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DEGENERATION OF DYNAMICAL DEGREES IN
FAMILIES OF MAPS

JOSEPH H. SILVERMAN AND GREGORY CALL

ABSTRACT. The dynamical degree of a dominant rational map f :
PN ——s PV is the quantity §(f) := lim(deg f*)/". We study the
variation of dynamical degrees in 1-parameter families of maps fr.
We make three conjectures concerning, respectively, the set of ¢

such that: (1) 6(fe) < 6(fr) — €& (2) 0(f) < 0(fr); (3) (/1) <
0(fr) and 6(g:) < d(gr) for “independent” families of maps. We
give a sufficient condition for our first conjecture to hold, prove
that the condition is true for monomial maps, and provide evidence
for our second and third conjectures by proving them for certain
non-trivial families.

1. INTRODUCTION

Let f : PV ——s PV be a dominant rational map. A fundamental
invariant attached to f is its (first) dynamical degree, which is the
quantity

1/n
5() = lim (deg()""
(Using the fact that deg(f™"™) < deg(f™)deg(f™), the existence of
the limit is an easy convexity argument; cf. |2, Proposition 9.6.4].) We
recall that f is said to be algebraically stable if 0(f) = deg(f), which
in turn is equivalent to deg(f™) = o(f)" = (deg f)" for all n > 1.

In this paper we study the variation of dynamical degrees as f
moves in a family. We consider a smooth irreducible quasi-projective
curve T'/C and a family

fr:PY ——s P}

of dominant rational maps, i.e., for every t € T'(C), the specialization f;
is a dominant rational map. We start with three conjectures, followed
by some brief remarks, and then we provide some evidence for our
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conjectures by proving that they are true for certain specific non-trivial
families of maps.

Conjecture 1. For all € > 0, the set

[t T(C): 3(f) < b(fr) -}
18 finite.

Conjecture 2. If T and fr are defined over Q, then the exceptional
set

E(fr) = {t € T(Q):(f:) <d(fr)}
15 a set of bounded height.

Conjecture 3. Let gp : PN --s PY be another family of dominant
rational maps, and let E(fr) and E(gr) be exceptional sets as defined
in Congecture 2l Then]

E(fr)NE(gr) is infinite = E(fr) A E(gr) is finite.

Conjecture (1] is inspired by Xie [7, Theorem 4.1], a special case
of which implies that Conjecture [1] is true for families of birational
maps of P2 E| Our primary goal in this paper is to provide justification
for Conjectures [2| and [3| by analyzing in depth an interesting three-
parameter family of rational maps and showing that the conjectures
are true for one-parameter subfamilies. The maps fop. : P? --» P?
that we study are defined by

fape (X, Y, Z]) = [XY, XY +aZ®,bY Z + cZ?). (1)

For abc # 0, we first show that §(f,.) < 2 if and only if there is a root
of unity & with the property that ¢ = (£ + £ 1)%ab; cf. Theorem .
Taking a, b, ¢ to be polynomials in one variable, we use this criterion to
prove Conjectures|2|and [3|for 1-parameter subfamilies of the family .

Theorem 4. Let fop.: P? --> P? be the map (1.
(a) (Corollary [L1): Let a(T),b(T),c(T) € Q[T] be non-zero polynomi-
als satisfying 6( facryp(r),cer)) = 2. Then the exceptional set
E(famypmyemy) = {t € Q: 0(faw b)) < 2}
is a set of bounded height.
'We recall that the symmetric set difference of two sets A and B is the set
AN B:=(AUB)~ (AN B), or alternatively AA B:= (AN~ B)U (B \ A).
%In a private communication, Xie has indicated that the methods used in [6]

should suffice to prove Conjecture [I] more generally for rational maps that are
extensions to P? of dominant polynomial endomorphisms A2 — A2,
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(b) (Theorem [13): Let a1 (T),b1(T), e1(T), az(T), ba(T), co(T) € Q[T]

be non-zero polynomials such that

S far b @)en()) =2 and  6(fao(1)pa(1),0a(T)) = 2-
Then
< (far () pr(1),e1(1)) N E(fan(1),02(1), CQ(T))> 00
= #( (fa1 (T),b1(T) ) A g(faz C2(T))) < 0.

