mD|
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for m ≫ 0, whose image is ZD = Proj(⊕mH
0(Z,mD)), where the sum is over all

positive integers m such that mD is Cartier (see [KKL16, Remark 2.4(ii)]). It does
exist if the ring ⊕mH

0(Z,mD) is finitely generated, which is for instance true if
D = KZ+A for some ample Q-divisor A (follows from [BCHM10, Corollary 1.1.2]).

Let VQ be a Q-vector space, and VR = VQ ⊗ R the associated real vector space.
Recall that a rational polytope in VR is the convex hull of finitely many points lying
in VQ. In particular, it is convex and compact.

Proposition 4.10. Let Z be a smooth variety with KZ not pseudo-effective and let

A1, . . . , As be ample Q-divisors that generate the R-vector space N1(Z). Assume

that there exist ample effective Q-divisors A,A′
1, . . . , A

′
s such that for each i, Ai =

A+A′
i. Define

C =
{

D ∈ Div(Z)R

∣

∣

∣ D = a0KZ +
s

∑

i=1

aiAi,

a0, . . . , as > 0 and D is pseudo-effective
}

.

Then, every element of C has an ample model, and the Mori equivalence classes

give a finite partition

C =
∐

i∈I

Ai.

We denote by ϕi : Z Zi the common ample model of all D ∈ Ai. Then, the

following holds (each i, j is always assumed to be in I in the next statements):

(1) The set C is a cone over a rational polytope.

(2) Each Ai is a finite union of relative interiors of cones over rational polytopes.

(3) For each i, the following are equivalent:

(i) The image of Ai in N1(Z) has non-empty interior;

(ii) ϕi is birational and Zi is Q-factorial;

(iii) ϕi is a birational contraction that is the output of a (KZ + ∆)-MMP for

some KZ + ∆ ∈ C;

(4) If ϕj is birational, then ĎAj is a cone over a rational polytope. Taking a

resolution p : W Z, q : W Zj of ϕj, we have

Aj = {D ∈ C | ϕj∗D is ample and p∗D − q∗ϕj∗D > 0},

ĎAj = {D ∈ C | ϕj∗D is nef and p∗D − q∗ϕj∗D > 0}.

Moreover, for each D ∈ ĎAj, the divisor ϕj∗D is semiample, so we also have

ĎAj = {D ∈ C | ϕj is a semiample model of D}.

(5) If i, j are such that ĎAj ∩ Ai 6= ∅, there exists a morphism ϕji : Zj Zi with

connected fibres such that ϕi = ϕji ◦ ϕj.
(i) If moreover ϕj is birational, we obtain

ĎAj ∩ ĎAi = {D ∈ ĎAj | ϕj∗D · C = 0 for each C ∈ N1(Zj/Zi)},

ĎAj ∩ Ai = {D ∈ ĎAj ∩ ĎAi | ϕi∗D is ample }.

(ii) If furthermore ϕi is birational, we also have

ĎAj ∩ ĎAi = {D ∈ ĎAi | ϕj∗D · C = 0 for each C ∈ N1(Zj/Zi)}.

(6) Each variety Zi is normal and klt. In particular, it has rational singularities.
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(7) For each numerically equivalent divisors D,D′ ∈ C and each i, we have

D ∈ Ai ⇐⇒ D′ ∈ Ai and D ∈ ĎAi ⇐⇒ D′ ∈ ĎAi.

Proof. The finite partition, the assertions (2), (3), the fact that ĎAi is a cone over
a rational polytope if ϕi is birational (first part of (4)) and the existence of the
morphism ϕji in (5) are given by [HM13, Theorem 3.3]. Indeed, we can apply
their result with (in their notation) the affine subspace V ⊂ Div(Z)R generated by
A′

1, . . . , A
′
s and −A. Observe that they normalise their divisors by a0 = 1, so they

work with an affine section of our cone C.
As the set of pseudo-effective divisors is a closed convex cone, so is C. Moreover,

C is rational and polyhedral, as it is the union of finitely many rational polyhedral
cones. This gives (1).

We now prove the remaining part of (4). By Lemma 4.6(3), for each D ∈ C, ϕj
is the ample model of D if and only if it is a semiample model of D and ϕj∗D is
ample. This corresponds exactly to asking that ϕj∗D is ample and p∗D − q∗ϕ∗D
is effective. The closure of ample divisors being nef divisors, we obtain the explicit
description of Aj and the first description of ĎAj given in (4).

The fact that ϕj∗D is semiample for each D ∈ ĎAj is part of the proof (and in
fact the main point) of the existence of ϕji : Zj Zi given in [HM13, Theorem
3.3]. It implies that ĎAj = {D ∈ C | ϕj is a semiample model of D}.

We now prove the remaining part of (5). If i = j, everything follows with
ϕii = idZi

, so we can assume that i 6= j.
We first prove (5)(i). For each element D ∈ ĎAj , we denote by Hj the divisor

Hj = ϕj∗D, which is semiample by (4), and obtain p∗D = q∗Hj + E, where E is
effective and q-exceptional. We then use the resolution of ϕi given by p : W Z
and q′ = ϕji ◦ q : W Zi to determine if D belongs to Ai or its closure.

(a) Suppose first that D ∈ Ai, which means that ϕi is the ample model of D.
There exists then an ample divisor Hi on Zi such that p∗D is linearly equivalent
to (ϕji ◦ q)∗Hi +E′ where E′ > 0 and where R > E′ for each effective R-divisor R
linearly equivalent to p∗D. As p∗D = q∗Hj+E and as q∗Hj has no fixed component
(because Hj is semiample), we obtain E > E′, so E′ is q-exceptional. Hence, ϕj∗D
is linearly equivalent to q∗((ϕji ◦q)∗Hi+E

′) = ϕ∗
jiHi and thus satisfies ϕj∗D ·C = 0

for each C ∈ N1(Zj/Zi). Moreover, ϕi∗D is linearly equivalent to Hi and is thus
ample.

(b) Conversely, we suppose that ϕj∗D ·C = 0 for each C ∈ N1(Zj/Zi) and that
ϕi∗D is ample, and prove that D ∈ Ai.

We denote by Hi the ample divisor ϕi∗D. Since the nef divisor Hj = ϕj∗D on Zj
satisfies Hj · C = 0 for each C ∈ N1(Zj/Zi) and satisfies ϕji∗Hj = Hi, the divisor
Hj − ϕ∗

jiHi is numerically trivial. We obtain p∗D ≡ (ϕji ◦ q)∗Hi + E. It remains
to see that if R is an effective divisor linearly equivalent to p∗D, then R > E. We
write

M + F = R ≡ (ϕji ◦ q)∗Hi + E

with |M |, F respectively the mobile and fixed part of the linear system |R|. The
divisor (ϕji ◦ q)∗Hi = q∗(ϕ∗

jiHi) is q-trivial and mobile, so E−F > 0 with support
in the exceptional locus of q. So we have

M + F = R = q-trivial +E =⇒ E − F = q-trivial +M
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and we conclude by the Negativity Lemma 2.2 that F − E > 0, hence F − E = 0,
and R− E = M > 0. This achieves the proof of (5)(i).

We now prove (5)(ii). The fact that ϕj∗D · C = 0 for each C ∈ N1(Zj/Zi) and
each D ∈ ĎAj ∩ ĎAi follows from (5)(i). Conversely, we take D ∈ ĎAi that satisfies
ϕj∗D · C = 0 for each C ∈ N1(Zj/Zi), and prove that D ∈ ĎAj , using the diagram

W

Z Zj Zi

p q

ϕj

ϕi

ϕji

As D ∈ ĎAi, by (4) the divisor Hi = ϕi∗D is nef and p∗D = q∗ϕ∗
jiHi + Ei where

Ei > 0 is (ϕji ◦ q)-exceptional. Hence, Hj = ϕj∗D = q∗p
∗D = ϕ∗

jiHi + q∗Ei, where

q∗Ei > 0 is ϕji-exceptional. As Hj ·C = 0 for each C ∈ N1(Zj/Zi), we also obtain
q∗Ei · C = 0 for each C ∈ N1(Zj/Zi). The Negativity Lemma 2.2 gives q∗Ei 6 0,
so q∗Ei = 0. This implies that Hj = ϕji

∗Hi is nef (because Hi is nef) and that
p∗D = q∗Hj + Ei, where Ei > 0 is q-exceptional, so (4) gives D ∈ ĎAj as expected.

Finally we prove (6) and (7), for a given index i. The variety Zi is normal by
definition of an ample model. If Ai satisfies the equivalent conditions of (3), then
Zi is terminal (hence has rational singularities) as the output of a (KZ + ∆)-MMP,
and the fact that belonging to Ai or ĎAi is a numerical condition follows from (4).

To see this, we take D ∈ C, and write p∗D− q∗ϕj∗D =
∑l

i=1 aiEi where E1, . . . , El
are the divisors contracted by the birational morphism q : W Zj . Then we
observe that the real numbers ai can be computed by intersecting E with linear
combinations of curves on the exceptional divisors. Indeed there does not exist any

(µ1, . . . , µl) ∈ Rl r {0} such that E =
∑l

i=1 µiEi intersects trivially each element
of N1(W/Zj). This follows from the Negativity Lemma 2.2 applied to E and −E.

If Ai does not satisfies the equivalent conditions of (3), there exists a chamber Aj

satisfying them, such that ĎAj ∩ Ai 6= ∅. By (5) there is a contraction ϕji : Zj Zi
and Zj is Q-factorial and terminal again by (3). Assertion (6) follows from Propo-
sition 2.12 and Remark 4.8. Assertion (7) follows from (5). �

Lemma 4.11. Assume the setting of Proposition 4.10. Let Aj ⊆ C be a Mori

equivalence class such that ϕj : Z Zj is birational.

(1) If {Di} is a finite collection of classes in N1(Z) such that ϕj is a semiample

model of each, then ϕj is a semiample model for any convex combination of the Di.

(2) Let Dj ∈ Nef(Zj) and set D = ϕ∗
jDj ∈ N1(Z). Then ϕj is a semiample

model of D.

(3) Let E be a prime divisor contracted by ϕj . Then ϕj is a semiample model

of E.

(4) The cone ĎAj is the intersection of C with the closed convex cone generated

by ϕ∗
j Nef(Zj) and by the divisors contracted by ϕj.

Proof. (1). For each i we write p∗Di = q∗Hi +Ei where Hi = ϕj∗Di is semiample,
and Ei > 0 is q-exceptional. For any choice of coefficients ai > 0 we have

p∗
(

∑

aiDi

)

= q∗
(

∑

aiHi

)

+
∑

aiEi

where
∑

aiHi = ϕj∗(
∑

aiDi) is semiample and
∑

aiEi is q-exceptional and effec-
tive.
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(2). We take p : W Z and q : Z Zj a resolution of ϕj . We obtain D =
p∗q

∗Dj. The divisor E = p∗D − q∗Dj is p-exceptional, and also q-exceptional
since ϕj is a birational contraction, hence ϕj∗D = q∗p

∗D = Dj . Moreover, −E =
q∗Dj − p∗D is p-nef, so E > 0 by the Negativity Lemma 2.2.

(3). The trivial divisor H = ϕj∗E = 0 is semiample, and p∗E − q∗H = p∗E is
effective, as E is effective.

(4). As ϕj is birational, by Proposition 4.10(4) we have

ĎAj = {D ∈ C | ϕj is a semiample model of D}.

By (2) and (3), ϕj is a semiample model of every element of ϕ∗
j Nef(Zj) and of every

prime divisor contracted by ϕj . So, by (1), ĎAj contains the intersection of C with
the closed convex cone generated by ϕ∗

j Nef(Zj) and by the divisors contracted by

ϕj . Conversely, let D ∈ ĎAj , and set Dj = ϕj∗D. The divisor

E = D − ϕj
∗Dj = p∗p

∗D − p∗q
∗Dj = p∗(p∗D − q∗Dj)

is effective and ϕj-exceptional, so D = ϕj
∗Dj + E is the sum of an element in

ϕ∗
j Nef(Zj) and an effective ϕj -exceptional divisor. �

Set-Up 4.12. Let Z be a smooth variety with KZ not pseudo-effective and let
A1, . . . , As be ample Q-divisors that generate the R-vector space N1(Z). We still
denote

C =
{

D ∈ N1(Z)
∣

∣

∣ D = a0KZ +

s
∑

i=1

aiAi,

a0, . . . , as > 0 and D is pseudo-effective
}

.

This is the image under the natural map Div(Z)R N1(Z) of the cone from
Proposition 4.10, for some choice of ample effective Q-divisors A,A′

1, . . . , A
′
s such

that for each i, Ai ≡ A + A′
i. By Proposition 4.10(7), the decomposition C =

∐

i∈I Ai (hence also its image in N1(Z)) does not depend on such a choice of effec-
tive representatives. So from now on we will work directly in the finite dimensional
R-vector space N1(Z), and use the notation C,Ai in this context only.

Remark 4.13. One advantage of working up to numerical equivalence is that
we can always assume that the pairs (Z,∆) in Set-Up 4.12 are klt with arbitrary
small discrepancies, where ∆ = 1

a0

∑s
i=1 aiAi. Indeed, by expressing each Ai as

Ai ≡ 1
N

∑N
j=1 Hi,j for some large integer N and some general members Hi,j ∈ |Ai|,

we can ensure that the union of the supports of the Hi,j is a simply normal crossing
divisor and that all coefficients appearing in the convex combination ∆ are positive
and very small.

Assuming Set-Up 4.12, we introduce some terminology. We say that a chamber
Ai has maximal dimension if it has non-empty interior in N1(Z), which corresponds
to the equivalent assertions of Proposition 4.10(3). We say that a chamber Ai is
big if all divisors (or equivalently, one divisor) in Ai are big. We call face of C
any face of a polyhedral cone ĎAi ⊆ C ⊆ N1(Z), for any big chamber Ai. By the
codimension of a face in C we always mean the codimension in N1(Z) of the smallest
vector subspace containing it. We will usually denote Fr a face of codimension r
in C, and F̊r its relative interior.
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We denote by ∂+C the set of non-big divisors in C. As ∂+C is the intersection
of C with the boundary of the pseudo-effective cone, the set ∂+C is a closed subset
of the boundary of C. We have Ai ⊆ ∂+C if dimZi < Z and Ai ⊆ C r ∂+C if
dimZi = Z.

By definition, the cone C ⊂ N1(Z) is equal to the intersection of two convex
closed cones, namely C = C′ ∩ ĎEff(Z) with C′ the convex cone generated by KZ and
the Ai. We will say that a face F ⊆ C is inner if it meets the interior of C′. In
particular, F is inner if for any D′ ∈ F̊ , there exists a neighborhood V of D′ in
N1(Z) such that ĎEff(Z) ∩V = C ∩V . Equivalently, a face is inner if it meets either
the interior of C or the relative interior of ∂+C.

Remark 4.14. If F is an inner face, then for any D ∈ ĎEff(Z) and any D′ ∈ F̊ , we
have D′ + εD ∈ C for sufficiently small ε > 0. Indeed with the notation above one
can choose V ⊂ C′ a neighborhood of D′ such that ĎEff(Z) ∩ V = C ∩ V . Then it
suffices to choose ε such that D′ + εD ∈ V . Since D,D′ are both pseudo-effective,
the segment [D,D′] also is contained in the convex cone ĎEff(Z), and the claims
follows.

Lemma 4.15. Let Aj be a big inner chamber.

(1) Let Ai be a chamber such that ĎAj ∩ Ai 6= ∅. Then Fji := ĎAj ∩ ĎAi has the

following properties:

(i) Fji is a face of ĎAj .

(ii) If Ai is a big inner chamber, then Fji is also a face of ĎAi.

(iii) If ĎAj has maximal dimension, then the vector space

Vji := {D ∈ N1(Z) | ϕj∗D · C = 0 for each C ∈ N1(Zj/Zi)}

is spanned by Ex(ϕj) and ϕ∗
i Nef(Zi), and has codimension ρ(Zj/Zi) in

N1(Z). Moreover if Fji is inner, then Vji is spanned by Fji.
(iv) F̊ ji ⊆ Ai.

(2) Let Ai, Ak be two chambers such that ĎAj ∩ Ai 6= ∅, ĎAj ∩ Ak 6= ∅ and
ĎAi ∩ Ak 6= ∅. Then the face Fjk is a subface of the face Fji, and a strict subface if

i 6= k.

(3) Conversely, any inner face Fr ⊆ C is of the form Fr = Fki := ĎAk ∩ ĎAi for

some chamber Ak of maximal dimension, and some chamber Ai containing F̊r.

Proof. We first prove Assertions (i)-(iii) of (1). By Proposition 4.10(5)(i),

ĎAj ∩ ĎAi = {D ∈ ĎAj | ϕj∗D · C = 0 for each C ∈ N1(Zj/Zi)}.

So each curve C ∈ N1(Zj/Zi) defines a supporting hyperplane of ĎAj , and ĎAj∩ ĎAi is
a face of ĎAj as the intersection of a cone over a polytope with a collection of support-
ing hyperplanes. This proves (i). The same argument using Proposition 4.10(5)(ii)
gives (ii).

We now prove (iii). We denote by Ej , Vj , Vi ⊆ N1(Z) the vector spaces gen-
erated by Ex(ϕj), ϕ

∗
j Nef(Zj) and ϕ∗

i Nef(Zi) respectively. As ĎAj has maximal

dimension, ϕj is a birational contraction that is the output of a (KZ + ∆)-MMP
for some KZ + ∆ ∈ C (Proposition 4.10(3)). This gives N1(Z) = Ej ⊕ Vj .
Now, ϕ∗

j Nef(Zj) contains ϕ∗
i Nef(Zi) = ϕ∗

jϕ
∗
ji Nef(Zi), and the codimension of

ϕ∗
i Nef(Zi) in ϕ∗

j Nef(Zj) is the same as the codimension of ϕ∗
ji Nef(Zi) in Nef(Zj)

(indeed, the group homomorphism ϕ∗
j : N1(Zj) N1(Z) is injective as ϕj is a

birational contraction). We obtain dim(Vj) − dim(Vi) = ρ(Zj/Zi). The vector
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space Vji is of codimension dimN1(Zj/Zi) = ρ(Zj/Zi) since ϕj is birational. Since
Ej ⊕ Vi ⊆ Vji and both vector space have the same dimension, we obtain

Vji = Ej ⊕ Vi.

