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Weak Fano threefolds obtained by blowing-up a space curve
and construction of Sarkisov links

Jérémy Blanc and Stéphane Lamy

Abstract

We characterize smooth curves in P
3 whose blow-up produces a threefold with anticanonical

divisor big and nef.These are curves C of degree d and genus g lying on a smooth quartic, such
that (i) 4d − 30 � g � 14 or (g, d) = (19, 12), (ii) there is no 5-secant line, 9-secant conic nor
13-secant twisted cubic to C. This generalizes the classical similar situation for the blow-up of
points in P

2.
We describe then Sarkisov links constructed from these blow-ups, and are able to prove the

existence of Sarkisov links which were previously only known as numerical possibilities.

1. Introduction

A classical result in the theory of algebraic surfaces is that the blow-up of d points in P2 gives
a del Pezzo surface (that is, a surface X with −KX ample) if and only if the points satisfy the
following conditions.

(i) The number d of points is at most eight.
(ii) No three are collinear, no six are on the same conic and no eight belong to the same

cubic being singular at one of the eight points.

More generally, the blow-up of the d points gives a weak del Pezzo surface (that is, a surface
X with −KX nef. and big) if and only if the points satisfy the following conditions (see [5,
III.2, Theorem 1]).

(i) The number d of points is at most 8.
(ii) No four are collinear, and no seven are on the same conic.

Moreover, in both cases conditions (ii) are open conditions on the set of d-uples of points of
P

2 for 1 � d � 8.
Note that these statements can easily be extended to the blow-up of points in higher

dimension: we shall derive in § 2.7 a similar characterization of weak Fano threefolds arising
from the blow-up of d points in P3.

In this paper, we study the similar but more difficult problem for the blow-up of a curve in
P

3. We prove, in particular, that the blow-up of a smooth irreducible curve C of genus g and
degree d in P3 is a weak-Fano threefold if and only if:

(i) 4d− 30 � g � 14 or (g, d) = (19, 12);
(ii) there is no 5-secant line, 9-secant conic nor 13-secant twisted cubic to C, and C is

contained in a smooth quartic.

Received 14 July 2011; revised 6 January 2012; published online 1 June 2012.

2010 Mathematics Subject Classification 14E05, 14E30.

The first author was supported by the Swiss National Science Foundation grant no. PP00P2 128422/1. The
second author was supported by a Marie Curie IntraEuropean Fellowship, on leave from the Institut Camille
Jordan, Université Lyon 1.
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We obtain in fact a more precise result, which is our main theorem below. Here, we denote
by HS

g,d the Hilbert scheme of smooth irreducible curves of genus g and degree d in P
3. We

always work over the base field C of complex numbers.

Theorem 1.1 (see Table 1). Let C ∈ HS
g,d be a curve of genus g and degree d. We denote

by X the blow-up of P
3 along C and by −KX its anticanonical divisor. Consider the sets

A0 = {(6, 5), (10, 6), (8, 8), (12, 9)};
A1 = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 3), (1, 4), (2, 5), (4, 6)};
A2 = {(1, 5), (3, 6), (5, 7), (10, 9)};
A3 = {(0, 5), (0, 6), (1, 6), (2, 6), (3, 4),

(3, 7), (4, 7), (6, 7), (6, 8), (7, 8), (9, 8), (9, 9), (12, 10), (19, 12)};
A4 = {(0, 7), (1, 7), (2, 7), (2, 8), (3, 8),

(4, 8), (5, 8), (6, 9), (7, 9), (8, 9), (10, 10), (11, 10), (14, 11)}.

These pairs form a partition of all (g, d) corresponding to non-empty HS
g,d with 4d− 30 � g �

14 or (g, d) = (19, 12), and we have the following characterizations.

(i) The variety X is Fano, that is, −KX is ample, if and only if (g, d) ∈ A1, or (g, d) ∈ A2

and there is no 4-secant line to C;
(ii) The variety X is weak Fano, that is, −KX is big and nef., if and only if one of the

following condition holds:
(a) (g, d) ∈ A1 ∪ {(3, 6)};
(b) (g, d) ∈ A2 � {(3, 6)}, and there is no 4-secant line to C;
(c) (g, d) ∈ A3, there is no 5-secant line to C, and C is contained in a smooth quartic;
(d) (g, d) ∈ A4, there is no 5-secant line, 9-secant conic, nor 13-secant twisted cubic to

C, and C is contained in a smooth quartic.

Moreover, Condition (i) corresponds to a non-empty open subset of HS
g,d if (g, d) ∈ A2, and

Condition (ii) corresponds to a non-empty open subset of HS
g,d if (g, d) ∈ A3 ∪ A4. Furthermore,

for a general curve in these sets, there are finitely many irreducible curves intersecting trivially
KX , except for (g, d) ∈ {(3, 4), (6, 7), (9, 8), (12, 10), (19, 12)}.

Another aspect of our work is the construction of Sarkisov links. Recently, several articles
appeared which contain lists of numerical possibilities for Sarkisov links between threefolds.
In a series of two papers [16, 17], Jahnke, Peternell and Radloff embark on the classification
of smooth threefolds X with big and nef. (but not ample) anticanonical divisor, and Picard
number equal to 2. With these assumptions there are two contractions onX: a Mori contraction
(of fibring type or divisorial type) and another one given by the linear system |−mKX | for
m� 0, which we call the anticanonical morphism. If the latter one is a small contraction,
which is the case treated in [17], then one can perform a flop to obtain another weak Fano
threefold X ′, with another Mori contraction. The whole picture is a Sarkisov link.

There are several cases depending on the type of the Mori contractions on X and X ′. In [17]
are classified all possible links where at least one of the contractions is of fibring type (conic
bundle or del Pezzo fibration). In the paper by Cutrone and Marshburn [4], the classification
is completed with a list of all possible links where both contractions are divisorial. We should
also mention the paper by Kaloghiros [18] where she produces similar tables with a different
motivation in mind. Note that in many cases the links appearing in these lists are only numerical
possibilities, and the actual geometrical existence is left as an open problem.
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Table 1. Pairs (g, d) with (g, d) = (19, 12) or 4d − 30 � g � 14 such that there exists a smooth
curve C ⊂ P

3 of genus g and degree d.

g Plane Quadric Cubic Quartic

0 (0,1)(0,2) (0,3)(0,4) (0, 5)(0, 6) (0, 7)
1 (1,3) (1,4) (1,5)(1, 6) (1, 7)
2 (2,5) (2, 6) (2, 7)(2, 8)
3 (3, 4)∗ (3,6)(3, 7) (3, 8)
4 (4,6) (4, 7) (4, 8)
5 (5,7) (5, 8)
6 ������(6, 5) (6, 7)∗ (6, 8) (6, 9)
7 (7, 8) (7, 9)
8 ������(8, 8) (8, 9)
9 (9, 8)∗ (9, 9)
10 ������(10, 6) (10,9) (10, 10)
11 (11, 10)
12 ������(12, 9) (12, 10)∗
14 (14, 11)
· · ·
19 (19, 12)∗

The columns correspond to the minimal degree of a surface containing a general curve of type (g, d).
Furthermore, the blow-up X of such a general curve C ⊂ P

3 has an anticanonical divisor −KX which is big; it
is ample for bold pairs (g,d). For the other cases, it is nef. except in the four cases crossed out, and the
anticanonical morphism is a divisorial contraction if there is a star, and it is a small contraction otherwise.

Table 2. Pairs (g, d) such that a general curve in HS
g,d does not lie on a cubic, and gives rise to

a weak Fano threefold X with small anticanonical morphism, hence a Sarkisov link.

g d Link to Reference(s)

0 7 (0, 7) ⊂ P
3 [4, 90]

1 7 (1, 7) ⊂ X22 [4, 98]
2 7 (0, 5) ⊂ V4 [4, 103]
2 8 (2, 8) ⊂ P

3 [4, 49]
3 8 (3, 8) ⊂ P

3 [4, 75]
4 8 (4, 10) ⊂ V5 [4, 89]
5 8 (5, 8) ⊂ P

3 [4, 99]
6 9 (6, 9) ⊂ P

3 [4, 50]
7 9 (0, 3) ⊂ X12 [15, p. 103]
8 9 dP5 [17, Proposition 6.5(25)]
10 10 (10, 10) ⊂ P

3 [4, 51]
11 10 (11, 10) ⊂ P

3 [4, 76]
14 11 (14, 11) ⊂ P

3 [4, 52]

We also indicate the end product of the link, and a reference where the numerical possibility was announced.

As a consequence of our study, we obtain a proof of the existence of some previously
hypothetical links. We gather in Table 2 the Sarkisov links, involving a flop and starting
with the blow-up of a smooth space curve, whose existence was left open: they correspond to
the set A4, which is the fourth column in Table 1, and their existence is proved in § 5.4.

As a final remark, note that the truly new result in this paper lies in the last five lines in
Theorem 1.1, about the generic existence of these curves. Indeed, it would be possible to recover
the possible (g, d) from the papers [4, 17] cited above. However, we shall derive the bound on
g and d starting from scratch, and it is interesting to keep in mind that both conditions (i)
and (ii) are improvements on the following easy estimates. Once we know (by Riemann–Roch’s
formula, see § 5.4) that the curve C is contained in many (in particular, two distinct) quartic
surfaces, we have d � 16. Then condition (i) is really about bringing down this condition to
d � 12. Similarly, a curve Γ of degree n and at least 4n+ 1 secant to C would forbid −KX
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to be nef.; but since by Bezout’s Theorem such a bad curve must be contained in all quartic
surfaces containing C, we have the crude estimate n � 16 − d. Then condition (ii) tells us that
it is sufficient to check for the absence of bad curve in degree n � 3, and only among smooth
rational ones (and in fact in many cases n � 2 or even 1 is sufficient, see Proposition 5.8 for
details).

The organization of the paper is as follows.
After gathering in § 2 some preliminary results, we study the threefolds obtained by blowing-

up a smooth curve contained in a surface S ⊂ P
3 of small degree. This is motivated by the fact

that if the blow-up X of a smooth curve C ⊂ P
3 is a weak Fano threefold, then C is contained

in a (possibly reducible) quartic.
The case deg(S) � 2 in § 3 serves as a warm-up. This is essentially a nice exercise, and also

the only case where we can do an exhaustive study: we do not make any assumption on the
singularities of S or about the generality of C.

The case of a Sarkisov link starting with the blow-up of a curve in a smooth cubic was
already found in the literature. In § 4, we give a fairly complete account of this case since we
shall use a similar construction in the following harder case, and also generalize it to smooth
curves contained in a normal rational cubic.

In § 5, we study the case when C is contained in a quartic surface but not in a cubic, where
lies the principal difficulty of the paper. The proof of Theorem 1.1 is given in § 5.3, as a direct
consequence of the previous study.

Since our motivation comes from the study of the Cremona group of rank 3 (remark that
eight of the cases in Table 2 correspond to birational self-maps of P

3), we focused the discussion
on the already substantial case of Sarkisov links starting with the blow-up of a smooth curve
in P3. However, one could probably obtain in a similar way the existence of Sarkisov links
starting from other Fano threefolds†.

2. Preliminaries

2.1. Sarkisov links

Let C ⊂ P
3 be a smooth curve of genus g and degree d and let π : X → P

3 be its blow-up. We
denote by E = π−1(C) the exceptional divisor, and f an exceptional curve. The Picard group
Pic(X) is generated by H and E, where H is the pull-back of a hyperplane. Moreover, N1(X)
is generated by f and by l, the pull-back of a line. The intersection form on X is given by

H · l = 1, E · f = −1, H · f = E · l = 0.

The pseudo-effective cone Eff(X) is generated by E and R, where R should correspond to
the strict transform of surfaces of degree n and passing with multiplicity m through C, with
m/n maximal. It is not clear if the supremum is realized, so R might not be represented by an
effective divisor.

Here are some situations where R is realized by an effective divisor, and where the contraction
of R gives rise to a Sarkisov link.

