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Abstract
We study the group of symplectic birational transformations of the plane. It is

proved that this group is generated by SL(2,Z), the torus and a special map of order
5, as it was conjectured by A. Usnich.

Then we consider a special subgroupH , of finite type, defined over any field
which admits a surjective morphism to the Thompson group of piecewise linear auto-
morphisms ofZ2. We prove that the presentation for this group conjectured by
Usnich is correct.

1. Introduction

1.1. The group Symp. Recall that a rational mapf W C2
Ü C

2—or a rational
transformationof C2—is given by

(x, y) Ü ( f1(x, y), f2(x, y)),

where f1, f2 are two rational functions (quotients of polynomials) in two variables.
The map f is said to bebirational if it admits a inverse of the same type, which
is equivalent to say thatf is locally bijective, or that f induces an isomorphism be-
tween two open dense subsets ofC

2. The group of birational maps ofC2 is the famous
Cremona group.

Following [4], we defineSympas the group of symplectic birational transform-
ations of the plane, which is the group of birational transformations ofC2 which pre-
serve the differential form

!0 D
dx^ dy

xy
.

In [4], a natural surjective morphism fromSympto the Thompson group of piece-
wise linear automorphisms ofZ2 is constructed (see also [3]) although the Thompson
group is not embedded in the Cremona group. The groupSymp, related to other topics
of mathematics, is also an interesting subgroup of the Cremona group, from the geo-
metric point of view. The base-points of its elements are poles of the differential form
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!0, but its elements can contract curves which are not poles of!0. In this article, we
describe the geometry of elements ofSymp, and give proofs to two conjectures of [4]
(Theorems 1 and 2 below).

1.2. The results. The two groups SL(2,Z) and (C�)2 naturally are embedded

into Symp; the matrix
�

a b
c d

�

2 SL(2,Z) corresponds to the map (x,y)Ü (xayb,xcyd),

and the pair (�, �) 2 (C�)2 corresponds to (x, y) Ü (�x, �y). Moreover, the map
P W (x, y) Ü (y, (y C 1)=x), of order 5, is also an element ofSymp. Our first main
result consists of proving the following result, conjectured in [4]:

Theorem 1. The group Symp is generated bySL(2,Z), (C�)2 and P.

The mapP is a well-known linearisable map ([2]), and the grouphSL(2,Z), (C�)2
i

is a toric well-understood group. The mix of this group withP provides all the com-
plexity to Symp. In the proof, the reader can see that all non-toric base-points come
from P, but in fact, there are many relations inSymp, and we can have complicated
elements with many non-toric base-points.

However, the natural subgroupH � Sympgenerated by SL(2,Z) and P is easier to
understand. It is an interesting subgroup of finite type of the Cremona group, which is

moreover defined overQ or over any field. We writeC, I the elementsC D
�

�1 1
�1 0

�

and I D
�

0 �1
1 0

�

of SL(2,Z). The presentation

SL(2,Z) D hI , C j I 4
D C3

D [C, I 2] D 1i

is classical. We will prove the following result on the relations of H , conjectured
in [4]:

Theorem 2. The following is a presentation of the group H:

H D hI , C, P j I 4
D C3

D [C, I 2] D P5
D 1, PC PD I i.

The author thanks S. Galkin for asking him these questions inthe Workshop on
the Cremona group organised by I. Cheltsov in Edinburgh in the beginning of 2010.

2. Some reminders on birational transformations

Recall that any birational transformation ofC2 extends to a unique birational trans-
formation of the projective complex planeP2 (written alsoP2

C

or CP2) via the embed-
ding (x, y) 7! (x W y W 1). We will take X, Y, Z as homogeneous coordinates onP2, so
that the affine coordinatesx, y on C

2 correspond tox D X=Z and y D Y=Z. Any
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birational transformation' of P2 can be written as

' W (X W Y W Z) Ü (P1(X, Y, Z) W P2(X, Y, Z) W P3(X, Y, Z)),

where thePi are homogeneous polynomials of the same degree without common factor.
The degree of the map is the degree of thePi . If this one is> 1, then there is a
finite number of points ofP2 where' is not defined, which corresponds to the set of
common zeros ofP1, P2, P3.

More generally, the base-points of' are the points where all curves of the linear
system

P

�i Pi , �i 2 C pass through. Note that these points are not necessarily onP

2,
but maybe in some blow-up, and correspond thus to some tangent directions. See for
example [1] for more details.

3. Normal cubic forms and geometric descriptions

Recall that the divisor of a differential form onP2 is a divisor of degree�3. In
particular, the divisor corresponding to!0 on P2 is �(X) � (Y) � (Z).

DEFINITION 3.1. We say that a differential form! on P2 is a normal cubic form
if �div(!) is the divisor of a (possibly reducible) singular cubic, whose singular points
are ordinary double points (in particular we ask that�div(!) is effective and reduced).

Note that in the above definition,�div(!) can be either (i) the union of three lines
with exactly three double points, (ii) the union of a smooth conic and a line intersecting
into two distinct points, (iii) an irreducible cubic curve having a unique ordinary double
point. The form!0 is a normal cubic form of type (i).

Before using the above definition, we remind the reader the following simple result,
already observed in [4].

Lemma 3.2. Let ! be a differential form on a smooth algebraic surface S and
let � W OS! S be the blow-up of q2 S. We write DD div(!) the divisor of!, QD its
strict transform on OS, and E the exceptional curve contracted by�.

Then div(��(!)) D QD C (m C 1)E, where m2 Z is the multiplicity of D at q.
In particular,
(1) E is a zero ofdiv(��(!)), D has multiplicity� 0 at q.
(2) E is a pole ofdiv(��(!)), D has multiplicity� �2 at q;
(3) E is a pole of multiplicity one ofdiv(��(!)), D has multiplicity�2 at q.

