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Abstract. Given two irreducible curves of the plane which have isomorphic comple-
ments, it is natural to ask whether there exists an automorphism of the plane that sends one
curve on the other.

This question has a positive answer for a large family of curves and H. Yoshihara
conjectured that it is true in general. We exhibit counterexamples to this conjecture, over
any ground field. In some of the cases, the curves are isomorphic and in others not; this
provides counterexamples of two di¤erent kinds.

Finally, we use our construction to find the existence of surprising non-linear auto-
morphisms of a‰ne surfaces.

1. Introduction

In this article, K is any field, and all surfaces are algebraic a‰ne or projective sur-
faces, defined over K.

1.1. The conjecture. To any irreducible curve CHP2 ¼ P2
K we can associate its

complement, the a‰ne surface P2nC (such a‰ne surfaces have been a subject of research
for many years, see [2], [3], [9], [6], [7], [4], [5], . . .). If two such curves C, D are projectively
equivalent—i.e. if some automorphism of the projective plane P2 sends C on D—then
clearly P2nC is isomorphic to P2nD. It is natural to ask whether the converse is true. In
1984, Hisao Yoshihara made the following conjecture.

Conjecture 1.1 ([11]). Let CHP2
K be an irreducible curve and assume that K is alge-

braically closed of characteristic 0. Suppose that P2nC is isomorphic to P2nD for some curve

D. Then C and D are projectively equivalent.

In [11], it was proved that the conjecture is true for a large family of curves C. We
briefly recall these results in Section 2, and extend some of them to any field K. Then, we
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provide a family of counterexamples to the conjecture, over any field K, and prove the fol-
lowing result.

Theorem 1. For any field K with more than two elements, there exist two curves

C;DHP2
K, irreducible over the algebraic closure of K, such that the following two assertions

are true:

(1) The a‰ne surfaces P2nC and P2nD are isomorphic.

(2) No automorphism of P2 sends C on D.

Furthermore, there are examples where C and D are isomorphic and examples where they are

not.

Observe that Theorem 1 yields the existence of isomorphic a‰ne surfaces having
a projective completion in isomorphic projective surfaces by irreducible non-isomorphic
curves. Such examples were, as far as we are aware, not known before.

Recall that a curve C is of type I if there exists some point a A C such that Cna is
isomorphic to the a‰ne line. The problem stated above is related to another conjecture,
namely:

Conjecture 1.2 ([12], page 101). If CHP2
C is an irreducible curve, which is neither of

type I nor a nodal cubic curve, then any automorphism of P2nC extends to an automorphism

of P2.

The construction we provide to prove Theorem 1 will also provide counterexamples
to Conjecture 1.2, extending furthermore the possibilities for the base field.

Theorem 2. Assume that the characteristic of K is not 2. Then, there exists a curve

CHP2
K, irreducible over the algebraic closure of K, of degree 39, that is not of type I, and

there exists an automorphism of P2
KnC that does not extend to P2

K.

1.2. The construction. Here, we briefly describe our construction, which will be ex-
plained more precisely in Section 3. We denote by DHP2 the union of three general lines
and choose two quartics G1, G2 that intersect D in a particular manner. We construct a
birational morphism p : X ! P2 that is a sequence of blow-ups of points that belong, as
proper or infinitely near points, to DXG1 or DXG2. Then, we find a reducible curve
RH p�1ðDÞ such that for i ¼ 1; 2, the curve RWfGiGi is contractible via a birational mor-
phism hi : X ! P2 (where fGiGi is the strict transform of Gi on X ). The birational map
j ¼ h1 � h2

�1 restricts to an isomorphism from P2nh2ðfG1G1Þ to P2nh1ðfG2G2Þ.

P2

P2  ������p
X j

P2

ð1Þ

h1

h2

In our construction, the curves G1 and G2 depend on parameters. For general values
of these parameters, the curves h2ðfG1G1Þ and h1ðfG2G2Þ are not projectively equivalent, which
yields the proof of Theorem 1. For special values of the parameters, there exists some auto-
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morphism c of P2 that sends h2ðfG1G1Þ on h1ðfG2G2Þ. Thus, j � c�1 is an automorphism of
P2nh1ðfG2G2Þ that does not extend to an automorphism of P2, which proves Theorem 2.