If −KX is ample, then R is an extremal ray, and since X is smooth the contraction X → Y
of R is either a divisorial contraction (Y is a terminal Fano threefold) or a Mori fibration (conic
bundle or del Pezzo fibration).

†After this work was completed, Amad, Cutrone and Marshburn produced a follow-up to the paper [4] where
they obtained the existence of many Sarkisov links. Interestingly their method is quite different from ours:
see [1].



WEAK FANO THREEFOLDS 1051

If −KX is not ample, but big and nef., and if the anticanonical morphism given by |−mKX |,
m� 0, corresponds to a small birational map, then R corresponds to finitely many curves
on X and we can consider the flop X ��� X ′ of these curves. Then X ′ admits an extremal
contraction which again can be of divisorial or fibring type.

In any case, we have a Sarkisov link of type II (from P
3 to Y ) or I (from P

3 to X ′) of the form

X �����

����
��

��
��

X ′

���
��

��
��

�

P
3 Y

(1)

where X ��� X ′ is a flop or an isomorphism.
Note that we would have a similar discussion replacing P

3 by any smooth prime Fano
threefold. More generally, we have:

Proposition 2.1. Assume that X is a smooth threefold with Picard number 2, big and
nef. anticanonical divisor, and small anticanonical morphism. Then the two contractions on X
yield a Sarkisov link (with or without a flop depending if −KX is ample).

This was the point of view adopted in [17].
The effective cone of curves NE(X) ⊂ N1(X) is generated by f and r, where r should

correspond to the strict transforms of curves of degree m which intersect C in n points, with
n/m maximal. Again, it is not clear if r is represented by an effective curve.

We shall use repetitively the following simple observation, which follows from the identity
−KX = 4H − E:

Lemma 2.2. The anticanonical divisor −KX is nef. if and only if there is no irreducible
curve in NE(X) which is equivalent to ml − nf with n > 4m.

Similarly, if −KX is ample, then there is no irreducible curve in NE(X) which is equivalent
to ml − nf with n � 4m.

We will see these problematic curves either on X, as curves equivalent to ml − nf , or on P3,
as curves of degree m passing n times (counted with multiplicity) through C.

Note that if C is contained in a quartic surface S, then all curves corresponding to n > 4m
must lie in S. Furthermore, the curves we are interested in must lie on quartics, as we shall see
in § 2.6.

2.2. Linear system of surfaces containing a curve

We recall the following standard consequence of the Riemann–Roch formula for curves:

Lemma 2.3. Let C ⊂ P
3 be a smooth curve of genus g and degree d.

For any integer n > (−2 + 2g)/d the projective dimension of the linear system of hypersur-
faces of P

3 of degree n that contain C is at least equal to

(n+ 1)(n+ 2)(n+ 3)
6

− nd− 2 + g.

In particular, we have the following.

If 2g − 2 < d < 3 + g, C is contained in a plane.
If (2g − 2)/2 < d < (9 + g)/2, C is contained in a quadric surface.
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If (2g − 2)/3 < d < (19 + g)/3, C is contained in a cubic surface.

Proof. Let n � 1 be an integer, and denote by φn : P
3 → P(Vn) the nth Veronese embedding,

where Vn is the vector space of polynomials of degree n in four variables, of dimension N =
(n+ 1)(n+ 2)(n+ 3)/6. Note that N = 4, 10, 20 for n = 1, 2, 3.

We compose the embedding C ↪→ P
3, which is given by a linear system of degree d, with

φn and obtain an embedding φ : C ↪→ PN−1 of degree dn. Denote by D a hyperplane section
with respect to this embedding. If the projective dimension of the complete linear system |D|
of all effective divisors of degree dn is strictly smaller than N − 1, then φ(C) is contained in a
hyperplane, which amounts to say that C ⊂ P

3 is contained in a hypersurface of degree d.
Applying Riemann–Roch to the system on the curve, we obtain

l(D) − l(K −D) = degD + 1 − g,

where l(D) = 1 + dim|D| is the vectorial dimension of |D|.
Since we assume n > (−2 + 2g)/d, we have deg(K −D) = −2 + 2g − nd < 0. So D is non-

special and we have dim|D| = nd− g. In consequence, if nd− g < N − 1 (or equivalently d <
(N − 1 + g)/n), we find a hypersurface of degree d which contains the curve. More generally,
the vectorial dimension of the linear system of hypersurfaces of degree d which contain the
curve is at least equal to N − nd− 1 + g.

2.3. Cube of the anticanonical divisor

Lemma 2.4. Let C ⊂ Y be a smooth curve of genus g in a smooth threefold, and let
π : X → Y be the blow-up of C. Then

K2
X · E = −KY · C + 2 − 2g;

(−KX)3 = (−KY )3 + 2KY · C − 2 + 2g.

In particular, if Y = P3 and C ∈ HS
g,d, then

K2
X · E = 2 + 4d− 2g;

(−KX)3 = 62 − 8d+ 2g;

and (−KX)3 > 0 ⇐⇒ 4d− 30 � g.

Proof. Denoting by E the exceptional divisor, we have KX = π∗KY + E; hence

K2
X · E = π∗KY · (π∗KY · E) + 2(π∗KY · E) · E + E3;

K3
X = K3

Y + 3π∗KY · (π∗KY · E) + 3(π∗KY · E) · E + E3.

Furthermore, denoting by f a fibre of the ruled surface E we have (see [15, Lemma 2.2.14])

π∗KY · E = (KY · C)f ; E · f = −1;

π∗KY · f = 0; E3 = KY · C + 2 − 2g.

Hence

π∗KY · (π∗KY · E) = 0;
(π∗KY · E) · E = −KY · C;

and the result follows.

2.4. A result of Mori

We shall use the following result from [23].
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Proposition 2.5. Let g � 0 and d � 1 be two integers such that 8g < d2. Then there
exists a smooth quartic surface S ⊂ P

3 containing a smooth irreducible curve of genus g and
degree d.

Moreover, Mori also gives a converse statement that we shall need in the slightly more general
setting of a reducible curve.

If C =
⋃
Ci is a projective (possibly reducible and singular) curve, recall that the Hilbert

polynomial PC(T ) has the form PC(T ) = dT + 1 − g, where d is the degree of C and where by
definition g is the arithmetic genus of C. If furthermore C lies inside a smooth surface S , the
arithmetic genus g of C satisfies the adjunction formula 2g − 2 = (KS + C) · C. In particular,
if S is a K3 surface, 2g − 2 = C2.

The proof of the following result is taken almost verbatim from Mori [23], where the case of
an irreducible curve is treated. We reproduce the argument for the convenience of the reader.

Proposition 2.6. Let S ⊂ P
3 be a smooth quartic surface, and let C =

⋃
Ci ⊂ S be a

curve of degree d and genus g. Assume that C is not a complete intersection of S with another
surface. Then 8g < d2.

Proof. Take H a hyperplane section on S. We have

C ·H = d,

H ·H = 4,
H · (dH − 4C) = 0.

Since C is not a complete intersection, dH − 4C 	≡ 0. Hence, by the Hodge index Theorem,
we have

0 > (dH − 4C) · (dH − 4C) = 4d2 − 8d2 + 16(2g − 2).

This gives d2 − 8g > −8. To show that d2 − 8g > 0, we have to exclude the cases d2 − 8g =
−7,−4 or 0 (other values are not square modulo 8).

If d2 − 8g = 0, then d = 4d′ for some d′ ∈ Z. Let E = d′H − C. Then

E ·H = (d′H − C) ·H = 4d′ − d = 0,

E2 = d′2H2 + C2 − 2d′H · C = 4
d2

16
+ 2g − 2 − 2

d2

4
= −2.

Since a quartic surface has trivial canonical divisor and arithmetic genus 1, the Riemann–Roch
formula on S gives:

l(E) + l(−E) � E2

2
+ 2 = 1.

Hence, E or −E is an effective curve, but then H · E = 0 contradicts H ample.
If d2 − 8g = −7, then d = 2d′ − 1 for some d′ ∈ Z. Let E = d′H − 2C. Then

E ·H = (d′H − 2C) ·H = 4d′ − 2d = 2,

E2 = d′2H2 + 4C2 − 4d′H · C = 4
(d+ 1)2

4
+ 8g − 8 − 2d(d+ 1) = 0.

The Riemann–Roch formula on S gives:

l(E) + l(−E) � E2

2
+ 2 = 2.
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Since E ·H = 2, E is effective and has at most two irreducible components. So E is a line or
a (possibly degenerate) conic. But this contradicts E2 = 0 (by adjunction, a smooth rational
curve on S has square −2).

Finally, if d2 − 8g = −4, then d = 4d′ − 1 for some d′ ∈ Z. Let E = d′H − C. Then again
E ·H = 2, E2 = 0 and we can repeat the previous argument.

2.5. Linkage

Let C and C ′ be (possibly singular or reducible) curves in P
3, of respective arithmetic genus

and degree (g, d) and (g′, d′). We say that there is a linkage of type [n1, n2] between C and
C ′, if C ∪ C ′ ∈ P3 is the complete intersection of two surfaces of respective degrees n1 and n2.
Then

2g(C ∪ C ′) − 2 = n1n2(n1 + n2 − 4),

and we have the following basic relation (see [28, Proposition 3.1(vi)]) between the genus and
degree of C and C ′ :

g − g′ =
n1 + n2 − 4

2
(d− d′).

Remark that Peskine and Szpiro focus on the case of curves which are arithmetically Cohen–
Macaulay, but the formula above does not need this assumption (see [25, (2.1)]).

Assume further that C and C ′ are contained in a smooth surface S. Using adjunction formula
on S, we have

2g(C ∪ C ′) − 2 = (C + C ′)(C + C ′ +KS) = C(C +KS) + C ′(C ′ +KS) + 2CC ′

which yields

g(C ∪ C ′) = g + g′ − 1 + (C · C ′)S .

Note that the intersection does not depend on the choice of the smooth surface S.
An application of linkage theory is the study of the irreducible components of the Hilbert

scheme HS
g,d, as illustrated by the proof of the following fact that we shall need in the proof of

the existence of the Sarkisov links listed in Table 2.

Proposition 2.7. Let (g, d) be one of the thirteen cases in Table 2. Then HS
g,d is

irreducible, except in the case (14, 11) where there are exactly two irreducible components,
one of them corresponding to curves of bidegree (3, 8) on a smooth quadric surface.

Proof. It is known that HS
g,d is irreducible if g + 3 � d (Ein), or if g + 9 � 2d � 22 (see [10]

and references therein). This gives the result for the first twelve cases.
For (14, 11), we now sketch a proof, which was explained to us by H. Nasu, using similar

techniques as in [25].
First assume that C ∈ HS

14,11 is contained in a cubic surface S. Then:

(i) S is not a cone: otherwise by [25, Lemma 2.10] we would have d ≡ 0 or 1 mod 3, and in
our case d = 11 ≡ 2 mod 3;
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(ii) S is normal: otherwise the identity (see [25, (2.7)])

g =
(k − 1)(2d− 3k − 2)

2

should be satisfied for some k � 0, which is not the case for (g, d) = (14, 11).

Then the curve C is a specialization of a curve in a smooth cubic surface [25, Theorem 2.7],
and the family of such curves has dimension g + d+ 18 = 43 [25, Proposition 2.5]. But it
is a standard fact that any irreducible component of HS

g,d has dimension greater than 4d
(see[25, Remark 2.6]); in particular, any irreducible component of HS

14,11 must have dimension
at least 44.

Assume now that C is contained in a quadric. If C was contained in a quadric cone, we
would have g = (a− 1)(a+ e− 1) and d = 2a+ e for some a, e ∈ N (see the last part of the
proof of Proposition 3.1); but there is no such relation for (g, d) = (14, 11). Thus, C must be a
curve of bidegree (3, 8) on a smooth quadric. The dimension of such curves is g + 2d+ 8 = 44,
and they form an irreducible component of HS

14,11.
Finally, we observe that we can construct C contained in an irreducible quartic by linkage.

