ON DEGREES OF BIRATIONAL MAPPINGS

SERGE CANTAT AND JUNYI XIE

ABSTRACT. We prove that the degrees of the iterates $\deg(f^n)$ of a birational map satisfy $\liminf(\deg(f^n)) < +\infty$ if and only if the sequence $\deg(f^n)$ is bounded, and that the growth of $\deg(f^n)$ can not be arbitrarily slow, unless $\deg(f^n)$ is bounded.

1. DEGREE SEQUENCES

Let **k** be a field. Consider a projective variety *X*, a polarization *H* of *X* (given by hyperplane sections of *X* in some embedding $X \subset \mathbb{P}^N$), and a birational transformation *f* of *X*, all defined over the field **k**. Let *k* be the dimension of *X*. The **degree** of *f* with respect to the polarization *H* is the integer

$$\deg_H(f) = (f^*H) \cdot H^{k-1} \tag{1.1}$$

where f^*H is the total transform of H, and $(f^*H) \cdot H^{k-1}$ is the intersection product of f^*H with k-1 copies of H. The degree is a positive integer, which we shall simply denote by $\deg(f)$, even if it depends on H. When f is a birational transformation of the projective space \mathbb{P}^k and the polarization is given by $\mathcal{O}_{\mathbb{P}^k}(1)$ (i.e. by hyperplanes $H \subset \mathbb{P}^k$), then $\deg(f)$ is the degree of the homogeneous polynomial formulas defining f in homogeneous coordinates.

The degrees are submultiplicative, in the following sense:

$$\deg(f \circ g) \le c_{X,H} \deg(f) \deg(g) \tag{1.2}$$

for some positive constant $c_{X,H}$ and for every pair of birational transformations. Also, if the polarization H is changed into another polarization H', there is a positive constant c such that $\deg_H(f) \le c \deg_{H'}(f)$ (see [7, 11, 13]).

The **degree sequence** of f is the sequence $(\deg(f^n))_{n\geq 0}$; it plays an important role in the study of the dynamics and the geometry of f. There are infinitely, but only countably many degree sequences (see [14]); unfortunately, not much is known on these sequences when $\dim(X) \geq 3$. In this article, we obtain the following basic results.

Date: 2018.

- The sequence $(\deg(f^n))_{n\geq 0}$ is bounded if and only if it is bounded along an infinite subsequence (see Theorems A and B in § 2 and 3).
- If the sequence (deg(fⁿ))_{n≥0} is unbounded, then its growth can not be arbitrarily small; for instance, max_{0≤j≤n} deg(f^j) is asymptotically bounded from below by the inverse of the diagonal Ackermann function (see Theorem C in § 4 for an effective result).

We focus on birational transformations because a rational dominant transformation which is not birational has a topological degree $\delta > 1$, and this forces an exponential growth of the degrees: $1 < \delta^{1/k} \leq \lim_{n} (\deg(f^n)^{1/n})$ where $k = \dim(X)$ (see [7] and [4], pages 120–126).

2. AUTOMORPHISMS OF THE AFFINE SPACE

We start with the simpler case of automorphisms of the affine space; the goal of this section is to introduce a *p*-adic method to study degree sequences.

Theorem A (Urech).– Let f be an automorphism of the affine space $\mathbb{A}_{\mathbf{k}}^{k}$. If $\deg(f^{n})$ is bounded along an infinite subsequence, then it is bounded.

In fact, Urech proves in [14] that $\max_{0 \le j \le n} \deg(f^j)$ is bounded from below by $\alpha n^{1/k}$ for some constant $\alpha > 0$ when $(\deg(f^n))$ is unbounded. Here, we content ourselves with the simpler version stated in Theorem A.

2.1. Urech's proof. Assume deg $(f^{n_i}) \leq B$ for some sequence $n_1 < n_2 < ... < n_\ell$ of positive integers. The iterates f^{n_i} are in the vector space End_B($\mathbb{A}^k_{\mathbf{k}}$) of endomorphisms of $\mathbb{A}^k_{\mathbf{k}}$ of degree $\leq B$. This vector space has dimension

$$\dim(\operatorname{End}_{B}(\mathbb{A}_{\mathbf{k}}^{k})) = k \begin{pmatrix} k+B\\ B \end{pmatrix}.$$
(2.1)

Thus, if $\ell > \dim(\operatorname{End}_B(\mathbb{A}^k_{\mathbf{k}}))$ there is a non-trivial linear relation between the f^{n_i} in the vector space $\operatorname{End}_B(\mathbb{A}^k_{\mathbf{k}})$, which we can write

$$f^{n} = \sum_{m=1}^{n-1} a_{m} f^{m}$$
(2.2)

for some integer $n \le n_{\ell}$ and some coefficients $a_m \in \mathbf{k}$. Then, every iterate f^N of f with $N \ge n$ is a linear combination of the automorphisms f^m with m < n, and so deg (f^N) is bounded from above by the maximum of the degrees of f^m for $0 \le m \le n - 1$. This shows that the sequence $(\deg(f^N))_{N\ge 0}$ is bounded.

2.2. The *p*-adic argument. Let us give a second proof when $char(\mathbf{k}) = 0$, which will be generalized in § 3 to treat the case of birational transformations.

2.2.1. *Tate diffeomorphisms*. Let *p* be a prime number. Let *K* be a field of characteristic 0 which is complete with respect to an absolute value $|\cdot|$ satisfying |p| = 1/p; such an absolute value is automatically ultrametric (see [9], Ex. 2 and 3, Chap. I.2). Let $R = \{x \in K; |x| \le 1\}$ be the valuation ring of *K*; in the vector space K^k , the unit **polydisk** is the subset $U = R^k$.

