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THE DECOMPOSITION GROUPS OF PLANE

CONICS AND PLANE RATIONAL CUBICS

TOM DUCAT, ISAC HEDÉN, AND SUSANNA ZIMMERMANN

Abstract. The decomposition group of an irreducible plane curve X ⊂ P2 is the
subgroup Dec(X) ⊂ Bir(P2) of birational maps which restrict to a birational map of
X . We show that Dec(X) is generated by its elements of degree ≤ 2 when X is either
a conic or rational cubic curve.

1. Introduction

1.1. Preliminaries. We work over an algebraically closed field k of any characteristic.
By elementary quadratic transformation we will mean a birational map ϕ ∈ Bir(P2) of
degree 2 with only proper base points.

Definition 1.1. For an irreducible curve X ⊂ P2, the decomposition group Dec(X) of
X is the subgroup of Bir(P2) of all birational maps ϕ ∈ Bir(P2) which restrict to a
birational map ϕ |X : X 99K X .

Similarly, the inertia group Ine(X) of X is the subgroup of Bir(P2) of all birational
maps ϕ ∈ Bir(P2) which restrict to the identity map ϕ |X= idX .

Elements of Dec(X) are said to preserve the curve X , whilst elements of Ine(X) are
said to fix X . We will write Aut(P2, X) = Dec(X) ∩ PGL3 for the subgroup of linear
maps Aut(P2) = PGL3 which preserve X .

The focus of this paper is on the group Dec(X) in the case that X ⊂ P2 is a plane
rational curve of degree ≤ 3. In this case X is either a line, a smooth conic, a nodal
cubic or a cuspidal cubic.

Remark 1.2. A line X ⊂ P2 (resp. conic, nodal cubic, cuspidal cubic) is projectively
equivalent to any other line X ′ ⊂ P2 (resp. conic, nodal cubic, cuspidal cubic), i.e. there
is an automorphism λ ∈ PGL3 with λ(X) = X ′. For rational curves of degree ≥ 4 this
is no longer true in general.

1.2. Motivation. The decomposition and inertia groups of plane curves have appeared
in a number of places.

1.2.1. Decomposition and inertia groups of plane curves of genus ≥ 1. The inertia
groups of plane curves of geometric genus ≥ 2 were studied by Castelnuovo [6], and
his results were made more precise by Blanc–Pan–Vust [3]. In both articles adjoint lin-
ear systems are used to study properties of the group—a technique which does not work
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for curves of genus ≤ 1. The inertia groups of smooth cubic curves have been studied
by Blanc [2].

Decomposition groups were introduced by Gizatullin [9], who used them as a tool to
give sufficient conditions for Bir(P2) to be a simple group. This group is not simple, as
shown later by Cantat–Lamy [5] for algebraically closed fields, and by Lonjou [11] for
arbitrary fields. The decomposition groups of plane curve of genus ≥ 2 and some plane
curves of genus 1 (smooth cubic curves and Halphen curves) are described in [4], as
well as the decomposition group of rational plane curves X ⊂ P2 of Kodaira dimension
κ(P2, X) = 0 or 1.

For curves X ⊂ P2 with κ(P2, X) = −∞, the pair (P2, X) is birationally equivalent
to (P2, L) where L ⊂ P2 is a line, and a description of Dec(L) is given by Theorem 1
below. As X ⊂ P2 is the image of L under a birational transformation ϕ of P2, we
have an isomorphism Dec(X) ≃ Dec(L), given by ψ 7→ ϕ−1ψϕ. Although it is not
degree-preserving, this isomorphism shows that Dec(X) is not finite.

1.2.2. The decomposition group of a line. The classical Noether–Castelnuovo Theo-
rem [7] states that the Cremona group Bir(P2) has a presentation given by:

Bir(P2) =
〈

PGL3, σ
〉

where σ is any choice of elementary quadratic transformation. The second two au-
thors [10] have shown that an analogous statement holds for the decomposition group
of a line:

Theorem 1 ([10]). Let L ⊂ P2 be a line. Then

Dec(L) =
〈

Aut(P2, L), σ
〉

for any choice of elementary quadratic transformation σ ∈ Dec(L). In particular any
map τ ∈ Dec(L) can be factored into elementary quadratic transformations inside
Dec(L).

