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Linearisation of finite Abelian subgroups of the Cremona group
of the plane

Jérémy Blanc

Abstract. Given a finite Abelian subgroup of the Cremona group of the plane, we provide a
way to decide whether it is birationally conjugate to a group of automorphisms of a minimal
surface.

In particular, we prove that a finite cyclic group of birational transformations of the plane
is linearisable if and only if none of its non-trivial elements fix a curve of positive genus.
For finite Abelian groups, there exists only one surprising exception, a group isomorphic to
Z=2Z � Z=4Z, whose non-trivial elements do not fix a curve of positive genus but which is
not conjugate to a group of automorphisms of a minimal rational surface.

We also give some descriptions of automorphisms (not necessarily of finite order) of del
Pezzo surfaces and conic bundles.
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1. Introduction

1.1. The main questions and results. In this article, every surface will be complex,
rational, algebraic and smooth, and except for C2 will also be projective. By an
automorphism of a surface we mean a biregular algebraic morphism from the surface
to itself. The group of automorphisms (respectively of birational transformations) of
a surface S will be denoted by Aut.S/ (respectively by Bir.S/).

The group Bir.P 2/ is classically called the Cremona group. Taking some sur-
face S , any birational map S Ü P 2 conjugates Bir.S/ to Bir.P 2/; any subgroup of
Bir.S/ may therefore be viewed as a subgroup of the Cremona group, up to conjugacy.

The minimal surfaces are P 2, P 1 �P 1, and the Hirzebruch surfaces Fn for n � 2;
their groups of automorphisms are a classical object of study, and their structures are
well known (see for example [Bea1]). These groups are in fact the maximal connected
algebraic subgroups of the Cremona group (see [Mu-Um], [Um]).

Given some group acting birationally on a surface, we would like to determine
some geometric properties that allow us to decide whether the group is conjugate to
a group of automorphisms of a minimal surface, or equivalently to decide whether
it belongs to a maximal connected algebraic subgroup of the Cremona group. This
conjugation looks like a linearisation, as we will see below, and explains our title.

We observe that the set of points of a minimal surface which are fixed by a non-
trivial automorphism is the union of a finite number of points and rational curves.
Given a group G of birational transformations of a surface, the following properties
are thus related (note that for us the genus is the geometric genus, so that a curve has
positive genus if and only if it is not rational); property (F) is our candidate for the
geometric property for which we require:

(F) No non-trivial element of G fixes (pointwise) a curve of positive genus.
(M) The group G is birationally conjugate to a group of automorphisms of a minimal

surface.

The fact that a curve of positive genus is not collapsed by a birational transfor-
mation of surfaces implies that property (F) is a conjugacy invariant; it is clear that
the same is true of property (M). The above discussion implies that (M) H) (F); we
would like to prove the converse.

The implication (F) H) (M) is true for finite cyclic groups of prime order
(see [Be-Bl]). The present article describes precisely the case of finiteAbelian groups.
We prove that (F) H) (M) is true for finite cyclic groups of any order, and that we may
restrict the minimal surfaces to P 2 or P 1 � P 1. In the case of finite Abelian groups,
there exists, up to conjugation, only one counterexample to the implication, which is
represented by a group isomorphic to Z=2Z � Z=4Z acting biregularly on a special
conic bundle. Precisely, we will prove the following results, announced without proof
as Theorems 4.4 and 4.5 in [Bla3]:
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Theorem 1. Let G be a finite cyclic subgroup of order n of the Cremona group. The
following conditions are equivalent:

� If g 2 G, g 6D 1, then g does not fix a curve of positive genus.

� G is birationally conjugate to a subgroup of Aut.P 2/.

� G is birationally conjugate to a subgroup of Aut.P 1 � P 1/.

� G is birationally conjugate to the group of automorphisms of P 2 generated by
.x W y W z/ 7! .x W y W e2i�=nz/.

Theorem 2. Let G be a finite Abelian subgroup of the Cremona group. The following
conditions are equivalent:

� If g 2 G, g 6D 1, then g does not fix a curve of positive genus.

� G is birationally conjugate to a subgroup of Aut.P 2/, or to a subgroup of
Aut.P 1 � P 1/, or to the group Cs24 isomorphic to Z=2Z � Z=4Z, generated
by the two elements

.x W y W z/ Ü .yz W xy W �xz/;

.x W y W z/ Ü .yz.y � z/ W xz.y C z/ W xy.y C z//:

Moreover, this last group is conjugate neither to a subgroup of Aut.P 2/, nor to a
subgroup of Aut.P 1 � P 1/.

Then we discuss the case in which the group is infinite, respectively non-Abelian
(Section 11), and provide many examples of groups satisfying (F) but not (M).

Note that many finite groups which contain elements that fix a non-rational curve
are known; see for example [Wim] or more recently [Bla2] and [Do-Iz]. This can
also occur if the group is infinite; see [BPV] and [Bla5]. In fact, the set of non-
rational curves fixed by the elements of a group is a conjugacy invariant very useful
in describing conjugacy classes (see [Ba-Be], [dFe], [Bla4]).

1.2. How to decide. Given a finite Abelian group of birational transformations of
a (rational) surface, we thus have a good way to determine whether the group is
birationally conjugate to a group of automorphisms of a minimal surface (in fact
to P 2 or P 1 � P 1). If some non-trivial element fixes a curve of positive genus
(i.e., if condition .F / is not satisfied), this is false. Otherwise, if the group is not
isomorphic to Z=2Z � Z=4Z, it is birationally conjugate to a subgroup of Aut.P 2/

or of Aut.P 1 � P 1/. There are exactly four conjugacy classes of groups isomorphic
to Z=2Z � Z=4Z satisfying condition (F) (see Theorem 5); three are conjugate to a
subgroup of Aut.P 2/ or Aut.P 1 � P 1/, and the fourth (the group Cs24 of Theorem 2,
described in detail in Section 7) is not.
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1.3. Linearisation of birational actions. Our question is related to that of lineari-
sation of birational actions on C2. This latter question has been studied intensively
for holomorphic or polynomial actions; see for example [De-Ku], [Kra] and [vdE].
Taking some group acting birationally on C2, we would like to know if we may bira-
tionally conjugate this action to have a linear action. Note that working on P 2 or C2

is the same for this question. Theorem 1 implies that for finite cyclic groups, being
linearisable is equivalent to fulfilling condition (F). This is not true for finite Abelian
groups in general, since some groups acting biregularly on P 1 � P 1 are not bira-
tionally conjugate to groups of automorphisms of P 2. Note that Theorem 1 implies
the following result on linearisation, also announced in [Bla3] (as Theorem 4.2):

Theorem 3. Any birational map which is an n-th root of a non-trivial linear automor-
phism of finite order n of the plane is conjugate to a linear automorphism of the plane.

1.4. The approach and other results. Our approach – followed in all the modern
articles on the subject – is to view the finite subgroups of the Cremona group as
groups of (biregular) automorphisms of smooth projective rational surfaces and then
to assume that the action is minimal (i.e., that it is not possible to blow down some
curves and obtain once again a biregular action on a smooth surface). Manin and
Iskovskikh ([Man] and [Isk2]) proved that the only possible cases are action on del
Pezzo surfaces or conic bundles. We will clarify this classification, for finite Abelian
groups fillfulling (F), by proving the following result:

Theorem 4. Let S be some smooth projective rational surface and let G � Aut.S/

be a finite Abelian group of automorphisms of S such that

� the pair .G; S/ is minimal;

� if g 2 G, g 6D 1, then g does not fix a curve of positive genus.

Then one of the following occurs:

1. The surface S is minimal, i.e., S Š P 2, or S Š Fn for some integer n 6D 1.

2. The surface S is a del Pezzo surface of degree 5 and G Š Z=5Z.

3. The surface S is a del Pezzo surface of degree 6 and G Š Z=6Z.

4. The pair .G; S/ is isomorphic to the pair .Cs24; yS4/ defined in Section 7.

We will then prove that all the pairs in cases 1, 2 and 3 are birationally equivalent
to a group of automorphisms of P 1 � P 1 or P 2, and that this is not true for case 4. In
fact, we are able to provide the precise description of all conjugacy classes of finite
Abelian subgroups of Bir.P 2/ satisfying (F):

Theorem 5. Let G be a finite Abelian subgroup of the Cremona group such that
no non-trivial element of G fixes a curve of positive genus. Then G is birationally
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conjugate to one and only one of the following:

.1/ G Š Z=nZ � Z=mZ; .x; y/ 7! .�nx; y/ and .x; y/ 7! .x; �my/;

.2/ G Š Z=2Z � Z=2nZ; .x; y/ 7! .x�1; y/ and .x; y/ 7! .�x; �2ny/;

.3/ G Š .Z=2Z/2 � Z=2nZ; .x; y/ 7! .˙x˙1; y/ and .x; y/ 7! .x; �2ny/;

.4/ G Š .Z=2Z/3; .x; y/ 7! .˙x; ˙y/ and .x; y/ 7! .x�1; y�1/;

.5/ G Š .Z=2Z/4; .x; y/ 7! .˙x˙1; ˙y˙1/;

.6/ G Š Z=2Z � Z=4Z; .x; y/ 7! .x�1; y�1/ and .x; y/ 7! .�y; x/

.7/ G Š .Z=2Z/3; .x; y/ 7! .�x; �y/; .x; y/ 7! .x�1; y�1/;

and .x; y/ 7! .y; x/;

.8/ G Š .Z=2Z/ � .Z=4Z/; .x W y W z/ Ü .yz.y � z/ W xz.y C z/ W xy.y C z//

and .x W y W z/ Ü .yz W xy W �xz/;

.9/ G Š .Z=3Z/2; .x W y W z/ 7! .x W �3y W .�3/2z/

and .x W y W z/ 7! .y W z W x/

(where n, m are positive integers, n divides m and �n D e2i�=n).
Furthermore, the groups in cases (1) through (7) are birationally conjugate to

subgroups of Aut.P 1 � P 1/, but the others are not. The groups in cases (1) and (9)
are birationally conjugate to subgroups of Aut.P 2/, but the others are not.

To prove these results, we will need a number of geometric results on automor-
phisms of rational surfaces, and in particular on automorphisms of conic bundles and
del Pezzo surfaces (Sections 3 to 9). We give for example the classification of all the
twisting elements (that exchange the two components of a singular fibre) acting on
conic bundles in Proposition 6.5 (for the elements of finite order) and Proposition 6.8
(for those of infinite order); these are the most important elements in this context (see
Lemma 3.8). We also prove that actions of (possibly infinite) Abelian groups on del
Pezzo surfaces satifying (F) are minimal only if the degree is at least 5 (Section 9) and
describe these cases precisely (Sections 4, 5 and 9). We also show that a finite Abelian
group acting on a projective smooth surface S such that .KS /2 � 5 is birationally
conjugate to a group of automorphisms of P 1 � P 1 or P 2 (Corollary 9.10) and in
particular satisfies (F).

1.5. Comparison with other work. Many authors have considered the finite sub-
groups of Bir.P 2/. Among them, S. Kantor [Kan] gave a classification of the finite
subgroups, which was incomplete and included some mistakes; A. Wiman [Wim] and
then I.V. Dolgachev and V.A. Iskovskikh [Do-Iz] successively improved Kantor’s
results. The long paper [Do-Iz] expounds the general theory of finite subgroups of
Bir.P 2/ according to the modern techniques of algebraic geometry, and will be for
years to come the reference on the subject. Our viewpoint and aim differ from those
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of [Do-Iz]: we are only interested in Abelian groups with relation to the above con-
ditions (F) and (M); this gives a restricted setting in which the theoretical approach is
simplified and the results obtained are more accurate. In the study of del Pezzo sur-
faces, using the classification [Do-Iz] of subgroups of automorphisms would require
the examination of many cases; for the sake of readibility we prefered a direct proof.
The two main theorems of [Do-Iz] on automorphism of conic bundles (Proposition 5.3
and Theorem 5.7 (2)) do not exclude groups satisfying property (F) and do not give
explicit forms for the generators of the groups or the surfaces.

Aknowledgements. This article is part of my PhD thesis [Bla2]. I am grateful to my
advisor T. Vust for his invaluable help during these years, to I. Dolgachev for helpful
discussions, and thank J.-P. Serre and the referees for their useful remarks on this
article.

2. Automorphisms of P 2 or P 1 � P 1

Note that a linear automorphism of C2 may be extended to an automorphism of either
P 2 or P 1 � P 1. Moreover, the automorphisms of finite order of these three surfaces
are birationally conjugate. For finite Abelian groups, the situation is quite different.
We give here the birational equivalence of these groups.

Notation 2.1. The diagonal automorphism .x W y W z/ 7! .ax W by W cz/ of P 2 is
denoted by Œa W b W c�, and �m D e2i�=m.

Proposition 2.2 (Finite Abelian subgroups of Aut.P 2/). Every finite Abelian sub-
group of Aut.P 2/ D PGL.3; C/ is conjugate, in the Cremona group Bir.P 2/, to one
and only one of the following:

1. a diagonal group, isomorphic to Z=nZ � Z=mZ, where n divides m, generated
by Œ1 W �n W 1� and Œ�m W 1 W 1� (the case n D 1 gives the cyclic groups);

2. the special group V9, isomorphic to Z=3Z�Z=3Z, generated by Œ1 W �3 W .�3/2�

and .x W y W z/ 7! .y W z W x/.

Thus, except for the group V9, two isomorphic finite Abelian subgroups of PGL.3; C/

are conjugate in Bir.P 2/.

Proof. First of all, a simple calculation shows that every finite Abelian subgroup of
PGL.3; C/ is either diagonalisable or conjugate to the group V9. Furthermore, since
this last group does not fix any point, it is not diagonalisable, even in Bir.P 2/ [Ko-Sz],
Proposition A.2.

Let T denote the torus of PGL.3; C/ constituted by diagonal automorphisms
of P 2. Let G be a finite subgroup of T ; as an abstract group it is isomorphic to
Z=nZ � Z=mZ, where n divides m. Now we can conjugate G by a birational map of



Linearisation of finite Abelian subgroups of the Cremona group of the plane 221

the form h W .x; y/ Ü .xayb; xcyd / so that it contains Œ�m W 1 W 1� (see [Be-Bl] and
[Bla1]). Since h normalizes the torus T , the group G remains diagonal and contains
the n-torsion of T , hence it contains Œ1 W �n W 1�.

Corollary 2.3. Every finite Abelian group of linear automorphisms of C2 is bira-
tionally conjugate to a diagonal group, isomorphic to Z=nZ � Z=mZ, where n

divides m, generated by .x; y/ 7! .�nx; y/ and .x; y/ 7! .x; �my/.

Proof. This follows from the fact that the group GL.2; C/ of linear automorphisms of
C2 extends to a group of automorphisms of P 2 that leaves the line at infinity invariant
and fixes one point.

Example 2.4. Note that Aut.P 1 � P 1/ contains the group .C�/2 Ì Z=2Z, where
.C�/2 is the group of automorphisms of the form .x; y/ 7! .˛x; ˇy/, ˛; ˇ 2 C�, and
Z=2Z is generated by the automorphism .x; y/ 7! .y; x/.

The birational map .x; y/ Ü .x W y W 1/ from P 1 � P 1 to P 2 conjugates
.C�/2 Ì Z=2Z to the group of automorphisms of P 2 generated by .x W y W z/ 7!
.˛x W ˇy W z/, ˛; ˇ 2 C� and .x W y W z/ 7! .y W x W z/.

Proposition 2.5 (Finite Abelian subgroups of Aut.P 1 � P 1/). Up to birational con-
jugation, every finite Abelian subgroup of Aut.P 1 �P 1/ is conjugate to one and only
one of the following:

.1/ G Š Z=nZ � Z=mZ; .x; y/ 7! .�nx; y/ and .x; y/ 7! .x; �my/;

.2/ G Š Z=2Z � Z=2nZ; .x; y/ 7! .x�1; y/ and .x; y/ 7! .�x; �2ny/;

.3/ G Š .Z=2Z/2 � Z=2nZ; .x; y/ 7! .˙x˙1; y/ and .x; y/ 7! .x; �2ny/;

.4/ G Š .Z=2Z/3; .x; y/ 7! .˙x; ˙y/ and .x; y/ 7! .x�1; y�1/;

.5/ G Š .Z=2Z/4; .x; y/ 7! .˙x˙1; ˙y˙1/

.6/ G Š Z=2Z � Z=4Z; .x; y/ 7! .x�1; y�1/ and .x; y/ 7! .�y; x/;

.7/ G Š .Z=2Z/3; .x; y/ 7! .�x; �y/; .x; y/ 7! .x�1; y�1/

and .x; y/ 7! .y; x/

(where n, m are positive integers, n divides m and �n D e2i�=n).
Furthermore, the groups in (1) are conjugate to subgroups of Aut.P 2/, but the

others are not.