Fix a positive integer k, and consider the ring $R[\mathbf{x}] = R[\mathbf{x}_1, ..., \mathbf{x}_k]$ of polynomial functions in k variables with coefficients in R. For f in $R[\mathbf{x}]$, define the norm || f || to be the supremum of the absolute values of the coefficients of f:

$$\|f\| = \sup_{I} |a_{I}| \tag{2.3}$$

where $f = \sum_{I=(i_1,...,i_k)} a_I \mathbf{x}^I$. By definition, the **Tate algebra** $R\langle \mathbf{x} \rangle$ is the completion of $R[\mathbf{x}]$ with respect to this norm. It coincides with the set of formal power series $f = \sum_{I} a_I \mathbf{x}^I$ converging (absolutely) on the closed unit polydisk R^k . Moreover, the absolute convergence is equivalent to $|a_I| \to 0$ as length $(I) \to \infty$. Every element g in $R\langle \mathbf{x} \rangle^k$ determines a **Tate analytic** map $g: U \to U$.

For *f* and *g* in $R\langle \mathbf{x} \rangle$ and *c* in \mathbf{R}_+ , the notation $f \in p^c R\langle \mathbf{x} \rangle$ means $|| f || \le |p|^c$ and the notation $f \equiv g \mod (p^c)$ means $|| f - g || \le |p|^c$; we then extend such notations component-wise to $(R\langle \mathbf{x} \rangle)^m$ for all $m \ge 1$.

For indeterminates $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_k)$ and $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_m)$, the composition $R\langle \mathbf{y} \rangle \times R\langle \mathbf{x} \rangle^m \rightarrow R\langle \mathbf{x} \rangle$ is well defined, and coordinatewise we obtain

$$R\langle \mathbf{y} \rangle^n \times R\langle \mathbf{x} \rangle^m \to R\langle \mathbf{x} \rangle^n.$$
(2.4)

When m = n = k, we get a semigroup $R\langle \mathbf{x} \rangle^k$. The group of (Tate) **analytic diffeomorphisms** of U is the group of invertible elements in this semigroup; we denote it by Diff^{an}(U). Elements of Diff^{an}(U) are bijective transformations $f: U \to U$ given by $f(\mathbf{x}) = (f_1, \dots, f_k)(\mathbf{x})$ where each f_i is in $R\langle \mathbf{x} \rangle$ with an inverse $f^{-1}: U \to U$ that is also defined by power series in the Tate algebra.

The following result is due to Jason Bell and Bjorn Poonen (see [2, 12]).

Theorem 2.1. Let f be an element of $R\langle \mathbf{x} \rangle^k$ with $f \equiv \operatorname{id} \mod (p^c)$ for some real number c > 1/(p-1). Then f is a Tate diffeomorphism of $U = R^k$ and there exists a unique Tate analytic map $\Phi \colon R \times U \to U$ such that

- (1) $\Phi(n, \mathbf{x}) = f^n(\mathbf{x})$ for all $n \in \mathbf{Z}$;
- (2) $\Phi(s+t,\mathbf{x}) = \Phi(s,\Phi(t,\mathbf{x}))$ for all t, s in R.

2.2.2. Second proof of Theorem A. Denote by S the finite set of all the coefficients that appear in the polynomial formulas defining f. Let $R_S \subset \mathbf{k}$ be the ring generated by S over Z, and let K_S be its fraction field:

$$\mathbf{Z} \subset R_S \subset K_S \subset \mathbf{k}. \tag{2.5}$$

Since char(**k**) = 0, there exists a prime p > 2 such that R_S embeds into \mathbb{Z}_p (see [10], §4 and 5, and [2], Lemma 3.1). We apply this embedding to the coefficients of f and get an automorphism of $\mathbb{A}_{\mathbb{Q}_p}^k$ which is defined by polynomial formulas in $\mathbb{Z}_p[\mathbf{x}_1, \dots, \mathbf{x}_k]$; for simplicity, we keep the same notation f for this automorphism (embedding R_S in \mathbb{Z}_p does not change the value of the degrees deg (f^n)). Since f is a polynomial automorphism with coefficients in \mathbb{Z}_p , it determines an element of Diff^{an}(U), the group of analytic diffeomorphisms of the polydisk $\mathbb{U} = \mathbb{Z}_p^k$.

There exists a positive integer *m* such that f^m fixes the origin $0 \in U$ modulo p^2 : $f^m(0) \equiv 0 \mod (p^2)$. Taking some further iterate, we may also assume that the differential Df_0^m satisfies $Df_0^m \equiv \text{Id} \mod (p)$. We fix such an integer *m* and replace *f* by f^m . The following lemma follows from the submultiplicativity of degrees (see Equation (1.2) in Section 1). It shows that replacing *f* by f^m is armless if one wants to bound the degrees of the iterates of *f*.

Lemma 2.2. If the sequence $\deg(f^{mn})$ is bounded for some m > 0, then the sequence $\deg(f^n)$ is bounded too.