Proof. Let us take some local coordinatesu, v on S at q so that this point cor-
responds tou D v D 0. The form! locally corresponds to'(u, v) � du^ dv, where'
is a rational function in two variables, andD corresponds to ('(u, v)).
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The blow-up can be viewed locally as (u,v) 7! (uv,v), and��(!) becomes'(uv,v)�
d(uv) ^ dv D '(uv, v)v � du^ dv. In these coordinates,v is the equation of the div-
isor E and'(uv,v) corresponds to��(div(!)). Moreover'(uv,v)D vm

� (u,v), where
m 2 Z is the multiplicity of D at q (which is the multiplicity of' at (0,0)), and where
 (0, 0)2 C�. Observing that (u, v) corresponds toQD, we obtain the result.

DEFINITION 3.3. Let S be a smooth surface, let! be a differential form onS
and let p 2 S. We define the multiplicity of! at p to be the multiplicity of div(!) at
p. If this multiplicity is negative, we say thatp is a pole of!.

We can now relate the base points of birational maps to the image of normal cu-
bic forms. The following proposition deals with base-points of a birational map' of
P

2, which belong toP2 or to blow-ups ofP2. Saying that the points are pole of!
corresponds to use the above definition with the lift of the differential form on the
corresponding blow-up ofP2.

Proposition 3.4. Let ' W P2
Ü P

2 be a birational map, and let! be a normal
cubic form. The following are equivalent:
(1) All base-points of' are poles of the transform of!;
(2) The form'

�

(!) is a normal cubic form.

Proof. If ' has no base-point, both assertions are trivially true, so wemay as-
sume that' has at least one base-point.

We denote by� W S! P

2 the blow-up of all base-points of', and by� W S! P

2

the morphism'�, which is the blow-up of all base-points of'�1.
Suppose first that at least one base-pointq of ' (which may be infinitely near to

P

2) is not a pole of!. By Lemma 3.2, the exceptional curve of this point, and of all
infinitely near points, are zeros of��(!). Sinceq is a base-point, at least one of these
curves is not contracted by�, and thus'

�

(!)D �
�

(��(!)) has zeros; it is therefore not
a normal cubic form.

Suppose now that all base-points of' are poles of!. If �div(!) is an irreducible
cubic curve, it has a unique ordinary double point, we assumethat � blows-up this
point, by replacing� by its composition with the blow-up if needed, obtaining another
(non-minimal) resolution of'. We now prove the following assertion:

The divisor DS D �div(��(!)) is linearly equivalent to�KS and is an effective
reduced divisor consisting of a loop of smooth rational curves (i.e. a finite number of
smooth rational curves where each one intersect exactly twoothers, and each inter-
section is transversal).

Firstly, since div(!) is linearly equivalent toK
P

2, by definition of the canonical
divisor. Secondly, we recall that�div(!) is an effective divisor, and that it is either
a loop of smooth rational curves or an irreducible nodal cubic curve. In this latter
case, writing� W F1! P

2 the blow-up of the singular point,�div(��(!)) is the union
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of the exceptional curve with the strict transform of the cubic, and is thus a loop of
smooth rational curves. We proceed then by induction on the number of points blown-
up by �, applying Lemma 3.2 at each step; blowing-up a smooth point on a loop does
not change the structure of the loop, and blowing-up a singular point only adds one
component. The assertion is now clear.

The fact thatDS is an effective divisor linearly equivalent to�KS implies that
D D �div('

�

(!))D �div(�
�

(��(!)))D �
�

(DS) is an effective divisor linearly equivalent
to �K

P

2, and is thus a cubic curve. All components ofDS being rational,D cannot
be smooth. It remains to see that all singular points ofD are ordinary double points.
Writing !

0

D '

�

(!), if D D �div(!0) had one other singularities, we can check using
Lemma 3.2 thatDSD �div(��(!0)) would not be a loop.

4. Decomposition into quadratic maps

It is well known that any birational transformation of the plane decomposes into
quadratic maps. Using Proposition 3.4, we can deduce the same for elements which
send a normal cubic form on another one (Lemma 4.1), and then with a more careful
study to elements which preserve the divisor of!0 (Proposition 4.2).

Lemma 4.1. Let ' W P2
Ü P

2 be a birational map of degree d> 1, and let
! be a normal cubic form. If'

�

(!) is a normal cubic form, there exist quadratic
transformations�1, : : : , �n such that
(1) ' D �n Æ � � � Æ �1;
(2) for i D 1, : : : , n, (�i Æ � � � Æ �1)

�

(!) is a normal cubic form.

Proof. We start as in the classical proof of Noether–Castelnuovo theorem, by tak-
ing a de Jonquières transformation (a birational map ofP2 which preserves a pencil
of lines) such that each base-point of is a base-point of' and' �1 has degree< d.
The existence of such a can be checked for example in Chapter 8 of [1] (see in
particular the proof of Theorem 8.3.4).

Since all base-points of' are poles of! (Proposition 3.4), the same is true for
 , so 

�

(!) is a normal cubic form.
It remains thus to prove the lemma in the case where' is a de Jonquières trans-

formation of degreed > 1, which preserves the pencil of lines passing throughs 2 P2.
We prove the result by induction ond, the cased D 2 being clear. We follow the
classical proof of the theorem of Noether–Castelnuovo.

The linear system of' (which is the pull-back by' of the system of lines of the
plane) consists of curves of degreed passing throughs with multiplicity d � 1 and
through 2d � 2 other pointst1, : : : , t2d�2 with multiplicity one.

If at least one of theti ’s is a proper point ofP2, say t1, there exists anothert j ,
say t2, and a quadratic de Jonquières transformation�1 with base-pointss, t1, t2. The
linear systems of�1 and ' intersecting intod � 1 free points, the map' Æ (�1)�1 is a
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de Jonquières transformation of degreed � 1. Since (�1)
�

(!) is a normal cubic form,
the result follows from the induction hypothesis.