Proof. Recall that Aut.P 1 � P 1/ D .PGL.2; C/ � PGL.2; C// Ì Z=2Z. Let G be
some finite Abelian subgroup of Aut.P 1 � P 1/; we now prove that G is conjugate to
one of the groups in cases (1) through (7).

First of all, if G is a subgroup of the group .C�/2 Ì Z=2Z given in Example 2.4,
then it is conjugate to a subgroup of Aut.P 2/ and hence to a group in case (1).
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Assume that G � PGL.2; C/�PGL.2; C/ and denote by �1 and �2 the projections
�i W PGL.2; C/ � PGL.2; C/ ! PGL.2; C/ on the i -th factor. Since �1.G/ and
�2.G/ are finite Abelian subgroups of PGL.2; C/ each is conjugate to a diagonal
cyclic group or to the group x Ü ˙x˙1, isomorphic to .Z=2Z/2. We enumerate
the possible cases.

If both groups �1.G/ and �2.G/ are cyclic, the group G is conjugate to a sub-
group of the diagonal torus .C�/2 of automorphisms of the form .x; y/ 7! .˛x; ˇy/,
˛; ˇ 2 C�.

If exactly one of the two groups �1.G/ and �2.G/ is cyclic we may assume, up to
conjugation in Aut.P 1 � P 1/, that �2.G/ is cyclic, generated by y 7! �my, for some
integer m � 1, and that �1.G/ is the group x Ü ˙x˙1. We use the exact sequence
1 ! G \ ker �2 ! G ! �2.G/ ! 1 and find, up to conjugation, two possibilities
for G:

(a) G is generated by x; y/ 7! .x�1; y/ and .x; y/ 7! .�x; �my/;
(b) G is generated by .x; y/ 7! .˙x˙1; y/ and .x; y/ 7! .x; �my/.

If m is even, we obtain respectively (2) and (3) for n D m=2. If m is odd, the two
groups are equal; conjugating by ' W .x; y/ Ü .x; y.x C x�1// (which conjugates
.x; y/ 7! .�x; y/ to .x; y/ 7! .�x; �y/) we obtain the group (2) for n D m.

If both groups �1.G/ and �2.G/ are isomorphic to .Z=2Z/2, then up to conjuga-
tion, we obtain three groups, namely

(a) G is generated by .x; y/ 7! .�x; �y/ and .x; y/ 7! .x�1; y�1/;
(b) G is generated by .x; y/ 7! .˙x; ˙y/ and .x; y/ 7! .x�1; y�1/;
(c) G is given by .x; y/ 7! .˙x˙1; ˙y˙1/.

The group (2) with n D 1 is conjugate to (a) by .x; y/ Ü .x; x yCx

yCx�1 /. The groups
(b) and (c) are respectively equal to (4) and (5).

We now suppose that the group G is not contained in PGL.2; C/ � PGL.2; C/.
Any element ' 2 Aut.P 1�P 1/ not contained in PGL.2; C/�PGL.2; C/ is conjugate
to ' W .x; y/ 7! .˛.y/; x/, where ˛ 2 Aut.P 1/, and if ' is of finite order, ˛ may be
chosen to be y 7! �y with � 2 C� a root of unity.

Thus, up to conjugation, G is generated by the group H D G \ .PGL.2; C/ �
PGL.2; C// and one element .x; y/ 7! .�y; x/, for some � 2 C� of finite order. Since
the group G is Abelian, every element of H is of the form .x; y/ 7! .ˇ.x/; ˇ.y//,
for some ˇ 2 PGL.2; C/ satisfying ˇ.�x/ D �ˇ.x/. Three possibilities occur,
depending on the value of � which may be 1, �1, or something else.

If � D 1, we conjugate the group by some element .x; y/ 7! .�.x/; �.y// so
that H is either diagonal or equal to the group generated by .x; y/ 7! .�x; �y/ and
.x; y/ 7! .x�1; y�1/. In the first situation, the group is contained in .C�/2 Ì Z=2Z
(which gives (1)); the second situation gives (7).



Linearisation of finite Abelian subgroups of the Cremona group of the plane 223

If � D �1, the group H contains the square of .x; y/ 7! .�y; x/, which is
.x; y/ 7! .�x; �y/ and is either cyclic or generated by .x; y/ 7! .�x; �y/ and
.x; y/ 7! .x�1; y�1/. If H is cyclic, it is diagonal, since it contains .x; y/ 7!
.�x; �y/, so G is contained in .C�/2 Ì Z=2Z. The second possibility gives (6).

If � 6D ˙1, the group H is diagonal and then G is contained in .C�/2 Ì Z=2Z.
We now prove that distinct groups of the list are not birationally conjugate.
First of all, each group of case (1) fixes at least one point of P 1 � P 1. Since the

other groups of the list do not fix any point, they are not conjugate to (1) [Ko-Sz,
Proposition A.2].

Consider the other groups. The set of isomorphic groups are those of cases (3)
(with n D 1), (4) and (7) (isomorphic to .Z=2Z/3), and of cases (2) (with n D 2) and
(6) (isomorphic to Z=2Z � Z=4Z).

The groups of cases (2) to (5) leave two pencils of rational curves invariant (the
fibres of the two projections P 1 � P 1 ! P 1) which intersect freely in exactly one
point. We prove that this is not the case for (6) and (7); this shows that these two groups
are not birationally conjugate to any of the previous groups. Take G � Aut.P 1 �P 1/

to be either (6) or (7). We then have Pic.P 1 �P 1/G D Zd , where d D �1
2
KP1�P1 is

the diagonal of P 1 � P 1. Suppose that there exist two G-invariant pencils ƒ1 D n1d

and ƒ2 D n2d of rational curves, for some positive integers n1, n2 (we identify
here a pencil with the class of its elements in Pic.P 1 � P 1/G). The intersection
ƒ1 � ƒ2 D 2n1n2 is an even integer. Note that the fixed part of the intersection is
also even, since G is of order 8 and acts without fixed points on P 1 � P 1. The free
part of the intersection is then also an even integer and hence is not 1.

Let us now prove that (4) is not birationally conjugate to (3) (with n D 1). This
follows from the fact that (4) contains three subgroups that are fixed-point free (the
groups generated by .x; y/ 7! .x�1; y�1/ and one of the three involutions of the group
.x; y/ 7! .˙x; ˙y/), whereas (3) (with n D 1) contains only one such subgroup,
which is .x; y/ 7! .˙x˙1; y/.

We now prove the last assertion. The finite Abelian groups of automorphisms
of P 2 are conjugate either to (1) or to the group V9, isomorphic to .Z=3Z/2 (see
Proposition 2.2). Since no group of the list (2) through (7) is isomorphic to .Z=3Z/2,
we are done.

Summary of this section. We have found that the groups common to the three surfaces
C2, P 2, and P 1 � P 1 are the “diagonal” ones (generated by .x; y/ 7! .�nx; y/ and
.x; y/ 7! .x; �my/). On P 2 there is only one more group, which is the special group
V9, and on P 1 � P 1 there are 2 families, (2) and (3), and 4 special groups, (4), (5),
(6), and (7).
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3. Some facts about automorphisms of conic bundles

We first consider conic bundles without mentioning any group action on them. We
recall some classical definitions.

Definition 3.1. Let S be a rational surface and � W S ! P 1 be a morphism. We say
that the pair .S; �/ is a conic bundle if a general fibre of � is isomorphic to P 1, with
a finite number of exceptions: these singular fibres are the union of smooth rational
curves F1 and F2 such that .F1/2 D .F2/2 D �1 and F1 � F2 D 1.

Let .S; �/ and . zS; Q�/ be two conic bundles. We say that ' W S Ü zS is a birational
map of conic bundles if ' is a birational map which sends a general fibre of � on a
general fibre of Q� .

We say that a conic bundle .S; �/ is minimal if any birational morphism of conic
bundles .S; �/ ! . zS; Q�/ is an isomorphism.

We remind the reader of the following well-known result:

Lemma 3.2. Let .S; �/ be a conic bundle. The following conditions are equivalent:

� .S; �/ is minimal.
� The fibration � is smooth, i.e., no fibre of � is singular.
� S is a Hirzebruch surface Fm, for some integer m � 0.

Blowing-down one irreducible component in any singular fibre of a conic bundle
.S; �/, we obtain a birational morphism of conic bundles S ! Fm for some integer
m � 0. Note that m depends on the choice of the blown-down components. The
following lemma gives some information on the possibilities. Note first that since the
sections of Fm have self-intersection � �m, the self-intersections of the sections of
� are also bounded from below.

Lemma 3.3. Let .S; �/ be a conic bundle on a surface S 6Š P 1 � P 1. Let �n be the
minimal self-intersection of sections of � and let r be the number of singular fibres
of � . Then n � 1 and the following holds:

1. There exists a birational morphism of conic bundles p� W S ! Fn such that

(a) p� is the blow-up of r points of Fn, none of which lies on the exceptional
section En;

(b) the strict pull-back zEn of En by p� is a section of � with self-intersec-
tion �n.

2. If there exist two different sections of � with self-intersection �n, then r � 2n.
In this case, there exist birational morphisms of conic bundles p0 W S ! F0 D
P 1 � P 1 and p1 W S ! F1.
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Proof. We denote by s a section of � of minimal self-intersection �n, for some
integer n (this integer is in fact positive, as will appear in the proof). Note that this
curve intersects exactly one irreducible component of each singular fibre.

If r D 0, the lemma is trivially true: take p� to be the identity map. We now
suppose that r � 1, and denote by F1; : : : ; Fr the irreducible components of the
singular fibres which do not intersect s. Blowing these down, we get a birational
morphism of conic bundles p� W S ! Fm, for some integer m � 0. The image of the
section s by p� is a section of the conic bundle of Fm of minimal self-intersection, so
we get m D n, and n � 0. If we had n D 0, then taking some section Qs of P 1 � P 1 of
self-intersection 0 passing through at least one blown-up point, its strict pull-back by
p� would be a section of negative self-intersection, which contradicts the minimality
of s2 D �n D 0. We find finally that m D n > 0, and that p�.s/ is the unique
section Fn of self-intersection �n. This proves the first assertion.

We now prove the second assertion. Suppose that some section t 6D s has self-
intersection �n. The Picard group of S is generated by s D p��.En/, the divisor
f of a fibre of � and F1; : : : ; Fr . Write t as t D s C bf � Pr

iD1 aiFi , for some
integers b; a1; : : : ; ar , with a1; : : : ; ar � 0. We have t2 D �n and t � .t C KS / D �2

(adjunction formula), where KS D p��.KFn
/ C Pr

iD1 Fi D �.n C 2/f � 2s CPr
iD1 Fi . These relations give:

s2 D t2 D s2 � Pr
iD1 a2

i C 2b;

n � 2 D t � KS D �.n C 2/ C 2n � 2b C Pr
iD1 ai ;

whence
Pr

iD1 ai D Pr
iD1 a2

i D 2b, so each ai is equal to 0 or 1 and consequently
2b � r . Since s � t D b � n � 0, we find that r � 2n, as announced.

Finally, by contracting f � F1; f � F2; : : : ; f � Fn; FnC1; FnC2; : : : ; Fr , we
obtain a birational morphism p0 of conic bundles which sends s on a section of self-
intersection 0 and whose image is thus F0. Similarly, the morphism p1 W S ! F1 is
given by the contraction of f � F1; f � F2; : : : ; f � Fn�1; Fn; FnC1; : : : ; Fr .

We now add some group actions on the conic bundles, and give natural definitions
(note that we will restrict ourselves to finite orAbelian groups only when this is needed
and will then say so).

Definition 3.4. Let .S; �/ be some conic bundle.
We denote by Aut.S; �/ � Aut.S/ the group of automorphisms of the conic

bundle, i.e., automorphisms of S that send a general fibre of � on another general
fibre.

Let G � Aut.S; �/ be some group of automorphisms of the conic bundle .S; �/.
We say that a birational map of conic bundles ' W S Ü zS is G-equivariant if the

G-action on zS induced by ' is biregular (it is clear that it preserves the conic bundle
structure).
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We say that the triple .G; S; �/ is minimal if any G-equivariant birational mor-
phism of conic bundles ' W S ! zS is an isomorphism.

Remark 3.5. We insist on the fact that since a conic bundle is for us a pair .S; �/,
an automorphism of S is not necessarily an automorphism of the conic bundle (i.e.,
Aut.S/ 6D Aut.S; �/ in general). One should be aware that in the literature, conic
bundle sometimes means “a variety admitting a conic bundle structure”.

Remark 3.6. If G � Aut.S; �/ is such that the pair .G; S/ is minimal, so is the triple
.G; S; �/. The converse is not true in general (see Remark 4.7).

Note that any automorphism of the conic bundle acts on the set of singular fibres
and on its irreducible components. The permutation of the two components of a
singular fibre is very important (Lemma 3.8). For this reason, we introduce some
terminology.

Definition 3.7. Let g 2 Aut.S; �/ be an automorphism of the conic bundle .S; �/.
Let F D fF1; F2g be a singular fibre. We say that g twists the singular fibre F if
g.F1/ D F2 (and consequently g.F2/ D F1).

If g twists at least one singular fibre of � , we will say that g twists the conic bundle
.S; �/, or simply (if the conic bundle is implicit) that g is a twisting element.

Here is a simple but very important observation:

Lemma 3.8. Let G � Aut.S; �/ be a group of automorphisms of a conic bundle.
The following conditions are equivalent:

1. The triple .G; S; �/ is minimal.

2. Any singular fibre of � is twisted by some element of G. �

Remark 3.9. An automorphism of a conic bundle with a non-trivial action on the basis
of the fibration may twist at most two singular fibres. However, an automorphism
with a trivial action on the basis of the fibration may twist a large number of fibres.
We will give in Propositions 6.5 and 6.8 a precise description of all twisting elements.

The following lemma is a direct consequence of Lemma 3.3; it provides informa-
tion on the structure of the underlying variety of a conic bundle admitting a twisting
automorphism.

Lemma 3.10. Suppose that some automorphism of the conic bundle .S; �/ twists at
least one singular fibre. Then the following holds:

1. There exist two birational morphisms of conic bundles p0 W S ! F0 and
p1 W S ! F1 (which are not g-equivariant).
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2. Let �n be the minimal self-intersection of sections of � and let r be the number
of singular fibres of � . Then r � 2n � 2.

Proof. Note that any section of � touches exactly one component of each singular
fibre. Since g twists some singular fibre, its action on the set of sections of S is
fixed-point-free. The number of sections of minimal self-intersection is then greater
than 1 and we apply Lemma 3.3 to get the result.

Remark 3.11. A result of the same kind can be found in [Isk1], Theorem 1.1.

Lemma 3.12. Let G � Aut.S; �/ be a group of automorphisms of the conic bundle
.S; �/ such that � has at most three singular fibres (or, equivalently, .KS /2 � 5),
and the triple .G; S; �/ is minimal.

Then S is either a Hirzeburch surface or a del Pezzo surface of degree 5 or 6,
depending on whether the number of singular fibres is 0, 3, or 2, respectively.

Proof. Let �n be the minimal self-intersection of sections of � and let r � 3 be
the number of singular fibres of � . If r D 0, we are done, so we may suppose that
r > 0. Since .G; S; �/ is minimal, every singular fibre is twisted by some element
of G (Lemma 3.8). From Lemma 3.10, we get r � 2n � 2, whence r D 2 or 3 and
n D 1, and we obtain the existence of some birational morphism of conic bundles
(not G-equivariant) p1 W S ! F1. So the surface S is obtained by the blow-up of 2

or 3 points of F1, not on the exceptional section (Lemma 3.3), and thus by blowing
up 3 or 4 points of P 2, no three of which are collinear (otherwise we would have a
section of self-intersection � �2). The surface is then a del Pezzo surface of degree 6

or 5.