1.3. Outline of this article. In Section 2, we prove that Conjectures 1.1 and 1.2 are
true for ‘‘most’’ kinds of curves. In Section 3, we describe precisely the construction an-
nounced in (1.2). Finally in Section 4 we prove that neither of the curves constructed is
of type I, and decide when the curves obtained are projectively equivalent or isomorphic,
which yields the proofs of Theorems 1 and 2.

1.4. Aknowledgements. The author presented the results of this article in Dijon and
Genève. He would like to express his sincere gratitude to the members of these institutes for
valuable questions which helped him to improve the exposition of this paper, with special
thanks to Adrien Dubouloz and Thierry Vust.

2. Cases in which the conjectures are true

In this section, we prove that the conjectures are true for most curves, and recall some
classical results. We will denote the algebraic closure of K by K.

Definition 2.1. We say that a birational morphism w : S ! P2 is an n-tower resolu-
tion of a curve CHP2 if

(1) the map w decomposes as w ¼ wm � wm�1 � � � � � w1, for some integer mf 0, where
wi is the blow-up of a point pi and wi�1ðpiÞ ¼ pi�1 for i ¼ 2; ::;m;

(2) the strict transform of the curve C on S is a curve that is smooth, irreducible over
K, isomorphic to P1, and of self-intersection n.

Note that if a curve admits an n-tower resolution, it admits an m-tower resolution for
any me n. Next, we remind the reader of a simple but useful lemma, obvious for the spe-
cialist.

Lemma 2.2. Let CHP2 be a curve irreducible over K, and let c : P2nC ! P2nD be

an isomorphism, where D is some curve of P2.

Then, either c extends to an automorphism of P2 (and in particular C and D are pro-

jectively equivalent), or there exist two birational morphisms w; e : S ! P2 satisfying the fol-

lowing conditions:

(1) w (respectively e) is a ð�1Þ-tower resolution of C (respectively of D).

(2) w is a minimal resolution of the indeterminacies of c and cw ¼ e.

Proof. In this proof, we consider our algebraic varieties over the field K, remember-
ing that these are defined over the subfield K. We extend c to a birational transformation
c of P2

K
, which is defined over the field K. Then, there exists a birational morphism

w : S
K
! P2

K
, also defined over K, that is a minimal resolution of the indeterminacies

of c. We denote the birational morphism c � w by e and denote by E (respectively F )
the set of irreducible curves of S

K
that are collapsed by w (respectively by e). Since c is an
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isomorphism of P2nC to P2nD, and under the assumption that c is not an automorphism
of P2

K
, the map c collapses exactly one irreducible curve of P2

K
, which is the extension of

C as CHP2
K

. This means that the set FnE consists of a single element, which is the
strict transform of C; since the sets E and F have the same number of curves, the set EnF
also consists of a single element. This element has to be the strict transforms on S

K
of the

extension D of the curve D.

The resolution of c by w and e being minimal, every irreducible curve of EXF has
self-intersectione�2; this implies that the strict transforms of C and D on S

K
are ð�1Þ-

curves, i.e. both are smooth, irreducible, isomorphic to P1 and of self-intersection �1.

The fact that only one irreducible curve collapsed by w (respectively by e) has self-
intersection �1 implies that w is a tower resolution of CHP2

K
(respectively of DHP2

K
).

Since the set of points blown-up by both morphisms is invariant under the action of
GalðK=KÞ, and since no two points belong to the same surface, each point is defined over
K. Consequently, reducing the ground field to K, we find birational morphisms w and e that
are ð�1Þ-tower resolutions of C and D respectively. r

Corollary 2.3. Conjectures 1.1 and 1.2 are true for any base field K and any curve

CHP2, irreducible over K, that does not admit a ð�1Þ-tower resolution.

In particular, both conjectures are true if C is not rational or if C has more than two

singular points over K. r

The conjectures are thus true for a large family of curves. Among curves admitting
a tower resolution, curves of type I or II are the most natural to deal with. We remind the
reader of some results on this subject.