Indeed, start from a smooth curve C ′ ∈ HS
2,5 contained in a smooth quadric Q′: if we identify

Q′ to P
1 × P

1, C ′ is a curve of bidegree (2, 3). One can show that such a curve is 4-regular,
and applying a theorem of Martin-Deschamps and Perrin [25, Theorem 3.4], we obtain that
a general linkage of type [4, 4] yields a smooth curve C ∈ HS

14,11. Denote by W the family
of curves in HS

14,11 obtained by this process. Then by [25, Lemma 2.2], W has dimension
4(11 − 5) + 20 = 44 (here, we use the fact that dimHS

2,5 = 20, which can be computed directly
or alternatively by using linkages of type [2, 4] to twisted cubics, whose parameter family has
dimension 12). The closure of such curves is the second irreducible component of HS

14,11, and
contains as a codimension 1 closed subset the curves lying in cubic surfaces.

2.6. Existence of smooth quartics containing C

Proposition 2.8. If the blow-up π : X → P
3 of a smooth curve C ⊂ P

3 gives rise to a
weak Fano threefold X, then C is contained in a pencil of quartics whose general member is
smooth.

Proof. By the Riemann–Roch formula on a threefold and Kawamata–Viehweg vanishing,
dim|−KX | = (−KX)3/2 + 2.

Assume first that the linear system |−KX | is base point free, which implies that a general
element S ∈ |−KX | is a smooth K3 surface. Then the restricted system |−KX ||E is also base
point-free. Since −KX · f = 1, where f is an exceptional curve for π, we deduce that S|E is
a smooth irreducible curve which is a section of π : E → C. In consequence π(S), which is a
general quartic through C, is smooth.

We now assume that the base locus of |−KX | is non-empty. By a result of Shin [31, Theorem
(0.5)] (building on previous results of Shokurov and Reid), the base locus |−KX | is isomorphic
to a smooth rational curve Γ, and the general member S of |−KX | is smooth away from Γ, hence
globally smooth by Bertini’s Theorem (Shin assumes X with canonical singularities, but since
in our setting X is smooth we obtain a more precise result). We do not repeat the argument of
Shin here, but we want to point out that the main point is a result of Saint-Donat [29], which
states that a big and nef. linear system on a smooth K3 surface which is not base point-free
has the form kM + Γ, where k > 0, M is a smooth elliptic curve, Γ is a rational (−2)-curve and
M · Γ = 1. More specifically, Saint-Donat proved this for an ample linear system, and the same
property holds in the big and nef. case by [31, Lemma (2.1)]. The result follows by applying
Saint-Donat’s result to the linear system |−KX ||S .
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We deduce that if a general quartic π(S) through C is singular, then the singular locus is a
unique ordinary double point p = π(Γ), where Γ ⊂ S is the base locus of |−KX ||S , and is also
a fibre of the exceptional divisor E. We now derive a contradiction from this situation.

By Lemma 2.4, we have S · S · E = (−KX)2 · E = 2 + 4d− 2g. On the other hand, S · S ·
E = (kM + Γ) · E = kM · E − 1. Hence the relation

M · E =
3 + 4d− 2g

k
.

We also have 1 = S ·M = −KX ·M = −(π∗(KP3) + E) ·M = 4deg π(M) −M · E. Since
π(M) is an elliptic curve, we have deg π(M) � 3, and

M · E � 11.

On the other hand, again by Lemma 2.4 we have 4d � g + 30 hence 3 + 4d− 2g � 33 − g.
Thus, we have 3 + 4d− 2g < 33, since if g = 0, then 4d � g + 30 implies 4d � 28 < 30. Since
3 + 4d− 2g is odd, we obtain k = 1. Moreover, we have a linkage of type [4, 4] between π(M)
and C, hence g − g(M) = 2(d− deg(M)) with deg(M) = 16 − d and g(M) = 1. So we obtain
the contradiction g = 2(2d− 16) + 1 = 4d− 31 < g.

2.7. Blow-up of points in P
k

For the sake of completeness, we include here the case of blow-up of points in P
k, k � 3, which

is an easy but nice exercise. It is probably well known to specialists, but we did not find any
reference in the literature. Note, however, that Geiser and Bertini like involutions associated
with the blow-up of 6 or 7 points in P

3 were classically known (see, for example, [6, 4.6 p. 91]).

Proposition 2.9. Let k � 3. The blow-up X of d points in Pk is Fano if and only if d = 1.
It is weak Fano is and only if k = 3, d � 7 and the following conditions hold:

(1) no three points belong to a same line;
(2) no five points belong to the same conic (or equivalently to the same plane);
(3) no seven points belong to the same twisted cubic.

Proof. The blow-up of one single point gives a Mori fibre space X → P
k−1 induced by the

lines passing through the blown-up point. It is clearly a Fano variety.
Assume now d � 2. The strict transform l of any line passing through two points satisfies

KX · l = −k − 1 + 2(k − 1) = k − 3. Hence −KX cannot be nef. if k � 4. We assume now k = 3.
If X is weak-Fano, we have (−KX)3 = 64 − 8d > 0 so d � 7, and the three conditions above
are clearly satisfied. It remains to prove that the conditions imply that X is weak-Fano.

Let Λ be the linear system of quadrics of P
3 passing through the d blown-up points, which

corresponds to the image of | − 1
2KX |. The fact that d � 7 implies that dim Λ � 9 − d � 2.

Since no five of the points belong to the same plane, a general member of Λ is irreducible.
We can thus find two distinct irreducible quadrics Q1 and Q2 passing through the d points.

If one irreducible curve of X intersects −KX negatively, it has to come from a curve C ⊂ P3

contained in Q1 and Q2, which has thus degree n � 4. Writing m1, . . . ,md the multiplicities of
C at the points, we have

∑d
i=1mi > 2n.

If n = 1, we find at least three points on C, impossible by hypothesis. We get a similar
contradiction if C is a conic.
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If n = 3, we have either seven points on the curve or six points whose 1 is singular. The curve
cannot lie on a plane, otherwise six points would lie on a plane. And it cannot be a twisted
cubic by hypothesis.

The last case is when n = 4 which implies that C is a complete intersection of two quadrics
hence has arithmetic genus g = 1. In particular, C admits at most one double point and∑d

i=1mi � 8 = 2n: contradiction.

3. Curves in a plane or a quadric

Proposition 3.1. Let C ⊂ S ⊂ P
3 be a smooth curve of genus g and degree d which is

contained in a plane, a smooth quadric or a quadric cone S. Let π : X → P
3 be the blow-up of

C. We note NE(X) = 〈f, r〉, where f is a π-exceptional curve. Then −KX is big, r = l − nf
where l is the pull-back of a line of P

3 and n ∈ N, and one of the following occurs:

(i) −KX is ample; there exists a contraction X → Y which yields a Sarkisov link P
3 ��� Y

or P3 ��� X. Namely we are in one of the following cases, the details of which are
discussed in Examples 3.3(i)–(iii), 3.4(i)–(v) and 3.5(i)–(ii), respectively:
(a) S is a plane: (g, d) = (0, 1), (0, 2) or (1, 3);
(b) S is a smooth quadric, and C is not a plane curve: (g, d) = (0, 3), (0, 4), (1, 4), (2, 5)

or (4, 6);
(c) S is a quadric cone, and C is not contained in any other quadric: (g, d) = (2, 5) or

(4, 6);
(ii) −KX is nef. but not ample, then the curves numerically equivalent to r = 4l − f cover

the surface S, the anticanonical morphism is a divisorial contraction and we are in one
of the following cases:
(a) S is a plane: (g, d) = (3, 4);
(b) S is a smooth quadric, and C is not a plane curve: (g, d) = (0, 5), (3, 6), (6, 7) or

(9, 8).
(c) S is a quadric cone, and C is not contained in any other quadric: (g, d) = (6, 7) or

(9, 8).
(iii) −KX is not nef., then the curves numerically equivalent to r = l − nf for n � 5 cover

the surface S, |−mKX | has a fixed component for any m and we are in one of the
following cases:
(a) S is a plane: g = (d− 1)(d− 2)/2 and d � 5; if g � 14, then (g, d) = (6, 5) or (10, 6);
(b) S is a smooth quadric, and C is not a plane curve; if 4d− 30 � g � 14, then (g, d) ∈

{(0, 6), (0, 7), (4, 7), (5, 8), (6, 9), (8, 8), (10, 9), (12, 9), (12, 10), (14, 11)}.
(c) S is a quadric cone, C is not contained in any other quadric and g � 16.

Moreover, any of the possibilities given above occurs.

Proof. It is clear that −KX is big, since |−KX | contains the reducible linear system
generated by the quartics containing S.

Suppose first that C is contained in a plane, which implies that g = (d− 1)(d− 2)/2 and that
r = l − df , where l is the pull-back of a line of P3. If d � 2, the curves numerically proportional
to r cover the strict transform of the plane. If d = 4, these curves intersect trivially KX , so
−KX is nef. but the anticanonical morphism contracts the strict transform of the plane. If
d > 4, these curves intersect negatively −KX so |−mKX | is not movable and not nef. If d � 3,
these intersect positively −KX so X is Fano. The cases d = 1, 2, 3 yield g = 0, 0, 1 and the
three Sarkisov links are described in Example 3.3.

Suppose now that C is contained in a smooth quadric Q ⊂ P3, isomorphic to P1 × P1. On
this surface C ∼ af1 + bf2, where f1 and f2 are the two fibres of the two projections, and the
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restriction of a hyperplane section is H = f1 + f2 = − 1
2KQ. Thus, we find d = H · C = a+ b

and −2 + 2g = C2 − 2CH = 2ab− 2a− 2b, so g = (a− 1)(b− 1). We can assume that a � b
and that a � 2 (otherwise C is contained in a plane).

We now prove that r = l − af . Suppose for contradiction that r = ml − nf with n > am is
the strict transform of a curve of degree m passing n times through C, its intersections with
the quadric Q is 2m � am < n, so the curve is contained in the quadric. On Q it is equivalent
to αf1 + βf2 with α+ β = m, and its intersection with C is bα+ aβ � aα+ aβ = am < n, a
contradiction.

If a � 4, all curves equivalent to r cover the strict transform of Q, and −KX is not ample.
Moreover, −KX is nef. if and only if a = 4, and in this case the anticanonical morphism
contracts the strict transform of Q. The possibilities for a = 4 are (a, b) = (4, 1), (4, 2), (4, 3)
and (4, 4), corresponding to (g, d) = (0, 5), (3, 6), (6, 7) and (9, 8). If a � 5, −KX is not nef.
and thus −mKX is not movable; since g = (a− 1)(b− 1) and d = a+ b, the possibilities where
4d− 30 � g � 14 are (0, 6), (0, 7), (4, 7), (5, 8), (6, 9), (8, 8), (10, 9), (12, 9), (12, 10) and (14, 11).

If a � 3, −KX is ample and the contraction of all curves equivalent to r yields a contraction
X → Y . The possibilities are (a, b) = (2, 1), (2, 2), (3, 1), (3, 2) and (3, 3), corresponding to
(g, d) = (0, 3), (1, 4), (0, 4), (2, 5) and (4, 6): see Example 3.4.

Note that when a = 3 and b ∈ {1, 2, 3}, C is not contained in another quadric because 2H − C
is not effective on Q.

Suppose finally that C is contained in a quadric cone V ⊂ P
3. Blowing-up the singular

point yields the Hirzebruch surface F2, whose Picard group is generated by f0 and s, where
f0 is a fibre and s the exceptional section of self-intersection −2. On F2, C is equivalent to
as+ (2a+ e)f0 for some a, e ∈ N. Since C is smooth on V , its intersection e = C · s with s
on F2 is equal to 0 or 1; moreover, a = C · f0 � 0. The restriction of a hyperplane section of
P3 on F2 is H = s+ 2f0 = − 1

2KF2 . This implies that d = C ·H = 2a+ e and that −2 + 2g =
C2 − 2C ·H = ea+ a(2a+ e) − 2(2a+ e), so g = (a− 1)(a+ e− 1).

We can assume that C − 2H is not effective, since otherwise C would be contained in a plane
or a smooth quadric. This means that either (a, e) = (2, 1) or a � 3.