Remark 3.13. We conclude this section by mentioning an important exact sequence.
Let G � Aut.S; �/ be some group of automorphisms of a conic bundle .S; �/.
We have a natural homomorphism N� W G ! Aut.P 1/ D PGL.2; C/ that satisfies
N�.g/� D �g, for every g 2 G. We observe that the group G0 D ker N� of au-
tomorphisms that leave every fibre invariant embeds in the group PGL.2; C.x// of
automorphisms of the generic fibre P 1.C.x//. Then we get the exact sequence

1 ! G0 ! G
N�! N�.G/ ! 1: (1)

This restricts the structure of G; for example if G is Abelian and finite, so are G0 and
N�.G/, and we know that the finiteAbelian subgroups of PGL.2; C/ and PGL.2; C.x//

are either cyclic or isomorphic to .Z=2Z/2.
We also see that the group G is birationally conjugate to a subgroup of the group

of birational transformations of P 1 � P 1 of the form (written in affine coordinates)

.x; y/ Ü
�

ax C b

cx C d
;
˛.x/y C ˇ.x/

�.x/y C ı.x/

�
;
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where a; b; c; d 2 C, ˛; ˇ; �; ı 2 C.x/, and .ad � bc/.˛ı � ˇ�/ 6D 0.
This group, called the de Jonquières group, is the group of birational transforma-

tions of P 1 � P 1 that preserve the fibration induced by the first projection, and is
isomorphic to PGL.2; C.x// Ì PGL.2; C/.

The subgroups of this group can be studied algebraically (as in [Bea2] and [Bla4])
but we will not adopt this point of view here.

4. The del Pezzo surface of degree 6

There is a single isomorphism class of del Pezzo surfaces of degree 6, since all
sets of three non-collinear points of P 2 are equivalent under the action of linear
automorphisms. Consider the surface S6 of degree 6 defined by the blow-up of the
points A1 D .1 W 0 W 0/, A2 D .0 W 1 W 0/ and A3 D .0 W 0 W 1/. We may view
it in P 2 � P 2, defined as f..x W y W z/; .u W v W w// j ux D vy D wzg, where
the blow-down p W S6 ! P 2 is the restriction of the projection on one copy of P 2,
explicitly p W ..x W y W z/; .u W v W w// 7! .x W y W z/. There are exactly 6 exceptional
divisors, which are the pull-backs of the Ai ’s by the two projection morphisms. We
write Ei D p�1.Ai / and denote by Dij the strict pull-back by p of the line of P 2

passing through Ai and Aj .
The group of automorphisms of S6 is well known (see for example [Wim], [Do-Iz]).

It is isomorphic to .C�/2 Ì .Sym3 �Z=2Z/, where .C�/2 Ì Sym3 is the lift on S6

of the group of automorphisms of P 2 that leave the set fA1; A2; A3g invariant, and
Z=2Z is generated by the permutation of the two factors (it is the lift of the standard
quadratic transformation .x W y W z/ Ü .yz W xz W xy/ of P 2); the action of Z=2Z
on .C�/2 sends an element on its inverse.

There are three conic bundle structures on the surface S6. Let �1 W S6 ! P 1 be
the morphism defined by

�1 W �
.x W y W z/; .u W v W w/

� 7!
´

.y W z/ if .x W y W z/ 6D .1 W 0 W 0/;

.w W v/ if .u W v W w/ 6D .1 W 0 W 0/:

Note that p sends the fibres of �1 on lines of P 2 passing through A1. There are
exactly two singular fibres of this fibration, namely

��1
1 .1 W 0/ D fE2; D12g and ��1

1 .0 W 1/ D fE3; D13g;
and E1, D23 are sections of �1.

Lemma 4.1. The group Aut.S6; �1/ of automorphisms of the conic bundle .S6; �1/

acts on the hexagon fE1; E2; E3; D12; D13; D23g and leaves the set fE1; D23g in-
variant.
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E2

D12

E3

D13

D23

E1

�1

Figure 1. The conic bundle .S6; �1/ and its singular fibres.

1. The action on the hexagon gives rise to the exact sequence

1 ! .C�/2 ! Aut.S6; �1/ ! .Z=2Z/2 ! 1:

2. This exact sequence is split and Aut.S6; �1/ D .C�/2 Ì .Z=2Z/2, where

(a) .C�/2 is the group of automorphisms of the form

..x W y W z/; .u W v W w// 7! ..x W ˛y W ˇz/; .˛ˇu W ˇv W ˛w//

with ˛; ˇ 2 C�;
(b) the group .Z=2Z/2 is generated by the automorphisms

..x W y W z/; .u W v W w// 7! ..x W z W y/; .u W w W v//;

whose action on the set of exceptional divisors is .E2E3/.D12D13/, and

..x W y W z/; .u W v W w// 7! ..u W v W w/; .x W y W z//;

whose action is .E1D23/.E2D13/.E3D12/.

(c) The action of .Z=2Z/2 on .C�/2 is generated by permutation of the co-
ordinates and inversion.

Proof. Since Aut.S6/ acts on the hexagon, so does Aut.S6; �1/ � Aut.S6/. Since
the group Aut.S6; �1/ sends a section on a section, the set fE1; D23g is invariant.

The group .C�/2 leaves the conic bundle invariant, and is the kernel of the action of
Aut.S6; �1/ on the hexagon. As the set fE1; D23g is invariant, the image is contained
in the group .Z=2Z/2 generated by

.E2E3/.D12D13/ and .E1D23/.E2D13/.E3D12/:

The rest of the lemma follows directly.
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By permuting coordinates, we have two other conic bundle structures on the surface
S6, given by the following morphisms �2; �3 W S6 ! P 1:

�2...x W y W z/; .u W v W w/// D
´

.x W z/ if .x W y W z/ 6D .0 W 1 W 0/;

.w W u/ if .u W v W w/ 6D .0 W 1 W 0/;

�3...x W y W z/; .u W v W w/// D
´

.x W y/ if .x W y W z/ 6D .0 W 0 W 1/;

.v W u/ if .u W v W w/ 6D .0 W 0 W 1/:

The description of the exceptional divisors on S6 shows that �1; �2 and �3 are the
only conic bundle structures on S6.

Lemma 4.2. For i D 1; 2; 3, the pair .Aut.S6; �i /; S6/ is not minimal. More pre-
cisely, the morphism �j � �k W S6 ! P 1 � P 1 conjugates Aut.S6; �i / to a subgroup
of Aut.P 1 � P 1/, where fi; j; kg D f1; 2; 3g.

Proof. The union of the sections E1 and D23 is invariant by the action of the whole
group Aut.S6; �1/. Since these two exceptional divisors do not intersect, we can
contract both and get a birational Aut.S6; �1/-equivariant morphism from S6 to
P 1 � P 1: the pair .Aut.S6; �1/; S6/ is thus not minimal; explicitly, the birational
morphism is given by q 7! .�2.q/; �3.q//, as stated in the lemma. We obtain the
other cases by permuting coordinates.

Remark 4.3. The subgroup of Aut.P 1 � P 1/ obtained in this manner does not leave
any of the two fibrations of P 1 � P 1 invariant.

Corollary 4.4. If .G; S6/ is a minimal pair (where G � Aut.S6/), then G does not
preserve any conic bundle structure. �

We conclude this section with a fundamental example; we will use several times
the following automorphism �˛;ˇ of .S6; �1/:

Example 4.5. For any ˛; ˇ 2 C�, we define �˛;ˇ to be the following automorphism
of .S6; �1/:

�˛;ˇ W ..x W y W z/; .u W v W w// 7! ..u W ˛w W ˇv/; .x W ˛�1z W ˇ�1y//:

Note that �˛;ˇ twists the two singular fibres of �1 (see Lemma 4.6 below); its
action on the basis of the fibration is .x1 W x2/ 7! .˛x1 W ˇx2/ and

�2
˛;ˇ ...x W y W z/; .u W v W w/// D ..x W ˛ˇ�1y W ˛�1ˇz/; .u W ˛�1ˇv W ˛ˇ�1w//:

So �˛;ˇ is an involution if and only if its action on the basis of the fibration is trivial.
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Lemma 4.6. Let g 2 Aut.S6; �1/ be an automorphism of the conic bundle .S6; �1/.
The following conditions are equivalent:

� the triple .hgi; S6; �1/ is minimal;
� g twists the two singular fibres of �1;
� the action of g on the exceptional divisors of S6 is .E1D23/.E2D12/.E3D13/;
� g D �˛;ˇ for some ˛; ˇ 2 C�.

Proof. According to Lemma 4.1 the action of Aut.S6; �1/ on the exceptional curves
is isomorphic to .Z=2Z/2 and hence the possible actions of g 6D 1 are these:

1. id,
2. .E2E3/.D12D13/,
3. .E1D23/.E2D13/.E3D12/,
4. .E1D23/.E2D12/.E3D13/.

In the first three cases, the triple .hgi; S6; �1/ is not minimal. Indeed, the blow-
down of fE2; E3g or fE2; D13g gives a g-equivariant birational morphism of conic
bundles.

Hence, if .hgi; S6; �1/ is minimal, its action on the exceptional curves is the fourth
one above, as stated in the lemma, and it then twists the two singular fibres of �1.
Conversely if g twists the two singular fibres of �1, the triple .hgi; S6; �1/ is minimal
(by Lemma 3.8).

It remains to see that the last assertion is equivalent to the others. This follows
from Lemma 4.1; indeed this lemma implies that .C�/2�1;1 is the set of elements of
Aut.S6; �1/ inducing the permutation .E1D23/.E2D12/.E3D13/.

Remark 4.7. The pair .Aut.S6; �1/; S6/ is not minimal (Lemma 4.2). Consequently
h�˛;ˇ i is an example of a group whose action on the surface is not minimal, but whose
action on a conic bundle is minimal.

5. The del Pezzo surface of degree 5

As for the del Pezzo surface of degree 6, there is a single isomorphism class of del
Pezzo surfaces of degree 5. Consider the del Pezzo surface S5 of degree 5 defined
by the blow-up p W S5 ! P 2 of the points A1 D .1 W 0 W 0/, A2 D .0 W 1 W 0/,
A3 D .0 W 0 W 1/ and A4 D .1 W 1 W 1/. There are 10 exceptional divisors on S5,
namely the divisor Ei D p�1.Ai /, for i D 1; : : : ; 4, and the strict pull-back Dij of
the line of P 2 passing through Ai and Aj , for 1 � i < j � 4. There are five sets of
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four skew exceptional divisors on S5, namely

F1 D fE1; D23; D24; D34g;
F2 D fE2; D13; D14; D34g;
F3 D fE3; D12; D14; D24g;
F4 D fE4; D12; D13; D23g;
F5 D fE1; E2; E3; E4g:

Proposition 5.1. The action of Aut.S5/ on the five sets F1; : : : ; F5 of four skew
exceptional divisors of S5 gives rise to an isomomorphism

� W Aut.S5/ ! Sym5 :

Furthermore, the actions of Symn, Altm � Aut.S5/ on S5 given by the canonical
embedding of these groups into Sym5 are fixed-point free if and only if n D 3; 4; 5;

respectively m D 4; 5.

Proof. Since any automorphism in the kernel of � leaves E1; E2; E3 and E4 invari-
ant and hence is the lift of an automorphism of P 2 that fixes the four points, the
homomorphism � is injective.

We now prove that � is also surjective. Firstly, the lift of the group of au-
tomorphisms of P 2 that leave the set fA1; A2; A3; A4g invariant is sent by � on
Sym4 D SymfF1;F2;F3;F4g. Secondly, the lift of the standard quadratic transfor-
mation .x W y W z/ Ü .yz W xz W xy/ is an automorphism of S5, as its lift on S6 is
an automorphism, and as it fixes the point A4; its image by � is .F4 F5/.

It remains to prove the last assertion. First of all, it is clear that the actions of
the cyclic groups Alt3 and Sym2 fix some points. The group Sym3 � Aut.P 2/ of
permutations of A1; A2 and A3 fixes exactly one point, namely .1 W 1 W 1/. The blow-
up of this point gives a fixed-point free action on F1, and thus its lift on S5 is also fixed-
point free. The group Alt4 � Aut.P 2/ contains the element .x W y W z/ 7! .z W x W y/

(which corresponds to .123/) that fixes exactly three points, i.e., .1 W a W a2/ for
a3 D 1. It also contains the element .x W y W z/ 7! .z � y W z � x W z/ (which
corresponds to .12/.34/) that does not fix .1 W a W a2/ for a3 D 1. Thus, the action of
Alt4 on P 2 is fixed-point free and the same is true on S5.

Remark 5.2. The structure of Aut.S5/ is classical and can be found for example in
[Wim] and [Do-Iz].

Lemma 5.3. Let � W S5 ! P 1 be some morphism inducing a conic bundle .S5; �/.
There are exactly four exceptional curves of S5 which are sections of �; the blow-
down of these curves gives rise to a birational morphism p W S5 ! P 2 which conju-
gates the group Aut.S5; �/ Š Sym4 to the subgroup of Aut.P 2/ that leaves invariant
the four points blown up by p. In particular, the pair .Aut.S5; �/; S5/ is not minimal.
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Proof. Blowing-down one component in any singular fibre, we obtain a birational
morphism of conic bundles (not Aut.S5; �/-equivariant) from S5 to some Hirzebruch
surface Fn. Since S5 does not contain any curves of self-intersection � �2, n is equal
to 0 or 1. Changing the component blown down in a singular fibre performs an
elementary link Fn Ü Fn˙1; we may then assume that n D 1, and that F1 is
the blow-up of A1 2 P 2. Consequently, the fibres of the conic bundles correspond
to the lines passing through A1. Denoting by A2, A3, A4 the other points blown
up by the constructed birational morphism S5 ! P 2 and using the same notation
as before, the three singular fibres are fEi ; D1ig for i D 2; : : : ; 4, and the other
exceptional curves are four skew sections of the conic bundle, namely the elements of
F1 D fE1; D23; D24; D34g. The blow-down of F1 gives an Aut.S5; �/-equivariant
birational morphism (that is not a morphism of conic bundles) p W S5 ! P 2 and
conjugates Aut.S5; �/ to a subgroup of the group Sym4 � Aut.P 2/ of automorphisms
that leaves the four points blown up by p invariant. The fibres of � are sent on the
conics passing through the four points, so the lift of the whole group Sym4 belongs
to Aut.S5; �/.

Corollary 5.4. Let G be some group of automorphisms of a conic bundle .S; �/

such that the pair .G; S/ is minimal and .KS /2 � 5 (or equivalently such that the
number of singular fibres of � is at most 3). Then the fibration is smooth, i.e., S is a
Hirzebruch surface.

Proof. Since .G; S/ is minimal, so is the triple .G; S; �/. By Lemma 3.12, the sur-
face S is either a Hirzebruch surface, or a del Pezzo surface of degree 5 or 6. Corol-
lary 4.4 shows that the del Pezzo surface of degree 6 is not possible and Lemma 5.3
eliminates the possibility of the del Pezzo surface of degree 5.

6. Description of twisting elements

In this section we describe the twisting automorphisms of conic bundles, which are
the most important automorphisms (see Lemma 3.8).

Lemma 6.1 (Involutions twisting a conic bundle). Let g 2 Aut.S; �/ be a twisting
automorphism of the conic bundle .S; �/. Then the following properties are equiva-
lent:

1. g is an involution.

2. N�.g/ D 1, i.e., g has a trivial action on the basis of the fibration.

3. The set of points of S fixed by g is an irreducible hyperelliptic curve of genus
.k � 1/ – a double covering of P 1 by means of � , ramified over 2k points –
plus perhaps a finite number of isolated points, which are the singular points of
the singular fibres not twisted by g.
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Furthermore, if the three conditions above are satisfied, the number of singular fibres
of � twisted by g is 2k � 2.

Proof. 1 H) 2. By contracting some exceptional curves, we may assume that the
triple .hgi; S; �/ is minimal. Suppose that g is an involution and N�.g/ 6D 1. Then
g may twist only two singular fibres, which are the fibres of the two points of P 1

fixed by N�.g/. Hence, the number of singular fibres is � 2. Lemma 3.12 tells us
that S is a del Pezzo surface of degree 6 and then Lemma 4.6 shows that g D �˛;ˇ

(Example 4.5) for some ˛; ˇ 2 C�. But such an element is an involution if and only
if it acts trivially on the basis of the fibration.

1 and 2 H) 3. Suppose first that .hgi; S; �/ is minimal. This implies that g twists
every singular fibre of � . Therefore, since N�.g/ D 1 and g2 D 1, on a singular fibre
there is one point fixed by g (the singular point of the fibre) and on a general fibre there
are two fixed points. The set of points of S fixed by g is thus a smooth irreducible
curve. The projection � gives it as a double covering of P 1 ramified over the points
whose fibres are singular and twisted by g. By the Riemann–Hurwitz formula, this
number is even, equal to 2k and the genus of the curve is k � 1.