Definition 2.4. A curve CHP2 is of type I (respectively of type II) if there exists a
point a A C (respectively a line LHP2) such that Cna (respectively CnL) is isomorphic to
the a‰ne line.

Any curve of type II is of type I and it is di‰cult (but possible) to find curves of type I
that are not of type II [10]. A curve is of type II if and only if it is the image of a line by an
automorphism of P2nL, where L is a line [1]. Furthermore, any curve of type II admits an
n-tower resolution, for some positive integer nf 3 [13]. The following result gives another
evidence to Conjecture 1.1:

Proposition 2.5 ([11]). Conjecture 1.1 is true, over any algebraically closed field of

characteristic 0, if C is of type II.

Finally, we recall that Conjecture 1.1 was proved in [11], Proposition 2.7, in the case
of a nodal cubic curve, and that the group AutðP2nCÞ for this curve was studied by Waka-
bayashi and Yoshihara, see [12] and [8].

3. The construction

In this section, we describe precisely the construction announced in the introduction.
First we describe the triangle D, its irreducible components and singular points. Take three

4 Blanc, Plane curve and its complement

Brought to you by | Université de Paris Mathematiques-Recherche
Authenticated

Download Date | 12/3/14 1:22 PM



general lines of P2, that form a triangle D, and choose the coordinates such that D has
equation xyz ¼ 0. We denote by a ¼ ð1 : 0 : 0Þ, b ¼ ð0 : 1 : 0Þ, c ¼ ð0 : 0 : 1Þ A P2 the sin-
gular points of D and by Lab (respectively Lac, Lbc) the line through a and b. In particular,
D ¼ LabWLac WLbc.

Then, we briefly describe the two curves G1 and G2, in simple words. In subsection
3.1, we will describe these curves using the points infinitely near to a and b. For any
y A K�, we write pðyÞ ¼ ðy : 0 : 1Þ A Lacnfa; cg and denote by Wy the set of irreducible
quartic curves of P2 that have multiplicity 3 at pðyÞ, that pass through a being tangent to
Lab and intersect Lbc only at the point b.

Let a; b A K�, a3 b, then G1 is one curve of Wa and G2 is the curve of Wb whose in-
tersection with G1 at the point b is as large as possible.

3.1. The points in the neighbourhoods of a and b. We now describe the intersection
between the curves G1, G2 and D, and construct the birational morphism p : X ! P2 an-
nounced in Section 1.2.

We construct p by a sequence of blow-ups of points that lie on the curves G1, G2, D.
Taking some point x in a surface S, the blow-up px : S

0 ! S gives a smooth surface S 0. We
denote by ExHS 0 the exceptional curve of x, which is equal to ðpxÞ�1ðxÞ. Then, px is an
isomorphism of S 0nEx to Snx. It is therefore natural, for any point y A Snx and any curve
CHSnx, to denote once again the point p�1

x ðyÞ by y and the curve p�1
x ðCÞ by C. For any

curve CHS passing through x, the strict transform of C on S 0 will be denoted by ~CC. After

two (or more) blow-ups, we write ~CC ¼ ~~CC~CC to simplify the notation.

Our aim is to obtain the configuration of curves of Figure 2 on X . For this, we will
blow-up the points pðaÞ, pðbÞ, and points in the neighbourhoods of a and b.

Denote by a1 the point in the first neighbourhood of a that belongs to the (strict trans-
form of the) line Lab, and by b1 the point in the first neighbourhood of b that belongs to the
line Lbc. For i ¼ 2; 3, we call bi the point in the first neighbourhood of bi�1 (and thus in the
i-th neighbourhood of b) that belongs to the line Lbc. We denote by p 0 : X 0 ! P2 the blow-
up of the points a, a1, b, b1, b2, b3, pðaÞ and pðbÞ. The configuration of the curves on X 0

and the decomposition of p 0 are described in Figure 1.

