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ABSTRACT. We study groups of automorphisms and birational transfor-
mations of quasi-projective varieties by p-adic methods. For instance, we
show that if SL n(Z) acts faithfully on a complex quasi-projective variety
X by birational transformations, then dim(X) ≥ n− 1 and X is rational if
dim(X) = n−1.

RÉSUMÉ. Nous employons des méthodes d’analyse p-adique pour étudier
les groupes d’automorphismes et de transformations birationnelles des var-
iétés quasi-projectives. Nous démontrons par exemple que si SL n(Z) agit
fidèlement par transformations birationnelles sur une variété complexe quasi-
projective X , alors dim(X)≥ n−1, et X est rationnelle en cas d’égalité.
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1. INTRODUCTION

1.1. Automorphisms and birational transformations. Let X be a quasi-
projective variety of dimension d, defined over the field of complex numbers.
Let Aut(X) denote its group of (regular) automorphisms and Bir(X) its group
of birational transformations. A good example is provided by the affine space
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Ad
C of dimension d ≥ 2: Its group of automorphisms is “infinite dimensional”

and contains elements with a rich dynamical behavior, such as the Hénon map-
ping (see [29, 2]); its group of birational transformations is the Cremona group
Crd(C), and is known to be much larger that Aut(Ad

C).
We present two new arguments that can be combined to study finitely gen-

erated groups acting by automorphims or birational transformations. The first
argument is based on p-adic analysis and may be viewed as an extension of
two classical strategies from a linear to a non-linear context. The first strat-
egy appeared in the proof of Skolem, Mahler, and Lech theorem which says
that the zeros of a linear recurrence sequence are obtained along a finite union
of arithmetic progressions; it plays now a central role in arithmetic dynamics
(see [4, 3]). The second strategy has been developed by Bass, Milnor, and
Serre when they obtained rigidity results for finite dimensional linear repre-
sentations of SL n(Z) as a corollary of the congruence subgroup property (see
[1, 45]). Our second argument combines isoperimetric inequalities from geo-
metric group theory with Lang-Weil estimates from diophantine geometry. Al-
together, they lead to new constraints on groups of birational transformations
in any dimension.

1.2. Actions of SL n(Z). Consider the group SL n(Z) of n× n matrices with
integer entries and determinant 1. Let Γ be a finite index subgroup of SL n(Z);
it acts by linear projective transformations on the projective space Pn−1

C , and
the kernel of the morphism Γ→ PGL n(C) contains at most 2 elements. The
following result shows that Γ does not act faithfully on any smaller variety.

Theorem A. Let Γ be a finite index subgroup of SL n(Z). Let X be an irre-
ducible, complex, quasi-projective variety. If Γ embeds into Aut(X), then

dimC(X)≥ n−1

and if dimC(X) = n−1, then X is isomorphic to the projective space Pn−1
C .

Let k be a field of characteristic 0. Theorem A implies:

(1) The group SL n(Z) embeds into Aut(Ad
k) if and only if d ≥ n;

(2) if Aut(Ad
k) is isomorphic to Aut(Ad′

k ) (as abstract groups) then d = d′.

Previous proofs of Assertion (2) assumed k to be equal to C (see [23, 33]).
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1.3. Lattices in simple Lie groups. One can extend Theorem A in two di-
rections, replacing SL n(Z) by more general lattices, and looking at actions by
birational transformations instead of regular automorphisms.

Let S be an almost simple linear algebraic group which is defined over Q.
The Q-rank of S is the maximal dimension of a Zariski-closed subgroup of S

that is diagonalizable over Q; the R-rank of S is the maximal dimension of a
Zariski-closed subgroup that is diagonalizable over R. The subgroup S(Z) is
a lattice in S(R), and it is co-compact if and only if the Q-rank of S vanishes.

One says that S splits over Q if the Q-rank rankQ(S) is equal to its R-rank
rankR(S). For example, the standard form of SL n splits over Q, and its rank
is n− 1. Similarly, the symplectic group Sp 2n, defined as the group of lin-
ear transformations of a vector space of dimension 2n preserving the standard
symplectic form dx1∧dy1 + . . .+dxn∧dyn, has rank n and splits over Q.

Theorem B. Let X be an irreducible complex projective variety. Let S be
an almost simple linear algebraic group over the field of rational numbers
Q. Assume that S(Z) is not co-compact. If a finite index subgroup of S(Z)
embeds into Bir(X), then dimC(X) ≥ rankR(S) and S(R) is isogeneous to
SL dim(X)+1(R) if dim(X) = rankR(S).

For instance, if G2 denotes a split form of the exceptional Lie group of rank
2 (over Q), then G2(Z) does not act faithfully by birational transformations in
dimension ≤ 4. Theorem B implies also that the Cremona groups Crd(k) and
Crd′(k′) are not isomorphic if k and k′ have characteristic 0 and d 6= d′.

Remark 1.1. Assume rankR(S) ≥ 2. Then, every lattice Γ of S(R) is almost
simple: Its normal subgroups are finite and central or co-finite (see [38], and
[1, 45] for Γ≤ SL n(Z)). Thus, the assumption “Γ embeds into Bir(X)” can be
replaced by “there is a morphism from Γ to Bir(X) with infinite image”.

Remark 1.2. The main theorems of [7, 14] extend Theorem B to all types of
lattices (i.e., co-compact lattices) in simple real Lie groups but assume that
the action is by regular automorphisms. When X is compact, Aut(X) is a Lie
group, it may have infinitely many connected components, but its dimension
is finite; the techniques of [7, 14] do not apply to arbitrary quasi-projective
varieties (for instance to X = Ad

C) and to groups of birational transformations,
but work for automorphisms of compact Kähler manifolds.
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Remark 1.3. In dimension 2, every faithful birational action of an infinite
Kazhdan group on a complex projective surface Y is conjugate to a linear
projective action on the plane by a birational transformation Y 99K P2

C. (see
[13, 9, 22], and § 6.1.2 below for a definition of Kazhdan groups).

Example 1.4. Consider an irreducible sextic plane curve with 10 double points;
such a curve is rational. Blow-up the singular points to obtain a rational sur-
face X with Picard number 11. The group of automorphisms of X acts by
linear endomorphisms on the Néron-Severi group and preserves the canonical
class kX . The orthogonal complement of kX with respect to the intersection
form is a lattice of rank 10 and signature (1,9). This provides a morphism
from Aut(X) to the group SO 1,9(R). It turns out that, for a generic choice of
the sextic curve, the image of Aut(X) is a lattice in SO 1,9(R) (see [12]). A
similar phenomenon holds for generic Enriques surfaces (see [17]). This ex-
ample shows that "large" lattices may act on small dimensional varieties if the
size of the lattice is measured by the dimension of the Lie group S(R).

1.4. Finite fields, Hrushovski’s theorem and Mapping class groups. To
prove Theorems A and B, we first change the field of definition, replacing C
by a p-adic field Qp. Then, we prove the existence of a p-adic polydisk in
X(Qp) (or X(K) for some finite extension K of Qp) which is invariant under
the action of a finite index subgroup Γ of the lattice S(Z), and on which Γ acts
by p-adic analytic diffeomorphisms. Those polydisks correspond to periodic
orbits in X(Fp) (or X(F) for a finite extension F of Fp), i.e. to fixed points m
of finite index subgroups Γ′ of Γ which are well defined at m (no element of Γ′

has an indeterminacy at m). Therefore, an important step towards Theorem B
is the existence of finite orbits that avoid all indeterminacy points. For cyclic
groups of transformations, this can be obtained from Hrushovski theorem (see
[32]). Here, we combine Lang-Weil estimates with isoperimetric inequalities
from geometric group theory to construct such periodic orbits when the group
satisfies Kazhdan property (T). Once such periodic orbits are constructed, sev-
eral corollaries easily follows (see § 6.4.2):

Theorem C. If a discrete group with Kazhdan property (T) acts faithfully by
birational transformations on a complex projective variety X, the group is
residually finite and contains a torsion free finite index subgroup.
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In particular, infinite, simple, discrete groups with Kazhdan property (T) do
not act non-trivially by birational transformations.

Our strategy of proof applies to actions of other discrete groups, such as the
mapping class group of a closed genus g surface, or the group of outer auto-
morphisms of a free group. Here is a sample result:

Theorem D. Let Mod(g) be the mapping class group of a closed orientable
surface of genus g. Let ma(g) be the smallest dimension of a quasi-projective
variety X on which a finite index subgroup of Mod(g) may act faithfully by
automorphisms. Then ma(1) = 1 and 2g−1≤ma(g)≤ 6g−6 for all g≥ 2.

1.5. Margulis super-rigidity and Zimmer program. Let Γ be a lattice in a
simple real Lie group S, with rankR(S) ≥ 2. According to Margulis super-
rigidity theorem, unbounded linear representations of the discrete group Γ

“come from” linear algebraic representations of the group S itself. As a byprod-
uct, the smallest dimension of a faithful linear representation of Γ coincides
with the smallest dimension of a faithful linear representation of S (see [38]).
Zimmer program asks for an extension of this type of rigidity results to non-
linear actions of Γ, for instance to actions of Γ by diffeomorphisms on compact
manifolds (see [49, 50], and the recent survey [27]). Theorems A and B are
instances of Zimmer program in the context of algebraic geometry. In case
Γ = SL n(Z) or Sp 2n(Z), Bass, Milnor and Serre obtained a super-rigidity the-
orem from their solution of the congruence subgroup problem (see [1, 45]).
Our proofs of Theorems A and B may be considered as extensions of their
argument to the context of non-linear actions by algebraic transformations.

1.6. Acknowledgement. Thanks to Yves de Cornulier, Julie Déserti, Philippe
Gille, Sébastien Gouezel, Vincent Guirardel, and Peter Sarnak for interesting
discussions related to this article. This work was supported by the ANR project
BirPol and the foundation Del Duca from the french academy of sciences. Part
of this work was done during the visit of the first author as a member of the
Institute for Advanced Studies, Princeton.

2. ANALYTIC DIFFEOMORPHISMS OF THE p-ADIC POLYDISK

In this section, we introduce the group of p-adic analytic (or Tate analytic)
diffeomorphisms of the unit polydisk U =Zd

p, describe its topology, and study
its finite dimensional subgroups.
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2.1. Analytic diffeomorphisms.

2.1.1. Tate algebras. Let p be a prime number. Let K be a field of charac-
teristic 0 which is complete with respect to an absolute value | · | satisfying
|p| = 1/p. Good examples to keep in mind are the fields of p-adic numbers
Qp and its finite extensions. Let R be the valuation ring of K, i.e. the subset of
K defined by R = {x ∈ K; |x| ≤ 1}; in the vector space Kd , the unit polydisk
is the subset Rd .

Fix a positive integer d, and consider the ring R[x] = R[x1, ...,xd] of polyno-
mial functions in d variables with coefficients in R. For f in R[x], define the
norm ‖ f ‖ to be the supremum of the absolute values of the coefficients of f :

‖ f ‖= sup
I
|aI| (2.1)

where f =∑I=(i1,...,id) aIxI . By definition, the Tate algebra R〈x〉 is the comple-
tion of R[x] with respect to the norm ‖ · ‖. The Tate algebra coincides with the
set of formal power series f = ∑I aIxI , I ∈ Zd

+, converging on the closed unit
polydisk Rd . Moreover, the convergence is equivalent to |aI| → 0 as I→ ∞.

For f and g in R〈x〉 and c in R+, the notation f ∈ pcR〈x〉 means ‖ f ‖≤ |p|c
and the notation

f ≡ g (mod pc)

means ‖ f − g ‖≤ |p|c; we then extend such notations component-wise to
(R〈x〉)m for all m ≥ 1. For instance, the function f (x) = p+ x+ px2 + p2x2

satisfies f ≡ id (mod p), where id(x) = x is the identity mapping.

2.1.2. Tate diffeomorphisms. Denote by U the unit polydisk of dimension
d, that is U = Rd . For x and y in U, the distance dist(x,u) is defined by
dist(x,y) = maxi |xi− yi|, where the xi and yi are the coordinates of x and y
in Rd . The non-archimedean triangular inequality implies that |h(y)| ≤ 1 for
every h in R〈x〉 and y∈U. Consequently, every element g in R〈x〉d determines
an analytic map g : U→U.

If g = (g1, . . . ,gd) is an element of R〈x〉d , the norm ‖ g ‖ is defined as the
maximum of the norms ‖ gi ‖ (see Equation (2.1)); one has ‖ g ‖≤ 1 and
dist(g(x),g(y))≤‖ g ‖ dist(x,y), so that g is 1-Lipschitz.

Consider the group of transformations f : U→U given by

f (x) = ( f1, . . . , fd)(x)

where each fi is in R〈x〉 and f has an inverse f−1 : U→U that is also defined
by power series in the Tate algebra. We denote this group by Diffan(U) and
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call it the group of analytic diffeomorphisms (or Tate diffeomorphisms)
of U. The distance between two analytic diffeomorphisms f and g is then
defined as ‖ f −g ‖; by Lemma 2.2, this endows Diffan(U) with the structure
of a topological group.

Proposition 2.1. For every c > 0, the subgroup of all elements f ∈ Diffan(U)

with f ≡ id (mod pc) is a normal subgroup of Diffan(U).

Lemma 2.2. Let f , g, and h be elements of R〈x〉d .

(1) ‖ g◦ f ‖≤‖ g ‖;
(2) if f is an element of Diffan(U) then ‖ g◦ f ‖=‖ g ‖
(3) ‖ g◦ (id+h)−g ‖≤‖ h ‖
(4) ‖ f−1− id ‖≤‖ f − id ‖ if f is an analytic diffeomorphism.