We now prove that r = l − (a+ e)f , corresponding to the transform of a rule on V . Suppose
for contradiction that r = ml − nf with n > (a+ e)m is the strict transform of a curve C ′

of degree m passing n times through C. Its intersections with the quadric V is 2m � (a+
e)m < n, so the curve is contained in the quadric. On F2, the curve C ′ is equivalent to αs+
mf0, with α = C ′ · f0 � 0 and its intersection with C is eα+ am. We have C · s = e, C ′ ·
s = m− 2α, so the contraction of s produces e(m− 2α) new intersecting points. Hence the
number of intersecting points of C and C ′ in P

3 is eα+ am+ e(m− 2α) � (a+ e)m < n, a
contradiction.

If a+ e � 4, all curves equivalent to r cover the strict transform of Q and −KX is not
ample. Moreover, −KX is nef. if and only if a+ e = 4, which corresponds to (a, e) = (3, 1) and
(4, 0), and give, respectively, (g, d) = (6, 7) and (9, 8). In this case, the anticanonical morphism
contracts the strict transform of Q.

If a+ e � 5, −KX is not nef. and thus |−mKX | must have a fixed component for
all m; moreover, g = (a− 1)(a+ e− 1) � 16. The possibilities where 4d− 30 � g � 14 are
(0, 6), (0, 7), (4, 7), (5, 8), (6, 9), (8, 8), (10, 9), (12, 9), (12, 10), (14, 11).

If a+ e � 3, −KX is ample and the possibilities for (a, e) are (2, 1) and (3, 0), which give,
respectively, (g, d) = (2, 5) and (4, 6): see Example 3.5.

Corollary 3.2. Let C ⊂ S ⊂ P
3 be a smooth curve of genus g and degree d which is

contained in a plane, a smooth quadric or a quadric cone S. Let π : X → P3 be the blow-up
of C.
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Then the following conditions are equivalent:

(i) −KX is ample;
(ii) there is no 4-secant line to C;
(iii) (g, d) ∈ A1 = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 3), (1, 4), (2, 5), (4, 6)}.
The following are also equivalent:

(i) −KX is big and nef.;
(ii) there is no 5-secant line to C;
(iii) (g, d) ∈ A1 ∪ {(0, 5), (3, 4), (3, 6), (6, 7), (9, 8)}.

Proof. The proof is the same for a Fano or a weak Fano threefold. Implication (i) ⇒ (ii)
follows from Lemma 2.2. Implications (ii) ⇒ (iii) ⇒ (i) follow from Proposition 3.1.

Example 3.3. If C ⊂ P ⊂ P3 is a smooth plane curve of degree d, we have g =
(d− 1)(d− 2)/2. The blow-up of C yields the following Sarkisov links.

(i) If d = 1, the blow-up of the line C produces a link of type I. The varietyX is a P
2-bundle

over P
1, where the fibres correspond to planes through C.

(ii) If d = 2, the blow-up of the conic C, followed by the contraction of the plane P on a
smooth point, produces a link of type II. The variety Y is a quadric threefold.

(iii) If d = 3, the blow-up of the plane cubic C, followed by the contraction of the plane P
on a terminal point (contraction of type E5), produces a link of type II. The variety Y
is a singular Fano threefold.

Example 3.4. If C ⊂ Q ⊂ P
3 is a smooth curve of bidegree (a, b) in a smooth quadric

surface Q, we have g = (a− 1)(b− 1) and d = a+ b. The blow-up of C yields the following
Sarkisov links.

(i) If (a, b) = (1, 2), (g, d) = (0, 3). The curve C is a twisted cubic, and X is a P1-bundle
over P

2, where fibres correspond to bisecants to C. Link of type I.
(ii) If (a, b) = (2, 2), (g, d) = (1, 4). The curve C is the base locus of a pencil of quadrics,

and X is a del Pezzo fibration over P1. Link of type I.
(iii) If (a, b) = (3, 1), (g, d) = (0, 4). We can contract the transform of Q to a smooth rational

curve to obtain Y a smooth prime Fano threefold. Link of type II.
We compute now −K3

Y to determine the nature of Y . Since the exceptional divisor of X → Y
is Q = P

1 × P
1, the normal bundle of Γ in Y has the form NΓ/Y = O(a) ⊕O(a). We have

KY · Γ = −2a− 2, and by Lemma 2.4

(−KY )3 = (−KX)3 − 2KY · Γ − 2 = (−KX)3 + 4a+ 6.

Now if l ⊂ Q is a contracted fibre, and s ⊂ S is a fibre of the other ruling, we have Q · l = −1
and Q · s = a. Thus

KX · s = σ∗KY · s+Q · s = KY · Γ + a = −a− 2.

Since C was a curve of bidegree (3, 1), we have KX · s = −3, hence a = 1. On the other hand,
(−KX)3 = 62 − 8.4 = 30, hence (−KY )3 = 30 + 4a+ 6 = 40. We conclude that Y is an index
2 Fano threefold V5 ⊂ P6.

(iv) If (a, b) = (3, 2), (g, d) = (2, 5). We can contract the transform of S to a smooth rational
curve to obtain Y a smooth prime Fano threefold. Link of type II.
A similar computation as in the previous example yields (−KY )3 = 32. We conclude that Y is
an index 2 Fano threefold V4 ⊂ P

5, smooth intersection of two quadrics.
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(v) If (a, b) = (3, 3), (g, d) = (4, 6). We can contract the transform of S to a terminal point
(contraction of type E3). Link of type II.

Example 3.5. If C ⊂ V ⊂ P
3 is a smooth curve in a quadric cone V , recall that blowing-

up the singular point yields the Hirzebruch surface F2, whose Picard group is generated by f0
and s, where f0 is a fibre and s the exceptional section of self-intersection −2. On F2, C is
equivalent to as+ (2a+ e)f0 for some a, e ∈ N.

(i) If (a, e) = (2, 1), (g, d) = (2, 5), we can contract the transform of V to a smooth rational
curve to obtain a prime Fano Y . Link of type II.
A similar computation as in Example 3.4(iv) yields (−KY )3 = 32. So again Y is an index 2
Fano threefold V4 ⊂ P5.

(ii) If (a, e) = (3, 0), (g, d) = (4, 6). We can contract the transform of V to a terminal point
(contraction of type E4). Link of type II.

4. Curves in cubics

Recall that any smooth cubic surface of P
3 is the blow-up of six points of P

2 such that no
three are collinear and no six are on a conic. More generally, if σ : S → P

2 is the blow-up of six
points, maybe some infinitely near, such that −KS is nef. (or equivalently such that all curves
of negative self-intersection are smooth rational (−1)-curves or (−2)-curves), the anticanonical
map η : S → P

3 is a birational morphism to a normal cubic surface, which contracts all (−2)-
curves of S (it is an isomorphism if and only if −KS is ample, which means that S is del
Pezzo).

Conversely, all normal cubic surfaces except cones over smooth cubic curves are obtained
in this way. Indeed such a surface Ŝ admits only double points, is rational (project from a
singularity) and satisfies H1(Ŝ,OŜ) = H2(Ŝ,OŜ) = 0 (use the exact sequence 0 → O(−3) →
O → OŜ → 0); hence by [7, Proposition 8.1.8(ii)] Ŝ admits only rational double points.
Alternatively, one can use the classification of singularities on cubic surfaces in [2, § 2], which
does not rely on a cohomological argument. Then the minimal resolution S → Ŝ is a weak del
Pezzo surface and is the blow-up of six points of P

2 by [7, Theorem 8.1.13]. For more details
the reader can consult [5, 7, § 8.1].

Set-up 4.1. In this section, we consider C ⊂ Ŝ ⊂ P
3 a smooth curve of genus g and degree

d which is contained in a normal rational cubic Ŝ, but not in a quadric or a plane.
We denote by η : S → Ŝ the minimal resolution of singularities of S, by σ : S → P2 a

birational morphism, which factorizes as σ = σ1 ◦ · · · ◦ σ6, where σi is the blow-up of a point
pi. We denote by Ei ∈ Pic(S) the total transform of σ−1

i (pi) on S, and by L ∈ Pic(S) the
pull-back of a general line, so that Pic(S) = ZL⊕ ZE1 ⊕ · · · ⊕ ZE6, and that the intersection
form is the diagonal (1,−1, . . . ,−1).

Since C is not a line on P3, we have C ∼ kL− ∑
miEi on S, where k > 0 is the degree of

the image of C on P
2, and m1, . . . ,m6 � 0 are the multiplicities at the points p1, . . . , p6. The

hyperplane section on Ŝ is anti-canonical (the map S → Ŝ is given by |−KS |), so d = C · (−KS).
Since C is smooth on P3, it is also smooth on S, and we have −2 + 2g = C2 + C ·KS = C2 − d
on S. This gives the following equalities:

d = 3k −
6∑

i=1

mi,

g =
(k − 1)(k − 2)

2
−

6∑
i=1

mi(mi − 1)
2

.
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Since we assume that C ⊂ P
3 is not contained in any quadric, we have that −2KS − C is

not effective on S (recall that −KS is the trace of an hyperplane section, so −2KS − C is
effective if and only if C is contained in a quadric). Up to reordering, we can also choose that
m1 � m2 � m3 � m4 � m5 � m6, that p1 ∈ P

2 and that for i � 2 either pi ∈ P
2 or is infinitely

near to pi−1. We can, moreover, assume that k � m1 +m2 +m3. Indeed, if k < m1 +m2 +m3,
the three points p1, p2 and p3 are not collinear and there exists a quadratic map P2 ��� P2

having base-points at p1, p2 and p3 (this is because there is no (−3)-curve on Ŝ); replacing
σ : S → P

2 with its composition with the quadratic map replaces k with 2k −m1 −m2 −m3,
which is strictly less than k. Reordering the points if needed and continuing this process again
if k < m1 +m2 +m3, we end up in a case where k � m1 +m2 +m3.

Proposition 4.2. Let C ⊂ Ŝ ⊂ P
3 be a smooth curve of genus g and degree d which is

contained in a rational normal cubic, but not in a quadric or a plane.
Let π : X → P

3 be the blow-up of C. The divisor −KX is big, it is nef. if and only if C
does not admit any 5-secant line. We note NE(X) = 〈f, r〉, where f is a π-exceptional curve.
Assuming Set-up 4.1, we are in one of the following cases:

(i) −KX is ample; r = l − 3f is generated by 3-secant lines and we have one of the four
following cases:

g d k (m1, . . . ,m6) dim|−KX | �

1 5 3 (1, 1, 1, 1, 0, 0) 14
3 6 4 (1, 1, 1, 1, 1, 1) 12
5 7 6 (2, 2, 2, 2, 2, 1) 10
10 9 9 (3, 3, 3, 3, 3, 3) 7

(ii) −KX is nef. but not ample, and the anticanonical morphism is a small contraction;
curves proportional to r = l − 4f are combination of a finite number of 4-secant lines
of C in P3, all being in Ŝ, and we have one of the nine following cases (the number
of 4-secants is counted with multiplicity, if Ŝ is not smooth, some 4-secants can count
twice or more):

g d k (m1, . . . ,m6) # of 4-secants dim|−KX | �

0 5 2 (1, 0, 0, 0, 0, 0) 1 13
0 6 2 (0, 0, 0, 0, 0, 0) 6 9
1 6 3 (1, 1, 1, 0, 0, 0) 3 10
2 6 4 (2, 1, 1, 1, 1, 0) 1 11
3 7 4 (1, 1, 1, 1, 1, 0) 5 8
4 7 5 (2, 2, 1, 1, 1, 1) 2 9
6 8 6 (2, 2, 2, 2, 1, 1) 5 7
7 8 7 (3, 2, 2, 2, 2, 2) 1 8
9 9 7 (2, 2, 2, 2, 2, 2) 6 6

Moreover, if Ŝ is smooth, the 4-secant lines correspond to the conic of P
2 that

passes through the last five points, to other conics through five points with similar
multiplicities, and in the case (g, d) = (6, 8) to the line through the two points of
multiplicity 1.
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(iii) −KX is nef. but not ample and the anticanonical morphism is a divisorial contraction;
r = l − 4f, the curves proportional to r cover the surface Ŝ and we have one of the
following three cases (same remark as in (ii) for the number of 4-secants):

g d k (m1, . . . ,m6) # of 4-secants

5 8 6 (2,2,2,2,2,0) 10
12 10 9 (3,3,3,3,3,2) 10
19 12 12 (4,4,4,4,4,4) 27

(iv) −KX is not nef., and there is a 5-secant line to C in P
3.