It remains to prove the last sentence of (iii). To do this, we assume moreover that
Fji is inner, and show that Fji spans Vji in this case. Writing

Sj = {D ∈ N1(Z) | ϕj is a semiample model of D},

Proposition 4.10(4)&(5)(i) yields

ĎAj = C ∩ Sj, ĎAj ∩ ĎAi = Fji = Vji ∩ C ∩ Sj .

In particular, we have Fji ⊆ Vji. To show that Fji spans Vji = Ej ⊕ Vi, it suffices
to prove that every divisor E which is either an exceptional divisor of ϕj or an
element of ϕ∗

i Nef(Zi) lies in span(Fji). We fix some D′ ∈ F̊ ji and may assume
that D′ +E ∈ C; indeed, we may replace E with εE for some small ε > 0, and then
the result follows from E ∈ ĎEff(Z) and Remark 4.14. This implies that E ∈ ĎAj

(Lemma 4.11(4)), and thus that E ∈ Fji = Vji ∩ C ∩ Sj , since ĎAj = C ∩ Sj and
E ∈ Vji.

(2). By Proposition 4.10(5) we have a commutative diagram

Zj Zk

Zi

ϕjk

ϕji ϕik

Any curve contracted by ϕji is also contracted by ϕjk, so the collection of supporting
hyperplanes defining the face Fji is a subcollection of the one defining Fjk and
moreover a strict subcollection if N1(Zj/Zi) ( N1(Zj/Zk).

We can now prove (1)(iv). Let D ∈ Fji, and assume that D ∈ Ak with k 6= i.
By (2), the divisor D is in Fjk which is a strict subface of Fji, so D 6∈ F̊ ji. This
proves F̊ ji ⊆ Ai.

(3). If r = 0, then Fr is equal to ĎAi for some chamber i of maximal dimension,
so we simply choose i = k. Now assume that Fr is an inner face of codimension
r > 1. By definition Fr is a face of ĎAk for some big chamber Ak. Among all
possible choices for such a chamber Ak we pick one such that ρ(Zk) is maximal.
Let D ∈ F̊r, and Ai the chamber containing D. If D is not big, then i 6= k. If
D is big, then since Fr is inner there exists at least one big chamber Al distinct
from Ai such that D ∈ ĎAl ∩ Ai. This implies that Fr ⊆ Fli is a face of ĎAl, and by
Proposition 4.10(5) we have a morphism Zl Zi. Since l 6= i we get ρ(Zl) > ρ(Zi),
and the maximality of ρ(Zk) ensures that i 6= k. By (1) and (iv) we get Fr ⊆ Fki.
If r = 1, this gives Fr = Fki.

Finally we consider the case where r > 2, and prove by contradiction that the
inclusion Fr ⊆ Fki is an equality. If Fr ( Fki is a strict subface, then there exists
an inner codimension 1 face F1 of ĎAk such that Fr ⊆ F1 ∩ Fki ( Fki. By the
first part of the proof, there exists a chamber Al such that either F1 = Fkl or
F1 = Flk. But in the latter case, we would have ĎAl ∩ Ak 6= ∅, hence a morphism
ϕlk : Zl Zk, contradicting the maximality of ρ(Zk). So F1 = Fkl, so we have
ĎAk ∩ Al 6= ∅, and moreover since D ∈ ĎAk ∩ ĎAl ∩ Ai, we also have ĎAk ∩ Ai 6= ∅ and
ĎAl ∩ Ai 6= ∅. By (2), Fki is a subface of Fkl, so we get Fkl ∩ Fki = Fki, which
contradicts F1 ∩ Fki ( Fki, since Fkl = F1. �
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Notation 4.16. Lemma 4.15 provides the following indexing system for faces.
Any inner face can be written Fji := ĎAj ∩ ĎAi, for some chamber Aj of maximal
dimension and some chamber Ai such that F̊ ji ⊆ Ai. The index i is uniquely
defined by this last property, but there might be several possible choices for the
index j. For instance, if we have a log-flip from Zj to Zk, over a non Q-factorial
Zi, we have Fji = Fki.

Example 4.17. We illustrate the definition of Mori chambers and faces on the
simple example of the blow-up Z P2 at two distinct points p1 and p2. Using
the notation above, there are eight Mori chambers A0, . . . ,A7, corresponding to
morphisms ϕi : Z Zi, i = 0, . . . , 7 to the varieties Z0 = Z, Z1 = Z2 = F1,
Z3 = F0, Z4 = P2, Z5 = Z6 = P1 and Z7 = pt in the commutative diagram
on Figure 3 (ϕ0 being the identity). The two morphisms ϕ14, ϕ24 : F1 P2 are
the blow-ups of p1, p2 ∈ P2 respectively, and ϕ1, ϕ2 : Z F1 are the blow-ups of
the images of p1 and p2. The morphisms ϕ15, ϕ26 : F1 P1 correspond to the
P1-bundle of F1 and ϕ3 = ϕ5 × ϕ6 : Z F0 = P1 × P1.

We give the detail of the relation between these Mori chambers and the faces
of the cone C in Figure 3. We denote by E1, E2 ⊂ Z the curves contracted onto
p1, p2 ∈ P2 respectively, by L the strict transform of the line through p1 and p2,
and by H = L + E1 + E1 the pull-back of a general line. The cone Eff(Z) is the
closed convex cone generated by E1, E2 and L, which are the only (−1)-curves on
Z, while the cone Nef(Z) is the closed convex cone generated by H,H − E1 and
H − E2. The anti-canonical divisor −KZ = 3H − E1 − E2 = 3L + 2E1 + 2E2 is
ample. In the figure we represent an affine section of the cone, and all divisors
must be understood up to rescaling by an adequate homothety: for instance this is
really − 1

7KZ that is in the same affine section as E1, E2 and L, but for simplicity
we write −KZ .

The faces F0
i = ĎAi, i = 0, . . . , 4 are the faces of maximal dimension, the faces

Fji (written Fr
ji where r is the codimension as usual) are as above Fji = ĎAj ∩ ĎAi.

Every face of C = Eff(Z) is inner.
We can notice that the ample chamber A0 is the only open one and that A7 is

the only closed one. Moreover, as a hint that the behaviour of non maximal Mori
chambers can be quite erratic, observe that A7 = ĎA7 is not connected, and that
neither ĎA5 nor ĎA6 is a single face.

This example will be continued in Example 4.26 below.

As a warm-up before the next section, we let the reader check that Proposi-
tion 4.10 implies the following facts about codimension 1 faces of C.

Remark 4.18. Let F1 be an inner codimension 1 face of the cone C ⊆ N1(Z) from
Set-Up 4.12, and Ai the Mori chamber containing F̊1 given by Lemma 4.15(iv).
Then F1 is contained in the closure of exactly one or two chambers of maximal
dimension, depending whether F1 is in the boundary of C or not.

(1) Assume first that F1 ⊂ ĎAj for a unique chamber Aj of maximal dimension,
so F1 is in the boundary of C. Moreover since F1 is inner we have F1 ⊆ ∂+C,
so dimZi < dimZj. The associated map ϕji : Zj Zi satisfies ρ(Zj/Zi) = 1.
Moreover −KZj

is relatively ample, so that Zj/Zi is a Mori fibre space ([Kal13,
Lemma 3.2], see also Proposition 4.25 below for a generalisation).

(2) Now consider the case where F1 = ĎAj ∩ ĎAk for some distinct chambers
Aj ,Ak of maximal dimension. We distinguish two subcases.
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Figure 3. Ample models and faces in Example 4.17.

(i) If Ai is of maximal dimension, up to renumbering we can assume Ai = Ak, so
that ĎAj∩Ai ⊇ F̊1. In this situation both Zj and Zi are Q-factorial and terminal, so
the morphism ϕji : Zj Zi with relative Picard rank 1 given by Proposition 4.10
is a birational contraction.

(ii) Finally if Ai is not of maximal dimension, both birational morphisms ϕji
and ϕki given by Proposition 4.10 have relative Picard 1 and target variety Zi
which is not Q-factorial, so ϕji and ϕki are small contractions. By uniqueness of
the log-flip, the induced birational map Zj Zk must be the associated log-flip.

Remark 4.19. Let ∆ ∈ C be an ample divisor. Then the successive chambers
of maximal dimension that are cut by the segment [∆,KZ ] can be interpreted as
successive steps in a KZ-MMP from Z. In [BCHM10, Remark 3.10.10] this is
called a KZ-MMP with scaling of ∆. Moreover by perturbing ∆ we can assume
that the segment is transverse to the polyhedral decomposition. Then as mentioned
in Remark 4.18, each intermediate face of codimension 1 that the segment meets
corresponds either to a flip or to a divisorial contraction, and the last codimension 1
face in the boundary of the pseudo-effective cone corresponds to a Mori fibre space
structure on the output of the MMP.

Remark 4.20. In this section we chose to follow [HM13] and [BCHM10], who
build on [Sho96, §6] for the construction of polyhedral chambers. In fact it seems
to be Shokurov who coined the terminology “geography of ample models” to refer
to this polyhedral decomposition.
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However we should point out that another possible thread of references would
be to use [CL12] and [CL13], on which rely both [Kal13] and [KKL16]. In these ref-
erences the polyhedral decomposition is derived from [ELM+06], and is equivalent
to our decomposition into faces.

Remark 4.21. Recall that a fan is a collection of rational strongly convex poly-
hedral cones, such that each face (of any dimension) of a cone is also part of the
collection, and such that the intersection of two cones is a face of each.

Lemma 4.15 almost gives a fan structure on C: the only missing point would
be to check the property for non inner faces. We do not complete this study since
we will not need it, but we let the interested reader check that the collection of all
faces of big chambers indeed forms a fan, which coincides with the fan structure of
[ELM+06, Theorem 4.1] and [KKL16, Theorem 3.2].

4.C. Generation and relations in the Sarkisov programme. The goal of
this section is to prove Theorem 4.29, which will allow us to define the group
homomorphisms of the main theorems. The main technical intermediate step is
Proposition 4.25, which explains the relation between our notion of rank r fibration
and the combinatorics of the non-big boundary of the cone C as given in [Kal13].

The proof of the following lemma can be extracted from [HM13, Lemma 4.1].

Lemma 4.22. Let Z be a smooth variety, π : Z X a birational morphism, and

η : X B a terminal Mori fibre space. There exist ample divisors ∆,∆′ on Z such

that π is the ample model of KZ + ∆ and the semiample model of KZ + ∆′ and

η ◦ π is the ample model of KZ + ∆′.

As a consequence, we get the following fact, which is essentially [Kal13, Propo-
sition 3.1(ii)].

Proposition 4.23. Let t > 2 be an integer. For i = 1, . . . , t, let ηi : Xi Bi be a

terminal Mori fibre space and let θi : Xi Xi+1 be a birational map (here θt goes

from Xt to Xt+1 := X1). We assume moreover that θt ◦ · · · ◦ θ1 = idX1
.

There exists a smooth variety Z, together with birational morphisms πi : Z Xi,

i = 1, . . . , t, and ample Q-divisors A1, . . . , Am on Z such that the following hold:

(1) The divisors A1, . . . , Am generate the R-vector space N1(Z).
(2) For i = 1, . . . , t, the birational morphism πi and the morphism ηi ◦ πi are

ample models of an element of

C =
{

a0KZ +

m
∑

i=1

aiAi

∣

∣

∣ a0, . . . , am > 0
}

∩ ĎEff(Z).

(3) For i = 1, . . . , t we have θi ◦ πi = πi+1 (with πt+1 := π1). We then have a

commutative diagram as in Figure 4.

Proof. We take a smooth common resolution Z of the birational maps θi. This
gives birational morphisms πi : Z X satisfying (3). For each i = 1, . . . , t, we
apply Lemma 4.22 to the morphism Z/Xi. This gives ample Q-divisors ∆i and ∆′

i

on Z such that πi is the ample model of KZ + ∆i, and ηi ◦πi is the ample model of
KZ + ∆′

i. We then choose some large rational number ξi > 0 such that KZ + ξi∆i

and KZ + ξi∆
′
i are ample, and then define Ai = KZ + ξi∆i and At+i = KZ + ξi∆

′
i.
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θ4

...

θt−1

θt

Figure 4. The commutative diagram in Proposition 4.23

This provides ample Q-divisors A1, . . . , A2t such that KZ + ∆i and KZ + ∆′
i lie

in
{

a0KZ +

2t
∑

i=1

aiAi

∣

∣

∣ a0, . . . , a2t > 0
}

∩ ĎEff(Z)

for each i ∈ {1, . . . , 2t}, proving (2). Adding some additional ample divisors Aj , we
can assume that A1, . . . , Am generate the R-vector space N1(Z), giving (1). �

In the following discussion (and until Corollary 4.28) we work with the setting
given by Proposition 4.23, that is, the commutative diagram of Figure 4 and an
associated choice of cone C ⊂ N1(Z). Also recall that ∂+C ⊂ C is the subset of
non-big divisors.

Lemma 4.24. ∂+C is the cone over a polyhedral complex homeomorphic to a disc

or a sphere of dimension ρ(Z) − 2.

Proof. Consider the auxiliary cone C′ of classes of the form
∑

aiAi where ai > 0 for all i.

In other words, C′ is the cone over the convex hull of the Ai, and in particular C′ is
a closed subcone of the ample cone of Z. Let ∂+C′ be the points in the boundary
of C′ that are visible from the point KZ . Formally:

∂+C′ = {D ∈ C′ | [D,KZ ] ∩ C′ = {D}} .

By an elementary convexity argument, this cone ∂+C′ is homeomorphic to the cone
over a sphere or a disc of dimension ρ(Z) − 2, the first case occurring precisely if
−KZ is in the interior of C′. Then we have a continuous map

π : ∂+C′ ∂+C

D π(D)

that sends D to the intersection of the segment [D,KZ ] with ∂+C. The intersec-
tion exists because KZ 6∈ ĎEff(Z), while D ∈ C, and the intersection is unique by
convexity of C. The injectivity of π follows directly from the definition of ∂+C′, and
π is also surjective, because by definition the cone C in contained in the cone over
the convex hull of KZ and the Ai, which is the same as the cone over the convex
hull of KZ and C′. In conclusion π is a homeomorphism, as expected. �
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Recall that the codimension of a face is taken relatively to the ambient space
N1(Z), so in particular if Fk ⊆ ∂+C we have k > 1.

By Remark 4.18, a face F1 of codimension 1 in ∂+C corresponds to a Mori fibre
space, or equivalently a rank 1 fibration (Lemma 3.3). More generally, we now
prove that inner codimension r faces in ∂+C correspond to rank r fibrations.

Proposition 4.25. Let Fr ⊆ ∂+C be an inner codimension r face. By Lemma 4.15,

we can write Fr = ĎAj∩ ĎAi with Aj a chamber of maximal dimension and Ai ⊆ ∂+C
the Mori chamber containing the interior of Fr. Then

(1) The associated morphism ϕji : Zj Zi is a rank r fibration.

(2) If Fs ⊆ ∂+C is an inner codimension s face and Fr ⊆ Fs, then the rank r
fibration associated to Fr from (1) factorises through the rank s fibration associated

to Fs.

Proof. (1) We check the assertions of Definition 3.1:
(RF2). By Lemma 4.15(iii), ϕji : Zj Zi is a morphism with relative Picard

rank equal to r, and dimZi < dimZj because Ai ⊆ ∂+C.
(RF4). This is Proposition 4.10(6).
(RF5). To show that −KZj

is ϕji-big, we take D ∈ ĎAj∩Ai. By Proposition 4.10,
we have D = KZ + ∆ for some ample divisor ∆, and ϕj∗D ∈ Nef(Zj) is ϕji-trivial.
By Lemma 4.6(3) ϕj is a semiample model of any element of Aj . So ϕj is a birational
contraction and ϕj∗KZ = KZj

, which we rewrite as −KZj
= ϕj∗∆ − ϕj∗D. Since

∆ is ample and ϕj is birational, the divisor ϕj∗∆ is big , which means we can write
it as a sum of an ample and an effective divisor. So −KZj

is the sum of a ϕji-ample
and an effective divisor and hence is ϕji-big by Lemma 2.1.

(RF1). We prove that Zj/Zi is a Mori dream space:
(MD1) and (MD2). By Proposition 4.10, Zj is Q-factorial terminal, Zi has

rational singularities and dimZj > dimZi. A general fibre of ϕji has rational
singularities by Lemma 2.15. By Remark 4.13 we can assume that (Z,∆), and also
(Zj , ϕj∗∆), are klt pairs. By Proposition 4.10(5) the divisor KZj

+ ϕj∗∆ = ϕj∗D
is ϕji-trivial. We have just seen that −KZj

is ϕji-big. Then it follows from Lemma
2.16(1) that a general fibre of ϕji is rationally connected.

(MD3). We show that the nef cone Nef(Zj/Zi) is generated by finitely many
semiample divisors.

We take Dj ∈ Nef(Zj) and set D = ϕ∗
jDj ∈ N1(Z). We choose D′ ∈ F̊r ⊆

Ai∩ ĎAj . By Remark 4.14, for t ≫ 0 we have D+ tD′ ∈ C. By Lemma 4.11(1)&(2),
we have D + tD′ ∈ ĎAj . Since ϕj∗D

′ is ϕji-trivial by Proposition 4.10(5)(i), we
get that ϕj∗(D + tD′) = Dj + tϕj∗D

′ is equivalent to Dj in Nef(Zj/Zi). Hence,
any class in Nef(Zj/Zi) can be represented by a divisor in ϕj∗ ĎAj . We conclude
that Nef(Zj/Zi) is generated by finitely many divisors of the form ϕj∗(KZ + ∆),
where KZ + ∆ runs over the vertices of a polytope generating the cone ĎAj , and the
ϕj∗(KZ + ∆) are semiample by Proposition 4.10(4).

