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ON DEGREES OF BIRATIONAL MAPPINGS
SERGE CANTAT AND JUNYI XIE

ABSTRACT. We prove that the degrees of the iterates deg(f") of a bi-
rational map satisfy liminf(deg(f™)) < +oo if and only if the sequence
deg(f") is bounded, and that the growth of deg(f") can not be arbitrarily
slow, unless deg(f") is bounded.

1. DEGREE SEQUENCES

Let k be a field. Consider a projective variety X, a polarization H of X (given
by hyperplane sections of X in some embedding X C PV), and a birational
transformation f of X, all defined over the field k. Let k be the dimension
of X. The degree of f with respect to the polarization H is the integer

degy(f) = (f*H)-H*! (1.1)

where f*H is the total transform of H, and (f*H)- H*~! is the intersection

product of f*H with k — 1 copies of H. The degree is a positive integer, which

we shall simply denote by deg(f), even if it depends on H. When f is a

birational transformation of the projective space P* and the polarization is

given by Op«(1) (i.e. by hyperplanes H C IP¥), then deg(f) is the degree of the

homogeneous polynomial formulas defining f in homogeneous coordinates.
The degrees are submultiplicative, in the following sense:

deg(fog) <cx mdeg(f)deg(g) (1.2)

for some positive constant cx y and for every pair of birational transforma-
tions. Also, if the polarization H is changed into another polarization H’,
there is a positive constant ¢ such that degy (f) < cdegy/ (f) (see [[7, 11} [13]).

The degree sequence of f is the sequence (deg(f")),>o; it plays an impor-
tant role in the study of the dynamics and the geometry of f. There are in-
finitely, but only countably many degree sequences (see [14]]); unfortunately,
not much is known on these sequences when dim(X) > 3. In this article, we
obtain the following basic results.
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e The sequence (deg(f")),>0 is bounded if and only if it is bounded
along an infinite subsequence (see Theorems A and B in § Rland [3)).

e If the sequence (deg(f")),>o0 is unbounded, then its growth can not
be arbitrarily small; for instance, maxo< j<, deg( f7) is asymptotically
bounded from below by the inverse of the diagonal Ackermann func-
tion (see Theorem C in § 4] for an effective result).

We focus on birational transformations because a rational dominant transfor-
mation which is not birational has a topological degree 6 > 1, and this forces
an exponential growth of the degrees: 1 < 8"/ < lim,(deg(f")'/") where
k = dim(X) (see [7] and [4], pages 120-126).

2. AUTOMORPHISMS OF THE AFFINE SPACE

We start with the simpler case of automorphisms of the affine space; the
goal of this section is to introduce a p-adic method to study degree sequences.

Theorem A (Urech).— Let f be an automorphism of the affine space Aﬁ. If
deg(f™") is bounded along an infinite subsequence, then it is bounded.

In fact, Urech proves in [14] that maxo< j<,deg(f/) is bounded from below
by an'/* for some constant o > 0 when (deg(f")) is unbounded. Here, we
content ourselves with the simpler version stated in Theorem A.

2.1. Urech’s proof. Assume deg(f") < B for some sequencen; <np <...<
ny of positive integers. The iterates f™ are in the vector space End B(Aﬁ) of
endomorphisms of A’f{ of degree < B. This vector space has dimension

dim(End p(AL)) :k< KB ) @.1)

Thus, if £ > dim(End (A¥)) there is a non-trivial linear relation between the
f" in the vector space End g(A¥), which we can write

n—1
=Y anf" (2.2)
m=1

for some integer n < ny and some coefficients a,, € k. Then, every iterate N
of f with N > n is a linear combination of the automorphisms f”* with m < n,
and so deg(f") is bounded from above by the maximum of the degrees of f”
for 0 < m < n— 1. This shows that the sequence (deg(f"))n>0 is bounded.
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2.2. The p-adic argument. Let us give a second proof when char(k) = 0,
which will be generalized in § [3|to treat the case of birational transformations.

2.2.1. Tate diffeomorphisms. Let p be a prime number. Let K be a field of
characteristic 0 which is complete with respect to an absolute value | - | satis-
fying |p| = 1/p; such an absolute value is automatically ultrametric (see [9],
Ex. 2 and 3, Chap. 1.2). Let R = {x € K; |x| < 1} be the valuation ring of K;
in the vector space K*, the unit polydisk is the subset U = R¥.