Proof. Let c satisfy |p|c =‖ g ‖. Then p−cg is an element of R〈x〉d . It follows
that (p−cg)◦ f is an element of R〈x〉d too, and that ‖ g◦ f ‖≤ pc. This proves
Assertion (1). The second assertion follows because g = (g ◦ f ) ◦ f−1. To
prove Assertion (3), write h = (h1,h2, . . . ,hd) where each hi satisfies ‖ hi ‖≤‖
h ‖. Then g◦ (id+h) takes the form

g◦ (id+h) = g+A1(h)+∑
i≥2

Ai(h)

where each Ai is a homogeneous polynomial in (x1, . . . ,xd) of degree i with
coefficients in R. Assertion (3) follows. To prove Assertion (4), assume that
f is an analytic diffeomorphism and apply Assertion (2): ‖ f−1− id ‖=‖ id−
f ‖≤ |p|c �

Proof of Proposition 2.1. Set Dc = { f ∈ Diffan(U); ‖ f − id ‖≤ |p|c}. If f
is an element of Dc, so is f−1 (Lemma 2.2, Assertion (4)). Similarly, Dc is
stable under composition because

‖ g◦ f − id ‖=‖ (g◦ f − f )+( f − id) ‖≤max(‖ (g− id)◦ f ‖,‖ f − id ‖)

and Lemma 2.2 shows that both terms are bounded from above by |p|c if f and
g are in Dc. Thus Dc is a subgroup of Diffan(U). If g is an element of Dc and
f is an element of Diffan(U), one has

‖ f−1 ◦g◦ f − id ‖=‖ ( f−1 ◦g− f−1)◦ f ‖=‖ f−1 ◦g− f−1 ‖ .

But Assertion (3) in Lemma 2.2 shows that

‖ f−1 ◦g− f−1 ‖=‖ f−1 ◦ (id+g− id)− f−1 ‖≤‖ g− id ‖≤ |p|c.

Thus, Dc is a normal subgroup. �
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Lemma 2.3. Let f be an element of Diffan(U). If f (x) ≡ x (mod pc), with
c ≥ 1, and pN divides l then f l(x) ≡ x (mod pc+N). In particular, if f ≡
id (mod p), then f p` ≡ id (mod p`).

Proof. Write f (x) = x+ pcr(x) where r is in (R〈x〉)d . Then

f ◦ f (x) = x+ pcr(x)+ pcr(x+ pcr(x))

= x+2pcr(x) (mod p2c)

and after p iterations one gets

f p(x) = x+ pc+1r(x) (mod ppc)

= x (mod pc+1)

if c≥ 1. Then, f p2
(x)≡ x (mod pc+2) and f pN

(x)≡ x (mod pc+N). �

2.2. From cyclic groups to p-adic flows.

2.2.1. From cyclic groups to R-flows. The following theorem is due to Bell
and to Poonen (see [40], and [4, 3] for former results).

Theorem 2.4. Let f : U→U be an element of R〈x〉d . Assume that

f (x)≡ id (mod pc)

for some c > 1/(p−1). Then there exists an element Φ in R〈x1, . . . ,xd, t〉d , i.e.
a Tate analytic map Φ : U×R→U, such that Φ(x,n) = f n(x) for all n in Z+.

Remark 2.5. Let f and Φ be as in the Theorem 2.4.

(a) The relation Φ(x,n+1) = f ◦Φ(x,n) holds for every integer n≥ 0. Thus,
for every x in U, the two Tate-analytic functions t 7→ Φ(x, t + 1) and t 7→
f ◦Φ(x, t) coincide on Z+, hence on R by the isolated zero principle:

Φ(x, t +1) = f ◦Φ(x, t) in R〈x, t〉d.

Apply this to t =−1 to deduce that f is indeed an analytic diffeomorphism of
U and that f−1 = Φ(·,−1). Then, by induction, one gets Φ(x,n) = f n(x) for
all n ∈ Z.

(b) The relation Φ(x,n+m) = Φ(Φ(x,m),n) holds for all pairs of integers
(n,m), because f n+m = f n ◦ f m. Thus,

Φ(x,s+ t) = Φ(Φ(x, t),s)

for all (x,s, t) ∈ U×R×R. This means that Φ defines a group action of R
on U that extends the action of Z ⊂ R determined by f . An analytic map
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Φ : U×R→ U which defines a group action of (R,+) will be called a R-
flow, or simply a flow. (see below, § 2.2.2, how it is viewed as the flow of an
analytic vector field)

(c) Let g ∈ R〈x〉d satisfy the assumptions of Theorem 2.4. Then, we get two
flows Φ f ,Φg : U×R→U, and another flow Φg◦ f for the composition g ◦ f .
Moreover, Φg◦ f (x,1) = g◦ f (x) = Φg(Φ f (x,1),1).

If f and g commute to each other, then Ψ(x,s, t) := Φg(Φ f (x,s), t) deter-
mines an action of the abelian group R×R on U.

These remarks lead to the following strengthening of Theorem 2.4, in which
Assertions (3) and (4) follow from Poonen’s proof of Theorem 2.4.

Theorem 2.6. Let f be an element of R〈x〉d with f ≡ id (mod pc) for c >

(p− 1)−1. Then f is a Tate diffeomorphism of U = Rd and there exists a
Tate-analytic map Φ : U×R→U such that

(1) Φ(x,n) = f n(x) for all n ∈ Z and x ∈U;
(2) Φ(x, t + s) = Φ(Φ(x,s), t) for all t, s in R;
(3) Φ : t ∈ R 7→ Φ(·, t) is a continuous morphism from the abelian group

(R,+) to the group of Tate diffeomorphisms Diffan(U);
(4) Φ(x, t)≡ x (mod pc−1/(p−1)) for all t ∈ R.

We shall refer to this theorem as “Bell-Poonen theorem”, or “Bell-Poonen
extension theorem”. In this article, a flow Φ will be considered either as an
analytic action Φ : U×R→U of the abelian group (R,+), or as a morphism
Φ : t ∈ R 7→Φt ∈ Diffan(U); we use the same vocabulary (and the same letter
Φ) for the two maps.

Corollary 2.7. Let f be an element of R〈x〉d with f ≡ id (mod pc) for c >

(p− 1)−1. Then f is a Tate diffeomorphism of U = Rd , and if f is a finite
order element of Diffan(U), its order is a power of p.

This follows from the Chinese Lemma, and from the fact that a continuous
morphism from (Zp,+) to Z/qZ is automatically trivial if q is prime to p.

2.2.2. Flows and analytic vector fields. Consider the Lie algebra Θ(U) of
vector fields

X =
d

∑
i=1

ui(x)∂i
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where each ui is an element of the Tate algebra R〈x〉. The Lie bracket with a
vector field Y = ∑i vi(x)∂i is given by

[X,Y] =
d

∑
j=1

w j(x)∂ j, with w j =
d

∑
i=1

(
ui

∂v j

∂xi
− vi

∂u j

∂xi

)
.

Lemma 2.8. Let Φ : U ×R→ U be an element of R〈x, t〉d that defines an
analytic flow. Then

X =

(
∂Φ

∂t

)
|t=0

is an analytic vector field. It is preserved by Φt: For all t ∈ R, (Φt)∗X = X.
Moreover, X(x0) = 0 if and only if Φt(x0) = x0 for all t ∈ R.

The analyticity and Φt-invariance are easily obtained. Let us show that
X(x0) = 0 if and only if x0 is a fixed point of Φt for all t. Indeed, if X van-
ishes at x0, then X vanishes along the curve Φ(x0, t), t ∈ R, because X is Φt-
invariant. Thus, ∂tΦ(x0, t) = 0 for all t, and the result follows.

Corollary 2.9. If f is an element of Diffan(U) with f ≡ id (mod pc) for some
c > (p− 1)−1, then f is given by the flow Φ f , at time t = 1, of a unique
analytic vector field X f . The zeros of X are the fixed points of f . If two such
diffeomorphisms f and g commute to each other, then [X f ,Xg] = 0.

2.3. A pro-p structure. Recall that a pro-p group is a topological group G
which is a compact Hausdorff space, with a basis of neighborhoods of the
neutral element 1G generated by subgroups of index a (finite) power of p.
In such a group, the index of every open normal subgroup is a power of p.
See [24] for a good introduction to pro-p groups.

In this subsection, we assume that the residue field, i.e. the quotient of R by
its maximal ideal mK = {x ∈ K; |x|< 1}, is a finite field (of characteristic p).
In particular, the residue field has q elements, with q a power of p; similarly,
the number of elements of R/mk

K is a power of p for every k. We also fix an
element π that generates the ideal mK .

2.3.1. Action modulo mk
K . Recall that U denotes the polydisk Rd . If f is an

element of Diffan(U), its reduction modulo mk
K is a polynomial transformation

with coefficients aI in the finite ring R/mk
K; it determines a bijection of the

finite set (R/mk
K)

d . Each element of Diffan(U) acts isometrically on U with
respect to the distance dist(x,y) (see § 2.1.2). Since balls of radius |π|−k are in
one to one correspondence with points in (R/mk

K)
d , this action of Diffan(U)
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on the set of balls may be identified to its action modulo mk
K . Thus, for each

k ≥ 1, one gets a morphism of Diffan(U) into the group of permutations of
the finite set (R/mk

K)
d , and an element f of Diffan(U) is the identity if and

only if its image in each of these finite groups is trivial (i.e. if and only if
dist( f (x),x)≤ |π|k for all x and all k).

2.3.2. A pro-p completion. Given a positive integer `, define Diffan(U)` as
the subgroup of Diffan(U) whose elements are equal to the identity modulo
p`. Let D = Diffan(U)1. By definition, every element f of D can be written
f = id+ ph where h is in R〈x〉d . Thus, D acts trivially on (R/pR)d (here,
pR = ml

K with |πl|= 1/p).
Consider an element f of D that acts trivially modulo pm for some m≥ 1.
Writing f (z) as a sum of homogeneous terms A0 +A1(z)+∑k≥2 Ak(z), one

easily checks the following property: There are two maps α f : (R/pmR)d →
Matd(R/pR) and β f : (R/pmR)d→ (R/pR)d such that, for every point x0 ∈U
and every point x0 + pmb in the ball of radius p−m around x0, we have

f (x0 + pmb) = x0 + pm(α f (x0)(b)+β f (x0)) (mod pm+1). (2.2)

Moreover, given any pair of maps α(·) and β(·) as above, one can find a poly-
nomial transformation f of the affine space Ad

R, with coefficients in R, which
acts trivially modulo pm and for which α f = α and β f = β. By Bell-Poonen
theorem, f determines an analytic diffeomorphism of U. The group of all
bijections of (R/pm+1R)d given by formulas of type (2.2) is a p-group. As a
consequence, a recursion on m shows that the image of D into the group of
permutations of (R/pmR)d is a p-group for every m≥ 1.

Thus, D may be endowed with a pro-p topology, for which the kernels of
the action on (R/pmR)d , m≥ 1, form a basis of neighborhoods of the identity.
Since the action on (R/pmR)d is the action on the set of balls of radius p−m in
U, the Tate topology is finer than the pro-p topology: The identity map f 7→ f
is a continuous morphism with respect to the Tate topology on the source, and
the pro-p topology on the target. Therefore, if D̂ is the completion of D with
respect to this pro-p topology, the map

D→ D̂

defines an injective continuous morphism.

Remark 2.10. Fix a prime p and consider the field K = Qp, with valuation
ring R = Zp. The sequence of polynomial automorphisms of the affine plane
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defined by hn(x,y) = (x,y+ p(x+ x2 + x3 + · · ·+ xn)) determines a sequence
of elements of D for d = 2. There is no subsequence of (hn)n that converges
in the Tate topology. Being a pro-p group, D̂ is compact, and one can extract
a subsequence of (hn) that converges in D̂.

2.4. Extension theorem.

2.4.1. Analytic groups (see [24, 44] and [6] Chapter III). One says that a
pro-p group is finitely generated if it contains a dense, finitely generated sub-
group. For such groups, the pro-p topology is uniquely determined by the
algebraic structure: A subgroup is open if and only if it has finite index, and
finite index subgroups form a basis of neighborhoods of the neutral element
(see [24], Theorem 1.17). Let G be a finitely generated pro-p group. Given a
positive integer m, one denotes by Gm the subgroup of G which is generated
by all xm, x ∈G. One says that G is powerful if p is odd and the closure of Gp

contains the derived subgroup of G, or if p = 2 and the closure of G4 contains
the derived subgroup of G. Then, for a pro-p group, the following properties
are equivalent:

(a) G is finitely generated and virtually powerful,
(b) G embeds continuously in GL d(Zp) for some d,
(c) G is a p-adic analytic group.

We refer to [24] for the definition of p-adic analytic groups and a proof of the
equivalence of these three properties.

In what follows, we fix a pair (G,Γ) where G is a p-adic analytic group and
Γ is a finitely generated, dense subgroup of G. A good example to keep in
mind is Γ = SL n(Z) in G = SL n(Zp) (see §3.4 below).

2.4.2. One parameter subgroups. Let g be an element of the pro-p group G.
The morphism ϕ : m ∈ Z 7→ gm ∈ G extends automatically to the pro-p com-
pletion of Z, i.e. to a continuous morphism of pro-p groups

ϕ : Zp→ G.

For simplicity, we denote ϕ(t) by gt for all t in Zp (see [24], Proposition 1.28,
for embeddings of Zp into pro-p groups).

Lemma 2.11. Let Γ be a dense subgroup of a p-adic analytic group G. There
exist γ1, ..., γr in Γ (for some r ≥ 1) such that the map π : (Zp)

r→ G

π(t1, . . . , tr) = γ
t1
1 · · ·γ

tr
r
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is a surjective, p-adic analytic map. Moreover, as l runs over the set of pos-
itive integers, the sets π(plZp)

r form a basis of neighborhoods of the neutral
element in G.

