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ABSTRACT. We classify all (abstract) homomorphisms from PGLr+1(C) to
the group Bir(M) of birational transformations of a complex projective vari-
ety M, provided r ≥ dimC(M). As a byproduct, we show that (1) Bir(Pn

C) is
isomorphic, as an abstract group, to Bir(Pm

C) if and only if n = m and (2) M
is rational if and only if PGLdim(M)+1(C) embeds as a subgroup of Bir(M).
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1. INTRODUCTION

1.1. Algebraic transformations. Let M be a complex projective variety. Two
natural groups of transformations are associated to M. The first is the group
Aut(M) of automorphisms of M; with the topology of uniform convergence,
this group is a complex Lie group (see [6]). More precisely, the connected
component Aut(M)0 containing the identity IdM is a connected, complex, al-
gebraic group, while the discrete part Aut(M)] = Aut(M)/Aut(M)0 may have
infinitely many elements.

The second group is the group Bir(M) of all birational transformations of M.
In most cases, Bir(M) coincides with Aut(M) and is finite, but for some pecu-
liar varieties, like the projective space Pn

C, n > 1, Bir(M) has infinite dimension.
Our goal in this article is to initiate the study of abstract morphisms from

linear groups to groups of birational transformations Bir(M). We treat one
example in details which, as a byproduct, shows that
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• an irreducible variety M of dimension n is rational if, and only if Bir(M)
is isomorphic to Bir(Pn

C) as an abstract group;
• the Cremona groups Bir(Pn

C) and Bir(Pm
C) are not isomorphic if n 6= m.

1.2. Field automorphisms. Let Aut(Pn
C) be the group of automorphisms of

the complex projective space Pn
C. Once a system of homogeneous coordinates

[x0 : x1 : ... : xn] is fixed, the group Aut(Pn
C) can be identified to the group of

projective transformations PGLn+1(C).
Let AutQ(C) be the group of automorphisms of the field (C,+, ·). The semi-

direct product AutQ(C) n Aut(Pn
C) acts on the set Pn(C). To describe this

action, let us use our system of homogeneous coordinates. The group AutQ(C)
acts diagonally on Cn+1 and therefore on Pn(C): If β is an element of AutQ(C),
then

β([x0 : ... : xn]) = [β(x0) : ... : β(xn)].

It acts also on PGLn+1(C), changing a matrix B = [bi j] into βB = [β(bi j)]. This
provides an action g 7→ βg of AutQ(C) on Aut(Pn

C) such that

βg([x0 : ... : xn]) = (β◦g◦β
−1)([x0 : ... : xn]),

and therefore an action of AutQ(C)n Aut(Pn
C) on Pn(C).

In a similar way, if M is a projective variety which is defined over a field
K ⊂ C, the group AutK(C) of automorphisms of the field extension C/K acts
on M(C) and on both Aut(M) and Bir(M), in such a way that

βg(m) = (β◦g◦β
−1)(m)

for all β in AutK(C), all g in Bir(M), and all points m in M(C) for which both
sides of this equation are well defined. As a consequence, AutK(C) acts by
automorphisms on the group Bir(M). In the case of the projective space, this
provides a faithful morphism from AutQ(C) to the group of outer automor-
phisms of the group Bir(Pn

C).

1.3. Abstract morphisms. To state our main results, note that, given a field
morphism α : C→C, the construction described in the previous paragraph pro-
vides an injective morphism g 7→ αg from Aut(Pn

C) to Aut(Pn
C). For example,

if one writes C as the algebraic closure of a purely transcendental extension
Q(xi, i ∈ I) of the field of rational numbers, and if ϕ : I→ I is an injective map,
then there exists a field morphism α : C→ C which maps xi to xϕ(i); such a
morphism is surjective if and only if ϕ is onto. In this way, one gets injective,
non-surjective, morphisms Aut(Pn

C)→ Aut(Pn
C).

Given g in PGLn+1(C), we denote by tg the linear transpose of g. The map

g 7→ g∨ := (tg)−1
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determines an exterior automorphism of the group Aut(Pn
C). It is nothing else

than the natural morphism given by projective duality and it represents the only
exterior and algebraic automorphism of the group Aut(Pn

C) (see [15]).
Theorem A. Let M be a smooth, connected, complex projective variety, and let
n be its dimension. Let r be a positive integer and let ρ : Aut(Pr(C))→ Bir(M)
be an injective morphism of groups. Then n ≥ r, and if n = r there exists a
field morphism α : C→ C, and a birational mapping ψ : M 99K Pn(C) such
that either

ψ◦ρ(g)◦ψ
−1 = αg, ∀g ∈ Aut(Pn(C))

or
ψ◦ρ(g)◦ψ

−1 = (αg)∨, ∀g ∈ Aut(Pn(C));
in particular, M is rational. Moreover, α is an automorphism of C if ρ is an
isomorphism.

The following two results are direct corollaries of Theorem A. The first
shows that the Cremona groups Bir(Pn

C), n ≥ 1, are pairwise non isomorphic,
thereby solving an open problem for n≥ 4 (see §1.4.1 below).
Theorem B. Let n and m be natural integers. The group Bir(Pn

C) embeds into
Bir(Pm

C) if and only if n≤m. In particular, Bir(Pn
C) is isomorphic to Bir(Pm

C) if
and only if n = m.

The second characterizes rational varieties M by the structure of Bir(M), as
an abstract group.
Theorem C. Let M be an irreducible complex projective variety of dimen-
sion n. The following properties are equivalent:

(a) M is rational;
(b) Bir(M) is isomorphic, as an abstract group, to Bir(Pn

C);
(c) there is a non-trivial morphism from PGLn+1(C) to Bir(M).

Remark 1.1. In fact, if K is an uncountable subfield of C, and if PGLn+1(K)
embeds into Bir(M) with n = dimC(M), then the complex variety M is rational;
for instance, one can take K = R. This statement follows easily from the proof
of Theorem A.

1.4. Two related results.

1.4.1. Finite subgroups. Let k be an algebraically closed field. The group of
diagonal matrices in PGLn+1(k) is a multiplicative group of rank n; hence,
it contains a copy of the finite abelian groups (Z/pZ)n for all prime integers
p 6= char(k).