Fix a positive integer k, and consider the ring R[X] = R[X{, ..., Xk] of polyno-
mial functions in k variables with coefficients in R. For f in R[x], define the
norm || f || to be the supremum of the absolute values of the coefficients of f:

| fll= s111p|a,\ (2.3)

where f =Y, ;) ax'. By definition, the Tate algebra R(x) is the com-
pletion of R[x] with respect to this norm. It coincides with the set of for-
mal power series f = ¥, a;x! converging (absolutely) on the closed unit poly-
disk R*. Moreover, the absolute convergence is equivalent to |a;| — O as
length(I) — oo. Every element g in R(x)¥ determines a Tate analytic map
g:U—=U.

For f and g in R(x) and ¢ in R, the notation f € p°R(x) means || f ||< |p|°
and the notation f =g mod (p°) means || f —g ||< |p|°; we then extend such
notations component-wise to (R(x))™ for all m > 1.

For indeterminates X = (Xy,...,X;) and y = (y1,...,¥m), the composition
R(y) x R(x)™ — R(x) is well defined, and coordinatewise we obtain
R(y)" X R(x)™ — R(x)". (2.4)

When m = n = k, we get a semigroup R(x)*. The group of (Tate) analytic
diffeomorphisms of U is the group of invertible elements in this semigroup;
we denote it by Diff*" (U ). Elements of Diff*” (U ) are bijective transformations
f: U — U given by f(x) = (fi,...,fr)(x) where each f; is in R(x) with an
inverse f~': U — U that is also defined by power series in the Tate algebra.
The following result is due to Jason Bell and Bjorn Poonen (see [2, [12]).

Theorem 2.1. Let f be an element of R(x)* with f =id mod (p°) for some
real number ¢ > 1/(p —1). Then f is a Tate diffeomorphism of U = R* and
there exists a unique Tate analytic map ®: R x U — U such that

(1) ®(n,x) = f*(x) foralln € Z;

(2) O(s+1,x) = D(s,D(t,Xx)) forallt, s in R.
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2.2.2. Second proof of Theorem A. Denote by S the finite set of all the coef-
ficients that appear in the polynomial formulas defining f. Let Rg C k be the
ring generated by S over Z, and let K be its fraction field:

Z C Rs CKs CKk. (2.5)

Since char(k) = 0, there exists a prime p > 2 such that Ry embeds into Z,, (see
[10], §4 and 5, and [2], Lemma 3.1). We apply this embedding to the coeffi-
cients of f and get an automorphism of Ak which is defined by polynomial
formulas in Z (X1, ..., X;]; for simplicilty, we keep the same notation f for this
automorphism (embedding Ry in Z, does not change the value of the degrees
deg(f™)). Since f is a polynomial automorphism with coefficients in Z,, it
determines an element of Diff”"(U ), the group of analytic diffeomorphisms of
the polydisk U = Z*.

There exists a positive integer m such that " fixes the origin 0 € U modulo
p*: f™(0) =0 mod (p?). Taking some further iterate, we may also assume
that the differential D f{" satisfies Df]" = Id mod (p). We fix such an integer
m and replace f by f™. The following lemma follows from the submultiplica-
tivity of degrees (see Equation (I.2) in Section[I)). It shows that replacing f by
S is armless if one wants to bound the degrees of the iterates of f.

Lemma 2.2. If the sequence deg(f™") is bounded for some m > 0, then the
sequence deg(f™) is bounded too.

