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Introduction.

In this paper we continue the investigations started in [FS1] in order to construct a

Fatou-Julia theory for holomorphic (respectively meromorphic) self maps in IP

2

: We start

by considering maps arising in two dimensions from Newton's method. This leads to the

study of iteration of meromorphic maps in IP

2

: More precisely if we consider the problem

in C

2

to �nd the zeroes of a complex polynomial map, we are led to study iteration of

maps on IP

2

: The results can afterwards be interpreted back down in C

2

:

It turns out that generically, when one applies Newton's method, the map one has to

study in IP

2

is not holomorphic but just meromorphic. This is why we are also interested

in the dynamics of meromorphic maps.

One of the main tools in iteration theory in one complex variable is the Montel Theo-

rem, i.e. the fact that IP

1

nf0; 1;1g is Kobayashi hyperbolic. This approach was explored

in [FS1].

It is however possible to prove many results of the Fatou-Julia theory in one variable

using potential theory. This was started by Brolin [Br] and continued in [Si], [T]. In

paragraph 6 we show how to work out this approach in the context of rational maps in

IP

1

in order to obtain recent results due to Lyubich [Ly] and Lopez-Freire-Mane [FLM],

see also Hubbard-Papadopol [HP]. In the above mentioned articles the use of the Koebe

distortion theorem is crucial in order to construct a measure of maximal entropy for a

rational map in IP

1

and to prove convergence results. Such a distortion theorem is not

valid in several variables.

After generalities on meromorphic maps in IP

2

; we consider the Green function asso-

ciated to a \generic meromorphic" map in IP

2

: Such a function was studied in the context

of H�enon maps by Hubbard, from the topological point of view, and it was extended to

the case of holomorphic maps by Hubbard and Papadopol [HP].

To the Green function we associate an invariant closed positive (1; 1) current T in

IP

2

: Such currents and their wedge products where considered in the context of H�enon

maps by Sibony. Bedford and Sibony established their �rst properties. Some of the results

they obtained appeared in x 3 of Bedford-Smillie [BS1], see also the introduction of [BLS].

The structure of these Green-currents was studied extensively by Bedford-Lyubich-Smillie

[BS1], [BS2], [BLS] and Fornaess-Sibony [FS]. The notion was adapted in the context of

holomorphic maps in IP

k

by Hubbard-Papadopol [HP].

Let f be a holomorphic self map in IP

2

of degree d � 2: Let J

0

denote the Julia set of

f; i.e. p 2 J

0

if the family (f

n

) is not normal in a neighborhood of p: We show that there

exists a closed positive (1; 1) current T satisfying the functional equation f

�

T = dT and
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whose support is exactly J

0

; (this is done in the context of \generic meromorphic normal"

maps). Moreover T is extremal among the currents satisfying the previous functional

equation. We then show that the Julia set J

0

is always connected and the Fatou set i.e.

IP

2

nJ

0

is a domain of holomorphy. Hence the critical set of f always intersects the Julia

set J

0

:

In x 6 we study the probability measure � := T ^T and we show that it is an invariant

ergodic measure of maximal entropy.

The analysis of a simple example such as f [z : w : t] = [z

d

: w

d

: t

d

] shows that the

Julia set is not indecomposable as in one variable. We introduce a �rst order Julia set J

1

;

see De�nition 5.8, and we show that J

0

1

:= supp� � J

1

: If J

0

1

has nonempty interior then

J

0

1

= IP

2

: If K is a compact invariant set, hyperbolic and of unstable dimension 2, then

necessarily K � J

1

: We also show that no f can be hyperbolic on the whole Julia set J

0

:

Finally if the nonwandering set of a holomorphic map of degree d � 2 is hyperbolic, then

the Fatou components are preperiodic to �nitely many periodic basins.

It will be natural to consider similar questions in IP

k

; k � 2: For simplicity we have

written this article, restricting ourselves to the case of IP

2

: We will continue our study in

forthcoming articles, see [FS4].

1. Newton's method and meromorphic maps in IP

2

:

Given two complex polynomials P;Q in two variables z; w; Newton's method provides

a way to approximate the roots (z

0

; w

0

) of the equations P (z; w) = Q(z; w) = (0; 0) by

starting with an initial guess (z

1

; w

1

) and inductively de�ne (z

n+1

; w

n+1

) := (z

n

; w

n

) �

F

0�1

(z

n

; w

n

)F (z

n

; w

n

) where F : C

2

! C

2

; F := (P;Q) and the 2 � 2 matrix F

0

denotes

the derivative of F:

Hence Newton's method consists of iteration of the map

R(z; w) := (z; w)� F

0�1

F:

The natural way to consider this map is as a map on IP

2

rather than C

2

since it depends

on quotients of polynomials. To write this as a map on IP

2

; introduce �rst the determinant

D of F

0

; and the two determinants D

w

:= Q

w

�P �P

w

�Q and D

z

:= P

z

�Q�Q

z

�P where

we have used subscripts to denote partial derivatives. Hence we write R as a map on IP

2

in homogeneous coordinates as R : [z : w : 1]! [zD �D

w

: wD �D

z

: D]:

We will assume that the map F has maximal rank 2, otherwise F = 0 would in general

have no root. Also we can assume that the map F is at least of degree two. Otherwise

Newton's method immediately gives the root after one step. This amounts to the same

thing as requiring that R is non constant.

Observe that at points where D

z

= D

w

= 0; which means that

�

P

z

Q

z

�

;

�

P

Q

�

are

linearly dependent and

�

P

w

Q

w

�

;

�

P

Q

�

are linearly dependent we have generically that

D = 0; i.e.

�

P

z

Q

z

�

;

�

P

w

Q

w

�

are linearly dependent. So in general R has poles.
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If the map R has maximal rank 1, then it is easy to show that the image X of R is

a IP

1

and that R restricted to X is a rational map. We consider, for the purpose of this

paper, this as a known case. So we will assume from now on that R has maximal rank 2.

For the one variable theory we refer to [B], [Ca] or [Mi].

Notice that if R = [A : B : C] are homogeneous polynomials of degree d; we may

assume they have at most �nitely many common zeroes (lines of common zeroes in C

3

): If

not, they have a common factor which can be divided out. The remaining points p if any

in IP

2

are called points of indeterminacy.

In the case where R is linear, the dynamics is rather simple. Hence we will in the rest

of the paper restrict ourselves to the case when R has at least degree 2.

We will con�ne ourselves to giving one situation in which a nontrivial polynomial

equation gives rise to a linear Newton's map - in complete analogy with an important case

in one variable.

PROPOSITION 1.1. - If (P;Q)(z; w) are homogeneous of the same degree n > 1; and

F = (P;Q) has maximal rank 2, then R(z; w) = ((1�1=n)z; (1�1=n)w): If (P;Q) are two

polynomials of degree n > 1 such that the highest degree terms (P

n

; Q

n

) have maximal

rank 2, then R is the identity map at in�nity (t = 0):

Proof. Immediate.

