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ON DEGREES OF BIRATIONAL MAPPINGS

SERGE CANTAT AND JUNYI XIE

ABSTRACT. We prove that the degrees of the iterates deg( f n) of a bi-

rational map satisfy liminf(deg( f n)) < +∞ if and only if the sequence

deg( f n) is bounded, and that the growth of deg( f n) can not be arbitrarily

slow, unless deg( f n) is bounded.

1. DEGREE SEQUENCES

Let k be a field. Consider a projective variety X , a polarization H of X (given

by hyperplane sections of X in some embedding X ⊂ P
N), and a birational

transformation f of X , all defined over the field k. Let k be the dimension

of X . The degree of f with respect to the polarization H is the integer

degH( f ) = ( f ∗H) ·Hk−1 (1.1)

where f ∗H is the total transform of H, and ( f ∗H) ·Hk−1 is the intersection

product of f ∗H with k−1 copies of H. The degree is a positive integer, which

we shall simply denote by deg( f ), even if it depends on H. When f is a

birational transformation of the projective space P
k and the polarization is

given by O
Pk(1) (i.e. by hyperplanes H ⊂ P

k), then deg( f ) is the degree of the

homogeneous polynomial formulas defining f in homogeneous coordinates.

The degrees are submultiplicative, in the following sense:

deg( f ◦g)≤ cX ,H deg( f )deg(g) (1.2)

for some positive constant cX ,H and for every pair of birational transforma-

tions. Also, if the polarization H is changed into another polarization H ′,

there is a positive constant c such that degH( f )≤ cdegH ′( f ) (see [7, 11, 13]).

The degree sequence of f is the sequence (deg( f n))n≥0; it plays an impor-

tant role in the study of the dynamics and the geometry of f . There are in-

finitely, but only countably many degree sequences (see [14]); unfortunately,

not much is known on these sequences when dim(X) ≥ 3. In this article, we

obtain the following basic results.
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• The sequence (deg( f n))n≥0 is bounded if and only if it is bounded

along an infinite subsequence (see Theorems A and B in § 2 and 3).

• If the sequence (deg( f n))n≥0 is unbounded, then its growth can not

be arbitrarily small; for instance, max0≤ j≤n deg( f j) is asymptotically

bounded from below by the inverse of the diagonal Ackermann func-

tion (see Theorem C in § 4 for an effective result).

We focus on birational transformations because a rational dominant transfor-

mation which is not birational has a topological degree δ > 1, and this forces

an exponential growth of the degrees: 1 < δ1/k ≤ limn(deg( f n)1/n) where

k = dim(X) (see [7] and [4], pages 120–126).

2. AUTOMORPHISMS OF THE AFFINE SPACE

We start with the simpler case of automorphisms of the affine space; the

goal of this section is to introduce a p-adic method to study degree sequences.

Theorem A (Urech).– Let f be an automorphism of the affine space A
k
k. If

deg( f n) is bounded along an infinite subsequence, then it is bounded.

In fact, Urech proves in [14] that max0≤ j≤n deg( f j) is bounded from below

by αn1/k for some constant α > 0 when (deg( f n)) is unbounded. Here, we

content ourselves with the simpler version stated in Theorem A.

2.1. Urech’s proof. Assume deg( f ni)≤ B for some sequence n1 < n2 < .. . <

nℓ of positive integers. The iterates f ni are in the vector space EndB(A
k
k) of

endomorphisms of Ak
k of degree ≤ B. This vector space has dimension

dim(EndB(A
k
k)) = k

(

k+B

B

)

. (2.1)

Thus, if ℓ > dim(EndB(A
k
k)) there is a non-trivial linear relation between the

f ni in the vector space EndB(A
k
k), which we can write

f n =
n−1

∑
m=1

am f m (2.2)

for some integer n≤ nℓ and some coefficients am ∈ k. Then, every iterate f N

of f with N ≥ n is a linear combination of the automorphisms f m with m < n,

and so deg( f N) is bounded from above by the maximum of the degrees of f m

for 0≤ m≤ n−1. This shows that the sequence (deg( f N))N≥0 is bounded.
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2.2. The p-adic argument. Let us give a second proof when char(k) = 0,

which will be generalized in § 3 to treat the case of birational transformations.