Remark 4.3. Each case occurs in a smooth cubic: we leave the verification as an exercise
to the reader (which can be done along the same lines as in Remark 4.4 below). Note that
each case also occur on some singular cubics, depending on the singularity of the cubic, or
equivalently on the position of the points blown-up by σ : S → P

2.
In case (ii), when we speak about the conic passing through the five last points, we speak

about the divisor 2L−E2 − E3 − · · · −E5 on S, which is, in general, the strict transform of
the conic passing through p2, . . . , p5; if this divisor corresponds to a reducible curve (which is
possible when Ŝ is singular), the image of this curve is also a 5-secant line in Ŝ ⊂ P

3.

Proof. We use the notation of Set-up 4.1.
As in the case of curves contained in a quadric, it is clear that −KX is big, since |−KX | gives a

birational map (it contains the reducible linear system generated by the quartics containing S).
Suppose that one (effective) divisor D ∈ {E1, L− E5 − E6, 2L− E2 − E3 − E4 − E5 −

E6} ⊂ Pic(S) satisfies D · C � 5 in S. If Ŝ is smooth, D is a (−1)-curve of S = Ŝ, which
is a 5-secant of D, implying that −KX is not nef. If Ŝ is not smooth, D is either a
(−1)-curve, or a reducible curve consisting of one (−1)-curve connected to a chain of
(−2)-curves. Since D · (−KS) = 1, the image of the reducible curve is a line of P

3, which
intersects D into five points, which is a 5-secant, implying that −KX is not nef. This
gives case (iv).

We can thus assume that D · C � 4 for any D ∈ {E1, L− E5 − E6, 2L− E2 − E3 − E4 −
E5 − E6}, which implies that k −m5 −m6 � 4, 2k −m2 −m3 −m4 −m5 −m6 � 4 and
m1 � 4. In particular, mi � 4 for i = 1, . . . , 6. This gives finitely many possibilities for
(k,m1, . . . ,m6), all listed in cases (i)–(iii).

We now show that these cases give in fact −KX nef. In all cases listed, Set-up 4.1 implies that
either L− E5 − E6, 2L−E2 − E3 − E4 − E5 − E6 or E1 realizes the biggest intersection with
C among all 27 divisors Ei, L− Ei − Ej , 2L− E1 − E2 − E3 − E4 − E5 − E6 + Ei. Recall that
each of these 27 divisors D gives a line in P

3, intersecting C into C ·D points; the 27 lines are
distinct if Ŝ is smooth, but not if Ŝ is singular. An easy check shows that the line with the
biggest intersection is equivalent to l − af on X, where a = 3 in case (i) and a = 4 in cases
(ii), (iii).

We now prove that it is the extremal ray r. This will imply that −KX is ample in case
(i) and nef. but not ample in cases (ii) and (iii). Suppose for contradiction that r = ml − nf
with n > am is the strict transform of a curve Γ of degree m passing n times through C,
its intersections with the cubic Ŝ is 3m � am < n, so the curve is contained in the cubic.
On S the curve Γ is equivalent to a sum of m divisors among the 27 divisors Ei, L− Ei −
Ej , 2L− E1 − E2 − E3 − E4 − E5 − E6 + Ei. This is a consequence of Mori’s Cone Theorem
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(see [21, Theorem 3.7]), since −KX · Γ < 0 and since the extremal rays of the cone of curves of
S negative against −KS correspond exactly to the lines in Ŝ. Each of the 27 divisors intersecting
at most a times C, we get the contradiction.

Remark 4.4. There is one particularly interesting example that falls under case (iv) of
Proposition 4.2, namely the case (15, 11). By Lemma 2.3, we know that a curve of type (15, 11)
is contained in a cubic surface, which must be unique since the degree of the curve is greater
than 9. It is easy to construct such a curve C on a smooth cubic: consider the transform of
a curve of degree 10 on P2 with multiplicities (4, 3, 3, 3, 3, 3) at the six blown-up points. Note
that such irreducible curves do exist: the linear system |C| contains the transform of many
reducible members, such as five conics (four passing through four points and one through three
points), in particular, these reducible members are connected and do not admit a common base
point, hence by Bertini’s Theorem the general member C is smooth and irreducible. Observe
that the conic through the five points of multiplicities 3 corresponds to a 5-secant line to C:
we recover the fact that −KX is not nef.

More generally, if C is any smooth curve of type (15, 11), by intersecting the (possibly
singular) cubic containing C with one of the irreducible quartics containing C (which does
exist by a dimension count, using Lemma 2.3), we obtain a residual line L which must be a
5-secant to C, since g(C ∪ L) = 19 (see formulas in § 2.5). In particular, even for C a general
element of HS

15,11, the anticanonical divisor of the blow-up X of C is never nef.
Note that as a consequence the construction in [18, Example 7 (1) and Table 1, Case 28] given

as a candidate to be a Sarkisov link from P
3 to X10 ⊂ P

7 in fact never happens. Precisely, the
starting assumption ‘Let C ⊂ P3 be a nonsingular curve that is an intersection of nonsingular
quartic surfaces with (pa(C),degC) = (15, 11)’ is never fulfilled, since by Bezout’s Theorem
any quartic containing C must also contain the 5-secant line to C.

Remark 4.5. We can make a similar discussion about case (12, 10). By Lemma 2.3 such a
curve is contained in a cubic surface, which must be unique. By taking the residual curves of
the intersection of this cubic with a pencil of general quartics containing C, we obtain a pencil
of 8-secant conics to C, hence the anticanonical morphism always correspond to a divisorial
contraction.

This contrasts with the case (5, 8): we will see that a general curve in HS
5,8 does not lie on a

cubic, and yields a weak Fano X with a small anticanonical morphism.

Remark 4.6. Note that the case (19, 12) always corresponds to the complete intersection
of a cubic and a quartic. To see that such a curve C is contained in a cubic, we slightly modify
the argument of the proof of Lemma 2.3 as follows. We have degK = 2g − 2 = 36 = degD, so
l(K −D) = 1 and dim|D| = 3d− g + 1 = 18. Since N − 1 = 19, we find a (necessarily unique)
cubic surface containing C.

Then by a dimension count, using Lemma 2.3, we see that C is also contained in an irreducible
quartic. As a consequence, any curve of degree n in the cubic surface containing C is 4n-secant
to C.

Example 4.7. If Ŝ is smooth, the four cases in Proposition 4.2(i) correspond to the
following Sarkisov links.

(i) Case (g, d) = (1, 5) is a link of type II to the quadric Q ⊂ P4 (blow-down to a curve
(1, 5) in Q): see [24, p. 117] or [27, Example 3 (L.4)].
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(ii) Case (g, d) = (3, 6) corresponds to the classical general cubo-cubic transformation of
P

3. This is the only example of a link of type II from P
3 to P

3 where the isomorphism in
codimension 1 is in fact an isomorphism: see [19]. The transformation contracts a surface of
degree 8 which is triple along C, and which is swept out by the 3-secant lines to C.

(iii) Case (g, d) = (5, 7) corresponds to a link of type I, with a resulting conic bundle whose
fibres correspond to 6-secant conics to C: see [14, Remark 2(ii); 26, Example 6(a)] or [3,
Appendix A]. Note that by this last reference there is no need for a genericity assumption
on C.

(iv) Case (g, d) = (10, 9) corresponds to the complete intersection of two cubic surfaces, and
so X is a fibration in del Pezzo surfaces of degree 3.

Example 4.8. By Proposition 2.1, the nine cases in Proposition 4.2(ii) correspond to
Sarkisov links involving a flop. When Ŝ is smooth, all have already been described in the
literature.

(i) In cases (g, d) = (1, 6), (4, 7), (7, 8) we remark that d plus the number of 4-secant lines
is equal to 9. So we have a pencil of cubics with base locus equal to the union of C and
the 4-secant lines. After blow-up and flop, we obtain a del Pezzo fibration of degree 6, 5, 4,
respectively. See [17, Proposition 6.5(27–28–29)].

(ii) In case (g, d) = (2, 6), after blow-up and flop of the unique 4-secant line, we obtain a
conic bundle: see [17, Theorem 7.14(16)]. One can verify, considering the residual curves of a
pencil of cubics containing C (hence also the unique 4-secant line), that the fibres correspond
to 6-secant conics to C: This case is a degenerate version of Example 4.7(iii).

(iii) Case (g, d) = (0, 5) corresponds to a link from P
3 to itself with flop of the unique 4-

secant line: see [4, Proposition 2.9]. This case was known classically, see, for instance [30, first
case in Table p. 185]. This is a degenerate version of Example 4.7(ii), and again the contracted
divisor corresponds to the surface swept out by the 3-secant lines to C.

(iv) In case (g, d) = (0, 6), after the flop of the six 4-secant lines we can contract the
transform of S, isomorphic to P

2, on a smooth point, obtaining a Fano threefold Y22 of genus
12. See [32, (2.8.1)].

(v) In case (g, d) = (3, 7), after the flop of the five 4-secant lines we can contract the
transform of S, isomorphic to F1, on a line in a Fano threefold Y16 of genus 9. See [13, (6.1)]
or [20, § 2].

(vi) In case (g, d) = (6, 8), after the flop of the five 4-secant lines we can contract the
transform of S, isomorphic to P

1 × P
1, on a terminal point (contraction of type E3). We

have (−KX)3 = 10 by Lemma 2.4, hence after the E3 contraction we obtain a terminal Fano
threefold Z with (−KZ)3 = 12. See [4, 3.2, Case 4].

(vii) In case (g, d) = (9, 9), after the flop of the six 4-secant lines we can contract the
transform of S, isomorphic to P

2, on a terminal point (contraction of type E5); the terminal
Fano Z that we obtain is such that (−KZ)3 = 21

2 . See [4, 3.3, Case 3].

Example 4.9. All cases of Proposition 2.1 exist on singular cubics. We describe one among
many other interesting cases. *** In case (g, d) = (6, 8), pick p1, . . . , p5 ∈ P2, p6 infinitely near
to p5, such that no three of the pi are collinear, and no six are on a conic. Then Ŝ has an unique
double point, corresponding to the image of the effective divisor E5 − E6 ∈ S. After the flop
of the five 4-secant lines, we can contract the transform of Ŝ, isomorphic to a quadric cone,
on a terminal point (contraction of type E4). This was a case left open in [4, 3.2]. Note that
this case is numerically (but not geometrically) equivalent to Example 4.8(vi); in particular,
the cube of the anti-canonical divisor is again 12.
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Proposition 4.10. Let C ⊂ HS
g,d be a curve of genus g and degree d contained in a smooth

quartic surface. Assume that (g, d) is one of the cases listed in Table 1, third column; so, in
particular, C is contained in a cubic surface.

Then the blow-up X of C has nef. anticanonical divisor if and only if there is no 5-secant
line to C.

In particular, for any such pair (g, d) there exists a non-empty Zariski open set U ⊂ HS
g,d

such that the blow-up X of C ∈ U is weak Fano.

Proof. Suppose that −KX is not nef., which implies the existence of an irreducible curve
Γ of degree n � 1 which intersects at least 4n+ 1 times C. Note that Γ must be inside all
quartics (and a fortiori cubics) containing C, so deg(Γ) � 12 − d.

Assume first that deg(Γ) = 12 − d, which means that Γ ∪ C is a complete intersection of
a cubic and a smooth quartic S. Inside S we have (C + Γ)2 = 36 and C2 = 2g − 2, Γ2 =
2g(Γ) − 2. By the formula from § 2.5, we have g − g(Γ) = 3

2 (d− deg(Γ)), hence

g(Γ) = 18 + g − 3d;
g = 18 + g(Γ) − 3d(Γ).