The situation can be quite di�erent for homogeneous polynomials of di�erent degree.

Let F = (P;Q) = (z

3

+ w

3

; z

2

+ w

2

): Then Newton's map R = [4z

3

w � 3z

2

w

2

+ w

4

: �z

4

+ 3z

2

w

2

� 4zw

3

: 6zwt(z � w)]: Then the point (0; 0) is a root of F = 0: However

Newton's method applied to points [� : � : 1] arbitrarily close to the root, � 6= 0; are all

mapped to the �xed point [1 : �1 : 0] at in�nity, so Newton's method diverges arbitrarily

close to the root ! The problem is that at such points D = 0 but D

w

; D

z

6= 0: The root

[0 : 0 : 1] is a point of indeterminacy for R while (z = w) is mapped to a di�erent �xed

point.

Schr�oder ([1871]) was the �rst to study Newton's method in one complex variable.

He observed that there are in�nitely many variations of Newton's method R = z �

(f

0

(z))

�1

f(z): For example, one can replace f

0

(z) by the derivative at some �xed point

close to the root. Doing this in two dimensions increases the class of maps obtained from

Newton's method signi�cantly. Any polynomial map R = [A : B : t

d

] can be written in

the form, (t = 1);

(A;B) = (z; w) � M

�1

(P;Q) where M is an invertible constant matrix and (P;Q) is

polynomial. There is also the relaxed Newton's method, R = z � �F

0�1

: F for some

constant 0 < � < 1 (which approximates the Newton Flow X = �F

0�1

� F ): Based on

these remarks, we will from now on study the class of all meromorphic maps R on IP

2

with maximal rank 2 and degree at least two. (The Newton Flow would lead rather to the

study of complex foliations of IP

2

):

With the degree d of any homogeneous map R = [A : B : C] we mean the degrees

of A;B or C; which are equal, after cancellation of all common irreducible factors. So we
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assume that d � 2: Let I = I(R) = fq

k

g denote the (�nite) indeterminacy set consisting

of the points q

k

in IP

2

where A = B = C = 0: Also let V = [V

j

denote the �nite union of

irreducible compact complex curves V

j

on each of which R has a constant value (at least

outside I): Say R(V

j

) = p

j

: We call such curves V

j

; R-constant.

PROPOSITION 1.2. - If V is nonempty, then also I is nonempty. In fact each irreducible

branch of V contains at least one point of indeterminacy. It can happen that V is empty

while I is nonempty.

Proof. Suppose that V is nonempty. Then we may after a rotation assume that some

irreducible component V

j

= fh = 0g for some irreducible homogeneous polynomial h and

that R(V

j

) = [0 : 0 : 1]: Hence h divides both A and B: But then the set C = 0 and h = 0

must intersect and such an intersection point is a point of indeterminacy.

For the converse, consider the example R = [zw : z

2

+wt : t

2

]: For this example, there

is one point of indeterminacy, [0:1:0], while the map is not constant on any curve.

Let R be a meromorphic map IP

2

! IP

2

: Let I be the indeterminacy set. Given a 2 IP

2

we want to discuss the number of preimages of a: Recall that Bezout's Theorem asserts

that if (P

1

; � � � ; P

k

) are k homogeneous polynomials in IP

k

with discrete set of zeroes then

the number of zeroes counted with multiplicities is equal to the product of the degrees.

PROPOSITION 1.3. - Let R : IP

2

! IP

2

be a meromorphic map of degree d: Assume

I 6= ;:

Assume R is of rank 2. Then for any a which is not one of the �nitely many points which

is the image of an R� constant curve, R

�1

(a) = d

0

< d

2

: Here we count the number of

points with multiplicity.

Proof. Consider the map C

4

! C

3

; (z

0

; z

1

; z

2

; t) = (z; t) ! R(z) � at

d

: We have 3

polynomials in IP

3

: Assume there is no 1 dimensional variety in IP

2

such that R(V ) = a:

Then the number of zeroes of R(z)� at

d

is �nite in IP

3

: So it is d

3

counting multiplicity.

For p 2 I; [p : 0] is a zero of multiplicity at least d: Hence number of zeroes in t = 1 is

< d

3

: Since rotation of t by a d

th

root of unity produces an equivalent solution in IP

2

we

get that d

0

< d

2

:

Remark 1.4. - If a point a 62 R(IP

2

nI) then

P

p2I

multiplicity of [p : 0] for R(z)�at

d

= 0

is d

3

:

Consider the forward orbit of the points p

j

: The variety V

j

is called degree lowering

if for some (smallest) n = n

j

� 0; R

n

(p

j

) 2 I:

We will next discuss the growth of the degrees of the iterates of maps R:

When there is a degree lowering variety, all the components of the iterates of R

n

j

+1

vanish on V

j

= fh = 0g: Hence one need to factor out a power of h in order to describe

the map properly. Hence the degree of the iterate will drop below d

n

j

+1

:

We will not study the class of maps with degree lowering varieties in this paper. If a
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map R has an R� constant variety V with R(V ) = p which is not degree lowering, most

likely the complement of the preimages of this variety is Kobayashi hyperbolic. So on these

varieties, the map eventually lands on the R constant variety after which the orbit reduces

to the orbit of a point, and in the complement of these varieties, the iterates is a normal

family, even on any subvariety disjoint from

S

n�0

R

�n

(V ): If the variety is degree lowering,

the iterations can be much more complicated and worthy of further study. However, the

method we will be pursuing in this paper, pluripotential theory, is more di�cult to carry

out for such maps. So we will pursue these in a separate paper with other methods.

2. Green Function.

In this section we will study generic meromorphic maps on IP

2

; i.e. meromorphic

maps of maximal rank 2, which have degree at least 2 and which have no degree lowering

curves.

We have �rst to de�ne Fatou sets and Julia sets of R : IP

2

! IP

2

:

Since we would like to have a notion of Fatou and Julia set which is invariant under

R; we need to be precise about what one means with the preimage of a point. We say that

for a given p; a point q is a preimage of p if R is de�ned at q and R(q) = p: (If q 2 I(R)

and p 2 W; the blow up of q; so (q; p) is in the closure of the graph of R; then q is with

this convention not in the preimage of p): Here I denote as usual the indeterminacy set of

the meromorphic map R:

DEFINITION 2.1. - An orbit fp

n

g

0

n=�k

is called complete if

(i) R(p

n

) = p

n+1

;

(ii) p

0

2 I;

(iii) p

n

62 I; n < 0;

(iv) If k is �nite, p

�k

62 R(IP

2

nI):

We call k + 1 the length of the orbit.