In this article, we present a similar theorem for conic and rational cubic curves. Ue-
hara [13, Proposition 2.11] proves that for the cuspidal cubic X ⊂ P2, the elements of
the subset

{f ∈ Dec(X) | f is an automorphism near the cusp} ( Dec(X)

can be decomposed into quadratic transformations preserving X . Theorem 3 generalises
his result to all of Dec(X).

1.2.3. Relationship to dynamics of birational maps. Birational maps of P2 preserving
a curve of degree ≤ 3 show up naturally when studying the dynamical behaviour of
birational maps of surfaces. For instance, Diller–Jackson–Sommese [8, Theorem 1.1]
show that a connected curve which is preserved by an algebraically stable element of
Bir(P2) with positive first dynamical degree necessarily has degree ≤ 3.

In their studies of automorphisms of rational surfaces, Bedford–Kim [1, § 1] explore the
dynamical behaviour of the family of birational transformations fa,b : (x, y) 7→

(

y, y+a
x+b

)

,
for a, b ∈ C. In particular, they focus on maps of this kind preserving a curve, and show
that this curve is necessarily cubic.
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1.3. Main results. We will use Theorem 1 to deduce:

Theorem 2. Let C ⊂ P2 be a conic. Then any map τ ∈ Dec(C) can be factored into
elementary quadratic transformations inside Dec(C).

Moreover, from Theorem 2 we will deduce:

Theorem 3. Let X ⊂ P2 be a rational cubic and suppose that the characteristic of k is
not 2. Then any map τ ∈ Dec(X) can be factored into elementary quadratic transfor-
mations inside Dec(X).

The basic strategy used to prove both Theorems 2 & 3 is the same in each case and
is explained in § 2. Given a curve Z ⊂ P2, the idea is to conjugate τ ∈ Dec(Z) to
τ ′ ∈ Dec(Y ), for a curve Y ⊂ P2 of lower degree, and then use the result for Y .

Remark 1.3. The proof of each theorem is elementary and only requires choosing
quadratic transformations with base points that lie outside of a collection of finitely
many points and lines. In the cubic case we need to choose base points which avoid all
of the tangent lines to a conic which pass through a given point. We must restrict to a
field k of characteristic 6= 2 in this case, since over fields of characteristic 2 every line
through a given point may be tangent to a conic (see [12, Appendix to § 2]).

Remark 1.4. As shown in Proposition 3.5, for a conic C it is still possible to write
Dec(C) =

〈

Aut(P2, C), σ
〉

using just one suitably general elementary quadratic trans-
formation σ (where ‘suitably general’ means that σ does not contract a tangent line to
C). However, if the base field k is uncountable then we need an uncountable number
of elementary quadratic transformations to generate both Ine(C) (see Remark 3.6) and
Dec(X) for X a nodal cubic (see § 4.3).

1.4. Acknowledgements. We would like to thank Eric Bedford and Jeffrey Diller for
helpful comments.

2. The main Proposition

Let Y, Z ⊂ P2 be two arbitrary irreducible plane curves.

Definition 2.1. Let ΦY,Z ⊂ Bir(P2) be the set of all elementary quadratic transforma-
tions ϕ which map Y birationally onto Z.

Note that ΦY,Z is a (possibly empty) subset of Bir(P2) and not a subgroup. For any
ϕ, ψ ∈ ΦY,Z we clearly have ϕψ−1 ∈ Dec(Z). More generally for any τ ∈ Dec(Y ) we
have ϕτψ−1 ∈ Dec(Z).

Proposition 2.2. Suppose that ΦY,Z 6= ∅ and the following three statements hold:

(A) Any τ ∈ Dec(Y ) can be factored into elementary quadratic transformations in-
side Dec(Y ).

(B) For any ϕ, ψ ∈ ΦY,Z the composition ϕψ−1 ∈ Dec(Z) can be factored into ele-
mentary quadratic transformations inside Dec(Z).

(C) For any elementary quadratic transformation τ ∈ Dec(Y ) there exist ϕ, ψ ∈ ΦY,Z
such that ϕτψ−1 ∈ Dec(Z) can be factored into elementary quadratic transfor-
mations inside Dec(Z).