2.2.1. Tate diffeomorphisms. Let p be a prime number. Let K be a field of

characteristic 0 which is complete with respect to an absolute value | · | satis-

fying |p| = 1/p; such an absolute value is automatically ultrametric (see [9],

Ex. 2 and 3, Chap. I.2). Let R = {x ∈ K; |x| ≤ 1} be the valuation ring of K;

in the vector space Kk, the unit polydisk is the subset U = Rk.

Fix a positive integer k, and consider the ring R[x] = R[x1, ...,xk] of polyno-

mial functions in k variables with coefficients in R. For f in R[x], define the

norm ‖ f ‖ to be the supremum of the absolute values of the coefficients of f :

‖ f ‖= sup
I

|aI| (2.3)

where f = ∑I=(i1,...,ik) aIx
I. By definition, the Tate algebra R〈x〉 is the com-

pletion of R[x] with respect to this norm. It coincides with the set of for-

mal power series f = ∑I aIx
I converging (absolutely) on the closed unit poly-

disk Rk. Moreover, the absolute convergence is equivalent to |aI| → 0 as

length(I)→ ∞. Every element g in R〈x〉k determines a Tate analytic map

g : U → U .

For f and g in R〈x〉 and c in R+, the notation f ∈ pcR〈x〉means ‖ f ‖≤ |p|c

and the notation f ≡ g mod (pc) means ‖ f −g ‖≤ |p|c; we then extend such

notations component-wise to (R〈x〉)m for all m≥ 1.

For indeterminates x = (x1, . . . ,xk) and y = (y1, . . . ,ym), the composition

R〈y〉×R〈x〉m→ R〈x〉 is well defined, and coordinatewise we obtain

R〈y〉n×R〈x〉m→ R〈x〉n. (2.4)

When m = n = k, we get a semigroup R〈x〉k. The group of (Tate) analytic

diffeomorphisms of U is the group of invertible elements in this semigroup;

we denote it by Diff
an(U). Elements of Diffan(U) are bijective transformations

f : U → U given by f (x) = ( f1, . . . , fk)(x) where each fi is in R〈x〉 with an

inverse f−1 : U → U that is also defined by power series in the Tate algebra.

The following result is due to Jason Bell and Bjorn Poonen (see [2, 12]).

Theorem 2.1. Let f be an element of R〈x〉k with f ≡ id mod (pc) for some

real number c > 1/(p− 1). Then f is a Tate diffeomorphism of U = Rk and

there exists a unique Tate analytic map Φ : R×U → U such that

(1) Φ(n,x) = f n(x) for all n ∈ Z;

(2) Φ(s+ t,x) = Φ(s,Φ(t,x)) for all t, s in R.



DEGREE SEQUENCES 4

2.2.2. Second proof of Theorem A. Denote by S the finite set of all the coef-

ficients that appear in the polynomial formulas defining f . Let RS ⊂ k be the

ring generated by S over Z, and let KS be its fraction field:

Z⊂ RS ⊂ KS ⊂ k. (2.5)

Since char(k) = 0, there exists a prime p > 2 such that RS embeds into Zp (see

[10], §4 and 5, and [2], Lemma 3.1). We apply this embedding to the coeffi-

cients of f and get an automorphism of Ak
Qp

which is defined by polynomial

formulas in Zp[x1, . . . ,xk]; for simplicilty, we keep the same notation f for this

automorphism (embedding RS in Zp does not change the value of the degrees

deg( f n)). Since f is a polynomial automorphism with coefficients in Zp, it

determines an element of Diffan(U), the group of analytic diffeomorphisms of

the polydisk U = Zk
p.

There exists a positive integer m such that f m fixes the origin 0 ∈ U modulo

p2: f m(0) ≡ 0 mod (p2). Taking some further iterate, we may also assume

that the differential D f m
0 satisfies D f m

0 ≡ Id mod (p). We fix such an integer

m and replace f by f m. The following lemma follows from the submultiplica-

tivity of degrees (see Equation (1.2) in Section 1). It shows that replacing f by

f m is armless if one wants to bound the degrees of the iterates of f .