Denote by $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_k)$ the coordinate system of \mathbb{A}^k , and by m_p the multiplication by p: $m_p(\mathbf{x}) = p\mathbf{x}$. Change f into $g := m_p^{-1} \circ f \circ m_p$; then $g \equiv \operatorname{Id} \operatorname{mod}(p)$ in the sense of Section 2.2.1. Since $p \geq 3$, Theorem 2.1 gives a Tate analytic flow $\Phi: \mathbf{Z}_p \times \mathbb{A}^k(\mathbf{Z}_p) \to \mathbb{A}^k(\mathbf{Z}_p)$ which extends the action of $g: \Phi(n, \mathbf{x}) = g^n(\mathbf{x})$ for every integer $n \in \mathbf{Z}$. Since Φ is analytic, one can write

$$\Phi(\mathbf{t}, \mathbf{x}) = \sum_{J} A_{J}(\mathbf{t}) \mathbf{x}^{J}$$
(2.6)

where *J* runs over all multi-indices $(j_1, \ldots, j_k) \in (\mathbb{Z}_{\geq 0})^k$ and each A_J defines a *p*-adic analytic curve $\mathbb{Z}_p \to \mathbb{A}^k(\mathbb{Q}_p)$. By submultiplicativity of the degrees, there is a constant C > 0 such that $\deg(g^{n_i}) \leq CB^m$. Thus, we obtain $A_J(n_i) = 0$ for all indices *i* and all multi-indices *J* of length $|J| > CB^m$. The A_J being analytic functions of $t \in \mathbb{Z}_p$, the principle of isolated zeros implies that

$$A_J = 0$$
 in $\mathbb{Z}_p \langle t \rangle$, $\forall J$ with $|J| > CB^m$. (2.7)

Thus, $\Phi(t, \mathbf{x})$ is a polynomial automorphism of degree $\leq CB^m$ for all $t \in \mathbf{Z}_p$, and $g^n(\mathbf{x}) = \Phi(n, \mathbf{x})$ has degree at most CB^m for all n. By Lemma 2.2, this proves that deg (f^n) is a bounded sequence.

3. BIRATIONAL TRANSFORMATIONS

We now extend Theorem A to the case of birational transformations.

Theorem B.– Let **k** be a field of characteristic 0. Let X be a projective variety and $f: X \rightarrow X$ be a birational transformation of X, both defined over **k**. If the sequence $(\deg(f^n))_{n\geq 0}$ is not bounded, then it goes to $+\infty$ with n:

$$\liminf_{n \to +\infty} \deg(f^n) = +\infty.$$

Urech's argument does not apply to this context, because the dimension of the space of rational transformations of $\mathbb{A}_{\mathbf{k}}^{k}$ of degree $\leq B$ is infinite. We shall therefore apply the *p*-adic method, adapting the proof given in Section 2.2.2.

Note that Theorem B can be combined with a theorem of Weil to obtain the following: if *f* is a birational transformation of the projective variety *X*, over an algebraically closed field of characteristic 0, and if the degrees of its iterates are bounded along an infinite subsequence f^{n_i} , then there exist a birational map $\psi: Y \dashrightarrow X$ and an integer m > 0 such that $f_Y := \psi^{-1} \circ f \circ \psi$ is in Aut(*Y*), and f_Y^m is in the connected component Aut(*Y*)⁰ (see [3] and references therein).

In what follows, f and X are as in Theorem B; we also assume, without loss of generality, that $\mathbf{k} = \mathbf{C}$ and that X is smooth. We suppose that there is an infinite sequence of integers $n_1 < n_2 < ... < n_j < ...$ and a positive number B such that $\deg(f^{n_j}) \leq B$ for all j. We fix a finite set S of complex numbers such that X and f are defined by equations and formulas with coefficients in S, and we embed the ring $R_S \subset \mathbf{C}$ generated by S in some \mathbf{Z}_p , for some prime number p > 2. According to [5], Section 3, we may assume that X and f have good reduction modulo p.

3.1. The Hrushovski's theorem and *p*-adic polydisks. According to a theorem of Hrushovski (see [8]), there is a periodic point z_0 of f in $X(\mathbf{F})$ for some finite field extension \mathbf{F} of the residue field \mathbf{F}_p , the orbit of which does not intersect the indeterminacy points of f and f^{-1} . If ℓ is the period of z_0 , then $f^{\ell}(z_0) = z_0$ and $Df_{z_0}^{\ell}$ is an element of the finite group $\mathsf{GL}((TX_{\mathbf{F}_q})z_0) \simeq$ $\mathsf{GL}(k,\mathbf{F}_q)$. Thus, there is an integer m > 0 such that $f^m(z_0) = z_0$ and $Df_{z_0}^m = \mathsf{Id}$.

Replace f by its iterate $g = f^m$. Then, g fixes z_0 in $X(\mathbf{F})$, g is an isomorphism in a neighborhood of z_0 , and $Dg_{z_0} = Id$. According to [1] and [5] Section 3, this implies that there is

- a finite extension *K* of \mathbf{Q}_p , with valuation ring $R \subset K$;
- a point z in X(K) and a polydisk $\bigvee_z \simeq R^k \subset X(K)$ which is g-invariant and such that $g_{V_z} \equiv \operatorname{Id} \mod(p)$ (in the coordinate system $(\mathbf{x}_1, \ldots, \mathbf{x}_k)$ of the polydisk).

When the point z_0 is in $X(\mathbf{F}_p)$ and is the reduction of a point $z \in X(\mathbf{Z}_p)$, the polydisk V_z is the set of points $w \in X(\mathbf{Z}_p)$ with |z - w| < 1; one identifies this polydisk to $U = (\mathbf{Z}_p)^k$ via some *p*-adic analytic diffeomorphism $\varphi: U \rightarrow V_z$; changing φ into $\varphi \circ m_p$ if necessary, we obtain $g_{V_z} \equiv \text{Id} \mod (p)$ (see Section 2.2.2 and [5], Section 3). In full generality, a finite extension *K* of \mathbf{Q}_p is needed because z_0 is a point in $X(\mathbf{F})$ for some extension of the residue field.