If no one of theti ’s is a proper point of the plane, there exists at least one of
these, sayt1, which corresponds to a tangent direction ofs, and another pointt j , say
t2, which is infinitely near tot1. We choose a proper pointu in P

2 which is a pole
of ! and which is not aligned withs and t1. There exists a quadratic de Jonquières
transformation�1 with base-pointss, t1, u. The linear systems of�1 and' intersecting
into d free points, the map� D ' Æ (�1)�1 is a de Jonquières transformation of degree
d. The linear system of� is the image by�1 of the linear system of'; it has one
proper base-point distinct fromq, which corresponds to the “image” oft2 by �1 (in the
decomposition of�1 into blow-ups and blow-downs, the exceptional curve associated
to t1 is sent onto two a line ofP2 and t2 is sent onto a general point of this line).
Since (�1)

�

(!) is a normal cubic form, we can apply the preceding case to� .

Proposition 4.2. Let ' W P2
Ü P

2 be a birational map of degree> 1, and as-
sume that

div('
�

(!0)) D div(!0)

(where!0 is the differential form dx̂ dy=(xy)). Then, there exist quadratic transform-
ations �1, : : : , �n such that
(1) ' D �n Æ � � � Æ �1;
(2) for i D 1, : : : , n, div((�i Æ � � � Æ �1)

�

(!0)) D div(!0).

REMARK 4.3. A differential form! satisfies div(!)D div(!0) if and only if ! D
�!0 for some� 2 C�. In fact, as we can see from the proofs in Section 5, if a bira-
tional map' 2 Bir(P2) satisfies'

�

(!0) D �!0 for some� 2 C�, then� is �1, and
both are possible (taking for example' W (x W y W z) 7! (y W x W z) we get� D �1).

Proof. Applying Lemma 4.1, we obtain a decomposition' D �n Æ � � � Æ �1 where
!i WD (�i Æ � � � Æ �1)

�

(!0) is a normal cubic form fori D 0, : : : , n.
Denote bym the maximal degree of the irreducible components of�div(!i ) for

i D 0, : : : , n, denote byr the minimal index where!r has a component of degreem.
We now prove the result by induction on the pairs (m,n�r ), ordered lexicographically.

If mD 1, �div(!i ) is the union of three lines for eachi . Composing the quadratic
maps with an automorphism ofP2 which sends div(!i ) onto div(!0), we can assume
that div(!i ) D div(!0) for eachi and obtain the result.

Suppose now thatmD 2, which implies that 0< r < n, since!0 D !n ¤ !r . The
divisor �div(!r ) is the union of a lineL and a conic0, and the divisor�div(!r�1)
is the union of three lines. In particular, the curve00 D (��1

r )
�

(0) is a line andL0 D

(��1
r )

�

(L) is either a point or a line. This implies that the three base-points s1, s2, s3

of ��1
r belong to0 (as proper or infinitely near points) and that at least one of them

lies on L. Up to renumbering,s1 is one of the two points of0 \ L, and s2 is either
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a proper point of0 or the point infinitely near tos1 corresponding to the tangent of
0. The curve05 D (�rC1)

�

(0) is either a conic or a line, so at least two of the three
base-pointst1, t2, t3 of �rC1 belongs to0, and L5D (�rC1)

�

(L) can be a point, a line or
a conic. Up to renumbering,t1 is a proper point of0, and t2 is either another proper
point of 0, or the point infinitely near tot1 corresponding to the tangent direction of
0. We can also assume that ift2 belongs to0 \ L, so doest1.

(L0, 00) (L , 0)
�

�1
r

[s1,s2,s3]

K

�rC1

[t1,t2,t3]
K (L5, 05)

We now define two proper pointsa, b of 0. If t1 2 0\ L, the pointb is a general
point of 0 (i.e. distinct from thesi and ti ), and otherwiseb is such thatL\0 D {s1,b}.
The pointa is a general point of0 (i.e. distinct fromb and all si , ti ). We define four
birational quadratic maps�1, �2, �3, �4 of P2, with base points [s1, s2, a], [s1, a, b],
[t1, a, b] and [t1, t2, b] respectively. We moreover set�0 D �

�1
r and �5 D �rC1. By

construction, we have the following: fori D 0, : : : , 4, �i has its three base-points on0
and at least one of them belongs toL, so 0i D (�i )�(0) is a line, andL i D (�i )�(L)
is either a point or a line; moreover�i and �iC1 have two common base-points, so
�i D �iC1 Æ �

�1
i is a quadratic map. We obtain the following commutative diagram:

(L0, 00)

�0

K

(L5, 05)

(L , 0)

�5D�rC1

[t1,t2,t3]

K

�0D�
�1
r

[s1,s2,s3]

K

�4

[t1,t2,b]
K

�1

[s1,s2,a]K

�3
[t1,a,b]

K

�2
[s1,a,b]

K

(L1, 01)
�1

K

(L4, 04)

�4

K

(L2, 02)
�2

K (L3, 03)

�3 K

By construction,�div((�i )�(!r )) is the union of three lines fori D 0, : : : , 4; re-
placing �rC1 Æ �r by �4�3�2�1�0, we reduce the pair (m, n� r ).