Given any prime integer p ≥ 5 with p 6= char(k), Beauville proves that the
abelian group (Z/pZ)3 does not embed into Bir(P2

k); this implies that Bir(P2
k)
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is not isomorphic to Bir(Pm
k′), whatever the choice of m 6= 2 and of the alge-

braically closed field k′ (see [2]).
In [31], Prokhorov proves that, for any prime integer p ≥ 17 and any field

k of characteristic 0, the abelian group (Z/pZ)4 does not embed into Bir(P3
C).

Again, this implies that Bir(P3
k) is not isomorphic to Bir(Pm

k′) if m 6= 3 and k′
is an algebraically closed field.

Unfortunately, the methods used in the work of Beauville and Prokhorov are
not available in dimension n ≥ 4 and it was not known, up to now, whether
two distinct Cremona groups Bir(Pn

C) and Bir(Pm
C), with n and m larger than 3,

could be isomorphic. For instance, it is not yet known whether there does exist
a finite group without any faithful embedding into Bir(P4

C) (it is expected that
PGL6(Z/pZ) and even (Z/pZ)5 do not embed in Bir(P4

C) if p is a large prime
integer).

1.4.2. Classical groups and groups of diffeomorphisms. Theorems B and C
should be compared to well known statements concerning morphisms between
classical Lie groups – results which we shall use in Section 4.2.2 – as well as
morphisms between groups of diffeomorphisms of compact manifolds.

For instance, Filipkiewicz proved the following result in [18]: Let V and W
be two compact manifolds and let ρ : Diffk(V )→ Diff l(W ) be an isomorphism
between their groups of diffeomorphisms of class C k and C l; then k = l, and
there is a diffeomorphism Φ : V →W of class C k such that ρ is the conjuga-
tion by Φ. This shows that the algebraic structure of Diffk(V ) determines V .
Moreover, the existence of an embedding of Diff∞(V ) into Diff∞(W ) forces
the inequality dim(V ) ≤ dim(W ), but this result has been obtained only very
recently (see [19, 26, 30, 29]).

Our main results follow the same principle but, in the context of groups of
birational transformations, one must require that one of the varieties is rational:
in general, Bir(M) is too small to distinguish the birational type of M; for
instance, if M has general type, Bir(M) is finite; more specifically, if M is a
generic curve of genus g≥ 3 then Bir(M) = {IdM}. Another issue concerning
Theorem A is the existence of isomorphisms coming from automorphisms of
the field C; this kind of isomorphisms do not exist in Filipkiewicz’s context.

1.5. Strategy and relevant references. When n = 2, Theorems B and C are
due to Julie Déserti (see [13]). The strategy that leads to the proof of Theorem
A is similar to Déserti’s argument but it also requires several new ideas which
can be traced back to, at least, two distinct sources:
1.– Weil’s regularization Theorem (see [34]), a result that transforms a group

of birational transformations of M with uniformly bounded degrees into a
group of automorphisms of a new variety M′ by a birational change of variables
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Ψ : M′ 99KM. This is described in Section 2.3, with interesting complements
that can be found in the articles [12] by Demazure, [32, 33] by Umemura, and
[25, 35] by Huckleberry and Zaitsev.
2.– The work of Epstein and Thurston on nilpotent Lie subalgebras in the Lie

algebra of smooth vector fields of a compact manifold; see [17], as well as [20]
for similar ideas in the context of groups of analytic diffeomorphisms.

We work over the field of complex numbers because it is algebraically closed,
it is not countable and it has characteristic zero. These properties are all used in
some way during the proof, but the crucial point is that C is not countable. We
could also prove Theorem A for groups of bimeromorphic transformations of
compact Kähler manifolds; we stick to the case of projective varieties because
one of the key steps is Weil’s regularization Theorem, the proof of which is not
accessible in the literature for Kähler manifolds; on the other hand, we write
the proof, as much as we can, in the language of complex differential geometry.

1.6. Acknowledgement. Thanks to Jérémy Blanc, Julie Déserti, Adrien Du-
bouloz, Vincent Guirardel, and Stéphane Lamy for interesting discussions on
this topic. The author is also grateful to an anonymous referee for his sugges-
tions that led to a correction and an improvement of the exposition.

2. BIRATIONAL ACTIONS, DEGREES, AND REGULARIZATION

In this section, we collect several basic facts regarding groups of birational
transformations and then describe Weil’s regularization Theorem.

2.1. Degrees and volumes. Let M be a smooth, irreducible, complex projec-
tive variety; denote its dimension by n. Let κ be a Kähler form on M, fixed
once and for all.

2.1.1. Kähler metrics. If k is a positive integer, denote by πi : Mk → M the
projection onto the i-th factor: πi(x1,x2, . . . ,xk) = xi. The manifold Mk is then
endowed with the Kähler form ∑

k
i=1 π∗i κ. Volumes of submanifolds of Mk are

computed with respect to the Kähler metric determined by this Kähler form.

2.1.2. Graphs. Each birational transformation f of M is determined by two
Zariski dense open subsets U and V of M, and a regular isomorphism f : U →
V . The largest open subset U on which f is regular is the domain of definition
Dom( f ); its complement is the indeterminacy locus Ind( f ); the codimension
of Ind( f ) is ≥ 2.

To each birational transformation f : M 99KM, one associates its graph

Γ f ⊂M×M,
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defined as the Zariski closure of the set {(x, f (x)) ∈M×M ; x ∈Dom( f )}. By
construction, Γ f is an irreducible subvariety of M×M of dimension n. Both
projections π1, π2 : M×M→M restrict to birational morphisms πi : Γ f →M,
a fact which characterizes the set of graphs of birational transformations.

Example 2.1. The graph Γ f can be singular, as in the case of the monomial
transformation of the plane defined by f (x,y) = (y3/x2,y/x) in affine coordi-
nates.

2.1.3. Degrees. The total degree (or degree for short) tdeg( f ) of a birational
transformation f is defined as the volume of Γ f with respect to the fixed metric
defined on M×M in §2.1.1 (confer [7]); hence,

tdeg( f ) =
Z

Γ f

(π∗1κ+π
∗
2κ)n =

Z
Dom( f )

(κ+ f ∗κ)n.

If L is a very ample line bundle on M, and κ is the pull-back of the Fubini-
Study metric by the natural embedding of M in P(H0(M,L)∨), then tdeg( f ) is
the degree of the graph of f with respect to the polarization π∗1(L)⊗π∗2(L).

Lemma 2.2 (cf. [16] Lemma 4, and [22]). There exists a constant cM, which
depends only on M and κ, such that

tdeg( f ◦g)≤ cM tdeg( f ) tdeg(g)

for all f and g in Bir(M).