Remark 5. We observe that Conjectures|l|and [3|appear to be geomet-
ric, since they are stated over C, while Conjecture [2 is clearly arith-
metic in nature. This dichotomy is, however, somewhat misleading,
since proofs of unlikely intersection statements such as Conjecture
invariably require a considerable amount of arithmetic. On the other
hand, Conjecture [l may well admit a geometric proof.

Remark 6. We note that Conjecture [3| should be only half the story.
The other half would be a statement saying that if £(fr) N E(gr) is
infinite, then fr and gr are “geometrically dependent.” We do not
currently know how to formulate this precisely.

Remark 7. The conjectures, examples, and results in this paper were
inspired by work of Xie [7]. In particular, he proves a beautiful theorem
on the reduction modulo p of a birational map f : Pg --» P3. In
the context of “degeneration of dynamical degree in families,” Xie’s
map f should be viewed as a family of maps over T" = Spec Z, and the
reduction fp : IP’]%p -— P]%p of f modulo p is the specialization of f to
the fiber over p. Xie [7] proves that

lim 6(f,) = (/).

One might suspect that in fact §(f,) = 6(f) for all sufficiently large
primes p, but Xie gives an intriguing example [7, Section 5] of a bira-
tional map

[Py — P, f(X\Y,Z]) =[XY,XY —22°YZ + 327

having the property that there is a strict inequality §(f,) < d(f) for all
primes p.

A fundamental inequality from [7] that Xie uses to study dynamical
degrees in families says that there is an absolute constant v > 0 such
that

~deg(f?)

for all birational maps f : P? --» P2,
deg(f)

6(f) =~
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The crucial point here is that v is independent of f, so for example,
one can replace f by f™ without changing v. We ask whether such
estimates hold more generally.

Conjecture 8. Let N > 1. There exists a constant vy > 0 such that
for all dominant rational maps f : PN ——s PN we have

deg(f**)
o(f) > - omin —————=.
(f) 2w 0<k<N deg(f¥)

It is possible that Conjecture [§ is too optimistic, and we should
instead take a minimum over 0 < k < k() for some upper index that
grows more rapidly with N, but we will at least prove that Conjecture
is true as stated for monomial maps. More precisely, we prove that if

f PN ——5 PV is a dominant monomial map, then Conjecture |S| holds
with vy = (2/Y — 1)/2N?; see Section .

Question 9. Conjecture [2| says that the set £(fr) is a set of bounded
height. In view of the many dynamical Galois equidistribution theo-
rems proven in recent years, it is natural to ask if £(fr) likewise admits
such a description. Thus for each t € E(fr), let t1,...,t, be the dis-
tinct Gal(Q/Q) conjugates of ¢, and define a measure
1 T
= — oint mass at t;).

=~ ; (p )
Then is it true that lim y; converge (weakly) to a meaure on PV (C)
supported on £(fr) as t ranges over points in E(fr) with h(t) — oo?

We briefly summarize the contents of this article:

We study the geometry and algebraic stability of the family of
maps fqp. defined by , and we prove Conjecture [2| for these
families when a, b, ¢ are polynomials of one variable.

We prove Conjecture 3| for a pair of families of maps fo, 5,
and fo, b,.c,, Where the a;,b;, ¢; are again polynomials of one vari-
able.

We sketch a proof (essentially due to Xie) that Conjecture [§f im-
plies Conjecture [I, more generally over higher dimensional base
varieties; see Theorem [I7]

We prove Conjecture [§ for monomial maps.

Acknowledgements. The authors would like to thank Serge Cantat for
providing an example showing that our original version of Conjecture
was too optimistic and that our original proof of Conjecture [8|for mono-
mial maps was incorrect.
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2. A BOUNDED HEIGHT EXAMPLE

In this section we study a family of rational maps inspired by Xie’s
map [7, Section 5] described in Remark . We set the following nota-
tion.