(MD4). Let Dj ∈ IntMov(Zj), in particular Dj is big. Set D = ϕ∗
jDj and pick

D′ ∈ F̊r ⊆ Ai ∩ ĎAj . By Remark 4.14, for t ≫ 0 we have D̂ := D + tD′ ∈ C.

Replacing D by an arbitrary close class in C we can assume that D̂ = D+ tD′ ∈
Ak where Ak is of maximal dimension. We also replace Dj by ϕj∗D, which is
a small perturbation of the initial class hence still in IntMov(Zj). We keep the
same notation for simplicity. (Observe that after perturbation we lose the property
D = ϕ∗

jDj , but we will not need it). By finiteness of the chamber decomposition,
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Ak does not depend on the choice of the large real t, which also impliesD′ ∈ ĎAk∩Ai.
So we have Fji ⊆ Fki, hence a similar inclusion for the vector subspaces spanned by
these faces. By Lemma 4.15(iii) this implies that all divisors contracted by ϕj are

also contracted by ϕk, hence fk := ϕk ◦ ϕ−1
j : Zj Zk is a birational contraction.

As above Dj and D̂j := Dj + tϕj∗D
′ represent the same class in N1(Zj/Zi).

Moreover by Lemma 4.6(2) we have ϕj∗D
′ = ϕ∗

jiDi, and the pull-back of an ample

divisor being movable we have ϕj∗D
′ ∈ ĘMov(Zj). So we have D̂j ∈ IntMov(Zj),

and ϕj∗D̂ = D̂j with D̂ ∈ Ak.
We now check that the birational contraction fk : Zj Zk is the ample model

of D̂j . Since D̂ ∈ Ak, we already have D̂k := fk∗D̂j = ϕk∗D̂ ∈ Ample(Zk). Let
p : W Z, qj : W Zj and qk : W Zk be common resolutions of ϕj and ϕk
and

E := p∗D̂ − q∗
j D̂j , F := p∗D̂ − q∗

kD̂k

the qj-exceptional and qk-exceptional divisors respectively. By Proposition 4.10(4)
we have F > 0. (On the other hand E might not be effective). We write F = Fj+R
where Fj > 0 is qj-exceptional and R > 0 is qj -effective. Then we have

E − Fj = q∗
kD̂k − q∗

j D̂j +R

= nef − qj-trivial + qj-effective

= qj-nef + qj-effective.

The Negativity Lemma 2.2 gives Fj − E > 0, hence also q∗
j D̂j − q∗

kD̂k = F − E =

R + Fj − E > 0, which by Lemma 4.6(3) achieves the proof that fk is the ample

model of D̂j .

Since D̂j ∈ IntMov(Zj), its ample model fk is a pseudo-isomorphism. Finally

D̂j ∈ f∗
k (Ample(Zk/Zi)) where Zk is Q-factorial, and by taking closures we obtain

ĘMov(Zj/Zi) ⊆
⋃

f∗
l (Nef(Zl/Zi))

for some finite collection of pseudo-isomorphisms fl : Zj Zl over Zi to Q-factorial
varieties.

For the other inclusion, we note that for any pseudo-isomorphism fl : Zj Zl
over Zi, we have f∗

l Ample(Zl/Zi) ⊂ Mov(Zl/Zi) and the claim follows by taking
closures.

(RF3). Let Dj ∈ N1(Zj) be a divisor. We now show that the output of any
Dj-MMP from Zj over Zi can be obtained by running a KZ-MMP from Z. Let
D′ ∈ Fr ⊆ ĎAj . Then by Proposition 4.10(4), ϕj is a semiample model of D′, ϕi is
its ample model, and by Lemma 4.6(2) ϕj∗D

′ = ϕ∗
jiHi for some ample divisor Hi

on Zi. To run a Dj-MMP from Zj over Zi, we pick Hj ∈ Ample(Zj) and consider
all pseudo-effective convex combinations Dt := ε(tDj + (1 − t)Hj) +ϕ∗

ijHi for some
1 ≫ ε > 0. The set of the ϕ∗

jDt is a segment in a small neighborhood of D′ inside
C. Therefore, any intermediate variety in this Dj-MMP over Zi can be obtained by
running a KZ-MMP from Z. In particular the output of this MMP has the form
ProjH0(Zj , Dt0) = ProjH0(Z,ϕ∗

jDt0) for some t0 ∈ (0, 1), and by Proposition

4.10(3), this is a Q-factorial and terminal variety, as expected.
(2) (Analogous to [LZ17, Proposition 3.10(2)]): Let Ai,Ak ⊆ ∂+C be the cham-

bers containing the interior of Fr, Fs respectively. By Lemma 4.15(3) there exist
maximal chambers Aj and Al such that Fr = ĎAj ∩ ĎAi and Fs = ĎAl ∩ ĎAk. Since
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moreover Fr ⊆ Fs implies that ĎAl ∩ Ai 6= ∅, by Proposition 4.10(5) we have a
commutative diagram induced by the maps from Z:

Zj Zl

Zi Zk

We want to prove that the birational map Zj Zl is a birational contraction.
Let D ∈ F̊r ⊆ Ai. There exists an ample class ∆ ∈ C and t1 > 0 such that

D = (1 − t1)∆ + t1KZ . For t1 > t0 > 0 sufficiently close to t0, any chamber of
maximal dimension Aj0

such that (1 − t0)∆ + t0KZ ∈ Aj0
satisfies Fr ⊂ ĚAj0

. Now
there exists a small perturbation ∆′ of ∆ such that the segment [∆′,KZ ] meets
successively a chamber Aj0

and then the chamber Al. Indeed, t1 > t0 and the
ordering is preserved under a small perturbation. Up to replacing j by this j0,
by Remark 4.19 this segment corresponds to a KZ-MMP with scaling of ∆′, and
provides the expected birational contraction from Zj to Zl. �
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Figure 5. rank r fibrations in Example 4.17.

Example 4.26. On Figure 5 we label the boundary faces from Example 4.17 with
their corresponding rank r fibration, as given by Proposition 4.25 (r = 1 or 2 here).
We also indicate the images of ample models corresponding to chambers of maximal
dimension.

Corollary 4.27. If the intersection F1
i ∩ F1

j of non-big codimension 1 faces has

codimension 2, then there is a Sarkisov link between the corresponding Mori fibre

spaces.

Proof. By Proposition 4.25 there is a rank 2 fibration corresponding to the codimen-
sion 2 face F2 := F1

i ∩ F1
j that factorises through the rank 1 fibrations associated

to F1
i and F1

j . This is exactly the definition of a Sarkisov link (Definition 3.8). �

Corollary 4.28. Let F3 be a face in ∂+C of codimension 3 and T/B be the as-

sociated rank 3 fibration, as given in Proposition 4.25. Then the elementary rela-

tion associated to T/B corresponds to the finite collection of codimension 1 faces

F1
1 , . . . ,F

1
s containing F3, and ordered such that F1

j and F1
j+1 share a codimension

2 face for all j (where indexes are taken modulo s).
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Proof. This is just a rephrasing of Proposition 4.3, using Proposition 4.25 to asso-
ciate a rank 1 or 2 fibration dominated by T/B to each codimension 1 or 2 face
containing F3, and using Corollary 4.27 to associate a Sarkisov link to each pair of
codimension 1 faces sharing a common codimension 2 face. �

Let X/B a Mori fibre space. We denote by BirMori(X) the groupoid of birational
maps between Mori fibre spaces birational to X . The group of birational selfmaps
Bir(X) is a subgroupoid of BirMori(X). The motivation for introducing the notion
of elementary relation is the following result. The first part is a reformulation of
[HM13, Theorem 1.1]. The second part is strongly inspired by [Kal13, Theorem
1.3], observe however that our notion of elementary relation is more restrictive.

In the statement we use the formalism of presentations by generators and rela-
tions for groupoids. This is very similar to the more familiar setting of groups: we
have natural notions of a free groupoid, and of a normal subgroupoid generated by
a set of elements. We refer to [Bro06, §8.2 and 8.3] for details.

Theorem 4.29. Let X/B be a terminal Mori fibre space.

(1) The groupoid BirMori(X) is generated by Sarkisov links and automorphisms.

(2) Any relation between Sarkisov links in BirMori(X) is generated by elemen-

tary relations.

Proof. (1) is the main result of [HM13]. The idea of the proof is to take Z a resolu-
tion of a given birational map ϕ : X1/B1 X2/B2, and to consider the cone C with
a choice of ample divisors as given by Proposition 4.23 (applied with t = 2, θ1 = ϕ,
θ2 = ϕ−1). Then one takes a general 2-dimensional affine slice of C that passes
through the codimension 1 faces associated to X1/B1 and X2/B2. The intersec-
tion of this slice with ∂+C is a polygonal path corresponding to successive pairwise
neighbour codimension 1 faces, and by Corollary 4.27 this gives a factorisation of
ϕ into Sarkisov links.

(2). The proof is essentially the same as in [LZ17, Proposition 3.15], we repeat
the argument for the convenience of the reader.

Let
X0/B0

χ1 X1/B1
χ2 · · ·

χt Xt/Bt

be a relation between t Sarkisov links, meaning that χt ◦ · · · ◦ χ1 is the identity
on X0 = Xt. We take a smooth resolution Z dominating all the Xi/Bi, and
consider the cone C ⊂ N1(Z) constructed from a choice of ample divisors as in
Proposition 4.23. We may assume ρ(Z) > 4 (otherwise we simply blow-up some
points on Z), so that by Lemma 4.24 the non-big boundary ∂+C is a cone over a
polyhedral complex S homeomorphic to a disc or a sphere of dimension ρ(Z)−2 > 2.
In particular, the section S is simply connected. Now we construct a 2-dimensional
simplicial complex B embedded in S as follows. Vertices are the barycenters p(Fk)
of codimension k faces Fk for k = 1, 2 or 3. We call k the type of the vertex.
We put an edge between p(F j) and p(Fk) if F j is a proper face of Fk, and a 2-
simplex for each sequence F3 ⊂ F2 ⊂ F1. The complex B is homeomorphic to the
barycentric subdivision of the 2-skeleton of the dual cell complex of S. It follows
that B is simply connected (recall that the 2-skeleton of a simply connected complex
is again simply connected, see e.g. [Hat02, Corollary 4.12]). Then we restrict to the
subcomplex I ⊆ B corresponding to inner faces, which are the ones that intersect
the relative interior of S. The simplicial complex I is a deformation retract of the
interior of B, so I again is simply connected. By Proposition 4.25 we can associate
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a rank r fibration to each vertex of type r, and two vertices are connected by an
edge if and only if the corresponding fibrations factorise through each other. By
Corollary 4.28, around each vertex of type 3 there is a unique disc whose boundary
loop encodes an elementary relation. The complex I is a deformation retract of
B (hence also simply connected) and its 2-dimensional components are the union
of these discs. The initial relation corresponds to a loop in I that only passes
through vertices of types 1 and 2. We can realise the homotopy of this loop to the
constant loop inside the simply connected complex I by using these elementary
relations, and this translates as a factorisation of the initial relation as a product
of conjugates of elementary relations. �

The whole construction leading to the previous theorem can be made in a relative
setting, that is, where all involved varieties admit a morphism to a fixed base variety
B. In fact the paper [BCHM10] on which relies [HM13] is written with this level of
generality. In the particular case where the base B has dimension n− 1, we obtain
the following statement, slightly more precise than Theorem 4.29(1).

X = X0 X1 · · · Xt−1 Xt = Y

B0 = B B1 · · · Bt−1 Bt = B

B

ϕ

ηX

χ1 χ2 χt−1 χt

ηY

id id

Figure 6. The diagram of Lemma 4.30

Lemma 4.30. Let ηX : X B and ηY : Y B be two conic bundles over the

same base. Then any birational map ϕ : X Y over B decomposes into a sequence

of Sarkisov links of conic bundles over B. More precisely, we have a commutative

diagram as in Figure 6, such that for each i = 1, . . . , t, Bi/B is a birational mor-

phism, Xi/Bi is a conic bundle and χi is a Sarkisov link.

4.D. Examples of elementary relations. In this section we give examples of
elementary relations, mostly in dimension n = 3.

Example 4.31. Let X be a Fano variety with Q-factorial terminal singularities
and Picard rank 3. Then X/pt is a rank 3 fibration (Example 3.2(1)), hence there
is an associated elementary relation. In the case where X is smooth of dimension 3,
these relations were studied systematically by Kaloghiros, using a classification
result by Mori-Mukai: see [Kal13, Example 4.9 and Figures 3,4 & 5]. With respect
to the setting of §4.C, in these examples we have Z = X , N1(Z) ≃ R3 and ∂+C is
the cone over a complex homeomorphic to a circle, which encodes the elementary
relation. Observe that the simple 2-dimensional Example 4.26 also belongs to this
family of examples.

Example 4.32. Let L ∪ L′ ⊂ P3 be two secant lines, and P the plane containing
them. Let X P3 be the blow-up of L with exceptional divisor E, let ℓ ⊂ E be
the fibre intersecting the strict transform of L′, and let T X be the blow-up of
L′, with exceptional divisor E′.
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From T we can flop ℓ to get a 3-fold T ′, which is obtained by the same two
blow-ups in the reverse order: first the blow-up X ′ P3 of L′ ⊂ P3 and then the
blow-up T ′ X ′ of (the strict transform of) L on X ′.

From T or T ′ one can contract the strict transform of P onto a smooth point,
obtaining two 3-folds Y and Y ′ also related by the flop of ℓ.

The elementary relation associated to the rank 3 fibration T/pt (or equivalently
to T ′/pt), is depicted on Figure 7. There are five links in the relation, where χ1

has type I, χ2 and χ4 have type II, χ3 has type IV, and χ5 has type III.

pt

P1

P3

T T ′

X X ′

Y Y ′

E
E′

P

E′

E

P

flop

χ1

χ2

χ3

flop

χ4

χ5

Figure 7. The elementary relation from Example 4.32.

Example 4.33. Consider the blow-up F1 P2 of a point, with exceptional curve
Γ ⊂ F1. In P1 × F1, write D = P1 × Γ, and C = {0} × Γ. Let T be the blow-up
of C, with exceptional divisor E. Then T/P2 is a rank 3 fibration, and we now
describe the associated elementary relation (see Figure 8). We let the reader verify
the following assertions (since all varieties are toric, one can for instance use the
associated fans).

First the two-rays game T/F1 gives a link of type II

χ1 : P1 × F1 P1 ⊠ F1,

where P1 ⊠ F1 denotes a Mori fibre space over F1 that is a non-trivial but locally
trivial P1-bundle. The link χ1 involves the pair D ∪ E of divisors of type II for
T/F1.

The divisor D on T can be contracted in two ways to a curve P1, that is, T
dominates a flop between P1 ⊠ F1 and another variety X . This variety X admits
a divisorial contraction to P1 × P2, with exceptional divisor the strict transform of
E, which here is a divisor of type I for X/P2. This corresponds to a link of type III

χ2 : P1 ⊠ F1 P1 × P2.

Finally the two-rays game P1 ×F1/P2, which factorises via F1 and P1 ×P2, gives
a link of type I

χ3 : P1 × P2 P1 × F1.



52 JÉRÉMY BLANC, STÉPHANE LAMY & SUSANNA ZIMMERMANN

In conclusion we get an elementary relation χ3 ◦ χ2 ◦ χ1 = id.
In contrast with Lemma 3.17, observe that D and E are divisors of type II for

T/F1, but divisors of type I for T/P2.

T

P1
× F1

P1
⊠ F1 X

P2F1 P1
× P2

EI/EII

DII

DI

DI

EI

χ1

χ2

χ3

flop

Figure 8. The elementary relation from Example 4.33. We indi-
cate the type of contracted divisors in index.

Example 4.34 (Example 3.15 over B = P2). Consider P1 × P2, and let Γ ⊂ P2 be
a line, D ≃ P1 × Γ the pull-back of Γ in P1 × P2, Γ′ = {t} × Γ ⊂ D a section and
p ∈ D r Γ′ a point. Let T P1 × P2 be the blow-up of Γ′ and p, with respective
exceptional divisors D′ and E, and denote again D the strict transform of P1 × Γ
in T . Then the induced morphism η : T P2 is a rank 3 fibration that gives rise
to the relation on Figure 9.

The figure was computed using toric fans in Z3, starting from the standard fan
of P1 × P2 with primitive vectors (1, 0, 0), (0, 1, 0), (−1,−1, 0), (0, 0, 1), (0, 0,−1),
and with the following choices

D : (1, 0, 0), D′ : (1, 0, 1), E : (1, 1,−1).

The varieties T ′ and W ′ both have one terminal singularity, all other varieties
are smooth. There are two distinct Francia flips from T ′, which are T ′ T and
T ′ T ′′. Observe also that the link χ1 is exactly Example 3.11(2).