Inside the quartic S we have:

C · Γ =
36 − (2g − 2) − (2g(Γ) − 2)

2
= 20 − g − g(Γ)
= 3deg(Γ) + 2 − 2g(Γ)
� 3 deg(Γ) + 2.

Since 12 − d = deg(Γ) � 2 in the cases under consideration, we obtain

C · Γ � 4 deg(Γ).

Suppose now that n = deg(Γ) < 12 − d, which means that Γ ∪ C is contained in the smooth
quartic S but is not a complete intersection of S with another surface (since (g, d) 	= (9, 8)
or (6, 4)). We can apply Proposition 2.6, and get 8g(Γ ∪ C) < (n+ d)2, where g(Γ ∪ C) �
g(C) + g(Γ) + 4n, which yields

8g(Γ) < (n+ d)2 − 8g − 32n = n2 − 2(16 − d)n+ d2 − 8g.

We call Pg,d the polynomial n2 − 2(16 − d)n+ d2 − 8g ∈ Z[n]. We find the following
polynomials for the pairs (g, d) under consideration.

g d Pg,d

0 5 (n− 2)(n− 20) − 15
0 6 (n− 2)(n− 18)
1 5 (n− 1)(n− 21) − 4
1 6 (n− 2)(n− 18) − 8
2 6 (n− 2)(n− 18) − 16
3 6 (n− 1)(n− 19) − 7
3 7 (n− 2)(n− 16) − 7

g d Pg,d

4 7 (n− 1)(n− 17)
5 7 (n− 1)(n− 17) − 8
6 8 (n− 2)(n− 14) − 12
7 8 (n− 1)(n− 15) − 7
9 9 (n− 1)(n− 13) − 4
10 9 (n− 1)(n− 13) − 12
12 10 (n− 1)(n− 12) − 8

Since 8g(Γ) < Pg,d and n < 12 − d, we find that n < 2.
The last assertion follows from Proposition 4.2, which implies that the Zariski open set under

consideration is non-empty (recall that if −KX is nef., then it is big since (−KX)3 > 0).
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5. Curves in quartics

5.1. Curves contained in a singular rational quartic

The aim of this section is to produce examples of smooth curves that give rise to a nef.
anticanonical divisor after blow-up. We shall produce these curves by considering quartic
surfaces with irrational singularities; such surfaces were classified in [12], in particular, the
construction below corresponds to [12, § 2.4].

Set-up 5.1. In this section, we consider a smooth cubic curve Γ0 ⊂ P2, given by the
equation F3(x, y, z) = 0, and we choose a smooth quartic curve of equation F4(x, y, z) that
intersects the curve Γ0 into 12 distinct points p1, . . . , p12 such that no three are collinear, no
six on a conic, no eight on the same cubic singular at one of the eight points, and no nine are
on the same cubic distinct from Γ0. Lemma 5.2 shows that this holds for a general quartic.
The rational map P2 ��� P3 given by

(x : y : z) ��� (F4(x, y, z) : xF3(x, y, z) : yF3(x, y, z) : zF3(x, y, z))

induces a birational map ψ : P
2 ��� Q where Q ⊂ P

3 is the singular quartic

Q = {(w : x : y : z) ∈ P
3 |wF3(x, y, z) = F4(x, y, z)}.

Denoting by σ : S → P
2 the blow-up of the 12 points p1, . . . , p12 and by Γ ⊂ S the strict

transform of Γ0, the map ψ factorizes as ησ−1, where η : S → Q is a birational morphism
which contracts Γ onto the point q = (1 : 0 : 0 : 0). We note E1, . . . , E12 ⊂ S the exceptional
curves of S contracted by σ onto p1, . . . , p12 and L ∈ Pic(S) the transform of a general line
of P

2. The curve Γ ⊂ S is linearly equivalent to 3L− ∑
Ei, and an hyperplane section of Q

corresponds to H = 4L− ∑
Ei ∈ Pic(S).

Lemma 5.2. Fixing Γ0, a general quartic curve intersects Γ0 into 12 points such that no
three are collinear, no six are on a conic, no eight are on the same cubic singular at one of
the points, and no nine are on the same cubic distinct from Γ0. The set of 12-uples of points
p1, . . . , p12 ∈ Γ0 obtained has dimension 11.

Proof. Denoting by l ∈ Pic(Γ0) the restriction of an hyperplane section of P
2 on Γ0, we

have |l| � P
2, |2l| � P

5, |3l| � P
8 and |4l| � P

11. This follows from Riemann–Roch or simply
from a direct computation by restricting the curves of P2 of degree 1, 2, 3, 4 to Γ0.

A general element of |4l| yields 12 distinct points of Γ0. Any element of |4l| which yields
three collinear points or nine points on the same cubic distinct from Γ0 corresponds to a
sum D1 +D3 where D1 ∈ |4l| and D3 ∈ |3l|: This is a consequence of the classical AF +BG
Theorem of Noether (see, for example, [8, Corollary p. 122]). The dimension of such elements
is thus 10. Similarly, the elements which give six points on a conic also have dimension 10. If
an element D ∈ |4l| is the sum of 12 points p1, . . . , p12 so that there exists a cubic C passing
through p1, . . . , p8 and being singular at p1, the restriction of C to Γ0 gives 2p1 + · · · + p8 ∈
|3l|, so D = (2p1 + · · · + p8) + (p9 + · · · + p12 − p1). Since p9 + · · · + p12 − p1 has degree 3,
it is linearly equivalent to an effective divisor, and once again D decomposes as D1 +D3

as above.
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Let us point out the following easy fact:

Lemma 5.3. Let C ⊂ S be an irreducible curve, its image η(C) ⊂ Q ⊂ P
3 is a smooth curve

of P3 if and only if C is smooth and C · Γ = 1 in S.

Proof. Denote by η̂ : X → P3 the blow-up of q = (1 : 0 : 0 : 0). It follows from Set-up 5.1
that the strict transform of Q on X is isomorphic to the smooth surface S, and that η : S → Q
is the restriction of η̂.

The curve C ⊂ S is then the strict transform of η̂(C) ⊂ P3. Denoting by E ⊂ X the
exceptional divisor, the curve η(C) is smooth if and only if C is smooth and C · E = 1 in X.
Since Γ is the intersection of E and S, the intersection C · E on X is equal to the intersection
C · Γ in S.

Lemma 5.4. There are exactly 12 lines contained in Q, all passing through q and
corresponding to the image of Ei for some i = 1, . . . , 12.

There are exactly 66 conics in Q, all passing through q, corresponding to the strict transforms
of the lines of P2 passing through two of the pi.

There are exactly 5544 twisted cubics (smooth cubics of genus 0) in Q, all passing through
q, which correspond to the strict transforms of the conics of P

2 passing through 5 of the pi.

Proof. Each Ei is isomorphic to P
1 on S, its intersection with Γ and H is 1, so its image

in Q is again isomorphic to P1, of degree 1 and passing through η(Γ) = (1 : 0 : 0 : 0) = q.
Let C ⊂ S be a curve distinct from the Ei, isomorphic to P

1 and whose image by η is again
isomorphic to P

1, of degree d. It is linearly equivalent to mL− ∑
aiEi, where m > 0 and ai � 0

for i = 1, . . . , 12, and its intersection with E and H is, respectively, ε = 3m− ∑
ai ∈ {0, 1} and

d = ε+m.
If d = 1, we find (m, ε) = (1, 0), which means that C is the strict transform of a line of P

2

passing through three of the pi, impossible.
If d = 2, we find (2, 0) or (1, 1) for (m, ε). The first case is impossible since it would give

conics through 6 of the pi. The second case corresponds to the 66 lines passing through 2 of
the pi.

If d = 3, we find (3, 0) or (2, 1) for (m, ε). The first case is again impossible, it corresponds
to cubics passing through 8 of the pi and being singular at one of them. The second case
corresponds to the 5544 conics passing through 5 of the pi.

Corollary 5.5. Taking D = kL− ∑
miEi where (k,m1, . . . ,m12) are given in Table 3,

if a curve C ⊂ S is irreducible, smooth and equivalent to D, its image in P
3 is a smooth

irreducible curve of type (g, d) with no 5-secant, no 9-secant conic and no 13-secant twisted
cubic.

Proof. In each case, we have
∑
mi = 3k − 1, which means that C · Γ = 1 on S, so the

image of C in P
3 is smooth by Lemma 5.3. The degree d of this curve in P

3 is equal to
C ·H = 4k − ∑

mi = k + 1. Its genus is g = (k − 1)(k − 2)/2 − ∑
(mi(mi − 1)/2), and is given

in the table.
If R ⊂ P

3 is a curve of degree n ∈ {1, 2, 3} which intersects C in at least 4n+ 1 points, its
intersection with Q is 4n < 4n+ 1, so it has to be contained in Q. By Lemma 5.4, any line of
Q corresponds to one of the Ei; since each ai is at most 4, there is no 5-secant. Applying again
Lemma 5.4, any conic of Q corresponds to a line of P

2 passing through two points; a quick
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check shows that k −m11 −m12 � 8 in each case, so there is no 9-secant conic. The twisted
cubics correspond to conics by five points, and once again we can see that 2k −m8 −m9 −
m10 −m11 −m12 � 12. This finishes the proof.

Proposition 5.6. Any of the cases of Corollary 5.5 exists.

Proof. Each of the case is given by (k,m1, . . . ,m12), where
∑12

i=1mi = 3k − 1.
We fix the smooth cubic curve Γ0 ⊂ P

2, and denote by l ∈ Pic(Γ0) the restriction of an
hyperplane section, which is a divisor of degree 3 on Γ0. Recall that by Riemann–Roch’s
formula on the elliptic curve Γ0, if D is a divisor of degree d on Γ0, then |D| has dimension
d− 1. In particular, for any set of twelve points p1, . . . , p12 on the curve, since the divisor
kl − ∑

mipi has degree 1 there exists a unique point q on Γ0 such that q +
∑
mipi ∼ kl. We

choose 12 distinct points p1, . . . , p12 on the curve, so that that p1 + · · · + p12 ∼ 4l, no 3 of the
pi are collinear, no 6 are on the same conic, no 8 are on the same cubic singular at one of them
and no 9 are on the same cubic distinct from Γ0 (possible by Lemma 5.2); we can moreover
assume that the point q ∈ Γ0 equivalent to kl − ∑

mipi is distinct from the pi. This gives a
particular case of Set-up 5.1.

In the blow-up S of the twelve points, the divisor D = kL− ∑
miEi satisfies −3k +

∑
mi =

D ·KS = −1. Moreover, the integer g given in the table is equal to (k − 1)(k − 2)/2 −∑
(mi(mi − 1)/2) (and is the genus of an irreducible member of |D| if such member exists,

which is exactly what we want to prove). The system |D| corresponds to curves of P
2 of

degree k having multiplicity mi at each point pi. Its (projective) dimension is thus at least
equal to

(k + 1)(k + 2)
2

−
∑ mi(mi + 1)

2
− 1 = g + 3k −

∑
mi − 1 = g. (2)

Recall that we want to prove that |D| contains a smooth irreducible member, for a general
choice of the pi as above.

The first case in the list (first line of Table 3) is special. The divisor D corresponds to a
(−1)-curve on the blow-up of the points p1, . . . , p8, which is a del Pezzo surface (because of the
assumption on the points). There is thus a unique curve equivalent to D, which is irreducible,
and smooth.