The situation when .hgi; S; �/ is not minimal is obtained from this one by blow-
ing up some fixed points. This adds in each new singular fibre (not twisted by the
involution) an isolated point, which is the singular point of the singular fibre. We then
get the third assertion and the final remark.

3 H) 2. This implication is clear.
2 H) 1. If N�.g/ D 1, then g2 leaves every component of every singular fibre

of � invariant. Let p1 W S ! F1 be the birational morphism of conic bundles given
by Lemma 3.10; it is a g2-equivariant birational morphism which conjugates g2 to
an automorphism of F1 that necessarily fixes the exceptional section. The pull-back
by p1 of this section is a section C of � fixed by g2. Since C touches exactly one
component of each singular fibre (in particular those that are twisted by g), g sends C

on another section D also fixed by g2. The union of the sections D and C intersects
a general fibre in two points, which are exchanged by the action of g. This implies
that g has order 2.

We now give some further simple results on twisting involutions.

Corollary 6.2. Let .S; �/ be some conic bundle. No involution twisting .S; �/ has a
root in Aut.S; �/ which acts trivially on the basis of the fibration.

Proof. Such a root must twist a singular fibre and so (Lemma 6.1) is an involution.

Remark 6.3. There may exist some roots in Aut.S; �/ of twisting involutions which
act non trivially on the basis of the fibration.
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Take for example four general points A1; : : : ; A4 of the plane and denote by
g 2 Aut.P 2/ the element of order 4 that permutes these points cyclically. The blow-
up of these points conjugates g to an automorphism of the del Pezzo surface S5

of degree 5 (see Section 5). The pencil of conics of P 2 passing through the four
points induces a conic bundle structure on S5, with three singular fibres which are
the lift of the pairs of two lines passing through the points. The lift on S5 of g is an
automorphism of the conic bundle whose square is a twisting involution.

Corollary 6.4. Let .S; �/ be some conic bundle and let g 2 Aut.S; �/. The following
conditions are equivalent.

1. g twists more than two singular fibres of � .

2. g fixes a curve of positive genus.

These conditions imply that g is an involution which acts trivially on the basis of the
fibration and twists at least four singular fibres.

Proof. The first condition implies that g acts trivially on the basis of the fibration,
and thus (by Lemma 6.1) that g is an involution which fixes a curve of positive genus.

Suppose that g fixes a curve of positive genus. Then g acts trivially on the basis
of the fibration, and fixes two points on a general fibre. Consequently, the curve
fixed by g is a smooth hyperelliptic curve. The remaining assertions follow from
Lemma 6.1.

As we mentioned above, the automorphisms that twist some singular fibre are
fundamental (Lemma 3.8). We now describe these elements and prove that the only
possibilities are twisting involutions, roots of twisting involutions (of even or odd
order) and elements of the form �˛;ˇ (see Example 4.5):

Proposition 6.5 (Classification of twisting elements of finite order). Let g 2 Aut.S; �/

be a twisting automorphism of finite order of a conic bundle .S; �/. Let n be the order
of its action on the basis.

Then gn is an involution that acts trivially on the basis of the fibration and twists
an even number 2k of singular fibres; furthermore, exactly one of the following
situations occurs:

1. n D 1.

2. n > 1 and k D 0; in this case n is even and there exists a g-equivariant biration-
al morphism of conic bundles 	 W S ! S6 (where S6 is the del Pezzo surface of
degree 6) such that 	g	�1 D �˛;ˇ for some ˛; ˇ 2 C� (see Example 4.5).

3. n > 1 is odd and k > 0; here g twists one or two fibres, which are the fibres
twisted by gn that are invariant by g.
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4. n is even and k > 0; here g twists r D 1 or two singular fibres; none of them
are twisted by gn; moreover the action of g on the set of 2k fibres twisted by
gn is fixed-point free; furthermore, n divides 2k, and 2k=n � r .mod 2/.

Proof. Lemma 6.1 describes the situation when n D 1. We now assume that n > 1;
by blowing down some components of singular fibres we may also suppose that the
triple .G; S; �/ is minimal.

Denote by a1; a2 2 P 1 the two points fixed by N�.g/ 2 Aut.P 1/. For i 6�
0 .mod n/ the element N�.gi / fixes only two points of P 1, namely a1 and a2 (since
N�.g/ has order n); the only possible fibres twisted by gi are thus ��1.a1/; ��1.a2/.

Suppose that gn does not twist any singular fibre. By minimality there are at most
two singular fibres (��1.a1/ and/or ��1.a2/) of � and g twists each one. Lemma 3.12
tells us that S is a del Pezzo surface of degree 6 and Lemma 4.6 shows that

g D �˛;ˇ W ..x W y W z/; .u W v W w/
� 7! ..u W ˛w W ˇv/; .x W ˛�1z W ˇ�1y//;

for some ˛; ˇ 2 C�. We compute the square of g and find

g2 W ..x W y W z/; .u W v W w// 7! ..x W ˛ˇ�1y W ˛�1ˇz/; .u W ˛�1ˇv W ˛ˇ�1w//:

Consequently, the order of g is 2n. The fact that gi twists ��1.a1/ and ��1.a2/

when i is odd implies that n is even. Case 2 is complete.
If gn twists at least one singular fibre, it twists an even number of singular fibres

(Lemma 6.1) which we denote by 2k, and gn is an involution. If n is odd, each fibre
twisted by gn is twisted by g, and conversely; this yields case 3. It remains to consider
the more difficult case when n is even.

Firstly we observe that there are r C2k singular fibres with r 2 f1; 2g, correspond-
ing to the points a1 and/or a2, c1; : : : ; c2k of P 1, the first r of them being twisted by g

and the 2k others by gn. Under the permutation N�.g/, the set fc1; : : : ; c2kg decom-
poses into disjoint cycles of length n (this action is fixed-point-free); this shows that
n divides 2k. We write t D 2k=n 2 N and set fc1; : : : ; c2kg D [t

iD1Ci , where each
Ci � P 1 is an orbit of N�.g/ of size n. To deduce the congruence r � t .mod 2/, we
study the action of g on Pic.S/.

For i 2 f1; : : : ; tg, choose Fi to be a component in the fibre of the singular fibre
of some point of Ci , and for i 2 f1; rg choose Li to be a component in the fibre of
ai . Let us write

R D Pt
iD1.Fi C g.Fi / C � � � C gn�1.Fi // C Pr

iD1 Li 2 Pic.S/:

Denoting by f � S a general fibre of � , we find the equalities g.Li / D f � Li

and gn.Fi / D f � Fi in Pic.S/, which yield (once again in Pic.S/):

g.R/ D R C .r C t /f � 2.
Pr

iD1 Li C Pt
iD1 Fi /:
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The contraction of the divisor R gives rise to a birational morphism of conic
bundles (not g-equivariant) 
 W S ! Fm for some integer m � 0. Denote by s � S

the pull-back by 
 of a general section of Fm of self-intersection m (which does
not pass through any of the base-points of 
�1). The canonical divisor KS of S is
then equal in Pic.S/ to the divisor �2s C .m � 2/f C R. We compute g.2s/ and
2.g.s/ � s/ D g.2s/ � 2s in Pic.S/:

g.2s/ D g.�KS C .m � 2/f C R/ D �KS C .m � 2/f C g.R/;

g.2s/ � 2s D g.R/ � R D .r C t /f � 2
� Pr

iD1 Li C Pt
iD1 Fi

�
:

This shows that .r C t /f 2 2 Pic.S/, which implies that r � t .mod 2/. Case 4 is
complete.

Corollary 6.6. If g 2 Aut.S; �/ is a root of a twisting involution h that fixes a rational
curve (i.e., that twists two singular fibres) and if g twists at least one fibre not twisted
by h, then g2 D h, g twists exactly one singular fibre, and it exchanges the two fibres
twisted by h.

Proof. We apply Proposition 6.5 and obtain case 4 with k D 1.

Corollary 6.6 and the following result will be useful in the sequel.

Lemma 6.7. Let g 2 Aut.S; �/ be a non-trivial automorphism of finite order that
leaves every component of every singular fibre of � invariant (i.e., that acts trivially
on Pic.S/) and let h 2 Aut.S; �/ be an element that commutes with g. Then either
no singular fibre of � is twisted by h, or each singular fibre of � which is invariant
by h is twisted by h.

Proof. If no twisting element belongs to Aut.S; �/, we are done. Otherwise, the
birational morphism of conic bundles p0 W S ! P 1 � P 1 given by Lemma 3.10
conjugates g to an element of finite order of Aut.P 1 � P 1; �1/ whose set of fixed
points is the union of two rational curves. The set of points of S fixed by g is thus
the union of two sections and a finite number of points (which are the singular points
of the singular fibres of �). Any element h 2 Aut.S; �/ that commutes with g leaves
the set of these two sections invariant. More precisely, the action on one invariant
singular fibre F implies the action on the two sections: h exchanges the two sections
if and only if it twists F . Since the situation is the same at any other singular fibre,
we obtain the result.

We conclude this section with some results on automorphisms of infinite order of
conic bundles, which will not help us directly here but seem interesting to observe.
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Proposition 6.8 (Classification of twisting elements of infinite order). Let .S; �/ be
a conic bundle and g 2 Aut.S; �/ be a twisting automorphism of infinite order.

Then g twists exactly two fibres of � and there exists some g-equivariant birational
morphism of conic bundles 	 W S ! S6, where S6 is the del Pezzo surface of degree 6

and 	g	�1 D �˛;ˇ for some ˛; ˇ 2 C�.

Proof. Assume that the triple .hgi; S; �/ is minimal. Lemma 6.1 shows that no twist-
ing element of infinite order acts trivially on the basis of the fibration. Consequently,
gk acts trivially on the basis if and only if k D 0, whence gk twists a fibre F if and
only if k is odd and g twists F . There thus exist at most 2 singular fibres of � , and
Lemma 3.12 tells us that S is a del Pezzo surface of degree 6. Lemma 4.6 shows that
g D �˛;ˇ for some ˛; ˇ 2 C�.

Corollary 6.9. Let g 2 Aut.S; �/ be an element of infinite order; then a birational
morphism conjugates g to an automorphism of a Hirzebruch surface.

Proof. Assume that the triple .hgi; S; �/ is minimal. If the fibration is smooth, we
are done. Otherwise, a birational morphism conjugates g to an automorphism �˛;ˇ 2
Aut.S6/ of a conic bundle on the del Pezzo surface of degree 6 (Lemma 6.8). We
conclude by using Lemma 4.2.

7. The example Cs24

We now give the most important example of this article. This is the only finite Abelian
subgroup of the Cremona group which is not conjugate to a group of automorphisms
of P 2 or P 1 � P 1 but whose non-trivial elements do not fix any curve of positive
genus (Theorem 2).

Let S6 � P 2 � P 2 be the del Pezzo surface of degree 6 (see Section 4) defined by

S6 D f..x W y W z/; .u W v W w// j ux D yv D zwgI
we keep the notation of Section 4. We denote by 	 W yS4 ! S6 the blow-up of
A4; A5 2 S6 defined by

A4 D ..0 W 1 W 1/; .1 W 0 W 0// 2 D23;

A5 D ..1 W 0 W 0/; .0 W 1 W �1// 2 E1:

We again denote by E1, E2, E3, D12, D13, D23 the total pull-backs by 	 of these
divisors of S6. We denote by zE1 and zD23 the strict pull-backs of E1 and D23 by
	. (Note that for the other exceptional divisors, the strict and total pull-backs are the
same.) Let us illustrate the situations on the surfaces S6 and yS4, respectively:
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D23
zD23

E2
A4 E3 E2 D15 E4 E3

D12 A5
D13 D12 E5 D14 D13

E1
zE1

Figure 2. The curves of negative self-intersection on S6 and yS4.

Let �1 denote the morphism S6 ! P 1 defined in Section 4. The morphism
� D �1 B 	 gives the surface yS4 a conic bundle structure . yS4; �/. It has four singular
fibres, which are the fibres of .�1 W 1/, .0 W 1/, .1 W 1/ and .1 W 0/. We denote by f the
divisor of yS4 corresponding to a fibre of � and set E4 D 	�1.A4/, E5 D 	�1.A5/.
Note that E4 is one of the components of the singular fibre of .1 W 1/; we denote by
D14 D f � E4 the other component, which is the strict pull-back by 	 of ��1

1 .1 W 1/.
Similarly, we denote by D15 the divisor f � E5, so that the singular fibre of .�1 W 1/

is fE5; D15g.

Lemma 7.1. On the surface yS4 there are exactly ten irreducible rational smooth
curves of negative self-intersection. Explicitly, the eight curves

E2; E3; E4; E5; D12; D13; D14; D15

have self-intersection �1 and the two curves

zE1 D E1 � E5 and zD23 D D23 � E4

have self-intersection �2.

Proof. The difficult part is to show that every rational irreducible smooth curve of
negative self-intersection is one of the ten given above. Let C be such a curve.

Denote by L the pull-back of a general line of P 2 by the blow-up pr1B	 W yS4 ! P 2

of the five points. If C is collapsed by pr1 B 	, then C is one of the curves zE1, E2,
E3, E4, E5. Otherwise, C D mL � P5

iD1 aiEi , where m, a1, : : : , a5 are non-
negative integers, and m > 0. Since C is rational we have C � .C C K yS4

/ D �2,

and by hypothesis C 2 D �r for some positive integer r . The relations C 2 D �r and
C � K yS4

D r � 2 imply (since K yS4
D �3L C P5

iD1 Ei ) the equations

P5
iD1 a2

i D m2 C r;P5
iD1 ai D 3m C r � 2:

(2)
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If m D r D 1, we find that C is the pull-back of a line passing through two of the
points, so C D D1i for some i 2 f2; : : : ; 5g. If m D 2 and r D 1, C is the pull-
back of a conic passing through each blown-up point. The configuration of the points
eliminates this possibility. If m D 1 and r D 2, we obtain a line passing through
three blown-up points, so C D zD23.

We now prove that if there is no integral solution to (2) for m; r � 2. Since� P5
iD1 ai

�2 � 5
� P5

iD1 a2
i

�
(by the Cauchy–Schwarz inequality with the vectors

.1; : : : ; 1/ and .a1; : : : ; a5/), we obtain that .3m C .r � 2//2 � 5.m2 C r/, and this
gives

4m2 � 10 C .r � 2/ � .6m C r � 7/ � 0:

But this is not possible if m; r � 2, since then 4m2 > 10 and 6m C r > 7.

Note that .K yS4
/2 D 4, which is why we denote this surface by yS4; the hat is here

because the surface is not a del Pezzo surface, since it contains irreducible divisors of
self-intersection �2.

Corollary 7.2. There is only one conic bundle structure on yS4, which is the one
induced by � D �1 B 	.

Proof. Since .K yS4
/2 D 4, the number of singular fibres of any conic bundle is 4, and

thus it consists of eight .�1/-curves C1; : : : ; C8. The divisor of a fibre of the conic
bundle is thus equal to 1

4

P8
iD1 Ci . Since there are exactly eight .�1/-curves on yS4,

there is no choice.

The group of automorphisms of yS4 that leave every curve of negative self-inter-
section invariant is isomorphic to C� and corresponds to automorphisms of P 2 of the
form .x W y W z/ 7! .˛x W y W z/, for ˛ 2 C�. Indeed, such automorphisms are
the lifts of automorphisms of S6 leaving invariant every exceptional curve (which are
of the form ..x W y W z/; .u W v W w// 7! ..x W ˛y W ˇz/; .u W ˛�1v W ˇ�1w// for
˛; ˇ 2 C�) and which fix both points A4 and A5.

Definition 7.3. Let h1 and h2 be the following birational transformations of P 2:

h1 W .x W y W z/ Ü .yz W xy W �xz/;

h2 W .x W y W z/ Ü .yz.y � z/ W xz.y C z/ W xy.y C z//;

and denote respectively by g1, g2 the lift of these elements on yS4 and by Cs24 the
group generated by g1 and g2.

The following lemma shows that Cs24 � Aut. yS4; �/ and describes some of the
properties of this group.

Lemma 7.4. Let h1; h2; g1; g2; Cs24 be as in Definition 7.3. Then:
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1. The group Cs24 is a group of automorphisms of yS4 that preserve the conic bundle
. yS4; �/, i.e., Cs24 � Aut. yS4; �/.

2. The action of g1 and g2 on the set of irreducible rational curves of negative
self-intersection is respectively:

. zE1
zD23/.E2D12/.E3D13/.E4E5/.D14D15/;

. zE1
zD23/.E2D13/.E3D12/.E4D14/.E5D15/:

In particular, both g1 and g2 twist the conic bundle . yS4; �/.