Definition. Let R be an integral domain with field of fractions . For
each triple a,b,c € R, let fop.: P% — P% be the rational map

fape (X, Y, Z]) = [XY, XY +aZ® bY Z + cZ?).
We also define the set of exceptional triples to be

¢+ (¢ +1)%ab = 0 for some }

Z(K) = {(a,b, c) € A%(K) : root of unity ¢ € K

(We note that replacing ¢ by (2, we could alternatively define Z(K) to
be the set of triples satisfying ¢ = (¢ + ¢(71)%ab.)
Theorem 10. Let (a,b,c) € A*(K) with abc # 0. Then

fabe is algebraically stable <= (a,b,c) ¢ Z(K).

Corollary 11. Let a(T),b(T),c(T) € Q[T] be non-zero polynomials
such that for)pr).cr) @5 algebraically stable. Then

{t cQ: Ja@)p(t),c(r) 18 not algebraically stable}
s a set of bounded height.

The key to proving Theorem [10|is an analysis of the geometry of the
map fop.e.

Proposition 12. Let a,b,c € KC with abc # 0.

(a) The map fope is birational, and its indeterminacy locus is the set

I(fape) = {[0,1,0],[1,0,0]}.
(b) The critical locus of f is the set
Crit(f) ={Y =0} U {Z = 0}.
(c) Let [a, B,7] € P2(K). Then the set f;b{c([a,ﬁ,fy]) consists of a
single point except in the following situations:
Fane((0,a,¢) = {¥ =0}~ {[1,0,0]},
Fape([1,1,0]) = {Z = 0} ~ {[0,1,0],[1,0,0]},
Jape([1,1,91) =0 if v #0.
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Proof. To ease notation, we let f = fy 5.
(a) Let
9(X,Y, Z) = (ab’X (Y = X), (cX —cY +aZ)? b(cX —cY +aZ)(Y — X)).
Then an easy calculation in affine coordinates gives

g0 F(X,Y.Z) = WY 22 - (X,Y, Z),
which shows that f is birational with f~! induced by g; cf. [7, Sec-
tion 5]E| The indeterminacy locus of f is the set where

XY =XY +aZ?=bYZ+cZ*=0.

We note that XY = 0 forces aZ? = 0, and hence Z = 0 under
our assumption that a # 0. This gives two possible points in I(f),
namely [0, 1,0] and [1,0, 0], and it is clear that these points are in I(f).
(b) The critical locus Crit(f) of f is the set where

Y X 0
det |[Y X 2a7 = —2abY Z? = 0.
0 bZ bY 4 2c2?

(c) Tt is a standard fact that if ' C P? is a curve with the property
that f(I") is a point, then necessarily I' C Crit(f); see for example [4]
Lemma 23(c)]. We compute

(v =0} 5 00,a,d and {Z=0} 5 [1,1,0] € Fix(fape).
An easy calculation shows that
fH([0,a,d) c{y =0} and f7([1,1,0]) C {Z =0},

so the inverse images are the indicated sets with I(f) removed.

It remains to determine for which points P the inverse image f~!(P)
is empty. Since we do not actually need this result in the sequel, we
leave the elementary, albeit slightly more involved, calculation to the
interested reader. U

Proof of Theorem [10]. To ease notation, we let f = fop.. The map f
is not algebracally stable if and only if there is a curve I' C P? and an
N > 1 such that fN(T) C I(f).

In particular, if f is not algebracally stable, then there is some
0 < n < N —1 such that dim f*(I') = 1 and dim f"*(T") = 0.
Proposition tells us that the only curves that f collapses are the
curves Y = 0 and Z = 0. Further,

f({Z =0}) =11,1,0] € Fix(f),

3As in [7], we can decompose f = fy o fi with biratonal maps f; = [XY, XY +
b Z, 7% and fo = [X, X +aZ,~X +Y +cZ].
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so if f7(I') = {Z = 0}, then for all k > 1 we have f"**(") =[1,1,0] ¢
I(f). So we have shown that f is not algebraically stable if and only
if there is a curve I' and integers N > n > 0 such that