Lemma 2.2. If the sequence deg( f mn) is bounded for some m > 0, then the

sequence deg( f n) is bounded too.

Denote by x = (x1, . . . ,xk) the coordinate system of Ak, and by mp the mul-

tiplication by p: mp(x) = px. Change f into g := m−1
p ◦ f ◦mp; then g ≡ Id

mod (p) in the sense of Section 2.2.1. Since p ≥ 3, Theorem 2.1 gives a

Tate analytic flow Φ : Zp×A
k(Zp)→ A

k(Zp) which extends the action of g:

Φ(n,x) = gn(x) for every integer n ∈ Z. Since Φ is analytic, one can write

Φ(t,x) = ∑
J

AJ(t)x
J (2.6)

where J runs over all multi-indices ( j1, . . . , jk) ∈ (Z≥0)
k and each AJ defines

a p-adic analytic curve Zp→ A
k(Qp). By submultiplicativity of the degrees,

there is a constant C > 0 such that deg(gni)≤CBm. Thus, we obtain AJ(ni)= 0

for all indices i and all multi-indices J of length |J| > CBm. The AJ being

analytic functions of t ∈ Zp, the principle of isolated zeros implies that

AJ = 0 in Zp〈t〉, ∀J with |J|>CBm. (2.7)
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Thus, Φ(t,x) is a polynomial automorphism of degree ≤CBm for all t ∈ Zp,

and gn(x) = Φ(n,x) has degree at most CBm for all n. By Lemma 2.2, this

proves that deg( f n) is a bounded sequence.

3. BIRATIONAL TRANSFORMATIONS

We now extend Theorem A to the case of birational transformations.

Theorem B.– Let k be a field of characteristic 0. Let X be a projective variety

and f : X 99K X be a birational transformation of X, both defined over k. If

the sequence (deg( f n))n≥0 is not bounded, then it goes to +∞ with n:

liminf
n→+∞

deg( f n) = +∞.

Urech’s argument does not apply to this context, because the dimension of

the space of rational transformations of Ak
k of degree ≤ B is infinite. We shall

therefore apply the p-adic method, adapting the proof given in Section 2.2.2.

Note that Theorem B can be combined with a theorem of Weil to obtain the

following: if f is a birational transformation of the projective variety X , over

an algebraically closed field of characteristic 0, and if the degrees of its iterates

are bounded along an infinite subsequence f ni , then there exist a birational map

ψ : Y 99K X and an integer m > 0 such that fY := ψ−1 ◦ f ◦ψ is in Aut(Y ), and

f m
Y is in the connected component Aut(Y )0 (see [3] and references therein).

In what follows, f and X are as in Theorem B; we also assume, without loss

of generality, that k = C and that X is smooth. We suppose that there is an

infinite sequence of integers n1 < n2 < .. . < n j < .. . and a positive number

B such that deg( f n j) ≤ B for all j. We fix a finite set S of complex numbers

such that X and f are defined by equations and formulas with coefficients in

S, and we embed the ring RS ⊂ C generated by S in some Zp, for some prime

number p > 2. According to [5], Section 3, we may assume that X and f have

good reduction modulo p.

3.1. The Hrushovski’s theorem and p-adic polydisks. According to a the-

orem of Hrushovski (see [8]), there is a periodic point z0 of f in X(F) for

some finite field extension F of the residue field Fp, the orbit of which does

not intersect the indeterminacy points of f and f−1. If ℓ is the period of z0,

then f ℓ(z0) = z0 and D f ℓz0
is an element of the finite group GL((T XFq

)z0
) ≃

GL(k,Fq). Thus, there is an integer m > 0 such that f m(z0) = z0 and D f m
z0
= Id.
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Replace f by its iterate g = f m. Then, g fixes z0 in X(F), g is an iso-

morphism in a neighborhood of z0, and Dgz0
= Id. According to [1] and [5]

Section 3, this implies that there is

• a finite extension K of Qp, with valuation ring R⊂ K;

• a point z in X(K) and a polydisk V z ≃ Rk ⊂ X(K) which is g-invariant

and such that gVz
≡ Id mod (p) (in the coordinate system (x1, . . . ,xk)

of the polydisk).