Example 4.35. The article [AZ17] contains a beautiful example of an elementary
relation involving five Sarkisov links. In Figure 10 we reproduce the diagram from
[AZ17, §5.2], and we refer to their paper for a detailed description of the varieties.
The Sarkisov links χ1 and χ3 have type II, χ2 has type I, χ4 has type IV and χ5

type III. The relation is associated to the rank 3 fibration Z ′
1/pt, or equivalently

to Z ′
2/pt. In fact other equivalent choices of varieties of Picard rank 3 are omitted

from the picture (dominating respectively Y ′
1 , X ′

3, X ′
1 and X ′′

1 ). The morphisms
from Z, Z̄ and Z̃ to P1 are fibrations in cubic surfaces. Observe that the top rows of
the Sarkisov diagrams display non trivial pseudo-isomorphisms, involving flips and
flops. Note that each pseudo-isomorphism labeled “n flops” really corresponds to a
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P2 T

T ′

T ′′

X

W ′

W

P1
⊠ F1

Y

F1

P1
× P2

P1
⊠ P2 E

D

D′

D

D′

D′

D

E

E

flip

flip flip

flop

χ1

χ2

χ3

χ4

Figure 9. Elementary relation from Example 4.34.

pt P1

Y

X

Z̄

Z

Y ′

1

X ′

3

X ′

1

X ′′

1

X ′

2

Z̃

X ′′

2
Z′

1

Z′

211 flops

flip

9 flops

7 flops

flip

6 flops

χ1

χ2

χ3

≃ χ4

χ5

Figure 10. Elementary relation from Example 4.35.

single flop with n components (which by definition are all numerically proportional),
in accordance with Remark 3.10.

5. Elementary relations involving Sarkisov links of conic bundles of
type II

This section is devoted to the study of elementary relations involving Sarkisov
links of conic bundles of type II that are complicated enough, meaning their covering
gonality is large. We give some restriction on such relations that will allow us to
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prove Theorem D. Firstly in Proposition 5.3 we cover the case of relations over
a base of dimension 6 n − 2, where n is the dimension of the Mori fibre spaces,
using the BAB conjecture and working with Sarkisov links of large enough covering
gonality. Secondly, the case of relations over a base of dimension n− 1 is handled
in Proposition 5.5, using only the assumption that the covering gonality is > 1.

5.A. A consequence of the BAB conjecture. The following is a consequence
of the BAB conjecture, which was recently established in arbitrary dimension by
C. Birkar.

Proposition 5.1. Let n be an integer, and let Q be the set of weak Fano terminal

varieties of dimension n. There are integers d, l,m > 1, depending only on n, such

that for each X ∈ Q the following hold:

(1) dim(H0(−mKX)) 6 l;
(2) The linear system |−mKX | is base-point free;

(3) The morphism ϕ : X
|−mKX | Pdim(H0(−mKX))−1 is birational onto its image

and contracts only curves C ⊆ X with C ·KX = 0;

(4) degϕ(X) 6 d.

Proof. By [Bir16b, Theorem 1.1], varieties in Q form a bounded family (here we use
the observation that for a given X ∈ Q, the pair (X, ∅) is ε-lc for any 0 < ε < 1). In
particular, by [Bir16a, Lemma 2.24], the Cartier index of such varieties is uniformly
bounded. Then [Kol93, Theorem 1.1] gives the existence of m = m(n) such that
|−mKX | is base-point free for each X ∈ Q. By [Bir16a, Theorem 1.2], we can
increase m if needed, and assume that the associated morphism

ϕ : X Pdim(H0(−mKX))−1|−mKX |

is birational onto its image. As it is a morphism, this implies that it contracts only
curves C ⊆ X with C · KX = 0. Finally, since Q is a bounded family, the two
integers dim(H0(−mKX)) and degϕ(X) are bounded. �

Corollary 5.2. Let π : Y X be the blow-up of a reduced but not necessarily

irreducible codimension 2 subvariety Γ ⊂ X, Y Ŷ a pseudo-isomorphism, and

assume that both X and Ŷ are weak Fano terminal varieties of dimension n > 3,

whose loci covered by curves with trivial intersection against the canonical divisor

has codimension at least 2. Let ϕ be the birational morphism associated to the

linear system |−mKX |, with m given by Proposition 5.1, and assume that Γ is not

contained in the exceptional locus Ex(ϕ). Then through any point of Γ r Ex(ϕ)
there is an irreducible curve C ⊆ Γ with gon(C) 6 d, where d is the integer from

Proposition 5.1.

Proof. We choose the integers d, l,m > 1 associated to the dimension n in Proposi-
tion 5.1. We write a = dim(H0(−mKX)) − 1 and b = dim(H0(−mKY )) − 1. Using

the pseudo-isomorphism Y Ŷ , we also have b = dim(H0(−mKŶ )) − 1. By
Proposition 5.1 the morphisms given by the linear systems |−mKX | and |−mKŶ |
are birational onto their images and are moreover pseudo-isomorphisms onto their
images, because of the assumption that the locus covered by curves with non-
positive intersection against the canonical divisor has codimension at least 2.

Since Y X is the blow-up of Γ, each effective divisor equivalent to −mKY is
the strict transform of an effective divisor equivalent to −mKX passing through Γ
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(with some multiplicity). In particular, we have b 6 a and obtain a commutative
diagram

X Y Ŷ

Pa Pb
|−mKX |ϕ |−mKY | |−mK

Ŷ
|

π

where π is a linear projection away from a linear subspace L ≃ Pr of Pa containing
the image of Γ. Recall that we write ϕ : X Pa the morphism given by |−mKX |.
The variety ϕ(X) ⊆ Pa has dimension n and degree 6 d (Proposition 5.1), and is
not contained in a hyperplane section. Since by assumption Γ ( Ex(ϕ), we get that
ϕ induces a birational morphism from Γ to ϕ(Γ).

We now prove that there is no (irreducible) variety S ⊆ ϕ(X) ∩ L of dimension
n − 1 (recall that ϕ(Γ) ⊆ ϕ(X) ∩ L has dimension n − 2). Indeed, otherwise the
strict transform of S on X would be a variety SX ⊂ X birational to S, so its strict
transform in Ŷ , and in Pb is again birational to S (as the birational map from
Y to its image in Pb is a pseudo-isomorphism). The linear system of the rational
map X Pb is obtained from the linear system associated to X Pa by taking
the subsystem associated to hyperplanes through L. Hence, if S ⊆ L, then every
element of the linear system |−mKY | contains the strict transform SY of S in Ŷ .
This is impossible, as |−mKŶ | is base-point free (Proposition 5.1).

Now, the fact that ϕ(X) ∩ L ⊆ Pa does not contain any variety of dimension
> n−1 implies, by Bézout Theorem, that all its irreducible components of dimension
n − 2 have degree 6 d. Therefore, each of the irreducible components of ϕ(Γ)
(birational to Γ) has degree 6 d.

We are now able to finish the proof, by showing that through any point q ∈
Γ r Ex(ϕ) there is an irreducible curve C ⊆ Γ with gon(C) 6 d. Since Γ ϕ(Γ)
is a local isomorphism at q, it suffices to take a general linear projection from Pa

to a linear subspace of dimension n− 2, and to take C equal to the preimage of a
line through the image of ϕ(q). �

Proposition 5.3. For each dimension n > 3, there exists an integer dn > 1 depend-

ing only on n such that the following holds. If χ is a Sarkisov link of conic bundles

of type II that arises in an elementary relation induced by rank 3 fibration T/B with

dim(T ) = n and dim(B) 6 n− 2, then cov. gon(χ) 6 max{dn, 8 conn. gon(T )}.

Proof. We choose dn > 8 to be bigger than the integers d given by Proposition 5.1
for the dimensions 3, . . . , n, and prove the result for this choice of dn.

The Sarkisov link χ, which is dominated by T/B by assumption, has the form

Y1 T Y2

X1 X2

B̃

B

χ

where X1, X2, Y1, Y2 have dimension n and B̃ has dimension n− 1. Since dimB 6

n− 2, we have ρ(B̃/B) > 1, and on the other hand ρ(Yi/B) 6 3, for i = 1, 2, which
implies that ρ(B̃/B) = 1, and that the birational contractions T Y1, T Y2

are pseudo-isomorphisms. Moreover, Y1 X1 contracts a divisor E onto a variety
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Γ1 ⊂ X1 of dimension n − 2, birational to its image Γ̃ ⊂ B̃ via the morphism
X1 B̃ (Lemma 3.23). We need to check that cov. gon(Γ1) = cov. gon(Γ̃) 6 dn,
where dn is chosen as above. We may then assume that cov. gon(Γ̃) > 1.

Now, B̃/B is a klt Mori fibre space by Lemma 3.13 andX1/B is a rank 2 fibration
by Lemma 3.4(1). By Lemma 3.5, the rank 2 fibration X1/B is pseudo-isomorphic,
via a sequence of log-flips overB, to another rank 2 fibration X/B such that −KX is
relatively nef and big over B. We then use Lemma 2.18 to obtain a sequence of log-
flips Y1 Y over B such that the induced map Y X is a divisorial contraction.
By Lemma 3.5 again, we get a sequence of log-flips over B from Y/B to another

rank 3 fibration Ŷ /B such that −KŶ is relatively nef and big over B.

Y1 Y Ŷ

X1 X

B

As cov. gon(Γ̃) > 1, by Lemma 2.16(3) the codimension 2 subvariety Γ1 ⊂ X1 is
not contained in the base-locus of the pseudo-isomorphism X1 X . So the image
Γ ⊂ X of Γ1 is birational to Γ1, and it suffices to show that cov. gon(Γ) 6 dn.
Observe that Y X is the blow-up of Γ (Lemma 2.14).

We take a general point p ∈ B, and consider the fibres over p in X , Y and Ŷ
respectively, that we denote by Xp, Yp and Ŷp, and which are varieties of dimension

n0 = n− dimB ∈ {2, . . . , n}.

By Corollary 3.6 the two varieties Xp and Ŷp are weak Fano terminal varieties.

Moreover, Yp and Ŷp are pseudo-isomorphic, as Y Ŷ is a sequence of log-flips
over B.

Observe that Γ̃ ⊂ B̃ is a hypersurface and that Γ̃ B is surjective. In-
deed, otherwise Γ̃ would be the preimage of a divisor on B, and we would have
cov. gon(Γ̃) = 1, as the preimage of each point of B̃ B is covered by rational
curves (Lemma 3.13), in contradiction with our assumption. This implies that the
morphism Γ B induced by the restriction of X/B is again surjective.

We then denote by Γp ⊂ Xp the codimension 2 subscheme Γp = Γ ∩ Xp, which
is the fibre of Γ B over p, and which is not necessarily irreducible. Observe that
Yp Xp is the blow-up of Γp, as Y X is the blow-up of Γ (as explained before)
and because the fibre over p is transverse to Γ (Lemma 3.23(4)).

Suppose first that n0 = 2, which corresponds to dim(Γ) = dim(B). In this case,

Xp and Yp ≃ Ŷp are smooth del Pezzo surfaces, because by Corollary 3.6 the locus
covered by curves trivial against the canonical divisor has codimension 2, hence is
empty in the case n0 = 2. Moreover Γp is a disjoint union of r points, where r
is the degree of the field extension C(B) ⊆ C(Γ1). As Yp is obtained from Xp by
blowing-up Γp, the degree of the field extension is at most 8, which implies that
cov. gon(Γ) 6 8 · cov. gon(B) 6 8 conn. gon(T ) (Lemma 2.25).

We now consider the case n0 > 3, which implies that Γp has dimension n0 −
2 > 1. We apply Corollary 5.2 to the blow-up Yp Xp of Γp and the pseudo-

isomorphism Yp Ŷp. The fact that the loci on Xp or Ŷp covered by curves with
trivial intersection against the canonical divisor has codimension at least 2 follows
from Corollary 3.6. We obtain that for a general p, ΓprEx(ϕ) is covered by curves
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of gonality at most dn. In conclusion, we have found an open set U = ΓrEx(ϕ) ⊆ Γ
covered by curves of gonality at most dn, as expected. �

Remark 5.4. It is not clear to us whether Proposition 5.3 could also hold for a
link χ of type II between arbitrary Mori fibre spaces.

For instance in the case of threefolds, if χ is a link of type II between del Pezzo
fibrations that starts with the blow-up a curve of genus g contained in one fibre,
we suspect that g cannot be arbitrary large but we are not aware of any bound in
the literature.

5.B. Some elementary relations of length 4.

Proposition 5.5. Let χ1 be a Sarkisov link of conic bundles of type II with

cov. gon(χ1) > 1. Let T/B be a rank 3 fibration with dimB = dim T − 1, which

factorises through the Sarkisov link χ1. Then, the elementary relation associated to

T/B has the form

χ4 ◦ χ3 ◦ χ2 ◦ χ1 = id,

where χ3 is a Sarkisov link of conic bundles of type II that is equivalent to χ1.

Proof. The Sarkisov link χ1 is given by a diagram

Y1 Y2

X1 X2

B̂

π1 π2

χ1

where X1, X2, Y1, Y2 are varieties of dimension n, and dim B̂ = n − 1. Denote by
E1 ⊂ Y1 and E2 ⊂ Y2 the respective exceptional divisors of the divisorial con-
tractions π1 and π2. We denote again by E1, E2 ⊂ T the strict transforms of
these divisors, under the birational contractions T Y1 and T Y2. Then by
Lemma 3.23(2), E1 ∪E2 is a pair of divisors of type II for Y1/B̂, hence also for T/B
by Lemma 3.17. By Proposition 3.16(5), we are in one of the following mutually
exclusive three cases:

(1) B is Q-factorial, and there exists a divisor G of type I for T/B.
(2) B is not Q-factorial.
(3) B is Q-factorial, and there exists another pair F1 ∪ F2 of divisors of type II

for T/B.

We denote {Xi/Bi} the finite collection of all rank 1 fibrations dominated by
T/B. In each case we are going to show that this collection has cardinal 4.

Suppose first that (1) holds. By Proposition 3.16(1)(4) and Lemma 3.18, we can
obtain such an Xi/Bi by a birational contraction contracting one the following four
sets of divisors: {E1}, {E2}, {E1, G} or {E2, G}. Moreover Xi/Bi is determined
up to isomorphism by such a choice of contracted divisors:

• If T Xi contracts {E1, G} or {E2, G}, then ρ(Xi) = ρ(T ) − 2 which implies
ρ(Bi/B) = 0, that is, Bi B is an isomorphism. Then Xi is uniquely determined
by Corollary 2.20.

• If T Xi contracts {E1} or {E2}, then ρ(Bi/B) = 1, and Bi B is a
birational contraction contracting the image of the divisor G. Then such a Bi is
uniquely determined by Corollary 2.21.



58 JÉRÉMY BLANC, STÉPHANE LAMY & SUSANNA ZIMMERMANN

Y1

Y2

T ′

3

T3

T4

T ′

4

X1

X2
X3

X4

Y ′

3

Y3

Y4

Y ′

4

BB̂

E1

E1

E2

E2

G

G

G

G

E2

E1

χ1

χ2

χ3

χ4

Y1

Y2 Y3

Y4

X1

X2 X3

X4

BB̂ B̂′

E1

E2 E2

E1

χ1

χ2

χ3

χ4

Y ′

1

T ′

1

Y1

T1

Y2

T2

Y ′

2

T ′

2

Y ′

3

T ′

3

Y3

T3

Y4

T4

Y ′

4

T ′

4

B

X1

X2 X3

X4

χ1

χ2

χ3

χ4

E1

E2

F1 F2

E2

E1

F2F1
F1

F1

E2 E2

F2

F2

E1E1

Figure 11. The elementary relation associated to T/B in
cases (1), (2) and (3) of the proof of Proposition 5.5. Varieties
are organized in circles according to their Picard rank over B.

In conclusion the relation given by Proposition 4.3 has the form

χ4 ◦ χ3 ◦ χ2 ◦ χ1 = id,

and more precisely, up to a cyclic permutation exchanging the role of χ1 and χ3,
we have a commutative diagram as in Figure 11, top left, where χ2 and χ4 have
respectively type III and I, and χ1 and χ3 are equivalent Sarkisov links of type II.

Now consider Case (2). As B̂ is Q-factorial (Proposition 2.11), we have B̂ 6= B,

hence ρ(B̂/B) = 1 and the morphism B̂ B is a small contraction. By uniqueness
of log-flip, there are exactly two small contractions from a Q-factorial variety to
B. Denote B̂′ B the other one. Then for each Xi/Bi, we have Bi ≃ B̂ or B̂′,
and ρ(Xi/B) = 2. Hence the birational contraction T Xi contracts exactly one
divisor, which must be E1 or E2. Again this gives four possibilities. The actual
existence of X3/B̂

′ and X4/B̂
′ arises from the two-rays games X1/B and X2/B.
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We get a relation as in Figure 11, top right, with χ1, χ3 of type II and χ2, χ4 of
type IV.

Finally consider Case (3). Then by Proposition 3.16(1)(4), each birational con-
traction T Xi contracts one divisor among E1 ∪ E2, and another one among
F1 ∪ F2. Again this gives four possibilities. In each case ρ(Bi/B) = 0 hence Bi
is isomorphic to B, and then Corollary 2.20 says that Xi is determined up to iso-
morphism by such a choice. We obtain a relation with four links of type II, as on
Figure 11, bottom. �

Remark 5.6. Example 4.33 illustrates why the assumption on the covering gonality
is necessary in Proposition 5.5.

5.C. Proof of Theorem D. In order to prove Theorem D, we use the generators
and relations of BirMori(X) which are given in Theorem 4.29. The key results are
then Propositions 5.3 and 5.5.

Proof of Theorem D. We choose the integer d associated to the dimension n by
Proposition 5.3, and set M = max{d, 8 conn. gon(X)}. By Theorem 4.29(1), the
groupoid BirMori(X) is generated by Sarkisov links and automorphisms of Mori
fibre spaces. By Theorem 4.29(2), the relations are generated by elementary rela-
tions, so it suffices to show that every elementary relation is sent to the neutral
element in the group

˚
C∈CB(X)

(

⊕
M(C)

Z/2

)

.