Changing κ into c1/n
M κ, one may, and do, assume that

tdeg( f ◦g)≤ tdeg( f ) tdeg(g). (2.1)

Similarly, if ψ : M′ 99KM is a birational transformation, and κ′, κ are Kähler
metrics on M′ and M, there exists a constant cψ such that

tdeg(ψ−1 ◦ f ◦ψ)≤ cψ tdeg( f ) (2.2)

for all f in Bir(M).

2.1.4. Groups with bounded degrees. Let d ≥ 1 be a natural integer. The sub-
set Bird(M) of Bir(M) is defined as

Bird(M) = { f ∈ Bir(M) ; tdeg( f )≤ d}.

A subgroup G of Bir(M) has bounded degree if it is contained in Bird(M), for
some d ∈ N∗.
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2.2. Components of Bir(M) (see [23, 25, 35]). We summarize a few facts that
are proved in [23] in the language of Hilbert schemes; they may be replaced
by Douady spaces if one wants to work on compact Kähler manifolds (see
[6] for a panorama and references to the literature). For complex projective
manifolds M, the Hilbert scheme and Douady space coincide (in the sense that
the associated analytic spaces are isomorphic).

On our way, we introduce notation that will be useful to the proof of Theo-
rem A. As above, M is a smooth and irreducible complex projective variety of
dimension n.

2.2.1. Components. The set Bir(M) is contained in the Douady space (resp.
Hilbert scheme) parametrizing complex analytic subsets of M×M of dimen-
sion n; more precisely Bir(M) is identified to the subset of irreducible subva-
rieties Γ ⊂ M×M of dimension n such that both projections π1, π2 : Γ→ M
have degree 1. The Douady space of n-dimensional subvarieties of M×M of
volume at most d is made of finitely many components Wj; each Wj is compact.
The intersections of Bird(M) with these components are denoted by Bir

j
d(M);

hence each Bir
j
d(M) is a subset of some component Wj of the Douady space.

We shall call the sets Bir
j
d(M) the components of Bir(M).1

Given a subvariety V of M×M of dimension n, one can compute the degrees
deg1(V ) and deg2(V ) of the natural projections π1|V and π2|V : V →M. These
degrees define two functions on the Douady space (resp. Hilbert scheme). If
W is a component of the Douady space, the function deg1(·) and deg2(·) are
constant on W . Thus, if W contains a graph of a birational transformation
f , then deg1 = deg2 = 1 on W (see for instance, [24], §III.9, or [1] Chap.
IV). Moreover, the subset of elements V of W corresponding to irreducible
subvarieties of M×M is open; for Hilbert schemes, this statement is contained
in Theorem 12.2 of [21].

Thus, as proved by Hanamura, each Bir
j
d(M) is an open subset in the com-

ponent Wj of the Douady space that contains it (see [23], Proposition (1.7));
this endows Bir

j
d(M) with the structure of an analytic space.

Given two components Bir
j
d(M) and Bir

j′

d′(M), the composition ( f ,g) 7→ f ◦g

defines a rational map from Bir
j
d(M)× Bir

j′

d′(M) to one of the components

1The notation BirW j(M) instead of Bir
j
d(M) would be better, because the value of the degree

d is already encoded in the choice of the component Wj. Our choice has two advantages:
the notation is not too heavy; it keeps track of the degree bound ≤ d and of the fact that a
component of the Douady space has been fixed.

The terminology “component” for the sets Bir
j
d(M) may be misleading: We do not mean

that these subsets are irreducible components of an algebraic variety or connected components
of a topological space.
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Birk
dd′(M) (see Equation (2.1)); similarly, the action of Bir(M) on M defines

rational mappings Bir
j
d(M)×M 99KM. These assertions are proved or implic-

itly used in [23] (see Proposition (2.7)), and a complete proof is given in [25]
(see Lemma 5.4 and Lemma 5.5) in the language of Barlet spaces.

Example 2.3 (see [10]). Let us describe an example in dimension 2 to illustrate
the different viewpoints that one can use and explain why the composition may
have indeterminacies on Bir

j
d(M)×Bir

j′

d′(M)). Consider the set Q of quadratic
birational transformations of the plane P2

C, i.e. birational transformations f [x :
y : z] = [P : Q : R] defined by homogeneous polynomials of degree 2 with no
common factor of positive degree. The total degree of such a transformation is
equal to 4. Indeed, the class of the graph Γ f ⊂ P2

C×P2
C is equal to

[P2(C)]×{point}+{point}× [P2(C)]+2[P1(C)]× [P1(C)]

where [P1(C)] is the class of a line; thus, the volume of Γ f with respect to
the polarization O(1) of P2

C is equal to 4. One can show that Q coincides
with one component of Bir(P2

C) in the sense of Hanamura. More precisely,
PGL3(C)×PGL3(C) acts on Q by left and right composition, and there are
exactly three orbits: Every element f ∈ Q is a composition a ◦ g ◦ b where a
and b are automorphisms and g is one of the three quadratic involutions

σ[x : y : z] = [yz : zx : xy], ρ[x : y : z] = [xy : z2 : yz], τ[x : y : z] = [x2 : xy : y2−xz].

The orbit of σ is an open and dense subset Uσ of Q of dimension 14. The orbits
of ρ and τ have dimension 13 and 12 respectively.

Let f = a ◦σ ◦ b and g = a′ ◦σ ◦ b′ be elements of Uσ. The indeterminacy
locus Ind(σ) is the set {e1,e2,e3} with e1 = [1 : 0 : 0], e2 = [0 : 1 : 0], and
e3 = [0 : 0 : 1]; its exceptional locus, Exc(σ) is the triangle of the three lines
that go through pairs of indeterminacy points; each of these lines is contracted
to the opposite vertex. Thus, Ind( f ) is b−1(Ind(σ)) and Exc( f ) is mapped to
a(Ind(σ)). Then the birational transformation g◦ f is defined by homogeneous
formulas of degree 4 if and only if f does not contract any curve onto an inde-
terminacy point of g, if and only if a(Ind(σ)) is disjoint from (b′)−1(Ind(σ)).
This condition determines a Zariski open subset W of Uσ×Uσ and one eas-
ily verifies that the composition ( f ,g) 7→ g ◦ f is a regular map from W to a
component of Bir(P2

C). On the other hand, when f contracts a curve on an
indeterminacy point of g, then deg(g◦ f ) < 4; this phenomenon shows that the
composition does not extend as a regular map to Q×Q.