When the point z0 is in X(Fp) and is the reduction of a point z ∈ X(Zp), the

polydisk V z is the set of points w ∈ X(Zp) with |z−w| < 1; one identifies

this polydisk to U = (Zp)
k via some p-adic analytic diffeomorphism ϕ : U →

V z; changing ϕ into ϕ ◦mp if necessary, we obtain gVz
≡ Id mod (p) (see

Section 2.2.2 and [5], Section 3). In full generality, a finite extension K of Qp

is needed because z0 is a point in X(F) for some extension of the residue field.

3.2. Controling the degrees. As in Section 2.2.1, denote by U the polydisk

Rk ≃ V z; thus, U is viewed as the polydisk Rk and also as a subset of X(K).

Applying Theorem 2.1 to g, we obtain a p-adic analytic flow

Φ : R×U → U , (t,x) 7→Φ(t,x) (3.1)

such that Φ(n,x) = gn(x) for every integer n. In other words, the action of g

on U extends to an analytic action of the additive compact group (R,+).

Let π1 : X ×X → X denote the projection onto the first factor. Denote by

BirD(X) the set of birational transformations of X of degree D; once birational

transformations are identified to their graphs, this set becomes naturally a finite

union of irreducible, locally closed algebraic subsets in the Hilbert scheme of

X ×X (see [3], Section 2.2, and references therein). Taking a subsequence,

there is a positive integer D, an irreducible component BD of BirD(X), and a

strictly increasing, infinite sequence of integers (n j) such that

gn j ∈ BD (3.2)

for all j. Denote by BD the Zariski closure of BD in the Hilbert scheme of

X ×X . To every element h ∈ BD corresponds a unique algebraic subset Gh

of X × X (the graph of h, when h is in BD). Our goal is to show that, for

every t ∈ R, the graph of Φ(t, ·) is the intersection Ght
∩U2 for some element

ht ∈ BD; this will conclude the proof because gn(x) = Φ(n,x) for all n≥ 0.

We start with a simple remark, which we encapsulate in the following lemma.
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Lemma 3.1. There is a finite subset E ⊂ U ⊂ X(K) with the following prop-

erty. Given any subset Ẽ of U ×U with π1(Ẽ) = E, there is at most one

element h ∈ BD such that Ẽ ⊂ Gh.

Fix such a set E, and order it to get a finite list E = (x1, . . . ,xℓ0
) of elements

of U . Let E ′ = (x1, . . . ,xℓ0
,xℓ0+1, . . . ,xℓ) be any list of elements of U which

extends E.

For every element h in BD, the variety Gh determines a correspondance

Gh ⊂ X×X . The subset of elements (h,(xi,yi)1≤i≤ℓ) in BD×(X×X)ℓ defined

by the incidence relation

(xi,yi) ∈ Gh (3.3)

for every 1≤ i≤ ℓ is an algebraic subset of BD×(X×X)ℓ. Add one constraint,

namely that the first projection (xi)1≤i≤ℓ coincides with E ′, and project the

resulting subset on (X×X)ℓ: we get a subset G(E ′) of (X×X)ℓ.

Then, define a p-adic analytic curve Λ : R→ (X×X)ℓ by

Λ(t) = (xi,Φ(t,xi))1≤i≤ℓ. (3.4)

If t = n j, gn j is an element of BD and Λ(n j) is contained in the graph of gn j ;

hence, Λ(n j) is an element of G(E ′). By the principle of isolated zeros, the

analytic curve t 7→ Λ(t)⊂ (X×X)ℓ is contained in G(E ′) for all t ∈ R. Thus,

for every t there is an element ht ∈ BD such that Λ(t) is contained in the subset

G ℓ
ht

of (X ×X)ℓ. From the choice of E and the inclusion E ⊂ E ′, we know

that ht does not depend on E ′. Thus, the graph of Φ(t, ·) coincides with the

intersection of Ght
with U ×U . This implies that the graph of gn(·) = Φ(n, ·)

coincides with Ghn
, and that the degree of gn is at most D for all values of n.