Let χt ◦ · · · ◦ χ1 = id be an elementary relation, coming from a rank 3 fibration
T/B. We may assume that one of the χi is a Sarkisov link of conic bundles of type
II with cov. gon(χi) > M , otherwise the relation is sent onto the neutral element as
all χi are sent to the neutral element. We may moreover conjugate the relation and
assume that χ1 is a Sarkisov link of conic bundles of type II with cov. gon(χ1) > M .
By Proposition 5.3, we have dim(B) = n − 1. Then, Proposition 5.5 implies that
t = 4 and that χ1 and χ3 are equivalent Sarkisov links of conic bundles of type II.
Applying the same argument to the relation χ1 ◦χ4 ◦χ3 ◦χ2 = id we either find that
both χ2 and χ4 are sent to the neutral element or are equivalent Sarkisov links of
conic bundles of type II (again by Proposition 5.5). Moreover, all the conic bundles
involved in this relation are equivalent. This proves the existence of the groupoid
homomorphism.

The fact that it restricts to a group homomorphism from Bir(X) is immediate,
and the fact that it restricts as a group homomorphism

Bir(X/B) ⊕
M(X/B)

Z/2

follows from Lemma 4.30. �

6. Image of the group homomorphism given by Theorem D

In this section, we study the image of Bir(X) under the group homomorphism
given by Theorem D, and more precisely the image of Bir(X/B) ⊕M(X/B) Z/2
for some conic bundles X/B. To simplify the notation, we will identify an equiv-
alence class of marked conic bundles in M(X/B) with the associated generator of
Z/2. We can then speak about sums of elements of M(X/B), which we see in
⊕M(X/B) Z/2, twice the same class being equal to zero.
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6.A. A criterion.

Definition 6.1. Let (X/B,Γ) be a marked conic bundle, and ϕ : X/B Y/B a
birational map over B between conic bundles. For a general point p ∈ Γ, and an
irreducible curve C ⊆ B transverse to Γ at p, let b ∈ N be the number of base-
points of the birational surface map η−1

X (C) η−1
Y (C) induced by ϕ that are equal

or infinitely near to a point of the fibre of p. We call the class b̄ ∈ Z/2 the parity

of ϕ along Γ.

The following lemma shows that this definition does not depend on the choice
of p or C. We shall use it to compute the image of the group homomorphism of
Theorem D by studying locally a birational map near a hypersurface Γ of the base.

Lemma 6.2. Let ηX : X B and ηY : Y B be two conic bundles, ϕ : X Y
a birational map over B, and Γ ⊂ B an irreducible hypersurface not contained in

the discriminant locus of X/B.

For any decomposition ϕ = χt ◦ · · · ◦χ1 as in Lemma 4.30, the parity of ϕ along

Γ is equal to the parity of the number of indexes i ∈ {1, . . . , t} such that χi is a

Sarkisov link of type II whose marking Γi ⊂ Bi is sent to Γ via Bi/B.

Proof. Fix a decomposition ϕ = χt ◦ · · · ◦ χ1 as in Lemma 4.30, a general point
p ∈ Γ and an irreducible curve C ⊆ B transverse to Γ at p. In particular p is a
smooth point of both Γ and C. For i = 0, . . . , t, we denote by ηi : Xi B the
morphism given by the composition Xi Bi B.

It suffices to prove, for i = 0, . . . , t, that the following holds:

(a) The morphism η−1
i (C) C has general fibre P1, and the fibre over p is P1

(this means that Γ is not in the discriminant locus).
(b) If i > 1, then χi ◦ · · · ◦ χ1 induces a birational map between surfaces over C

η−1
0 (C) = η−1

X (C) η−1
i (C)

and the number of base-points that are equal or infinitely near to a point of the
fibre of p has the same parity as the number of integers j ∈ {1, . . . , i} such that χj
is a Sarkisov link of type II with marking Γj ⊂ Bj , sent to Γ via Bj/B.

We proceed by induction on i. If i = 0, (a) follows from the assumption that Γ
is not contained in the discriminant locus of X/B, and (b) is clear.

For i > 1, the birational map χi induces a birational map over C

θi : η
−1
i−1(C) η−1

i (C).

If χi is a Sarkisov link of type II with marking Γi ⊂ Bi, sent to Γ via Bi/B, it
follows from the description of χi given in Lemma 3.23 that the restriction θi is the
composition of the blow-up of a point on the fibre of p, the contraction of the strict
transform of the fibre and of a birational map that is an isomorphism over an open
subset of C that contains the fibre of p. This achieves the proof of (a) and (b) in
this case, using the induction hypothesis.

If χi is a Sarkisov link of type II with a marking not sent to Γ or if χi is a
Sarkisov link of type I or III, then the restriction θi of χi is an isomorphism over an
open subset of C that contains the fibre of p. This follows again from Lemma 3.23
if the Sarkisov link is of type II and from Corollary 3.20 if it is of type I or III. As
before, this gives the result by applying the induction hypothesis. �
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Corollary 6.3. Let X/B be a conic bundle, where dim(X) > 3, and ϕ ∈ Bir(X/B).
The image of ϕ under the group homomorphism

Bir(X/B) ⊕
M(X/B)

Z/2

of Theorem D is equal to the sum of equivalence classes of marked conic bundles

(X/B,Γ) with cov. gon(Γ) > max{d, 8 conn. gon(X)} such that the parity of ϕ along

Γ is odd.

Proof. Set M = max{d, 8 conn. gon(X)}. Using Lemma 4.30, we decompose ϕ as
ϕ = χt ◦ · · · ◦ χ1 where each χi is a Sarkisov link of conic bundles from Xi−1/Bi−1

to Xi/Bi. Denote by J ⊆ {1, . . . , t} the subset of indexes i such that the Sarkisov
link χi is of type II and satisfies cov. gon(χi) > M . By definition of the group
homomorphism

Bir(X/B) ⊕
M(X/B)

Z/2

of Theorem D, the image of ϕ is the sum of the equivalence classes of marked conic
bundles of χi where i runs over J . For each i ∈ J , the marked conic bundle of χi is
equal to (Xi/Bi, Γ̂i) for some irreducible hypersurface Γ̂i ⊂ Bi with cov. gon(Γ̂i) >

M . Hence, (Xi/Bi, Γ̂i) is equivalent to (X/B,Γi), where Γi ⊂ B is the image of

Γ̂i ⊂ Bi via Bi/B. This implies that the image of ϕ is the sum of the classes of
(X/B,Γi), where i runs over J .

By Lemma 6.2, this sum is equal to the sum of equivalence classes of marked
conic bundles (X/B,Γ) with cov. gon(Γ) > M and such that the parity of ϕ along
Γ is odd. �

6.B. The case of trivial conic bundles and the proof of Theorem A. Given
a variety B, let X = P1 ×B, and X/B the second projection. The group Bir(X/B)
is canonically isomorphic to PGL2(C(B)), via the action

PGL2(C(B)) ×X X
((

a(t) b(t)
c(t) d(t)

)

, ([u : v], t)

)

([a(t)u + b(t)v : c(t)u+ d(t)v], t).

For B = Pn−1, the group Bir(X/B) corresponds, via a birational map X Pn

sending the fibres of X/B to lines through a point p ∈ Pn, to the subgroup of
the Jonquières group associated to p consisting of birational maps of Pn that pre-
serves a general line through p (in general a Jonquières element permutes such
lines). Hence, Bir(X/B) corresponds to the factor PGL2(C(x2, . . . , xn)) of the
group PGL2(C(x2, . . . , xn)) ⋊ Bir(Pn−1) ⊆ Bir(Pn) described in §1.C.

For B general, we obtain many different varieties X = P1 × B. It can also be
that X is rational even if B is not, but then the conic bundle X/B is not equivalent
to the trivial one Pn × P1/Pn.

Lemma 6.4. Any surjective group homomorphism τ : PGL2(C(B)) G that is

not an isomorphism factorises through the quotient

PGL2(C(B))/PSL2(C(B)) ≃ C(B)∗/(C(B)∗)2,

where the isomorphism corresponds to the determinant. In particular the target

group G is abelian of exponent 2.
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Proof. There exists a non trivial element M ∈ Ker τ by assumption. Since the
group PGL2(C(B)) has trivial centre, we can find N ∈ PGL2(C(B)) that does
not commute with M . Then id 6= MNM−1N−1 ∈ PSL2(C(B)) ∩ Ker τ , and
since PSL2(C(B)) is a simple group we get PSL2(C(B)) ⊆ Ker τ , which gives the
result. �

Write div : C(B)∗ Div(B) the classical group homomorphism that sends a
rational function onto its divisor of poles and zeros, and whose image is the group
of principal divisors on B. Denoting by PB the set of prime divisors on B, the
group homomorphism div naturally gives a group homomorphism

PGL2(C(B))/PSL2(C(B)) ≃ C(B)∗/(C(B)∗)2 ⊕
PB

Z/2.

We project onto the sum of prime divisors with large enough covering gonality and
identify the ones which are equivalent up to a birational map of B. This identifica-
tion corresponds to taking orbits of the action of AutC(C(B)) on C(B). The follow-
ing lemma shows that the resulting group homomorphism extends from Bir(X/B)
to Bir(X), and coincides with the group homomorphism from Theorem D.

Observe that for each M ∈ PGL2(C(B)), we can speak about the parity of
the multiplicity of det(M) ∈ C(B)∗/(C(B)∗)2 as pole or zero along an irreducible
hypersurface Γ ⊂ B, as the multiplicity of an element of (C(B)∗)2 is always even.

Lemma 6.5. Let B be a smooth variety of dimension at least 2, X = P1 ×B, and

let ϕM ∈ Bir(X/B) ≃ PGL2(C(B)) be the birational map

ϕM : ([u : v], t) ([a(t)u + b(t)v : c(t)u+ d(t)v], t),

where

M =

(

a(t) b(t)
c(t) d(t)

)

∈ PGL2(C(B)).

The image of ϕM under the group homomorphism

Bir(X/B) ⊕
M(X/B)

Z/2

of Theorem D is equal to the sum of the equivalence classes of marked conic bundles

(X/B,Γ) such that Γ ⊂ B is a irreducible hypersurfaces of B with cov. gon(Γ) >
max{d, 8 conn. gon(X)} and such that the multiplicity of det(M) along Γ is odd.

Proof. We first observe that the image of PSL2(C(B)) ⊆ PGL2(C(B)) ≃ Bir(X/B)
under the group homomorphism

Bir(X/B) ⊕
M(X/B)

Z/2

is trivial, since PSL2(C(B)) is simple and not abelian. Hence, the image of an
element ϕ ∈ Bir(X/B) ≃ PGL2(C(B)) is uniquely determined by its determinant
δ ∈ C(B)∗/(C(B)∗)2 (Lemma 6.4), and is the same as the image of the dilatation

ψδ : ([u : v], t) ([δ(t)u : v], t).

So we only need to prove the result for M equal to such a dilatation.
We denote as before by PB the set of prime divisors on B. For δ ∈ C(B)∗ and

Γ ∈ PB, we denote by mδ(Γ) ∈ Z the multiplicity of δ along Γ, so that

div(δ) =
∑

Γ∈PB

mδ(Γ) Γ.
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We also denote by Pδ(Γ) ∈ {0, 1} the parity of ψδ along Γ as defined in Definition 6.1
and Lemma 6.2. The image of the dilatation ψδ ∈ Bir(X/B) under the group
homomorphism

Bir(X/B) ⊕
M(X/B)

Z/2

is equal to the sum of equivalence classes of marked conic bundles (X/B,Γ) such
that Γ ⊂ B is an irreducible hypersurface with

cov. gon(Γ) > max{d, 8 conn. gon(X)}

and such that Pδ(Γ) is odd (Corollary 6.3). To prove the result, it suffices to show
that Pδ(Γ) and mδ(Γ) have the same parity. For all δ, δ′ ∈ C(B)∗, we have

mδ(Γ) +mδ′(Γ) = mδ·δ′(Γ) and Pδ(Γ) + Pδ′(Γ) ≡ Pδ·δ′(Γ) (mod 2).

Indeed, the first equality follows from the definition of the multiplicity and the
second follows from Lemma 6.2, since ψδ ◦ψδ′ = ψδ·δ′ . The local ring OΓ(B) being
a DVR, the group C(B)∗ is generated by elements δ ∈ C(B)∗ with mδ(Γ) = 0, and
by one single element δ0 which satisfies mδ0

(Γ) = 1. It therefore suffices to consider
the case where mδ(Γ) ∈ {0, 1}.

We take a general point p ∈ Γ, an irreducible curve C ⊆ B transverse to Γ at p,
and compute the number of base-points of the birational map θ : P1 ×C P1 ×C
given by ([u : v], t) ([δ(t)u : v], t) that are equal or infinitely near to a point of
the fibre of p. If mδ(Γ) = 0, then δ is well defined on p, so the birational map
θ induces an isomorphism P1 × {p} P1 × {p}, which implies that Pδ(Γ) = 0.
If mδ(Γ) = 1, then δ has a zero of multiplicity one at p, so θ has exactly one
base-point on P1 × {p}, namely ([1 : 0], p). The composition of θ with the blow-up
of Z P1 × C of ([1 : 0], p) yields a birational map Z P1 × C with no more
base-point on the exceptional divisor, as the multiplicity of both δ and v/u at the
point is 1, so Pδ(Γ) = 1. This achieves the proof. �

We can now give the proof of Theorem A.

Proof of Theorem A. We denote by Dilk the subgroup of birational dilatations

Dilk = {(x1, . . . , xn) (x1α(x2, · · · , xn), x2, . . . , xn) | α ∈ k(x2, . . . , xn)∗}

⊆ Birk(Pn) ≃ Autk(k(x1, . . . , xn)).

We denote B = Pn−1 and use the birational map (defined over k)

X = P1 ×B Pn

([u : 1], [t1, . . . , tn−1 : 1]) [1 : u : t1 : · · · : tn−1]

that conjugates Bir(X) to Bir(Pn), sending elements of the form

{([u : v], t) ([α(t)u : v], t) | α ∈ C(B)∗}

onto elements locally given by (x1, . . . , xn) (x1α(x2, · · · , xn), x2, . . . , xn).
Now we pick a large enough integer D and consider the set HD of degree D

irreducible hypersurfaces in Pn−1. For each element Γ ∈ HD, we consider an
irreducible polynomial P ∈ k[x0, . . . , xn] of degree D defining the hypersurface Γ,
choose α = P/xD0 ∈ k(Pn−1) and associate to Γ the element ϕα ∈ Bir(X/B) given
by

ϕα : ([u : v], t) ([α(t)u : v], t).
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By Lemma 6.5, the image of ϕα under the group homomorphism

Bir(X/B) ⊕
M(X/B)

Z/2

of Theorem D is the unique marked conic bundle (X/B,Γ) (as the hypersurface
Γ0 ⊂ B given by x0 = 0 satisfies cov. gon(Γ0) = 1). It remains to observe that we
have enough elements in HD, up to birational maps of Pn−1, namely as much as in
the field k. Indeed, if we take two general hypersurfaces Γ1,Γ2 ⊂ Pn−1 of degree
> n + 1, then every birational map Γ1 Γ2 extends to a linear automorphism
of Pn−1; this can be shown by taking the suitable Veronese embedding of Pn−1

such that the canonical divisors of Γ1 and Γ2 become hyperplane sections. The
dimension of PGLn(k) being bounded, for a large enough degree D we obtain a
quotient of HD by PGLn(k) which has positive dimension, hence which has the
same cardinality as the ground field k. This quotient can be taken as the indexing
set I in the statement of Theorem A. �

Remark 6.6. (1) As all birational dilatations in Theorem A belong to the Jon-
quières subgroup of elements preserving a pencil of lines, the restriction of the
group homomorphism Bir(Pn) ⊕I Z/2 to the Jonquières subgroup also is sur-
jective. We will need other conic bundle structures on rational varieties to obtain
Theorem C.

(2) The proof of Theorem A uses Lemma 6.5 in the case where B = Pn−1. For
a general basis B we can prove along the same lines that the image of the subgroup
of Bir(X/B) given by

{([u : v], t) ([δ(t)u : v], t) | δ ∈ C(B)∗}

under the group homomorphism Bir(X/B) ⊕M(X/B) Z/2 of Theorem D is infi-

nite. We omit the proof here, as it is similar to the case of B = Pn−1, and moreover
we will prove a more general result in Proposition 6.9.

6.C. The case of non-trivial conic bundles and the proof of Theorem B.

Recall that given a smooth conic C ⊂ P2 and a point p ∈ P2 r C, there is an
involution ι(p, C) ∈ Bir(P2) that preserves the conic C. It is defined on each general
line L through p as the involution that fixes p and exchange the two intersection
points L∩C. We say that ι(p, C) is the involution induced by the projection from p.
We now use this construction in family to produce interesting involutions on some
conic bundles.

Lemma 6.7. Let B be a smooth variety, η̂ : P B a locally trivial P2-bundle,

and X ⊂ P a closed subvariety such that the restriction of η̂ is a conic bundle

η : X B. Let s : B P be a rational section (i.e. a rational map, birational

to its image, such that η̂ ◦ s = idB), whose image is not contained in X. Let

ι ∈ Bir(X/B) be the birational involution whose restriction to a general fibre η−1(b)
is the involution induced by the projection from s(b). Let Γ ⊂ B be an irreducible

hypersurface not contained in the discriminant locus of η.

Then the parity of ι along Γ (in the sense of Definition 6.1) is the parity of the

multiplicity of F (s) along Γ, where F is the local equation of X in P .

Proof. We choose a dense open subset U ⊆ B which intersects Γ and trivialises the
P2-bundle, and view X locally inside of P2 × U . It is given by F ∈ C(B)[x, y, z],
homogeneous of degree 2 in x, y, z. The fibre of η : X B over a general point of
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Γ (respectively of B) is a smooth conic. The section s corresponds to [α : β : γ],
where α, β, γ ∈ C(B) are not all zero and are uniquely determined by s, up to
multiplication by an element of C(B)∗.

The evaluation F (α, β, γ) ∈ C(B) at s is uniquely determined by s up to mul-
tiplication by the square of an element of C(B)∗. The parity of the multiplicity
of F (α, β, γ) along Γ is then well defined. The statement of the lemma consists in
showing that this parity is equal to the parity of ι along Γ.