The second case of the list (second line of Table 3, where g = 1) can also be viewed directly.
Denote by μ : S → S2 the contraction of E9, . . . , E12 and of the (−1)-curve equivalent to 3L−

Table 3. The thirteen cases in Corollary 5.5, which are special instances of the curves
listed in Table 2.

g d k (m1, . . . , m12) k − m11 − m12 2k − ∑12
i=8 mi

0 7 6 (3,2,2,2,2,2,2,2,0,0,0,0) 6 10
1 7 6 (3,2,2,2,2,2,2,1,1,0,0,0) 6 10
2 7 6 (2,2,2,2,2,2,2,2,1,0,0,0) 6 9
2 8 7 (3,3,2,2,2,2,2,2,2,0,0,0) 7 10
3 8 7 (3,3,2,2,2,2,2,2,1,1,0,0) 7 10
4 8 7 (3,2,2,2,2,2,2,2,2,1,0,0) 7 9
5 8 7 (2,2,2,2,2,2,2,2,2,2,0,0) 7 8
6 9 8 (3,3,3,2,2,2,2,2,2,1,1,0) 7 10
7 9 8 (3,3,2,2,2,2,2,2,2,2,1,0) 7 9
8 9 8 (3,2,2,2,2,2,2,2,2,2,2,0) 6 8
10 10 9 (3,3,3,3,2,2,2,2,2,2,1,1) 7 10
11 10 9 (3,3,3,2,2,2,2,2,2,2,2,1) 6 9
14 11 10 (3,3,3,3,3,2,2,2,2,2,2,2) 6 10
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2E1 − E2 − · · · −E7. The surface S2 is a del Pezzo surface of degree 2 since the blow-up of
p1, . . . , p8 ∈ P

2 is a del Pezzo surface. Moreover,D = μ∗(−KS2) − E9. Taking a general member
of the subsystem of |−KS2 | of elements passing through μ(E9), the strict transform will yield a
smooth elliptic curve equivalent to D (note that the member will not pass through the points
μ(E10), μ(E11), μ(3L− 2E1 − E2 − · · · −E7)).

It remains to study the cases where g � 2, which implies dim|D| � 2. Recall that Γ ⊂ S,
the strict transform of Γ0, has self-intersection −3 and is equivalent to −KS . Any effective
divisor C equivalent to D either contains Γ or intersect it into C · Γ = D · (−KS) = 1 point.
In particular, the restriction of the linear system D to Γ is equivalent to kl − ∑

mipi ∼ q, so
C ∩ Γ is either Γ or {q}. The system |D| has (at least) one base-point, which is the point q ∈ Γ.

We need the following fact.

Fact 5.7. The system

lD =

∣∣∣∣∣D +KS −
∑

mi=0

Ei

∣∣∣∣∣
has no base-point outside of Γ ∪ ⋃

mi=0Ei.

The proof of this fact proceeds by a case-by-case analysis.
In case (2, 7) (third line of Table 3), lD = |D − Γ − E10 − E11 − E12| = |3L− E1 − · · · −E8|,

which has dimension at least 1 by formula (2). Remark that π∗(lD), the image of the system
on P

2, corresponds to the linear system of cubics passing through the points p1, . . . , p8. On the
elliptic curve Γ0, the linear system |3l − ∑8

i=1 pi| contains exactly one element (by Riemann–
Roch’s formula), and thus this point q′ of Γ0 is a base point of π∗(lD). Because of Set-up 4.1,
the point q′ is distinct from the pi (see Lemma 5.2). Observe that the system π∗(lD) has no
reducible member: this would imply that there exists a line through three points or a conic
through six points. Thus, the general member of lD is the strict transform of an irreducible
cubic through the points q′, p1, . . . , p8; we conclude that the lift of q′ on S, which lies on Γ, is
the unique base-point of the system lD.

In case (2, 8), a similar argument holds, applied to the mobile system lD = |4L− 2E1 −
2E2 − E3 − · · · −E9|, which has also dimension at least 1. For a general choice of the pi, we
can assume that the point q′ of Γ0 corresponding to |4l − 2p1 − 2p2 −

∑9
i=3 pi| is distinct from

the pi (for each i, the case q′ = pi gives a strict closed subset of the 11-dimensional space,
as in Lemma 5.2). The only reducible members of π∗(lD) are union of a line passing through
p1 and p2 and a cubic by the points p1, . . . , p9, this latter being only Γ0 by Set-up 4.1. The
dimension of lD being at least 1, a general member comes from an irreducible quartic of P

2

passing through p1, . . . , p9, with multiplicity 2 at p1 and p2. Since (lD)2 = 1, the lift on S of
the point q′, which lies on Γ, is the unique base-point of |lD|.

In cases (3, 8), lD = |4L− 2E1 − 2E2 − E3 − · · · −E8| has no base-point outside of Γ ∪ E9,
because it contains the union of E9 with the system of case (2, 8).

For (4, 8), lD = |4L− 2E1 − E2 − E3 − · · · −E8| and the result follows from the fact that this
system contains the union of |L− E1|, which has no base-point, with the system of case (2, 7).

In case (5, 8), lD = |4L− ∑10
i=1Ei| has no base-point outside of E11 ∪ E12, since it contains

the union of E11 + E12 with the base-point free system |4L− ∑12
i=1Ei|. Indeed the latter system

corresponds to the morphism S → P
3, which is an isomorphism outside of Γ0.

The cases (6, 9), (7, 9) and (8, 9) give |5L− 2E1 − 2E2 − 2E3 −
∑9

i=4Ei|, |5L− 2E1 − 2E2 −∑10
i=3Ei| and |5L− 2E1 −

∑11
i=2Ei| for lD. The system contains the union of the unique (−1)-

curve C1 ⊂ S equivalent to 3L− 2E1 −
∑7

i=2Ei with a base-point-free system corresponding
to conics of P

2 by four of the pi. Similarly it also contains the union of the curve C2 equivalent
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to 3L− 2E1 −
∑8

i=3Ei with another base-point free system. Since C1 · C2 = 0, the system lD
is base-point free.

The cases (10, 10), (11, 10) and (14, 11) yield |6L− 2
∑4

i=1Ei −
∑10

i=5Ei|, |6L− 2
∑3

i=1Ei −∑11
i=4Ei| and |7L− 2

∑5
i=1Ei − 2E5 −

∑12
i=6Ei| for lD. For i 	= j, we denote by Rij ⊂ S

the (−1)-curve equivalent to L− Ei − Ej . For (i, j) = {(8, 9), (8, 10), (9, 10)}, the system lD
contains the union of C1 ∪Rij with a base-point free system. This implies that lD has no
base-point except maybe on C1. Replacing C1 by C2, we see that lD has no base-point. This
ends the proof of the Fact 5.7.

Now that we have proved that lD = |D +KS − ∑
mi=0Ei| has no base-point outside of

Γ ∪ ⋃
mi=0Ei, this implies that the same property holds for |D|. Indeed, taking a member

C ∈ |lD|, the reducible effective divisor C + Γ +
∑

mi=0Ei is a member of |D|.
This implies that D is nef. Indeed, if an irreducible curve intersects negatively D, it is a

fixed component of |D| and has to be Γ or Ei for some i. Each of these curves intersects
non-negatively D, so D is nef. The fact that D2 > 0 implies that D is also big, and this
gives hi(D +KS) = 0 for i = 1 or 2. Thus, dim|D +KS | = (D +KS) ·D/2 + 1 � dim|D| − 1.
A general member C of |D| does not contain Γ ∼ −KS and thus C ∩ Γ = {q}, so q is the only
base-point of |D| on Γ. Moreover, the image of C on P

2 is a curve of degree k intersecting Γ0

into 3k points (counted with multiplicity), which have to be
∑
mipi + q. If mi = 0, the point

pi ∈ P
2 is therefore not a point of π(C), which means that C · Ei = 0. This shows that q is the

only base-point of |D| on S.
By Bertini’s theorem C is smooth outside of q, and since C · Γ = 1 we also have C smooth

at q.

5.2. Curves in a smooth quartic

Proposition 5.8. Let C ∈ HS
g,d be a curve of genus g and degree d. Assume that C is

contained in a smooth quartic surface, and that (g, d) is one of the thirteen cases listed in
Table 2.

Then the blow-up X of C has nef. anticanonical divisor if and only if there is no (4n+
1)-secant rational smooth curve of degree n for n = 1, 2, 3.

The 13-secant twisted cubics are possible only if (g, d) ∈ {(0, 7), (2, 8), (3, 8)}.
The 9-secant conics are possible only if (g, d) ∈ {(6, 9), (7, 9)}.
The 5-secant lines are possible in all cases except for (g, d) = (14, 11).

Proof. Suppose that −KX is not nef., which implies the existence of an irreducible curve
Γ of degree n which intersects at least 4n+ 1 times C. We want to prove that this curve is
smooth, rational and has degree at most 3, and describe when it could exist. Note that C must
be inside all quartics containing C, so deg(Γ) � 16 − d.

Assume first that deg(Γ) = 16 − d, which means that Γ ∪ C is a complete intersection of two
quartics, which by assumption can be taken smooth. Inside one of the quartics, we have (C +
Γ)2 = 64 and C2 = 2g − 2, Γ2 = 2g(Γ) − 2. By the formula from § 2.5, we have g − g(Γ) = 2(d−
deg(Γ)), hence g(Γ) = g − 4d+ 32 � 2 in all cases under consideration. The formula being
symmetric, we find

g = 32 + g(Γ) − 4 deg(Γ).

Hence (inside a quartic)

C · Γ =
64 − (2g − 2) − (2g(Γ) − 2)

2
= 34 − g − g(Γ)
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= 4deg(Γ) + 2 − 2g(Γ)
< 4 deg(Γ).

For the last line we used g(Γ) � 2.

Now assume that C ∪ Γ is the complete intersection of a smooth quartic with a cubic. As in
the first part of the proof of Proposition 4.10 we can prove that

C · Γ � 3 deg(Γ) + 2.

Note that we have n � 12 − d � 2, since in the case (14, 11) the residual curve would have
genus −1 and degree 1, which is impossible. Hence, we have C · Γ � 4 deg(Γ).

Suppose finally that n = deg(Γ) < 16 − d, and that Γ ∪ C is not a complete intersection of
S with another surface. We can apply Proposition 2.6, and get 8g(Γ ∪ C) < (n+ d)2, where
g(Γ ∪ C) � g(C) + g(Γ) + 4n, which yields

8g(Γ) < (n+ d)2 − 8g − 32n = n2 − 2(16 − d)n+ d2 − 8g.

We call Pg,d the polynomial n2 − 2(16 − d)n+ d2 − 8g ∈ Z[n]. For (g, d) = (14, 11), we
find 8g(Γ) < P14,11 = n2 − 10n+ 9 = (n− 1)(n− 9), since 1 � n � 5, we have a contradiction.
More generally, we find the following polynomials for the other pairs (g, d).

g d Pg,d

0 7 (n− 4)(n− 14) − 7
1 7 (n− 3)(n− 15) − 4
2 7 (n− 3)(n− 15) − 12
2 8 (n− 4)(n− 12)
3 8 (n− 4)(n− 12) − 8
4 8 (n− 3)(n− 13) − 7

g d Pg,d

5 8 (n− 2)(n− 14) − 4
6 9 (n− 3)(n− 11)
7 9 (n− 3)(n− 11) − 8
8 9 (n− 2)(n− 12) − 7
10 10 (n− 2)(n− 10)
11 10 (n− 2)(n− 10) − 8

Since 8g(Γ) < Pg,d and n < 16 − d, we find that n < 4.
If n = 3, we have (g, d) ∈ {(0, 7), (2, 8), (3, 8)}; the curve Γ has to be smooth and rational

otherwise it would be contained in a plane and could not intersect C at 13 > d points.
If n = 2, the curve is contained in a plane and intersects C at 9 points, so d � 9. The only

cases where Pg,d(n) � 1 are (g, d) ∈ {(6, 9), (7, 9)}.
The case n = 1 is always possible, except for (g, d) = (14, 11), treated above.

5.3. Proof of Theorem 1.1

We consider the blow-up X → P
3 of a curve C ∈ HS

g,d of genus g and degree d.
We first assume that −KX is big and nef. Then C does not admit any 5-secant line, 9-secant

conic or 13-secant twisted cubic (Lemma 2.2).
If C is contained in a quadric or a plane, the exhaustive study in § 3, and in particular

Corollary 3.2, implies that (g, d) is one of the cases in the first two columns of Table 1 which
are not crossed.