LEMMA 2.2. - A point p 2 IP

2

is a point of indeterminacy for R

n

if and only if

fp;R(p); � � � ; R

k�1

(p)g is a right tail of some complete orbit for some 1 � k � n:

Proof. Immediate.

COROLLARY 2.3. - If I

n

denotes the indeterminacy set of R

n

; then I

n

� I

m

8m > n:

Proof. Immediate.

The set I(R) should belong naturally to the \Julia set". So does [I

n

: Hence the

closure E :=

���

[I

n

; the extended indeterminacy set, belongs naturally to the Julia set as

well.
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PROPOSITION 2.4. - If p 2 IP

2

nE and R

n

(p) 2 E; n � 1; then p is on an R

n

�constant

curve.

Proof. If p is not on an R

n

� constant curve there are arbitrarily small neighborhoods

U(R

n

(p)); V (p) so that R

n

j V : V ! U is a �nite, proper, surjective holomorphic map.

Moreover we may assume that V \E = ;: Since every such open set U contains a point from

some I

k

; it follows that V contains a point from some I

n+k

: Hence p 2 E; a contradiction.

DEFINITION 2.5. - Let R : IP

2

! IP

2

be a generic meromorphic map. A point p 2 IP

2

is

in the Fatou set if and only if there exists for every � > 0 some neighborhood U(p) such

that diamR

n

(UnI

n

) < � for all n:

Note that this implies that p cannot belong to the extended indeterminacy set. We

say that the Julia set is the complement of the Fatou set. By a normal family argument it

follows that the Fatou set is an open set and that the Julia set is closed. Also we conclude

that the extended indeterminacy set belongs to the Julia set. We denote the Julia set of

R by J(R) or J

0

; since we introduce also higher order Julia sets.

We have complete invariance of the Julia set :

PROPOSITION 2.6. - Suppose that p 2 IP

2

nI and that R(p) 2 J(R); the Julia set of R:

Then p belongs to the Julia set also. On the other hand, if p 2 J(R); and p 62 I; then

R(p) 2 J(R):

LEMMA 2.7. - Suppose that p 2 IP

2

nI and that R(p) 2 F (R); the Fatou set of R: Then

p 2 F (R) also.

Proof. This is obvious from the de�nition since R is continuous at p:

LEMMA 2.8. - Suppose that p 2 F (R): So in particular, p 2 IP

2

nI: Then R(p) is also in

F (R):

Proof. Suppose �rst that p does not belong to any R� constant curve. Then R is locally

�nite to one and proper near p: Hence arbitrarily small neighborhoods of p are mapped

properly onto arbitrarily small neighborhoods of R(p): The conclusion follows.

Suppose next that p belongs to an R� constant curve X: We can select a small

complex disc � centered at p such that �nfpg does not intersect X nor the critical set of

R: Considering a small neighborhood of �nfpg; and taking the image of it, we obtain a

piece of a complex curve Y through R(p) and a neighborhood V of Y nR(p) on which the

iterates of R is an equicontinuous family. Note that R(p) cannot belong to [I

n

since this

would imply that p belongs to this set also, contradicting that p belongs to the Fatou set.

Pushing discs, we can conclude that any iterate R

n

is holomorphic in a �xed neighborhood

of R(p) so R(p) 62 E: But then it follows that equicontinuity extends to a neighborhood of

R(p); so R(p) is in the Fatou set.
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So the proposition follows from the two lemmas.

DEFINITION 2.9. - A point p 2 IP

2

has a nice orbit if there is an open neighborhood

U(p) and an open neighborhood V (I) so that R

n

(U) \ V = ; for all n � 0:

So if p has a nice orbit, R

n

is well de�ned for all n on some �xed neighborhood of p: The

set of nice points is an open subset of IP

2

nE:

DEFINITION 2.10. - A generic meromorphic map is said to be normal if N; the set of

nice points equals IP

2

n

���

[I

n

:

Let R be a generic meromorphic map in IP

2

: With an abuse of notation we will also

denote by R a lifting of R to C

3

: If k k is a norm on C

3

we de�ne the n

th

Green function

G

n

on C

3

by the formula G

n

:=

1

d

n

Log k R

n

k : Here d is the common degree of the

components of R: Observe that if R is meromorphic, G

n

has other poles in C

3

than just

the origin. Let � denote the canonical map C

3

j f0g ! IP

2

:

PROPOSITION 2.11. - The functions G

n

converge u. c. c. to a function G on the set

�

�1

(N) of points with nice orbits.

Proof. If p 2 N there exists U(p) and c > 0 such that on �

�1

(U(p))

k R

n+1

(z) k� c k R

n

(z) k

d

:

On the other hand the reverse inequality

k R

n+1

(z) k� C k R

n

(z) k

d

holds always. Hence the sequence

logkR

n

k

d

n

converges u. c. c. on �

�1

(U(p)):

Because of the second inequality, the limit G always exists and is a plurisubharmonic

function on C

3

; possibly � �1; although we don't believe this can happen. (You just

need one periodic orbit to show that the limit is not identically �1:)

Obviously N �

[

n

intfG > �ng:

The other inclusion does not hold in general, as the following example shows.

Example 2.1. - Let R = [z

d

: w

d

: t

d�1

w]; d � 3: This map has one point of indetermi-

nacy, [0 : 0 : 1]; which has no preimage. Hence E = [0 : 0 : 1]: Also, the only R� constant

curve is (w = 0) whose image is the �xed point [1 : 0 : 0]: Hence the map is generic. We

get that R

n

= [z

d

n

: w

d

n

: t

(d�1)

n

w

d

n

�(d�1)

n

]: Computing the Green's function G;

G

n

= 1=d

n

log k (z

d

n

; w

d

n

; t

(d�1)

n

w

d

n

�(d�1)

n

) k

7



and we obtain G = maxflog j z j; log j w jg: Letting 
 := fj z j<j w j<j t jg; G

is pluriharmonic, on �

�1

(
); but 
 6� N since R

n

! [0 : 0 : 1]: Furthermore this is

pluriharmonic when j z j<j w j; j w j is close to 1 and t = 1: But then R

n

= [(z=w)

d

n

:

1 : (1 : w)

(d�1)

n

]: Notice that when j w j< 1 the limit becomes [0 : 0 : 1] while if j w j> 1

the limit becomes [0 : 1 : 0] so in particular the points where j z j<j w j=j t j are in

the Julia set even though G is pluriharmonic there. In the region t = 1; j z j>j w j;

R

n

= [1 : (w=z)

d

n

:

�

w

zw

(d�1)

n

=d

n

�

d

n

] so R

n

! [1 : 0 : 0]; so the Julia set also contains

fj z j=j w jg: There are three Fatou components : 


1

= fj z j<j w j<j t jg on which

R

n

! [0 : 0 : 1]; 


2

= fj w j<j z jg; on which R

n

! [1 : 0 : 0]; 


3

= fj z j<j w j; j t j<j w jg

on which R

n

! [0 : 1 : 0]: The blow up of [0 : 0 : 1] is the z-axis (which happens to coincide

with the R� constant curve).