Remark 2.4. We refer to [12, 4] for another structure on Bir(M) that differs
from Hanamura’s viewpoint. In both cases, Bird(M) does not have a natural
structure of algebraic variety (see [4] and [23] for interesting examples).
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2.2.2. Zariski closures. Let A be a subset of Bir(M). Let Bir
j
d(M) be a com-

ponent of Bir(M). The Zariski closure Z j
d(A) is, by definition, the intersection

of Bir
j
d(M) with the Zariski closure of A∩Bir

j
d(M) in the component of the

Douady space (or Hilbert scheme) that contains Bir
j
d(M). There are at most

countably many components Bir
j
d(M). If A is uncountable, at least one of the

Bir
j
d(M) intersects A on an uncountable subset. Hence, at least one of the Z j

d(A)
has dimension ≥ 1.

2.3. Weil’s regularization Theorem.

2.3.1. Regularization. Let M be a complex projective variety and G a sub-
group of Bir(M). One says that G can be regularized, if there exist a smooth
complex projective variety M′ and a birational map Ψ : M′99KM such that

Ψ
−1 ◦G◦Ψ⊂ Aut(M′).

In other words, changing M into another birationally equivalent variety M′, all
indeterminacy points of all elements of G disappear simultaneously.

Theorem 2.5 (Weil’s regularization Theorem, I). Let M be a complex projec-
tive variety. Let G be a subgroup of Bir(M). If G has bounded degree, then G
can be regularized.

The proof of this result can be found in [25, 35]. The heuristic idea is to
replace G by its Zariski closure G in the components Bir

j
d(M), with d large

enough to assure that Bird(M) contains G. Since G is Zariski dense in G, the
composition law on Bir(M) restricts to a rational map G×G 99K G. Similarly,
the action of G on M extends to a rational map G×M 99KM. These mappings
endow G with the structure of a pre-algebraic group acting by birational trans-
formations on M, in the sense of [34], and Weil’s original theorem can then be
applied to this group.

2.3.2. Complement. Let M be a complex projective variety, or more gener-
ally a compact Kähler manifold. The group Aut(M) is a complex Lie group.
Moreover, each subset

Autd(M) = Bird(M)∩Aut(M)

intersects only finitely many connected components of Aut(M). If d is larger
than the volume of the diagonal ΓIdM , then Autd(M) contains the connected
component of the identity Aut(M)0, and Autd(M)/Aut(M)0 is a finite set. If G
is a subgroup of Aut(M) that is contained in some Autd(M), then G∩Aut(M)0

is a normal subgroup of G with finite index (see [28] for instance). As a con-
sequence, when Weil’s regularization Theorem is applied, one obtains the fol-
lowing stronger result.
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Theorem 2.6 (Weil’s regularization Theorem, II). Let M be a complex pro-
jective variety. Let G be a subgroup of Bir(M). If G has bounded degree,
there exists a smooth, complex, projective variety M′, and a birational map
Ψ : M′ 99KM such that

(1) Ψ−1 ◦G◦Ψ is a subgroup of Aut(M′);
(2) there exists a normal, finite index subgroup G0 ⊂ G such that Ψ−1 ◦

G0 ◦Ψ is contained in Aut(M′)0.

In particular, Ψ−1 ◦G◦Ψ is a subgroup of Aut(M′)0 if G is simple.

3. VECTOR FIELDS AND ACTIONS OF NILPOTENT GROUPS

Let M be a smooth and irreducible complex projective variety. This section
is devoted to the construction of meromorphic (or rational) vector fields and
the study of the Lie algebra they generate. This is applied to the study of
uncountable abelian and nilpotent subgroups of Bir(M).

3.1. Construction of meromorphic vector fields.

3.1.1. Meromorphic vector fields. Denote by Θm(M) the complex vector space
of meromorphic (or rational) vector fields on M. Given Y ∈Θm(M), we denote
by Dom(Y ) the domain of definition of Y , i.e. the Zariski dense open subset of
M on which Y is locally regular. Since M is projective (and n ≥ 1), Θm(M) is
infinite dimensional: The field of meromorphic functions C(M) is an infinite
dimensional complex vector space which acts by left multiplication on Θm(M).

With its Lie bracket [ . , . ], the vector space Θm(M) forms a complex Lie
algebra. In local coordinates (xi)1≤i≤k, the Lie bracket of two vector fields
X = ∑i ai(x)∂i and Y = ∑ j b j(x)∂ j is given by

[X ,Y ](x) = ∑
j
∑

i

(
ai(x)

∂b j

∂xi
(x)−bi(x)

∂a j

∂xi
(x)

)
∂ j

(where ∂ j stands for the vector field ∂/∂x j).

3.1.2. Construction of vector fields. Fix a component Bir
j
d(M) of Bir(M). Let

h be a smooth point of Bir
j
d(M) and let v be a tangent vector to Bir

j
d(M) at the

point h. The derivative of the action

act : (h,x) 7→ h(x)

in the direction v determines a meromorphic vector field Xv on M. More pre-
cisely, if ht is a path in Z such that h0 = h and ∂t(ht)|t=0 = v, then

Xv(h(x)) =
∂

∂t
(ht(x))|t=0. (3.1)
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By construction, Xv does not vanish identically if v 6= 0. This linear injective
map

X : ThBir
j
d(M)→Θm(M) (3.2)

provides a link between Bir
j
d(M) and Θm(M) that plays an important role in

the proof of Theorem A.

Example 3.1. Consider the following family of birational transformations of
C2 ⊂ P2

C: ht(x,y) = ((1+ t)x,((1+ t)x)dy), where d is a fixed positive integer
and t describes the open unit disk D. For t = 0, h0 is the monomial transforma-
tion which maps (x,y) to (x,xdy). Then

∂

∂t
(ht(x,y))|t=0 = (x,dxdy),

and the corresponding vector field Xv satisfies Xv(x,xdy) = (x,dxdy). This leads
to the formula Xv(x,y) = (x,dy), so that Xv has degree 1 for all d ≥ 1.

Example 3.2. Starting with the family ht(x,y) = (x,(1+txd)y), with h0(x,y) =
(x,y), one gets

∂

∂t
(ht(x,y))|t=0 = (0,xdy)

and Xv(x,y) = (0,xdy) has degree d.