3. Both g1 and g2 are elements of order 4 and

.h1/2 D .h2/2 D .x W y W z/ 7! .�x W y W z/:

Thus .g1/2 D .g2/2 2 ker N� is an automorphism of yS4 which leaves every
divisor of negative self-intersection invariant.

4. The group Cs24 is isomorphic to Z=2Z � Z=4Z and the action on the basis of
the fibration � yields the exact sequence

1 ! h.h1/2i Š Z=2Z ! Cs24
N��! h N�.h1/; N�.h2/i Š .Z=2Z/2 ! 1:

5. The group Cs24 contains no involution that twists the conic bundle . yS4; �/. In
particular, no element of Cs24 fixes a curve of positive genus.

6. The pair .Cs24; yS4/ and the triple .Cs24; yS4; �/ are both minimal.

Proof. Observe first that h1 and h2 preserve the pencil of lines of P 2 passing through
the point A1 D .1 W 0 W 0/. Therefore g1, g2 are birational transformations of yS4 that
send a general fibre of � to another fibre. Then we compute that .h1/2 D .h2/2 D
.x W y W z/ 7! .�x W y W z/. This implies that both h1 and h2 are birational maps of
order 4.

Note that the lift of h1 on the surface S6 is the automorphism

�1;�1 W ..x W y W z/; .u W v W w// 7! ..u W w W �v/; .x W z W �y//

(see Example 4.5). Since this automorphism permutes A4 and A5, its lift on yS4 is
biregular. The action on the divisors with negative self-intersection is deduced from
that of �1;�1 (see Lemma 4.6).

Compute the involution

h3 D h1h2 D .x W y W z/ Ü .x.y C z/ W z.y � z/ W �y.y � z//:

Its linear system is

fax.y C z/ C .by C cz/.y � z/ D 0 j .a W b W c/ 2 P 2g;
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which is the linear sytem of conics passing through .0 W 1 W 1/ and A1 D .1 W 0 W 0/,
with tangent y C z D 0 at this point (i.e., passing through A5). Blowing-up these
three points (two on P 2 and one in the blow-up of A1), we get an automorphism g3

of some rational surface. As the points A2 D .0 W 1 W 0/ and A3 D .0 W 0 W 1/

are permuted by h3, we can also blow them up and again get an automorphism. The
isomorphism class of the surface obtained is independent of the order of the blown-up
points. We may first blow up A1, A2, A3 and get S6. Then, we blow up the two other
base-points of h3, which are in fact A4 (the point .0 W 1 W �1/) and A5 (the point
infinitely near to A1 corresponding to the tangent y C z D 0). This shows that g3,
and therefore g2, belong to Aut. yS4; �/.

Since h3 permutes the points A2 and A3, g3 D g1g2 permutes the divisors E2 and
E3. It also permutes D12 and D13, since h3 leaves the pencil of lines passing through
A1 invariant. It therefore leaves zE1 and zD23 invariant, since E2 and E3 touch zD23

but not E1. The remaining exceptional divisors are E4, E5, D14, D15. Either g1g2

leaves all four invariant, or it acts as .E4D15/.E5D14/ (using the intersection with
zE1 and zD23). Since A4 and A5 are base-points of h1h2, E4 and E5 are not invariant.

Thus, g1g2 acts on the irreducible rational curves of negative self-intersection as
.E2E3/.D12D13/.E4D15/.E5D14/. We obtain the action of g2 by composing that
of g1g2 with that of g1 and thus have proved assertions 1 through 3.

Assertion 4 follows from assertion 3 and the fact that g1 and g2 commute.
Let us prove that Cs24 contains no involution that twists the conic bundle . yS4; �/.

Recall that such elements are involutions acting trivially on the basis of the fibration
(see Lemma 6.1). Note that the 2-torsion of Cs24 is equal to f1; g2

1; g1g2; g1g�1
2 g.

The elements g1g2 and g1g�1
2 do not act trivially on the basis of the fibration, and the

element .g1/2 does not twist any singular fibre since it leaves every curve of negative
self-intersection invariant. This proves assertion 5.

It remains to prove the last assertion. Observe that the orbits of the action of Cs24

on the exceptional divisors of yS4 are fE2; E3; D12; D13g and fE4; E5; D14; D15g.
Since these orbits cannot be contracted, the pair .Cs24; yS4/ is minimal, and so is the
triple .Cs24; yS4; �/.

Remark 7.5. The pair .Cs24; yS4/ was introduced in [Bla2] and was called Cs.24
because it is a group acting on a conic bundle, which is special and isomorphic to
Z=2Z � Z=4Z.

8. Finite Abelian groups of automorphisms of conic bundles – birational
representative elements

In this section we use the tools prepared in the previous sections to describe the finite
Abelian groups of automorphisms of conic bundles such that no non-trivial element
fixes a curve of positive genus.
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We first treat the case in which no involution twisting the conic bundle belongs to
the group:

Proposition 8.1. Let G � Aut.S; �/ be a finite Abelian group of automorphisms of
the conic bundle .S; �/ such that no involution that twists the conic bundle .S; �/

belongs to G, and the triple .G; S; �/ is minimal.
Then one of the following occurs:

� The fibration is smooth, i.e., S is a Hirzebruch surface.
� S is the del Pezzo surface of degree 6.
� The triple .G; S; �/ is isomorphic to the triple .Cs24; yS4; �/ of Section 7.

Proof. We assume that the fibration is not smooth. Recall that since the triple
.G; S; �/ is minimal, any singular fibre of � is twisted by an element of G (by
Lemma 3.8). Since no twisting involution belongs to G, any element g 2 G that
twists a fibre corresponds to case 2 of Proposition 6.5. In particular, g is the lift on
S of an automorphism of the form �˛;ˇ of the del Pezzo surface of degree 6 and it
twists two singular fibres, which correspond to the fibres of the two fixed points of
N�.g/ 2 PGL.2; C/. Furthermore, g is the root of an involution that leaves every
component of every singular fibre of � invariant.

If the number of singular fibres is exactly two, then S is the del Pezzo surface of
degree 6, and we are done.

Now suppose that the number of singular fibres is larger than two. This implies
that N�.G/ is not a cyclic group (otherwise the non-trivial elements of N�.G/ would
have the same two fixed points: there would then be at most two singular fibres);
therefore, N�.G/ is isomorphic to .Z=2Z/2. By a judicious choice of coordinates we
may suppose that

N�.G/ D
��

1 0

0 1

�
;

��1 0

0 1

�
;

�
0 1

1 0

�
;

�
0 �1

1 0

��
:

Since a singular fibre corresponds to a fixed point of one of the three elements of
order 2 of N�.G/, only the fibres of .0 W 1/; .1 W 0/; .1 W 1/; .�1 W 1/; .i W 1/; .�i W 1/

can be singular. Since the group N�.G/ acts transitively on the sets f.1 W 0/; .0 W 1/g,
f.1 W ˙1/g and f.1 W ˙i/g, there are 4 or 6 singular fibres.

We denote by g1 an element of G which twists the two singular fibres of .1 W 0/

and .0 W 1/. Let 	 W S ! S6 denote the birational g1-equivariant morphism given by
Proposition 6.5, which conjugates g1 to the automorphism

	g1	�1 D �˛;ˇ W ..x W y W z/; .u W v W w// 7! ..u W ˛w W ˇv/; .x W ˛�1z W ˇ�1y//

of the del Pezzo surface S6 of degree 6, for some ˛; ˇ 2 C�. In fact, since N�.g1/

has order 2, we have ˇ D �˛, so 	g1	�1 D �˛;�˛ . The points blown up by 	 are
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fixed by

	.g1/2	�1 D .�˛;�˛/2 W ..x W y W z/; .u W v W w// 7! ..x W �y W �z/; .u W �v W �w//

and therefore belong to the curves

E1 D f..1 W 0 W 0/; .0 W a W b// j .a W b/ 2 P 1g
and

D23 D f..0 W a W b/; .1 W 0 W 0// j .a W b/ 2 P 1g:
Since these points consist of orbits of 	g1	�1, half of them lie in E1 and the other half
in D23. Up to a change of coordinates, ..x; y; z/; .u; v; w// $ ..u; v; w/; .x; y; z//,
the points that may be blown up by 	 are

A4 D ..0 W 1 W 1/; .1 W 0 W 0// 2 D23;

�˛;�˛.A4/ D A5 D ..1 W 0 W 0/; .0 W 1 W �1// 2 E1;

A6 D ..0 W 1 W i/; .1 W 0 W 0// 2 D23;

�˛;�˛.A6/ D A7 D ..1 W 0 W 0/; .0 W 1 W i// 2 E1:

The strict pull-backs zE1 and zD23 by 	 of E1 and D23 respectively thus have self-
intersection �2 or �3 in S , depending on the number of points blown up. By con-
vention we again denote by E1, E2, E3, D12, D13, D23 the total pull-backs by 	 of
these divisors. (Note that for E2, E3, D12, D13 the strict and the total pull-backs are
the same.) We set E4 D 	�1.A4/, …, E7 D 	�1.A7/ and denote by f the divisor
class of the fibre of the conic bundle.

(a) Suppose that 	 is the blow-up of A4 and A5, which implies that S is the surface
yS4 of Section 7. The Picard group of S is then generated by E1; E2; : : : ; E5 and f .

Since we assumed that .G; S; �/ is minimal, the singular fibres of .1 W 1/ and
.�1 W 1/ must be twisted. One element g2 twists these two singular fibres and acts
with order 2 on the basis of the fibration, with action .x1 W x2/ 7! .x2 W x1/. Since g1

and g2 twist some singular fibre, both must invert the two curves of self-intersection
�2, namely zE1 and zD23. The action of g1 and g2 on the irreducible rational curves
of negative self-intersection is then respectively

. zE1
zD23/.E2D12/.E3D13/.E4E5/.D14D15/;

. zE1
zD23/.E2D13/.E3D12/.E4D14/.E5D15/:

The elements g1 and g2 thus have the same action on Pic.S/ D Pic. yS4/ as the two
equally named automorphisms in Definition 7.3 and Lemma 7.4, which generate Cs24.
Note that the group H of automorphisms of S that leave every curve of negative self-
intersection invariant is isomorphic to C� and corresponds to automorphisms of P 2
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of the form .x W y W z/ 7! .˛x W y W z/, for any ˛ 2 C�. Then g1 and g2 are equal to
the lift of the following birational maps of P 2:

h1 W .x W y W z/ Ü .�yz W xy W �xz/;

h2 W .x W y W z/ Ü .
yz.y � z/ W xz.y C z/ W xy.y C z//;

for some �; 
 2 C�.
Since, by hypothesis, h1h2.x W y W z/ D .�x.y C z/ W 
z.y � z/ W �
y.y � z//

and h2h1.x W y W z/ D .
x.y C z/ W �z.y � z/ W ��y.y � z// must be the same, we
get �2 D 
2.

We observe that N�.g1/ and N�.g2/ generate N�.G/ Š .Z=2Z/2; on the other hand,
by hypothesis an element of G0 does not twist a singular fibre and hence belongs to H .
As the only elements of H which commute with g1 are id and .g1/2 (which is the
lift of .h1/2 W .x W y W z/ 7! .�x W y W z/), we see that g1 and g2 generate the whole
group G.

Conjugating h1 and h2 by .x W y W z/ 7! .˛x W y W z/, where ˛ 2 C�, ˛2 D �,
we may suppose that � D 1. So 
 D ˙1 and we get in both cases the same group
because .h1/2.x W y W z/ D .�x W y W z/. The triple .G; S; �/ is hence isomorphic to
the triple .Cs24; yS4; �/ of Section 7.

(b) Suppose that 	 is the blow-up of A6 and A7. We get a case isomorphic to the
previous one, using the automorphism ..x W y W z/; .u W v W w// 7! ..x W y W iz/; .u W
v W �iw// of S6.

(c) Suppose that 	 is the blow-up of A4, A5, A6 and A7. The Picard group of S

is then generated by E1, E2, …, E6, E7 and f . Since .G; S; �/ is minimal, there
must be two elements g2; g3 2 G that twist respectively the fibres of .˙1 W 1/ and
those of .˙i W 1/. As in the previous example, the three actions of these elements on
the basis are of order 2, and the three elements transpose zE1 and zD23. The actions
of g1, g2 and g3 on the set of irreducible components of the singular fibres of � are
then respectively

.E2D12/.E3D13/.E4E5/.D14D15/.E6E7/.D16D17/;

.E2D13/.E3D12/.E4D14/.E5D15/.E6E7/.D16D17/;

.E2D13/.E3D12/.E4E5/.D14D15/.E6D16/.E7D17/:

This implies that the action of the element g1g2g3 is

.E2D12/.E3D13/.E4D14/.E5D15/.E6D17/.E7D16/;

and thus it twists six singular fibres of the conic bundle and fixes a curve of genus 2

(Lemma 6.1), which contradicts the hypothesis. (In fact, one can also show that the
group generated by g1, g2 and g3 is not Abelian, see [Bla2], p. 66.)
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After studying the groups that do not contain a twisting involution, we now study
those which contain such elements. Since these twisting involutions cannot fix a curve
of positive genus, they twist exactly two fibres (Lemma 6.1).

Proposition 8.2. Let G � Aut.S; �/ be a finite Abelian group of automorphisms of
a conic bundle .S; �/ such that

1. if g 2 G, g 6D 1, then g does not fix a curve of positive genus;

2. the group G contains at least one involution that twists the conic bundle .S; �/;
3. the triple .G; S; �/ is minimal.

Then S is a del Pezzo surface of degree 5 or 6.

Proof. If the number of singular fibres is at most 3, then the surface is a del Pezzo
surface of degree 5 or 6 (Lemma 3.12).

We now assume that the number of singular fibres is at least 4 and show that
this situation is not compatible with the hypotheses. We recall once again the exact
sequence of Remark 3.13,

1 ! G0 ! G
N��! N�.G/ ! 1; (1)

and prove the following important assertions:

(a) No element of G twists more than two singular fibres.
(a) Any twisting involution that belongs to G belongs to G0 and twists exactly two

singular fibres.
(a) Any singular fibre is twisted by an element of G.
(a) No non-trivial element preserves every component of every singular fibre.
(a) Any twisting element of G is a root of (or equal to) a twisting involution that

belongs to G0.
Corollary 6.4 shows that an element that twists more than two fibres fixes a curve of

positive genus; since this possibility is excluded by hypothesis, we obtain assertion (a).
Lemma 6.1 shows that any twisting involution contained in G belongs to G0 and twists
an even number of fibres; using assertion (a), we thus obtain assertion (b). Assertion (c)
follows from the minimality of the triple .G; S; �/ (see Lemma 3.8). Let us prove
assertion (d). Suppose that there exists a non-trivial element g 2 G that leaves
every component of every singular fibre invariant, and denote by h 2 G0 a twisting
involution (which exists by hypothesis). Since g and h commute, Lemma 6.7 shows
that each singular fibre invariant by h – there are at least four – is twisted by h, which
contradicts assertion (a). Therefore, such an element g does not exist and assertion (d)
is proved. Finally, Proposition 6.5 shows that any twisting element that does not act
trivially on the basis of the fibration is a root of an involution that belongs to G0, and
assertion (d) shows that this involution is twisting, so that we obtain assertion (e).
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Now that assertions (a) through (e) are proved, we deduce the proposition from
them. Let us denote by � 2 G0 a twisting involution, which twists two singular fibres
that we denote by F1 and F2. There are at least two other singular fibres F3 and F4

that are twisted by other elements of G.
If G0 D h�i, the fibres F3 and F4 are twisted by roots of � belonging to G

(assertions (c) and (e)). The description of these elements (Proposition 6.5 and, in
particular, Corollary 6.6) shows that the roots must be square roots that twist exactly
one singular fibre and permute the two fibres F1 and F2 twisted by � . There thus
exist two elements h3; h4 2 G that twist respectively the fibres F3 and F4. Since
h3 commutes with h4, it must leave invariant the unique fibre twisted by h4, i.e., F4.
Similarly, h4 must leave F3 invariant. Therefore, h3h4 leaves the four fibres F1, …,
F4 invariant and twists the two fibres F3 and F4; it is thus an involution that belongs
to G0, which contradicts the fact that G0 D h�i.