For the behaviour on the Julia set : If j z j=j w j< 1 = t; then R

n

! [0 : 0 : 1]: If

j z j=j w j> 1 = t; then R

n

! [1 : 1 : 0]: If j z j<j w j= 1 = t; then R

n

converges to the

invariant circle z = 0; j w j=j t j : Notice that these points are not in a nice component.

Finally the set j z j=j w j=j t j is an invariant torus.

We just recall that plurisubharmonic (p.s.h. for short) functions on a complex manifold

are upper semicontinuous functions that are subharmonic on one dimensional analytic

discs, see [Le] or [Kl].

THEOREM 2.12. - Let R be a generic meromorphic map on IP

2

: Then G(z) = lim1=d

n

�

log k R

n

k= lim& H

n

where H

n

:= G

n

+

P

1

k=n+1

logM

d

k

; M is some constant.

(i) The function G is plurisubharmonic in C

3

(or � �1):

(ii) G is pluriharmonic on �

�1

(
) if 
 is a Fatou component.

(iii) If N is the set of nice points of R then G is continuous on �

�1

(N) and if G is

pluriharmonic on �

�1

(!) where ! is an open subset of N; then ! is contained in a

Fatou component.

Proof. Let M := supfk R(z) k; k z k= 1g: Then

k R

n+1

(z) k�M k R

n

(z) k

d

by homogeneity. Hence

G

n+1

(z) �

logM

d

n+1

+G

n

(z):

Replacing G

n

by H

n

:= G

n

+

P

1

k=n+1

logM

d

k

we get

H

n+1

= G

n+1

+

1

X

k=n+2

logM

d

k

� G

n

+

1

X

k=n+1

logM

d

k

= H

n

:

The function G is a decreasing limit of p.s.h. functions, hence it is p.s.h. or � �1:

Next we prove ii).
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Suppose that p 2 U is a point in the Fatou set, and U is a small neighborhood inside

the Fatou set. Choose a subsequence R

n

k

which converges uniformly to a holomorphic

map R

1

on U: Shrinking U if necessary, taking a thinner subsequence and renaming the

coordinates, we may assume that R

n

k

(U) � fj z j; j w j< 2; t = 1g: We can then write

R

n

k

= R

n

k

3

(A

k

; B

k

; 1) for uniformly bounded holomorphic functions A

k

; B

k

over U in C

3

:

Hence G

n

k

= 1=d

n

k

� log j R

n

k

3

j +1=d

n

k

� log k (A

k

; B

k

; 1) k : Since the last term converges

uniformly to 0 and the �rst term is always pluriharmonic, the result follows.

We prove iii). On a compact subset of N; we have

j G

n+k

�G

n

j� C=d

n

since j R

n+1

(z) j� c

1

j R

n

(z) j

d

; c

1

independent of n; k: So j G � G

n

j� C=d

n

and if

G = log j h j; h is a nonvanishing holomorphic function, we get j 1=d

n

log

kR

n

k

jh

d

n

j

j� C=d

n

i.e.

e

�C

�

k R

n

k

j h

d

n

j

� e

C

:

Remark 2.13. - The same theorem holds for holomorphic maps on IP

k

� 1:

COROLLARY 2.14. - Let p 2 E: The Hausdor� dimension of J near p is at least 2. If R

is normal, then the Hausdor� dimension near any point of J is at least 2.

Proof. Let q 2 C

3

nf0g such that �(q) = p: Assume the 4 dimensional Hausdor� measure

�

4

(�

�1

(J)\U(q)) = 0 for some neighborhood U(q) of q: Then using a theorem of Harvey-

Polking [Ha.P] G would extend as a pluriharmonic function in U(q): But G = �1 on

�

�1

([I

n

) \ U(q); a contradiction. In the normal case we apply the same extension result

and Theorem 2.12.

PROPOSITION 2.15. - In the generic meromorphic case, the Green function G satis�es

the functional equation

G(R(z)) = dG(z):

Moreover for � 2 C; G(�z) = log j � j +G(z):

Proof. Direct computation gives

G(R(z)) = lim

log k R

n

(R(z)) k

d

n

= d lim

log k R

n+1

(z) k

d

n+1

= dG(z):

The proof of the second assertion is clear.

We give an example showing that the pole set of G is not just �

�1

([I

n

): The example

has also interesting dynamics.

Example 2.2. - R = [w

4

: w

2

(w � 2z)

2

: t

4

]:

9



The indeterminacy set I consists of one point, [1 : 0 : 0]: The only R� constant variety

is (w = 0) which is mapped to the �xed point [0 : 0 : 1]; so the map is generic. The map

R is a polynomial map, sending the hyperplane at in�nity, (t = 0); to itself. At in�nity,

the map is w!

�

w�2

w

�

2

: This map is a critically �nite map on IP

1

; and all critical points

are preperiodic. Hence the Julia set of this map on IP

1

is all of IP

1

; [Ca]. In particular,

[I

n

is dense in (t = 0); so E = (t = 0): Since for example [1 : 1 : 0] is a �xed point for

R; G j (t = 0) 6� �1: However, G � �1 on

S

n

I

n

: Since (G = �1) is a G

�

dense set in

(t = 0); (G = �1) is uncountable. Hence (G = �1) 6=

S

n

I

n

:

The point [0 : 0 : 1] is a superattractive �xed point and the punctured line (w = 0)n[1 :

0 : 0] =: L is mapped to it. Hence L is contained in the attractive basin 
 of [0 : 0 : 1]:

But R maps lines through [0 : 0 : 1] to lines through [0 : 0 : 1]: Since the map R j (t = 0)

is chaotic, it follows that 
 contains a dense set of lines through [0 : 0 : 1]; punctured at

(t = 0):

On the �xed line (w = 2iz) the map is z ! 16z

4

: Hence the Julia set contains the

disc f[z : 2iz]; j z j� 2

4=3

g centered at (t = 0): It follows that for a dense set of points p

in (t = 0); the straight line through [0 : 0 : 1] and p contains a disc centered at p which is

contained in J(R):

3. - Special Generic Meromorphic Maps.

If one wants to study various well known phenomena from complex dynamics in the

context of generic meromorphic maps one sees that many such phenomena are often no

longer always true, but are true for large subclasses. The subclass depends often on

which phenomena one wishes to study. We will illustrate this here by discussing some

such phenomena, showing by examples that they don't generally hold, and give conditions

which make them hold.