Proof. Let g be the Lie algebra of G; as a finite dimensional Qp-vector space,
g coincides with the tangent space of G at the neutral element 1G. There are
finite index open subgroups H of G for which the exponential map defines a
p-adic analytic diffeomorphism from a neighborhood of the origin in g(Zp)

onto the group H itself. Let H be such a subgroup (see the notion of standard
subgroups in [6, 24]).

Since Γ is dense in G its intersection with H is dense in H. Each αi ∈ Γ∩H
corresponds to a tangent vector νi ∈ g such that exp(tνi) = αt

i for t ∈ Zp.
Since Γ is dense in H, the subspace of g generated by all the νi is equal to g.
Thus, one can find elements α1, ..., αs of Γ, with s = dim(G), such that the νi

generate g. Then, the map π : (Zp)
s→ H defined by

π(t1, . . . , ts) = exp(t1ν1) · · ·exp(tsνs) = α
t1
1 · · ·α

ts
s

is analytic and determines a local analytic diffeomorphism from a neighbor-
hood of 0 in g to a neighborhood V of 1G. The group G can then be covered by
a finite number of translates h jV , j = 1, . . ., s′. Since Γ is dense, one can find
elements β j in Γ with β

−1
j h j ∈ V . The lemma follows if one sets r = s+ s′,

γi = αi for 1≤ i≤ s, and γi = βi−s, s≤ i≤ r. �

2.4.3. Actions by analytic diffeomorphisms. We now study morphisms from
Γ to the group Diffan(U), where U = Rd for some d. Thus, in this paragraph,
the same prime number p plays two roles since it appears in the definition of
the pro-p structure of G, and of the Tate topology on Diffan(U).

Theorem 2.12. Let G be a p-adic analytic group and let Γ be a finitely gen-
erated, dense subgroup of G. Let Φ : Γ→ Diffan(U)1 be a morphism into
the group of analytic diffeomorphisms of U which are equal to the identity
modulo p. Then, Φ extends to a continuous morphism

Φ : G→ Diffan(U)1

such that the action G×U→U given by (g,x) 7→Φ(g)(x) is analytic.

For simplicity, denote Diffan(U)1 by D. Recall that D embeds continuously
into the pro-p group D̂ (see §2.3.2). The following properties will be used to
prove the lemma.
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(1) The morphism Γ→ D̂ extends uniquely into a continuous morphism
Φ̂ from G to D̂ because G is the pro-p completion of Γ.

(2) Let f be an element of D. By Bell-Poonen extension theorem, the
morphism t ∈ Z 7→ f t extends to a continuous morphism Zp→D. If f̂
denotes the image of f in D̂, then t 7→ ( f̂ )t is a morphism from Z to the
pro-p group D̂; as such, it extends canocially to the pro-p completion
Zp, giving rise to a morphism t ∈Zp 7→ ( f̂ )t ∈ D̂. These two extensions
are compatible: (̂ f t) = ( f̂ )t for all t in Zp.

Thus, given any one-parameter subgroup Z of Γ, we already know how to
extend Φ : Z⊂ Γ→ D into Φ : Zp ⊂ G→ D, in a way that is compatible with
the extension Φ̂ : G→ D̂.

Lemma 2.13. Let (αn) be a sequence of elements of Γ that converges to-
wards 1G in G. Then Φ(αn) converges towards the identity in Diffan(U).

Proof. Write αn = π(t1(n), . . . , tr(n)) = γ
t1(n)
1 · · ·γtr(n)

r , where π and the γi are
given by Lemma 2.11. Since αn converges towards 1G, we may assume that
each (ti(n)) converges towards 0 in Zp as n goes to +∞. By Bell-Poonen
theorem, each fi := Φ(γi) gives rise to a flow t 7→ f t

i , t in Zp; moreover, ‖
f t
i − id ‖≤ pm if |t| < pm (apply Lemma 2.3 and the last assertion in Bell-

Poonen theorem). Thus, the lemma follows from Lemma 2.2 and the following
equality

Φ(αn) = f t1(n)
1 · · · f tr(n)

r . (2.3)

To prove this equality, one only needs to check it in the group D̂ because D
embeds into D̂. But in D̂, the equality holds trivially because the morphism
Γ→ D̂ extends to G continuously (apply Properties (1) and (2) above). �

Lemma 2.14. If (gm)m≥1 is a sequence of elements of Γ that converges to-
wards an element g∞ of G, then Φ(gm) converges to an element of Diffan(U)

which depends only on g∞.

Proof. Since (gm) converges, gm ◦g−1
m′ converges towards the neutral element

1G as m and m′ go to +∞. Consequently, the previous lemma shows that
the sequence (Φ(gm)) is a Cauchy sequence, hence a convergent sequence, in
Diffan(U).1 The limit depends only on g∞, not on the choice of the sequence

1Write Φ(gm ◦ g−1
m′ ) = id+ εm,m′ where εm,m′ is equivalent to the constant map 0 in R〈x〉d

modulo |p|k(m,m′), with k(m,m′) that goes to +∞ as m and m′ do. Then, apply Lemma 2.2.
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(gm) (if another sequence (g′m) converges toward g∞, consider the sequence
g1, g′1, g2, g′2, ...). �

We can now prove Theorem 2.12. Lemmas 2.13 and 2.14 show that Φ

extends, in a unique way, to a continuous morphism Φ : G→ D (with D =

Diffan(U)1). Moreover, this extension coincides with Bell-Poonen extensions
Zp → D along one parameter subgroups of G generated by elements of Γ.
According to Lemma 2.11 (and its proof), one can find s elements γ1, ..., γs of
Γ, with s = dim(G), such that the map

(t1, . . . , ts) 7→ π(t1, . . . , ts) = γ
t1
1 · · ·γ

ts
s

determines an analytic diffeomorphism from a neighborhood of 0 in Zs
p to a

neighborhood of the identity in G. By Bell-Poonen theorem, the map

(t1, . . . , ts,x) ∈ (Zp)
s×U 7→Φ(γ1)

t1 ◦ · · ·Φ(γs)
ts(x)

is analytic. Thus, the action of G on U determined by Φ is analytic. This
concludes the proof od Theorem 2.12.

3. REGULAR ACTIONS OF SL n(Z) ON QUASI-PROJECTIVE VARIETIES

In this section, we prove the first assertion of Theorem A together with one
of its corollaries.

Theorem 3.1. Let n be a positive integer. Let Γ be a finite index subgroup of
SL n(Z). If Γ embeds into the group of automorphisms of a complex quasi-
projective variety X, then dim(X)≥ n−1; if X is a complex affine space, then
dim(X)≥ n.

3.1. Dimension 1. When dimC(X) = 1, the group of automorphisms of X
is isomorphic to PGL 2(C) if X is the projective line and virtually solvable
otherwise. On the other hand, every finite index subgroup of SL n(Z) contains
a free group if n ≥ 2 (see [19], Chapter 1). Theorems A and 3.1 follow from
these remarks when n = 2. There is nothing to prove when n = 1. Thus, in
what follows, we assume dimC(X)≥ 2 and n≥ 3.

3.2. From complex to p-adics coefficients. Let X be a complex quasi-projec-
tive variety. Fix an embedding of X into a projective space PN

C and write

X = Z(a)\Z(b)
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where a and b are two homogeneous ideals in C[x0, . . . ,xN ] and Z(a) denotes
the zeros of the ideal a. Choose generators (Fi)1≤i≤a and (G j)1≤ j≤b for a and
b respectively.

Let Γ be a subgroup of Bir(XC) with a finite, symmetric set of generators
S = {γ1, . . . ,γs}. Let C be a finitely generated Q-algebra containing the set
B of all coefficients of the Fi, the G j, and the polynomials defining the γk;
more precisely, each γk is defined by explicit formulas on affine open subsets
Ul = X \Wl and one includes the coefficients of these formulas and of the
defining equations of the Zariski closed subsets Wl . One can view X and Γ as
defined over Spec(C).

Lemma 3.2 (see Lech [35], and Bell [4]). Let F be a finitely generated exten-
sion of Q and B be a finite subset of F. There exist infinitely many primes p
such that F embeds in Qp; moreover, one can choose this embedding so that
B embeds into Zp.

Apply this lemma to the fraction field F of C and the set B of coefficients.
This provides a model of X over Zp such that Γ embeds into Bir(XZp) – or in
Aut(XZp) if Γ is initially a subgroup of Aut(XC). More generally, given any
finite extension K of Qp (for some prime p) and any embedding of the field
F = Frac(C) into K that maps B into the valuation ring R of K, one obtains
what will be called a model of the pair (X ,Γ) over R. We refer to [4, 3] for
the details regarding this construction and to Section 8.1 for the notion of good
models, in the case of groups of birational transformations.

3.3. From automorphisms to local analytic diffeomorphisms. Let p be a
prime number. Let Γ be a subgroup of Aut(XZp) for some algebraic variety of
dimension d. If X is the affine space, this just means that all elements of Γ are
polynomial automorphisms of X defined by formulas with coefficients in Zp.

3.3.1. Let us first assume, for simplicity, that X is the affine space Ad . Re-
duction modulo p provides a morphism from Γ to the group Aut(Ad

Fp
): Every

automorphism f ∈ Γ determines an automorphism f of the affine space with
coefficients in Fp. One can also reduce modulo p2, p3, ...

If R0 is a finite ring, then Ad(R0) and GL d(R0) are both finite. Therefore,
the automorphisms f ∈ Γ with f (m) = m (mod p2) and d fm = Id (mod p) for
all points m in Ad(Zp) form a finite index subgroup Γ0 of Γ. Every element of
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Γ0 can be written

f (x) = p2x0 +(Id+ pB)(x)+ ∑
k≥2

Ak(x)

where x0 is a point with coordinates in Zp, B is a d×d matrix with coefficients
in Zp, and ∑k rk(x) is a finite sum of higher degree homogeneous terms with
coefficients in Zp. Rescaling, one gets

p−1 f (px) = px0 +(Id+ pB)(x)+ ∑
k≥2

pk−1Ak(x).

This proves the following lemma.

Lemma 3.3. Let Γ be a group of automorphisms of Aut(Ad
Zp
). Changing Γ

into a finite index subgroup, and conjugating by the scalar multiplication x 7→
px, one can assume that Γ is a subgroup of Aut(Ad

Zp
) with f (x) ≡ x (mod p)

for all f in Γ.

A similar argument applies to every quasi-projective variety X of dimen-
sion d. One first needs to replace Qp into a finite extension K to assure the
existence of at least one point m in X(R/mK). Then, the stabilizer of m is
a finite index subgroup, because X(R/mK) is a finite set; this group fixes a
polydisk in X(K) and Bell-Poonen theorem can be applied to a smaller, finite
index subgroup. This provides the following statement, the proof of which is
given in [3] (see also Section 8 for groups of birational transformations).

Proposition 3.4 (see [3]). Let XZp be a quasi-projective variety defined over
Zp and let Γ be a finitely generated subgroup of Aut(XZp). Then, changing
Qp into a finite extension K, and Γ in a finite index subgroup, one can find
a local analytic diffeomorphism ϕ from the unit polydisk U = Rd ⊂ Kd to an
open subset V of X(K) such that V is Γ-invariant and the action of Γ on V is
conjugate, via ϕ, to a subgroup of Diffan(U)1.

From now on, we assume that Γ has been replaced by an appropriate finite
index subgroup, so as to satisfy the conclusion of Proposition 3.4. Apply Bell-
Poonen theorem: Every element f of Γ determines both an analytic diffeo-
morphism of the polydisk U = Rd and a flow Φ f : U×R→U parametrized
by R with Φ(·,1) = f (·). In other words, the morphism

Φ : Γ→ Diffan(U)

extends as a R-flow along each cyclic subgroup of Γ.
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3.4. Congruence subgroups of SL n(Z); see [1, 45].

3.4.1. Normal subgroups. For n ≥ 3, the group SL n(Z) is a lattice in the
higher rank simple Lie group SL n(R). For such a lattice, every normal sub-
group is either finite and central, or co-finite; in particular, if Γ is a finite index
subgroup of SL n(Z), the derived subgroup of Γ has finite index in Γ.

3.4.2. Strong approximation. For any n ≥ 2 and q ≥ 1, denote by Γq and Γ∗q
the following subgroups of SL n(Z):

Γq = {B ∈ SL n(Z) | B≡ Id (mod q)},
Γ
∗
q = {B ∈ SL n(Z) | ∃a ∈ Z, B≡ aId (mod q)}.

Let p be a prime number. The closure of Γq in SL n(Zp) is the finite index
open subgroup of matrices which are equal to Id modulo q; thus, if q = pmr
with r∧ p = 1, the closure of Γq in SL n(Qp) coincides with the open subgroup
of matrices M ∈ SL n(Zp) which are equal to Id modulo pm. This result is an
instance of the strong approximation theorem.

3.4.3. Congruence subgroup property. Another deep property that we shall
use is the congruence subgroup property, which holds for n≥ 3. It asserts that,
given any finite index subgroup Γ of SL n(Z), there exists a unique integer q
with Γq ⊂ Γ⊂ Γ∗q. We shall come back to this property in Section 7.1 for more
general algebraic groups (note that the congruence subgroup property is not
known for co-compact lattices).

3.5. Extension, algebraic groups, and Lie algebras. Given an analytic dif-
feomorphism f of the unit polydisk U, its jacobian determinant is an analytic
function which is defined by Jac( f )(x) = det(d fx), where d fx is the differen-
tial of f at x. One says that the jacobian determinant of f is identically equal
to 1, if Jac( f ) is the constant function 1.