4. LOWER BOUNDS ON DEGREE GROWTH

We now prove that the growth of (deg( f n)) can not be arbitrarily slow unless

(deg( f n)) is bounded. For simplicity, we focus on birational transformations

of the projective space; there is no restriction on the characteristic of k.

4.1. A family of integer sequences. Fix two positive integers k and d: later

on, k will be the dimension of the projective space Pk
k, and d will be the degree

of f : Pk
99K P

k. Set

m = (d−1)(k+1). (4.1)

Then, consider an auxiliary integer D ≥ 1, which will play the role of the

degree of an effective divisor in the next paragraphs, and define

q = (dD)m(D+1). (4.2)
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Thus, q depends on k, d and D because m depends on k and d. Then, set

a0 =

(

k+D

k

)

−1, b0 = 1, c0 = D+1. (4.3)

Starting from the triple (a0,b0,c0), we define a sequence ((a j,b j,c j)) j≥0 in-

ductively by

(a j+1,b j+1,c j+1) = (a j,b j−1,qc2
j) (4.4)

if b j ≥ 2, and by

(a j+1,b j+1,c j+1) = (a j−1,qc2
j ,qc2

j) = (a j−1,c j+1,c j+1) (4.5)

if b j = 1. By construction, (a1,b1,c1) = (a0−1,qc2
0,qc2

0).

Define Φ : Z+→ Z+ by

Φ(c) = qc2. (4.6)

Lemma 4.1. Define the sequence of integers (Fi)i≥1 recursively by F1 = q(D+

1)2 and Fi+1 = ΦFi(Fi) for i≥ 1 (where ΦFi is the Fi-iterate of Φ). Then

(a1+F1+···+Fi
, b1+F1+···+Fi

, c1+F1+···+Fi
) = (a0− i−1, Fi+1, Fi+1).

The proof is straightforward. Now, define the function S : Z+→ Z+ as the

sum of the Fi:

S( j) = 1+F1 +F2 + · · ·+Fj (4.7)

for all j ≥ 1. The function S is increasing and goes to +∞ extremely fast

with j. Then, set

χd,k(n) = max

{

D≥ 0 | S(

(

k+D

k

)

−2)< n

}

. (4.8)

Lemma 4.2. The function χd,k : Z+→ Z+ is non-decreasing and goes to +∞

with n.

Remark 4.3. The function S is primitive recursive (see [6], Chapters 3 and 13).

In other words, S is obtained from the basic functions (the zero function, the

successor s(x) = x+1, and the projections (xi)1≤i≤m→ xi) by a finite sequence

of compositions and recursions. Equivalently, one can write a program that

computes S, all of whose instructions are limited to (1) the zero initialization

V ← 0, (2) the increment V ← V + 1, (3) the assignement V ← V ′, and (4)

loops of definite length. Writing such a program is an easy exercise. Now,

consider the diagonal Ackermann function A(n) (see [6], Section 13.3). It
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grows asymptotically faster than any primitive recursive function; hence, the

inverse of the Ackermann diagonal function

α(n) = max{D≥ 0 |Ack(D)≤ n}. (4.9)

is, asymptotically, a lower bound for χd,k(n). A better lower bound is obtained

by showing that χd,k is in the L6 hierarchy of [6], Chapter 13; this gives an

asymptotic lower bound by the inverse of the function f7 of [6], independent

on the values of d and k, but this is a very week bound too.

4.2. Statement of the lower bound. We can now state the result that will be

proved in the next paragraphs.

Theorem C.– Let f be a birational transformation of the complex projective

space P
k
C. If the sequence (max0≤ j≤n(deg( f j)))n≥0 is unbounded, then it is

bounded from below by the sequence of integers (χd,k(n))n≥0.