There are two particular cases of generic meromorphic maps which have been previ-

ously studied. First there are the complex H�enon maps. These are invertible polynomial

maps which have one point of indeterminacy at in�nity. Also the hyperplane at in�nity

is the unique R� constant variety and its image is a �xed point at in�nity, di�erent from

the point of indeterminacy. This point of view is developped in [FS2]. Also there is the

class of holomorphic maps on IP

2

; maps without points of indeterminacy.

We will de�ne various subclasses of the meromorphic maps. These classes will be

usually large enough to contain all holomorphic maps and all H�enon maps, i.e. maps of

the form R[z : w : 1] = [p(z) + aw : z : 1] where p is a one variable polynomial of degree

d � 2:

DEFINITION 3.1. - A generic meromorphic map is said to belong to the class of inde-

terminacy repellors - IR - if there exist arbitrarily small neighborhoods U �� V of the

10



indeterminacy set for which R(IP

2

nU) � IP

2

nV:

Both H�enon maps and holomorphic maps belong to IR. Nevertheless the de�nition is

rather strong. It implies that every point in IP

2

nI has a nice orbit, which also implies that

the points in I have no preimages (recall that points in I are not considered as preimages).

DEFINITION 3.2. - We say that a generic meromorphic map belongs to the class with no

R� constant blow ups, NRB, if there is no point of indeterminacy q for which the blow up

is R

n

� constant for some n � 1: The complement of this class is the set RB.

H�enon maps are in RB. The map R = [zw : z

2

+ wt : t

2

] is in NRB since it has no

R-constant variety.

DEFINITION 3.3. - We say that a generic meromorphic map R is a meromorphic H�enon

map, MH, if there exists a generic meromorphic map S such that R � S = Id = S � R in

the complement of some hypersurface. We say that S is the inverse of R:

Example 3.1. - Example of a meromorphic H�enon map : R[z : w : t] = [t

2

: zt :

z

2

+ ct

2

+ awt]; a 6= 0: I = [I

n

= [0 : 1 : 0] (t = 0) ! [0 : 0 : 1] ! [1 : 0 : c]

! [c

2

: c : 1 + c

3

] ! � � � Note that [0 : 1 : 0] has no preimage so (t = 0) cannot be degree

lowering. It follows that the map is generic. If c = 0 we have a cycle of period 2. Let

S =

h

wz :

tz�w

2

�cz

2

a

: z

2

i

: Then S is also generic and RS = Id out of z = 0 and SR = Id

out of t = 0: The map R belongs also to the class IR if jaj < 1:

Note that a shear S; S[z : w : t] = [zt : wt + z

2

: t

2

] has an inverse which is also a

shear, but they are not generic, so are not in the class MH.

PROPOSITION 3.4. - Suppose that R and S are meromorphic maps on IP

2

such that

R � S = Id outside a hypersurface. Suppose that R is a generic meromorphic map. Then

they are both meromorphic H�enon maps.

Proof. It su�ces to show that S is a generic meromorphic map. Clearly S has maximal

rank 2. Since R is not linear, S cannot be linear either. Suppose that S is not generic.

Then there must exist an irreducible compact curve V which is S� constant and which is

degree lowering. Let q = q

0

denote the image S(V ): Let q

n+1

:= S(q

n

) be the inductively

de�ned orbit for q

0

up to q

m

which is a point of indeterminacy for S: Note that this means

that there exists a curve W such that R(W ) = q

m

: Hence W is R� constant. Moreover

R

m+1

(W ) = q

0

and q

0

is a point of indeterminacy for R: (Unless some q

j

already is a point

of indeterminay for R; which is also �ne.) Hence W is degree lowering, a contradiction.

PROPOSITION 3.5. - If a generic meromorphic map R belongs to NRB or is normal, then

F (R) = F (R

n

) for all n � 1:

Proof. Clearly F (R) � F (R

n

): Suppose next that p 2 F (R

n

)nF (R): Then there ex-

11



ists a subsequence fR

j+nk

m

m

g; 0 < j < n; such that R

nk

m

converges uniformly on some

neighborhood U(p) while R

j+nk

m

diverges on all neighborhoods of p: This implies that

R

nk

m

(p) ! I

j

: The diameter of the images under R

j+nk

m

must remain large. Since R

belongs to NRB, this must remain true for R

n+nk

m

: But this contradicts that R

n

is a

normal family. If R is normal, this is a consequence of Theorem 2. 12.

4. The invariant current T:

Let R be a generic meromorphic map in IP

2

: Let G be the Green function in C

3

associated to R: We study, in this section, the properties of the current T de�ned by the

relation �

�

T = dd

c

G:

We refer to de Rham [de Rh] for general properties of currents. For results concerning

positive currents on complex analytic varieties, see [Le] or [Kl]. We recall here a few facts.

For simplicity we restrict to domains 
 in C

n

; but since the de�nitions are invariant under

holomorphic change of coordinates, they make sense on any complex manifold.

Let 
 � C

n

be an open set, let D

p;q

denote the smooth compactly supported (p; q)

forms ' =

P

'

IJ

dz

I

^ d�z

J

; j I j= p; j J j= q; with its usual topology [de Rh]. The dual

D

p;q

of D

p;q

is the space of currents of bidimension (p; q): So a current is just a di�erential

form with distributions as coe�cients.

Let f : M ! N be a proper holomorphic map from the complex manifold M to the

manifold N: If S is a current on M; the direct image of S under f; which we denote f

�

S

is de�ned by

(1) < f

�

S; ' >:=< S; f

�

' > :

Observe that the de�nition make sense if for every compact K � N; f

�1

(K)\Support(S)

is compact. If S has locally integrable coe�cients, the form f

�

S is obtained by integrating

S on the �bres of f:

When f is a submersion and S is a current on N we de�ne f

�

S as the current acting

on test forms as follows, see [Sc],

(2) < f

�

S; ' >:=< S; f

�

' > :

The operation f

�

; f

�

have the same functorial properties as when they are applied to

smooth forms.

A current S of bidegree (n� p; n� p) on a complex analytic manifold M is positive

if for any given forms '

1

; � � � ; '

p

of bidegree (0; 1); smooth with compact support the

distribution

S ^ i'

1

^ �'

1

^ � � � ^ i'

p

^ �'

p

is positive. When S is of bidegree (1; 1) and is written in coordinates as

S = i

X

j;k

S

jk

dz

j

^ d�z

k

;

12



the condition of positivity is equivalent to

X

j;k

S

jk

�

j

�

�

k

� 0 for all �

j

2 C:

The 0-currents S

jk

are then measures.

Recall also that d = @+

�

@ and d

c

= i(

�

@� @)=(2�): An upper semicontinuous function

V with values in [�1;1( is p.s.h. i� dd

c

V � 0: Recall that E � 
 is pluripolar if

E � fu = �1g where u is p.s.h. and u 6� �1:

If S is a positive current and ! is a smooth (1; 1) positive form, then the current S^!

is positive. If S is positive and f

�

S; f

�

S are well de�ned, then they are positive.