() ={y =0} and f¥(I)=[0,1,0]. (2)
(We can’t have fV(T') equal to the other point [1,0,0] in I(f), since
f{Y =0}) =[0,a,c and f({X = 0}) = {X = 0}, so once we get to a

point with X = 0, applying f never gets back to a point with X # 0.)
We observe that is true if and only if

[0,1,0] = fY(I) = (f¥" "o fo f")(T)
= ("o fH({Y =0})
= Y710, a, d]).
So we have proven that f is not algebraically stable if and only if there
is an n > 0 such that the Z-coordinate of f"([0,a, c]) vanishes. We also

note that f([(), 0, 1]) = [0, a, c|, so we may as well start at [0,0, 1]. This
prompts us to define polynomials U, V,, € Z[a, b, c| by the formula

Then we have shown that
fape is not algebraically stable <= V,,(a,b,¢) = 0 for some n > 1.

We now observe that (V},),>0 is a linear recurrence, at least until
reaching a term that vanishes. Indeed, we have

[07 Un+1> Vn—H] = f([07 Una Vn]) = [0: aVnQa bUnVn + CVnQ]
=1[0,aV,,,bU, + cV,].

Un+1 . 0 a Un

Vn+1 o b ¢ Vn ’
and repeated application together with the initial value (U, Vo) = (0, 1)
gives the matrix formula

U\ (0 a\" (0
Vi, \b ¢ 1)
Letting A and A be the eigenvalues of (9 %), i.e., the roots of
T? — T —ab=0,

Thus

an elementary linear algebra calculation yields
)\nJrl . 5\n+1

V, = a
A=A
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(Unless ¢® + 4ab = 0, which we will deal with later.) So f is not
algebraically stable if and only if there is some n > 1 such that A\™ = \".
Writing A and X explicitly, we find that f is not algebraically stable if
and only if (a, b, ¢) satisfies

¢+ Ve +4ab = Q(c -V + 4ab) for some root of unity ¢ € Q.
A little algebra yields
¢+ (C+1)%ab =0,

which is the desired result. -
It remains to deal with the case that ¢ +4ab = 0, i.e., A = \. But
then an easy calculation shows that

Vo= (n+1)(c/2)",
so V,, never vanishes under our assumption that abc # 0. U

Proof of Corollary[11]. According to Theorem , the map fa(e) b(t).c(t
is not algebraically stable if and only if there is a root of unity ¢ € Q
with the property that

Ce(t)? + (¢ + 1)%a(t)b(t) = 0.
As ( varies over roots of unity, the polynomials
Ce(T)? + (C+ 1)*a(T)H(T) € Q[T (3)

have bounded degree (depending on a,b,c) and have coefficients of
bounded height. But the heights of the roots of a polynomial are easily
bounded in terms of the degree and the heights of the coefficients; see
for example [5, Theorem VIIL.5.9]. Hence the roots of the polynomi-
als have height bounded independently of (. U

3. AN UNLIKELY INTERSECTION EXAMPLE

Our goal in this section is to prove a non-trivial case of Conjecture
for the intersection of the exceptional sets of two maps.

Definition. Let R be an integral domain with field of fractions K, and
for non-zero a,b,c € R, let fup.: P4 — P% denote the map

fape((X.Y, Z]) = [XY, XY +aZ? bY Z + cZ7]

that we already studied in Section 2 We define the exceptional set
of fap.c to be the set of prime ideals

E(fape) = {p € Spec(R) : 6(fape mod p) < 8(fupe)}-
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Theorem 13. Let ay, by, ci,ay, by, co € Q[T be non-zero polynomials.
Fori=1,2, let

farwie: (X, Y, Z]) = [XY, XY + ;2% b,Y Z + ¢;27]
be the associated families of rational maps, and assume that they are
algebraically stable as maps over the function field Q(T'). Then

(8 ime) NEfurines)) =

= #(Eame) D E(fue)) < o0

Proof. We recall that Theorem [10] says that if a, b, c € R are non-zero
and if f, ;. is algebraically stable, i.e., 6(fopc) = 2, then