3.2. Controling the degrees. As in Section 2.2.1, denote by U the polydisk $R^k \simeq V_z$; thus, U is viewed as the polydisk R^k and also as a subset of X(K). Applying Theorem 2.1 to g, we obtain a *p*-adic analytic flow

$$\Phi: \mathbf{R} \times \mathbf{U} \to \mathbf{U}, \quad (t, \mathbf{x}) \mapsto \Phi(t, \mathbf{x}) \tag{3.1}$$

such that $\Phi(n, \mathbf{x}) = g^n(\mathbf{x})$ for every integer *n*. In other words, the action of *g* on U extends to an analytic action of the additive compact group (R, +).

Let $\pi_1: X \times X \to X$ denote the projection onto the first factor. Denote by $\operatorname{Bir}_D(X)$ the set of birational transformations of *X* of degree *D*; once birational transformations are identified to their graphs, this set becomes naturally a finite union of irreducible, locally closed algebraic subsets in the Hilbert scheme of $X \times X$ (see [3], Section 2.2, and references therein). Taking a subsequence, there is a positive integer *D*, an irreducible component B_D of $\operatorname{Bir}_D(X)$, and a strictly increasing, infinite sequence of integers (n_i) such that

$$g^{n_j} \in B_D \tag{3.2}$$

for all *j*. Denote by $\overline{B_D}$ the Zariski closure of B_D in the Hilbert scheme of $X \times X$. To every element $h \in \overline{B_D}$ corresponds a unique algebraic subset \mathcal{G}_h of $X \times X$ (the graph of *h*, when *h* is in B_D). Our goal is to show that, for every $t \in R$, the graph of $\Phi(t, \cdot)$ is the intersection $\mathcal{G}_{h_t} \cap U^2$ for some element $h_t \in \overline{B_D}$; this will conclude the proof because $g^n(\mathbf{x}) = \Phi(n, \mathbf{x})$ for all $n \ge 0$.

We start with a simple remark, which we encapsulate in the following lemma.

Lemma 3.1. There is a finite subset $E \subset \bigcup \subset X(K)$ with the following property. Given any subset \tilde{E} of $\bigcup \times \bigcup$ with $\pi_1(\tilde{E}) = E$, there is at most one element $h \in \overline{B_D}$ such that $\tilde{E} \subset G_h$.

Fix such a set *E*, and order it to get a finite list $E = (x_1, \ldots, x_{\ell_0})$ of elements of U. Let $E' = (x_1, \ldots, x_{\ell_0}, x_{\ell_0+1}, \ldots, x_{\ell})$ be any list of elements of U which extends *E*.

For every element *h* in $\overline{B_D}$, the variety \mathcal{G}_h determines a correspondence $\mathcal{G}_h \subset X \times X$. The subset of elements $(h, (x_i, y_i)_{1 \le i \le \ell})$ in $\overline{B_D} \times (X \times X)^{\ell}$ defined by the incidence relation

$$(x_i, y_i) \in \mathcal{G}_h \tag{3.3}$$

for every $1 \le i \le \ell$ is an algebraic subset of $\overline{B_D} \times (X \times X)^{\ell}$. Add one constraint, namely that the first projection $(x_i)_{1 \le i \le \ell}$ coincides with E', and project the resulting subset on $(X \times X)^{\ell}$: we get a subset G(E') of $(X \times X)^{\ell}$.

Then, define a *p*-adic analytic curve $\Lambda \colon R \to (X \times X)^{\ell}$ by

$$\Lambda(t) = (x_i, \Phi(t, x_i))_{1 \le i \le \ell}.$$
(3.4)

If $t = n_j$, g^{n_j} is an element of B_D and $\Lambda(n_j)$ is contained in the graph of g^{n_j} ; hence, $\Lambda(n_j)$ is an element of G(E'). By the principle of isolated zeros, the analytic curve $t \mapsto \Lambda(t) \subset (X \times X)^{\ell}$ is contained in G(E') for all $t \in R$. Thus, for every t there is an element $h_t \in \overline{B_D}$ such that $\Lambda(t)$ is contained in the subset $\mathcal{G}_{h_t}^{\ell}$ of $(X \times X)^{\ell}$. From the choice of E and the inclusion $E \subset E'$, we know that h_t does not depend on E'. Thus, the graph of $\Phi(t, \cdot)$ coincides with the intersection of \mathcal{G}_{h_t} with $U \times U$. This implies that the graph of $g^n(\cdot) = \Phi(n, \cdot)$ coincides with \mathcal{G}_{h_n} , and that the degree of g^n is at most D for all values of n.

4. LOWER BOUNDS ON DEGREE GROWTH

We now prove that the growth of $(\deg(f^n))$ can not be arbitrarily slow unless $(\deg(f^n))$ is bounded. For simplicity, we focus on birational transformations of the projective space; there is no restriction on the characteristic of **k**.