The mass norm of a current S is given by

M(S) = sup

j'j�1

j< S;' >j :

The norm on the test form '; is just the supremum over all coe�cients after �xing an

atlas, [de Rh]. When S is a positive distribution then M(S) is comparable to the total

variation of the positive measure

P

n

i=1

S

ii

: The mass of a positive current on a compact

set K is given by

M

K

(S) = sup

j'j�1

j< �

K

S; ' >j=M(�

K

S)

here �

K

denotes the characteristic function of K: The multiplication of S by �

K

makes

sense since S has measure coe�cients.

We now describe the current on IP

2

associated to a p.s.h. function on C

3

; with the

right homogeneity properties.

Note that G has the following homogeneity of a plurisubharmonic function H

H(�z; �w; �t) = log j � j +H(z; w; t)(�):

We denote by [H] the class of functions equal to H up to a constant. Let P denote the

class of plurisubharmonic function classes [H] on C

3

with H(�z) = c log j � j +H(z);

c � 0; and let Q denote the class of closed, positive (1; 1) currents T on IP

2

:

Let � : C

3

n0! IP

2

be the natural projection. Consider any local holomorphic inverse

s : U ! C

3

n0 such that � � s = Id: Then we can de�ne T = T

s

on U by T

s

= dd

c

(H � s);

H 2 P: The important fact is that T

s

is independent of s : If s

0

is another section of U;

then s

0

= 's for some invertible holomorphic function ' on U: Hence

T

s

0

= dd

c

(H � s

0

) = dd

c

(H('s)) =

dd

c

c log j ' j +dd

c

H(s) = T

s

:

So using this local de�nition we can de�ne T = L

1

(H); L

1

: P ! Q globally on IP

2

and

write with abuse of notation T = dd

c

H: Since H is plurisubharmonic, it follows that T

13



is positive [Le], so T is a positive, closed (1; 1) current. For the reader's convenience we

prove the following result.

THEOREM 4.1. - The map L

1

is a bijection between P and Q:

Proof. We may suppose that we are in the coordinate system where t 6= 0: Use the section

s(z; w) = (z; w; 1): Using that �

�

and dd

c

commutes ([deRh]), we get that

�

�

T = �

�

(dd

c

(H � s)) = dd

c

�

�

(H � s) =

dd

c

(H � s � �) =

dd

c

(H(z=t; w=t; 1)) =

dd

c

(H � (1=t)(z; w; t)) =

dd

c

(H(z; w; t)� c log j t j) =

dd

c

H:

Suppose next that L

1

(H) = L

1

(H

0

): By the �rst part of the proof, dd

c

H = dd

c

H

0

: Hence

it follows that H � H

0

is a pluriharmonic function on C

3

n0: But then H � H

0

extends

through the origin as a pluriharmonic function. Since H � H

0

also grows at most like

log k z k at in�nity, it follows that H � H

0

is constant and hence that [H] = [H

0

] and

hence L

1

is 1! 1:

Next we study the inverse. So let T be a positive, closed (1; 1) current on IP

2

: De�ne

� = �

�

T on C

3

n(0): Since � is a submersion on C

3

n0; � is a closed, positive (1; 1) current

[deRh]. Since the Hausdor� dimension of (0) is zero, it follows by a theorem of [HaP]

that the trivial extension of � is positive and closed. Hence, by Lelong's Theorem [Le],

there exists a plurisubharmonic function H on C

3

such that � = dd

c

H: Then H is unique

modulo pluriharmonic additions.

LEMMA 4.2. - There is a unique plurisubharmonic [H]; H = O(log j z j) at in�nity, such

that � = dd

c

H:

Proof. Pick any H with dd

c

H = �: For � 2 IR; de�ne H

�

(z) = H(e

i�

z): We show at �rst

that dd

c

H

�

= � as well. Let T

�

(z) := e

i�

z on C

3

: Then

dd

c

H

�

= dd

c

(H � T

�

) = T

�

�

dd

c

H =

T

�

�

� = T

�

�

(�

�

T ) = (� � T

�

)

�

T =

�

�

T = �:

Hence it follows that if we de�ne

~

H(z) =

1

2�

Z

2�

0

H

�

(z)d�;
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then dd

c

~

H = � also. Now

~

H =

~

H

�

8�: Since

~

H therefore is a radial subharmonic function

on any complex line through zero, either

~

H � �1 (which can happen at most on a set

of lines of measure zero) on the line or

~

H = �1 at most at the center. Pluriharmonic

functions like this are constant.

This implies that except for constant additions,

~

H is the only function with

~

H =

~

H

�

;

8� such that dd

c

~

H = �: However, for any � 2 C

�

;

~

H

�

(z) :=

~

H(�z) is also such a solution.

Hence

~

H(�z) � C(�) +

~

H(z)(��)

for some constant C(�): So

~

H(�

n

z) = nC(�) +

~

H(z):

Hence

~

H is of sublogarithmic growth at 1: The Lemma follows, since pluriharmonic

functions of sublogarithmic growth at 1 are constant.

LEMMA 4.3. - There is a constant c � 0 so that

~

H(�z) = c log j � j +

~

H(z);

~

H as in the

previous lemma, so we write [

~

H] = L

2

(T ); L

2

: Q! P:

Proof. Let � = 2 and de�ne H

0

=

~

H �

C(2)

log 2

log k z k : Then H

0

is radial and subharmonic

on each punctured complex line through 0. Moreover

H

0

(2z) =

~

H(2z)�

C(2)

log 2

log k 2z k=

C(2) +

~

H(z)�

C(2)

log 2

log 2�

C(2)

log 2

log k z k= H

0

(z):

Hence H

0

is bounded from above, hence constant on each complex line. Therefore on the

complex line through z; we have

~

H(�z) = H

0

(�z) +

C(2)

log 2

log k �z j= H

0

(z) +

C(2)

log 2

log j � j +

C(2)

log 2

log k z k=

~

H(z) +

C(2)

log 2

log j � j :

LEMMA 4.4. - The maps L

1

; L

2

are inverses of each other.

Proof. Suppose [H] 2 P: We de�ne T = L

1

(H): Then �

�

T = dd

c

H: Hence, H = L

2

(T );

so L

2

� L

1

= Id:

Next, let T 2 Q and de�ne

~

H = L

2

(T ) as above. Then

~

H 2 P and dd

c

~

H = �

�

T:

Next, consider T

0

= L

1

(

~

H): Then T

0

is a current so that �

�

T = �

�

T

0

: Composing with

a section of � we see that T

0

= T: Hence L

1

� L

2

= Id as well. With these lemmas the

theorem follows.
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PROPOSITION 4.5. - Let f be a generic meromorphic normal map in IP

2

with G 6� �1:

Then support T = J: If (f

�

) is a holomorphic family of holomorphic self maps of IP

2

of

degree d; then the function (�; z)! G

�

(z) is p.s.h. and the currents (T

�

) vary continuously.