Suppose now thatmD 3 (which implies that 1< r < n�1). The divisor�div(!r )
consists of a nodal cubic curve0. The curve00 D (��1

r )
�

(0) is a conic, so all base-
points s1, s2, s3 of ��1

r belong to0, and one of them, says1, is the singular point of
0. Up to reordering, we can assume thats2 is either a proper point of0 or the point
infinitely near tos1 corresponding to the tangent of0. We denote byt1, t2, t3 the three
base-points of�rC1. The curve04 D (�rC1)

�

(0) is either a cubic or a conic, which
means that either allti ’s belong to0 or that only two belong to0 but one of these
two is the singular points1. If s1 is a base-point of�rC1, we can assume thatt1 D s1,
that t2 belongs to0 and that eithert2 is a proper point ofP2 or is infinitely near to
t1 D s1. If s1 is not equal to any of theti , we can assume thatt2 is a proper point of
0. We choose a general proper pointa of 0, not collinear with any two of thesi , ti
and define two birational quadratic maps�1, �2 of P2, with base points [s1, s2, a] and
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[s1, t2, a] respectively. We moreover set�0 D �

�1
r and �3 D �rC1. By construction,

we have the following: fori D 0, : : : , 2, �i has its three base-points on0 and at
least one of them iss1, so 0i D (�i )�(0) is a conic; moreover�i and �iC1 have two
common base-points, so�i D �iC1 Æ �

�1
i is a quadratic map. We obtain the following

commutative diagram:

0

�3D�rC1

[t1,t2,t3]
K

�0D�
�1
r

[s1,s2,s3]
K

�2
[s1,t2,a]

K

�1
[s1,s2,a]K

00
�0

K

03

01
�1

K02

�2
K

By construction,�div((�i )�(!r )) is the union of the conic0i and a line fori D
0, : : : , 4; replacing�rC1 Æ �r by �2�1�0, we reduce the pair (m, n� r ).

5. Quadratic elements ofSymp and the proof of Theorem 1

We now describe some of the main quadratic elements ofSymp, useful in the gen-
eration of elements ofSymp(see Proposition 4.2).

We fix notation for some points which are poles of!0. The pointsp1, p2, p3 are
the vertices of the triangleXY ZD 0, andq1, q2, q3 are points on edges:

p1 D (1 W 0 W 0), p2 D (0 W 1 W 0), p3 D (0 W 0 W 1),

q1 D (0 W 1 W �1), q2 D (1 W 0 W �1), q3 D (1 W �1 W 0).

Any quadratic birational transformation ofP2 has three base-points. We describe
now some quadratic transformations, by giving their description on C2, P2 (writing
only the image of (x, y) and (X W Y W Z) respectively) and by giving their base-points.
Firstly, we describe the classical generators:

I 2,

�

1

x
,

1

y

�

, (Y Z W X Z W XY), p1, p2, p3,

P,

�

y,
yC 1

x

�

, (XY W (Y C Z)Z W X Z), p1, p2, q1,

P2,

�

yC 1

x
,

x C yC 1

xy

�

, (Y(Y C Z) W Z(X C Y C Z) W XY), p1, q1, q2,

P3,

�

x C yC 1

xy
,

x C 1

y

�

, ((X C Y C Z)Z W X(X C Z) W XY), p2, q1, q2,

P4,

�

x C 1

y
, x

�

, (Z(X C Z) W XY W Y Z), p1, p2, q2.

Secondly, we construct more complicated elements. For any� 2 C

�, we denote by
�

�

2 Aut(P2) the automorphism (X W Y W Z) 7! (�X W Y W Z). If �¤�1, the mapsS
�

and
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T
�

, respectively given byS
�

D (P2C)�1
�

��

P2C and T
�

D P2
�

��

C P2, are described in
the following table:

S
�

, (��X(X C Y C Z) W Y(X C Y � �Z) W Z(��X C Y � �Z)), (0 W � W 1), q2, q3,

T
�

, (XY W (Y C Z)(�Z � Y) W ��X Z), p1, q1, (0 W � W 1).

Recall thatC is the automorphism (X W Y W Z) 7! (Y W Z W X) of P2, which corresponds

to the birational map (x, y) Ü (y=x, 1=x) of C2, and thus to the matrix
�

�1 1
�1 0

�

of

SL(2,Z). We denote by Sym(X,Y,Z) � Aut(P2) the symmetric group of permutations of
the variables, generated byC and (X W Y W Z) 7! (Y W X W Z). We now describe linear
and quadratic elements ofSymp.

Lemma 5.1. The group of automorphisms ofP2 which preserve the triangle

XY ZD 0

is (C�)2
Ì Sym(X,Y,Z), and its subgroup(C�)2

Ì hCi is equal to the group of auto-

morphisms ofP2 which are symplectic.

Proof. Follows from a simple calculation.

Lemma 5.2. Let ' W P2
Ü P

2 be a birational map of degree2 which has three
proper base-points. The following condition are equivalent:
(1) div('

�

(!0)) D div(!0).
(2) ' D �Q�, where� 2 (C�)2

ÌSym(X,Y,Z), � 2 (C�)2
ÌhCi and Q2 {I 2,P,P2,P3,P4}

or Q 2 {S
�

, T
�

} for some� 2 C�

n {�1}.

Proof. The second assertion clearly implies the first one, since Q 2 Symp is a
quadratic map with three proper base-points. It remains thus to prove the other direction.

Denote byL1, L2, L3 � P
2 the three lines of equationX D 0, Y D 0 and Z D 0.

Each of the three linesL i is a pole of!0 and its image by' is thus either a point or
a line. So for eachi , one or two of the base-points of' belong toL i .

Denote byk 2 {0, 1, 2, 3} the number of base-points of' which are vertices of
the triangleXY ZD 0. Replacing' by 'C or 'C2 if needed, thek vertices are thek
first points of the triple (p1, p2, p3). We will find Q 2 {I , P, P2, P3, P4, S

�

, T
�

} and
� 2 (C�)2

Ì Sym(X,Y,Z) such that' and Q� have the same base-points.
Before proving the existence ofQ, �, let us prove how it yields the result. The fact

that' and Q� have the same base-points implies that' D �Q� for some� 2 Aut(P2).
Since div(!0) D div('

�

(!0)) D div(Q
�

(!0)) D div(�
�

(!0)), we also have div(�
�

(!0)) D
div(!0), which means that� 2 (C�)2

Ì Sym(X,Y,Z) (Lemma 5.1).
We find now� and Q, by studying the possibilities fork.
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If k D 3, the base-points of' are p1, p2, p3 and it suffices to chooseQ D I 2 and
� D 1.

If k D 2, the base-points arep1, p2, u, where u 2 (L1 [ L2) n L3. We choose
� 2 (C�)2 which sendsu onto q1 or q2, and choose respectivelyQ D P or Q D P4.