Remark 4.4. There are infinitely, but only countably many sequences of de-

grees (deg( f n))n≥0 (see [14]). Consider the countably many sequences

(

max
0≤ j≤n

(deg( f j))

)

n≥0

(4.10)

restricted to the family of birational maps for which (deg( f n)) is unbounded.

We get a countable family of non-decreasing, unbounded sequences of inte-

gers. Now, let (ui)i∈Z≥0
be any countable family of non-decreasing and un-

bounded sequences of integers (ui(n)). Define a sequence w(n) as follows.

First, set v j =min{u0,u1, . . . ,u j}; this defines a new family of sequences, with

the same limit +∞, but now v j(n)≥ v j+1(n) for every pair of non-negative in-

tegers. Then, set m0 = 0, and define mn+1 recursively to be the first positive

integer such that vn+1(mn+1) ≥ vn(mn)+ 1. We have mn+1 ≥ mn + 1 for all

n ∈ Z≥0. Set w(n) := vrn
(mrn

) where rn is the unique non-negative integer sat-

isfying mrn
≤ n ≤ mrn+1− 1. By construction, w(n) goes to +∞ with n and

ui(n) is asymptotically bounded from below by w(n).

In Theorem C, the result is more explicit. Firstly, the lower bound is ex-

plicitely given by the sequence (χd,k(n))n≥0. Secondly, the lower bound is not

asymptotic: it works for every value of n. In particular, if deg( f j) < χd,k(n)

for 0≤ j ≤ n and deg( f ) = d, then the sequence (deg( f n)) is bounded.
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4.3. Divisors and strict transforms. To prove Theorem C, we consider the

action of f by strict transform on effective divisors. As above, d = deg( f ) and

m = (d−1)(k+1) (see Section 4.1).

4.3.1. Exceptional locus. Let X be a smooth projective variety and π1 and

π2 : X → P
k be two birational morphisms such that f = π2 ◦π−1

1 ; then, con-

sider the exceptional locus Exc(π2) ⊂ X , project it by π1 into P
k, and list its

irreducible components of codimension 1: we obtain a finite number

E1, . . . , Em( f ) (4.11)

of irreducible hypersurfaces, contained in the zero locus of the jacobian deter-

minant of f . Since this critical locus has degree m, we obtain:

m( f )≤ m, and deg(Ei)≤ m (∀i≥ 1). (4.12)

4.3.2. Effective divisors. Denote by M the semigroup of effective divisors

of Pk
k; every element of M is a finite sum of irreducible hypersurfaces with

non-negative integer coefficients. There is a partial ordering≤ on M, which is

defined by E ≤ E ′ if and only if the divisor E ′−E is effective.

We denote by deg: M→ Z≥0 the degree function. For every degree D≥ 1,

we denote by MD the set P(H0(Pk
k,OPk

k
(D))) of effective divisors of degree D;

thus, M is the disjoint union of all the MD, and each of these components will

be endowed with the Zariski topology of P(H0(Pk
k,OP

k
k
(D))). The dimension

of MD is equal to the integer a0 = a0(D,k) from Section 4.1:

dim(MD) =

(

k+D

k

)

−1. (4.13)

Let G⊂M be the semigroup generated by the Ei:

G =

m( f )⊕

i=1

Z≥0Ei. (4.14)

The elements of G are the effective divisors which are supported by the excep-

tional locus of f . For every E ∈ G, there is a translation operator TE : M→M

which is defined by TE : E ′ 7→ E +E ′; it is a linear projective embedding of

the projective space MD into the projective space MD+deg(E). We define

M◦D = MD \
⋃

E∈G\{0},deg(E)≤D

TE(MD−deg(E)). (4.15)

Thus, M◦D is an open subset of MD; it is the complement of finitely many

proper linear projective subspaces. Also, M◦0 = M0 and M◦1 is obtained from
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M1 by removing finitely many points, corresponding to the Ei of degree 1 (the

hyperplanes contracted by f ). Set M◦ =
⋃

D≥0 M◦D. This is the set of effective

divisors without any component in the exceptional locus of f . The inclusion

of M◦ in M will be denoted by ι : M◦→M.