Then any τ ∈ Dec(Z) can be factored into elementary quadratic transformations inside
Dec(Z).
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Proof. Suppose that τ ∈ Dec(Z) and choose any two maps ϕ, ψ ∈ ΦY,Z 6= ∅. Then by
(A) we can factor τ ′ := ψ−1τϕ ∈ Dec(Y ) into elementary quadratic transformations
τ ′ = τnτn−1 · · · τ2τ1 with τi ∈ Dec(Y ) for all i = 1, . . . , n.

By (C) we can find ϕi, ψi ∈ ΦY,Z such that fi := ϕiτiψ
−1
i ∈ Dec(Z) can be factored into

elementary quadratic transformations inside Dec(Z) for all i = 1, . . . , n.

Now let ϕ0 := ϕ and ψn+1 := ψ. Then by (B) we can factor gi := ψi+1ϕ
−1
i ∈ Dec(Z)

into elementary quadratic transformations inside Dec(Z) for all i = 0, . . . , n.

We can write τ = gnfngn−1 · · · g1f1g0, according to the diagram:

Z Z Z Z Z Z Z Z

Y Y Y Y
ϕ0 ϕ1 ϕn−1 ϕnψ1 ψ2 ψn ψn+1

τ1 τ2 τn−1 τn

g0 f1 g1 gn−1 fn gn

· · ·

· · ·

and hence we can factor τ into elementary quadratic transformations inside Dec(Z). �

Theorem 2 and Theorem 3 follow from Proposition 2.2, where the three statements (A),
(B), (C) appearing in the proposition are proved in each case according to:

(A) (B) (C)

Theorem 2 Theorem 1 Lemma 3.2 Lemma 3.3

Theorem 3 Theorem 2 Lemma 4.2 Lemma 4.3

3. The decomposition group of a conic

Throughout this section we let L ⊂ P2 denote a fixed line and C ⊂ P2 a conic.

Remark 3.1. If ϕ ∈ Bir(P2) is an elementary quadratic transformation belonging to
ΦL,C then all three base points of ϕ must lie outside of L. Conversely, given any three
non-collinear points in P2\L we can always find an elementary quadratic transformation
ϕ ∈ ΦL,C with these as base points.

3.1. Proof of Theorem 2. We prove statements (B) & (C) in Proposition 2.2 in the
special case that Y = L a line and Z = C a conic.

3.1.1. Proof of statement (B) for conics.

Lemma 3.2. Suppose that ϕ1, ϕ2 ∈ ΦL,C. Then the composition ϕ2ϕ
−1
1 ∈ Dec(C) can

be factored into elementary quadratic transformations inside Dec(C).

Proof. For i = 1, 2, we let Pi, Qi, Ri be the base points of ϕi, none of which lie on L. We
may assume that these six points are in general position, i.e. that no points coincide
and that no three points are collinear, as in Figure 1(i). If this is not the case, choose
a third map ϕ3 ∈ ΦL,C whose base points are in general position with respect to both
ϕ1 and ϕ2. Then we can write ϕ2ϕ

−1
1 = (ϕ2ϕ

−1
3 )(ϕ3ϕ

−1
1 ) and decompose each of ϕ2ϕ

−1
3

and ϕ3ϕ
−1
1 into elementary quadratic transformations inside Dec(C).
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We let ϕ1 =: ψ0, ψ1, ψ2, ψ3 := ϕ2 ∈ ΦL,C be a sequence of elementary quadratic trans-
formations with base points:

(P1, Q1, R1), (P1, Q1, R2), (P1, Q2, R2), (P2, Q2, R2)

and we write ϕ2ϕ
−1
1 = (ψ3ψ

−1
2 )(ψ2ψ

−1
1 )(ψ1ψ

−1
0 ).

By our assumption, ψ1 and ψ2 exist since no three points are collinear and we can take
ψ1, ψ2 ∈ ΦL,C since none of these points lie on L. Moreover ψi+1ψ

−1
i ∈ Dec(C) is an

elementary quadratic transformation for i = 0, 1, 2 since ψi and ψi+1 share exactly two
common base points and no three base points are collinear. �

(i)

•P1

• Q1

•

R1

•P2

• Q2

• R2

(ii)

•
P

• Q

•R

•S

Figure 1. Configuration of base points in proof of (i) Lemma 3.2 and (ii) Lemma 3.3.