4.1. A family of integer sequences. Fix two positive integers k and d: later on, k will be the dimension of the projective space $\mathbb{P}_{\mathbf{k}}^{k}$, and d will be the degree of $f: \mathbb{P}^{k} \to \mathbb{P}^{k}$. Set

$$m = (d-1)(k+1). \tag{4.1}$$

Then, consider an auxiliary integer $D \ge 1$, which will play the role of the degree of an effective divisor in the next paragraphs, and define

$$q = (dD)^m (D+1).$$
 (4.2)

Thus, q depends on k, d and D because m depends on k and d. Then, set

$$a_0 = \begin{pmatrix} k+D \\ k \end{pmatrix} - 1, \quad b_0 = 1, \quad c_0 = D+1.$$
 (4.3)

Starting from the triple (a_0, b_0, c_0) , we define a sequence $((a_j, b_j, c_j))_{j\geq 0}$ inductively by

$$(a_{j+1}, b_{j+1}, c_{j+1}) = (a_j, b_j - 1, qc_j^2)$$
(4.4)

if $b_i \ge 2$, and by

$$(a_{j+1}, b_{j+1}, c_{j+1}) = (a_j - 1, qc_j^2, qc_j^2) = (a_j - 1, c_{j+1}, c_{j+1})$$
(4.5)

if $b_j = 1$. By construction, $(a_1, b_1, c_1) = (a_0 - 1, qc_0^2, qc_0^2)$. Define $\Phi: \mathbb{Z}^+ \to \mathbb{Z}^+$ by

$$\Phi(c) = qc^2. \tag{4.6}$$

Lemma 4.1. Define the sequence of integers $(F_i)_{i\geq 1}$ recursively by $F_1 = q(D+1)^2$ and $F_{i+1} = \Phi^{F_i}(F_i)$ for $i \geq 1$ (where Φ^{F_i} is the F_i -iterate of Φ). Then

$$(a_{1+F_1+\dots+F_i}, b_{1+F_1+\dots+F_i}, c_{1+F_1+\dots+F_i}) = (a_0 - i - 1, F_{i+1}, F_{i+1}).$$

The proof is straightforward. Now, define the function $S: \mathbb{Z}^+ \to \mathbb{Z}^+$ as the sum of the F_i :

$$S(j) = 1 + F_1 + F_2 + \dots + F_j \tag{4.7}$$

for all $j \ge 1$. The function S is increasing and goes to $+\infty$ extremely fast with j. Then, set

$$\chi_{d,k}(n) = \max\left\{ D \ge 0 \mid S\left(\left(\begin{array}{c} k+D\\k \end{array} \right) - 2 \right) < n \right\}.$$
(4.8)

Lemma 4.2. The function $\chi_{d,k}$: $\mathbf{Z}^+ \to \mathbf{Z}^+$ is non-decreasing and goes to $+\infty$ with *n*.

Remark 4.3. The function *S* is primitive recursive (see [6], Chapters 3 and 13). In other words, *S* is obtained from the basic functions (the zero function, the successor s(x) = x + 1, and the projections $(x_i)_{1 \le i \le m} \to x_i$) by a finite sequence of compositions and recursions. Equivalently, one can write a program that computes *S*, all of whose instructions are limited to (1) the zero initialization $V \leftarrow 0$, (2) the increment $V \leftarrow V + 1$, (3) the assignment $V \leftarrow V'$, and (4) loops of definite length. Writing such a program is an easy exercise. Now, consider the diagonal Ackermann function A(n) (see [6], Section 13.3). It grows asymptotically faster than any primitive recursive function; hence, the inverse of the Ackermann diagonal function

$$\alpha(n) = \max\{D \ge 0 \mid \operatorname{Ack}(D) \le n\}.$$
(4.9)

is, asymptotically, a lower bound for $\chi_{d,k}(n)$. A better lower bound is obtained by showing that $\chi_{d,k}$ is in the \mathcal{L}_6 hierarchy of [6], Chapter 13; this gives an asymptotic lower bound by the inverse of the function f_7 of [6], independent on the values of *d* and *k*, but this is a very week bound too.

4.2. **Statement of the lower bound.** We can now state the result that will be proved in the next paragraphs.

Theorem C.– Let f be a birational transformation of the complex projective space $\mathbb{P}^k_{\mathbf{C}}$. If the sequence $(\max_{0 \le j \le n} (\deg(f^j)))_{n \ge 0}$ is unbounded, then it is bounded from below by the sequence of integers $(\chi_{d,k}(n))_{n \ge 0}$.

Remark 4.4. There are infinitely, but only countably many sequences of degrees $(\deg(f^n))_{n>0}$ (see [14]). Consider the countably many sequences

$$\left(\max_{0 \le j \le n} (\deg(f^j))\right)_{n \ge 0} \tag{4.10}$$

restricted to the family of birational maps for which $(\deg(f^n))$ is unbounded. We get a countable family of non-decreasing, unbounded sequences of integers. Now, let $(u_i)_{i \in \mathbb{Z}_{\geq 0}}$ be any countable family of non-decreasing and unbounded sequences of integers $(u_i(n))$. Define a sequence w(n) as follows. First, set $v_j = \min\{u_0, u_1, \dots, u_j\}$; this defines a new family of sequences, with the same limit $+\infty$, but now $v_j(n) \ge v_{j+1}(n)$ for every pair of non-negative integers. Then, set $m_0 = 0$, and define m_{n+1} recursively to be the first positive integer such that $v_{n+1}(m_{n+1}) \ge v_n(m_n) + 1$. We have $m_{n+1} \ge m_n + 1$ for all $n \in \mathbb{Z}_{\geq 0}$. Set $w(n) := v_{r_n}(m_{r_n})$ where r_n is the unique non-negative integer satisfying $m_{r_n} \le n \le m_{r_n+1} - 1$. By construction, w(n) goes to $+\infty$ with n and $u_i(n)$ is asymptotically bounded from below by w(n).