If G0 6D h�i, since � has no root in G0 (Corollary 6.2), the Abelian group
G0 � PGL.2; C.x// is isomorphic to .Z=2Z/2 and contains (using (d)) three twisting
involutions � , � and ��. Note that two of these three involutions do not twist singular
fibres which are all distinct, otherwise the product of the two involutions would give
an involution that twists 4 singular fibres, contradicting (a). We may thus suppose
that � twists F1 and F3, which implies that �� twists F2 and F3. The fibre F4 is
then twisted by an element which is a square root of one of the three twisting involu-
tions (assertion (e) and Corollary 6.6). Denote this square root by h and suppose that
h2 6D � . Note that h exchanges the two singular fibres twisted by h2. One of these is
twisted by � and the other is not, so h and � do not commute.

The only remaining possible finite Abelian groups of automorphisms of conic
bundles satisfying property (F) are thus del Pezzo surfaces of degree 6 or 5 (studied
in Sections 4 and 5), the triple .Cs24; yS4; �/ studied in Section 7, and Hirzebruch
surfaces. We now describe this last case and prove that it is birationally reduced to
the case of P 1 � P 1.

Proposition 8.3. Let G � Aut.Fn/ be a finite Abelian subgroup of automorphisms
of Fn, for some integer n � 1. Then a birational map of conic bundles conjugates G

to a finite group of automorphisms of F0 D P 1 � P 1 that leaves one ruling invariant.

Proof. Let G � Aut.Fn/ be a finite Abelian group, with n � 1. Note that G

preserves the unique ruling of Fn. We denote by E � Fn the unique section of self-
intersection �n, which is necessarily invariant by G. We have the exact sequence
(see Remark 3.13)

1 ! G0 ! G
N��! N�.G/ ! 1: (1)

Since the group N�.G/ � PGL.2; C/ is Abelian, it is isomorphic to a cyclic group or
to .Z=2Z/2.
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If N�.G/ is a cyclic group, at least two fibres are invariant by G. The group G fixes
two points in one such fibre. We can blow up the point that does not lie on E and
blow down the corresponding fibre to get a group of automorphisms of Fn�1. We do
this n times and finally obtain a birational map of conic bundles that conjugates G to
a group of automorphisms of F0 D P 1 � P 1.

If N�.G/ is isomorphic to .Z=2Z/2, there exist two fibres F , F 0 of � whose union
is invariant by G. Let GF � G be the subgroup of G of elements that leave F

invariant. This group is of index 2 in G and hence is normal. Since GF fixes the
point F \ E in F , it acts cyclically on F . There exists another point P 2 F , P … E,
which is fixed by GF . The orbit of P by G consists of two points, P and P 0, such that
P 0 2 F 0, P 0 … E. We blow up these two points and blow down the strict transforms
of F and F 0 to get a group of automorphisms of Fn�2. We do this bn=2c times to
obtain G as a group of automorphisms of F0 or F1.

If n is even, we get in this manner a group of automorphisms of F0 D P 1 � P 1.
Note that n cannot be odd if the group N�.G/ is not cyclic. Otherwise, we could

conjugate G to a group of automorphisms of F1 and then to a group of automorphisms
of P 2 by blowing down the exceptional section on a point Q 2 P 2. We would get
an Abelian subgroup of PGL.3; C/ that fixes Q, and thus a group with at least three
fixed points. In this case, the action on the set of lines passing through Q would be
cyclic (see Proposition 2.2), which contradicts our hypothesis.

We can now prove the main result of this section.

Proposition 8.4. Let G � Aut.S; �/ be some finite Abelian group of automorphisms
of the conic bundle .S; �/ such that the triple .G; S; �/ is minimal and no non-trivial
element of G fixes a curve of positive genus. Then one of the following situations
occurs:

1. S is a Hirzebruch surface Fn;
2. S is a del Pezzo surface of degree 5 or 6;
3. The triple .G; S; �/ is isomorphic to the triple .Cs24; yS4; �/ of Section 7.

If we suppose that the pair .G; S/ is minimal, then we are in case 1 with n 6D 1 or
in case 3. Moreover, cases 1 and 2 are birationally conjugate to automorphisms of
P 1 � P 1, whereas the third is not.

Proof. The fact that one of the three cases occurs follows directly from Proposi-
tions 8.1 and 8.2.

Case 1 is clearly minimal if and only if n 6D 1 and Proposition 8.3 shows that it is
conjugate to automorphisms of P 1 �P 1. In the case of del Pezzo surfaces of degree 5

and 6, the pair .G; S/ is not minimal and the group is respectively birationally conju-
gate to a subgroup of Sym4 � Aut.P 2/ (Lemma 5.3) or Aut.P 1 � P 1/ (Lemma 4.2).
If the first situation occurs, since the group is Abelian and not isomorphic to .Z=3Z/2
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it is diagonalisable and conjugate to a subgroup of Aut.P 1 � P 1/ (Proposition 2.2).
Thus, we are done with case 2.

It remains to show that the pair .Cs24; yS4/ is not birationally conjugate to a group
of automorphisms of P 1 � P 1. Let us suppose the contrary, i.e., that there exists
some Cs24-equivariant birational map ' W yS4 Ü P 1 � P 1 (that conjugates Cs24 to a
group of automorphisms). Then ' is the composition of Cs24-equivariant elementary
links (see for example [Isk3], Theorem 2.5, or [Do-Iz], Theorem 7.7). Since our group
preserves the conic bundle, the first link is of type II, III or IV (in the classical notation
of Mori theory). We now study these possibilities and show that it is not possible to
go to P 1 � P 1.

Link of type II: In our case, this link is a birational map of conic bundles, which
is the composition of the blow-up of an orbit of Cs24, no two points on the same
fibre, with the blow-down of the strict transforms of the fibres of the points blown
up. The points must be fixed by the elements of Cs24 that act trivially on the basis
of the fibration, and thus an orbit has 4 points, two on zE1 and two on zD23. This link
conjugates the triple .Cs24; yS4; �/ to a triple isomorphic to it, by Proposition 8.1.

Link of type III: It is the contraction of some set of skew exceptional curves,
invariant by Cs24. This is impossible since the pair .Cs24; yS4/ is minimal (Lemma 7.4).

Link of type IV: It is a change of the fibration. This is not possible since the surface
yS4 admits only one conic bundle fibration (Corollary 7.2).

9. Actions on del Pezzo surfaces with fixed part of the Picard group of rank one

In this section we prove the following result (note that finiteness is not required and
that minimality of the action is implied by the condition on Pic.S/G).

Proposition 9.1. Let S be a del Pezzo surface, and let G � Aut.S/ be an Abelian
group such that rk Pic.S/G D 1 and no non-trivial element of G fixes a curve of
positive genus. Then one of the following occurs:

1. S Š P 2 or S Š P 1 � P 1;
2. S is a del Pezzo surface of degree 5 and G Š Z=5Z;
3. S is a del Pezzo surface of degree 6 and G Š Z=6Z.

Furthermore, in cases 2 and 3, the group G is birationally conjugate to a diagonal
cyclic subgroup of Aut.P 2/.

This will be proved separately for each degree, in Lemmas 9.7, 9.8, 9.13, 9.15,
9.16, and 9.17.

Remark 9.2. A del Pezzo surface S is either P 1 � P 1 or the blow-up of 0 � r � 8

points in general position on P 2 (i.e., such that no irreducible curve of self-intersection
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� �2 appears on S ). The group Pic.S/ has dimension r C1, and its intersection form
gives a decomposition Pic.S/ ˝ Q D QKS ˚ K?

S ; the signature is .1; �1; : : : ; �1/.
The group Aut.S/ of automorphisms of a del Pezzo surface S acts on Pic.S/

and preserves the intersection form. This gives an homomorphism of Aut.S/ !
Aut.Pic.S// which is injective if and only if r > 3, since the kernel is the lift of
automorphisms of P 2 that fix the r blown-up points. Furthermore, the image is
contained in the Weyl group and is finite (see [Dol]). In particular, the group Aut.S/

is finite if and only if r > 3.

When we have some group action on a del Pezzo surface, we would like to deter-
mine the rank of the fixed part of the Picard group. Here are some tools to this end.

Lemma 9.3 (Size of the orbits). Let S be a del Pezzo surface, which is the blow-up
of 1 � r � 8 points of P 2 in general position, and let G � Aut.S/ be a subgroup of
automorphisms with rk Pic.S/G D 1. Then

� G 6D f1g;
� the size of any orbit of the action of G on the set of exceptional divisors is

divisible by the degree of S , which is 9 � r ;
� in particular, if the order of G is finite, it is divisible by the degree of S .

Proof. It is clear that G 6D f1g, since rk Pic.S/ > 1. Let D1, D2, …, Dk be k

exceptional divisors of S , forming an orbit of G (the orbit is finite, see Remark 9.2).
The divisor

Pk
iD1 Di is fixed by G and thus is a multiple of KS . We can writePk

iD1 Di D aKS , for some a 2 Q. In fact, since aKS is effective, we have a < 0

and a 2 Z. Since the Di ’s are irreducible and rational, we deduce from the adjunction
formula Di .KS C Di / D �2 that Di � KS D �1. Hence

KS � Pk
iD1 Di D Pk

iD1 KS � Di D �k D KS � aKS D a.9 � r/:

Consequently, the degree 9 � r divides the size k of the orbit.

Remark 9.4. This lemma shows in particular that rk Pic.S/G > 1 if S is the blow-
up of r D 1; 2 points of P 2, a result which is obvious when r D 1, and is clear
when r D 2, since the line joining the two blown-up points is invariant by any
automorphism.

Lemma 9.5. Let S be some (smooth projective rational) surface, and let g 2 Aut.S/

be some automorphism of finite order. Then the trace of g acting on Pic.S/ is equal
to 
.Fix.g// � 2, where Fix.g/ � S is the set of fixed points of g and 
 is the Euler
characteristic.

Proof. This follows from the topological Lefschetz fixed-point formula, which asserts
that the trace of g acting on H �.S; Z/ is equal to 
.Fix.g// (this uses the fact that
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g is an homeomorphism of finite order). Since S is a complex rational surface,
H 0.S; Z/ and H 4.S; Z/ have dimension 1, H 2.S; Z/ Š Pic.S/, and H i .S; Z/ D 0

for i 6D 0; 2; 4. Since the trace on H 2 and H 4 is 1, we obtain the result.

Remark 9.6. This lemma is false if the order of g is infinite. Take for example the
automorphism .x W y W z/ 7! .�x W y W z C y/ of P 2, for any � 2 C�, � 6D 1. It fixes
exactly two points, namely .1 W 0 W 0/ and .0 W 0 W 1/, but its trace on Pic.P 2/ D Z
is 1.

We now start the proof of Proposition 9.1 by studying the cases of del Pezzo
surfaces of degree 6 or 5.

Lemma 9.7 (Actions on the del Pezzo surface of degree 6). Denote by
S6 D f..x W y W z/; .u W v W w// j ux D vy D wzg � P 2 � P 2 the del
Pezzo surface of degree 6 and let G � Aut.S6/ be an Abelian group such that
rk Pic.S6/G D 1. Then G is conjugate in Aut.S6/ to the cyclic group of order 6

generated by ..x W y W z/; .u W v W w// 7! ..v W w W u/; .y W z W x//. Furthermore, G

is birationally conjugate to a diagonal subgroup of Aut.P 2/.

Proof. Lemma 9.3 implies that the sizes of the orbits of the action of G on the
exceptional divisors are divisible by 6. The action of G on the hexagon of exceptional
divisors is thus transitive, so G contains an element of the form

g W ..x W y W z/; .u W v W w// 7! ..˛v W ˇw W u/; .ˇy W ˛z W ˛ˇx//;

where ˛; ˇ 2 C�. As the only element of .C�/2 that commutes with g is the identity
(see the description of Aut.S6/ D .C�/2 Ì .Sym3 �Z=2Z/ in Section 4), G must be
cyclic, generated by g. Conjugating it by

..x W y W z/; .u W v W w// 7! ..ˇx W y W ˛z/; .˛u W ˛ˇv W ˇw//;

we may assume that ˛ D ˇ D 1, as stated in the lemma (this shows in particular
that G is of finite order). It remains to prove that this automorphism is birationally
conjugate to a linear automorphism of the plane.

Denote by p W S ! P 2 the restriction of the projection on the first factor. This
is a birational morphism which is the blow-up of the three diagonal points A1, A2,
A3 of P 2. Consider the birational map Og D pgp�1 of P 2, which is explicitly
Og W .x W y W z/ Ü .xz W xy W yz/. Since g is an automorphism of the surface, it fixes
the canonical divisor KS , so the birational map Og leaves the linear system of cubics
of P 2 passing through A1, A2 and A3 invariant (this can also be verified directly).

Note that Og fixes exactly one point of P 2, namely P D .1 W 1 W 1/, and that its
action on the projective tangent space P .TP .P 2// of P 2 at P is of order 3, with two
fixed points, corresponding to the lines .x � y/ C !k.z � y/ D 0, where ! D e2i�=3,
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k D 1; 2. Hence the birational map Og preserves the linear system of cubics of P 2

passing through A1, A2 and A3, which have a double point at P and are tangent to
the line .x � y/ C !.z � y/ D 0 at this point. This linear system thus induces a
birational transformation of P 2 that conjugates Og to a linear automorphism.

Lemma 9.8 (Actions on the del Pezzo surface of degree 5). Let S5 be the del Pezzo
surface of degree 5 and let G 2 Aut.S5/ D Sym5 be an Abelian group such that
rk Pic.S5/G D 1. Then G is cyclic of order 5. Furthermore, G is birationally
conjugate to a diagonal subgroup of Aut.P 2/.

Proof. We use the description of the surface S5 and its automorphisms group
Aut.S5/ D Sym5 given in Section 5. Lemma 9.3 implies that the order of G is
divisible by 5, and thus that G is a cyclic subgroup of Sym5 of order 5. Since all such
subgroups are conjugate in Aut.S5/ D Sym5, we may suppose that G is generated by
the lift of the birational transformation h W .x W y W z/ Ü .xy W y.x � z/ W x.y � z//

of P 2 that fixes two points of P 2, namely .� C 1 W � W 1/, where �2 � � � 1 D 0.
Denoting one of them by P , the linear system of cubics passing through the four
blown-up points and having a double point at P is invariant by h. The birational
transformation associated to this system thus conjugates h to a linear automorphism
of P 2.

Remark 9.9. The fact that .x W y W z/ Ü .xy W y.x � z/ W x.y � z// is linearisable
was proved in [Be-Bl], using the same argument as above.

Corollary 9.10. Let S be a rational surface with .KS /2 � 5 and let G � Aut.S/ be
a finite Abelian group. Then G is birationally conjugate to a subgroup of Aut.P 2/ or
Aut.P 1 � P 1/.

Proof. We may assume that the pair .G; S/ is minimal; consequently there are two
possibilities (see [Man], [Isk2] or [Do-Iz]):

(1) S is a del Pezzo surface and rk Pic.S/G D 1. Then S is either P 2, P 1 � P 1,
or a del Pezzo surface of degree 6 or 5 (Remark 9.4); we apply Lemmas 9.7 and 9.8
to conclude.

(2) G preserves a conic bundle structure on S . Here the number of fibres is at
most 3, hence no element of G fixes a curve of positive genus (Corollary 6.4); we
apply Proposition 8.4 to conclude.

To study del Pezzo surfaces of degree 4, let us describe their group of automor-
phisms (note that we do not use the notation Sd for the del Pezzo surfaces of degree
d � 4, because there are many different surfaces of the same degree):

Lemma 9.11 (Automorphism group of del Pezzo surfaces of degree 4). Let S be
a del Pezzo surface of degree 4 given by the blow-up 	 W S ! P 2 of five points
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A1; : : : ; A5 2 P 2 such that no three of them are collinear. Setting Ei D 	�1.Ai / and
denoting by L the pull-back by 	 of a general line of P 2, we have:

1. There are exactly 10 conic bundle structures on S , whose fibres are respectively
L � Ei , �KS � .L � Ei / for i D 1; : : : ; 5.

2. The action of Aut.S/ on the five pairs of divisors fL � Ei ; �KS � .L � Ei /g,
i D 1; : : : ; 5, gives rise to a split exact sequence

0 ! F ! Aut.S/
��! Sym5;

where F D f.a1; : : : ; a5/ 2 .F2/5 j P
ai D 0g Š .F2/4, and the automorphism

.a1; : : : ; a5/ permutes the pair fL � Ei ; �KS � .L � Ei /g if and only if ai D 1.

3. We have
Aut.S/ D F Ì Aut.S; 	/;

where Aut.S; 	/ is the lift of the group of automorphisms of P 2 that leave the
set fA1; : : : ; A5g invariant, and Aut.S; 	/ acts on F D f.a1; : : : ; a5/ 2 .F2/5 jP

ai D 0g by permutation of the ai ’s, as it acts on fA1; : : : ; A5g, and as
�.Aut.S// D �.Aut.S; 	// � Sym5 acts on the exceptional pairs.