3.1.2. Proof of statement (C) for conics. In fact we prove a stronger statement than
statement (C) (since idP2 is a decomposition into zero elementary quadratic transfor-
mations in Dec(C)).

Lemma 3.3. Let τ ∈ Dec(L) be an elementary quadratic transformation. Then we can
find ϕ, ψ ∈ ΦL,C such that ϕτψ−1 = idP2.

Proof. Let P,Q,R be the base points of τ , where P,Q /∈ L and R ∈ L. Choose a point
S /∈ L as in Figure 1(ii), such that no three of P,Q,R, S are collinear.

Since P,Q, S are non-collinear we let ψ ∈ ΦL,C be an elementary quadratic transfor-
mation with these base points. Then ϕ := ψτ−1 ∈ ΦL,C is also an elementary qua-
dratic transformation since ψ and τ share two base points and no three base points are
collinear. Thus ϕτψ−1 = idP2 . �

3.2. A generating set for Dec(C). It was shown in [10] that, for L ⊂ P2 a line,
Dec(L) can be generated by Aut(P2, L) and any one elementary quadratic transforma-
tion σ ∈ Dec(L). This is because Aut(P2, L) is still large enough to act transitively on
the set:

B =
{

(P,Q,R) ∈ (P2)3 | P ∈ L and Q,R /∈ L non-collinear
}

of all possible base points for σ. For the conic C ⊂ P2, even though the analogous
action of Aut(P2, C) is no longer transitive, it is still true that Dec(C) can be gener-
ated by Aut(P2, C) and a suitably general elementary quadratic transformation σ ∈
Dec(C).

We fix a model C = V
(

xz − y2
)

⊂ P2 in order to describe Aut(P2, C).

Lemma 3.4. Aut(P2, C) is given by:

Aut(P2, C) =











a2 2ab b2

ac ad+ bc bd
c2 2cd d2



 ∈ PGL3

∣

∣

∣

∣

∣

∣

ad− bc 6= 0







≃ PGL2 .

In particular any α ∈ PGL2 = Bir(C) extends uniquely to a linear map in Aut(P2, C).
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It follows from Lemma 3.4 that Ine(C) ∩ PGL3 = 〈 idP2 〉. Moreover the sequence

1 → Ine(C) → Dec(C) → PGL2 → 1

is exact and Dec(C) = Ine(C) ⋊ PGL2 is a semidirect product, where PGL2 acts on
Ine(C) by conjugation.

Proposition 3.5. Dec(C) = 〈Aut(P2, C), σ 〉 for any elementary quadratic transfor-
mation σ which does not contract a tangent line to C.

Proof. Let τ ∈ Dec(C) be an elementary quadratic transformation and consider the
action of PGL2 ≃ Aut(P2, C) on the set:

B = {(P,Q,R) ∈ (P2)3 | P,Q ∈ C and R /∈ C non-collinear}

of all possible base points for τ . If P,Q ∈ C and R /∈ C are the (ordered) base points
of τ then, by an element of PGL2, we can send P 7→ (1 : 0 : 0), Q 7→ (0 : 0 : 1) and R
to a point in the conic Γd = V (xz − dy2) for a uniquely determined 1 6= d ∈ k. Write
B =

⋃

d∈k\1Bd, a decomposition into PGL2-invariant sets according to this pencil of
conics Γd. The sets Bd with d 6= 0 are all PGL2-orbits. For the degenerate conic Γ0 the
set B0 splits into three PGL2-orbits B0 = B1,0 ∪B0,1 ∪ B0,0 according to the cases:

R ∈ Γ1,0 := {(t : 1 : 0) | t 6= 0}, R ∈ Γ0,1 := {(0 : 1 : t) | t 6= 0}, R = (0 : 1 : 0) .

As shown in Figure 2, these three orbits correspond to the cases where one or two of
the lines contracted by τ are tangent to C.

•

•

•

(i)

•

•

•

(ii)

•

•

•

(iii)

Figure 2. The base points of τ belonging to the orbit (i) Bd with d 6= 0,
(ii) B1,0 or B0,1, (iii) B0,0.