3.2. Uncountable abelian groups and abelian Lie algebras.

3.2.1. Zariski closures. Let A be a subgroup of Bir(M). For all components
Bir

j
d(M) of Bir(M), denote by A j

d the intersection of A with Bir
j
d(M), and by

Ad the union of the subsets A j
d (for fixed d). The sets Ad form an increasing

sequence of subsets of A, and

Ad ◦Ad′ ⊂ Add′ (3.3)

for all pairs of integers (d,d′). Let Z j
d(A) be the Zariski closure of A j

d in
Bir

j
d(M) and Zd(A) be the disjoint union of the Z j

d(A). Since Z j
d(A) may have

irreducible components with distinct dimensions, dim(Z j
d(A)) is defined as the

maximum of the dimensions of its components; then, one defines

dim(Zd(A)) = max
j

dim(Z j
d(A)).

The following Lemma follows from Section 2.2.1, Equation (3.3), the Zariski
density of A j

d in Z j
d(A), and the fact that at least one A j

d is infinite if A is not
countable.

Lemma 3.3. Let A be an uncountable subgroup of Bir(M).

(1) There exists a component Bir
j
d(M) such that dim(Z j

d(A))≥ 1.
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(2) The function d 7→ dim(Zd(A)) is non-decreasing.
(3) Zd(A)◦Zd′(A)⊂ Zdd′(A) for all d, d′ ≥ 1.
(4) If A is abelian, then f ◦g = g◦ f for all pairs ( f ,g) ∈ Zd(A)×Zd′(A);

in particular, f ◦g = g◦ f for all f in Zd(A) and all g in A.

3.2.2. Abelian Lie algebras. We now assume that A is abelian and uncount-
able.

Let d ≥ 1 be an integer such that dim(Zd(A)) ≥ 1. Choose a component
Bir

j
d(M) for which dimZ j

d(A) ≥ 1, and let h be a smooth point of Z j
d(A). The

map

X : v ∈ ThZ j
d(A) 7→ Xv ∈Θm(M)

is linear and injective. If f is an element of A and v is an element of ThZ j
d(A),

f∗Xv = Xv.

Indeed, writing v as the velocity vector of a path ht at t = 0, with t in the unit
disk D, one has

( f∗Xv)( f (h(x))) = D fx(Xv(h(x))) =
∂

∂t
( f ◦ht(x))|t=0

=
∂

∂t
(ht( f (x)))|t=0 = Xv(h( f (x)))

= Xv( f (h(x))),

so that Xv(y) = ( f∗Xv)(y) for all y in a Zariski dense open subset of M. Con-
sequently g∗Xv = Xv for all d′ ≥ 1 and g in Zd′(A). For g = h, one gets a new
formula for Xv, namely

Xv(x) = (h−1)∗
∂

∂t
(ht(x))|t=0.

As a consequence, the various vector fields Xv, Xw, for v ∈ ThZ j
d(A) and w ∈

TgZ j′

d′(A) commute:

[Xv,Xw] = 0 (3.4)

in the Lie algebra Θm(M). In particular, we have:

Lemma 3.4. Let A be an abelian subgroup of Bir(M), and let d be a positive
integer. For all components Bir

j
d(M), and all smooth points h of Z j

d(A), the
image of

X : ThZ j
d(A)→Θm(M)

is an abelian Lie subalgebra of Θm(M) of dimension dim(Th(Z
j
d(A))). More-

over, g∗Y = Y for all elements Y in this algebra, all d′ ≥ 1, and all g in Zd′(A).
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Let α and β be two complex numbers. If (ht) is a path in Z j
d(A) with h0 = h

and velocity vector v, and if (gs) is a path in Z j′

d′(A) with g0 = g and velocity
vector w, then (hαt ◦gβt) is a path in Zdd′(A) such that

∂

∂t
(hαt ◦gβt)|t=0 = αXv +βXw.

This shows that the union of all vector spaces X(ThZ j
d(A)), for all components

Bir
j
d(M) and all h ∈ Z j

d(A), is an abelian sub-algebra of ΘmM. We denote this
abelian algebra by a∞(A) and call it the Lie algebra associated to A.

Example 3.5. Let A be the abelian group (C,+). This group is isomorphic to
the group (C[y],+) of polynomial functions in one variable. In particular, A is
isomorphic to the group of birational transformations of the plane of the type

(x,y) 7→ (x+ p(y),y),

where p describes C[y]. The Lie algebra a∞(A) is made of all vector fields
q(y)∂x, with q in C[y].

Example 3.6. We can also embed A = (C,+) into Bir(P3
C) as follows. Let

ρ : A→ Z be any surjective morphism. Then A acts on P3(C) by

(x,y,z) 7→ (x+ p(y),y,yρ(p)z).

The Lie algebra a∞(A) coincides with the set of vector fields q(y)∂x, with q in
C[y]. Moreover, there are now two types of elements f in Zd(A): If ρ(p) = 0,

then f l ∈ Bird(P3
C) for all l; if ρ(p) 6= 0, then tdeg( f l) goes to infinity with l.

3.2.3. Orbits. Given m in M, define

V (m) = VectC {Xv(m) ; Xv ∈ a∞(A), m ∈ Dom(Xv)}
s(m) = dimC(V (m)) (hence s(m)≤ n = dimC(M))

s(A) = max(s(m) ; m ∈M).

Note that s(A) coincides with the value of s(m) at the generic point.
The following lemmas are not required for the proof of Theorem A, but they

illustrate some of the forthcoming arguments. We thus state them and only
provide a hint for their proofs.

Lemma 3.7. If dimC(a∞(A)) > s(A), there exists a non-constant, A-invariant,
rational function α : M→ C.

Proof. Let X1, . . . ,Xs, s = s(A), be elements of a∞(A) such that (X1(m), . . . ,Xs(m))
is a basis for V (m) at the generic point of M. Since dimC(a∞(A)) > s, there is
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an element Y of a∞(A) which is not a linear combination of the Xi with coeffi-
cients in C. On the other hand, by definition of s, there exist rational functions
α1, . . . ,αs ∈ C(M) such that

Y (m) =
i=s

∑
i=1

αi(m)Xi(m).

The αi are uniquely determined by this relation and at least one of them is not
constant. Given f ∈ A, Lemma 3.4 shows that f∗Xi = Xi for all 1 ≤ i ≤ s and
f∗Y = Y ; this implies

αi ◦ f = αi, ∀i≥ 1,

and the conclusion follows because at least one of the αi is not constant. �

For component Bir
j
d(M) and each m in M, define the orbit of Z j

d(A) as the
following subset Orb j

d(m) of M,

Orb j
d(m) = {h(m) ; h ∈ Z j

d(A) and m ∈ Dom(h)}.