Lac
½4�

Lbc
½4�

Lab

½4�

fLacLac

Ea
½1�

EpðaÞ
½3=0� EpðbÞ

½0=3�
fLbcLbc

½3�fLabLab ½2�

Eb½1�

fLacLacfEaEa

Ea1
½1�

EpðaÞ
½3=0� EpðbÞ

½0=3�

fLbcLbc

fLabLab ½1� Eb3
½1�fEbEb fEb1

Eb1

fEb2
Eb2

Figure 1. The configuration of the special curves on the surface X 0. Two curves are connected by an edge if their

intersection is positive (and here equal to 1). The positive intersections with fG1G1 and fG2G2 are in square brackets.
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On the surface X 0, (the strict pull-back of) any curve of Wa has self-intersection 1, and
its intersection with EpðaÞ, Ea1

, Eb3
and fLabLab is respectively 3, 1, 1 and 1; furthermore no

other curve of Figure 1 intersects any curve of Wa. The situation for the curves of Wb is sim-
ilar, after exchanging the roles of EpðaÞ and EpðbÞ.

Since Eb3
GP1, the points of Eb3

that do not lie on fLbcLbc or fEb2
Eb2

are parametrised by K�.
Explicitly, the morphism p 0 : X 0 ! P2 is given locally by ðx; yÞ 7! ðxy4 : 1 : yÞ, and in
these coordinates, we define for any y A K� the point qðyÞ A Eb3

HX 0 that corresponds to
ðy; 0Þ. Any curve of Wa (respectively of Wb) passes through qðyÞ, for some y A K�.

We assume that both G1 and G2 pass through the same point qðlÞ A X 0, which is con-
sistent with the fact that G1 and G2 have their maximum intersection at b. Blowing-up qðlÞ,
the exceptional curve EqðlÞ intersects fEb3

Eb3
in one point, through which no curve of Wa or Wb

passes. The remaining points of EqðlÞ are parametrised by K. Using the same coordinates as
above, the blow-up of qðlÞ ¼ ðl; 0Þ may be viewed as ðx; yÞ 7! ðxyþ l; yÞ, and the para-
metrisation associates to m A K the point rðl; mÞ, equal to ðm; 0Þ.

Lemma 3.1. For any pair ðl; mÞ A K� �K, there exists a unique curve in Wa, that

passes through qðlÞ and rðl; mÞ. The same is true for Wb. The equations of the two curves are

l2zðaz� xÞ3 þ a2xy2
�
mðaz� xÞ � aly

�
;

l2zðbz� xÞ3 þ b2xy2
�
mðbz� xÞ � bly

�
:

ð2Þ

Proof. This follows from a straightforward calculation, using the description of the
blow-up in coordinates given above. r

From now on, we fix ðl; mÞ A K� �K, and denote by G1 HWa and G2 A Wb the two
curves yielded by Lemma 3.1. Blowing-up the point qðlÞ on X 0 and then the point rðl; mÞ,
we obtain the birational morphism p : X ! P2 announced in the introduction. The situa-
tion on the blow-up of X 0 at qðlÞ and on the surface X is described in Figure 2.

On the surface X , let R be the reducible curve which is the union of the 9 curves of
self-intersectione�2 of Figure 2 (the curves in grey).

fLacLacfEaEa

Ea1

½1�
EpðaÞ
½3=0� EpðbÞ½0=3�

fLbcLbc

fLabLab ½1� EqðlÞ
½1�

Eb3

fEbEb eEEb1

fEb2
Eb2

fLacLacfEaEa

Ea1

½1�
EpðaÞ
½3=0� EpðbÞ½0=3�

fLbcLbc

fLabLab ½1�
E
½1�
rðl; mÞ gEqðlÞEqðlÞ

Eb3

fEbEb fEb1
Eb1

fEb2
Eb2

Figure 2. The situation on the surface X . Two curves are connected by an edge if their intersection is positive

(and here equal to 1). The positive intersections with fG1G1 and fG2G2 are in square brackets.
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Proposition 3.2. Fix some i A f1; 2g. There exists a birational morphism hi : X ! P2

that collapses the curves RWfGiGi; it starts by collapsing fGiGi and then collapses the images of

respectively fLabLab, fEbEb, fEb1
Eb1

, fEb2
Eb2

, fEb3
Eb3

, gEqðlÞEqðlÞ, fLbcLbc, fLacLac, fEaEa.

Then, hiðgG3�iG3�iÞ is a curve of P2 of degree 39, irreducible over the algebraic closure of K,
which has exactly one singular point. The morphism hi is a minimal resolution of this curve,
and is a ð�1Þ-tower resolution of it (see Definition 2.1).