4. The elements of F with two “ones” correspond to quadratic involutions of P 2

and fix exactly four points of S .

5. The elements of F with four “ones” correspond to cubic involutions of P 2 and
the points of S fixed by these elements form a smooth elliptic curve.

Remark 9.12. The group F � Aut.S/ has been studied intensively since 1895 (see
[Kan], Theorem XXXIII). A modern description of the group as the 2-torsion of
PGL.5; C/ can be found in [Bea2], (4.1), together with a study of the conjugacy classes
of such groups in the Cremona group. For further descriptions of the automorphism
groups of these surfaces, see [Do-Iz], Section 6.4, and [Bla2], Section 8.1.

Proof. Let A D mL � P5
iD1 aiEi be the divisor of the fibre of some conic bundle

structure on S , for some m; a1; : : : ; a5 2 Z. From the relations A2 D 0 (the fibres
are disjoint) and AKS D �2 (adjunction formula) we get:P5

iD1 ai
2 D m2;

P5
iD1 ai D 3m � 2: (3)

As in Lemma 7.1, we have
� P5

iD1 ai

�2 � 5
P5

iD1 ai
2, which implies here that

.3m � 2/2 � 5m2, that is, 4.m2 � 3m C 1/ � 0. Since m is an integer, we must have
1 � m � 2. If m D 1, we replace it in (3) and see that there exists i 2 f1; : : : ; 5g
such that A D L � Ei . Otherwise, taking m D 2 and replacing it in (3), we see that
four of the aj ’s are equal to 1, and one is equal to 0. This gives the ten conic bundles
of assertion 1, which are the lift on S of the lines of P 2 passing through one of the
Ai ’s or of the conic passing through four of the Ai ’s.
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The group Aut.S/ acts on the set
S5

iD1fL � Ei ; �KS � .L � Ei /g; since KS

is fixed, this induces an action on the set of five pairs fL � Ei ; �KS � .L � Ei /g.
We denote by � W Aut.S/ ! Sym5 the corresponding homomorphism. The action
of the kernel of � on the pairs of conic bundles gives a natural embedding of Ker.�/

into .F2/5.
We now prove that Ker.�/ D f.a1; : : : ; a5/ j P

ai D 0g D F. Acting by
a linear automorphism of P 2, we may assume that the points blown up by 	 are
A1 D .1 W 0 W 0/, A2 D .0 W 1 W 0/, A3 D .0 W 0 W 1/, A4 D .1 W 1 W 1/,
A5 D .a W b W c/, for some a; b; c 2 C�. Then the birational involution � W .x0 W x1 W
x2/ Ü .ax1x2 W bx0x2 W cx0x1/ of P 2 lifts as an automorphism 	�1�	 2 Aut.S/

that acts on Pic.S/ as 0
BBBBBB@

0 �1 �1 0 0 �1

�1 0 �1 0 0 �1

�1 �1 0 0 0 �1

0 0 0 0 1 0

0 0 0 1 0 0

1 1 1 0 0 2

1
CCCCCCA

with respect to the basis .E1; E2; E3; E4; E5; L/. It follows from this observation
that 	�1�	 belongs to the kernel of �, and acts on the pairs of conic bundles as
.0; 0; 0; 1; 1/ 2 .F2/5. Permuting the roles of the points A1; : : : ; A5, we get ten
involutions whose representations in .F2/5 have two “ones” and three “zeros”. These
involutions generate the group f.a1; : : : ; a5/ j P

ai D 0g D F. To prove that this
group is equal to Ker.�/, it suffices to show that .1; 1; 1; 1; 1/ does not belong to
Ker.�/. This follows from the fact that .1; 1; 1; 1; 1/ would send L D 1

2
.KS CP5

iD1.L � Ei // on the divisor 1
2
.KS C P5

iD1.�KS � L C Ei // D 1
2
.�2L � 3KS /,

which doesn’t belong to Pic.S/. This concludes the proof of assertion 2 (except the
fact that the exact sequence is split, which will be proved by assertion 3).

We now prove assertion 3. Let � 2 Sym5 be a permutation of the set f1; : : : ; 5g
in the image of � and g be an automorphism of S such that �.g/ D � . Let ˛ be
the element of Aut.Pic.S// that sends Ei on E�.i/ and fixes L. Viewing Aut.S/ as
a subgroup of Aut.Pic.S//, the element g˛�1 2 Aut.Pic.S// fixes the five pairs of
conic bundles. There exists some element h 2 F � Aut.S/ such that hg˛�1 either
fixes the divisor of every conic bundle or permutes the divisors of conic bundles
in each pair. The same argument as in the above paragraph shows that this latter
possibility cannot occur. Hence hg˛�1 fixes L � E1; : : : ; L � E5 and KS . It follows
that hg˛�1 acts trivially on Pic.S/, so ˛ D hg 2 Aut.S/, and ˛ is by construction
the lift of an automorphism of P 2 that acts on the set fA1; : : : ; A5g as � does on
f1; : : : ; 5g. Conversely, it is clear that every automorphism r of P 2 which leaves the
set fA1; A2; A3; A4; A5g invariant lifts to the automorphism 	�1r	 of S whose action
on the pairs of conic bundles is the same as that of r on the set fA1; A2; A3; A4; A5g.
This gives assertion 3.
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Assertion 4 follows from the above description of some element of F � Aut.S/

with two “ones” as the lift of a birational map of the form � W .x0 W x1 W x2/ Ü
.ax1x2 W bx0x2 W cx0x1/. As the automorphism 	�1�	 2 Aut.S/ does not leave any
exceptional divisor invariant, its fixed points are the same as those of � , which are the
four points .˛ W ˇ W �/, where ˛2 D a, ˇ2 D b, �2 D c.

It remains to prove the last assertion. Note that the element h D .0; 1; 1; 1; 1/ 2
Aut.S/ fixes the divisor L � E1, hence acts on the associated conic bundle structure.
Furthermore, the four singular fibres of this conic bundle, fL � E1 � Ei ; Eig, for
i D 2; : : : ; 5, are invariant by h and this element switches the two components of
each fibre. This shows that the action of h on the basis of the fibration is trivial, so the
restriction of h on each fibre is an involution of P 1 which fixes two points. On each
singular fibre, exactly one point is fixed, which is the singular point of the fibre. The
situation is similar for the other elements with four “ones” (in fact, the involutions
described here are twisting involutions; see Lemma 6.1).

Lemma 9.13 (Actions on the del Pezzo surfaces of degree 4). Let S be a del Pezzo
surface of degree 4, and let G 2 Aut.S/ be an Abelian group with rk Pic.S/G D 1.
Then G contains an involution that fixes an elliptic curve.

Proof. We keep the notation of Lemma 9.11 for 	 W S ! P 2, Aut.S; 	/, �, F, …,
and denote by H the group G \ F D G \ Ker �. We will prove that H contains
an element of F with four “ones”, which is an involution that fixes an elliptic curve
(Lemma 9.11).

The group �.G/ � �.Aut.S// Š Aut.S; 	/ is isomorphic to a subgroup of
Aut.S; 	/. The group Aut.S; 	/ is the lift of the group of automorphisms of P 2

that leave the set fA1; : : : ; A5g invariant (Lemma 9.11). The restriction of this group
to the conic of P 2 passing through the five points is a subgroup of PGL.2; C/ that
leaves five points invariant. Since �.G/ is finite and Abelian, it is cyclic, of order at
most 5. We consider the different possibilities.

The order of �.G/ is 1. This implies that G � F. If G contains an element
with four “ones”, we are done. Otherwise, up to conjugation G is a subset of the
group generated by .1; 1; 0; 0; 0/ and .1; 0; 1; 0; 0/, and fixes L�E4 and L�E5 (thus
rk Pic.S/G > 1).

The order of �.G/ is 2. Up to a change of numbering, �.G/ is generated by
.12/.34/; since G is Abelian, we find that H � V D f.a; a; b; b; 0/ j a; b 2 F2g.
Let g D ..a; b; c; d; e/; .12/.34// 2 G be such that �.g/ D .12/.34/. We may
suppose that e D 1 (otherwise, the group G would fix L � E5 and we would have
rk Pic.S/G � 2.) Conjugating by ..0; b; 0; d; b C c/; id/ we may assume that g D
..a C b; 0; c C d; 0; 1/; .12/.34//. In fact, since a C b C c C d C e D 0, we have
g D ..˛; 0; 1 C ˛; 0; 1/; .12/.34//, where ˛ D a C b D c C d C 1 2 F2. If ˛ D 1,
then g has order 4 and fixes the divisor 2L � E3 � E4, thus G cannot be equal to hgi
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and it follows that V � G; in particular the element .1; 1; 1; 1; 0/ is contained in G.
If ˛ D 0, then hgi fixes 2L � E1 � E2, so once again G contains V .

The order of �.G/ is 3. In this case, �.G/ is generated by a 3-cycle, namely .123/;
then H must be a subgroup of V D f.a; a; a; b; a C b/ j a; b 2 F2g. The order of
G must be a multiple of 4 by Lemma 9.3, hence H D V , and thus G contains the
element .1; 1; 1; 1; 0/.

The order of �.G/ is 4. Then �.G/ is generated by .1234/, so H must be a
subgroup of V D h.1; 1; 1; 1; 0/i. Let g D ..a; b; c; d; e/; .1 2 3 4// 2 G be such that
�.g/ D .1324/. Conjugating the group by ..a; aCb; aCbCc; 0; aCc/; id/, we may
suppose that g D ..0; 0; 0; e; e/; .1324//. If e D 1, then g4 D .1; 1; 1; 1; 0/ 2 G. If
e D 0, the element g belongs to HS , so it fixes the divisors L and E5. As the group
V fixes L � E5, the rank of Pic.S/G cannot be 1.

The order of �.G/ is 5. Then �.G/ is generated by a 5-cycle and H D f1g. The
rank of Pic.S/H cannot be 1, by Lemma 9.3.

Before studying the case of del Pezzo surfaces of degree � 3, we remind the reader
of some classical embeddings of these surfaces.

Remark 9.14. Recall ([Kol], Theorem III.3.5) that a del Pezzo surface of degree 3

(respectively 2, 1) is isomorphic to a smooth hypersurface of degree 3 (respectively
4, 6) in the projective space P 3 (respectively in P .1; 1; 1; 2/, P .1; 1; 2; 3/). Further-
more, in each of the 3 cases, any automorphism of the surface is the restriction of an
automorphism of the ambient space. We will use these classical embeddings, take
w; x; y; z as the variables on the projective spaces, and denote by Œ˛ W ˇ W � W ı� the
automorphism .w W x W y W z/ 7! .˛w W ˇx W �y W ız/. Note that a del Pezzo surface
of degree 4 is isomorphic to the intersection of two quadrics in P 4, but we will not
use this here.

Lemma 9.15 (Actions on the del Pezzo surfaces of degree 3). Let S be a del Pezzo
surface of degree 3, and let G 2 Aut.S/ be an Abelian group with rk Pic.S/G D 1.
Then G contains an element of order 2 or 3 that fixes an elliptic curve of S .

Proof. Lemma 9.3 implies that the order of G is divisible by 3, so G contains an
element of order 3. We view S as a cubic surface in P 3, and Aut.S/ as a subgroup
of PGL.4; C/ (see Remark 9.14). There are three kinds of elements of order 3 in
PGL.4; C/, depending on the nature of their eigenvalues. Setting ! D e2i�=3, there
are elements with one eigenvalue of multiplicity 3 (conjugate to Œ1 W 1 W 1 W !�, or its
inverse), elements with two eigenvalues of multiplicity 2 (conjugate to Œ1 W 1 W ! W !�)
and elements with three distinct eigenvalues (conjugate to Œ1 W 1 W ! W !2�). We
consider the three possibilities.

Case a: G contains an element of order 3 with one eigenvalue of multiplicity 3.
The element Œ1 W 1 W 1 W !� fixes the hyperplane z D 0, whose intersection with the
surface S is an elliptic curve (because Fix.g/ � S is smooth). Thus, we are done.
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Case b: G contains an element of order 3 with two eigenvalues of multiplicity 2.
With a suitable choice of coordinates, we may assume that this element is

g D Œ1 W 1 W ! W !�

Since S is smooth, its equation F is of degree at least 2 in each variable, which
implies that F.w; x; !y; !z/ D F.w; x; y; z/ (the eigenvalue is 1); up to a change
of coordinates F D w3 C x3 C y3 C z3, which means that S is the Fermat cubic
surface. The group of automorphisms of S is .Z=3Z/3 Ì Sym4 and the centraliser of
g in it is .Z=3Z/3 Ì V , where V Š .Z=2Z/2 is the subgroup of Sym4 generated by
the two transpositions .w; x/ and .y; z/. The structure of the centraliser gives rise to
an exact sequence

1 �� .Z=3Z/3 �� .Z=3Z/3 Ì V
� �� V �� 1

[ [ [
1 �� G \ .Z=3Z/3 �� G �� �.G/ �� 1.

We may suppose that G contains no element of order 3 with an eigenvalue of
multiplicity 3, since this case has been studied above (case a). There are then three
possibilities for G \.Z=3Z/3, namely hgi, hg; Œ1 W ! W 1 W !�i and hg; Œ1 W ! W ! W 1�i.
The last is conjugate to the second by the automorphism .y; z/. Note that g preserves
exactly 9 of the 27 lines on the surface; these are fw C !ix D y C !j z D 0g, for
0 � i; j � 2. If G \ .Z=3Z/3 is equal to hgi, then G=hgi Š �.G/ has order 1; 2

or 4 and thus G leaves at least one of the 9 lines invariant, whence rk Pic.S/G > 1.
If G \ .Z=3Z/3 is the group H D hg; Œ1 W ! W 1 W !�i we have G D H , since the
centraliser of H in .Z=3Z/3 ÌV is the group .Z=3Z/3. As the set of three skew lines
fw C !ix D y C !iz D 0g for 0 � i � 2 is an orbit of H , the rank of Pic.S/G is
strictly larger than 1.

Case c: G contains an element g of order 3 with three distinct eigenvalues.
We may suppose that g D Œ1 W 1 W ! W !2�. Note that the action of g on P 3 fixes
the line Lyz of equation y D z D 0 and thus the whole group G leaves this line
invariant. If Lyz � S , the rank of rk Pic.S/G is at least 2. Otherwise, the equation
of S is of the form L3.w; x/ C L1.w; x/yz C y3 C z3 D 0, where L3 and L1 are
homogeneous forms of degree respectively 3 and 1, and L3 has three distinct roots,
so Fix.g/ D S \ Lyz . Since g fixes exactly three points, the trace of its action on
Pic.S/ Š Z7 is 1 (Lemma 9.5) and thus rk Pic.S/g > 1, which implies that G 6D hgi.

Note that every subgroup of PGL.4; C/ isomorphic to .Z=3Z/2 contains an ele-
ment with only two distinct eigenvalues, so we may assume that G contains only two
elements of order 3, which are g and g2. This implies that the action of G on the
three points of Lyz \ S gives an exact sequence

1 ! hgi ! G ! Sym3;
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where the image on the right is a transposition. Consequently the group G contains
an element of order 2 that we may suppose to be diagonal of the form
.w W x W y W z/ 7! .�w W x W y W z/ and that fixes the elliptic curve which is
the trace on S of the plane w D 0.

Lemma 9.16 (Actions on the del Pezzo surfaces of degree 2). Let S be a del Pezzo
surface of degree 2, and let G 2 Aut.S/ be an Abelian group with rk Pic.S/G D 1.
Then G contains either the Geiser involution (that fixes a curve isomorphic to a smooth
quartic curve) or an element of order 2 or 3 that fixes an elliptic curve.

Proof. We view S as a surface of degree four in the weighted projective space
P .2; 1; 1; 1/ (see Remark 9.14). Note that the projection on the last three coordi-
nates gives S as a double covering of P 2 ramified over a smooth quartic curve Q.

Lemma 9.3 implies that the order of G is divisible by 2, so G contains an element
g of order 2.

If the element g is the involution induced by the double covering (classically
called the Geiser involution), we are done; otherwise we may assume that g acts on
P .2; 1; 1; 1/ as g W .w W x W y W z/ 7! .�w W x W y W �z/, where � D ˙1, and the
equation of S is w2 D z4 C L2.x; y/z2 C L4.x; y/, where Li is a form of degree i ,
and L4 has four distinct roots. The trace on S of the equation z D 0 defines an elliptic
curve Lz � S . If � D 1, then g fixes the curve Lz and we are done; we therefore
assume that � D �1.