Let σa,b ∈ Dec(C) be an elementary quadratic transformation with base points (1 : 0 : 0),
(0 : 0 : 1) and (a : 1 : b) belonging to an orbit Bab with ab 6= 0. By composing with a
suitable linear map we can assume the map is actually in Ine(C), in which case σa,b is
uniquely determined and given by:

σa,b =
(

(

1− ab
)

xy + a
(

xz − y2
)

: xz − aby2 :
(

1− ab
)

yz + b
(

xz − y2
)

)

.

Any elementary quadratic transformation σ ∈ Dec(C) which does not contract a tangent
line to C has base points belonging to the same PGL2-orbit as σa,b for some a, b ∈ k
with ab 6= 0, 1. Therefore, to prove the proposition, it is enough to show that given any
a, b ∈ k with ab 6= 0, 1, we can use σa,b to generate at least one elementary quadratic
transformation with base points belonging to any other PGL2-orbit.

Consider the linear map:

λa,b = (x+ 2ay + a2z : bx+ (1 + ab)y + az : b2x+ 2by + z)

and, for c 6= 0, 1,∞, the diagonal map µc = (c2x : cy : z). Since ab 6= 0 we get the
formula:

σa′,b′ = λ−1
a,b µ

−1
c σa,b µc σ

−1
a,b λa,b
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where a′ = 1−abc
b(c−1)

and b′ = ab−c
a(c−1)

.

As c varies the base points of σa′,b′ are (1 : 0 : 0), (0 : 0 : 1) and the point R′ =
(a(1− abc) : ab(c− 1) : b(ab− c)) lying on the line:

La,b = V
(

bx+ (1 + ab)y + az
)

.

The point R′ can be any point on La,b, except for (a : 0 : −b), corresponding to c = 1,
and La,b ∩ C = {(−1

b
: 1 : −b), (−a : 1 : − 1

a
)}, corresponding to c = 0,∞. Outside of

these points La,b intersects every conic Γd at least once.

For all d 6= 0 this construction gives an elementary quadratic transformation with base
points in Bd.

If d = 0 and ab 6= −1 then La,b meets Γ1,0 and Γ0,1 giving elementary quadratic trans-
formations with base points in B1,0 and B0,1. If ab = −1 then La,b ∩ Γ0 = (0 : 1 : 0)
giving an elementary quadratic transformation with base points in B0,0.

It remains to produce an elementary quadratic transformation with base points in B0,0

if ab 6= −1 and in B1,0 and B0,1 if ab = −1. We can use the construction once to produce
σa′,b′ with a′b′ = −1 if ab 6= −1 (or with a′b′ 6= −1 if ab = −1) and then proceed as
above. �

Remark 3.6. If the ground field k is uncountable then the corresponding statement for
Ine(C) is not true, i.e. Ine(C) cannot be generated by linear maps and any countable
collection of elementary quadratic maps. Although Ine(C) ∩ PGL3 is trivial, Ine(C)
contains a lot of elementary quadratic transformations. Indeed the maps

{σa,b ∈ Ine(C) | a, b ∈ k, ab 6= 1}

appearing in the proof of Proposition 3.5 give an uncountable family.

4. The decomposition group of a rational cubic

Throughout this section we let C ⊂ P2 denote a fixed conic and X ⊂ P2 a rational
cubic. We will distinguish between the nodal and cuspidal cases when necessary. As
explained in Remark 1.3, we will also assume that the characteristic of k is not 2.

Remark 4.1. Any map ϕ ∈ ΦC,X must have exactly one base point P ∈ C and two
base points Q,R /∈ C. In this case X is a cuspidal cubic if the line QR is tangent to
C and a nodal cubic otherwise, as shown in Figure 3. Moreover, given any three non-
collinear points in such a position we can always find a map ϕ ∈ ΦC,X with these three
points as base points.

•

P

•
R

•

Q

•

P

•
R

•

Q

(i) (ii)

Figure 3. Base point configurations for ϕ ∈ ΦC,X when X is (i) a nodal
cubic and (ii) a cuspidal cubic.
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4.1. Proof of Theorem 3. We now prove statements (B) & (C) in Proposition 2.2 for
Y = C a conic and Z = X a rational cubic.