In the following theorem, p is an odd prime, and K and R are as in Sec-
tion 2.1.1.

Theorem 3.5. Let n ≥ 3 be an integer. Let Γ be a finite index subgroup in
SL n(Z). Let U be the unit polydisk Zd

p, for some d ≥ 1. Let Φ : Γ→Diffan(U)

be a morphism such that f (x)≡ x (mod p) for all f in Φ(Γ). If the image of Φ

is infinite, then n−1≤ d. If, moreover, the jacobian determinant is identically
equal to 1 for all f in Φ(Γ), then n≤ d.
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Remark 3.6. All proper algebraic subgroups of minimal co-dimension in
SL n(Qp) are conjugate to the stabilizer of a point in Pn−1(Qp); their co-
dimension is equal to n− 1. Similarly, all proper sub-algebras of sln(Qp)

have co-dimension ≥ n−1. (see § 7.2).

Proof. Let G be the closure of Γ in SL n(Qp). By Theorem 2.12, Φ extends to
an analytic morphism Φ of the group G to Diffan(U). The differential dΦId

provides a morphism of Lie algebras

dΦId : sln(Qp)→Θ(U),

where Θ(U) is the algebra of analytic vector fields on U. If the image of
Φ is infinite, its kernel is a finite central subgroup of Γ (see § 3.4); hence,
there are infinite order elements in Φ(Γ). The vector field corresponding to
such an element does not vanish identically, so that dΦId is a non-trivial mor-
phism. Since sln(Qp) is a simple Lie algebra, dΦId is an embedding. Pick w
in sln(Qp)\{0}. Since dΦId is an embedding, there is a point o in U such that
dΦId(w)(o) 6= 0. The subset of sln(Qp) whose elements satisfy dΦId(v)(o)= 0
is a proper subalgebra of sln(Qp) of co-dimension at most d. Thus, d ≥ n−1
by Remark 3.6.

Let us now assume d = n− 1. There is a unique subgroup of SL n of co-
dimension n−1 up to conjugacy, and this group is the parabolic subgroup P0

that stabilizes the point m0 = [1 : 0 : 0 . . . : 0] in the projective space Pn−1. The
quotient of sln by the Lie algebra p0 of P0 can be identified to the tangent
space Tm0Pn−1 of Pn−1 at m0, and to the tangent space of U at the fixed point
o. The group P0 contains the diagonal matrices with diagonal coefficients
a11 = a and aii = b for 2≤ i≤ n, where a and b satisfy the relation abn−1 = 1,
and those diagonal matrices act by multiplication by a/b on Tm0Pn−1. Thus
there are elements g in G fixing the point o in U and acting by non-trivial
scalar multiplication on the tangent space T0U; such elements have jacobian
determinant 6= 1. Since Γ is dense in G, and bot Φ and Jac are continuous,
there are elements f in Γ with Jac( f ) 6= 1. �

3.6. Embeddings of SL n(Z) in Aut(X) or Aut(Ad
C). We may now prove

Theorem 3.1. According to Section 3.1 we assume n≥ 3. Let d be the dimen-
sion of X and Φ : Γ→ Aut(X) be a morphism with infinite image. Changing
Γ in a finite index subgroup, we assume that Γ is a congruence subgroup and
that Φ is an embedding.
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According to Section 3.2 and Proposition 3.4, one can find a prime p ≥ 3,
a model of (X ,Γ) over a finite extension K of Qp, and a polydisk U = Rd

in X(K) which is invariant by a finite index subgroup of Γ; this provides an
embedding of a finite index subgroup of Γ in Diffan(U)1. Theorem 3.5 implies
dim(X)≥ n−1.

Assume now that X is the affine space Ad
C. If f is an automorphism of Ad

C,
its jacobian determinant Jac( f ) is constant because Jac( f ) is a polynomial
function on Ad(C) that does not vanish. This provides a morphism from Γ to
(C∗, ·); since congruence subgroups are almost perfect ([Γ,Γ] has finite index
in Γ), one can change Γ in a smaller congruence subgroup and assume that
Jac(Φ(γ)) = 1 for all γ ∈ Γ. Then, Theorem 3.5 implies d ≥ n.

4. ACTIONS OF SL n(Z) IN DIMENSION n−1

In this paragraph, we pursue the study of algebraic actions of finite index
subgroups of SL n(Z) on quasi-projective varieties X of dimension d, and com-
plete the proof of Theorem A. The notation and main properties are the same
as in Section 3, but with a constraint on the dimension of X ; thus

• Γ is a finite index subgroup of SL n(Z),
• XC is a complex quasi-projective variety of dimension d = n−1,
• Γ embeds into Aut(XC),
• there is a finite extension K of Qp, and a model of (X ,Γ) over the

valuation ring R of K, together with a polydisk U in X(K) which is
Γ invariant, and on which Γ acts by analytic diffeomorphisms (as in
Proposition 3.4).

To conclude the proof of Theorem A, our goal is to show that X is isomorphic
to the projective space of dimension d = n−1.

Remark 4.1. We shall simultaneously deal with a closely related situation,
in which X is a projective variety of dimension n− 1, Γ acts by birational
transformations on X , and there is a Γ-invariant polydisk U in X(K) on which
Γ acts by analytic diffeomorphisms (in particular, U does not contain any
indeterminacy point of Γ). Our goal is to prove that X is rational. Each time
the proof requires a modification, we add a comment or state a separate lemma.

4.1. Stabilizer of the origin in U. Let P0 be the subgroup of SL n(Qp) which
fixes the point m0 = [1: 0 : · · · : 0] in the projective space Pn−1(Qp); it is a
maximal parabolic subgroup of SL n(Qp). Let p0 denote its Lie algebra.
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We may assume that Γ is a congruence subgroup Γq of SL n(Z) and the
morphism Φ from Γ to Diffan(U) extends to an analytic morphism from the
p-adic Lie group G = Γ to Diffan(U). Since d = n− 1, we may assume that
the stabilizer P⊂G of the origin o∈U is a maximal parabolic subgroup of G.
Hence, in g = sln(Qp), the Lie algebra p of P is conjugate to the standard
maximal parabolic algebra p0 over the field Qp (see [5], chapter 5). Let P̃ be
the Zariski closure of P in SL n(Qp), so that P̃∩G coïncides with P. Since P̃
is a parabolic subgroup of SL n(Qp) of co-dimension n− 1, it is conjugate to
P0 in SL n(Qp) (it fixes a point in Pn−1(Qp)).

Lemma 4.2. There is an element A in SL n(Z) and a point o′ in U with the
following properties. Changing Φ into Φ ◦ cA, where cA is the conjugacy
cA(M) = AMA−1, the stabilizer P′ ⊂ G of the point o′ coincides with P0∩G.

The proof follows from the following remarks.

(1) There is a point [a] in Pn−1(Qp) such that P̃ is the stabilizer of [a] in
SL n(Qp). One can write [a] = [a1 : . . . : an] with ai in Zp and at least
one |ai| equal to 1.

(2) There is a matrix B in G such that B[a] is in Pn−1(Z). Indeed, G is
the congruence subgroup of SL n(Zp) defined as the group of matrices
M with M ≡ Id (modq) for some integer q; if one picks an element
[a′] = [a′1 : . . . : a′n] of Pn−1(Z) with entries a′i ≡ ai modulo a large
power of q, then there is an element B of G that maps [a] to [a′]. The
stabilizer of the point o′ := Φ(B)(0) in the group G is equal to BPB−1

and coincides with the stabilizer of a point [a′] ∈ Pn−1(Z).
(3) Then, there exists A in SL n(Z) such that A[a′] = [1 : 0 : · · · : 0]. Com-

posing Φ with the conjugation cA, the stabilizer of o′ is now equal to
P0∩G.

(4) Being a congruence subgroup, Γ is normal in SL n(Z); it is therefore
invariant under the conjugacy cA : M 7→ AMA−1. Thus, the morphism
Φ◦cA determines a new morphism from Γ to Aut(XK) which preserves
the polydisk U and for which the stabilizer of o′ coïncides with P0∩G.

We can then conjugate the action of Γ on U by the translation x 7→ x+ o′

to assume that the stabilizer of the origin in G is the intersection of G with
the parabolic subgroup P0. (note that the embedding of Γ in Aut(X) has been
twisted by the automorphism cA of Γ, for some matrix A in SL n(Z); it may
happen that this automorphism is not an interior automorphism of Γ.
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4.2. Local normal form. Consider the abelian subgroup T of G made of all
matrices (

1 0
t Id

)
where Id is the identity matrix of size (n− 1)× (n− 1) and t is a “vertical"
vector of size (n− 1) with entries t2, . . . , tn in Zp; the entries ti are equal to 0
modulo q if Γ is the congruence subgroup Γq. The intersection T ∩P0 is the
trivial subgroup {Id}.

The group T is an abelian subgroup of G that acts locally freely near the
origin of U (if not, this would contradict the maximality of P). Thus, the ti
may be used as local coordinates around 0 in U. In these coordinates, the
action of the group G is locally conjugate to the linear projective action of G
around the point m0 = [1 : 0 · · · : 0] in Pn−1(K).

Note that the local coordinate ti may be transcendental; it is not obvious, a
priori, that ti extends as an algebraic (rational) function on the quasi-projective
variety X . We shall prove that this is indeed the case in the next subsection
(see Lemma 4.3)

4.3. Invariant (algebraic) functions. Consider the one-parameter unipotent
subgroup E12 of P whose elements have the form(

1 s
0 Id

)
with s = (s,0, . . . ,0), s in Zp, and s ≡ 0 modulo q. Let α12 be a non-trivial
element of E12∩Γ. By construction, the automorphism α12 of U transforms
the local coordinate t2 into t2

1+mt2
for some integer m 6= 0, and the set {t2 = 0}

is, locally, the set of fixed points of α12. Thus, the hypersurface {t2 = 0} is the
intersection of an algebraic hypersurface of X with a neighborhood of 0 in U.

Let α21 be a non-trivial element of T ∩Γ corresponding to a vector t of type
(t,0, . . . ,0) (with t 6= 0 and t ≡ 0 modulo q). Then α`

21 acts on U and transports
the hypersurface {t2 = 0} to the hypersurface {t2 = t`}. Since {t2 = 0} is
algebraic and α21 is in Aut(X) (resp. in Bir(X) in the situation of Remark 4.1),
the hypersurfaces {t2 = t`} are all algebraic.

Denote by T2 the subgroup of T whose elements are defined by vectors of
type t = (0, t3, . . . , tn). The action of this subgroup on U preserves the local
coordinate t2 and is locally transitive on each level set {t2 = cst}. Thus, each
non-trivial element of T2∩Γ fixes infinitely many algebraic hypersurfaces in
X , whose local equations are t2 = `t, ` ∈ Z; moreover, the orbits of T2∩Γ are
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Zariski dense on these hypersurfaces. Let us now apply Theorem B of [8],
or more precisely its proof, to the group T2 (Theorem B is stated for a single
transformation g but applies to a finitely generated group with infinitely many
invariant hypersurfaces). Together with Stein factorization, we deduce that
there is a curve YK and a rational function τ2 : XK 99K YK , both defined over
the algebraic closure of K, such that

• τ2 is invariant under the action of T2∩Γ, meaning that τ2 ◦β = τ2 for
every β in T2∩Γ.
• the generic hypersurface {τ2 = cst} is irreducible.

Since the orbits of T2 along the invariant hypersurfaces {t2 = `t} are Zariski
dense and the action of T2 on YK is trivial, the projection τ2 is constant along
each of these hypersurfaces. As a consequence, the local analytic coordinate
t2 is, locally, a function of τ2: There is an analytic one-variable function φ2

such that t2 = φ2 ◦ τ2.
The transformation α12 transforms t2 into t2

1+mt2
for some m 6= 0. Thus, it

permutes the level sets of the algebraic function τ2, and induces an infinite
order automorphism of YK fixing the point τ2({t2 = 0}). This implies that YK
is a projective line P1

K: There is an isomorphism from YK to P1
K that maps the

point τ2({t2 = 0}) to the point [0 : 1]. We now fix an affine coordinate z on P1
K

for which this point is z = 0.
The iterates α`

12 of α12 transform the coordinate t2 into

t2
1+ `mt2

.

Thus, if ` = pn, one sees that the sequences of hypersurfaces α
+`
12 ({t2 = cst})

and α
−`
12 ({t2 = cst}) converge both to the fixed hypersurface {t2 = 0}. This

implies that the automorphism of P1
K induced by α12 is a parabolic transfor-

mation, acting by

z 7→ z
1+m′z

for some m′. Changing the affine coordinate z of P1
K into εz with ε = m′/m

(hence the function τ2 into ετ2 and φ2(x) into φ2(x/ε)), one may assume that
m′ = m. Then, both τ2 and t2 satisfy the same transformation rule under α12:

τ2 ◦α12 =
τ2

1+mτ2
, t2 ◦α12 =

t2
1+mt2

.
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We deduce that the function φ2 commutes with the linear projective transfor-
mation z 7→ z/(1+mz):

∀` ∈ Z, φ2

(
z

1+ `mz

)
=

φ2(z)
1+ `mφ2(z)

. (4.1)

By construction φ2 is analytic (in a neighborhood of 0) and maps 0 to 0.
Changing φ2(z) into φ2(z/(1 + uz)) for some non-zero u, one may assume
that φ2(x0) = x0 for some x0 6= 0. If one applies the functional equation
(4.1) with ` ≡ 0 modulo sufficiently large powers of p, then the sequence
x` = x0/(1+ `mx0) stays in the domain of definition of φ2 and φ2(x`) = x` for
all `; thus, φ2 is the identity: φ2(z) = z.