- (P +(C+1)’ab=0 (mod pR[(])
E(fape) = {p € Spec(R) : for some root of unity ¢ € K } '
(4)

We apply this with R = Q[T].
To ease notation, we let

Fl - fal,bl,q a‘nd F2 - fag,bz,cg‘
Then the assumption that #(£(Fy) N E(F3)) = oo and () imply that
there are infinitely many triples ({1, (o, t) € Q® with ¢; and (; roots of
unity such that we have simultaneously

Giea(H)? + (G 4+ 1)%an )by (t) = 0,

Caca(t)? + (G2 + 1)%aa(t)ba(t) = 0.
To further ease notation, for ¢ = 1,2 we define polynomials

By(U,T) :=Uc,(T)* + (U + 1)%a;(T)b:(T) € Q[U, T,
and then we know that there are infinitely many pairs of roots of
unity ({1, () such that the polynomials
Bl(ChT) and BQ(CQ,T)

have a common root in Q. Equivalently, the resultant of Bi((y,T)
and By ((2,T) vanishes. Thus if we define

G(Uy,Us) :=Resy(B1(U1,T), Bo (U, T)) € Q[U1, Us),

then we know that G(Uy,Usy) = 0 has infinitely many solutions (¢, (2)
with roots of unity ¢; and (5.

A famous result of Thara, Serre, and Tate [3, Chapter 8, Theorem 6.1]
says that a curve in G2, contains infinitely many torsion points if and
only if it contains a torsion-point-translate of a subtorus of G?,. Hence
we can find a finite collection of pairs of integer (my,nq),. .., (m,,n,)
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not equal to (0,0) such that every solution to G(Uy,Us) = 0 in roots
of unity lies on one of the tori U;" = Uj". It suffices to concentrate
on one pair (m,n) for which there are infinitely many such solutions.
Equivalently, we fix integers (m,n) # (0,0) such that G(V™, V™) = 0
has infinitely many solutions with V' = ( a root of unity. This implies
that that G(V™ V") = 0 identically in the Laurent ring Q[V*!], i.e.,

Resy(B1(V™,T),Bo(V",T)) =0 in Q[V*]. (5)
To ease our computations, we note that B;(U,T) = U?B;(U',T),
so the four resultants

Resr (B1(Ui', T), Bo(Us ", T))

differ from one another by a factor of the form UiU3. In particular, if
one of them vanishes for some non-zero value of (Uy, Us), then they all
vanish. Hence without loss of generality, we may assume in that m
and n are non-negative.

It follows from that By(V™,T) and By(V",T) have a common
root in the field Q(V'), or equivalently, they have a non-trivial common

factor in the ring Q(V')[T]. Clearing denominators and using the fact
that Q[V,T] is a UFD, we can find a greatest common divisor

C(V7 T) = ngQ(V)[T] (Bl(vmv T)a BZ(Vn7 T)) € @[‘/7 T])

and hence

Bl(vm>T) = C(‘/a T)Dl(v7 T)> 6
By(V™,T) =C(V,T)Dy(V,T), (6)
with non-zero polynomials Dy (V,T), Do(V,T) € Q[V,T] such that D;

and Dy have no non-trivial common factor in Q[V, T']. Our assumptions
imply that the set

{t € Q: C(¢,t) =0 for some root of unity ¢ € Q}

is infinite, and hence we see that deg, C(V,T) > 1. Our goal now is
to prove:

Claim 14. The symmetric set difference E(F}) A E(F3) is finite.

We start with a definition.
Definition. For any polynomial F(X,Y) € Q[X,Y], we define
Tx(F(X,Y)) := {y € Q: P(¢,y) = 0 for some root of unity ¢ € Q}.