Proof. That Support T = J is a consequence of Theorem 2.12. Assume � varies in a

complex manifold �: For � 2 � let F

�

be a lifting of the mapping f

�

; we can assume that

�! F

�

is also a holomorphic family. Fix �

0

2 �; and de�ne

M

�

= supfk F

�

(z) k ; k z k= 1; � 2 �

�

a � neighborhood of �

0

g:

If � is small enough M

�

is �nite. Then G

�

(z) is a limit of an almost decreasing sequence

of p.s.h. functions and is p.s.h. with respect to (�; z); the proof is just as in Theorem 2.12

with parameter.

When (f

�

) is a holomorphic family of holomorphic maps of degree d then, given � > 0

if � is in a small enough neighborhood of �

0

; �

�

; we have

1

C

k z k

d

�k F

�

(z) k� C k z k

d

uniformly:

Hence for � 2 �

�

and n 2 IN

�

�

�

�

1

d

n+1

log k F

n+1

�

(z) k �

1

d

n

log k F

n

�

(z) k

�

�

�

�

�

logC

d

n+1

:

Hence G

n;�

converges uniformly to G

�

: Since each G

n;�

is continuous in (�; z) it follows

that G

�

(z) is continuous in (�; z): As a consequence G

�

varies continuously with � and

hence �! T

�

is a continuous map with values in Q: Here Q carries the weak topology of

currents.

Remark 4.6. - This remark is a continuation of example 2.1. Let R = [z

d

: w

d

: t

d�1

w]:

Then G(z; w; t) = sup(log j z j; log j w j) and J = (j z j=j w j) [ (j z j�j w j=

j t j): As we observed G is pluriharmonic near in (j z j<j w j=j t j) which is in J: Hence the

support of T does not coincide with the Julia set J: In this example there is no positive

closed (1; 1) current whose support is equal to J:

Suppose S is such a current. Let � : (j w j=j z j)! S

1

; �(z; w) = w=z and let [c

�1

(t)]

denote the current of integration on f[z : w : t]g;w=z = t; j w j>j t j : It follows from a

Theorem by Demailly [De] that there exists a measure � whose support is S

1

such that

S =

R

[�

�1

(t)]d�(t) on a neighborhood of fj w j=j z j>j t jg: Let

~

S =

R

[~�

�1

(t)]d�(t) where

[~�

�1

(t)] stands for the current of integration on the whole line, not only for j w j=j z j>j t j :

Then

~

S is closed and the support of S �

~

S is K := fj z j�j w j=j t jg [ fj w j=j z j�j t jg:

This is a compact set in C

2

: No compact set in C

2

is the support of a nonzero positive

closed (1; 1) current. If S

1

is such a current, < S

1

; dd

c

k z k

2

>= 0 since S

1

have compact

support and on the other hand positivity of S

1

implies that < S

1

; dd

c

k z k

2

> represents

the mass of S

1

: Here z = (z

1

; z

2

):

We study now sets of zero mass for the currents T:
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PROPOSITION 4.7. - Let f be a generic meromorphic map in IP

2

; with Green function

G 6� �1: Let X;Y be closed sets in IP

2

with Y � X and �

2

(Y ) = 0: Assume that G is

locally bounded on �

�1

(XnY ) and that X is locally IR

4

-polar. Then T has no mass on X:

Proof. Recall that a positive current is of order zero and hence has measure coe�cients in

a local chart. To say that T has no mass on a set E; means that all such measures, in the

expression of T in a chart, have zero mass on E: For the reader's convenience we prove a

well known lemma. Here � denotes the Laplacian in IR

k

: Recall also that a polar set is a

set contained in (v = �1) where v is a subharmonic function in IR

k

; not identically �1:

In particular, analytic varieties in IP

2

are locally IR

4

polar.

LEMMA 4.8. - Let v be a bounded subharmonic function on an open set U � IR

k

: Then

�v (which is a locally �nite measure), has no mass on IR

k

polar sets.

Proof. Since a polar set is contained in a G

�

polar set and since �v is a regular measure,

it is enough to show that if K is a compact polar set then (�v)(K) = 0: Suppose not.

Then choose u such that �u = �

K

�v; u is subharmonic, u is harmonic out of K: If u is

locally bounded below near K it would have a harmonic extension, which is impossible.

Also, let u

0

be a subharmonic function with �u

0

= �v � �

K

�v: Then u

0

+ u must di�er

from v by a harmonic function, a contradiction since v is bounded, it would follow that u

is bounded below.

We now continue the proof of the proposition. Since G is locally bounded near

�

�1

(XnY ) it follows that �

�

(T ) has no mass on �

�1

(XnY ): Since �

�

(T ) is a (1; 1) positive

current in C

3

; it has no mass on �

�1

(Y ) which is locally of 4-Hausdor� measure 0. It

follows that �

�

T and hence T has no mass on X:

We want to show next that, under quite general conditions, the current T satis�es

the functional equation f

�

T = dT and that it is an extremal current among the currents

satisfying this equation. Given a (1; 1) closed positive current S on IP

2

and f a generic

meromorphic map of degree d; we want to de�ne the current f

�

S: Observe however that

f is not a submersion.

Let F be a lifting for f: Using Theorem 4.1 we can �nd u 2 L such that �

�

S = dd

c

u:

We de�ne f

�

S as the closed positive (1; 1) current such that �

�

(f

�

S) = dd

c

(u�F ): If f is a

submersion on 
 � IP

2

; then F is a submersion on �

�1

(
) and hence dd

c

(u�F ) = F

�

dd

c

u =

F

�

�

�

S: So if C denotes the critical set of f; we have, on 
 = IP

2

nC; �

�

f

�

S = F

�

�

�

S:

We also have that on IP

2

nC; f

�

S de�ned above coincides with f

�

S de�ned by relation (2)

when f is a submersion.

Let 
 be a complex manifold and A a closed set in 
: Let S be a closed positive (p; p)

current on 
nA; with locally bounded mass near A: We call the trivial extension of S to


; the extension of S to 
 giving zero mass to A: A Theorem of Skoda [Sk] asserts that

such an extension is closed if A is an analytic variety.