We now assume that C is not contained in any quadric. By Riemann–Roch on a threefold and
Kawamata–Viehweg vanishing, we have dim|−KX | = 1

2 (−K3
X) + 2 � 3. Thus, C is contained

in a pencil of quartics, whose general member can be taken smooth by Proposition 2.8. In
particular, d � 16.

If C is the complete intersection of a smooth quartic with another surface F , then F has to
be a cubic: This yields the case (g, d) = (19, 12).
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On the other hand, if C is not a complete intersection, by Proposition 2.6, we have

8g < d2.

Since (−KX)3 > 0, by Lemma 2.4, we have

4d− 30 � g.

Putting together both inequalities yields d2 > 8(4d− 30), hence

d2 − 32d+ 240 = (d− 12)(d− 20) > 0.

Since we already know that d � 16, we obtain d � 11, hence g � 15. But g = 15 implies d = 11,
and by Remark 4.4 curves of type (15, 11) always admit a 5-secant line; so we obtain g � 14.

Since C is not in any quadric we have the Castelnuovo bound on the genus of C (see [11,
Theorem IV.6.4]):

g <

⌊
d2

4

⌋
− d+ 1.

Pairs (g, d) which satisfy this inequality together with 8g < d2 and 4d− 30 � g � 14 are in
the last two columns of Table 1, or equal to (0, 4). But curves of type (0, 4) are contained in
quadrics (Lemma 2.3).

We now assume that −KX is ample. It is clear by Lemma 2.2 that C admits no 4-secant
line. Then we use a classical formula of Cayley, in the following precise formulation as proved
by Le Barz [22].

Proposition 5.9. Let C ∈ HS
g,d. Assume that C does not admit infinitely many n-secant

lines for any n � 4. Then the number of 4-secant lines to C, counted with multiplicity, is given
by the formula

(d− 2)(d− 3)2(d− 4)
12

− (d2 − 7d+ 13 − g)g
2

.

In particular, among the (g, d) that could produce a weak Fano threefold, this formula gives
0 precisely in the cases listed in the subsets A1 and A2 in Theorem 1.1.

Conversely, assume that C ∈ HS
g,d with (g, d) ∈ A1, or (g, d) ∈ A2 and C does not admit a

4-secant line. We want to prove that X is Fano. If C lies on a quadric, the result follows from
Corollary 3.2. If C does not lie on a quadric, then (g, d) is in the set

A2 = {(1, 5), (3, 6), (5, 7), (10, 9)}.
In these cases Lemma 2.3 tells us that C is contained in a pencil of (irreducible) cubic surfaces.
If Γ is an irreducible curve of degree n which is 4n-secant to C, then Γ must be in the base
locus of this pencil, and 2 � n � 9 − d. This rules out (10, 9). Since the three other cases have
degree d � 7, clearly they do not admit a 8-secant conic: the plane containing the conic has to
meet C in d points only. By a similar argument (1, 5) does not admit a 12-secant curve Γ of
degree 3, by considering the plane or the quadric containing Γ. Finally, if Γ ∪ C is a complete
intersection with C of type (1, 5) (resp. (3, 6)), by the formulas in § 2.5 we see that Γ is a
10-secant (resp. 8-secant) rational curve of degree 4 (resp. 3). We conclude that X is Fano.

Finally, assume that C ∈ HS
g,d is contained in a smooth quartic, with 4d− 30 � g � 14 or

(g, d) = (19, 12), and that there is no 5-secant line, 9-secant conic, nor 13-secant twisted cubic
to C. If (g, d) is in A1 or A2, we already know that X is Fano.

So we can assume that (g, d) is in the third or fourth column of Table 1.
In the former case, we conclude by Proposition 4.10, and in the latter one, by Proposition 5.8,

that X is weak Fano.



WEAK FANO THREEFOLDS 1073

The fact that curves of type (3, 4), (6, 7), (9, 8), (12, 10) and (19, 12) yield a divisorial
anticanonical morphism was observed in Proposition 3.1(ii) and Remarks 4.5 and 4.6.

It remains to prove that Conditions (i) and (ii) in Theorem 1.1 correspond to non-empty
open sets in relevant HS

g,d.
For (g, d) in A2 ∪ A3, this follows from the explicit construction of examples on smooth cubic

surfaces, as described in Proposition 4.2.
The case (g, d) ∈ A4 is more delicate. By Proposition 2.7 we know that HS

g,d is irreducible
in all cases, except for (14, 11) where there are two components. We denote by V14,11 the
irreducible component whose general members lie on a quartic surface, and Vg,d = HS

g,d in the
other cases.

By Lemma 2.3, we know that the system of quartics containing any C ∈ Vg,d has dimension
at least 3. Consider W the set of pairs (C,Q) where C ∈ Vg,d, Q ⊂ P

3 is a quartic surface and
C ⊂ Q. By Proposition 2.5, we know that there exists a smooth quartic surface containing a
smooth curve of genus g and degree d. Hence the open set Ws ⊂W of pairs (C,Q) such that Q
is smooth is non-empty. Projecting on the first factor, we obtain V1 ⊂ Vg,d a non-empty open
subset such that any C ∈ V1 is contained in a smooth quartic surface.

From Proposition 5.6, we know that there exists a non-empty open set V2 ⊂ Vg,d such that
if C ∈ V2, then C does not admit any 5-secant line, 9-secant conic or 13-secant twisted cubic.

By irreducibility of Vg,d, we have V1 ∩ V2 	= ∅: this is the desired open set.

Remark 5.10. The assumption that C is contained in a smooth quartic in Theorem 1.1
is probably superfluous. The point to remove it would be to prove that for (g, d) ∈ A3 ∪ A4, if
C ∈ HS

g,d does not have a 5-secant line, then C is contained in a smooth quartic.
For instance, consider C lying on a smooth cubic surface S, coming from the transform of

a curve of degree 9 in P
2 with multiplicities (3, 3, 3, 3, 2, 2) at the six blown-up points. Then

C ∈ HS
14,11, and any quartic containing S breaks into two components, S and a plane. Note

that C admits 5-secant lines, for instance, the transform of the line through the two points with
multiplicity 2. More generally, any C ∈ HS

14,11 which lies on a cubic cannot lie on a irreducible
quartic, otherwise C would be linked to a curve with genus −1 and degree 1: contradiction.
But we have been unable to prove that if C ∈ HS

14,11 lies in a irreducible quartic, then the
quartic can be taken to be smooth.

5.4. Existence of Sarkisov links

Proposition 5.11. If (g, d) is one of the thirteen cases listed in Table 2, and C is a general
curve in HS

g,d, then the blow-up X of C is weak Fano, the anticanonical morphism is a small
birational map and thus yields a Sarkisov link involving a flop (see Example 5.12 for details).

Proof. By Theorem 1.1, there exists a non-empty open subset V ⊂ HS
g,d such that for any

C ∈ V , the blow-up X of C is weak Fano.
Now for such an X obtained from C ∈ V , suppose that the anticanonical morphism is a

divisorial contraction. Then we would be in one of the 24 cases of [16, Theorem 4.9]. The only
coincidence between the two lists are (5, 8) and (11, 10). In case (5, 8) the exceptional divisor
of the anticanonical map is the transform of a cubic surface through C. But curves of type
(5, 8) contained in a cubic surface form a codimension 1 closed subset in the 32-dimensional
HS

5,8 (see [9]). The case (11, 10) is more subtle, since even in the divisorial case the curve
has no reason to lie on a cubic. Nevertheless, curves that correspond to a small anticanonical
morphism form again a dense open set in V1 ∩ V2: this follows from the construction given in
[16, No. 19 p. 617], which involves taking the minors of a (4 × 4) matrix M with linear entries
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in C[x0, . . . , x4]. It is noted there that the anticanonical morphism is a divisorial contraction
when M is symmetric, and is a small contraction otherwise.

In conclusion, we obtain in all cases a non-empty open subset of HS
g,d with the desired

properties. The fact that it yields a Sarkisov link was discussed in § 2.1, and the presence of
a flop comes from the fact that X is never Fano in the cases under consideration.

Example 5.12. The numerical possibilities listed in Table 2 were already found in the
literature, but without proof of actual existence (except maybe for (g, d) = (11, 10), see end of
the proof of Proposition 5.11, and (g, d) = (7, 9), see below).

Note that our proof gives the existence of these links, without knowing a priori the end
result.

(i) Cases (g, d) = (0, 7), (2, 8), (3, 8), (5, 8), (6, 9), (10, 10), (11, 10) and (14, 11) must
correspond to Sarkisov links from P3 to P3: see [4], cases 90, 49, 75, 99, 50, 51, 76, 52
in their Tables 1–3. We plan to come back to the description of these interesting Cremona
transformations in a future paper.

(ii) Case (g, d) = (1, 7) corresponds to a Sarkisov link to the prime Fano X22 of genus 12,
with a flop and contraction to another curve of genus 1 and degree 7: see [4, Case 98].

(iii) Case (g, d) = (2, 7) corresponds to a Sarkisov link to the intersection of two quadrics
V4 ⊂ P5, with a flop and contraction to a curve of genus 0 and degree 5: see [4, Case 103].

(iv) Case (g, d) = (4, 8) corresponds to a Sarkisov link to the Fano threefold V5 ⊂ P
6, with

a flop and contraction to a curve of genus 4 and degree 10: see [4, Case 89].
(v) Case (g, d) = (7, 9) corresponds to a Sarkisov link to the Fano threefold X12 of genus

7, with a flop and contraction to a curve of genus 0 and degree 3. The existence of this link is
claimed in [15, p. 103], at least in the case of a curve lying in a special smooth quartic surface
as constructed in the proof of Proposition 2.5, but the details of the argument are not given.

(vi) Case (g, d) = (8, 9) corresponds to a Sarkisov link of type I to a fibration in del Pezzo
surfaces of degree 5 (after one flop): see [17, Proposition 6.5(25)].

Acknowledgements. We benefited from many comments and discussions at different stages
of this project; we would like to thank in particular Anne-Sophie Kaloghiros, Ivan Pan, Hamid
Ahmadinezhad, Hirokazu Nasu, Yuri Prokhorov and Igor Dolgachev.

Thanks are also due to the referee for his interesting remarks, which helped us to improve
the exposition of the paper.

References

1. M. Arap, J. W. Cutrone and N. A. Marshburn, ‘On the existence of certain weak fano threefolds of
picard number two’, Preprint, 2011, arXiv:1112.2611.

2. J. W. Bruce and C. T. C. Wall, ‘On the classification of cubic surfaces’, J. London Math. Soc. (2) 19
(1979) 245–256.

3. I. Cheltsov and C. Shramov, ‘Weakly-exceptional singularities in higher dimensions’, Preprint, 2011,
arXiv:1111.1920v2.

4. J. W. Cutrone and N. A. Marshburn, ‘Towards the classification of weak Fano threefolds with ρ = 2’,
Preprint, 2010, arXiv:1009.5036.

5. M. Demazure, Surfaces de del Pezzo, II, III, IV, V, Lecture Notes in Mathematics 777 (Springer, Berlin,
1980) 21–69.

6. I. Dolgachev, Lectures on Cremona transformations, 2011, http://www.math.lsa.umich.edu/∼idolga/
lecturenotes.html.

7. I. Dolgachev, Classical algebraic geometry: a modern view (Cambridge University Press, Cambridge,
2012).

8. W. Fulton, Algebraic curves. An introduction to algebraic geometry (W. A. Benjamin, Inc., New York,
1969). Notes written with the collaboration of Richard Weiss, Mathematics Lecture Notes Series.

9. L. Gruson and C. Peskine, ‘Genre des courbes de l’espace projectif’, Algebraic geometry (Proc. Sympos.,
Univ. Tromsø, Tromsø, 1977), Lecture Notes in Mathematics 687 (Springer, Berlin, 1978) 31–59.



WEAK FANO THREEFOLDS 1075
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Université Paul Sabatier
118 route de Narbonne
31062 Toulouse Cedex 9
France

slamy@math·univ-toulouse·fr


	1. Introduction
	2. Preliminaries
	3. Curves in a plane or a quadric
	4. Curves in cubics
	5. Curves in quartics
	References