We observe that for any integer n > 1 and any root of unity £ € Q, we
have

Tx (F(EX™Y)) = Tx (F(X.Y)).
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We have shown that there is a finite collection of pairs of inte-
gers (m,n) such that there is a factorization as described in @ and
such that £(F) U E(Fy) is the union of a finite set and the sets

T(Bi(V™,T)) UT (B(V™,T)).
Hence in order to prove Claim [I4], we are reduced to proving:
Claim 15. The set 7 (B (V™,T)) AT (Bs(V",T)) is finite.

We stress that Claim is not an immediate consequence of @
Indeed, one might imagine there being many roots of unity ( such
that Dy(¢,T) has a root ¢t with By(¢",t) # 0, and every such ¢ would
then be in 7 (B1(V™,T)) \ T (B2(V™,T)). So we need to further ex-
ploit the specific form of the polynomials B; and Bs. The following
rather strange lemma gives the information that we need.

Lemma 16. Let a(T),b(T) € Q[T] be non-zero polynomials, and let
B(U,T) :=a(T)U + b(T)(U + 1)* € Q[U, T).
Then one of the following is true:

(a) There is a root of unity & € Q* such that B(£,T) = 0.
(b) For every integer n > 1 and every irreducible divisor p(V,T) €

Q[V,T] of B(V™,T) with degy, p > 1, we have
To (BWU,T)) = To (p(V, 1)) U (fimite set).

Proof. We observe that for every ( € p,,, the polynomial p(CV,T) is
also an irreducible divisor of B(V"™,T'). Let d be the largest divisor
of n such that p(V,T) € Q[V? T]. This means that there is an irre-
ducible ¢(U, T) € Q[U, T] such that

p(V.T) = q(V*, T).
It follows that B(V",T) is divisible by

cwv.r) =[] pv.T)= [ a¢cvV%T)
CEMn /g CERy /g
since the factors in the product are non-associate irreducible polyno-
mials. (The only way for two of them to be associate, and not equal,
would be for p(V,T) to be a monomial in V', which would contradict
the fact that B(V™, T) is not divisible by V' from our assumption that
b(T) 0.
The fact that C(V,T) | B(V",T) implies that
2n = degy, B(V",T) > deg,, C(V,T)
n

= d deg\/ p(v7 T) = ndegU Q<U7 T) Z n.
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Hence deg;; q(U,T) =1 or 2.
Case 1: degy q(U,T) = 2. In this case B(V",T) and C(V,T) both
have V-degree equal to 2, so we find that

B(V".T)=D(T)C(V.T)=D(T) [[ »(cV,T)

CEy /g
for some non-zero D( ) € Q[T]. Hence
Tu(B(U.T)) = Tv (B(V".T))
=Tv(DM)u |J Tv(pV. 1))
CEMp /g
=T (D(T)) UTy(p(U,T)).
———

finite set

Case 2: degy q(U,T) = 1. In this case we have
deg, B(V",T) =2n and deg, C(V,T)=n

We are going to exploit the fact that the polynomial B(U,T') satisfies
the identity
U*B(U™,T) = B(U,T),
e., B(U,T) is a reciprocal polynomial in the U variable. Writing

B(V™,T)=p(V,T)r(V,T) for some r(V,T) € Q[V,T], we find that

B(V™T)=V"B(V",T) = Vievey(y-t T). Vievrp (V=1 T),
and hence Vép(V =1 T) is also an irreducible divisor of B(V",T). (We
are using here the fact that degy p(V,T) = degy, ¢(V%,T) = d.) Hence
either VIp(V =1 T) is an associate of one of the polynomials p(¢V,T)
dividing C(V,T) that we already know divides B(V",T), or else it is a
new irreducible divisor.

Suppose first that

Vip(V=T) = vp(CV,T) for some ¢ € p, and some v € Q*. (7)
We write ¢(U,T) = a(T)U + 3(T) and substitute into (7). This yields
a(T) + BTV = 1a(T)¢V* + 7B(T).