In Theorem C, the result is more explicit. Firstly, the lower bound is explicitely given by the sequence $(\chi_{d,k}(n))_{n\geq 0}$. Secondly, the lower bound is not asymptotic: it works for every value of *n*. In particular, if deg $(f^j) < \chi_{d,k}(n)$ for $0 \le j \le n$ and deg(f) = d, then the sequence $(\deg(f^n))$ is bounded.

4.3. Divisors and strict transforms. To prove Theorem C, we consider the action of f by strict transform on effective divisors. As above, $d = \deg(f)$ and m = (d-1)(k+1) (see Section 4.1).

4.3.1. *Exceptional locus*. Let *X* be a smooth projective variety and π_1 and $\pi_2: X \to \mathbb{P}^k$ be two birational morphisms such that $f = \pi_2 \circ \pi_1^{-1}$; then, consider the exceptional locus $\text{Exc}(\pi_2) \subset X$, project it by π_1 into \mathbb{P}^k , and list its irreducible components of codimension 1: we obtain a finite number

$$E_1, \ldots, E_{m(f)} \tag{4.11}$$

of irreducible hypersurfaces, contained in the zero locus of the jacobian determinant of f. Since this critical locus has degree m, we obtain:

$$m(f) \le m$$
, and $\deg(E_i) \le m$ $(\forall i \ge 1)$. (4.12)

4.3.2. *Effective divisors.* Denote by M the semigroup of effective divisors of $\mathbb{P}_{\mathbf{k}}^k$; every element of M is a finite sum of irreducible hypersurfaces with non-negative integer coefficients. There is a partial ordering \leq on M, which is defined by $E \leq E'$ if and only if the divisor E' - E is effective.

We denote by deg: $M \to \mathbb{Z}_{\geq 0}$ the degree function. For every degree $D \geq 1$, we denote by M_D the set $\mathbb{P}(H^0(\mathbb{P}^k_k, \mathcal{O}_{\mathbb{P}^k_k}(D)))$ of effective divisors of degree D; thus, M is the disjoint union of all the M_D , and each of these components will be endowed with the Zariski topology of $\mathbb{P}(H^0(\mathbb{P}^k_k, \mathcal{O}_{\mathbb{P}^k_k}(D)))$. The dimension of M_D is equal to the integer $a_0 = a_0(D, k)$ from Section 4.1:

$$\dim(M_D) = \binom{k+D}{k} - 1. \tag{4.13}$$

Let $G \subset M$ be the semigroup generated by the E_i :

$$G = \bigoplus_{i=1}^{m(f)} \mathbf{Z}_{\ge 0} E_i.$$
(4.14)

The elements of *G* are the effective divisors which are supported by the exceptional locus of *f*. For every $E \in G$, there is a translation operator $T_E: M \to M$ which is defined by $T_E: E' \mapsto E + E'$; it is a linear projective embedding of the projective space M_D into the projective space $M_{D+\deg(E)}$. We define

$$M_D^{\circ} = M_D \setminus \bigcup_{E \in G \setminus \{0\}, \deg(E) \le D} T_E(M_{D - \deg(E)}).$$
(4.15)

Thus, M_D° is an open subset of M_D ; it is the complement of finitely many proper linear projective subspaces. Also, $M_0^{\circ} = M_0$ and M_1° is obtained from

 M_1 by removing finitely many points, corresponding to the E_i of degree 1 (the hyperplanes contracted by f). Set $M^\circ = \bigcup_{D \ge 0} M_D^\circ$. This is the set of effective divisors without any component in the exceptional locus of f. The inclusion of M° in M will be denoted by $\iota: M^\circ \to M$.

There is a natural projection $\pi_G: M \to G$; namely, $\pi_G(E)$ is the maximal element such that $E - \pi_G(E)$ is effective. We denote by $\pi_\circ: M \to M^\circ$ the projection $\pi_\circ = \mathsf{Id} - \pi_G$; this homomorphism removes the part of an effective divisor *E* which is supported on the exceptional locus of *f*.

Remark 4.5. The restriction of the map π_{\circ} to the projective space M_D is piecewise linear, in the following sense. Consider the subsets $U_{E,D}$ of M_D which are defined for every $E \in G$ with deg $(E) \leq D$ by

$$U_{E,D} = T_E(M_{D-\deg(E)}) \setminus \bigcup_{E' > E, E' \in G, \deg(E') \le D} T_{E'}(M_{D-\deg(E')}).$$

They define a stratification of M_D by (open subsets of) linear subspaces, and π_{\circ} coincides with the of the linear map inverse of T_E on each $U_{E,D}$.

4.3.3. *Strict transform.* First, we consider the total transform $f^*: M \to M$, which is defined by $f^*(E) = (\pi_1)_* \pi_2^*(E)$ for every divisor $E \in M$. This is an injective homomorphism of semigroups. Let $[x_0, \ldots, x_k]$ be homogeneous coordinates on \mathbb{P}^k . If $f = [f_0: \cdots: f_k]$ is defined by homogeneous polynomial functions $f_i \in \mathbf{k}[x_0, \ldots, x_k]$ of degree d, and if E is defined by the homogeneous equation $P(x_0, \ldots, x_k) = 0$, then $f^*(E)$ is defined by $P \circ f = P(f_0, \ldots, f_k) = 0$. Thus, f^* induces a linear projective embedding of M_D into M_{dD} for every D.