There is a natural projection πG : M → G; namely, πG(E) is the maximal

element such that E − πG(E) is effective. We denote by π◦ : M → M◦ the

projection π◦ = Id−πG; this homomorphism removes the part of an effective

divisor E which is supported on the exceptional locus of f .

Remark 4.5. The restriction of the map π◦ to the projective space MD is piece-

wise linear, in the following sense. Consider the subsets UE,D of MD which

are defined for every E ∈ G with deg(E)≤ D by

UE,D = TE(MD−deg(E))\
⋃

E ′>E,E ′∈G,deg(E ′)≤D

TE ′(MD−deg(E ′)).

They define a stratification of MD by (open subsets of) linear subspaces, and

π◦ coincides with the of the linear map inverse of TE on each UE,D.

4.3.3. Strict transform. First, we consider the total transform f ∗ : M → M,

which is defined by f ∗(E) = (π1)∗π
∗
2(E) for every divisor E ∈ M. This is

an injective homomorphism of semigroups. Let [x0, . . . ,xk] be homogeneous

coordinates on P
k. If f = [ f0 : · · · : fk] is defined by homogeneous polynomial

functions fi ∈ k[x0, . . . ,xk] of degree d, and if E is defined by the homogeneous

equation P(x0, . . . ,xk) = 0, then f ∗(E) is defined by P◦ f = P( f0, . . . , fk) = 0.

Thus, f ∗ induces a linear projective embedding of MD into MdD for every D.

Then, we denote by f ◦ : M◦→M◦ the strict transform. It is defined by

f ◦(E) = (π◦ ◦ f ∗ ◦ ι)(E). (4.16)

This is a homomorphism of semigroups. Removing the exceptional locus

(π1)∗(E(π2)) from P
k
k, one gets a variety Y , and an induced birational trans-

formation fY : Y 99K Y . Then, every divisor E ∈M◦ intersects Y on a divisor

EY of the same degree: this provides a bijection between effective divisors of

Y and elements of M◦ that conjugates ( fY )
∗ to f ◦. In particular, ( f ◦)n = ( f n)◦.

4.4. Proof of Theorem C. Let η be the generic point of M◦1 (η corresponds

to a generic hyperplane of Pk
k). The degree of f ∗(η) is equal to the degree

of f , and since η is generic, f ∗(η) coincides with f ◦(η). Thus, deg( f ) =

deg( f ◦(η)) and more generally

deg( f n) = deg(( f ◦)nη) (∀n≥ 1). (4.17)
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Fix an integer D≥ 0. Write M◦≤D for the union of the M◦D′ with D′ ≤D, and

define recursively ZD(0) = M◦≤D and

ZD(i+1) = {E ∈ ZD(i) | f ◦(E) ∈ ZD(i)} (4.18)

for i ≥ 0. A divisor E ∈ M◦≤D is in ZD(i) if its strict transform f ◦(E) is of

degree ≤ D, and f ◦( f ◦(E)) is also of degree ≤ D, up to ( f ◦)i(E) which is

also of degree at most D. The subsets ZD(i) form a decreasing sequence of

Zariski closed subsets (in the disjoint union M◦≤D of the M◦D′ , D′ ≤ D). The

strict transform f ◦ maps ZD(i+ 1) in ZD(i). There exists a minimal integer

ℓ(D)≥ 0 such that

ZD(ℓ(D)) =
⋂

i≥0

ZD(i); (4.19)

we denote this subset by ZD(∞) = ZD(ℓ(D)). By construction, ZD(∞) is stable

under the operator f ◦; more precisely, f ◦(ZD(∞)) = ZD(∞) = ( f ◦)−1(ZD(∞)).