Denote by x = (X1, .. .,X;) the coordinate system of Ak and by m,, the mul-
tiplication by p: mp(x) = px. Change f into g :=m,, Yo fom,; then g = 1d
mod (p) in the sense of Section 2.2.1l Since p > 3 Theorem [2.1] gives a
Tate analytic flow ®: Z, x A¥(Z,) — A¥(Z,) which extends the action of g:
®(n,x) = g"(x) for every integer n € Z. Since P is analytic, one can write

X) = ZA](t)XJ (2.6)
J

where J runs over all multi-indices (ji, ..., jx) € (Z>0)* and each A; defines
a p-adic analytic curve Z, — Ak (Qp). By submultiplicativity of the degrees,
there is a constant C > 0 such that deg(g") < CB"™. Thus, we obtain A;(n;) =0
for all indices i and all multi-indices J of length |J| > CB™. The A; being
analytic functions of t € Z,,, the principle of isolated zeros implies that

Ay =0in Z,(1), VJ with |J| > CB". 2.7)
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Thus, ®(z,x) is a polynomial automorphism of degree < CB™ for all r € Z,,
and g"(x) = ®(n,x) has degree at most CB™ for all n. By Lemma [2.2] this
proves that deg(f") is a bounded sequence.

3. BIRATIONAL TRANSFORMATIONS
We now extend Theorem A to the case of birational transformations.

Theorem B.— Let K be a field of characteristic 0. Let X be a projective variety
and f: X --+ X be a birational transformation of X, both defined over k. If
the sequence (deg(f™))n>0 is not bounded, then it goes to +oo with n:

lggir:ofdeg(f ) = Hoo.

Urech’s argument does not apply to this context, because the dimension of
the space of rational transformations of Aﬁ of degree < B is infinite. We shall
therefore apply the p-adic method, adapting the proof given in Section

Note that Theorem B can be combined with a theorem of Weil to obtain the
following: if f is a birational transformation of the projective variety X, over
an algebraically closed field of characteristic 0, and if the degrees of its iterates
are bounded along an infinite subsequence f", then there exist a birational map
V: Y —-» X and an integer m > 0 such that fy :=y ' o fo is in Aut(Y), and
£ is in the connected component Aut(Y)? (see [3] and references therein).

In what follows, f and X are as in Theorem B; we also assume, without loss
of generality, that k = C and that X is smooth. We suppose that there is an
infinite sequence of integers ny <np < ... <n; < ... and a positive number
B such that deg(f"/) < B for all j. We fix a finite set S of complex numbers
such that X and f are defined by equations and formulas with coefficients in
S, and we embed the ring Rg C C generated by § in some Z,, for some prime
number p > 2. According to [3]], Section 3, we may assume that X and f have
good reduction modulo p.

3.1. The Hrushovski’s theorem and p-adic polydisks. According to a the-
orem of Hrushovski (see [8]]), there is a periodic point zog of f in X(F) for
some finite field extension F of the residue field F ), the orbit of which does
not intersect the indeterminacy points of f and f~!. If £ is the period of zo,
then f*(z0) = zo and D! is an element of the finite group GL ((T'X,)z) ~
GL (k,F;). Thus, there is an integer m > 0 such that f™(z9) = zo and Df}} = Id.



DEGREE SEQUENCES 6

Replace f by its iterate g = f™. Then, g fixes z9 in X(F), g is an iso-
morphism in a neighborhood of zp, and Dg,, = Id. According to [1] and [3]
Section 3, this implies that there is

e a finite extension K of Q,, with valuation ring R C K;

e apoint zin X (K) and a polydisk V, ~ R* € X (K) which is g-invariant
and such that gy, =1d mod (p) (in the coordinate system (Xi,...,Xx)
of the polydisk).

When the point zg is in X (F),) and is the reduction of a point z € X(Z,), the
polydisk V_ is the set of points w € X(Z,) with |z —w| < 1; one identifies
this polydisk to U = (Z,)* via some p-adic analytic diffeomorphism ¢: U —
V; changing ¢ into @ om,, if necessary, we obtain gy, = Id mod (p) (see
Section[2.2.2]and [3]], Section 3). In full generality, a finite extension K of Q,
is needed because zp is a point in X (F) for some extension of the residue field.

3.2. Controling the degrees. As in Section denote by U the polydisk
R* ~ V_; thus, U is viewed as the polydisk R and also as a subset of X (K).
Applying Theorem 2.1to g, we obtain a p-adic analytic flow

®:RxU—U, (1,x)— P(z,x) 3.1)

such that ®(n,x) = g"(x) for every integer n. In other words, the action of g
on U extends to an analytic action of the additive compact group (R, +).