Then, we denote by $f^{\circ}: M^{\circ} \to M^{\circ}$ the strict transform. It is defined by

$$f^{\circ}(E) = (\pi_{\circ} \circ f^* \circ \iota)(E). \tag{4.16}$$

This is a homomorphism of semigroups. Removing the exceptional locus $(\pi_1)_*(E(\pi_2))$ from $\mathbb{P}^k_{\mathbf{k}}$, one gets a variety *Y*, and an induced birational transformation $f_Y: Y \dashrightarrow Y$. Then, every divisor $E \in M^\circ$ intersects *Y* on a divisor E_Y of the same degree: this provides a bijection between effective divisors of *Y* and elements of M° that conjugates $(f_Y)^*$ to f° . In particular, $(f^\circ)^n = (f^n)^\circ$.

4.4. **Proof of Theorem C.** Let η be the generic point of M_1° (η corresponds to a generic hyperplane of \mathbb{P}_k^k). The degree of $f^*(\eta)$ is equal to the degree of f, and since η is generic, $f^*(\eta)$ coincides with $f^{\circ}(\eta)$. Thus, $\deg(f) = \deg(f^{\circ}(\eta))$ and more generally

$$\deg(f^n) = \deg((f^\circ)^n \eta) \quad (\forall n \ge 1).$$
(4.17)

Fix an integer $D \ge 0$. Write $M_{\le D}^{\circ}$ for the union of the $M_{D'}^{\circ}$ with $D' \le D$, and define recursively $Z_D(0) = M_{\le D}^{\circ}$ and

$$Z_D(i+1) = \{ E \in Z_D(i) \mid f^{\circ}(E) \in Z_D(i) \}$$
(4.18)

for $i \ge 0$. A divisor $E \in M^{\circ}_{\le D}$ is in $Z_D(i)$ if its strict transform $f^{\circ}(E)$ is of degree $\le D$, and $f^{\circ}(f^{\circ}(E))$ is also of degree $\le D$, up to $(f^{\circ})^i(E)$ which is also of degree at most D. The subsets $Z_D(i)$ form a decreasing sequence of Zariski closed subsets (in the disjoint union $M^{\circ}_{\le D}$ of the $M^{\circ}_{D'}$, $D' \le D$). The strict transform f° maps $Z_D(i+1)$ in $Z_D(i)$. There exists a minimal integer $\ell(D) \ge 0$ such that

$$Z_D(\ell(D)) = \bigcap_{i>0} Z_D(i); \tag{4.19}$$

we denote this subset by $Z_D(\infty) = Z_D(\ell(D))$. By construction, $Z_D(\infty)$ is stable under the operator f° ; more precisely, $f^\circ(Z_D(\infty)) = Z_D(\infty) = (f^\circ)^{-1}(Z_D(\infty))$. Let $\tau: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ be a lower bound for the inverse function of ℓ :

$$\ell(\tau(n)) \le n \quad (\forall n \ge 0). \tag{4.20}$$

Assume that $\max\{\deg(f^m) \mid 0 \le m \le n_0\} \le \tau(n_0)$ for some $n_0 \ge 1$. Then $\deg((f^{\circ})^i(\eta)) \le \tau(n_0)$ for every integer *i* between 0 and n_0 ; this implies that η is in the set $Z_{\tau(n_0)}(\ell(\tau(n_0))) = Z_{\tau(n_0)}(\infty)$, so that the degree of $(f^{\circ})^m(\eta)$ is bounded from above by $\tau(n_0)$ for all $m \ge 0$. From Equation (4.17) we deduce that the sequence $(\deg(f^m))_{m>0}$ is bounded. This proves the following lemma.

Lemma 4.6. Let τ be a lower bound for the inverse function of ℓ . If

 $\max\{\deg(f^m) \mid 0 \le m \le n_0\} \le \tau(n_0)$

for some $n_0 \ge 1$, then the sequence of degrees $(\deg(f^n))_{n>0}$ is bounded.

So, to conclude, we need to compare $\ell \colon \mathbb{Z}_{\geq 0} \to \mathbb{Z}^+$ to the function $S \colon \mathbb{Z}_{\geq 0} \to \mathbb{Z}^+$ of paragraph 4.1 (recall that *S* depends on the parameters $k = \dim(\mathbb{P}^k_k)$ and $d = \deg(f)$ and that ℓ depends on f).

Let us describe $Z_D(i+1)$ more precisely. For each *i*, and each $E \in G$ of degree deg $(E) \leq dD$ consider the subset $T_E(\overline{\iota(Z_D(i))}) \cap M_{dD}$; this is a subset of M_{dD} which is made of divisors *W* such that $\pi_{\circ}(W)$ is contained in $Z_D(i)$, and the union of all these subsets when *E* varies is exactly the set of points *W* in M_{dD} with a projection $\pi_{\circ}(W)$ in $Z_D(i)$. Thus, we define

$$(f^*)^{-1}(T_E(\overline{\iota(Z_D(i))})) = \{ V \in M^\circ_{\leq D} \mid f^*(\iota(V)) \in T_E(\overline{\iota(Z_D)}) \}.$$
(4.21)

These sets are closed subsets of $M^{\circ}_{\leq D}$, and

$$Z_D(i+1) = Z_D(i) \bigcap \bigcup_{E \in G, \deg(E) \le dD} \pi_\circ \left((f^*)^{-1} (T_E(\overline{\iota(Z_D(i))})) \right).$$
(4.22)

Now, write $Z'_D(i) = Z_D(i) \setminus Z_D(\infty)$, and note that it is a decreasing sequence of open subsets with $Z'_D(j) = \emptyset$ for all $j \ge \ell(D)$.