If kD 1, the base-points arep1,u,v, whereu 2 L1n(L2[L3). If v 2 L2 we choose
� 2 (C�)2 which sendsu onto q1 and v onto q2, and choose thenQ D P2. If v 2 L3,
we choose� D � 0C�1 , where� 0 2 (C�)2, such that� sends respectivelyp1, u, v onto
p2, q2, q1, and chooseQ D P3. If v 2 L1, we choose� 2 (C�)2 which sendsu onto
q1 D (0 W �1 W 1); the pointv is sent onto (0W � W 1) for some� 2 C�

n {�1}. We can
thus chooseQ D T

�

.
If k D 0, the base-points areu, v,w, which belong respectively toL1, L2, L3. We

choose� 2 (C�)2 which sendsv onto q2 and w onto q3. The point u is sent onto
(0 W � W 1), for some� 2 C�

n {�1} (� is not �1 becauseu, v,w are not collinear). We
chooseQ D S

�

.

Now, using all above results, we can prove Theorem 1, which isa direct conse-
quence of the following proposition.

Proposition 5.3. The group Symp is generated by(C�)2, C and P.

Proof. Let f be an element ofSymp. If its degree is 1, it is an automorphism of
P

2, which is thus generated byC and P (Lemma 5.1).
Otherwise, we writef D �n Æ � � � Æ �1 using Proposition 4.2, and denote bym the

number of�i which have at least one base-point which is not a proper pointof P2.
We prove the result by induction on the pairs (m, n), ordered lexicographically, the
casemD n D 0 being induced by Lemma 5.1.

Suppose first that the three base-points of�1 are proper points ofP2. In this case,
we apply Lemma 5.2 and write�1D �Q�, where� 2 (C�)2

ÌSym(X,Y,Z), and Q, � are

generated by (C�)2, C and P. Replacing f with f (Q�)�1, we replace the pair (m, n)
with (m, n� 1).

Suppose now that at least one base-point of�1, say a, is not a proper point of
P

2. Denote byL1, L2, L3 � P
2 the three lines of equationX D 0, Y D 0 and Z D 0.

Each of the three linesL i is a pole of!0 and its image by�1 is thus either a point
or a line. This means that there is at least one base-point on each of the three lines
L1, L2, L3, and thus that the two other base-points of�1 are proper pointsb, c 2 P2,
and at least one of the two pointsb, c belongs toL i for i D 1, : : : , 3. We choose
some proper pointd of the triangle, not aligned with any two of the pointsa, b, c.
There exists a quadratic transformationQ of P2 with base-pointsb, c, d. The mapQ
sends!0 onto a normal cubic form by Proposition 3.4. Moreover, the image of any
of the lines L1, L2, L3 is a line or a point, soQ sends!0 onto a normal cubic form
corresponding to a triangle. ReplacingQ with its composition with an automorphism
of P2, we may assume that the triangle isXY ZD 0. Becausea is not aligned with any
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two of the pointsb, c, d, the linear system of conics passing througha, b, c is sent by
Q onto a system of conics with three proper base-points. In consequence,�1Q�1 is a
quadratic transformation with three proper base-points. Replacing�1 with (�1Q�1) Æ Q,
we replace (m, n) with (m� 1, nC 1).

6. The group H D hSL(2,Z), Pi

Let us now focus ourselves on the groupH of finite type generated by SL(2,Z)
and P, or simply by C, I , P (and in fact only byP and C since I D PC P). Recall
that C is the automorphism (X W Y W Z) 7! (Y W Z W X) of order 3 ofP2 and thatI and
P have respectively order 4 and 5.

Recall the following notation for the pointsp1, p2, p3, q1, q2, q3.

p1 D (1 W 0 W 0), p2 D (0 W 1 W 0), p3 D (0 W 0 W 1),

q1 D (0 W 1 W �1), q2 D (1 W 0 W �1), q3 D (1 W �1 W 0).

We moreover denote bypY
1 the point in the first neighbourhood ofp1 which corres-

ponds to the tangentY D 0, and do the same forpZ
1 , pYCZ

1 , pX
2 , pZ

2 , qX
1 and so on.

We now define twelve quadratic maps contained inH , whose three base-points
belong to the set{p1, pY

1 , pZ
1 , pYCZ

1 , q1, qX
1 } or to its orbit byC.

Q1 D I ,

�

1

y
, x

�

, (Z2
W XY W Y Z), p1, p2, pY

1 ,

Q2 D I 3,

�

y,
1

x

�

, (XY W Z2
W X Z), p1, p2, pX

2 ,

Q3 D I 2,

�

1

x
,

1

y

�

, (Y Z W X Z W XY), p1, p2, p3,

Q4 D P,

�

y,
yC 1

x

�

, (XY W (Y C Z)Z W X Z), p1, p2, q1,

Q5 D P�1,

�

x C 1

y
, x

�

, (Z(X C Z) W XY W Y Z), p1, p2, q2,

Q6 D P I 2,

�

1

y
, x

(yC 1)

y

�

, (Z2
W (Y C Z)X W Y Z), p1, p2, pYCZ

1 ,

Q7 D P�1I 2,

�

y
x C 1

x
,

1

x

�

, ((X C Z)Y W Z2
W X Z), p1, p2, pXCZ

2 ,

Q8 D I 2P,

�

1

y
,

x

yC 1

�

, (Z(Y C Z) W XY W Y(Y C Z)), p1, pY
1 , q1,

Q9 D I P ,

�

x

yC 1
, y

�

, (X Z W Y(Y C Z) W Z(YC Z)), p1, pZ
1 , q1,

Q10 D P2,

�

yC 1

x
,

x C yC 1

xy

�

, (Y(Y C Z) W Z(X C Y C Z) W XY), p1, q1, q2,
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Q11D P3C�1,

�

x C yC 1

xy
,

x C 1

y

�

, ((X C Y C Z)Y W Z(Y C Z) W X Z), p1, q1, q3,

Q12D P I P,

�

y,
yC 1)2

x

�

, (XY W (Y C Z)2
W X Z), p1, q1, qX

1 .