4.1.1. Proof of statement (B) for cubics.

Lemma 4.2. Suppose that ϕ1, ϕ2 ∈ ΦC,X . Then the composition ϕ2ϕ
−1
1 ∈ Dec(X) can

be factored into elementary quadratic transformations inside Dec(X).

Proof. For i = 1, 2, we let Pi, Qi, Ri be the base points of ϕi, where Pi ∈ C and
Qi, Ri /∈ C. As in the proof of Lemma 3.2, we may intertwine with a third map ϕ3 ∈ ΦC,X
to assume that no base points coincide, no three are collinear and no two lie on a tangent
line to C (unless X is a cuspidal cubic, in which case we can assume that only Q1, R1

and Q2, R2 lie on a tangent line to C).

The nodal case: If X is a nodal cubic we let ϕ1 =: ψ0, ψ1, ψ2, ψ3 := ϕ2 ∈ ΦC,X be a
sequence of elementary quadratic transformations with base points:

(P1, Q1, R1), (P1, Q1, R2), (P1, Q2, R2), (P2, Q2, R2)

and we write ϕ2ϕ
−1
1 = (ψ3ψ

−1
2 )(ψ2ψ

−1
1 )(ψ1ψ

−1
0 ).

By our assumption ψ1 and ψ2 exist since each of these triples is non-collinear and
ψ1, ψ2 ∈ ΦC,X since they both have precisely one base point on C and do not contract
any tangent line to C. Lastly each composition ψi+1ψ

−1
i ∈ Dec(X) is an elementary

quadratic transformation since ψi and ψi+1 share exactly two common base points and
no three base points are collinear.

•

P1

•

Q1

•

R1 •

P2

•

Q2

•

R2

(i)

•P1

•

Q1

•

R1

•

P2

• Q2

•R2

•
S

L1

L2

(ii)

Figure 4. Configuration of base points in (i) the nodal case and (ii) the
cuspidal case.

The cuspidal case: If X is a cuspidal cubic then we must be a little bit more careful to
ensure that each of our intermediate maps ψi contracts a tangent line to C.

For i = 1, 2 let Li be the tangent line to C passing through Qi which does not contain
Ri. By our assumption on the position of the base points, the point S = L1 ∩ L2 is
well-defined, S /∈ C and S is not equal to any Pi, Qi, Ri. Moreover, no three of the seven
points P1, P2, Q1, Q2, R1, R2, S are collinear.

Now we let ϕ1 =: ψ0, ψ1, ψ2, ψ3, ψ4 := ϕ2 ∈ ΦC,X be a sequence of elementary quadratic
transformations with base points:

(P1, Q1, R1), (P1, Q1, S), (P1, Q2, S), (P2, Q2, S), (P2, Q2, R2)

and we write ϕ2ϕ
−1
1 = (ψ4ψ

−1
3 )(ψ3ψ

−1
2 )(ψ2ψ

−1
1 )(ψ1ψ

−1
0 ).
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As before, ψ1, ψ2, ψ3 exist since each triple of base points is non-collinear and ψ1, ψ2, ψ3 ∈
ΦC,X since they all have precisely one base point on C and contract a tangent line to C.
Lastly each composition ψi+1ψ

−1
i ∈ Dec(X) is an elementary quadratic transformation

since ψi, ψi+1 share exactly two common base points and no three base points are
collinear. �

4.1.2. Proof of statement (C) for cubics.

Lemma 4.3. Let τ ∈ Dec(C) be an elementary quadratic transformation. Then we can
find ϕ, ψ ∈ ΦC,X such that ϕτψ−1 ∈ Dec(X) can be factored into elementary quadratic
transformations inside Dec(X).

Proof. We first assume that τ is an elementary quadratic transformations which does not
contract a tangent line to C (i.e. τ has a configuration of base points as in Figure 2(i)).
Let P,Q ∈ C and R /∈ C be the base points of τ and let L be a tangent line to C
passing through R. By assumption L 6= PR,QR.