We shall say that a closed subset L of $M_{\leq D}^{\circ} \setminus Z_D(\infty)$ for the Zariski topology is **piecewise linear** if all its irreducible components are equal to the intersection of $M_{\leq D}^{\circ} \setminus Z_D(\infty)$ with a linear projective subspace of some $M_{D'}$, $D' \leq D$. Let Lin(a,b,c) be the family of closed piecewise linear subsets of $M_{\leq D}^{\circ} \setminus Z_D(\infty)$ of dimension a, with at most c irreducible components, and at most b irreducible components of maximal dimension a. Then:

- (1) $Z'_D(i+1) = \{E \in Z'_D(i) \mid f^\circ(E) \in Z'_D(i)\} = \pi_\circ(f^*Z'_D(i)) \cap \bigcup_E T_E(Z'_D(i)),$ where *E* runs over the elements of *G* of degree deg(*E*) $\leq dD$.
- (2) in this union, every irreducible component of $T_E(Z'_D(i))$ is piecewise linear.

Recall that $q = (dD)^m (D+1)$ was introduced in Section 4.1. If Z is any closed piecewise linear subset of $M^{\circ}_{\leq D} \setminus Z_D(\infty)$ that contains exactly c irreducible components, the set

$$\pi_{\circ}(f^*Z) \bigcap \bigcup_{E \in G, \deg(E) \le dD} T_E(E)$$
(4.23)

has at most $qc^2 = (dD)^m (D+1)c^2$ irreducible components (this is just a crude estimate : the factor (D+1) comes from the number of irreducible components of $M_{\leq D}$, and the factor $(dD)^m$ from the fact that *G* contains at most $(dD)^m$ elements of degree $\leq dD$). Let us now use that the sequence $Z'_D(i)$ decreases strictly as *i* varies from 0 to $\ell(D)$, with $Z'_D(\ell(D)) = \emptyset$. If $0 \leq i \leq \ell(D) - 1$, and if $Z'_D(i)$ is contained in Lin(a, b, c), we obtain

(1) if $b \ge 2$, then $Z'_D(i+1)$ is contained in $\text{Lin}(a, b-1, qc^2)$;

(2) if b = 1, then $Z'_D(i+1)$ is contained in $\text{Lin}(a-1,qc^2,qc^2)$.

This shows that

$$\ell(D) \le S\left(\binom{k+D}{k} - 2\right) + 1 \tag{4.24}$$

where *S* is the function introduced in the Equation (4.7) of Section 4.1. Since $\chi_{d,k}$ satisfies $\ell(\chi_{d,k}(n)) \le n$ for every $n \ge 1$, the conclusion follows.

REFERENCES

- J. P. Bell, D. Ghioca, and T. J. Tucker. The dynamical Mordell-Lang problem for étale maps. *Amer. J. Math.*, 132(6):1655–1675, 2010.
- [2] Jason P. Bell. A generalised Skolem-Mahler-Lech theorem for affine varieties. J. London Math. Soc. (2), 73(2):367–379, 2006.
- [3] Serge Cantat. Morphisms between Cremona groups, and characterization of rational varieties. *Compos. Math.*, 150(7):1107–1124, 2014.
- [4] Serge Cantat, Antoine Chambert-Loir, and Vincent Guedj. Quelques aspects des systèmes dynamiques polynomiaux, volume 30 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris, 2010.
- [5] Serge Cantat and Junyi Xie. Algebraic actions of discrete groups: the p-adic method. preprint, pages 1–52, 2015.
- [6] Martin D. Davis and Elaine J. Weyuker. Computability, complexity, and languages. Computer Science and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Fundamentals of theoretical computer science.
- [7] Tien-Cuong Dinh and Nessim Sibony. Une borne supérieure pour l'entropie topologique d'une application rationnelle. *Ann. of Math.* (2), 161(3):1637–1644, 2005.
- [8] Ehud Hrushovski. The elementary theory of the frobenius automorphism. http://arxiv.org/pdf/math/0406514v1, pages 1–135, 2004.
- [9] Neal Koblitz. *p-adic numbers, p-adic analysis, and zeta-functions*, volume 58 of *Grad-uate Texts in Mathematics*. Springer-Verlag, New York, second edition, 1984.
- [10] Christer Lech. A note on recurring series. Ark. Mat., 2:417–421, 1953.
- [11] Bac-Dang Nguyen. Degrees of iterates of rational transformations of projective varieties. *arXiv*, arXiv:1701.07760:1–46, 2017.
- [12] Bjorn Poonen. *p*-adic interpolation of iterates. *Bull. Lond. Math. Soc.*, 46(3):525–527, 2014.
- [13] Tuyen Trung Truong. Relative dynamical degrees of correspondances over fields of arbitrary characteristic. J. Reine Angew. Math., to appear:1–44, 2018.
- [14] Christian Urech. Remarks on the degree growth of birational transformations. *Math. Research Lett.*, to appear:1–12, 2017.

UNIV RENNES, CNRS, IRMAR - UMR 6625, F-35000 RENNES, FRANCE *E-mail address*: serge.cantat@univ-rennes1.fr, junyi.xie@univ-rennes1.fr