If G contains another involution, we diagonalise the group generated by these two
involutions and see that one element of the group fixes either an elliptic curve or the
smooth quartic curve, so we may assume that g is the only involution of G.

Note that g fixes exactly four points of S , which are the points of intersection of
Lz with the quartic Q (of equation w D 0). The trace of g on Pic.S/ Š Z8 is thus
equal to 2 (Lemma 9.5), whence rk Pic.S/g D 5 and G 6D hgi.

The group G acts on the line z D 0 of P 2 and on the four points of Lz \Q. Since
g is the only element of order 2 of G, the action of G on these four aligned points
has order 3 and thus, we may assume that L4.x; y/ D x.x3 C �y3/ and that there
exists an element h of G that acts as .w W x W y W z/ 7! .˛w W x W e2i�=3y W ˇz/, with
˛2 D ˇ4 D 1. We find that h4 is an element of order 3 that fixes the elliptic curve
which is the trace on S of the equation y D 0.

Lemma 9.17 (Actions on the del Pezzo surfaces of degree 1). Let S be a del Pezzo
surface of degree 1, and let G 2 Aut.S/ be an Abelian group with rk Pic.S/G D 1.
Then some non-trivial element of G fixes a curve of S of positive genus.

Proof. We view S as a surface of degree 6 in the weighted projective space P .3; 1; 1; 2/

(see Remark 9.14). Up to a change of coordinates, we may assume that the equation
is

w2 D z3 C zL4.x; y/ C L6.x; y/;



Linearisation of finite Abelian subgroups of the Cremona group of the plane 259

where L4 and L6 are homogeneous forms of degree 4 and 6 respectively. The em-
bedding of S into P .3; 1; 1; 2/ is given by j � 3KS j � j � KS j � j � 2KS j, which
implies that G is a subgroup of P.GL.1; C/�GL.2; C/�GL.1; C//. The projection
.w W x W y W z/ Ü .x W y/ is an elliptic fibration generated by j � KS j, and has
one base-point, namely .1 W 0 W 0 W 1/, which is fixed by Aut.S/. This projection
induces an homomorphism � W Aut.S/ ! Aut.P 1/ D PGL.2; C/. Note that the
kernel of � is generated by the Bertini involution w 7! �w (and the element z 7! !z

(! D e2i�=3) if L4 D 0) and is hence cyclic of order 2 (or 6). Furthermore, any
element of this kernel fixes a curve of positive genus.

We assume that no non-trivial element of G fixes a curve of positive genus. This
implies that G is isomorphic to �.G/ � Aut.P 1/, and thus is either cyclic or iso-
morphic to .Z=2Z/2. Since the lift of this latter group in Aut.S/ is not Abelian,
G is cyclic. We use the Lefschetz fixed-point formula (Lemma 9.5) to deduce the
eigenvalues of the action of elements of G on Pic.S/ Š Z9. For any element g 2 G,
g 6D 1, Fix.g/ contains the point .1 W 0 W 0 W 1/ and is the disjoint union of points and
lines. Thus 
.Fix.g// � 1 and so the trace of g on Pic.S/ is at least �1 (Lemma 9.5).

Elements of order 2: The eigenvalues are h1a; .�1/bi with a � 4, b � 5.

Elements of order 3: The eigenvalues are h1a; .!/b; .!2/bi with a � 3, b � 3.

Elements of order 4: The eigenvalues are h1a; .�1/b; .i/c ; .�i/ci with a � b � 1.
Furthermore, the information on the square induces that a C b � 4, so a � 2.

Elements of order 5: The eigenvalues are h15; l1; l2; l3; l4i, where l1; : : : ; l4 are
the four primitive 5-th roots of unity.

Elements of order 6: The eigenvalues are h1a; .�1/b; .!/c; .!2/c; .�!/d; .�!2/di,
where a � b � c C d � �1. Computing the square and the third power, we find re-
spectively a C b � 3, c C d � 3 and a C 2c � 4, b C 2d � 5. This implies that
a � 2. Indeed, if a D 1, we get b; c � 2 and thus d � 1, which contradicts the fact
that the trace a � b � c C d is at least �1.

Since rk Pic.S/G D 1, the order of the cyclic group G is at least 7. As the action
of G leaves L4 and L6 invariant, both L6 and L4 are monomials. If some double
root of L6 is a root of L4, the surface is singular, so up to an exchange of coordinates
we may suppose that L4 D x4 and either L6 D xy5 or L6 D y6.

In the first case, the equation of the surface is w2 D z3 Cx4z Cxy5 whose group
of automorphisms Aut.S/ is isomorphic to Z=20Z, generated by Œi W 1 W �10 W �1�,
and contains the Bertini involution. No subgroup of Aut.S/ fullfills our hypotheses.

In the second case, the equation of the surface is w2 D z3 C x4z C y6, whose
group of automorphisms is isomorphic to Z=2Z � Z=12Z, generated by the Bertini
involution and g D Œi W 1 W �12 W �1�. The only possibility for G is to be equal to hgi.
Since g4 D Œ1 W 1 W ! W 1� fixes an elliptic curve, we are done.

Proposition 9.1 now follows, using all the lemmas proved above.
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10. The results

We now prove the five theorems stated in the introduction.

Proof of Theorem 4. Since the pair .G; S/ is minimal, either rk Pic.S/G D 1 and
S is a del Pezzo surface, or G preserves a conic bundle structure (see [Man], [Isk2]
or [Do-Iz]).

In the first case, either S Š P 2, or S Š P 1 � P 1 or S is a del Pezzo surface of
degree d D 5 or 6 and G Š Z=dZ (Proposition 9.1).

In the second case, either S is a Hirzebruch surface or the pair .G; S/ is the pair
.Cs24; yS4/ of Section 7 (Proposition 8.4).

Proof of Theorem 2. No non-trivial element of Aut.P 2/; Aut.P 1 �P 1/ or Cs24 fixes
a non-rational curve (the first two cases are clear, the last one follows from Lemma 7.4).

Conversely, suppose that G is a finite Abelian subgroup of the Cremona group
such that no non-trivial element fixes a curve of positive genus. Since G is finite, it
is birationally conjugate to a group of automorphisms of a rational surface S (see for
example [dF-Ei], Theorem 1.4, or [Do-Iz]). Then, we assume that the pair .G; S/ is
minimal and use the classification of Theorem 4.

If S is an Hirzebruch surface, the group is birationally conjugate to a subgroup of
Aut.P 1�P 1/ (Proposition 8.3). If S is a del Pezzo surface, the group G is birationally
conjugate to a subgroup of Aut.P 1 � P 1/ or Aut.P 2/ by Proposition 9.1. Otherwise,
the pair .G; S/ is isomorphic to the pair .Cs24; yS4/.

It remains to show that the group Cs24 is not birationally conjugate to a subgroup
of Aut.P 1 � P 1/ or Aut.P 2/. Since the group is isomorphic to Z=2Z � Z=4Z, only
the case of Aut.P 1 � P 1/ need be considered (see Section 2). This was proved in
Proposition 8.4.

Proof of Theorem 5. By Theorem 2, G is birationally conjugate either to a subgroup
of Aut.P 2/, or of Aut.P 1 � P 1/, or to the group Cs24.

The group Cs24 is case (8). The finiteAbelian subgroups of Aut.P 2/ are conjugate
to the groups of case (1) or (9) (Proposition 2.2). The finite Abelian subgroups of
Aut.P 1 � P 1/ are conjugate to the groups of cases (1) through (7) (Proposition 2.5).

It was proved in Proposition 2.5 that cases (1) through (7) are distinct. In Proposi-
tion 8.4 (8) we showed that (Cs24) is not birationally conjugate to any groups of cases
(1) through (7). Finally, the group (9) is isomorphic only to (1), but is not birationally
conjugate to it (Proposition 2.2). This completes the proof that the distincts cases
given above are not birationally conjugate.

The proof of Theorem 1 follows directly from Theorem 5, and Theorem 3 is a
corollary of Theorem 1.
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11. Other kinds of groups

Our main interest up to now was in finite Abelian subgroups of the Cremona group.
In this section, we give some examples in the other cases, in order to show why the
hypothesis “finite”, respectively “Abelian”, is necessary to ensure that condition (F)
(no curve of positive genus is fixed by a non-trivial element) implies condition (M) (the
group is birationally conjugate to a group of automorphisms of a minimal surface).
We refer to the introduction for more details.

Finiteness is important since it imposes that the group is conjugate to a group of
automorphisms of a projective rational surface. This is not the case if the group is not
finite (see for example [Bla2], Proposition 2.2.4).

Lemma 11.1. Let ' W P 2 Ü P 2 be a quadratic birational transformation with three
proper base-points, and such that deg.'n/ D 2n for each integer n � 1. Then the
following holds:

1. No pencil of curves is invariant by '.

2. ' is not birationally conjugate to an automorphism of P 2 or of P 1 � P 1.

Proof. Denote by A1, A2, A3 the three base-points of ' and by B1, B2, B3 those of
'�1. Then, up to a change of coordinates, we may suppose that A1 D .1 W 0 W 0/,
A2 D .0 W 1 W 0/ and A3 D .0 W 0 W 1/. The birational transformation ' is
therefore the composition of the standard quadratic transformation � W .x W y W z/ Ü
.yz W xz W xy/ with a linear automorphism � 2 Aut.P 2/ that sends Ai on Bi for
i D 1; 2; 3.

Let ƒ be some pencil of curves, and assume that '.ƒ/ D ƒ. We will prove
that some base-point of ƒ is sent by ' on an orbit of infinite order. The condition
deg.'n/ D 2n is equivalent to saying that for i D 1; 2; 3; the sequence Bi , '.Bi /, …,
'n.Bi /, … is well defined, i.e., that 'm.Bi / is not equal to Aj for any i; j 2 f1; 2; 3g,
m 2 N. Denote by ˛1, ˛2, ˛3, ˇ1, ˇ2, ˇ3 the multiplicity of ƒ at respectively A1, A2,
A3, B1, B2, B3 and by n the degree of the curves of ƒ. The curves of the pencil '.ƒ/

thus have degree 2n�˛1 �˛2 �˛3. Since ƒ is invariant, n D ˛1 C˛2 C˛3, so at least
one of the ˛i ’s is not equal to zero. The equality n D ˛1 C ˛2 C ˛3 implies that the
curves of �.ƒ/ have multiplicity ˛i at Ai , so the curves of '.ƒ/ have multiplicity ˛i

at Bi , whence ˛i D ˇi for i D 1; 2; 3. Since ƒ passes through Bi with multiplicity
˛i , the pencil '.ƒ/ D ƒ passes through '.Bi / with multiplicity ˛i for i D 1; 2; 3.
Continuing in this way, we see that ƒ passes through 'n.Bi / with multiplicity ˛i for
each n 2 N. Consequently, ƒ has infinitely many base-points, which is not possible.
This establishes the first assertion.

The second assertion follows directly, since each automorphism of P 2 or P 1 �P 1

leaves a pencil of rational curves invariant.
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Corollary 11.2. The group generated by a very general quadratic transformation is
a infinite cyclic group satisfying (F) but not (M).

Proof. The condition deg.'n/ D 2n, n 2 N, is satisfied for all quadratic transforma-
tions, except for a countable set of proper subvarieties. Consequently condition (F)
is not satisfied (Lemma 11.1) for a very general quadratic transformation.

Let n be some positive integer and write 'n W .x W y W z/ Ü .f1.x; y; z/ W
f2.x; y; z/ W f3.x; y; z//, for some homogeneous polynomials fi of degree 2n. The
set of points fixed by 'n belongs to the intersection of the curves with equations
xf2 � yf1, xf3 � zf1 and yf3 � zf2. In general, there is only a finite number of
points; this yields condition (F).

In fact, the argument of Lemma 11.1 works for any very general birational trans-
formation of P 2, since this is a composition of quadratic transformations. We thus
find infinitely many cyclic subgroups of the Cremona group that are not birationally
conjugate to a group of automorphisms of a minimal surface although none of their
non-trivial elements fixes a non-rational curve. The implication (F) H) (M) is there-
fore false for general cyclic groups.

We now study the finite non-Abelian subgroups and provide, in this case, many
examples satisfying (F) but not (M):

Lemma 11.3. Let S6 D f..x W y W z/; .u W v W w// j ux D vy D wzg � P 2 � P 2

be the del Pezzo surface of degree 6. Let G Š Sym3 �Z=2Z be the subgroup of
automorphisms of S6 generated by

..x W y W z/; .u W v W w// 7! ..u W v W w/; .x W y W z//;

..x W y W z/; .u W v W w// 7! ..y W x W z/; .v W u W w//;

..x W y W z/; .u W v W w// 7! ..z W y W x/; .w W v W u//:

Then no non-trivial element of G fixes a curve of positive genus, and G is not bira-
tionally conjugate to a group of automorphisms of a minimal surface.

Proof. Since every non-trivial element of finite order of Aut.S6/ is birationally conju-
gate to a linear automorphism of P 2 (Corollary 9.10), no such element fixes a curve of
positive genus. The description of every G-equivariant elementary link starting from
S6 was given by Iskovskikh in [Isk4]. This shows that this group is not birationally
conjugate to a group of automorphisms of a minimal surface.

Lemma 11.4. Let S5 be the del Pezzo surface of degree 5. Let G Š Sym5 be the
whole group Aut.S5/. Then no non-trivial element of G fixes a curve of positive
genus, and G is not birationally conjugate to a group of automorphisms of a minimal
surface.
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Proof. Since every non-trivial element of Aut.S5/ is birationally conjugate to a linear
automorphism of P 2 (Corollary 9.10), such an element does not fix a curve of pos-
itive genus. Suppose that there exists some G-equivariant birational transformation
' W S5 Ü zS where zS is equal to P 2 or P 1 �P 1. We decompose ' into G-equivariant
elementary links (see for example [Isk3], Theorem 2.5). The classification of elemen-
tary links ([Isk3], Theorem 2.6) shows that a link S5 Ü S 0 is either a Bertini or a
Geiser involution (and in this case S 0 D S5, and thus this link conjugates G to itself),
or the composition of the blow-up of one or two points, and the contraction of five
curves to respectively P 1 � P 1 or P 2. It remains to show that no orbit of G has size
2 or 1 to conclude that these links are not possible. This follows from the fact that the
actions of Sym5; Alt5 � G on S5 are fixed-point free (Proposition 5.1).

Finally, the way to find more counterexamples is to look at groups acting on conic
bundles. The generalisation of the example Cs24 gives many examples of non-Abelian
finite groups. Here is the simplest family:

Lemma 11.5. Let n be some positive integer, and let G be the group of birational
transformations of P 2 generated by

g1 W .x W y W z/ Ü .yz W xy W �xz/;

g2 W .x W y W z/ Ü .yz.y � z/ W xz.y C z/ W xy.y C z//;

h W .x W y W z/ Ü .e2i�=2nx W y W z/:

Then G preserves the pencil ƒ of lines passing through .1 W 0 W 0/ and the corre-
sponding action gives rise to a non-split exact sequence

1 ! hhi Š Z=2nZ ! G ! .Z=2Z/2 ! 1:

In particular, the group G has order 8n. Furthermore, no non-trivial element of G

fixes a curve of positive genus, and G is not birationally conjugate to a group of
automorphisms of a minimal surface.

Proof. First, since g1 and g2 generate the group Cs24, which is not birationally
conjugate to a group of automorphisms of a minimal surface, this is also the case
for G.

Secondly, we compute that .g1/2 D .g2/2 D .h/n is the birational transformation
.x W y W z/ 7! .�x W y W z/. The maps g1 and g2 thus have order 4 and h has order 2n.

Thirdly, every generator of G preserves the pencil ƒ of lines passing through
.1 W 0 W 0/. The action of g1; g2 and h on this pencil is respectively .y W z/ 7! .�y W z/,
.y W z/ 7! .z W y/ and .y W z/ 7! .y W z/. The action of G on the pencil thus gives an
exact sequence

1 ! G0 ! G ! .Z=2Z/2 ! 0;
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where G0 is the subgroup of elements of G that act trivially on the pencil ƒ. It is clear
that hhi Š Z=2nZ is a subgroup of G0. Since g1h.g1/�1 D g2h.g2/�1 D h�1 and
g1 and g2 commute, the group hhi is equal to G0.

Finally, any element of G that fixes a curve of positive genus must act trivially on
the pencil ƒ and thus belongs to hhi. Hence only the identity is possible.
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