Hence a(T) = v6(T) and B(T) = ya(T)¢?%. These imply that
o(T) =~B(T) = v*a(T)¢",

/2 is a root of unity. Further, we see that

50y = ¢~
p(V.T) = q(V",T) = a(T)V*+ B(T) = BT) WV + 1),

and hence p((—v)"/4,T) = 0. It follows that B((—v)"/*,T) = 0, which
concludes the proof of Lemma [16]in this case.
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Finally, suppose that Vép(V =1 T) is a new irreducible divisor of
B(V™,T). Then just as earlier, we obtain n/d such divisors by re-
placing V' with ¢V for ( € w,/p,;. Comparing V-degrees, this gives a
complete factorization

BWV"T)=D(T) [] pV,T)-(CV)'p(¢'V,T).
CERy /g
for some D(T) € Q[T]. This allows us to compute
Tuv(B(U,T)) =Ty (B(V",T))
=T (D) v J (T pev.D) U T (Vv 1))

=T (D(T)) U Ty (p(V.T)).
——
finite set
This completes the proof of Lemma U

We now have the tools needed to complete the proof of Claim [15|and
with it, the proof of Theorem [I3] We recall that we have factorizations

(see @)
B (V™ T)=C(V,T)D(V,T) and Bo(V",T) = C(V,T)Da(V, T),

where C(V,T) € Q[V, T] satisfies deg,, C(V,T) > 1. We choose an ir-
reducible factor p(V,T) € Q[V, T] of C(V,T) satisfying degy, p(V,T) >
1. Then p(V,T) is an irreducible factor of both By(V™,T) and of
By(V™, T). We know that

Bi(&,T)#0 and By(§,T)#0 for all roots of unity &,

since otherwise the dynamical degree Fy or Fy over Q(T') would be
strictly smaller than 2, contrary to our algebraic stability assumption.
Using this fact and applying Lemma [16| twice, we find that

Tv(Bi(V™,T)) = Ty (p(V,T)) U (finite set),
%(BQ(V”,T)) = 7}/(])(‘/, T)) U (finite set),

and hence
R(Bl(Vm,T)) A 7;/(32<V”’T)) = (ﬁnite set). (8)

This completes the proof of Theorem O
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4. CONJECTURE 8 IMPLIES CONJECTURE [1]

In this section we sketch the proof, essentially due to Xie [7, Theo-
rem 4.1], that Conjecture |8 implies Conjecture I} More generally, we
show that Conjecture |8 implies a generalizataion of Conjecture (1] to
families of arbitrary dimension.

Theorem 17. Assume that Conjecture || is true for a given N > 1.
Let
fr:PY - P
be a family of dominant rational maps over a smooth irreducible base
variety T, all defined over an algebraically closed field K. Then for all
€ >0, the set
{t e T(K): 6(£) < 6(fr) — }

15 contained in a proper Zariski closed subset of T

Proof. We first view f = fr as a rational map over the function

field K(T). Then using the fact that vy > 0 and the definition of
dynamical degree, we find that for any £ > 1 we have

d (k+1)ny\ /7 d (k+1)n\1/(k+1)n\F+1
. (W cs(f >> g (deg (U )

B0 ) TN gy
B S(f)k+1 B
“oE W

In particular, we can find an m = m(e, N) such that for all 0 < k < N

we have i y
deg(fF+Hm)\ ™
(7N . W) >6(f) —e (9)

We next observe that for any family g : PY --» PY of dominant
rational maps, the set

Ug) := {t € T(K) :deg(g:) = deg(g)}

is a non-empty Zariski open subset of T". We set
N

Ue:=(U(f*) C T(K),
k=0

where m = m(e, N) is as in (9).

Finally, for t € U, we compute
5(f) = o(fm™Y™  follows easily from definition of 4,

deg(ft(kﬂ)m

> . A m
> <7N [in, doa () Conjecture [§ applied to f;",
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. deg(f(kJrl)m) 1/m ) - e
- <7N - in ~dea( ) since t € U, := m U™,
0<k<N
> 6(f) —e from (9).
This completes the proof of Theorem O

5. A DYNAMICAL DEGREE ESTIMATE FOR MONOMIAL MAPS

As noted in the introduction, Xie [7] has shown that there is a con-
stant v > 0 such that

o(f) =+ ieegg((];))

In this section we prove an analogous result for dominant monomial
maps. We recall that a monomial map is an endomorphism of the
torus G, i.e., a map

for all birational maps f : P? --» P2,

VA nyl — Gﬁ
of the form
wa(Xy, ..., Xn) = (X7 XG72 -  XPN, o XPVEXGN2 - XY

where A = (a;;) € Maty(Z) is an N-by-N matrix with integer coef-
ficients. The associated rational map ¢4 : PV --» PV is dominant if
and only if det(A) # 0.