Proof. The curvefGiGi is a ð�1Þ-curve (a smooth rational curve of self-intersection �1,
irreducible over the algebraic closure of K). We may therefore collapse it and obtain a bira-
tional morphism X ! Y where Y is smooth and projective. On Y , the image of fLabLab is a

ð�1Þ-curve so we may collapse it. Continuing with the images of fEbEb; fEb1
Eb1

; . . . ;fEaEa we obtain
a birational morphism hi : X ! Z for some smooth rational projective surface Z (see Fig-
ure 3).

Since X was obtained by blowing-up 10 points from P2 and hi collapses 10 irreduc-
ible curves, we have ðKZÞ2 ¼ ðKP2Þ2 ¼ 9, so ZGP2.

Write j ¼ 3� i. Since fGjGj is not collapsed by hi, the image hiðfGjGjÞ is a curve. Its irre-
ducibility follows from that of fGjGj. Its degree can be calculated by computing its self-
intersection after each of the 10 blow-downs. Since RWfGiGi is connected, its image by hi is
a single point. The curvefGjGj is smooth and intersectsfGiGi in more than one point, hence hi is a

minimal resolution of hiðfGjGjÞ and this curve has a unique singular point. Furthermore hi is a
tower resolution, as it collapses only one curve of self-intersection �1. r

4. Comparison of the curves h1(
fG2G2) and h2(

fG1G1)

Proposition 3.2 shows that for any choice of a; b; l A K�, a3 b, m A K, the comple-

ments of the two curves h1ðfG2G2Þ and h2ðfG1G1Þ are isomorphic. In this section, we distinguish
the di¤erences between the two curves.

fLabLab

fGiGi

fEbEb

fLabLab

fEbEb fEb1
Eb1

fEb1
Eb1

fEb2
Eb2

fEb3
Eb3

gEqðlÞEqðlÞ fEb3
Eb3

fEb2
Eb2

fLbcLbc

gEqðlÞEqðlÞ fEb3
Eb3

fLacLac fLbcLbc

gEqðlÞEqðlÞ

fEaEa

fLacLac fLbcLbc

fEaEa

fLacLac fEaEa

Figure 3. The decomposition of the birational morphism X ! Z and the image of RWfGiGi on each surface.
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Proposition 4.1. The following are equivalent:

(1) There exists an automorphism c of P2 that sends h1ðfG2G2Þ on h2ðfG1G1Þ.

(2) There exists an automorphism c 0 of X that leaves invariant every irreducible com-

ponent of R and exchanges fG1G1 and fG2G2.

(3) There exists an automorphism c 00 of P2 that fixes a, b and c and permutes G1 and

G2.

(4) m ¼ 0 and aþ b ¼ 0.

Proof. Let us keep Diagram 1 in mind. The fact that h1 (respectively h2) is a mini-
mal resolution of h1ðfG2G2Þ (respectively of h2ðfG1G1Þ) and the assumptions made on the auto-
morphisms above imply that c 0 may be constructed starting from c, as c 0 ¼ h�1

1 ch2. Sim-
ilarly, the existence of c 0 implies that of c and c 00, constructed as c ¼ h1c

0h�1
2 and

c 00 ¼ pc 0p�1. Finally, if c 00 exists, then c 0 ¼ p�1c 00p exists.

P2

P2  �������p
X

P2

c 00 c 0 h1

h2

j c

It remains to prove that assertions (3) and (4) are equivalent. If c 00 exists, then it is of the
form ðx : y : zÞ 7! ðx : xy : yzÞ, for some x; y A K�. Since c 00 exchanges the curves G1 and
G2, it exchanges the points pðaÞ ¼ ða : 0 : 1Þ and pðbÞ ¼ ðb : 0 : 1Þ, which implies that
aþ b ¼ 0 and y ¼ �1. Using the explicit equations of G1 and G2, we find directly that
m ¼ 0. Conversely, if m ¼ 0 and aþ b ¼ 0 the automorphism ðx : y : zÞ 7! ðx : y : �zÞ ex-
changes G1 and G2. r

Propositions 3.2 and 4.1 yield counterexamples to Conjecture 1.1, for any field K that
has more than two elements. Now, we study more intrinsically the curves h1ðfG2G2Þ, h2ðfG1G1Þ,
without taking into account the plane embedding.