Denote its Zariski closure by Orb j
d(m). The orbit Orbd(m) is defined as the

union of the Orb j
d(m), and Orbd(m) is the Zariski closure of Orbd(m) in M.

By definition, these orbits Orbd(m) are tangent to the distribution of subspaces
V (m), m ∈ M. Thus, choosing good components to assure that the generic
orbits Orb j

d(m) have dimension s(A), one obtains the following lemma.

Lemma 3.8. The distribution of subspaces V (m), m ∈M, is integrable in the
following sense. There exists a projective variety B of dimension n− s(A), a
rational map Ψ : M 99K B, and a component Bir

j
d(M), such that

(1) Orb j
d(m) has dimension s(A) = dimCV (m) and is tangent to V (m) for

generic m ∈M;
(2) Ψ is constant on each irreducible component of the generic orbit Orb j

d(m);
(3) Ψ is a local submersion at the generic point.

This fibration Ψ : M 99K B is A-invariant: There is a morphism ρB : A→
Bir(B) with ρ( f )◦Ψ = Ψ◦ f for all f in A. Moreover, dimZd(ρB(A)) = 0 for
all d ≥ 1, since otherwise one would be able to construct meromorphic vector
fields in a∞(A) that are transverse to the generic fibers of Ψ, in contradiction
with the definition of V (m) and s(A). Thus, the image of ρB is countable (com-
pare with Example 3.6).

3.3. Bounding degrees of abelian groups. The following proposition is a
crucial step towards proving Theorem A.

Proposition 3.9. Let M be a smooth, connected, complex projective variety.
Let A be an abelian subgroup of Bir(M). If s(A) = dimC(M), then A has
bounded degree: There exists d ≥ 1 such that Bird(M) contains A.
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Proof. Since s(A) = n, one can find n elements X1, . . . , Xn of a∞(A) such that

VectC(X1(m), . . . ,Xn(m)) = TmM

at the generic point m of M. Each Xi is obtained from a tangent vector vi ∈
ThiZ

j
di
(A) for some for some birational transformation hi in one of the varieties

Z j
di
(A). Let hi,ti , ti ∈ D, be a path in Z j

di
(A) with hi,0 = hi and velocity vector

vi at ti = 0. Composing those paths together, one gets a subset of some Zl
d(A)

with d = d1 · · ·dn (cf. Equation (2.1)). By construction, if m0 is generic, its
orbit Orbl

d(m0) under the action of Zl
d(A) contains an open neighborhood of

m0. We now fix such a point m0.
Let f be an element of A, and m be a point of Dom( f )∩Orbl

d(m0) such that
f (m) is also contained in Orbl

d(m0). Then there exists h in Zl
d(A) such that

h ◦ f (m) = m. Since both h and f commute to all elements g of Zl
d(A), one

obtains
h◦ f (g(m)) = g(h◦ f (m)) = g(m)

for all g ∈ A such that {m,h ◦ f (m)} ⊂ Dom(g). Consequently, h ◦ f fixes
pointwise all these points g(m); since they form a Zariski dense subset of M,
one deduces that f coincides with h−1. This concludes the proof, because
h−1 ∈ Bird(M) for all h in Bird(M). �

3.4. Nilpotent groups, dimensions comparison, and degree bounds.

3.4.1. Bounds on derived length. Let H be a group. We define H(1) = [H,H],
the derived subgroup of H, generated by all commutators aba−1b−1 with a and
b in H, and then inductively

H(r) = [H(r−1),H(r−1)].

The first integer r≥ 1 such that H(r) is trivial is called the derived length of H;
such an r exists if and only if H is solvable. This integer is denoted by dl(H),
and similar notations are used for Lie algebras.

Proposition 3.10 (Epstein-Thurston, [17]). Let M be a connected complex
manifold. Let h be a nilpotent Lie subalgebra of the Lie algebra Θm(M). Then
h(r) = 0 if r ≥ dim(M); hence

dimC(M)≥ dl(h).

Remark 3.11. Note that h is assumed to be nilpotent while dl(h) is the derived
length of h as a solvable Lie algebra.

Proof. We prove Proposition 3.10 by induction on the dimension n of M.
Assume that h has positive dimension, since otherwise the result is clear. Its

center is non-trivial because h is nilpotent. Let X be a non zero element in the
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center of h and m be a point at which X is well defined and X(m) 6= 0. There
is a local system of coordinates (x1, ...,xn) in a neigborhood U of m such that
X = ∂xn in U . Since X is in the center of h, all elements of h are of the form

v(x1, ...,xn−1)∂xn +
n−1

∑
i=1

ui(x1, ...,xn−1)∂xi. (3.5)

For n = 1, this implies that h is abelian, of dimension at most 1, so that dl(h)≤
1 = dim(M). We now assume that the result is proved up to dimension n−1.

Let π : U → Cn−1 be the projection π(x1, . . . ,xn) = (x1, . . . ,xn−1). Locally,
the fibers of π are the orbits of X ; since X is in the center, π projects h onto a
nilpotent algebra h1 of meromorphic vector fields on Cn−1: If Y ∈ h is defined
by Equation (3.5), π∗Y is equal to ∑ui(x1, ...,xn−1)∂xi . This defines an exact
sequence

0→ h0→ h→ h1→ 0
where the kernel h0 of π∗ is made of vector fields of type v(x1, ...,xn−1)∂xn and,
as such, is abelian. The induction hypothesis implies that h(n−1) = 0, and the
conclusion follows. �

3.4.2. Embeddings of Heisenberg groups. Let now Hr be the group of r× r
upper triangular matrices with all diagonal coefficients equal to 1; this group is
nilpotent, and its derived length is the smallest integer l(r) such that 2l(r) > r.
If B is in Hr, we denote by ai, j(B) its coefficients. For all pairs of indices (i, j),
with 1 ≤ i < j ≤ r, we define Ai, j as the subgroup of Hr which is made of
elements B such that ak,l(B) = 0 if k 6= l and (k, l) 6= (i, j). This defines a one-
parameter, abelian subgroup of Hr. Moreover, A1,r coincides with the center
of Hr.