Corollary 18. Let A € Maty(Z) be a matriz with det(A) # 0, and let
0a: PN ——» PN be the associated monomial map. Then
2N 1 deg(¢y")
> — i —_.
Opa) 2 2N?  o<heN-1 deg(ph)

Before starting the proof, we set some notation and quote a result
due to Hasselblatt and Propp. For matrices A € Maty(R) with real
coefficients, we define

N N
D(A) = Zmax*{—aij :1<i< N}+max" {Zaij 1<i < N} :
j=1 j=1
and we write
|Al| = max{|a;;| : 1 <i,j5 < N},
A(A) = max{|a| : @ € C is an eigenvalue of A},
for the sup-norm and the spectral radius of the matrix A.

Proposition 19 (Hasselblatt—Propp). Let A € Maty(Z) be a matriz
satisfying det(A) # 0.
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(a) The degree of pa is given by degps = D(A).
(b) The dynamical degree of pa is given by 6(pa) = A(A).

Proof. For (a), see [I, Proposition 2.14], and for (b), see [I, Theo-
rem 6.2]. O

We now verify that D(A) induces a distance function on Maty(R)
that is equivalent to the easier-to-deal-with sup norm.

Lemma 20. Let A € Maty(R). Then

o3 D) < 4] < ND().

Proof. From the definition of D(A) we see that for every i, j we have
N
—Qij < D(A) and Zaik < D(A)
k=1
Hence every a;; > —D(A), while for every i, j we can estimate

N
% =

This proves that —D(A) < a;; < ND(A), so in particular |a;;| <
ND(A), so ||Al] < ND(A). And for the other direction, the triangle
inequality applied to each term in the definition of D(A) immediately

gives D(A) < 2N||A]. O
Proposition 21. Let A € Maty(R) be a matriz. Then
A(A) - || A*
| AR < AA) - 1A for some 0 <k < N —1.

2N 1

Proof. Write the characteristic polynomial of A as
N N

det(x] — A) = [J(x = X) =D (1) 02",
i=1 5=0
where o, is the j'th elementary symmetric polynomial of Aq,..., An.

. N .
We note for future reference that o; is a sum of (]) monomials, each

monomial being a product of j of the A;’s, which combined with A\(A) =
max |\;| gives the upper bound

o = (V) (10

We are going to use the Cayley-Hamilton theorem, which says that A
satisfies its characteristic polynomial.
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For notational convenience, we set € := 2/V — 1. We suppose that
| AR > e IA(A)[| A% forall 0 < k< N —1 (11)
and derive a contradiction. Iterating , we find that
MANEAM] < ¥ HAY] forall0<k<N—1.  (12)

We use this to estimate

N
AN = (=1)7 g, AN Cayley-Hamilton theorem,
j=1
N
< o] || AN | triangle inequality,
j=1
/N
<> < .)A(A)jHAN‘jH from (T0),
- J
j=1
Y (N
<Z(»>€jHANH from (12) with k = N — j,
» J
j=1
= ((1+¢) —1))|4"| binomial theorem,
= || AN since € 1= 21/N — 1,

This strict inequality is a contradiction, so is false, which completes
the proof of Proposition [21] O

Proof of Corollary[18. We choose some 0 < k < N—1 such that Propo-
sition [2I] holds, and then we use Lemma [20] and Proposition [19] to
estimate

LA™ @N)TIDAMY)  deg(ey™)
2N —1 7 MA) - [|[AF] = MA)ND(AR)  2N25(p4) deg(ph)”
This completes the proof of Corollary [18| 0
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