Choose a point S /∈ C as in Figure 5, such that no three of P,Q,R, S are collinear. If
X is a nodal cubic then we choose S to avoid the tangent lines to C passing through
P , Q or R. If X is a cuspidal cubic then we choose S to lie on L but avoid the tangent
lines to C through P or Q.

•
P

• Q

•
R

•S

(i)

•

P

• Q

•
R

•
S

(ii)

Figure 5. Location of the point S when X is (i) a nodal cubic and (ii)
a cuspidal cubic.

Since P,R, S are non-collinear there is an elementary quadratic transformation ψ ∈ ΦC,X
with these base points. We let ϕ := ψτ−1 ∈ ΦC,X which is also an elementary quadratic
transformation since ψ and τ share two base points and no three of the base points are
collinear. Thus ϕτψ−1 = idP2 ∈ Dec(X) which is a decomposition into zero elementary
quadratic transformations inside Dec(X).

If τ is an arbitrary elementary quadratic transformation, then by Proposition 3.5 we
can write τ = τn · · · τ1 where τi ∈ Dec(C) are elementary quadratic transformations
which do not contract a tangent line to C. We can find ϕi, ψi ∈ ΦC,X , for i = 1, . . . , n,
such that ϕiτiψ

−1
i ∈ Dec(X) can be factored into elementary quadratic transformations

inside Dec(X) and by Lemma 4.2 we can factor ψi+1ϕ
−1
i ∈ Dec(X) into elementary

quadratic transformations inside Dec(X) for i = 1, . . . , n−1. Therefore, taking ϕ := ϕn
and ψ := ψ1, we can factor

ϕτψ−1 = (ϕnτnψ
−1
n )(ψnϕ

−1
n−1)(ϕn−1τn−1ψ

−1
n−1) · · · (ψ2ϕ

−1
1 )(ϕ1τ1ψ

−1
1 )

into elementary quadratic transformations inside Dec(X). �
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4.2. An example. Let X be a nodal (resp. cuspidal) cubic, let τ ∈ Dec(X) and sup-
pose that we conjugate τ to get τ ′ ∈ Dec(C), for a conic C, as in the proof of Propo-
sition 2.2. If τ ′ can be decomposed into n elementary quadratic transformations which
do not contract any tangent line to C then näıvely applying the proof of Theorem 3
gives a decomposition of τ into at most 6(n+ 1) (resp. 8(n+ 1)) elementary quadratic
transformations inside Dec(X).

Even in relatively simple cases this gives a very long decomposition which is far from
optimal. For example let X be the cuspidal cubic X = V (x3 − y2z) ⊂ P2 and consider
the de Jonquières involution τ = (xy2 : y3 : 2x3 − y2z) ∈ Ine(X). This map has one
proper base point at the cusp point P ∈ X and all other base points infinitely near to
P . If C is the conic C = V (xz − y2) then ϕ = (x(y + z) : x(x + y) : z(y + z)) ∈ ΦC,X
and conjugating τ with ϕ gives τ ′ = ϕ−1τϕ ∈ Dec(C), a map of degree 3 with two
proper base points, which decomposes into four elementary quadratic transformations
in Dec(C) not contracting any tangent line to C. Therefore we can decompose τ into
at worst 40 elementary quadratic transformations inside Dec(X), although we expect a
minimal decomposition to be much shorter.

4.3. Generating sets for Dec(X). Let X be the nodal cubic given by the model
X = V (x3 + y3 − xyz) ⊂ P2. We see that Aut(P2, X) is the finite group given by:

Aut(P2, X) =

〈





ω 0 0
0 ω2 0
0 0 1



 ,





0 1 0
1 0 0
0 0 1





〉

≃ S3

where ω ∈ k is a primitive cube root of unity. If k is an uncountable field then Dec(X) is
an uncountable group and therefore cannot be generated by Aut(P2, X) and any finite
(or countable) collection of elementary quadratic transformations.

Now suppose X is the cuspidal cubic given by the model X = V (x3−y2z) ⊂ P2. In this
case Aut(P2, X) is infinite:

Aut(P2, X) =

〈





a 0 0
0 1 0
0 0 a3





∣

∣

∣

∣

∣

∣

a ∈ k×

〉

≃ Gm .

We do not know whether or not Dec(X) can be generated by Aut(P2, X) and any
countable collection of elementary quadratic transformations.