This concludes the proof of the following lemma, because the local coordi-
nates ti coincide with the rational functions τi and provide a local conjugacy
with the linear projective action of Γ on Pn−1

K .

Lemma 4.3. Each local analytic function ti, i = 2, . . . ,n, extends to a global
rational function τi 99K XK → K. Altogether, they define a rational map

τ : XK 99K P
n−1
K ,

defined by τ(x)= [1 : τ2(x) : . . . : τn(x)]. This rational map τ is dominant, and is
equivariant with respect to the action of Γ on X and the action of Γ⊂ SL n(Z)
on Pn−1

K by linear projective transformations.

4.4. Conclusion. We now assume that Γ acts by automorphisms on the quasi-
projective variety X (the case of birational transformations, as in Remark 4.1,
is dealt with below).

Lemma 4.4. The variety XK is complete, and the equivariant rational map
τ : XK → Pn−1

K is an isomorphism.

Proof. Fix a compactification XK of XK . Via the morphism Φ, the group Γ

acts by automorphisms on XK and by birational transformations on XK . The
image of Γ in PGL n(K) = Aut(Pn−1

K ) is a Zariski-dense subgroup Γ′. Let
Ind(τ) be the indeterminacy set of τ. Its intersection with XK is a Γ-invariant
algebraic subset, because Γ acts by automorphisms on both X and Pn−1

K . Its
total transform under τ is a Γ′-invariant locally closed subset of Pn−1

K . But all
such subsets are either empty or equal to Pn−1

K because Γ′ is a Zariski-dense
subgroup of PGL n(K). Thus, Ind(τ) does not intersect XK .

In particular, the image of XK by τ is a constructible Γ′-invariant subset
of Pn−1

K ; as such, it must be equal to Pn−1
K . Similarly, the total transform of
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the boundary XK \XK is empty. Thus, XK is complete, and τ determines a
morphism from XK to Pn−1

K . The critical locus of τ is a Γ′-invariant subset of
Pn−1

K of positive co-dimension: It is therefore empty, and τ is an isomorphism
because Pn−1

K is simply connected. �

Since the model XK is isomorphic to the projective space Pn−1
K , the complex

variety XC is isomorphic to Pn−1
C . This concludes the proof of Theorem A.

Let us now assume, as in Remark 4.1, that X is projective and Γ acts by
birational transformations on X .

Lemma 4.5. The equivariant rational mapping τ : XK 99K P
n−1
K is birational.

Proof. By construction, τ is rational and dominant; changing X in a bira-
tionally equivalent variety, we assume that τ is a regular morphism. The ele-
ments of Γ satisfy

τ◦ fX = fPn−1 ◦ τ

where fX corresponds to the birational action on X and fPn−1 corresponds to
the linear projective action on Pn−1. Embed X in some projective space PN ,
and consider the linear system of hyperplane sections H of X . Fix an element f
of Γ, and intersect X with n−1 hyperplanes to get an irreducible curve C ⊂ X
that does not intersect the indeterminacy set of f . The image of C by fX is an
irreducible curve ( fX)∗C, which satisfies π∗(( fX)∗(C)) = ( fPn−1)∗τ∗(C). The
degree of the curve τ∗(C) does not depend on f and is equal to the degree of
fPn−1)∗τ∗(C) because fPn−1 is a regular automorphism of the projective space.
This implies that the degree of the curve ( fX)∗C in X ⊂ PN is bounded by an
integer D(τ) that does not depend on f . As a consequence, the degrees of the
formulas defining the elements fX of Γ in Bir(X) are uniformly bounded. The
following result shows that the group Γ is “regularizable" (see [48] and the
references in [11]).

Theorem 4.6 (Weil regularization theorem). Let M be a projective variety,
defined over an algebraically closed field. Let Γ be a subgroup of Bir(M). If
there is a uniform upper bound on the degrees of the elements of Γ, then there
exists a birational transformation ε : M 99KM′ and a finite index subgroup Γ′

of Γ such that ε ◦Γ′ ◦ ε−1 is a subgroup of the connected component of the
identity Aut(M)0 in Aut(M).

In our context, this shows that, after conjugacy by a birational map ε : X 99K
X ′, the group Γ becomes a group of automorphisms, up to finite index. The
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previous lemma then shows that ε◦τ◦ε−1 is birational (the proof of the lemma
shows that X ′ is isomorphic to the projective space Pn−1). �

Thus, under the assumption of Remark 4.1, one can change Γ in a finite
index subgroup Γ′ and find a birational conjugacy between the action of Γ′

on X and the action of Γ′ by linear projective transformation on the projective
space.

5. ALGEBRAIC ACTIONS OF MAPPING CLASS GROUPS AND NILPOTENT

GROUPS

5.1. Mapping class groups. To show how the p-adic method may be applied
to certain non-linear countable groups, we study the following problem: Given
a positive integer g, what is the minimal dimension ma(g) of a quasi-projective
variety X such that a finite index subgroup of the mapping class group Mod(g)
embeds into Aut(X).

Theorem 5.1. The minimal dimension ma(g) is equal to 1 for g = 1, and
satisfies 2g−1≤ma(g)≤ 6g−6 for all g≥ 2.

Proof. The upper bound is well known: Consider the variety of representa-
tions of the fundamental group π1(Σg) into SL 2, where Σg denotes the closed
orientable surface of genus g. This variety is defined by the equation

Π
g
i=1[Ai,Bi] = Id

with (A1,B1,A2, . . . ,Bg) in (SL 2)
2g. The algebraic group SL 2 acts by conju-

gacy on this affine algebraic variety, and one denotes by χ(g,SL 2) the quotient
in the sense of geometric invariant theory. It is an affine variety on which the
mapping class group Mod(g) acts almost faithfully (see [36, 37]). Its dimen-
sion is 6g−6, as desired.

FIGURE 1. Simple closed loops on the surface of genus g.

The lower bound is obtained as follows. Let X be a quasi-projective variety
of dimension d. Let Γ be a finite index subgroup of the mapping class group
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Mod(g) acting faithfully on X , and identify Γ with its image in Aut(X). De-
note by d the dimension of X . We need to show that d ≥ g. From Sections 3.2
and 3.3, we know that there is a p-adic field Qp, a finite extension K of Qp,
and a model of (X ,Γ) over K; moreover, changing Γ in a finite index subgroup,
one can find an analytic polydisk U ⊂ X(K) which is Γ-invariant. Then we
have an embedding Γ→ Diffan(U).

Denote by Tαi and Tβi , i = 1, . . . ,g, and Tγ j , j = 1, . . . ,g−1, the Dehn twists
along the simple closed loops which are depicted on Figure 1. There exists an
integer m≥ 1 such that the twists T m

αi
, T m

βi
, and T m

γ j
are all in Γ.

Observe that the g twists T m
αi

commute to each other. From Bell-Poonen
theorem, each of them determines a p-adic analytic flow on U, hence an ana-
lytic vector field XT m

αi
; these vector fields commute. For q∈U, denote by s(q)

the dimension of the K-linear space spanned by the tangent vectors XT m
αi
(q),

1≤ i≤ g; let s be the maximum of s(q), for q in U.
Changing U in a smaller polydisk, there exists a subset S of {1, . . . ,g} such

that |S| = s and the XT m
α j
(x), j ∈ S, are linearly independent at every point x

of U. Denote by X j the vector field XT m
α j

for j in S. Each XT m
αi

,1≤ i≤ g, can
be written in a unique way as a sum

XT m
αi
= ∑

j∈S
Fi, jX j (5.1)

where the Fi, j’s are analytic functions on U. Since [XT m
αl
,XT m

α j
] = 0 for every

pair of indices l ∈ {1, . . .g} and j ∈ S, we obtain

XkFi, j = 0 (5.2)

for all i ∈ {1, . . . ,g} and j, k ∈ S.
Suppose that S 6= {1, . . . ,g}, and pick an index k in {1, . . . ,g} \ S. Ob-

serve that T m
βk

does not commute to T m
αk

but commutes to the other T m
αi

; hence
[XT m

βk
,X j] = 0 for every j ∈ S. Assume that, for every x in U, XT m

βk
(x) is a

linear combination of the X j(x), j ∈ S, and write

XT m
βk
= ∑

j∈S
Gk, jX j

where the Gk, j’s are analytic functions on U. The commutation rules imply
XiGk, j = 0 for all indices i and j in S; thus, Equations (5.1) and (5.2) lead to

XT m
αl

Gk, j = 0
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for all indices l ∈ {1, . . .g}. In particular, [XT m
αk
,XT m

βk
] = 0, so that T m

βk
com-

mutes to T m
αk

, a contradiction. So, replacing U by a smaller polydisk, we may
assume that the vector fields {XT m

βk
}∪{X j, j ∈ S} are linearly independent at

every point x of U. Now we add k to S and set Xk := XT m
βk

.
Repeat this argument to end up with a set Xi, i ∈ S = {1, . . . ,g}, of vector

fields which are linearly independent at the generic point; these vector fields
correspond to elements of type T m

αi
or T m

βi
, for a disjoint set of curves αi and

βi. In what follows, we apply a conjugacy by an element of the mapping class
group which maps this set of disjoint non-separating curves to α1, . . ., αg, and
assume that each Xi is given by the twist T m

αi
.

Now, consider the curves γ1 and δ1. The Dehn twists T m
γ1

and T m
δ1

generate a
free subgroup of the mapping class group (see Theorem 3.14 in [26]), and they
commute to the T m

αi
. If the vector field Y1 and Z1 corresponding to T m

γ1
and T m

δ1
are combinations Y1 = ∑H1, jXi, Z1 = ∑H ′1, jXi, then T m

γ1
and T m

δ1
commute,

a contradiction. Thus, one can add a vector field Y1 (or Z1) to our list of
generically independant vector fields. Playing the same game with the curves
γk and δk for 2≤ k ≤ g−1, we end up with 2g−1 vectors fields, and deduce
that dim(X)≥ 2g−1. �

5.2. Nilpotent groups. Let H be a group. Define H(1) = [H,H], the derived
subgroup of H, generated by all commutators aba−1b−1 with a and b in H,
and then inductively H(r) = [H(r−1),H(r−1)]. The first integer r ≥ 1 such that
H(r) is trivial is called the derived length of H; such an r exists if and only if
H is solvable. This integer is denoted by dl(H), and similar notations are used
for Lie algebras. Then, define the stable derived length of H by

sdl(H) = min{dl(H ′) | H ′ is a finite index subgroup of H}.

Theorem 5.2. Let N be a finitely generated nilpotent group. If N acts faithfully
by automorphisms on a complex quasi-projective variety X, then sdl(H) ≤
dim(X).

The proof is a direct combination of the p-adic method, as used for finite
index subgroups of SL n(Z) and Mod(g), and the arguments of [11], §3.4.

6. PERIODIC ORBITS AND INVARIANT POLYDISKS

In this section, our goal is to produce invariant p-adic polydisks for groups
of birational transformations of a projective variety defined over Qp (or a finite
extension K of Qp). As explained in Sections 3.3 and 8, this is closely related
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to the existence of "good" periodic orbits for groups of birational transforma-
tions defined over a finite field F . Thus, we focus first on the construction of
such orbits.

In what follows, Γ is a group with a finite symmetric set of generators S. Let
G = G(Γ,S) be its Cayley graph: Vertices are elements of the group, and two
vertices g1 and g2 are joined by an edge if g1 = sg2 for some element s ∈ S.

6.1. Kazhdan property (T) and linear isoperimetric inequalities. In this
section, we describe a consequence of Kazhdan property (T) which is well
known to specialists of expander graphs and isoperimetric inequalities (see
[20]).

6.1.1. The graph of cosets. Given a subgroup R of Γ, consider the set VR of
cosets f ·R, f ∈ Γ. Define a graph GR as follows:

• the set of vertices of GR is VR;
• two vertices g1R and g2R ∈ VR are joined by an edge if and only if

there exists s ∈ S satisfying g2 = sg1.

When R = {e}, GR is the Cayley graph of Γ. The group Γ acts by left trans-
lations on the set of vertices VR; given h in Γ, we denote by Lh the translation
gR 7→ hgR. When R is a normal subgroup of Γ, then Γ also acts on the right,
gR→ gRh = ghR, and this is an action by isometries.

Denote by L2(GR) the space of L2-functions on VR, i.e. functions ϕ : VR→
C which are square integrable:

‖ ϕ ‖2
L2(GR)

:= ∑
ω∈GR

|ϕ(ω)|2 < ∞.

The action of Γ on VR by left translations determines a unitary representation
g 7→ L∗g−1 of Γ on L2(GR), where L∗g−1ϕ := ϕ◦L−1

g .
Let Ω be a finite subset of VR. Denote by χΩ : VR→{0,1} the characteristic

function of Ω, i.e. χΩ(x)= 1 if and only if x∈Ω. Since Ω is finite, χΩ is square
integrable. An element x ∈Ω is in the boundary ∂Ω of Ω if and only if there
exists an element y of VR\Ω which is connected to x by an edge of GR. In other
words, x ∈ ∂Ω if and only if x ∈Ω and there exists s ∈ S such that Ls(x) 6∈Ω,
if and only if χΩ(x) = 1 and there exists s ∈ S such that (L∗s χΩ)(x) = 0. Thus,
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we have

‖χΩ−L∗s χΩ)‖2
L2(GR)

= ∑
x∈VR

(χΩ(x)−χΩ(Lsx))2

≤ ∑
x∈∪s∈S(Ω∆s−1(Ω))

12

and
‖χΩ−L∗s χΩ)‖2

L2(GR)
≤ 2|S||∂Ω|. (6.1)

6.1.2. Kazhdan property (T) and isoperimetric inequality (see [20]). A finitely
generated group Γ has Kazhdan property (T) if for any finite symmetric set
of generators S, there exists an ε > 0, which depends only on Γ and S, with
the following property: Given any unitary representation ρ of Γ on a Hilbert
space H , either there exists v ∈H with ‖v‖= 1 and ρ(Γ) · v = v, or, for every
v ∈H , there exists s ∈ S such that

‖ρ(s) · v− v‖ ≥ ε‖v‖.