Proposition 4.2. Neither h1ðfG2G2Þ nor h2ðfG1G1Þ is a curve of type I.

If m ¼ 0, the curves h1ðfG2G2Þ and h2ðfG1G1Þ are isomorphic.

For any field K with more than two elements there exist values of a, b, m for which the

curves h1ðfG2G2Þ and h2ðfG1G1Þ are not isomorphic.

Proof. Denote by p1 (respectively p2) the morphism fG1G1 ! h2ðfG1G1Þ (respectivelyfG2G2 ! h1ðfG2G2Þ) obtained by restriction of h2 (respectively h1). The singular curves h1ðfG2G2Þ and
h2ðfG1G1Þ are isomorphic if and only if there is an isomorphism r : fG1G1 ! fG2G2 that is compatible
with p1 and p2. Furthermore the singular curves are of type I if and only if the morphisms
pi are injective.

The ramified form of the morphism p1 consists of the point fLabLab XfG1G1 and the form

of degree 8 on fG1G1 GP1 obtained by intersecting fG1G1 with fG2G2. Taking some coordinates
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ðu : vÞ on fG1G1 GP1, the morphism fG1G1 ! G1 HP2 obtained by restriction of p is the follow-
ing:

ðu : vÞ 7!
�
v4l5a : ðuþ mvÞ

�
aðuþ mvÞ2u� l4v3

�
: vðuþ mvÞ2lua

�
:

The point ð1 : 0Þ is sent on b, the point ðm : �1Þ is sent on a and the point ð0 : 1Þ corre-

sponds to fG1G1 X fLabLab. Replacing the parametrisation in the equation of G1 we find 0, and re-
placing it in the equation of G2, we find

�l10aða� bÞðuþ mvÞ2v7

�P7

i¼0

ci � uiv7�i
�
;

where c0; . . . ; c7 are as follows:

c0 ¼ 3a2b2; c4 ¼ �abmð8l4b � 7abm3 þ 6l4aÞ;

c1 ¼ 13a2b2m; c5 ¼ �abm2ð3l4a� abm3 þ 7l4bÞ;

c2 ¼ 22a2b2m2; c6 ¼ l4
�
l4ðab þ a2 þ b2Þ � 2ab2m3

�
;

c3 ¼ �3ab
�
l4ðaþ bÞ � 6abm3Þ

�
; c7 ¼ l8b2m:

The intersection number of G1 and G2 is 16; the intersections at a and a1 correspond to
the factor ðuþ mvÞ2 and the intersections at b, b1, b2, b3, qðlÞ, rðl; mÞ correspond to v6.

Thus, the form of degree 8 on fG1G1 corresponding to the intersection of fG1G1 and fG2G2 is

F1 ¼ v
P7

i¼0

ci � uiv7�i. Since F1 vanishes at the point ð1 : 0Þ and ð0 : 1Þ corresponds to

fG1G1 X fLabLab, the map p1 is not injective and h2ðfG1G1Þ is not of type I.

For p2 : fG2G2 ! h1ðfG2G2Þ, the situation is similar. We find a form F2, that is equal to F1,
after exchanging a and b. As above, we see that h1ðfG2G2Þ is not of type I. Finally, the two
singular curves are isomorphic if and only if there exists an isomorphism of P1 that fixes
ð0 : 1Þ and sends F1 on F2 (we say in this case that F1 and F2 are equivalent). If m ¼ 0, the
identity suits, since each ci becomes symmetric with respect to a and b. If m3 0, this is not
the case. If charðKÞ3 2, choosing a ¼ 1, b ¼ 2, l ¼ m ¼ 1, we can compute that F1 and F2

are not equivalent. If charðKÞ ¼ 2, there is considerable simplification of the terms, and we
find that if l ¼ m ¼ 1, a3 b, then F1 and F2 are not equivalent. r

The proof of Theorems 1 and 2 now follows directly from Propositions 3.2, 4.1 and
4.2.
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