Let m;: X x X — X denote the projection onto the first factor. Denote by
Birp(X) the set of birational transformations of X of degree D; once birational
transformations are identified to their graphs, this set becomes naturally a finite
union of irreducible, locally closed algebraic subsets in the Hilbert scheme of
X x X (see [3], Section 2.2, and references therein). Taking a subsequence,
there is a positive integer D, an irreducible component Bp of Birp(X), and a
strictly increasing, infinite sequence of integers () such that

g" €Bp (3.2)

for all j. Denote by Bp the Zariski closure of Bp in the Hilbert scheme of
X x X. To every element h € Bp corresponds a unique algebraic subset Gj,
of X x X (the graph of h, when £ is in Bp). Our goal is to show that, for
every ¢ € R, the graph of ®(z, -) is the intersection G, NU 2 for some element
h; € Bp; this will conclude the proof because g"(x) = ®(n,x) for all n > 0.
We start with a simple remark, which we encapsulate in the following lemma.
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Lemma 3.1. There is a finite subset E C U C X (K) with the following prop-
erty. Given any subset E of U x U with T1(E) = E, there is at most one
element h € Bp such that E C Gy,

Fix such a set E, and order it to get a finite list E = (x1,...,xy,) of elements
of U. Let E' = (x1,...,X¢),X¢y+1,---,%¢) be any list of elements of U which
extends E.

For every element 4 in Bp, the variety Gj, determines a correspondance
Gn C X x X. The subset of elements (h, (x;,yi)1<i<¢) in Bp x (X x X)¢ defined
by the incidence relation

(xi,5i) € Gn (3.3)
for every 1 <i < /is an algebraic subset of Bp x (X x X)’. Add one constraint,
namely that the first projection (x;)1<;<¢ coincides with E’, and project the
resulting subset on (X x X)’: we get a subset G(E') of (X x X)".

Then, define a p-adic analytic curve A: R — (X x X)! by

A(t) = (xi, P(t,xi))1<i<e- (3.4)

If t =nj, g" is an element of Bp and A(n;) is contained in the graph of g"/;
hence, A(n;) is an element of G(E’). By the principle of isolated zeros, the
analytic curve 7 — A(r) C (X x X) is contained in G(E’) for all ¢ € R. Thus,
for every ¢ there is an element /; € Bp such that A(¢) is contained in the subset
g,‘jr of (X x X)¢. From the choice of E and the inclusion E C E’, we know
that &, does not depend on E’. Thus, the graph of ®(z,-) coincides with the
intersection of Gy, with U x U. This implies that the graph of g"(-) = ®(n,-)
coincides with Gy, , and that the degree of g" is at most D for all values of n.

4. LOWER BOUNDS ON DEGREE GROWTH

We now prove that the growth of (deg( ")) can not be arbitrarily slow unless
(deg(f™)) is bounded. For simplicity, we focus on birational transformations
of the projective space; there is no restriction on the characteristic of k.

4.1. A family of integer sequences. Fix two positive integers k and d: later
on, k will be the dimension of the projective space PX, and d will be the degree
of f: Pk ——s Pk Set

m=(d—-1)(k+1). 4.1
Then, consider an auxiliary integer D > 1, which will play the role of the
degree of an effective divisor in the next paragraphs, and define

qg=(dD)"(D+1). (4.2)
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Thus, g depends on k, d and D because m depends on k and d. Then, set

a0:<k:D>—1, bo=1, co=D+1. (4.3)

Starting from the triple (ao, bo,co), we define a sequence ((a;,bj,c;)) >0 in-
ductively by
(ajs1,bj41,¢j41) = (aj,b;—1,4c5) (4.4)
if b; > 2, and by
(ajs1,bjr1,cj1) = (aj—1,4¢},qc5) = (aj— 1 cjur,¢je1) (4.5)
if b; = 1. By construction, (ay,b1,c1) = (ao — 1,qc3,qcf).
Define ®: Z* — Z* by
®(c) = gc’. (4.6)

Lemma 4.1. Define the sequence of integers (F;);>1 recursively by Fi = q(D+
1) and Fy, 1 = ®Fi(F;) for i > 1 (where ®F is the Fi-iterate of ®). Then

(@14F ot DIt F 44 By CLe R+t F) = (@0 — i — 1, Fiyy, Figp).