Such a positive number ε is called a Kazhdan constant for the pair (Γ,S).

Proposition 6.1. Let Γ be a discrete group with Kazhdan property (T), let S
be a finite symmetric set of generators of Γ, and let ε be a Kazhdan constant
for the pair (Γ,S). Let R be a subgroup of Γ. Either GR is finite, which means
that R is a finite index subgroup of Γ, or GR satisfies the following linear
isoperimetric inequality:

|∂Ω| ≥ ε2

2|S|
|Ω|

for every finite subset Ω⊆VR.

Proof. Consider the unitary action of Γ on L2(XR) by left translations.

First case.– There exists a function ϕ ∈ L2(GR) with L2-norm equal to 1
which is invariant under left translation. Such a function is constant because
Γ acts transitively on VR. Since ϕ 6≡ 0, this implies |GR|< ∞.

Second case.– There is no invariant function in L2(GR) \ {0}. For every fi-
nite set Ω ⊆ GR, the characteristic function χΩ is an element of L2(GR) and
property (T) implies the existence of an element s ∈ S such that

‖χΩ−L∗s χΩ‖L2(GR) ≥ ε‖χΩ‖L2(GR) = ε|Ω|1/2.

From Inequality (6.1), we deduce (2|S||Ω|)1/2 ≥ ε|Ω|1/2. �
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6.2. Finite orbits and finite index subgroups. Let X be a geometrically irre-
ducible projective variety of dimension d defined over a finite field F . Assume
that the group Γ embeds into the group Bir(X) of birational transformations of
X (defined over F) and identify Γ to its image in Bir(X).

6.2.1. The escaping set E. Let U be a Zariski open subset of X defined over
F such that for every s ∈ S, the map s|U : U → X is a morphism and a regu-
lar embedding; in other words, s|U has no indeterminacy point and does not
contract any curve. Such a set exists because S is finite: One can take U to be
the complement of the union of all indeterminacy sets and critical loci of all
elements of S.

Remark 6.2. One may want to reduce U in certain situations. For instance,
given an element f of the group Γ, with f 6= Id, one may remove the set of
fixed points of f from X , and take U ⊂ X \{ f (x) = x}.

By construction, the co-dimension of the Zariski closed set X \U is at least
one. Let E ⊆U be the subset of points that may escape U when one applies
one of the generators:

E :=
⋃
s∈S

s−1(X \U)

where s−1(X \U) is the total transform of the Zariski closed set X \U . This
escaping set E is a proper, Zariski closed subset of U .

6.2.2. Lang-Weil estimates (see [34]). By Lang-Weil estimates, there exists
a positive constant cU such that, given any finite field extension F ′ of F , the
number of points in U(F ′) satisfies:

|F ′|d− cU |F ′|d−1/2 ≤ |U(F ′)| ≤ |F ′|d + cU |F ′|d−1/2 (6.2)

where d = dimU = dimX . (the constant cU does not depend on F)
Similarly,

|E(F ′)| ≤ bE |F |d−1 + cE |F |d−3/2 (6.3)

where bE is the number of geometrically irreducible (d−1)-dimensional com-
ponents of E; the constants bE and cE depend on E but not on F ′.

Remark 6.3. Assume that Γ is a group of pseudo-automorphisms of X , mean-
ing that each element of Γ is an isomorphism in co-dimension 1; one can then
choose U such that X \U and E have co-dimension ≥ 2. In that case, the
Lang-Weil estimates can be strengthen: For instance, |E(F ′)| ≤ bE |F |d−2 +

cE |F |d−5/2.
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6.2.3. Regular stabilizers. Fix a finite extension F ′ of the field F . Given a
point x ∈U(F ′), one associates a subgroup Rx of Γ which will be called the
regular stabilizer of x. To define it, we proceed as follows. Let (e,g1, · · · ,gl)

be a path in the Cayley graph G , and denote by si+1 the element of S such that
gi+1 = si+1gi, 1≤ i≤ l−1. One says that the path (e,g1, · · · ,gl) is a regular
path if

(i) s1 is well defined at x0 := x and maps x0 to a point x1 ∈U ;
(ii) for all i≤ l−1, si+1 maps xi to a point xi+1 ∈U . (since xi is in U , si+1

is well defined at xi)

Thus the notion of regular path depends on the starting point x. By defini-
tion, the regular orbit of x is the set of all points gl(x) for all regular paths
(e,g1, · · · ,gl). The regular orbit of x may intersect the escaping set E; when it
does, we simply do not apply an element of S that would make it leave U .

Definition 6.4. An element g ∈ Γ is a regular stabilizer of x ∈U(F ′) if there
exists a regular path (e,g1, · · · ,gl) in G such that (i) gl = g and (ii) gl(x) = x.
The set of all regular stabilizers is called the regular stabilizer of x, and is
denoted by Rx.

Lemma 6.5. The regular stabilizer Rx is a subgroup of Γ.

Proof. Given g and h in Rx, and regular paths (e,g1, · · · ,gl) and (e,h1, · · · ,hl′)

in Γ satisfying properties (i) and (ii) of Definition 6.5 for g and h respectively,
one can define a new regular path (e,h1, · · · ,hl′,g1hl′ , · · · ,glhl′) which fixes x;
thus, g◦h is an element of Rx. Similarly, write gi+1 = si+1gi, si+1 ∈ S, x0 = x,
and xi+1 = si+1(xi) for 0≤ i≤ l−1. By construction of U (and symmetry of S),
si+1 is a regular automorphism from a neighborhood of xi to a neighborhood of
xi+1; hence s−1

i+1 is well defined at xi+1. One can therefore reverse the regular
path and get a path (e,s−1

l ,s−1
l−1 ◦ s−1

l , · · · ,g−1) which starts at xl and ends at
x0. In our case, xl = x = x0, and we conclude that g−1 is an element of Rx. �

This proof shows that we can concatenate and reverse regular paths. The
evaluation map evx takes a regular path (e,g1, · · · ,gl) and gives a point

evx(e,g1, · · · ,gl) = gl(x).

We shall say that an element g ∈ Γ is very well defined at x ∈ U(F ′) if
there is a regular path from e to gl = g. For such an element, the image
evx(e,g1, · · · ,gl) = gl(x) = g(x) does not depend on the choice of the regu-
lar path joining e to g. As a consequence, the evaluation map is defined on the
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set of elements of Γ which are very well defined at x and maps it into the set
U(F ′). The preimage of x is the regular stabilizer. The image is the regular
orbit of x.

6.2.4. The subset Ωx ⊆ GRx . Fix a point x ∈U(F ′). Given an element g ∈ Γ

which is very well defined at x, one gets a point g(x) ∈U , as well as a vertex
[g] := gRx in the graph of cosets GRx for the regular stabilizer Rx of x. We
define Ωx ⊆ GRx to be the set of all such vertices [g].

Proposition 6.6. The subset Ωx ⊆ GRx satisfies the following properties:

(1) Ωx contains [e];
(2) Ωx is connected: For every [g] ∈ Ωx there is a path in GRx , corre-

sponding to a regular path (e,g1, · · · ,gl) in Γ, which connects [e] to
[g] in Ωx;

(3) the evaluation map evx : [g] 7→ g(x) is well defined (because Rx stabi-
lizes x) and is an injective map evx : Ω→U(F ′), the image of which is
the regular obit of x.

Proof. All we have to prove is that evx is injective. If g(x) = h(x) with two
regular paths (e,g1, · · · ,gl = g) and (e,h1, · · · ,hl′ = h), one can reverse the
path from e to hl′ = h and get a regular path that maps x to h−1 ◦g(x) = x; this
means h−1 ◦g ∈ Rx. �

Thus one gets a parametrization of the regular orbit of x by the set Ωx. An
element [g] ∈ Ωx is a boundary point of Ωx in the graph GRx if and only if
there is a generator s ∈ S such that [sg] 6∈Ωx; this means that s is not a regular
automorphism from a neighborhood of g(x) to its image s(x): g(x) escapes
from U when one applies s, and therefore g(x) ∈ E(F ′). Since the evaluation
map is injective, one gets

|∂Ωx|= |evx(∂Ωx)|= |Ex(F ′)|

where Ex(F ′) is the subset of E(F ′) which is equal to evx(∂Ωx).
Since regular orbits are disjoint, the sets Ex(F ′) and Ey(F ′) are disjoint as

soon as x and y are not in the same regular orbit. Being finite, U(F ′) is a
union of finitely many disjoint regular orbits. Fixing a set {x1, · · · ,xm} of
representatives of these regular orbits, we obtain

U(F ′) =
m⊔

i=1

evxi(Ωxi).
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Suppose that Rx has infinite index in Γ for every x ∈U(F ′). Proposition 6.1
implies

|U(F ′)|=
m

∑
i=1
|evxi(Ωxi)|=

m

∑
i=1
|Ωxi|

≤
m

∑
i=1

2|S|
ε2 |∂Ωxi|=

m

∑
i=1

2|S|
ε2 |Exi(F

′)| ≤ 2|S|
ε2 |E(F

′)|.

Then the Lang-Weil estimates stated in Equations (6.2) and (6.3) imply that

|F ′|d ≤ cU |F ′|d−1/2 +
2|S|
ε2

(
bE |F ′|d−1 + cE |F ′|d−3/2

)
.

Thus, if the degree of the extension is large enough (for instance if |F ′|1/2 ≥
cU +2|S|(bE + cE)/ε2), one gets a contradiction. This provides a proof of the
following theorem.

Theorem 6.7. Let X be a projective variety defined over a finite field F. Let Γ

be a subgroup of Bir(X) with Kazhdan property (T ) and S be a finite symmetric
set of generators of Γ. Let U be a Zariski open subset of X such that for every
s ∈ S, the map s|U : U → X is a regular embedding defined over F. If F ′ is a
finite extension of F and |F ′| is large enough, there exists a point x in U(F ′)
such that the regular stabilizer Rx of x is a finite index subgroup of Γ.

6.2.5. Abelian groups. Say that a graph G satisfies an isoperimetric inequality
of type α if there is a constant c > 0 such that

|∂Ω|α ≥ c|Ω| (6.4)

for every finite subset Ω of G . For instance, the Cayley graph of the group Zd ,
for any finite symmetric set of generators, satisfies an isoperimetric inequality
of type d/(d−1), and the isoperimetric inequality satisfied in Proposition 6.1
is of linear type (α = 1). If G satisfies an isoperimetric inequality of type α,
for some constant c > 0, it satisfies the isoperimetric inequality of type β for
every β≥ α with the same constant c.

Given a group Γ, with a finite symmetric set of generators S, denote by B(r)
the ball of radius r in the Cayley graph G = G(Γ,S).The number of vertices
in B(r) is denoted by |B(r)|, and the isoperimetric profile ΦS is defined by

ΦS(t) = min{r | |B(r)| ≥ t}.

For instance, if Γ is a free abelian group of rank d, and S is any finite symmetric
set of generators, one can find a subset S′ of S such that S′ forms a basis of the
vector space Γ⊗Z Q. The set S′ has d elements; thus, the ball of radius r in
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G(Γ,S) contains at least (1+ 2r)d elements. This implies that ΦS(t) ≤ t1/d .
Coulhon and Saloff-Coste proved in [18], that

|∂Ω|
|Ω|
≥ 1

8|S|ΦS(2|Ω|)

for every finite subset of the Cayley graph G of a group Γ. We shall use
this inequality to give a short proof of the following lemma, which provides
a uniform constant cS for the isoperimetric inequality in quotients of abelian
groups.

Lemma 6.8. Let A be a free abelian group of rank k > 1, and let S be a finite
symmetric set of generators of A. Fix an integer l < k, and set q = k− l and
cS(l) = (16|S|)−(q−1)/q. Then, given any subgroup R of A of rank at most l,
and any finite subset Ω of the Cayley graph G(A/R,S), we have

|∂Ω|q/q−1 ≥ cS(l)|Ω|.

Proof. The group R is contained in a subgroup T of A such that A/T is a free
abelian group of rank at least q. In the group A/T , with the set of generators
given by S, the isoperimetric profile Φ satisfies Φ(t) ≤ t1/q. The projection
A/R→ A/T maps the ball of radius r in the Cayley graph G(A/R,S) onto the
ball of the same radius in G(A/T,S). Thus, the isoperimetric profile of A/R
satisfies the same inequality Φ(t)≤ t1/q. This implies

|∂Ω| ≥ (8|S|)−12−1/q|Ω|(q−1)/q.

and the result follows. �

Theorem 6.9. Let X be a projective variety, defined over a finite field F. Let
A be a free abelian group of birational transformations of X (defined over F).
Let k be the rank of A and d be the dimension of X. Then, there exists a finite
extension F ′ of F and a point x in X(F ′) such that the rank of the regular
stabilizer Rx of x in A is at least k−d.

Proof. Changing F in a finite extension and X in one of its irreducible com-
ponents, we may assume that X is geometrically irreducible. We may assume
that d is positive, since otherwise X is just one point. Assume that the regular
stabilizer of every point has rank at most l, with l < k− d. Denote by α the
ratio q/(q−1) with q = k− l > d; we have 1 < α < d/(d−1). Following the
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proof of Theorem 6.7, Lemma 6.8 implies

|U(F ′)| ≤ cst
∑

i
|Exi(F

′)|α

≤ cst

(
∑

i
|Exi(F

′)|

)α

.