Any element ofH can be written as a word written with the lettersC, I , P. We
will say that a linear word is a word of typeCa with a 2 {0, 1, 2}. Similarly, we
will say that aquadratic word is a word of typeCaQi Cb, where 1� i � 12, a, b 2
{0, 1, 2}. Note that a linear word corresponds to a linear automorphism of P2 and that
a quadratic word corresponds to a quadratic birational transformation ofP2.

We would like to prove that the relations

RD {I 4
D C3

D [C, I 2] D P5
D 1, PC PD I }

(which can easily be verified) generate all the others inH D hI , C, Pi. To do this (in
Proposition 6.6), we need to prove some technical simple lemmas (Lemmas 6.1, 6.2
and 6.5) and one key proposition (Proposition 6.3).

Lemma 6.1. If Q is a quadratic word, then Q�1 and �Q��1 are quadratic words,
for any � 2 Sym(X,Y,Z) � Aut(P2) (permutation of the coordinates).

Proof. If � D C, then �Q��1 is a quadratic word by definition. We can thus
assume that� is the map (X W Y W Z) 7! (Y W X W Z) (or (x,y) 7! (y,x)), which conjugates
P, I , C to respectivelyP�1, I �1, C�1. If Q is a power of I or of P, it is clear that
Q�1
D �Q��1 is a quadratic word. It remains to study the case whenQ D Qi with

i 2 {6, 7, 8, 9, 12}.
First, we do the case of inverses. SincePC PD I , we have (Q6)�1

D I 2P�1
D

I PC D Q9C, and thus (Q9)�1
D C Q6. Moreover, (Q7)�1

D I 2P D Q8. Finally, using
I 4
D 1 and I D PC P, we have

(Q12)
�1
D P�1I �1P�1

D P�1(PC P)I (PC P)P�1
D C P I PCD C Q12C.

Now, the conjugation. We have�Q6�
�1
D Q7 and �Q8�

�1
D I 2P�1

D

I (PC P)P�1
D I PC D Q9C. This implies that�Q9�

�1
D Q8C. Finally, �Q12�

�1
D

(Q12)�1 is a quadratic word, as we just proved.

Lemma 6.2. The words

I a P�1, P�1I a, P�1I a P�1,

where a2 N, are equivalent, up to relations in R, to quadratic words.
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Proof. From the list, we see that any non-trivial power ofI or P is a quad-
ratic word. In particular, the casea D 0 is trivial. Using PC P D I , we find the
following table:

a I a P P I a P P I a P�1

1 I P D Q9 P I P D Q12 P I P�1
D P2C

2 I 2P D Q8 C�1P�1C�1 P I PCD Q12C
3 P�1C�1 P I�1P D C�1 P I�1P�1

D C�1P3

the result is now clear forI a P, P I a P and P I a P�1.
For any a, the word I a P�1 is equal to I a�1(PC P)P�1

D I a�1PC, and is thus
also a quadratic word. The wordsP�1I a being the inverses ofI �a P�1, these are also
quadratic words (Lemma 6.1). The same holds forP�1I a P�1

D (P I�a P)�1. It remains
to see thatP�1I a P is a quadratic word for eacha. Since I a

D PC P Ia P�1C�1P�1,
we find P�1I a P D C P Ia P�1C�1, which is quadratic word sinceP I a P�1 is one.

Proposition 6.3. Let f and g be two quadratic words in H. If the two quadratic
maps associated have two(respectively three) common base-points, then f g�1 is equal
to a quadratic(respectively linear) word, modulo the relations R.

Proof. The list of the twelve quadratic words above give the possible base-points
of f and g: the base-points ofQi and C Qi are the same, and the base-points ofQi C
are the image byC�1 of the base-points ofh.

A quick look at the list shows that iff and g have the same three base-points,
then f D Ci g, for some integeri . In particular, f g�1 is equal to a linear word. We
have thus only to study the case when exactly two of the three base-points of f and
g are common.

In the sequel, we will use the following observations:
(i) we can exchange the role off and g since f g�1 is a a quadratic word if and only
if its inverse g f �1 is (Lemma 6.1);
(ii) we can replacef and g with Ci f and C j g since this only multipliesf g�1 by
some power ofC;
(iii) we can replace bothf andg with their conjugates under any permutation of (X,Y, Z),
using Lemma 6.1.

Using (iii), we can “rotate” the two common points by acting with C, which acts
as p3 7! p2 7! p1, q3 7! q2 7! q1, pY

3 7! pX
2 7! pZ

1 and so on. The possibilities for the
two common base-points can thus be reduced to{p1, p2}, {q1, q2}, {q1, qX

1 } or {p1, u},
where u 2 {q1, q2, q3, pY

1 , pZ
1 , pYCZ

1 }. Conjugating by (X W Y W Z) 7! (X W Z W Y) if
needed,u may be chosen in{q1, q2, pY

1 , p1
YCZ} only.