The proof is straightforward. Now, define the function S: ZT — Z* as the
sum of the F;:

S()=1+FA+FR+ - +F 4.7)

for all j > 1. The function S is increasing and goes to +oo extremely fast
with j. Then, set

Xd7k(”):maX{DZO| S(( k*];D ) —-2) <n}. (4.8)

Lemma 4.2. The function Xqy: Z* — Z* is non-decreasing and goes to +oo
with n.

Remark 4.3. The function S is primitive recursive (see [6l], Chapters 3 and 13).
In other words, S is obtained from the basic functions (the zero function, the
successor s(x) = x+ 1, and the projections (x;)1<;<m — X;) by a finite sequence
of compositions and recursions. Equivalently, one can write a program that
computes S, all of whose instructions are limited to (1) the zero initialization
V < 0, (2) the increment V < V + 1, (3) the assignement V < V', and (4)
loops of definite length. Writing such a program is an easy exercise. Now,
consider the diagonal Ackermann function A(n) (see [6], Section 13.3). It
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grows asymptotically faster than any primitive recursive function; hence, the
inverse of the Ackermann diagonal function

o(n) =max{D >0 | Ack(D) < n}. 4.9)

is, asymptotically, a lower bound for )4 (n). A better lower bound is obtained
by showing that ), 4 is in the L¢ hierarchy of [6], Chapter 13; this gives an
asymptotic lower bound by the inverse of the function f; of [6], independent
on the values of d and k, but this is a very week bound too.

4.2. Statement of the lower bound. We can now state the result that will be
proved in the next paragraphs.

Theorem C.— Let f be a birational transformation of the complex projective
space Pt If the sequence (maxo< j<,(deg(f7)))n>0 is unbounded, then it is
bounded from below by the sequence of integers (Y4 x(n))n>0.

Remark 4.4. There are infinitely, but only countably many sequences of de-
grees (deg(f"))n>0 (see [14]). Consider the countably many sequences

( max (deg(fj))) . (4.10)

0<j<n

restricted to the family of birational maps for which (deg(f")) is unbounded.
We get a countable family of non-decreasing, unbounded sequences of inte-
gers. Now, let (u;)icz., be any countable family of non-decreasing and un-
bounded sequences of integers (u#;(n)). Define a sequence w(n) as follows.
First, setv; = min{ug,uy,...,u j}; this defines a new family of sequences, with
the same limit +-oo, but now v;(n) > v;1(n) for every pair of non-negative in-
tegers. Then, set my = 0, and define m,,;| recursively to be the first positive
integer such that v, (m,41) > v,(m,) + 1. We have m, | > m, + 1 for all
n € Zxo. Set w(n) := v,, (m,,) where r, is the unique non-negative integer sat-
isfying m,, <n <m,,+1 — 1. By construction, w(n) goes to 4+ with n and
u;(n) is asymptotically bounded from below by w(n).

In Theorem C, the result is more explicit. Firstly, the lower bound is ex-
plicitely given by the sequence ()4 x(n))»>0. Secondly, the lower bound is not
asymptotic: it works for every value of n. In particular, if deg(f/) < xax(n)
for 0 < j <nand deg(f) = d, then the sequence (deg(f")) is bounded.
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4.3. Divisors and strict transforms. To prove Theorem C, we consider the

action of f by strict transform on effective divisors. As above, d = deg(f) and
m=(d—1)(k+1) (see Section ..

4.3.1. Exceptional locus. Let X be a smooth projective variety and 7; and
T,: X — P¥ be two birational morphisms such that f =m0 chl; then, con-
sider the exceptional locus Exc(my) C X, project it by m; into PX, and list its
irreducible components of codimension 1: we obtain a finite number

Er, ..., Epp) (4.11)

of irreducible hypersurfaces, contained in the zero locus of the jacobian deter-
minant of f. Since this critical locus has degree m, we obtain:

m(f) <m, and deg(E;)<m (Vi>1). (4.12)

4.3.2. Effective divisors. Denote by M the semigroup of effective divisors
of Pﬁ; every element of M is a finite sum of irreducible hypersurfaces with
non-negative integer coefficients. There is a partial ordering < on M, which is
defined by E < E’ if and only if the divisor E' — E is effective.