By multiplying by a suitable power of a local equation of Γ, we can choose
that neither α, β, γ has a pole along Γ and that not all three vanish on Γ. Then,
the restriction of α, β, γ gives an element (ᾱ, β̄, γ̄) ∈ C(Γ)3 r {0}. There exists a
matrix in GL3(C(Γ)) that sends (ᾱ, β̄, γ̄) to (1, 0, 0). By extending this matrix as
an element of GL3(C(B)), we can assume that (α, β, γ) = (1, 0, 0).

We then write the equation of X as

F = ax2 + bxy + cxz + dy2 + eyz + fz2

where a, b, c, d, e, f ∈ C(B) have no pole along Γ and are not all simultaneously
zero on Γ, and obtain that

F (α, β, γ) = a.

With these coordinates, the involution ι ∈ Bir(P/B) is given by

ι : [x : y : z] [−(x+ b
ay + c

az) : y : z].

If a does not vanish on Γ, then ι is an isomorphism on a general point of Γ, and
the multiplicity of ι at Γ is equal to zero. This achieves the proof in this case.

Suppose that a is zero on Γ. It implies that either b or c is not zero on Γ.
We denote by E ⊂ P the preimage of Γ. It is an irreducible hypersurface and
the general fibre of E/Γ is isomorphic to P1 because Γ is not contained in the
discriminant of X/B. The variety E is contracted by ι onto the section of E Γ
given by [x : y : z] = [1 : 0 : 0]. We denote by ι̂, ν ∈ Bir(P/B) the birational maps
locally given by

ι̂ : [x : y : z] [−(x + by + cz) : y : z] and ν : [x : y : z] [ax : y : z],

and observe that ι = ν−1 ◦ ι̂ ◦ ν. Moreover, the variety X̂ = ν(X) ⊂ P is locally
given by

F̂ = x2 + bxy + cxz + a(dy2 + eyz + fz2).

In particular, the preimage of Γ in X̂ is the union of the hypersurfaces E1, E2 ⊂ X̂,
locally given by x = 0 and x + by + cz = 0 respectively. As b and c are not both
zero on Γ, we have E1 6= E2.

For i = 1, 2, a general fibre ofEi Γ, for i = 1, 2, is isomorphic to P1. Moreover,
the restriction of ν induces a birational map E E1 over Γ, corresponding on a
general fibre to the projection from a smooth conic to a line, via a point of the
conic. The birational involution ι̂ induces a birational transformation of X̂ whose
restriction gives a birational map E1 E2 over Γ. We denote by r > 1 the
multiplicity of a along Γ. As Γ is an irreducible hypersurface of B, the local ring
OB,Γ of rational functions ofB defined on an open subset of Γ is a DVR. We can find
a1, . . . , ar ∈ C(B) of multiplicity 1 along Γ such that a = a1·a2 · · · ar. This allows us
to write ν−1 as ν−1 = νr ◦ · · · ◦ ν1, where νi is given by [x : y : z] [x : aiy : aiz].

We write X1 = ν1(X̂) and write Xi = νi(Xi−1) for i = 2, . . . , r. In particular,



66 JÉRÉMY BLANC, STÉPHANE LAMY & SUSANNA ZIMMERMANN

Xr = X . The equation of Xi is given by

Fi = a1 · · · aix
2 + bxy + cxz + ai+1 · · · ar(dy

2 + eyz + fz2).

For i = 1, . . . , r − 1, the preimage of Γ in Xi is the union of E1,i and Ei,2 given
by x = 0 and by + cz = 0. Writing E1 = E1,0 and E2 = E2,0, we obtain that νi
contracts E2,i−1 onto a rational section of Γ contained in E2,irE1,i, for i = 1, . . . , r.

To compute the parity of ι along Γ, we denote by C ⊆ Γ a general irreducible
curve passing through a general point p ∈ Γ, and look at the birational map ob-
tained by the restriction of ι to the preimage of C. Recalling that ι = ν−1 ◦ (ι̂ ◦ ν),
observe that the first map ι̂ ◦ ν is a local isomorphism at the point p, while the
map ν−1 corresponds to a sequence of r elementary links. The parity of ι along Γ
is then the class of r in Z/2 as desired. �

Definition 6.8. We say that a conic bundle X/B is a decomposable conic bundle if
X andB are smooth, and if we have closed embeddingsB Pm andX P where
P is a P2-bundle over Pm, which is the projection of a decomposable vector bundle
of rank 3. We moreover ask that the morphism X/B comes from the restriction of
the P2-bundle P Pm and that X ⊂ P is locally given by equations of degree 2
in the P2-bundle.

Proposition 6.9. For each decomposable conic bundle η : X B with dimB > 2,

there are infinitely many involutions in Bir(X/B) which have distinct images via

the group homomorphism Bir(X/B) ⊕M(X/B) Z/2 of Theorem D. In particular,

the image is infinite.

Proof. We can see B as a closed subset B ⊆ Pm, and obtain that X ⊂ P , where
η̂ : P Pm is the projectivisation of a rank 3 vector bundle. We can thus write
P = P(OPm ⊕ OPm(a) ⊕ OPm(b)) for some a, b > 0 (up to twisting and exchanging
the factors). We view P as the quotient of (A3 r {0}) × (Am+1 r {0}) by (Gm)2

via

((λ, µ), (x0, x1, x2, y0, . . . , ym)) (λx0, λµ
−ax1, λµ

−bx2, µy0, . . . , µym)

and denote by [x0 : x1 : x2 ; y0 : . . . : ym] the class of (x0, x1, x2, y0, . . . , ym) (see
[AO18, Definition 2.3, Remark 2.4] for more details).

Then X is equal to the preimage of B cut by the zero locus of an irreducible poly-
nomial G ∈ C[x0, x1, x2, y0, . . . , ym], that has degree 2 in x0, x1, x2 (and suitable
degree in y0, . . . , ym so that the polynomial is homogeneous for the above action).
For each integer d > 1, and for general homogeneous polynomials

u0, v0 ∈ C[y0, . . . , ym]d, u1, v1 ∈ C[y0, . . . , ym]d+a, u2, v2 ∈ C[y0, . . . , ym]d+b,

(the subscript corresponding to the degree), the closed subvariety Γ̂ ⊂ X of codi-
mension 2 given by

Γ̂ =
{

([x0 : x1 : x2 ; y0 : . . . : ym]) ∈ X ⊆ P
∣

∣

∣

2
∑

i=0

xiui =

2
∑

i=0

xivi = 0
}

is smooth, by Bertini theorem.
We now prove that the projection X B induces a birational morphism from

Γ̂ to its image Γ ⊂ B, an irreducible hypersurface of B. Solving the linear sys-

tem
∑2

i=0 xiui =
∑2

i=0 xivi = 0 in x0, x1, x2, we obtain that the preimage of
[y0 : . . . : ym] is [u1v2 − u2v1 : u2v0 − u0v2 : u0v1 − u1v0 ; y0 : . . . : ym], so the
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projection induces a birational morphism from Γ̂ to the hypersurface Γ ⊂ B given
by the polynomial G(P0, P1, P2, y0, . . . , ym), where P0, P1, P2 ∈ C[y0, . . . , ym] are
the polynomials P0 = u1v2 − u2v1, P1 = u2v0 − u0v2 and P2 = u0v1 − u1v0.

We now show that the covering gonality cov. gon(Γ̂) = cov. gon(Γ) is large if d
is large enough. We denote by Hi, Fj ⊂ P the hypersurfaces given respectively by
xi = 0 and yj = 0, and obtain that Pic(P ) = ZHi ⊕ ZFj for all i ∈ {0, 1, 2}, j ∈
{0, . . . ,m}. The class of all Fj is the same and denoted by F and H0 ∼ H1 +

aF ∼ H2 + bF . Note that Γ̂ is a complete intersection in η̂−1(B) ⊆ P of 3
hypersurfaces equivalent to H0+dF,H0+dF, 2H0+d0F for some d0 ∈ Z (depending
on the equation of X). The canonical divisor of P being equivalent to −H0 −H1 −
H2 − F0 − . . . − Fm = −3H0 − (m + 1 − a − b)F , we obtain by adjunction that

the canonical divisor of Γ̂ is the restriction to Γ̂ of a divisor of P equivalent to
H0 + (2d + d0 − m − 1 + a + b)F . The morphism associated to F is simply the

projection Γ̂ Pm, which is birational onto its image. By Lemma 2.30(2)-(3), the
divisor pF satisfies BVAp, for each integer p > 0, and thus KΓ̂ satisfies BVAp for
p = 2d+d0 −m−1+a+b > 0 if d is large enough, by Lemma 2.30(1). This implies

that cov. gon(Γ̂) > p+ 2 by Theorem 2.29. By choosing d large enough we obtain

that cov. gon(Γ) = cov. gon(Γ̂) is large.
We now use the construction in Lemma 6.7 of the involution ι ∈ Bir(X/B)

associated with the P2-bundle P/B and the rational section s : B P given by

[y0 : . . . : ym] [u1v2 − u2v1 : u2v0 − u0v2 : u0v1 − u1v0 ; y0 : . . . : ym].

By Lemma 6.7, the parity of ι along Γ is one and the parity of ι along any other
irreducible hypersurface of B is zero (as Γ is the zero locus of G(s) by construction).
For a large integer d, the image of ι under the group homomorphism

Bir(X/B) ⊕
M(X/B)

Z/2

of Theorem D is the equivalence class of (X/B,Γ). Taking larger and larger d,
we obtain infinitely many involutions in the image of the group homomorphisms,
which are distinct and thus generate a group isomorphic to an infinite direct sum
of Z/2, as the covering gonality of the hypersurfaces goes to infinity with d. �

Proof of Theorem B. We use the group homomorphism

Bir(X) ˚
C∈CB(X)

(

⊕
M(C)

Z/2

)

of Theorem D. By assumption, X/B is a decomposable conic bundle (in the sense
of Definition 6.8). By Proposition 6.9, the image of Bir(X/B) contains a group
isomorphic to an infinite direct sum of Z/2.

To finish the proof of Theorem B, we take a subfield k ⊆ C over which X,B and
η are defined, and check that the involutions in Bir(X/B) that are used to provide
the large image are defined over k. Firstly, the involutions provided by Lemma 6.7
are defined over k as soon as the rational section s : B P is. Secondly, the
construction of Proposition 6.9 works for general polynomials in C[y0, . . . , ym] of
some fixed degrees.

Since a dense open subset of an affine space AnC contains infinitely many k-points
for each subfield k ⊆ C (follows from the fact that the Q-points of An are dense),
we can assume that the polynomials, and thus the section, are defined over k. �
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7. Non-equivalent conic bundles

In this section, we construct infinitely many non-equivalent conic bundles on Pn,
showing that the set CB(Pn) is infinite for n > 3 (by contrast, observe that CB(P2)
consists of one element). This allows us to prove Theorems E and C.

7.A. Studying the discriminant locus. The main result of this section is Propo-
sition 7.10. We prove in particular that if two standard conic bundles X1/P2 and
X2/P2 are ramified over smooth curves ∆1 and ∆2 such that the conic bundles
(X1 × Pn)/(P2 × Pn) and (X1 × Pn)/(P2 × Pn) are equivalent, then there exist
surjective morphisms ∆1 ∆2 and ∆2 ∆1.

The following notion is called an embedded conic in [Sar82, page 358].

Definition 7.1. Let V be a smooth quasi-projective variety. An embedded conic

fibration is a projective morphism η : X V that is the restriction of a locally
trivial P2-bundle η̂ : P V , and such that X ⊂ P is a closed subvariety, given
locally by an equation of degree 2. Precisely, for each p ∈ V , there exists an affine
open subset U ⊆ V containing p such that η̂−1(U) is isomorphic to U ×P2, and the
image of η−1(U) ⊂ U×P2 is a closed subvariety, irreducible over C(U), and defined
by a polynomial F ∈ C[U ][x, y, z] homogeneous of degree 2 in the coordinates x, y, z.

Remark 7.2. Let η : X V be a flat projective morphism between smooth quasi-
projective varieties, with generic fibre an irreducible conic. Then, η is an embedded
conic fibration in a natural way. This is done by taking the locally trivial P2-bundle
P = P(η∗(ω−1

X )) over V , where ωX is the canonical line bundle of X (see [Sar82,
§1.5]).

The following definition is equivalent to the one of [Sar82, Definition 1.4].

Definition 7.3. A standard conic bundle is a morphism η : X B which is a conic
bundle (in the sense of Definition 2.13), and which is moreover flat with X and B
smooth. This implies that η is also an embedded conic fibration in the P2-bundle
P(η∗(ω−1

X )) B (see Remark 7.2).

Remark 7.4. Let us make some comparisons between the above definitions.
An embedded conic fibration (Definition 7.1) over a projective base is not nec-

essarily a conic bundle (Definition 2.13), as the relative Picard rank can be > 1.
Conversely, a conic bundle X/B is not necessarily an embedded conic fibration, but
it is one if the conic bundle is standard (Definition 7.3) (as explained just above)
or decomposable (Definition 6.8).

Moreover, a decomposable conic bundle is not always standard, as some fibres
can be equal to P2. It is not clear to us if there exist standard conic bundles which
are not decomposable.

Definition 7.5. Let V be a smooth quasi-projective variety and η : X V a flat
embedded conic fibration.

For each irreducible closed subset Γ ⊆ V , we define the multiplicity of the dis-

criminant of η along Γ as follows. We take an open subset U ⊆ V that intersects Γ
and such that η−1(U) is a closed subset of U ×P2, of degree 2, and consider a sym-
metric matrix M ∈ Mat3×3(C(U)) that defines the equation of η−1(U). We choose
M such that all coefficients of M are contained in the local ring OΓ(U) ⊂ C(U) of
rational functions defined on a general point of Γ, and such that the residue matrix
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ĎM ∈ Mat3×3(C(Γ)) is not zero. This is possible as the morphism is flat, and defines
M uniquely, up to multiplication by an invertible element of OΓ(U).

Now we define the multiplicity of the discriminant of η along Γ to be the least
integer m > 0 such that the determinant lies in mΓ(U)m, where mΓ(U) is the
maximal ideal of OΓ(U), kernel of the ring homomorphism OΓ(U) C(Γ).

We define the discriminant divisor of η to be
∑

mDD, where the sum runs over
all irreducible hypersurfaces D ⊂ V and where mD ∈ N is the the multiplicity of
the discriminant of η along D as defined above.

Remark 7.6. If η : X V is moreover a conic bundle, the definition of the dis-
criminant given in Definition 7.5 is compatible with the definition of discriminant
locus given in Definition 2.13: the discriminant locus is the reduced part of the dis-
criminant divisor of η. Moreover, if η is a standard conic bundle, the discriminant
divisor is reduced [Sar82, Corollary 1.9]. The multiplicity of the discriminant divisor
along irreducible hypersurfaces of V is always 0 or 1 in this case. We will however
not only consider hypersurfaces but also closed subvarieties of lower dimension.

Using the local description of the matrix that defines η as a flat embedded conic
fibration, one can prove the following:

Proposition 7.7 ([Sar82, Proposition 1.8]). Let V be a smooth quasi-projective

variety, let η : X V be a flat embedded conic fibration, such that X is smooth.

The discriminant divisor ∆ of η has the following properties: for each point p ∈ V ,

the fibre fp = η−1(p) is given as follows:

fp is











a smooth conic

the union of two distinct lines

a double line

⇐⇒ p is











not on ∆

a smooth point of ∆

a singular point of ∆.

We shall need the following folklore result:

Lemma 7.8. Let V be a smooth quasi-projective variety and let η1 : X1 V and

η2 : X2 V be two flat embedded conic fibrations. Let ψ : X1 X2 be a birational

map over V . Let Γ ⊆ V be a closed irreducible subvariety such that η−1
1 (Γ) is not

contained in the base-locus of ψ, that the preimage η−1
2 (Γ) is irreducible and that

a general fibre of η−1
2 (Γ) Γ is the union of two distinct lines. We moreover

assume that the multiplicity of the discriminant of η2 along Γ is 1. Then, one of

the following holds:

(1) Every fibre of η−1
1 (Γ) Γ is a double line (non-reduced fibre).

(2) The preimage η−1
1 (Γ) is irreducible and a general fibre of η−1

1 (Γ) Γ is the

union of two distinct lines.

Proof. Replacing V by an open subset that intersects Γ, we can assume that X1

and X2 are closed subvarieties of V × P2 given by a polynomial of degree 2 in the
coordinates of P2. We denote by OΓ(V ) ⊂ C(V ) the subring of rational functions
that are defined on a general point of Γ and consider the surjective residue homo-
morphism OΓ(V ) C(Γ). The quadratic equations of X1 and X2 correspond to
symmetric matrices M1,M2 ∈ Mat3×3(C(V )), defined up to scalar multiplication.
Since both η1 and η2 are flat, we can choose M1,M2 ∈ Mat3×3(OΓ(V )) such that
the residue matrices ĎM1, ĎM2 ∈ Mat3×3(C(Γ)) are not zero.

The fact that η−1
2 (Γ) is irreducible and that a general fibre of η−1

2 (Γ) Γ is
the union of two distinct lines is equivalent to asking that the quadratic form
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associated to M2 corresponds to a singular irreducible conic over the field C(Γ). It
then corresponds to the union of two lines defined over an extension of degree 2 of
C(Γ), which intersect into a point defined over C(Γ). After a change of coordinates
on X2 ⊂ V ×P2, applying an element of PGL3(C(V )) which restricts to an element
of PGL3(C(Γ)), we can assume that the point is [0 : 0 : 1] and completing the square
we assume that the restriction is given by F = ax2 + by2 for some a, b ∈ C(Γ)∗,
where −a

b ∈ C(Γ)∗ is not a square. This corresponds to saying that ĎM2 is equal to
the diagonal matrix diag(a, b, 0).