We study each case separately.
(a) Case {p1, p2}—Using (ii) and reading the list, we can choose thatf, g 2
{P�1, P�1I 2, I �} (here the star means any power ofI ). If both f and g are pow-
ers of I , or both are powers ofP, so is the productf g�1, and we are done. Iff is
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a power of I and g is a power ofP, then f g�1 is equal toI i P�1 and the result fol-
lows from Lemma 6.2. IfgD P�1I 2 and f is a power ofI , then f g�1 is again equal
to I i P�1 for some integeri . If g D P�1I 2 and f D P�1, then f g�1

D P�1I 2P�1,
which is a quadratic word by Lemma 6.2.
(b) Case{q1, q2}—The only possibilities forf, g are P2 or P3, and f g�1

D P�1.
(c) Case{q1, qX

1 }—The only possibility is f D g D Q12D P I P, a contradiction.
(d) Case{p1, q1}—The third base-point can be respectivelyp2, p3, q2, q3, pY

1 , pZ
1 or

qX
1 , and this corresponds respectively toP, P4C�1

D I 3P, P2, P3C�1
D P�1I �1P,

I 2P, I P and P I P. In particular, f and g are equal tof 0P and g0P where f 0, g0 2
{P�1, P�1I , I ?}. Here, f g�1 (or its inverse) belongs to{P�, I �, P�1I �, P�1I P�1} and
we are done by Lemma 6.2.
(e) Case{p1, q2}—The only possibilities forf, g are P�1 or P2, and f g�1

D P�3.
(f) Case{p1, pY

1 }—Here f, g 2 {I , I 2P} and f g�1
D (I 2P I�1)�1, a quadratic word

by Lemma 6.2.
(g) Case {p1, pXCY

1 }—Here f, g 2 {P I 2, P�1I 2C�1
D P�1C�1I 2} and f g�1

D

(PC P)�1
D I �1.

Corollary 6.4. Let W1, W2 be two quadratic words. If W2W1 corresponds to a
birational map of degree1 (respectively2), then W2W1 is equal, modulo the relations
R, to a linear word (respectively to a quadratic word).

Proof. The map corresponding toW2W1 has degree 1 (respectively 2) if and only
if the maps corresponding toW2 and (W1)�1 have 3 (respectively 3) common base-
points. The result follows then from Proposition 6.3.

Lemma 6.5. Let a1, a2, a3 be three non-collinear distinct points, such that
(Q) for i D 1, 2, 3, ai is a base-point of a quadratic word;
(P) for i D 1, 2, 3, if ai is not a proper point of the plane, it is infinitely near to a
point aj , j ¤ i ;
(�) for any line L of the triangle XY ZD 0 in P

2, there exists an ai which belongs
to L.
Then, there exists a quadratic word Q having a1, a2, a3 as base-points.

Proof. Let us writer D #{a1, a2, a3} \ {p1, p2, p3} 2 {0, 1, 2, 3}.
If r � 2, we can assume thata1 D p1, a2 D p2 (up to renumbering and multiplying

by C or C2). The last pointa3 being not collinear toa1 anda2, and being a base-point
of a quadratic word, it belongs to{pY

1 , pX
2 , p3, q1, q2, pyCz

1 , pXCZ
2 }. We can choose

Q D Qi for i 2 {1, : : : , 7}.
If r D 1, we can assume thata1 D p1. Condition (�) implies thatq1 is equal to

a2 or a3. The possibilities for the remaining point are{pY
1 , pZ

1 , q2, q3, qX
1 }, and we can

chooseQ D Qi for i 2 {8, : : : , 12}.
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The caser D 0 is not possible. Otherwise we would have

{a1, a2, a3} � {q1, q2, q3, qX
1 , qY

2 , qZ
3 },

which is impossible sinceq1, q2, q3 are collinear.

Proposition 6.6. Let W be a word in I, P, C. If W corresponds to a birational
map of degree1 or 2, it is equal, up to relations R, to a linear or quadratic word. In
particular, if W corresponds to the identity ofBir(P2), it is equal to1 modulo R.

Proof. If W is a power of C, the result is obvious, so we can writeW D

Wk � � �W2W1 where eachWi is a quadratic word. Note that many such writings exist.
We call 30 the linear system of lines ofP2. For i D 1, : : : , k, we denote by3i the
linear system ofWi � � �W2W1(30) (identifying here the word with the corresponding
quadratic map ofP2), and by di its degree. Note thatdk 2 {1, 2} is the degree of
(the birational map corresponding to)W. We write D D max{di j i D 1, : : : , k} and
n D max{i j di D D}.

Suppose first thatD D 2. If k > 1, the mapW2W1 has degree 2 or 1 and we can
replace it with a single quadratic or linear word (Corollary6.4). Continuing in this
way, we show thatW is equivalent, moduloR, to a linear or a quadratic word.

We suppose now thatD > 2, which implies that 1< n < k. We order the pairs
(D, n) using lexicographical order, and proceed by induction. Proving that (D, n) can
be decreased, we will reduce to the caseD D 2 studied before.

If r D deg(WnC1Wn) 2 {1, 2}, we can replaceWnC1Wn with a single quadratic or
linear word (Corollary 6.4), and this decreases (D, n). We can thus assume thatr D
deg(WnC1Wn) 2 {3, 4}.

We are looking for a quadratic wordQ satisfying the following property:

2

6

4

deg(Q(3n)) < dn D deg(3n),

{deg(QWn), deg(WnC1Q�1)} D

�

{2, 2} if r D deg(WnC1Wn) D 3,
{2, 3} if r D deg(WnC1Wn) D 4.

(?)

We first show that such aQ gives us a way to decrease (D, n), before proving
that Q exists.

If r D 3, both QWn and WnC1Q�1 have degree 2 so are equivalent to, up to
relations in R, to quadratic words�1 and �2 (Corollary 6.4). ReplacingWnC1Wn D

(WnC1Q�1)(QWn) by �2�1, we decrease the pair (D, n). The replacement is described
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in the following commutative diagram.

3n
WnC1

KQ

K

3n�1

Wn
K

QWn

�1
K

3nC1

Q(3n)

WnC1Q�1

�2

K

deg(QWn) D deg(WnC1Q�1) D 2

If r D 4 and deg(QWn) D 2, QWn is equivalent to a quadratic word�0. More-
over, since deg(WnC1Q�1) D 3 and deg(Q(3n)) < D, we can use the caser D 3 de-
scribed before to writeWnC1Q�1 as a product of two quadratic words�2�1 satisfy-
ing deg(�1Q(3)) < D. The replacement ofWnC1Wn with �2�1�0, described below,
decreases the pair (D, n).