We denote by deg: M — Z>( the degree function. For every degree D > 1,
we denote by M the set P(H(Pk, Opi (D))) of effective divisors of degree D;
thus, M is the disjoint union of all thekMD, and each of these components will
be endowed with the Zariski topology of P(H°(P, Opk (D))). The dimension

of Mp is equal to the integer ag = ag(D, k) from Section 4.1k

dim(Mp) = < ’”l;D ) 1. (4.13)
Let G C M be the semigroup generated by the E;:
m(f)
G= P Z:oE:. (4.14)

i=1
The elements of G are the effective divisors which are supported by the excep-
tional locus of f. For every E € G, there is a translation operator T : M — M
which is defined by Tg: E' — E + E’; it is a linear projective embedding of
the projective space Mp into the projective space Mp y geq(r)- We define

M3 =Mp\ U Te(Mp_geg(E))- (4.15)
E€G\{0},deg(E)<D

Thus, M}, is an open subset of Mp; it is the complement of finitely many
proper linear projective subspaces. Also, My = My and M is obtained from



DEGREE SEQUENCES 11

M by removing finitely many points, corresponding to the E; of degree 1 (the
hyperplanes contracted by f). Set M° = (Jp>(Mp,. This is the set of effective
divisors without any component in the exceptional locus of f. The inclusion
of M° in M will be denoted by 1: M° — M.

There is a natural projection g : M — G; namely, ng(E) is the maximal
element such that E — nig(E) is effective. We denote by n,: M — M° the
projection T, = |d — 7; this homomorphism removes the part of an effective
divisor E which is supported on the exceptional locus of f.

Remark 4.5. The restriction of the map 7, to the projective space Mp is piece-
wise linear, in the following sense. Consider the subsets Ug p of Mp which
are defined for every E € G with deg(E) < D by

Uep=TE (MDfdeg(E)) \ U T (MDfdeg(E’))'
E'>E,E'€G,deg(E')<D
They define a stratification of Mp by (open subsets of) linear subspaces, and
T, coincides with the of the linear map inverse of 7¢ on each U p.

4.3.3. Strict transform. First, we consider the total transform f*: M — M,
which is defined by f*(E) = (m1).%;(E) for every divisor E € M. This is
an injective homomorphism of semigroups. Let [xo,...,x;] be homogeneous
coordinates on PX. If f = [fy : ---: fi] is defined by homogeneous polynomial
functions f; € K[xo, ..., x| of degree d, and if E is defined by the homogeneous
equation P(xg,...,x;) =0, then f*(E) is defined by Po f = P(fo,..., fx) =0.
Thus, f* induces a linear projective embedding of Mp into M;p for every D.
Then, we denote by f°: M° — M° the strict transform. It is defined by

fY(E) = (o0 f*o1)(E). (4.16)

This is a homomorphism of semigroups. Removing the exceptional locus
(m1)+(E(n2)) from P&, one gets a variety ¥, and an induced birational trans-
formation fy: Y --» Y. Then, every divisor E € M° intersects Y on a divisor
Ey of the same degree: this provides a bijection between effective divisors of
Y and elements of M° that conjugates (fy)* to f°. In particular, (f°)" = (f")°.

4.4. Proof of Theorem C. Let 1 be the generic point of M} (1 corresponds
to a generic hyperplane of IP’ﬁ). The degree of f*(n) is equal to the degree
of f, and since M is generic, f*(n) coincides with f°(n). Thus, deg(f) =
deg(f°(n)) and more generally

deg(f") = deg((f*)™) (vr=1). (4.17)



DEGREE SEQUENCES 12

Fix an integer D > 0. Write M% p for the union of the M}, with D' < D, and
define recursively Zp(0) = M2, and

Zp(i+1)={E € Zp(i)| f°(E) € Zp(i)} (4.18)

for i > 0. A divisor E € M2, is in Zp(i) if its strict transform f°(E) is of
degree < D, and f°(f°(E)) is also of degree < D, up to (f°)/(E) which is
also of degree at most D. The subsets Zp (i) form a decreasing sequence of
Zariski closed subsets (in the disjoint union M2, of the My, D' < D). The
strict transform f° maps Zp (i + 1) in Zp(i). There exists a minimal integer
¢(D) > 0 such that