Let τ : Z≥0→ Z≥0 be a lower bound for the inverse function of ℓ:

ℓ(τ(n))≤ n (∀n≥ 0). (4.20)

Assume that max{deg( f m) | 0 ≤ m ≤ n0} ≤ τ(n0) for some n0 ≥ 1. Then

deg(( f ◦)i(η)) ≤ τ(n0) for every integer i between 0 and n0; this implies that

η is in the set Zτ(n0)(ℓ(τ(n0))) = Zτ(n0)(∞), so that the degree of ( f ◦)m(η) is

bounded from above by τ(n0) for all m≥ 0. From Equation (4.17) we deduce

that the sequence (deg( f m))m≥0 is bounded. This proves the following lemma.

Lemma 4.6. Let τ be a lower bound for the inverse function of ℓ. If

max{deg( f m) | 0≤ m≤ n0} ≤ τ(n0)

for some n0 ≥ 1, then the sequence of degrees (deg( f n))n≥0 is bounded.

So, to conclude, we need to compare ℓ : Z≥0→Z+ to the function S : Z≥0→

Z+ of paragraph 4.1 (recall that S depends on the parameters k = dim(Pk
k) and

d = deg( f ) and that ℓ depends on f ).

Let us describe ZD(i+ 1) more precisely. For each i, and each E ∈ G of

degree deg(E) ≤ dD consider the subset TE(ι(ZD(i)))∩MdD; this is a subset

of MdD which is made of divisors W such that π◦(W) is contained in ZD(i),

and the union of all these subsets when E varies is exactly the set of points W

in MdD with a projection π◦(W ) in ZD(i). Thus, we define

( f ∗)−1(TE(ι(ZD(i)))) = {V ∈M◦≤D | f ∗(ι(V )) ∈ TE(ι(ZD))}. (4.21)
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These sets are closed subsets of M◦≤D, and

ZD(i+1) = ZD(i)
⋂ ⋃

E∈G,deg(E)≤dD

π◦

(

( f ∗)−1(TE(ι(ZD(i)))
)

. (4.22)

Now, write Z′D(i) = ZD(i)\ZD(∞), and note that it is a decreasing sequence

of open subsets with Z′D( j) = /0 for all j ≥ ℓ(D).

We shall say that a closed subset L of M◦≤D \ZD(∞) for the Zariski topol-

ogy is piecewise linear if all its irreducible components are equal to the in-

tersection of M◦≤D \ ZD(∞) with a linear projective subspace of some MD′ ,

D′ ≤ D. Let Lin(a,b,c) be the family of closed piecewise linear subsets of

M◦≤D \ZD(∞) of dimension a, with at most c irreducible components, and at

most b irreducible components of maximal dimension a. Then:

(1) Z′D(i+1)= {E ∈ Z′D(i) | f ◦(E)∈ Z′D(i)}= π◦( f ∗Z′D(i))
⋂
∪ETE(Z

′
D(i)),

where E runs over the elements of G of degree deg(E)≤ dD.

(2) in this union, every irreducible component of TE(Z
′
D(i)) is piecewise

linear.

Recall that q = (dD)m(D+1) was introduced in Section 4.1. If Z is any closed

piecewise linear subset of M◦≤D \ ZD(∞) that contains exactly c irreducible

components, the set

π◦( f ∗Z)
⋂ ⋃

E∈G, deg(E)≤dD

TE(E) (4.23)

has at most qc2 = (dD)m(D+1)c2 irreducible components (this is just a crude

estimate : the factor (D+1) comes from the number of irreducible components

of M≤D, and the factor (dD)m from the fact that G contains at most (dD)m

elements of degree ≤ dD). Let us now use that the sequence Z′D(i) decreases

strictly as i varies from 0 to ℓ(D), with Z′D(ℓ(D)) = /0. If 0≤ i≤ ℓ(D)−1, and

if Z′D(i) is contained in Lin(a,b,c), we obtain

(1) if b≥ 2, then Z′D(i+1) is contained in Lin(a,b−1,qc2);

(2) if b = 1, then Z′D(i+1) is contained in Lin(a−1,qc2,qc2).

This shows that

ℓ(D)≤ S(

(

k+D

k

)

−2)+1 (4.24)

where S is the function introduced in the Equation (4.7) of Section 4.1. Since

χd,k satisfies ℓ(χd,k(n))≤ n for every n≥ 1, the conclusion follows.
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