3n
WnC1

K

3n�1

Wn
K

QWn

�0
K

3nC1

Q(3n)

Q�1

K

WnC1Q�1
K

�1
K �1Q(3)

�2
K

deg(QWn) D 2, deg(WnC1Q�1) D 3

If r D 4 and deg(WnC1Q�1) D 2, WnC1Q�1 is equivalent to a quadratic word�0.
We again apply caser D 3 (since deg(Q(3n)) < D) to replaceQWn with a product of
two quadratic words�2�1 with deg(�1(3n�1)) < D. The replacement ofWnC1Wn with
�0�2�1, described below, decreases the pair (D, n).

3n
WnC1

KQ

K

3n�1

�1
K

Wn
K

QWn

K

3nC1

�1(3n�1)
�2

K Q(3n)

WnC1Q�1

�0

K

deg(QWn) D 3, deg(WnC1Q�1) D 2

It remains to prove the existence ofQ satisfying the property (?).
We haveD D dn D deg(3n). The system3nC1 DWnC1(3n) has degreednC1 < D,

and3n�1 D (Wn)�1
3n has degreedn�1 � D. Denote respectively bySD {s1, s2, s3}

and T D {t1, t2, t3} the base-points ofWnC1 and (Wn)�1. For any pointp, we will write
m(p) the multiplicity of 3n at p. The fact thatWnC1 is a quadratic map with base-
points s1, s2, s3 implies thatdnC1 D deg(WnC1(3n)) D 2D �

P3
iD1 m(si ). In particular

P3
iD1 m(si ) > D. Similarly, dn�1 D 2D �

P3
iD1 m(ti ) and

P3
iD1 m(ti ) � D.
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In order to find Q, we will find its three base-points. We are looking for three
distinct pointsa1, a2, a3 2 S[ T which satisfy the following conditions:

2

6

6

6

6

4

3
X

iD1

m(ai ) > D,

{{a1, a2, a3} \ S, {a1, a2, a3} \ T} D

�

{2, 2} if r D deg(WnC1Wn) D 3,
{1, 2} if r D deg(WnC1Wn) D 4.

(??)

�

for each lineL of the triangleXY ZD 0 oneai belongs toL.(�)

The condition
P3

iD1 m(ai ) > D implies that the three points are not collinear (because
3n has no fixed component). Replacing a pointai by a0i if ai is infinitely near toa0i
and if a0i � {a1, a2, a3}, and then applying condition (�), we get a quadratic wordQ
having a1, a2, a3 as its base-points (Lemma 6.5). Condition (??) implies then (?).

It remains to find three pointsa1, a2, a3 satisfying (??) and (�). This is now done
separately in the casesr D 3 andr D 4.

Suppose thatr D 3, which means thatS\ T D {u}, for some proper pointu of
the plane. We order the points ofS and T such thatSD {u, s1, s2}, T D {u, t1, t2},
with m(s1) � m(s2) and m(t1) � m(t2). We observe that at least one of the inequalities
m(u)Cm(t1)Cm(s2) > D, m(u)Cm(s1)Cm(t2) > D is satisfied. Indeed, otherwise the
sum would give

P3
iD1 m(si )C

P3
iD1 m(ti ) � 2D, which is impossible. We assume first

that m(u)Cm(s1)Cm(t2) > D, and write A1 D {u, s1, t1}, A2 D {u, s1, t2}. For i D 1, 2,
we have

P

p2Ai
m(p) � m(u) C m(s1) C m(t2) > D, and thus the three points ofAi

satisfy condition (??) and in particular are not collinear. We claim now that at least one
of the two setsA1, A2 satisfies condition (�). Suppose the converse for contradiction.
This means that fori D 1, 2, there exists a lineL i in the standard triangleXY ZD 0
such thatL i \ Ai D ;. Since T D {u, t1, t2} satisfies condition (�), we see thatt1 2
L2 n L1 and t2 2 L1 n L2, in particular L1 ¤ L2. Denoting byL3 the last line of the
triangle, we haveu, s1 2 L3 n (L1 [ L2). Since t1 and t2 are not collinear withu and
s1, both do not belong toL3. This implies thatT D {u, t1, t2} D {q1, q2, q3}, which is
impossible sinceq1, q2, q3 are collinear (they belong to the lineXCYC Z D 0). The
casem(u)Cm(t1)Cm(s2) > D is the same, by just exchangingS and T in the proof.

Suppose thatr D 4, which means thatS\ T D ;. We order the pointssi and
ti such thatm(s1) � m(s2) � m(s3) and m(t1) � m(t2) � m(t3). We observe that at
least one of the inequalitiesm(s1)Cm(t2)Cm(t3) > D, m(t1)Cm(s2)Cm(s3) > D is
satisfied. Indeed, otherwise the sum would give

P3
iD1 m(si )C

P3
iD1 m(ti ) � 2D, which

is impossible. We assume first thatm(s1)Cm(t2)Cm(t3)> D, and writeA1D {s1,t2,t3},
A2 D {s1, t1, t3}, A3 D {s1, t1, t2}. For i D 1, 2, 3, we have

P

p2Ai
m(p) � m(s1) C

m(t2) C m(t3) > D, and thus the three points ofAi satisfy condition (??). We claim
now that at least one of the three setsAi satisfies condition (�). Suppose the converse
for contradiction. This means that fori D 1, 2, 3, there exists a lineL i in the standard
triangle such thatL i \Ai D ;. SinceT\L i ¤ ;, we haveti 2 L i for eachi and ti � L j
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for i ¤ j . This implies that the three pointsti are contained in{q1, q2, q3, qX
1 , qY

2 , qZ
3 },

which is impossible becauseT D {t1, t2, t3} is the set of base-points of a quadratic
word (we can see this on the list of base-points of quadratic words, or simply observe
that q1, q2, q3 are collinear). The casem(t1)Cm(s2)Cm(s3) > D is the same, by just
exchangingS and T in the proof.
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