Zp(U(D)) = () Zp(i): (4.19)

i>0
we denote this subset by Zp (o) = Zp(¢(D)). By construction, Zp () is stable
under the operator f°; more precisely, f°(Zp (o)) = Zp(eo) = (f°) 1 (Zp(e)).
LetT: Z>0 — Z>( be a lower bound for the inverse function of ¢:

((t(n))<n (Vn>0). (4.20)

Assume that max{deg(f™) | 0 <m < ng} < 1t(ng) for some ngp > 1. Then
deg((f°)'(m)) < t(ng) for every integer i between 0 and no; this implies that
M is in the set Z; () (£(T(10))) = Zy(ny) (o), so that the degree of (f°)™(n) is
bounded from above by t(ng) for all m > 0. From Equation (4.17) we deduce
that the sequence (deg(f™))m>0 is bounded. This proves the following lemma.

Lemma 4.6. Let T be a lower bound for the inverse function of L. If
max{deg(f") |0 <m<np} <1(ng)
for some ng > 1, then the sequence of degrees (deg(f"))n>0 is bounded.

So, to conclude, we need to compare ¢: Z>o — Z™ to the function S: Z> —
Z of paragraph 1] (recall that S depends on the parameters k = dim(PP§) and
d = deg(f) and that ¢ depends on f).

Let us describe Zp (i + 1) more precisely. For each i, and each E € G of
degree deg(E) < dD consider the subset Tg (1(Zp(i))) N Mp; this is a subset
of Myp which is made of divisors W such that (W) is contained in Zp(i),
and the union of all these subsets when E varies is exactly the set of points W

in Myp with a projection 1, (W) in Zp(i). Thus, we define

() (Te(Zp(D))) ={V e MZp | FF(UV)) € Te((Zp))}.  (4.21)
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These sets are closed subsets of M2 ;,, and

i+ =200 U (07 @0@Z0)). @22

E€G,deg(E)<dD

Now, write Zj, (i) = Zp(i) \ Zp(e), and note that it is a decreasing sequence
of open subsets with Z,(j) = 0 for all j > ¢(D).

We shall say that a closed subset L of M2, \ Zp(eo) for the Zariski topol-
ogy is piecewise linear if all its irreducible components are equal to the in-
tersection of M2, \ Zp(eo) with a linear projective subspace of some My,
D' < D. Let Lin(a,b,c) be the family of closed piecewise linear subsets of
M2\ Zp(eo) of dimension a, with at most ¢ irreducible components, and at
most b irreducible components of maximal dimension a. Then:

(1) Zpi+1) = {E € (i) | £°(E) € Zp(0)} = mal £ 2} (1)) NUE T (Z 1),
where E runs over the elements of G of degree deg(E) < dD.
(2) in this union, every irreducible component of Tg(Z},(i)) is piecewise
linear.
Recall that ¢ = (dD)™(D+ 1) was introduced in Section[.1] If Z is any closed
piecewise linear subset of M2, \ Zp(eo) that contains exactly c irreducible
components, the set -

T(fZ)() U T (E) (4.23)

EEG, deg(E)<dD

has at most gc? = (dD)™ (D + 1)c? irreducible components (this is just a crude
estimate : the factor (D+ 1) comes from the number of irreducible components
of M<p, and the factor (dD)™ from the fact that G contains at most (dD)™
elements of degree < dD). Let us now use that the sequence Zj,(i) decreases
strictly as i varies from 0 to (D), with Z;,(¢(D)) = 0. If 0 <i < ¢(D) — 1, and
if Zj,(i) is contained in Lin(a, b, c), we obtain

(1) if b > 2, then Z},(i + 1) is contained in Lin(a,b — 1,¢c?);

(2) if b= 1, then Z},(i + 1) is contained in Lin(a — 1, gc?, gc?).

This shows that

k

where S is the function introduced in the Equation (4.7) of Sectiond.1l Since
Xa k satisfies £(Y4x(n)) < n for every n > 1, the conclusion follows.

(D) gS(( k+D ) 241 (4.24)
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