The birational map ψ is given by
(

v,
[

x
y
z

]) (

v,A(v) ·
[

x
y
z

])

for some A ∈ GL3(C(V )). This implies that M1 and tA · M2 · A are collinear in
Mat3×3(C(V )).

As η−1
1 (Γ) is not contained in the base-locus of ψ, we can assume that A ∈

Mat3×3(OΓ(V )) is such that its residue sA ∈ Mat3×3(C(Γ)) is not zero. We can
moreover choose an element S ∈ GL3(OΓ(V )), with residue sS ∈ GL3(C(Γ)), and
replace A with A · S. This corresponds to a coordinate change of P2 × V at the
source, which only affects X1 and not X2. We can then reduce to the following
possibilities for sA, according to the rank of the 2 × 3 matrix obtained from the first
two rows of sA:





1 0 0
0 1 0
µ1 µ2 µ3



 ,





α 0 0
β 0 0
µ1 µ2 µ3



 ,





0 0 0
0 0 0
µ1 µ2 µ3



 ,

where α, β, µ1, µ2, µ3 ∈ C(Γ) and (α, β) 6= (0, 0).
In the first case, tsA · ĎM2 · sA = ĎM2, so η−1

2 (Γ) has the same properties as η−1
1 (Γ),

which gives (2).
The second case gives tsA · ĎM2 · sA = diag(α2a+ β2b, 0, 0). As (α, β) 6= (0, 0) and

−a
b ∈ C(Γ)∗ is not a square, we have α2a+β2b 6= 0. The quadratic form associated

to this matrix is then a double line, and we obtain (1).
It remains to study the last case, which yields tsA · ĎM2 · sA = 0. This means that

all coefficents of tA · M2 · A belong to the maximal ideal m = mΓ(V ) of OΓ(V ),
kernel of the residue homomorphism OΓ(V ) C(Γ). Applying S as before, we
can assume that µ1 = 1, µ2 = µ3 = 0, since the rank of sA is 1. We write M2 =
diag(a, b, 0)+(νi,j)16i,j63 where νi,j ∈ m for all i, j, and obtain det(M2) ≡ a ·b ·ν3,3

(mod m
2). As the multiplicity of the discriminant of η2 along Γ is 1, this implies that

ν3,3 ∈ mrm
2. We compute tA ·M2 ·A ≡ diag(ν3,3, 0, 0) (mod m

2). The quadratic
form associated to this matrix is a double line, so again we obtain (1). �

We give two examples to illustrate the need for all the assumptions in Lemma 7.8:

Example 7.9. We work over the affine plane V = A2 and consider

X1 = {([x : y : z], (u, v)) ∈ P2 × A2 | x2v + y2 − z2 = 0},

X2 = {([x : y : z], (u, v)) ∈ P2 × A2 | x2v + y2 − u2z2 = 0},

X ′
2 = {([x : y : z], (u, v)) ∈ P2 × A2 | x2uv + y2 − z2 = 0}.

The projection onto the second factor gives three flat embedded conic fibrations
η1 : X1 A2, η2 : X2 A2, η′

2 : X ′
2 A2, with discriminant divisors being re-

spectively given by v = 0, u2v = 0 and uv = 0. The birational maps of P2 × A2
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given by ([x : y : z], (u, v)) ([xu : yu : z], (u, v)) and ([x : y : z], (u, v)) ([2x :
(u + 1)y + (u − 1)z : (u − 1)y + (u + 1)z], (u, v)) provide two birational maps
ψ : X1 X2 and ψ′ : X1 X ′

2 over A2.
Choosing Γ ⊂ A2 to be the line {u = 0}, the result of Lemma 7.8 does not

hold for ψ and for ψ′, because a general fibre of η−1
1 (Γ) Γ is a smooth conic.

In both cases, exactly one hypothesis is not satisfied. Namely, the multiplicity of
the discriminant of η2 along Γ is 2 instead of 1, and the surface η′−1

2 (Γ) is not
irreducible.

The idea of the proof of the following statement was given to us by C. Böhnig
and H.-C. Graf von Bothmer.

Proposition 7.10. Let B be a smooth surface, and for i = 1, 2, let ηi : Xi B
be a standard conic bundle with discriminant a smooth irreducible curve ∆i ⊂ B.

Assume that there exists a commutative diagram

X1 × Y X2 × Y

B × Y B × Y

η1×id

ψ

η2×id
θ

where Y is smooth and ψ, θ are birational.

Then, for a general point p ∈ Y , the image of ∆1 × {p} is contained in ∆2 × Y
and the morphism ∆1 ∆2 obtained by composing

∆1
∼ ∆1 × {p} θ ∆2 × Y

pr
1 ∆2

is surjective (here pr1 : ∆2 × Y ∆2 is the first projection).

Proof. For i = 1, 2, the discriminant divisor of ηi is reduced [Sar82, Corollary 1.9],
so consists of ∆i. As ∆i is smooth, η−1

i (p) is the union of two distinct lines for each

p ∈ ∆i (Proposition 7.7). Since ρ(Xi/Bi) = 1, the preimage η−1
i (∆i) is irreducible.

The morphism (Xi × Y )/(B × Y ) is a standard conic bundle whose discriminant
divisor is reduced, consisting of the smooth hypersurface ∆i × Y ⊂ B × Y .

We choose a dense open subset U ⊆ B × Y on which θ is defined and whose
complement is of codimension 2 (since B×Y is smooth). In particular, U∩(∆1 ×Y )
is not empty, so U ∩ (∆1 × {p}) 6= ∅ for a general point p ∈ Y . After restricting the
open subset, we can moreover assume that η−1

1 (U) is a closed subset of U×P2, given
by the quadratic form induced by a matrix M1 ∈ GL3(C(U)). The coefficients of
the matrix can moreover be chosen in C(B) ⊆ C(B × Y ) = C(U), as the equation
of X1 × Y in P2 × Y is locally the equation of X1 in P2, independent of Y .

We define C ⊂ B × Y to be image of ∆1 × {p} by θ, which is a point or an
irreducible curve, as ∆1 is an irreducible curve. The aim is now to show that
C ⊆ ∆2 × Y and that pr1(C) = ∆2. We choose an open subset V ⊆ B × Y
intersecting C such that η−1

2 (V ) is contained in P2×V and is given by the quadratic
form given by a symmetric matrix M2 ∈ Mat3×3(C(V )). The morphism η2 being
flat, we can choose the coefficients of M2 to be defined on C and such that the
residue matrix in ĎM2 ∈ Mat3×3(C(C)) is not zero. The birational map ψ is locally
given by

U × P2 V × P2

(

u,
[

x
y
z

]) (

θ(u), A(u) ·
[

x
y
z

])
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for some A ∈ GL3(C(U)). The explicit form of the map ψ gives

λ ·M1 = tA · θ∗(M2) · A

where λ ∈ C(U)∗ is a scalar and θ∗(M2) is the matrix obtained fromM2 by applying
to its coefficients the field isomorphism θ∗ : C(V ) C(U). As the rational map θ
induces a dominant rational map ∆1 × {p} C, we have a field homomorphism
C(C) C(∆1 × {p}) ≃ C(∆1), that we denote by θ̄∗. It induces a commutative
diagram

OC(V ) O∆1×{p}(U)

C(C) C(∆1 × {p}) C(∆1).

θ∗

θ̄∗

≃

We denote by X ′ ⊂ U×P2 the subvariety given by the quadratic form associated
to the matrix θ∗(M2). We observe that the coefficients of θ∗(M2) are defined over

∆1 × {p} and that the residue gives a matrix Ğθ∗(M2) ∈ Mat3×3(C(∆1)) which is
obtained by applying the field homomorphism sθ∗ to the entries of ĎM2 ∈ Mat3×3(C).
The morphism pr1 : X ′ U is then an embedded conic fibration, which is flat after
maybe reducing the open subset U (but still having U ∩ (∆1 × {p}) 6= ∅).

We can apply Lemma 7.8 to the birational map X ′ X given by
(

u,
[

x
y
z

]) (

u,A(u)−1 ·
[

x
y
z

])

and to Γ = ∆1 × {p}. Indeed, (η1 × id)−1(∆1 × {p}) is irreducible as η−1
1 (∆1)

is irreducible, and every fibre of (η1 × id)−1(∆1 × {p}) ∆1 × {p} is the union
of two distinct lines, as the same holds for η−1

1 (∆1) ∆1 by Proposition 7.7.

Lemma 7.8 gives two possibilities for the matrix θ̄∗(M2) ∈ Mat3×3(C(∆1)): either
it is of rank 1 (case (1)) or it is of rank 2, corresponding to a singular irreducible
conic (case (2)). This gives the same two possibilities for ĎM2 ∈ Mat3×3(C) as θ̄∗

is a field homomorphism. As the rank of M2 is smaller than 3, the variety C is in
the discriminant of (X2 × Y )/(B × Y ) and is thus contained in ∆2 × Y as desired.
It remains to see that C is not contained in {q} × Y for some point q. Indeed,
the preimage (η2 × id)−1({q} × Y ) is isomorphic to η−1

2 ({q}) × Y , which is not
irreducible, as η−1

2 ({q}) is the union of two lines (again by Proposition 7.7), but
which is reduced. �

7.B. Conic bundles associated to smooth cubic curves. The principal result
in this section is Proposition 7.15, which provides a family of conic bundles that we
shall use in the next section to prove Theorem E.

Lemma 7.11. For each p = [α : β] ∈ P1, the set

Sp = {[x0 : x1 : x2] ∈ P2 | αx2
0 + βx1x2 = αx2

1 + βx0x2 = αx2
2 + βx0x1 = 0}

consists of three points if α(α3 + β3) = 0 and is empty otherwise.

Proof. Since S[0:1] = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]} and S[1:0] = ∅, we may

assume that α ∈ C∗ and β = 1. If [x0 : x1 : x2] ∈ Sp, then α(x3
0 − x3

1) =
x0(αx2

0 + x1x2) − x1(αx2
1 + x0x2) = 0. The equations being symmetric, we get

x3
0 = x3

1 = x3
2. In particular x0x1x2 6= 0, so the three equations are equivalent to

α = −
x1x2

x2
0

= −
x0x1

x2
2

= −
x0x2

x2
1
,



QUOTIENTS OF HIGHER DIMENSIONAL CREMONA GROUPS 73

which implies that α3 = −1. For the three possible values of α, we observe that
S[α:1] = {[1 : x1 : −α/x1] | x3

1 = 1} consists of three points. �

Lemma 7.12. For each ξ ∈ C such that ξ3 6= − 1
8 , the hypersurface Xξ ⊂ P2 × P2

of bidegree (2, 1) given by

Xξ =
{

([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2 × P2
∣

∣

∣

2
∑

i=0

(x2
i + 2ξ

x0x1x2

xi
)yi = 0

}

is smooth, irreducible, rational over Q(ξ), and satisfies ρ(Xξ) = 2. The second

projection gives a standard conic bundle Xξ/P2. The discriminant curve ∆ξ ⊂ P2

is given by

−ξ2(y3
0 + y3

1 + y3
2) + (2ξ3 + 1)y0y1y2 = 0

and is the union of three lines if ξ = 0 or if ξ3 = 1, and is a smooth cubic otherwise.

Proof. To show that Xξ is smooth, irreducible, rational over Q(ξ) and that ρ(Xξ) =
2, it suffices to show that the first projection Xξ P2 is a (Zariski locally trivial)
P1-bundle. This amounts to showing that the coefficients of the linear polynomial
in the variables yi defining Xξ are never zero, i.e. that for each [x0 : x1 : x2] ∈ P2

we cannot have x2
0 + 2ξx1x2 = x2

1 + 2ξx0x2 = x2
2 + 2ξx0x1 = 0. This follows from

Lemma 7.11 and from the hypothesis ξ3 6= − 1
8 .

The equation of Xξ is given by

(x0 x1 x2) ·M ·





x0

x1

x2



 = 0 with M =





y0 ξy2 ξy1

ξy2 y1 ξy0

ξy1 ξy0 y2



 ∈ Mat3×3(C[y0, y1, y2]).

The polynomial det(M) is equal to

det(M) = λ(y3
0 + y3

1 + y3
2) + µy0y1y2, with λ = −ξ2 and µ = 2ξ3 + 1.

In particular, the fibres of the second projectionXξ/P2 are all conics (the coefficients
of x2

i is yi so not all coefficients can be zero) and a general one is irreducible. As the
threefold Xξ is smooth, irreducible and satisfies ρ(Xξ) = 2, the morphism Xξ/P2 is
a standard conic bundle. Its discriminant is given by the zero locus of det(M), which
is a polynomial of degree 3 which has the classical Hesse Form. The discriminant
corresponds to a smooth cubic if λ(27λ3 + µ3) 6= 0, and to the union of three lines
in general position otherwise. To prove this classical fact, we compute the partial
derivatives of det(M), which are (3λy2

0 + µy1y2, 3λy
2
1 + µy0y2, 3λy

2
2 + µy0y1). By

Lemma 7.11, this has no zeroes in P2 if λ(27λ3 + µ3) 6= 0 and has three zeroes
otherwise. It remains to observe that 27λ3 + µ3 = (8ξ3 + 1)(ξ3 − 1)2. �

Remark 7.13. Let k be a subfield of C and ξ ∈ k. Then the curve ∆ξ of
Lemma 7.12 is defined over k and has a k-rational point, namely the inflexion
point [0 : 1 : −1]. When k = C, one can prove that all elliptic curves are obtained
in this way; for smaller fields this does not seem to be true. We will however show
that there are enough such curves.

We thank P. Habegger for helpful discussions concerning the next lemma.

Lemma 7.14. Let k ⊆ C be a subfield.
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(1) For each ξ ∈ k, with ξ3 /∈ {0,− 1
8 , 1}, we denote (as in Lemma 7.12) by ∆ξ

the smooth cubic curve defined over k given by

−ξ2(y3
0 + y3

1 + y3
2) + (2ξ3 + 1)y0y1y2 = 0.

The j-invariant of ∆ξ is equal to

(

16ξ12 + 464ξ9 + 240ξ6 + 8ξ3 + 1

ξ2(8ξ9 − 15ξ6 + 6ξ3 + 1)

)3

.

(2) There is a subset J ⊆ k having the same cardinality as k such that for all

ξ, ξ′ ∈ J , the following are equivalent:

(i) There exist surjective morphisms ∆ξ ∆ξ′ and ∆ξ′ ∆ξ defined over

C;

(ii) ξ = ξ′.

Proof. (1). By Lemma 7.12, ∆ξ is a smooth cubic curve if ξ3 /∈ {0,− 1
8 , 1}. We

choose the inflexion point [0 : 1 : −1] ∈ ∆ξ to be the origin, make a coordinate
change so that the inflexion line is the line at infinity, and thusly obtain a Weier-
strass form. Then we compute the j-invariant as in [Sil09, III.1 page 42]; this is
tedious but straightforward. This can also be done using the formulas from [AD09,
page 240].

(2). Let ξ, ξ′ ∈ k be such that ξ3, (ξ′)3 /∈ {0,− 1
8 , 1}. We see the curves ∆ξ and

∆ξ′ as elliptic curves defined over k with origin O = [0 : 1 : −1]. Suppose that
there is a surjective morphism ϕ : ∆ξ ∆ξ′ defined over C. It sends the origin of
∆ξ onto a C-rational point of ∆ξ′ . Applying a translation at the target, we can
assume that ϕ(O) = O, which means that ϕ is an isogeny, and that ∆ξ and ∆ξ′

are isogenous over C (see [Sil09, Definition, §III.4 page 66]).
We now choose a sequence p1, p2, . . . of increasing prime numbers such that for

each i > 2, the prime number pi does not appear in the denominator of the j-
invariant of ∆pi′

for each i′ < i. For each i > 1, the j-invariant of ∆pi
is an element

of Q having a denominator divisible by pi (follows from (1)), so ∆pi
does not have

potential good reduction modulo pi but this does not hold for ∆pi′
for i′ > i, which

then has potential good reduction modulo pi [Sil09, Proposition 5.5, §VII.5, page
197]. This implies that there is no isogeny ∆pi

∆pi′
defined over any number

field K and where one curve has good reduction and the other has bad reduction
[Sil09, Corollary 7.2, §VII.7, page 202], and thus no isogeny defined over C [MW90,
Lemma 6.1]. If k is countable, this achieves the proof of (2).

It remains to consider the case where k is an uncountable subfield of C. The
set of j-invariants of curves ∆ξ, where ξ ∈ k is such that ξ3 /∈ {0,− 1

8 , 1}, is then
uncountable too.

We denote by Ω ⊆ C2 the set consisting of pairs (j1, j2) ∈ sQ2 such that the
curves of j-invariants j1 and j2 are isogenous. The set Ω is a countable union of
algebraic curves defined over Q, given by the zero set of the so-called modular
transformation polynomials (see [Lan87, 5§3] and in particular [Lan87, Theorem 5,
Chapter 5§3, page 59]). Moreover, these curves are irreducible and invariant under
the exchanges of variables (x, y) (y, x) [Lan87, Theorem 3, Chapter 5§3, page
55], so are not vertical or horizontal lines in C2.

We write S = {ξ ∈ k | ξ3 /∈ {0,− 1
8 , 1}}. Then, by the previous paragraph,

for each element ξ ∈ S the curve ∆ξ is isogeneous (over C) to only countably
many isomorphism classes of ∆ξ′ with ξ′ ∈ k. Putting an equivalence relation on
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S saying that two elements are equivalent if the curves are isogeneous over C (see
[Sil09, III.6, Theorem 6.1(a)]), we obtain that each equivalence class is countable,
so the set of equivalence classes has the cardinality of S, or equivalently of k. This
achieves the proof. �

Proposition 7.15. Let k be a subfield of C. For each n > 3, there is a set

J having the cardinality of k indexing decomposable conic bundles Xi/Bi defined

over k, where Xi, Bi are smooth varieties rational over k, and such that two conic

bundles Xi/Bi and Xj/Bj are equivalent (over C) if and only if i = j.