Let us now assume that Hr embeds into the group Bir(M). From section
3.2.2, each Ai, j gives rise to an abelian subalgebra a∞(Ai, j) of Θm(M).

Lemma 3.12. The Lie algebra hr ⊂Θm(M) generated by the abelian algebras
a∞(Ai, j) is nilpotent and its derived length dl(hr) is equal to l(r), the smallest
integer l such that 2l > r.

Proof. Since [Ai, j,Ak,l] is equal to Ai,l if k = j and is equal to {Id} if k 6= j,
we obtain [a∞(Ai, j),a∞(Ak,l)] ⊂ a∞(Ai,l) if k = j and [a∞(Ai, j),a∞(Ak,l)] = 0
otherwise. This shows that the Lie algebra is nilpotent. If j = k, and B is an
element of Ai, j, then B does not commute with any non trivial element of Ak,l .
Thus [a∞(Ai, j),a∞(Ak,l)] 6= 0, and the length of hr is equal to l(r). �

This lemma and Proposition 3.10 provide the following bound (see [14] for
M = P2

C).

Corollary 3.13. If r > 2dimC(M), the group Hr does not embed into Bir(M).
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Unfortunately, this corollary does not imply Theorem A, even for small val-
ues of r and n.

4. ACTIONS OF SPECIAL LINEAR GROUPS

In this section, we study morphisms from PGLr+1(C) to Bir(M), where M
is a complex projective variety of dimension n, and prove Theorem A.

4.1. Bounding degrees. Our first step is the following proposition.

Proposition 4.1. Let M be a complex projective variety of dimension n. If r≥ n
and ρ : PGLr+1(C)→ Bir(M) is a morphism, either the image of ρ is reduced
to {IdM} or ρ is injective and its image is a subgroup of bounded degree in M.

To prove it, we assume that ρ is not trivial. Since PGLr+1(C) is a simple
group, its image G is isomorphic to PGLr+1(C), and can be identified to it.

4.1.1. A lemma. Consider the one-parameter subgroups Ai, j, j 6= i, defined by

Ai, j =
{

Id+aδi, j ; a ∈ C
}

where δi, j is the Kronecker matrix with all entries equal to zero, except the co-
efficient (i, j) which is equal to 1. The group Sr+1 of permutations of the in-
dices {1, . . . ,r +1} embeds into PGLr+1(C) (acting on Pr(C) by permutations
of the homogeneous coordinates). By conjugation, Sr+1 permutes transitively
the one-parameter subgroups Ai, j.

Remark 4.2. The group GLr+1(C) is generated by elementary matrices and
dilatations and the proof of this result based on Gaussian elimination provides
the following statement: There is an integer k(r), such that every element of
PGLr+1(C) is a product of at most k(r) elements in ∪Ai, j.

Lemma 4.3. If one of the subgroups Ai, j ⊂G is a subgroup of bounded degree
in Bir(M), then G is a subgroup of bounded degree in Bir(M).

To prove it, note that if one of the Ai, j has bounded degrees, then all of
them do, because the Ai, j are pairwise conjugate (cf. Equation (2.2)). This
implies that all Ai, j are contained in Bird(M) for some positive integer d. Then,
Remark 4.2 and Equation (2.1) imply that G is contained in Birdk(r)(M) for
some positive integer k(r).

4.1.2. Proof of Proposition 4.1. To obtain Proposition 4.1, one shall prove that
one Ai, j has bounded degree, and then apply Lemma 4.3. For this, we now work
with the subgroup of upper triangular matrices in PGLr+1(C) with coefficients
equal to 1 on the diagonal (see §3.4.2).
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Preliminary remark.– The abelian groups A1, j, j = 2, . . . ,r + 1, generate an
abelian subgroup A1 of PGLr+1(C). If s(A1) = n, as in Proposition 3.9, there
exists a degree d such that PGLr+1(C) is contained in Bird(M), and we are
done.
First step: Matrices from the first row.– We now assume s(A1) < n. Then,
after conjugation by a permutation σ ∈ Sr+1, there is an integer k ≥ 3 with
the following property: The Lie algebras a∞(A1,r+1), a∞(A1,r), . . ., a∞(A1,k)
contain meromorphic vector fields X1,r+1, X1,r, . . ., X1,k such that

(1) the vector fields X1, j, j ≥ k, are C-linearly independent at the generic
point m ∈M ;

(2) every element X1,l of a∞(A1,l) with l < k is a linear combination of the
X1, j, j ≥ k, with coefficients α

j
l in the field of meromorphic functions

C(M):

X1,l(m) =
j=r+1

∑
j=k

α
j
l (m)X1, j(m), for m ∈M.

Consider an open subset U of M on which the X1, j, j ≥ k, are holomor-
phic and everywhere C-linearly independent (i.e. linearly independent at every
point m of U). Since these vector fields commute, one can change U into a
smaller open subset and find holomorphic coordinates (xr+2−n, . . . ,xr+1) on U
such that

X1, j = ∂ j, ∀ j ≥ k (4.1)

where ∂ j denotes the vector field ∂/∂x j. Since the X1,i pairwise commute, one
gets

∂ jα
j′
l = 0, ∀ j ≥ k, ∀ j′ ≥ k, ∀l < k. (4.2)

Second step: Matrices from the last column, and conclusion.– Let now Xk−1,r+1
be a non-zero element of the Lie algebra a∞(Ak−1,r+1). Suppose that Xk−1,r+1

is a linear combination, with coefficients β
j
k−1 in C(M), of the X1, j:

Xk−1,r+1(m) =
j=r+1

∑
j=k

β
j
k−1(m)X1, j(m), for m ∈M.

The vector field Xk−1,r+1 commutes with the X1, j for all j ≥ k because so do
the corresponding one-parameter subgroups Ak−1,r+1 and A1, j; hence

∂ jβ
j′
k−1 = 0, ∀ j ≥ k, ∀ j′ ≥ k. (4.3)

Equations (4.2) and (4.3) imply that

[Xk−1,r+1,X1,k−1] = 0 (4.4)
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for all vector fields X1,k−1 in a∞(A1,k−1). This contradicts the fact that pairs
of non-trivial elements in A1,k−1 and Ak−1,r+1 never commute. Thus, our
assumption leads to a contradiction, so that all non-zero elements Xk−1,r+1
in a∞(Ak−1,r+1) are indeed C-linearly independent of the X1, j, j ≥ k, at the
generic point m of M.