From Lang-Weil estimates, one derives

|F ′|d ≤ cU |F ′|d−1/2 + cst
(

bE |F ′|d−1 + cE |F ′|d−3/2
)α

.

This provides a contradiction if |F ′| is large because (d−1)α < d. �

6.3. Invariant polydisks for Kazhdan groups. Let XZp be a projective va-
riety defined over Zp and let Γ be a finitely generated subgroup of Bir(XZp)

with a finite symmetric set of generators S. Let X be the special fiber of XZp ,
defined over Fp. For g ∈ Bir(XZp), denote by BZp,g the union of the indeter-
minacy loci and the critical loci of g in XZp . Assume that the special fiber X
is not contained in BZp,s, for any s ∈ S. This implies that X is not contained in
BZp,g for any g∈ Γ; in particular, the restriction of g to X is birational. In other
words, we assume that the action of Γ on XZp is a good model in the sense of
Section 8.1.

When K is an extension of Qp, denote by OK its valuation ring.

Theorem 6.10. Assume that Γ satisfies Kazdan property (T). Then, changing
Qp in a finite extension K, and Γ in a finite index subgroup, one can find a
local analytic diffeomorphism ϕ from the unit polydisk U = (OK)

d ⊂ Kd to an
open subset V of X(K) such that V is Γ-invariant and the action of Γ on V is
conjugate, via ϕ, to a subgroup of Diffan(U). Moreover, one can choose this
polydisk in the complement of any given proper Zariski closed subset of the
generic fiber.

Proof. Denote by Sing(XZp) the singular locus of XZp and set

UZp := XZp \
(

Sing(XZp)
⋃

(∪s∈SBZp,s)
)
.

By assumption, UZp ∩X is a non-empty Zariski open set of X defined over F ;
let U be an open subset of UZp ∩X (for instance, take for U the complement
of a given divisor). Observe that for any s ∈ S, the map s|UZp

: UZp → XZp is a
regular open embedding; hence, s|U : U→X is also a regular open embedding.
By Theorem 6.7, there exists a finite field extension F of Fq and a point x in
U(F) such that the regular stabilizer Rx of x is a finite index subgroup of Γ.
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Let K be a finite extension of Qp whose residue field is F .
Every element g of Rx is a regular morphism on a neighborhood of x and

fixes x. Denote by W the set of K-points y ∈ XK whose specialization in the
special fiber X coincides with x. By Proposition 8.6, one can find a local
analytic diffeomorphism ϕ from the unit polydisk U = (OK)

d ⊂ Kd to an
open subset V ⊂W such that V is Rx-invariant and the action of Rx on V
is conjugate, via ϕ, to a subgroup of Diffan(U). �

Similarly, Theorem 6.9 provides invariant polydisks for subgroups of rank
l ≥ k−dim(X) when Γ is a free abelian group of birational transformations of
rank k.

6.4. Groups of birational transformations and finite index subgroups.

6.4.1. Groups of birational transformations. One says that a group Γ is linear
if there is a field k, a positive integer n, and an embedding of Γ into GL n(k).
Similarly, we shall say that Γ is a group of birational transformations if
there is a field k, a projective variety Xk, and an embedding of Γ into Bir(Xk).
The following properties are obvious.

(1) Linear groups are groups of birational transformations.
(2) The product of two groups of birational transformations is a group of

birational transformations.
(3) Any subgroup of a group of birational transformations is also a group

of birational transformations.

In certain cases, one may want to specify further properties: If Γ acts faith-
fully by birational transformations on a variety of dimension d over a field of
characteristic p, we shall say that Γ is a group of birational transformations in
dimension at most d in characteristic p. For instance,

(4) Every finite group is a group of birational transformations in dimen-
sion 1 and characteristic 0. (see [30], Theorem 6’)

(5) The modular group Mod(g) of a closed, orientable surface of genus
g ≥ 3 and the group Out(Fg) are groups of birational transformations
in dimension ≤ 6g, but Out(Fg) is not linear if g ≥ 4 (see Section 5
and [36, 28]).

6.4.2. Malcev and Selberg properties. Linear groups satisfy Malcev and Sel-
berg properties: Every finitely generated linear group is residually finite and
contains a torsion free, finite index subgroup. One doesn’t know whether
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groups of birational transformations share the same properties (see [10, 16]
for an introduction to this problem). We can now prove the following result,
which is stated as Theorem C in the introduction.

Theorem 6.11. Let Γ be a discrete group with Kazhdan property (T). If Γ is
a group of birational transformations in characteristic 0, then Γ is residually
finite and contains a torsion free, finite index subgroup.

Proof. Since Γ has property (T), it is finitely generated (see [20]); fix a finite
symmetric set of generators S for Γ, and an embedding of Γ in the group of
birational transformations of a smooth projective variety X (over a field k of
characteristic 0). Pick an element f in Γ\{Id} and denote by Fix( f ) the proper
Zariski closed set of fixed points of f ; more precisely, Fix( f ) is defined as the
Zariski closure of the subset of the domain of definition of f defined by the
equation f (z) = z.

By Section 8.1, one can find a prime number p, and a good model for Γ ⊂
Bir(XZp) for (X ,Γ), such that the special fiber Xp of XZp is not contained
in Fix( f ). Choose a Zariski open subset U of Xp which is contained in the
complement of Fix( f ). We now copy the proof of Theorem 6.10. Since Γ

has property (T), one can find an extension F ′ of the residue field Fp, and
a point x in U(F ′), for which the regular stabilizer Rx has finite index in Γ.
By construction, Rx does not contain f . Changing Rx in the intersection of
its conjugates gRxg−1 for g in the finite set Γ/Rx, one obtains a finite index,
normal subgroup R′x such that f reduces to a non-trivial element in the finite
group Γ/R′x. This shows that Γ is residually finite.

To prove the second assertion, we keep the same notation. Let V = (OK)
d

denote an Rx-invariant polydisk, on which Rx acts by analytic diffeomorphisms.
Changing Rx into a finite index subgroup R′′x , one may assume that every ele-
ment g in R′′x corresponds to a power series

g(z) = A0 +A1(x)+ ∑
k≥2

Ak(z)

where each Ai is a homogeneous polynomial of degree i, A0 is equal to 0 mod-
ulo p2 and A1 is the identity modulo p. After a conjugation by multiplication
by p, Bell-Poonen theorem can be applied to g. Thus, Corollary 2.7 implies
that the order of every torsion element of R′′x is a power of p.

Now, take another prime p′ for which one can find a good model of the
pair (X ,Γ) and apply the same strategy to construct a finite index subgroup R′′y
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such that every torsion element of R′′y has order a power of p′. The intersection
R′′x ∩R′′y is a torsion free, finite index subgroup of Γ. �

6.4.3. Central extensions and simple groups. Fix two positive integers q and
n with q≥ 5 and n≥ 2. Consider the group Sp 2n(Z), and the central extension

0→ Z/qZ→ Γ→ Sp 2n(Z)→ 1

which is obtained from the universal cover

0→ Z→ S̃p 2n(R)→ Sp 2n(R)→ 1

by taking the quotient with respect to the subgroup qZ of the center Z. Since
n≥ 2, Sp 2n(Z) has property (T) (see [20]). Since q≥ 5, every finite index sub-
group of Γ contains the non-trivial finite subgroup 4Z/qZ of Z/qZ (see [21]);
hence, Γ does not contain any torsion free finite index subgroup.

Corollary 6.12. The group Sp 2n(Z) is a group of birational transformations,
but there is a finite cyclic central extension Γ of Sp 2n(Z) that does not act
faithfully by birational transformations.

In particular, the property “Γ is a group of birational transformations” is
not stable under finite central extensions. Similar examples can be derived
from [39] and [41].

Corollary 6.13. If Γ is an infinite, simple, discrete group with Kazhdan prop-
erty (T), and X is a complex projective variety, every morphism Γ→ Bir(X) is
trivial.

In particular, the simple groups constructed in [25, 15] do not act non triv-
ially by birational transformations.

Proof. If there exists a non-trivial morphism Γ→ Bir(X), this morphism is
an embedding because Γ is simple; thus, Γ contains a non-trivial, finite index
subgroup, contradicting the fact that Γ is infinite and simple. �

7. ACTIONS OF LATTICES ON QUASI-PROJECTIVE VARIETIES

In this section, we prove Theorem B, and a corollary which concerns bira-
tional actions of the lattice SL n(Z).
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7.1. Lattices in higher rank Lie groups (see [5]). Let S⊂ GL m be an alge-
braic subgroup of GL m defined over the field of rational numbers Q. We shall
assume that

(i) S is almost simple (this means that the Lie algebra gR of S(R) is sim-
ple);

(ii) as an algebraic group, S is connected and simply connected (equiva-
lently S(C) is a simply connected manifold);

(iii) the real rank of S is greater than 1 (see § 1.3);
(iv) the lattice Γ = S(Z) of S(R) is not co-compact (i.e. rankQ(S)> 0).

Theorem 7.1. Let S be an algebraic subgroup of GL m defined over the field
of rational numbers Q. Assume that S is almost simple and simply connected,
and that its real rank is greater than 1. Assume, moreover, that the lattice
Γ = S(Z) is not co-compact. Then, given any prime number p, Γ is dense in
S(Zp) and the pro-p complection of Γ is a finite central extension of S(Zp).

This theorem encapsulates two types of results, known as the strong ap-
proximation and the congruence subgroup properties. It summarizes a long
sequence of efforts; see [43] and [42] for two good survey articles.

Example 7.2. Let r > 0 be a square-free integer. Let L = Q(
√

r), a real qua-
dratic extension of Q, and σ be its unique non-trivial Galois automorphism:
σ(
√

r) =−
√

r. Let σ̃ be the automorphism of the vector space of 3×3 matri-
ces with coefficients in L which is defined by applying σ to all coefficients of
each matrix. Let J3 be the 3×3 symmetric matrix

J3 =

 0 0 1
0 1 0
1 0 0

 .

Consider the group

Γ = SU(J3;Z[
√

r],σ) =
{

g ∈ SL 3(Z[
√

r]) | σ̃(tg)J3g = J3
}
.

Then Γ is lattice in SL 3(R). If one embeds L3 in V = R3⊕R3 by the Q-linear
map ∆(v) = (v,J3σ(v)) then ∆(L3) spans V and ∆((Z[

√
r])3) is a lattice in V .

This defines a structure of Q-vector space VQ on V . Now, define ρ : SL 3(R)→
SL(V ) by

ρ(A)(v,w) = (A(v),t A−1(w)) ∀(v,w) ∈V = R3⊕R3.

Then, one can verify that the Lie group ρ(SL 3(R))⊂ GL(V ) is defined over Q
(with respect to the Q-structure VQ), and that Γ is the subgroup preserving the
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lattice VQ(Z)⊂V . This provides an example of an Q-algebraic group S⊂GL 6

with S(R) isomorphic to SL 3(R) and S(Z) not co-compact. The Q-rank of S

is equal to 1, and Γ is not commensurable to SL 3(Z).

Example 7.3. For every 0 ≤ ` ≤ n− 1, there is a linear algebraic group G`

which is defined over Q such that (i) G`(R) is isomorphic to SL n(R) and (ii)
the Q-rank of G` is equal to `. For n = 3, there are only three type of lattices
Γ in SL 3(R): Either Γ is co-compact, or Γ has rank 1 is commensurable to
SU(J3;Z[

√
r],σ) for some r > 0, or Γ has rank 2 and is commensurable to

SL 3(Z).

7.2. Minimal homogeneous spaces (see [47], p. 187, and [46]). Given a
simple complex Lie algebra s, one denotes by δ(s) the minimal co-dimension
of its proper Lie subalgebras p < s. If S is a complex Lie group with Lie
algebra equal to s, then δ(s) is equal to the minimal dimension δ(S) of a
homogeneous variety V = S/P with dim(V )> 0. Such a maximal group P is
the stabilizer of a point m ∈ V ; it is a parabolic subgroup of S (see [47], page
187). If s (resp. S) is defined over a subfield of C, we use the same notation
δ(s) (resp. δ(S)) to denote δ(s⊗C).

TABLE 1. Minimal dimensions of faithful representations and
minimal homogeneous spaces

the its the dimension of its smallest
Lie algebra dimension minimal representation homogeneous space

slk(C), k ≥ 2 k2−1 k k−1

sok(C), k ≥ 7 k(k−1)/2 k k−2

sp2k(C), k ≥ 2 2k2 + k 2k 2k−1

e6(C) 78 27 14

e7(C) 133 56 27

e8(C) 248 248 57

f4(C) 52 26 15

g2(C) 14 7 5

This dimension δ(S) has been computed for all simple complex Lie groups
(see [46] for instance). The results are summarized in Table 1, from which one
sees that δ(s)≥ rankC(s) with equality if and only if s is slδ(s)+1(C).
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Remark 7.4. Note that SO 5(C) is isogenous to SL 4(C) and acts on P3 (the
space of lines in the smooth quadric Q ⊂ P4 is isomorphic to P3). Similarly,
SO 6(C) is isogenous to Sp 4(C) and acts on P3 too.

7.3. Proof of Theorem B. Changing S in a finite cover, and Γ into its pre-
image under the covering morphism, we may assume that S is simply con-
nected. Identify Γ with its image in Bir(X), and choose a good p-adic model
for (X ,Γ), as in Section 8.