Proof. We choose the set J ⊆ k of Lemma 7.14(2), and consider, for each ξ ∈ J ,
the hypersurface Xξ ⊂ P2 × P2 of Lemma 7.12, which is given by

Xξ =
{

([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2 × P2
∣

∣

∣

2
∑

i=0

(x2
i + 2ξ

x0x1x2

xi
)yi = 0

}

By Lemma 7.12, the second projection gives a standard conic bundle Xξ P2

whose discriminant curve ∆ξ ⊂ P2 is given by −ξ2(y3
0 + y3

1 + y3
2) + (2ξ3 + 1)y0y1y2.

Note that (Xξ × Pn−3)/(P2 × Pn−3) (or simply Xξ/P2 if n = 3) is a decomposable
conic bundle defined over k, as it is embedded in the trivial P2-bundle (P2 × P2 ×
Pn−3)/(P2 × Pn−3) by construction. Moreover, Xξ × Pn−3 is birational to Pn over
k (Lemma 7.12). By Proposition 7.10, two conic bundles (Xξ ×Pn−3)/(P2 ×Pn−3)
and (Xξ′ ×Pn−3)/(P2×Pn−3) are equivalent only if there exist surjective morphisms
∆ξ ∆ξ′ and ∆ξ′ ∆ξ. This is only possible if ξ = ξ′, by Lemma 7.14(2). �

7.C. Proofs of Theorems E and C.

Proof of Theorem E. By Theorem D, we have a group homomorphism and a groupoid
homomorphism

Bir(Pn) ˚C∈CB(Pn)
(

⊕M(C) Z/2
)

BirMori(Pn)
∩

For each subfield k ⊆ C, we can embed Birk(Pn) into BirC(Pn) and look at the im-
age in ˚C∈CB(Pn)

(

⊕M(C) Z/2
)

. We consider the set of decomposable conic bundles
Xi/Bi defined over k indexed by J of Proposition 7.15, which give pairwise dis-
tinct elements of Ci ∈ CB(Pn), and associate to these birational maps ψi : Xi Pn

defined over k. For each i ∈ J , there is an involution ιi ∈ ψi Birk(Xi/Bi)ψ
−1
i ⊆

Birk(Pn) whose image in ⊕M(Ci) Z/2 is not trivial by Proposition 6.9. One can thus
take a projection ⊕M(Ci) Z/2 Z/2 such that the image of ιi is non-trivial. We
obtain a surjective group homomorphism from Birk(Pn) to ˚i∈J Z/2 where J has
the cardinality of k and such that each involution ιi ∈ Birk(Pn) is sent onto the
generator indexed by i. There is thus a section of this surjective group homomor-
phism. �

Remark 7.16. As Proposition 7.15 gives an infinite image, the above proof nat-
urally gives a surjective homomorphism to the group ˚J(⊕Z Z/2), but since there
is an abstract surjective homomorphism from ˚J Z/2 to this group, we chose not
to mention the direct sum in the statement of the theorem.

Moreover, with the alternative form the existence of a section would be far less
clear. Indeed, (Z/2)3 does not embed in Bir(X/B) and (Z/2)7 does not embed
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in Bir(X), for X rationally connected of dimension 3 [Pro11, Pro14], so it seems
probable that ⊕Z Z/2 does not embed in Bir(X) for any variety X .

Proof of Theorem C. We consider a subfield k of C, an integer n > 3, and a subset
S ⊂ Birk(Pn) of cardinality smaller than the one of k. We want to construct a
surjective homomorphism Birk(Pn) Z/2 such that the group G generated by
Autk(Pn), by all Jonquières elements and by S is contained in the kernel. We use
the group homomorphism

τ : Birk(Pn) ˚
J

Z/2

given by Theorem E. Each j ∈ J corresponds to a conic bundle Xj/Bj. The group
Autk(Pn) is in the kernel of τ . The group of Jonquières elements is conjugated to
the subgroup J ⊂ Bir(P1 × Pn−1) consisting of elements sending a general fibre of
P1 ×Pn−1/Pn−1 onto another one. The action on the base yields an exact sequence

1 Bir(P1 × Pn−1/Pn−1) J Bir(Pn−1) 1.

This gives J = Bir(P1 × Pn−1/Pn−1) ⋊ J ′, where J ′ ⊂ J is the group isomorphic
to Bir(Pn−1) that acts on P1 × Pn−1 with trivial action on the first factor. We
can assume that P1 × Pn−1/Pn−1 = Xj0

/Bj0
for some j0 ∈ J . The image of

Bir(P1 × Pn−1/Pn−1) by τ is contained in the group Z/2 indexed by j0. Now
observe that J ′ ⊂ Ker τ . Indeed, we first decompose an element of J ′ ≃ Bir(Pn−1)
as a product of Sarkisov links between Mori fibre spaces Yi Si, where Yi has
dimension n− 1, and observe that taking the product with P1 gives Sarkisov links
between the Mori fibre spaces Yi × P1 Si × P1 of dimension n. Each of the
Sarkisov links of type II arising in such decomposition has covering gonality 1, as
cov. gon(Γ × P1) = 1 for each variety Γ.

We consider the group homomorphism τ̂ : Birk(Pn) ˚Jr{j0} Z/2 obtained by
composing τ with the projection ˚J Z/2 ˚Jr{j0} Z/2 obtained by forgetting the
factor indexed by j0.

The image by τ̂ of all Jonquières elements is trivial, hence the group τ̂ (G) has at
most the cardinality of S, which by assumption is strictly smaller than the cardi-
nality of J . We construct the expected morphism by projecting from τ̂ (Birk(Pn))
onto a factor Z/2 which is not in the image of G. �

8. Complements

8.A. Quotients and SQ-universality. A direct consequence of Theorem E is
that we have a lot of quotients of Birk(Pn) for n > 3.

Firstly, we can have quite small quotients (which is not the case for BirC(P2)
which has no non-trivial countable quotient, as mentioned before):

Corollary 8.1. For each n > 3, each subfield k ⊆ C, and each integer m > 1,

there are (abstract) surjective group homomorphisms from Birk(Pn) to the dihedral

group D2m of order 2m and the symmetric group Symm. In particular, there is a

normal subgroup of Birk(Pn) of index r for each even integer r > 1.

Proof. Follows from Theorem E and the fact that D2m and Symm are generated
by involutions. �

Secondly, we get much larger quotients:
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Corollary 8.2. For any n > 3, any subfield k ⊆ C and any integer m > 1, there

are (abstract) surjective group homomorphisms

Birk(Pn) SLm(k), Birk(Pn) Bir
Q

(P2).

Proof. We observe that SLm(k) has the cardinality of k and that Bir
Q

(P2) is count-

able. Hence, both groups have at most the cardinality of k. Both groups are
generated by involutions: for Bir

Q
(P2) this is by the Noether-Castelnuovo The-

orem which says that Bir
Q

(P2) is generated by the standard quadric involution

and by Aut
Q

(P3) ≃ PGL3(Q) = PSL3(Q), and thus is generated by involutions.

Hence, the two groups are quotients of ˚J Z/2. The result then follows from The-
orem E. �

Similarly, over C we get:

Corollary 8.3. For any n > 3, there exists a surjective group homomorphism

BirC(Pn) BirC(P2).

Recall that a groupG is SQ-universal if any countable group embeds in a quotient
of G. The free group Z ∗ Z was an early example of SQ-universal group. More
generally any nontrivial free product G1∗G2 distinct from Z/2∗Z/2 is SQ-universal,
see [Sch73, Theorem 3]. From a modern point of view, this also follows from [MO15],
by looking at the action of any loxodromic isometry on the associated Bass-Serre
tree. In particular, takingG1 = Z/2∗Z/2 andG2 = Z/2, we get that Z/2∗Z/2∗Z/2
is SQ-universal.

Corollary 8.4. For any field k ⊆ C and any n > 3, the Cremona group Birk(Pn)
admits a surjective morphism to the SQ-universal group Z/2 ∗ Z/2 ∗ Z/2. In par-

ticular, Birk(Pn) also is SQ-universal.

Proof. Follows from Theorem E and from the fact that Z/2 ∗ Z/2 ∗ Z/2 is SQ-
universal. �

8.B. Hopfian property. Recall that a groupG is hopfian is every surjective group
homomorphism G G is an isomorphism. It was proven in [Dés07] that the group
BirC(P2) is hopfian. An open question, asked by I. Dolgachev (see [Dés17]), is
whether the Cremona group BirC(Pn) is generated by involutions for each n, the
answer being yes in dimension 2 and open in dimension > 3. Theorem E relates
these two notions and shows that we cannot generalise both results at the same
time (being hopfian and generated by involutions) to higher dimension.

Corollary 8.5. For each n > 3 and each subfield k ⊆ C, the group Birk(Pn) is

not hopfian if it is generated by involutions.

Proof. Follows from Theorem E, as the group homomorphisms provided by The-
orem E is not injective, and because Birk(Pn) has the same cardinality as k (the
set of all polynomials of degree n with coefficients in k has the same cardinality as
k). �

8.C. More general fields. Every field isomorphism k
∼

k′ naturally induces an
isomorphism Birk(Pn) ∼ Birk′(Pn). More generally, it associates to each variety
and each rational map defined over k, a variety and a rational map defined over
k′. It then induces an isomorphism between the group of birational maps defined
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over k and k′ of the varieties obtained. This implies that the five Theorems A-E
also hold for each ground field which is abstractly isomorphic to a subfield of C.
This includes any field of rational functions of any algebraic variety defined over
a subfield of C as these fields have characteristic zero and cardinality smaller or
equal than the one of C.

8.D. Amalgamated product structure. We work over the field C. In the next
result, an element of CB(X) is said to be decomposable if it is the class of a decom-
posable conic bundle (in the sense of Definition 6.8).

Theorem 8.6. For each integer n > 3, and let X/B be a conic bundle, where X
is a terminal variety of dimension n. We denote by ρ the group homomorphism

ρ : Bir(X) ˚
C∈CB(X)

(

⊕
M(C)

Z/2

)

given by Theorem D. For each C ∈ CB(X) we fix a choice of representative XC/BC,

and we denote GC = ρ−1(ρ(Bir(XC/BC))) ⊆ Bir(X). Then, the following hold:

(1) For all C 6= C′ in CB(X), the group A = GC ∩GC′ contains ker ρ and does

not depend on the choice of C,C′;

(2) The group Bir(X) is the free product of the groups GC , C ∈ CB(X), amal-

gamated over their common intersection A:

Bir(X) = ˚
A
GC .

(3) For each decomposable C ∈ CB(X) we have A ( GC . Moreover, the free

product of (2) is non-trivial (i.e. A ( GC ( Bir(X) for each C) as soon as CB(X)
contains two distinct decomposable elements. This is for instance the case when X
is rational, as CB(X) then contains uncountably many decomposable elements.

Proof. (1). For each C ∈ CB(X), we denote by HC =
(

⊕M(C) Z/2
)

the factor

indexed by C in the free product ˚C∈CB(X)
(

⊕M(C) Z/2
)

= ˚C∈CB(X)HC . By defi-
nition of the group homomorphism, for each C ∈ CB(X) we have ρ(Bir(XC/BC)) ⊆
HC . As HC is a F2-vector space with basis M(C) and ρ(Bir(XC/BC)) is a linear
subspace, there exists a projection HC ρ(Bir(XC/BC)). We then denote by

ρ′ : Bir(X) ˚
C∈CB(X)

ρ(Bir(XC/BC))

the group homomorphism induced for eachC by the projectionHC ρ(Bir(XC/BC)).
By definition of the free product, we obtain HC ∩ HC′ = id for all C 6= C′. This
implies that GC ∩GC′ = ker ρ′ ⊇ kerρ.

(2). We first observe that by construction the groups GC generate the group
Bir(X). The fact that Bir(X) = ˚AGC corresponds to saying that all relations in
Bir(X) lie in the groups GC . This follows from the group homomorphism ρ to a
free product, where no relation between the groups HC exists.

(3). The fact that A ( GC for each decomposable C follows from Proposition 6.9.
Hence, the free product of (2) is non-trivial if there are least two C corresponding to
decomposable conic bundles. If X is rational, then we moreover have uncountably
many such elements by Proposition 7.15. �

In Theorem 8.6, one could be tempted to say that A = ker ρ, but this is not
clear. Indeed, it could be that some elements of ⊕M(C) Z/2 are in the image of
Bir(X) but not in the image of Bir(X/B).
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8.E. Cubic varieties. Here again we work over C. We recall the following result,
which allows to apply Theorem B to any smooth cubic hypersurface of dimension
> 3:

Lemma 8.7. Let n > 4 and let ℓ ⊂ X ⊂ Pn be a line on a smooth cubic hy-

persurface. We denote by X̂ and P the respective blow-ups of X and Pn along ℓ.
Then, the projection away from ℓ gives rise to a decomposable conic bundle and a

decomposable P2-bundle

X̂ ⊂ P = P(OPn−2 ⊕ OPn−2 ⊕ OP2(1)) Pn−2.

Moreover, the discriminant of the conic bundle is a hypersurface of degree 5.

Proof. We take coordinates [y0 : y1 : · · · : yn−2 : u : v] on Pn and assume that
ℓ ⊂ Pn is the line given by y0 = y1 = · · · = yn−2 = 0. The equation of X is then
given by

Au2 + 2Buv + Cv2 + 2Du+ 2Ev + F = 0

where A,B,C,D,E, F ∈ C[y0, . . . , yn−2] are homogeneous polynomials of degree
1, 1, 1, 2, 2, 3 respectively.

As in the proof of Proposition 6.9, we view P = P(OPn−2 ⊕ OPn−2 ⊕ OPn−2(1))
as the quotient of (A2 r {0}) × (An−1 r {0}) by (Gm)2 via

((λ, µ), (x0, x1, x2, y0, y1, · · · , yn−2)) (λx0, λx1, λµ
−1x2, µy0, · · · , µyn−2)

and denote by [x0 : x1 : x2 ; y0 : · · · : yn−2] ∈ P the class of (x0, x1, x2, y0, · · · , yn−2).
The birational morphism

P Pn

[x0 : x1 : x2 ; y0 : y1 : y2 : · · · : yn−2] [x2y0 : · · · : x2yn−2 : x0 : x1]

is the blow-up of ℓ, so X̂ is given by

Ax2
0 + 2Bx0x1 + Cx2

1 + 2Dx2x0 + 2Ex2x1 + Fx2
2 = 0,

which is then a conic bundle over P2. The discriminant of the curve gives a hyper-

surface ∆ ⊂ P2 of degree 5, given by the determinant of
(

A B D
B C E
D E F

)

. �

Corollary 8.8. For each n > 4 and each smooth cubic hypersurface X ⊂ Pn, there

exists a surjective group homomorphism Bir(X) ⊕Z Z/2

Proof. Follows from the application of Theorem B to the conic bundle associated
to blow-up a line of X (Lemma 8.7). �

Every smooth cubic threefold X ⊂ P4 is not rational, and moreover two such
cubics are birational if and only if they are projectively equivalent, i.e. equal up to
an element of Aut(P4) = PGL5(C) [CG72]. We moreover get the following:

Proposition 8.9. Let X ⊂ P4 be a general smooth cubic hypersurface. We have

a surjective group homomorphism Bir(X) ˚J Z/2, where J has the cardinality

of C.

Proof. The map of Lemma 8.7 associates to each smooth cubic threefold X and
each line ℓ ⊂ X a quintic curve ∆ ⊂ P2 and also a theta-characteristic; this induces
a birational map between the pairs (ℓ,X) of lines on smooth cubic threefolds, up
to PGL5(C), and the pairs (θ,∆), where ∆ ⊂ P2 is a smooth quintic and θ is a
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theta-characteristic, again up to PGL3(C) [CMF05, Theorem 4.1 and Proposition
4.2].

In particular, taking a general smooth cubic hypersurface X ⊂ P4 and varying
the lines ℓ ⊂ X (which form a 2-dimensional family), we obtain a family J of dimen-
sion 2 of smooth quintics ∆ ⊂ P2, not pairwise equivalent modulo PGL3(C). This
yields conic bundles that are not pairwise equivalent, parametrised by a complex
algebraic variety of dimension 2. Applying the group homomorphism of Theorem D
and projecting on the corresponding factors provides a surjective group homomor-
phism Bir(X) ˚J Z/2, similarly as in the proof of Theorem E. �

8.F. Fibrations graph. We explain how to get a natural graph structure from
the set of rank r fibrations, similarly as in [LZ17].

Let Z be a variety birational to a Mori fibre space. We construct a sequence of
nested graphs Gn, n > 1, as follows. The set of vertices of Gn are rank r fibrations
X/B, for any r 6 n, with a choice of a birational map ϕ : Z X , and modulo
Z-equivalence (Definition 4.1). We denote (X/B,ϕ) such an equivalence class. We
put an oriented edge from (X/B,ϕ) to (X ′/B′, ϕ′) if ρ(X ′/B′) = ρ(X/B) − 1 and
the birational maps from Z induce a factorisation of X/B through X ′/B′, that is,
if there is a morphism B′ B and a birational contraction X X ′ such that the
following diagram commutes

Z

X X ′

B B′

ϕ′ϕ

We call the graph G :=
⋃

n Gn the fibrations graph associated with Z. The group
Bir(Z) naturally acts on each graph Gn, and so also on G, by precomposition :

g · (X/B,ϕ) := (X/B,ϕ ◦ g−1).

The fact that Sarkisov links generate BirMori(Z) is equivalent to the fact that
G2 is a connected graph. Lemma 4.2 implies that G3 is the 1-skeleton of a square
complex, where each square has one vertex of rank 3, one vertex of rank 1 and
two vertices of rank 2. The fact that elementary relations generate all relations in
BirMori(Z) is equivalent to the fact that this square complex is simply connected.

It is not clear to us if for n > 4 the graph Gn is still the 1-skeleton of a cube
complex.
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