Fix such an element Xk−1,r+1 6= 0. Shrinking U again, and changing the
system of local coordinates (xr+2−n, . . . ,xr+1), one can now assume that X1, j =
∂ j, for all j ≥ k, as in Equation (4.1), and that

Xk−1,r+1 = ∂k−1. (4.5)

We pursue the same strategy with the Lie algebra a∞(Ak−2,r+1), and obtain
the existence of an element Xk−2,r+1 6= 0 in a∞(Ak−2,r+1), a non-empty open
subset U ⊂M, and a system of local coordinates (xr+2−n, . . . ,xr+1) on U such
that Equations (4.1) and (4.5) are satisfied and, moreover,

Xk−2,r+1 = ∂k−2. (4.6)

After a finite number of steps, one obtains the following properties:

(1) r ≤ n;
(2) if r = n, then the abelian group A generated by the A1, j, j ≥ k, and the

Al,r+1, 2≤ l ≤ k−1, satisfies s(A) = n.

Then we apply Proposition 3.9 to deduce that the group A has bounded de-
gree, and Lemma 4.3 concludes the proof of Proposition 4.1.

4.2. Proof of Theorem A.

4.2.1. Regularization. Proposition 4.1 and Weil’s regularization Theorem (see
§2.3), imply the following.

Corollary 4.4. Let M be a complex projective variety. Let r ≥ 0 be an integer
and G be a subgroup of Bir(M) which is isomorphic to PGLr+1(C). Then
r ≤ n and if r = n, there exists a smooth complex projective variety M′, and a
birational map Ψ : M′99KM, such that

Ψ
−1 ◦G◦Ψ⊂ Aut(M)0.

4.2.2. Automorphism groups, and conclusion. It remains to study smooth and
connected complex projective varieties M, with dimC(M) = n, such that the
group PGLn+1(C) embeds into Aut(M)0.

Theorem 4.5. Let M be a smooth, connected, complex projective variety. Let
n be the dimension of M. If there is a non-trivial morphism ρ : PGLn+1(C)→
Aut(M)0, then M is isomorphic to the projective space Pn

C.
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Proof. Let G be the image of ρ in Aut(M)0. The group Aut(M)0 is a connected
complex Lie group. Let H be the Zariski closure of H in Aut(M)0. Since H
is dense in H, H is a simple Lie group. Moreover, H has rank at least n,
because it contains the image, under the morphism ρ, of the diagonal subgroup
of PGLn+1(C), and this subgroup contains a copy of the finite abelian group
(Z/pZ)n for all prime numbers p.

To sum up, Aut(M)0 contains an algebraic subgroup H that is simple, of rank
≥ n. From [8], Theorem 4.1, one knows that every compact complex manifold
M which admits a faithful holomorphic action of an almost simple complex
Lie group of rank dimC(M) is isomorphic to the projective space; this implies
that M is isomorphic to Pn(C). �

Thus, in Corollary 4.4, one can replace M′ by Pn(C). Theorem A is now
a consequence of the following classical fact, which we state over the field of
complex numbers while it holds in much greater generality.

Theorem 4.6. Let r≥ 0 be a natural integer. Let ρ : PGLr+1(C)→ PGLr+1(C)
be a non-trivial morphism of groups. Then there exists a morphism of fields
α : C→ C, and an element h of PGLr+1(C) such that

ρ(αg) = h◦g◦h−1, ∀g ∈ Aut(Pn(C))

or

ρ(αg) = h◦g∨ ◦h−1, ∀g ∈ Aut(Pn(C)).

Such a result is not hard to prove. One technic is to reduce it to the funda-
mental theorem of projective geometry. A good example of this strategy is pro-
vided by Élie Cartan’s proof of the continuity of homomorphisms from SOn(R)
to SLd(R) with bounded image (see [9]); an exhaustive presentation of this
method, over arbitrary fields instead of C or R, can be found in Dieudonné’s
book [15]. Another strategy which works uniformly for all algebraic groups is
proposed by Borel and Tits in [5].

5. QUESTIONS AND REMARKS

5.1. Other Lie groups. The same strategy can be applied to all simple com-
plex Lie groups in place of PGLr+1(C). This provides the following statement:
Let G be an almost simple complex Lie group, and let r = rankC(G) be the
rank of G. Let M be a complex projective variety of dimension n. If there is a
non-trivial morphism G→ Bir(M), then r ≤ n, and if r = n, then G is locally
isomorphic to PGLr+1(C) and M is a rational variety.
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It would be more interesting to classify all possible morphisms from smaller
Lie groups into Bir(M). For example, Blanc and Déserti classified all pos-
sible morphisms from PSL2(C), and even from PSL2(Q), to Bir(M) when
dimC(M) = 2 (see [3]).

5.2. Automorphisms of the Cremona group. In [13], Déserti proves that the
group of all automorphisms of the Cremona group Bir(P2

C) is generated by
the group of field automorphisms Aut(C,+, ·) and the group of interior auto-
morphisms. For this, she makes use of the explicit set of generators given by
Noether-Castelnuovo theorem. For n ≥ 3, Bir(P3

C) is not generated by finitely
many regularizable subgroups, and Déserti’s method does not apply easily.
Thus, the problem remains open to describe the group of automorphisms of
Bir(Pn

C) for n≥ 3.

5.3. The cubic threefold. Let V be a smooth cubic hypersurface of P4
C. In

[11], Clemens and Griffith’s prove that V is not rational, a result that follows
from a precise description of the intermediate jacobian variety of V . Knowing
that V is not rational, Theorem C implies that the group Bir(V ) is not isomor-
phic to Bir(P3

C). One can dream of a new proof of Clemens-Griffith’s Theorem
that would not require the intermediate jacobian but would show that Bir(V ) is
much smaller than Bir(P3

C). For instance, I suspect that the group GL3(Z), a
group that does act by linear projective transformations as well as by monomial
transformations on P3

C, does not act faithfully by birational transformations on
V . It would be great to mix the Noether-Fano methods (see [27] for an in-
troduction to this topic) with basic ideas from Zimmer’s program, geometric
group theory, or holomorphic dynamics in order to obtain such a result. This
would provide a "quantitative measure" of the fact that V is not rational that is
different from the information contained in the intermediate jacobian.

5.4. Cremona representations. Can we build a theory of representations of
Cremona groups that would be similar to the theory of representations of Lie
groups ? For instance, is it possible to describe all faithful representations of
Bir(P2

C) into Bir(Pn
C) for n = 3,4, . . . ?
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