Changing Γ in a finite index subgroup and the field Qp in a finite extension
K, one can find an analytic polydisk U ⊂ X(K) which is Γ-invariant, and on
which the action of Γ extends as an analytic action of its closure, an open
subgroup G = Γ of the p-adic group S(Zp). This follows from Theorem 7.1
and Theorem 2.12

Let o be a point of U which is not fixed by G; the stabilizer of o is a closed
subgroup P of G: Its Lie algebra determines a subalgebra of s of co-dimension
at most dim(X). If dim(X)< δ(S), then P is a finite index subgroup of G, and
the action of Γ on X factors through a finite group. Thus,

dim(X)≥ δ(S)≥ rankR(S)

(which is better than the inequality in Theorem B). If dim(X) = rankR(S), then
δ(S) = rankR(S) and (s) = sln with n = dim(X)+1.

7.4. Birational actions of SL n(Z). Theorem B and Section 4 (in the case of
birational transformations) lead to the following corollary.

Corollary 7.5. Let Γ be a finite index subgroup of SL n(Z), with n≥ 3. If Γ acts
by birational transformations on an irreducible complex projective variety X,
then either the image of Γ in Bir(X) is finite, or dim(X)≥ n−1. Moreover, if
the image is infinite and dim(X) = n−1, then X is rational, and the action of
Γ on X is birationally conjugate to a linear projective action of Γ on Pn−1.

Proof. Since n ≥ 3, Γ is almost simple: Its normal subgroups are finite and
central, or co-finite. Changing Γ in a finite index subgroup, we may assume
that Γ is torsion free. Then, if the image of Γ in Bir(X) is infinite, the morphism
Γ→Bir(X) is in fact injective. Theorem B implies that dim(X)≥ n−1, and its
proof shows that there is a good, p-adic model of (X ,Γ) for which a finite index
subgroup of Γ preserves a p-adic polydisk, acting by analytic diffeomorphisms
on it. Then, Section 4 shows that there is a birational, Γ-equivariant mapping
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τ : X 99KPn−1 if dim(X)= n−1 (the action of Γ on Pn−1 is by linear projective
automorphisms). �

8. APPENDIX: GOOD MODELS AND INVARIANT POLYDISKS

8.1. Good models. Denote by k an algebraically closed field of characteristic zero.
Let X be a projective variety, which is defined over k and is geometrically irreducible.
Let Γ be a finitely generated subgroup of Bir(Xk), with a finite symmetric set of gen-
erators S⊂ Γ.

As explained in Section 3.2, there exists a subring R of k, which is finitely generated
over Z, such that X is defined over the fraction field K of R and every birational
transformation s ∈ S is defined over K. This means that there exists a projective
variety XK → Spec(K) such that X = XK×Spec(K) Spec(k).

Pick a model π : XR→ Spec(R) which is projective over Spec(R) and whose generic
fiber is XK . Every birational transformation f of XK extends to a birational transfor-
mation of XR over Spec(R). For every point y ∈ Spec(R), denote by Xy the fiber of XR
above y and by fy the restriction of f to Xy. For any g ∈ BirR(XR), denote by BR,g the
union of the indeterminacy loci and the critical loci of g in XR.

Lemma 8.1. There exists a nonempty, affine, open subset U of Spec(R) such that
(1) U is of finite type over Spec(Z);
(2) for every point y∈U, the fiber Xy is geometrically irreducible and dimK(y) Xy =

dimK XK , where K(y) is the residue field at y;
(3) for every s ∈ S and every y ∈U, the fiber Xy is not contained in BR,s.

Proof. To prove the lemma, we shall use the following fact, which is proved below.

Lemma 8.2. For any integral affine scheme Spec(A) of finite type over Spec(Z) and
any nonempty open subset V1 of Spec(A), there exists an affine open subset V2 of V1
which is of finite type over Spec(Z).

Since XK is geometrically irreducible, by ([31], Prop. 9.7.8) there exists an affine
open subset V of Spec(R) such that Xy is geometrically irreducible for every y ∈ V .
By Lemma 8.2, we may suppose that V is of finite type over Spec(Z).

By generic flatness ([31], Thm. 6.9.1) and Lemma 8.2, we may change V in a
smaller subset and suppose that the restriction of π to π−1(V ) is flat. Then, the fiber
Xy is geometrically irreducible and of dimension dimK(y) Xy = dimK XK for every point
y ∈V .

For s∈ S, denote by BK,s the union of the indeterminacy locus and the critical locus
of s in XK ; thus, the complement of BK,s is the open subset on which s is a local
isomorphism. Then BK,s is a proper closed subset of XK . Observe that BK,s is exactly
the generic fiber of π|BR,s : BR,s→ Spec(R).

By generic flatness, there exists a nonempty, affine, open subset Us of V such that
the restriction of π to every irreducible component of π

−1
|BR,s

(Us) is flat. Set

U :=
⋂
s∈S

Us;
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if s∈ S and y∈U , the fiber Xy is not contained in BR,s. By Lemma 8.2, we may change
U to suppose that U is of finite type over Spec(Z). Then

dimK(y)(BR,s∩Xy) = dimK(BK,s)< dimK XK = dimK(y) Xy

for every s ∈ S and y ∈V ; consequently, Xy is not contained in BR,s. �

Proof of Lemma 8.2. Denote by I the ideal of A that defines the closed subset Spec(A)\
V . Pick any non-zero element f ∈ I; the open set U := Spec(A)\{ f = 0} is an open
subset of V . Moreover since U = Spec(A[1/ f ]), it is of finite type over Spec(Z). �

By Lemma 8.1, we may replace Spec(R) by U and assume that
• for every y ∈ Spec(R), the fiber Xy is geometrically irreducible;
• for every s ∈ S and y ∈ Spec(R), the fiber Xy is not contained in BR,s.

Proposition 8.3. There exists a prime p ≥ 3, an embedding of R into Zp and a pro-
jective scheme XZp → Spec(Zp) such that

(1) the special fiber Xp of XZp → Spec(Zp) is geometrically irreducible and
dimFp Xp = dimQp XZp×Spec(Zp) Spec(Qp);

(2) for every s ∈ S, the fiber Xp is not contained in BZp,s, where BZp,s denotes the
union of the indeterminacy loci and the critical loci of s in XZp .

We shall say that such an embedding provides a good model for the pair (X ,Γ)
over Zp. There are, indeed, infinitely many primes p for which the conclusions of this
proposition are satisfied (because there are infinitely many possible choices for the
prime p in Lemma 3.2).

Proof. Set d = dimQp XZp×Spec(Zp) Spec(Qp).
Since R is integral and finitely generated over Z, by Lemma 3.2 (i.e. Lemma 3.1 of

[4]) there exists a prime p≥ 3 such that R can be embedded into Zp. This induces an
embedding Spec(Zp)→ Spec(R).

Set XZp := XR×Spec(R) Spec(Zp). All fibers Xy, for y ∈ Spec(R), are geometrically
irreducible and of dimension d; hence, the special fiber Xp of XZp → Spec(Zp) is
geometrically irreducible and of dimension d. Since BZp,s ⊂ BR,s∩Xp for every s ∈ S,
the fiber Xp is not contained in BZp,s. �

8.2. From fixed points to invariant polydisks. Let XZp be a projective variety de-
fined over Zp and let Γ be a finitely generated subgroup of Bir(XZp) with a finite
symmetric set of generators S. Let X be the special fiber of XZp ; it is defined over Fp.

For g ∈ Bir(XZp), denote by BZp,g the union of the indeterminacy locus and the
critical locus of g in XZp . Assume that the special fiber X is not contained in BZp,s for
any s ∈ S; this implies that X is not contained in BZp,g for any g ∈ Γ. In particular,
the restriction of g to X is birational for every g ∈ Γ. These assumptions are satisfied
when the pair (XZp ,Γ) is a good model (as in Section 8.1).

Let K be a finite extension of Qp, OK be the valuation ring of K, and F the residue
field of OK ; by definition, F =OK/mK where mK is the maximal ideal of OK . Denote
by | · |p the p-adic norm on K, normalized by |p|p = 1/p. Set

XOK = XZp×Spec(Zp) Spec(OK).
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The generic fiber XZp ×Spec(Zp) Spec(K) is denoted by XK , and the special fiber is
XF = XZp ×Spec(Zp) Spec(F). Denote by r : XK(K)→ XF(F) = X(F) the reduction
map.

Since XOK is projective, there exists an embedding ι : XOK → PN
OK

defined over OK .
On the projective space PN(K), there is a metric distp, defined by

distp([x0 : · · · : xN ], [y0 : · · · : yN ]) =
maxi 6= j(|xiy j− x jyi|p)

maxi(|xi||p)max j(|y j|p)
for every pair of points [x0 : · · · : xN ], [y0 : · · · : yN ] ∈ PN(K). Via the embedding
ι|X(K) : XK(K)→ PN

K , distp restricts to a metric distp,ι on XK(K). This metric does
not depend on the choice of the embedding ι; thus, we simply write distp instead of
distp,ι.

Proposition 8.4. For any pair of points w, z∈ XK(K), we have r(w) = r(z) if and only
if distp(w,z)< 1.

Proof. Set ι(w) = [x0 : · · · : xN ] and ι(z) = [y0 : · · · : yN ] where the coordinates xi, yi
are in OK and satisfy maxi |xi|p = maxi |yi|p = 1. Then ι(r(w)) = [x0 : · · · : xN ] and
ι(r(z)) = [y0 : · · · : yN ] where xi and yi denote the images of xi and yi in the residue
field F = OK/mK . By definition,

distp([x0 : · · · : xN ], [y0 : · · · : yN ]) = max
i6= j

(|xiy j− x jyi|p).

If r(w) = r(z), we have xi = yi for all indices i; thus

|xiy j− x jyi|p = |xi(y j− yi)+(xi− x j)yi|p < 1

and distp(w,z) < 1. Now, suppose that r(w) 6= r(z). Assume, first, that there exists
an index i, say i = 0, with xiyi 6= 0. Replacing xi by xi/x0 and yi by yi/y0, we get
x0 = y0 = 1. Since r(w) 6= r(z), there exists i≥ 1 with xi 6= yi. It follows that

distp(w,z)≥ |xiy0− x0yi|p = |xi− yi|p = 1.

To conclude, suppose that xiyi = 0 for all indices i ∈ {0, . . . ,N}. Pick two indices i
and j such that xi 6= 0 and y j 6= 0; thus, yi = 0 and x j = 0, and we obtain distp(w,z)≥
|xiy j− xiy j|p = 1. �

Let x be a smooth point in X(F) and V be the open subset of XK(K) consisting of
points z ∈ XK(K) satisfying r(z) = x. Choosing suitable homogeneous coordinates,
we may suppose that x is the point [1 : 0 : · · · : 0] ∈ PN

F . Then V is contained in the
unit polydisk.

B := {[1 : z1 : · · · : zN ] | zi ∈ OK for all i = 1, ,N}.
Recall from Section 2.1.1 that a map ϕ from the unit polydisk U = Od

K ⊂ Kd to B is
analytic if we can find elements ϕi, 1≤ i≤N, of the Tate algebra OK〈x1, . . . ,xd〉, such
that

ϕ(x1, . . . ,xd) = [1 : ϕ1(x1, ,xd) : · · · : ϕN(x1, . . . ,xd)].

Proposition 8.5. There exists a one to one analytic diffeomorphism ϕ from the unit
polydisk U = (OK)

d ⊂ Kd to V .
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Proof. Consider the affine chart AN
OK
→ PN

OK
defined by z0 6= 0. Both x and B are

contained in AN
OK

. Since XOK is smooth at x, we know that there are equations G j ∈
OK [z1, . . . ,zN ], 1≤ j ≤ N−d, such that

• X is locally defined by equations G1 = · · ·= GN−d = 0; in particular,

V = XK(K)∩B = {z ∈ B | Gi(z) = 0, ∀i = 1, . . . ,N−d}.

• The rank of the matrix (∂z j Gi(0))i≤N−d, j≤N is N−d, where Gi = Gi modulo
mKOK [z1, . . . ,zN ].

Permuting the coordinates x1, . . . ,xN we may suppose that the determinant of the ma-
trix (∂z j Gi(0))i, j≤N−d is different from 0 in F . Denote by π : B→ (OK)

d the projec-
tion [1 : z1 : · · · : zN ] 7→ (z1, . . . ,zd). By Hensel’s lemma, there exists a unique analytic
diffeomorphism ϕ : (OK)

d → V such that ϕ(x) is the unique point in B satisfying
Gi((x,ϕ(x))) = 0 for all i≤ N−d. �

Let f be a birational map in BirOK (XOK ) such that x /∈ BOK , f and f (x) = x. Then
f fixes the set V of points z in XK(K) such that r(z) = x, and the action f on V is
conjugate, via ϕ, to an analytic diffeomorphism on the polydisk U. This concludes
the proof of the following proposition.

Proposition 8.6. There exists an analytic diffeomorphism ϕ from the unit polydisk
U = (OK)

d to an open subset V of XK(K) such that for any birational map f in
BirOK (XOK ) with x /∈ BOK , f and f (x) = x, the set V is f -invariant and the action of f
on V is conjugate, via ϕ, to an analytic diffeomorphism on U.

When one applies this proposition to groups of birational transformations, one gets
the following. If Γ < Bir(XZp) satisfies both

(i) x is not contained in any of the sets BOK , f (for f ∈ Γ),
(ii) f (x) = x for every f in Γ,

then V is Γ-invariant and ϕ conjugates the action of Γ on V to a group of analytic
diffeormorphisms of the polydisk U.

Thus, once a good model has been constructed (as in Section 8.1), the existence of
an invariant polydisk on which the action is analytic is equivalent to the existence of a
fixed point x ∈ XF(F) in the complement of the bad loci BOK , f , f in Γ. Periodic orbits
correspond to polydisks which are invariant by finite index subgroups.
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