5. Rational curves of higher degree

We provide a family of plane rational curves Xd ⊂ P2, birationally equivalent to a line
and of degree d ≥ 4, to show that we cannot expect Theorems 1, 2 & 3 to be true for
curves of higher degree.

Let Xd denote the rational curve given by Xd = V (xd−yd−1z) ⊂ P2 which has a unique
singular point P = (0 : 0 : 1), a cusp of multiplicity d − 1, and a unique inflection
point Q = (0 : 1 : 0). Let LQ = (z = 0) be the tangent line intersecting Xd at Q
with multiplicity d and let LP = (y = 0) be the tangent line to the cusp P . Any de
Jonquières transformation of degree d with major base point at P and all other base
points on Xd \ P sends Xd onto a line.

A map in Aut(P2, Xd) has to fix P and Q and preserve LP and LQ. It is straightforward
to check that:

Aut(P2, Xd) =
{

(ax : y : adz)
∣

∣ a ∈ k×
}

≃ Gm .
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Lemma 5.1. The standard involution σ = (yz : zx : xy) ∈ Bir(P2) is the only elemen-
tary quadratic map that preserves Xd, up to composition with an element of Aut(P2, Xd).

Proof. It is easy to check that σ ∈ Dec(Xd). Any other elementary quadratic transfor-
mation τ ∈ Dec(Xd) must have one base point at P ∈ Xd, one base point in the smooth
locus of Xd and one base point not contained in Xd. In particular τ−1 also has a base
point at P . Since the line τ−1(P ) is tangent to a point of Xd with multiplicity ≥ d− 1,
we must have τ−1(P ) = LQ. As the line LQ is contracted, both τ and τ−1 must have
two base points on LQ, one of which is LQ ∩ Xd = Q. Now the line τ−1(Q) is tangent
to the cusp P so we must have τ−1(Q) = LP , as in Figure 6.

Since the lines LP and LQ are contracted, the base points of τ are P = (0 : 0 : 1),
Q = (0 : 1 : 0) and LP ∩ LQ = (1 : 0 : 0). Hence, up to an element of Aut(P2, Xd), we
must have τ = σ. �

•P •

•Q

LQ

LP

Q

LQ

LP

P

• • LQ

• LP

P

Q

Figure 6. Resolution of the standard involution σ ∈ Dec(Xd).

Proposition 5.2. If d ≥ 4, the group Dec(Xd) cannot be generated by linear maps and
elementary quadratic transformations.

Proof. By Lemma 5.1, the subgroup of Dec(Xd) generated by linear maps and ele-
mentary quadratic transformations is given by 〈Aut(P2, Xd), σ 〉. Since σ

2 = idP2 and
σλ = λ−1σ for any λ ∈ Aut(P2, Xd), all elements of this subgroup are of the form λ or
λσ and are either linear or quadratic. But there are many elements in Dec(Xd) of degree
> 2; for example the de Jonquières transformation τa = (xyd−1 : yd : (1−a)xd+ayd−1z)
for a ∈ k×. �

Remark 5.3. The family of maps {τa | a ∈ k×}, appearing at the end of the proof of
Proposition 5.2, form a subgroup of Ine(Xd) isomorphic to Gm since τbτa = τab for all
a, b ∈ k×.
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[11] A. Lonjou Non simplicité du groupe de Cremona sur tout corps, Ann. Inst. Fourier (Grenoble),
66, no. 5 (2016), 2021–2046.

[12] P. Samuel Lectures on old and new results on algebraic curves, (notes by S. Amentharsmon)
Tata Institute, Colaba, Bombay 5, India (1966).

[13] T. Uehara, Rational surface automorphisms preserving cuspidal anticanonical curves, Math.
Ann., 365, no. 1-2 (2016), 635–659.

Tom Ducat, Research Institute for Mathematical Sciences, Kyoto University, Kyoto

606-8502 Japan

E-mail address : taducat@kurims.kyoto-u.ac.jp

Isac Hedén, Research Institute for Mathematical Sciences, Kyoto University, Kyoto

606-8502 Japan

E-mail address : Isac.Heden@kurims.kyoto-u.ac.jp
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