DEFINITION 4.9. - Let N denote the set of (1; 1) positive currents S on IP

2

which do not

charge any compact complex curve V: In other words, S agrees with the trivial extension

17



of S

jIP

2

nV

:

THEOREM 4.10. Let R be a generic meromorphic map in IP

2

of degree d; with Green

function G 6� �1:

(i) The currents T and R

�

T belong to N and satisfy the functional equation R

�

T = dT:

(ii) If R is normal and E; the extended indeterminacy set, has Lebesgue measure zero,

then the current T is on an extremal ray of the cone of positive closed currents satisfying

R

�

S = dS:

Proof. We �rst show that T 2 N : Let V be an irreducible analytic variety in IP

2

: If T has

mass on V; then a Theorem of Siu [Siu] implies that the nonzero current �

V

T is closed and

there exists a constant C > 0 such that �

V

T = c[V ]; here �

V

denotes the characteristic

function of V and [V ] denotes the current of integration on V:

Let h be a polynomial of degree ` such that h

�1

(0) = V and �

�

[V ] = dd

c

log j h j :

Hence G = c log j h j +U; where U is p.s.h. But we have

G(R(z)) = dG(z) = cd log j h(z) j +dU(z)

= c log j h(R(z)) j +U(R(z)):

Hence

G(z) =

c

d

log j h(R(z)) j +

1

d

U(R(z)):

So, the current T has also mass c` on (h �R = 0): Since the mass of T on IP

2

is bounded

the varieties (h � R

s

= 0) cannot be all distinct as s varies. Without loss of generality

assume (h �R = 0) = (h = 0): So R : V ! V:

If V is R-constant then R(V ) = p 62 I; since R is generic. Hence p is �xed and if

�(q) = p we cannot have G(q) = �1: So we can assume that R is a non constant self map

on V: If the normalisation

^

V of V is Kobayashi hyperbolic or a IP

1

then R has periodic

points and we can conclude as above. If

^

V is a torus we also have periodic points except

if R is an irrational translation on

^

V : In this case the argument is more delicate since we

don't have periodic points. Then V has no cusp singularities. But we know that Green's

function is identically �1 on �

�1

(V ): Hence there are points of indeterminacy of R on

V; otherwise all orbits stay away from I and G is not �1: For simplicity we write the

argument assuming that there is just one point of indeterminacy p 2 V: We are going

to show that the area on V of the set where

1

d

n

log k R

n

k< log � is small if � is small.

Given a point z 2 �

�1

(V ) we can write k R(z) k= �([z]) k z k

d

where �([z]) satis�es

1

c

d([z]; [p])

l

� �([z]) � cd([z]; [p]) for some �nite c; l � 1 and d is the distance in IP

2

: If (z

n

)

is the orbit of z

0

; k z

0

k= 1; z

n

= R

n

(z

0

); �

k

= �([z

k

]) we have

k z

1

k= �

0

k z

0

k

d

; k z

n+1

k= �

n

�

d

n�1

� � � �

d

n

0

:

If all �

k

� �

d

k

=(k+2)

2

then j R(z

n

) j> �

d

n

: So we measure the area of

N

k

=: fz; �

k

(z) < �

d

k

=(k+2)

2

g:
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Since in this case R is essentially area preserving on V; N

k

is contained in a disc of radius

(c

0

�

d

k

=(k+2)

2

)

1=r

0

for some c

0

> 0; r

0

� 1 measured in a smooth metric on V; the sum of the

area of

S

k

N

k

is very small. On �

�1

(V n [N

k

); G is not �1; hence no such V exists and

T 2 N : The potential for the current

1

d

R

�

T is

G(R(z))

d

; so the same analysis shows that

R

�

T 2 N :

We have

�

�

R

�

T = dd

c

G(R) = d(dd

c

G) = d�

�

T:

Hence

R

�

T = dT:

We prove now, that the ray �T; � > 0; is extremal in the cone of positive closed currents

S; satisfying the functional equation R

�

S = dS:

Assume T = T

1

+T

2

: By positivity T

j

2 N : Let G

1

; G

2

be plurisubharmonic functions

in L such that �

�

T

j

= b

j

dd

c

G

j

; j = 1; 2; b

j

> 0: Since G� (b

1

G

1

+ b

2

G

2

) is pluriharmonic

of logarithmic growth, it is constant. We can assume, without loss of generality, that

G = b

1

G

1

+b

2

G

2

: Let 
 := IP

2

nE: Since R is normal, given z

0

2 
 there is a neighborhood

B(z

0

; r) of z

0

such that on �

�1

(

S

1

n=0

R

n

(B(z

0

; r))) we have : log k z k �a � G(z) � log k

z k +a: The functions G

j

are u.s.c. so, there are constants a

j

; such that log k z k �a

j

�

G

j

(z) � log k z k +a

j

on �

�1

(

S

1

n=0

R

n

(B(z

0

; r)) : If we compose by R

n

divide by d

n

and let n ! 1; we �nd that

G

j

(R

n

(z))

d

n

! G(z): But since R

�

T

j

= dT

j

we have that

G

j

�R

d

�G

j

= c

j

where c

j

is a constant and b

1

c

1

+ b

2

c

2

= 0: Adding a suitable constant to

G

j

we can assume c

j

= 0; so G

j

= G on �

�1

(
): If E is of Lebesgue measure zero on IP

2

;

�

�1

(E) is of Lebesgue measure zero in C

3

; hence G

j

= G and therefore T is extremal.

We want next to show that, under quite general conditions, given a positive closed

(1; 1) current S on IP

2

;

(f

n

)

�

S

d

n

! cT where c is a positive constant.

We need some preliminary results.

Let K be a compact set in C

2

; and let f : U ! C

2

be a holomorphic map on a

bounded neighborhood U of K: Assume that for every w 2 f(U); the �ber S

w

= f

�1

(w)

is discrete.

We prove a Lojasiewicz type inequality.

PROPOSITION 4.11. - Let n be the maximum multiplicity of points in S

w

; w 2 f(K):

There is a constant c > 0 such that if w 2 f(U); z 2 K; then

k f(z)� w k� c dist(z; S

w

)

n

:

Proof. It su�ces to prove the proposition locally. Assume that f(0) = 0 and that f has

multiplicity n at 0. We will suppose z; w are close enough to 0.

The graph of f is a branched covering with multiplicity n of the w-plane. The branches

are locally given by z = fg

1

(w); � � � ; g

n

(w)g; g

j

(w) = (g

1

j

(w); g

2

j

(w)): Hence we can form

the symmetric products

n

Y

j=1

(z

1

� g

1

j

(w)) = z

n

1

+ a

n�1

(w)z

n�1

1

+ � � �+ a

0

(w) = P

1

(z

1

; w)
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n

Y

j=1

(z

2

� g

2

j

(w)) = z

n

2

+ b

n�1

(w)z

n�1

2

+ � � �+ b

0

(w) = P

2

(z

2

; w)

to obtain two Weierstrass polynomials.

Fix z

0

; w

0

close to 0. Then (z

0

; f(z

0

)) belongs to the graph of f: Hence P

1

(z

0

1

; f(z

0

)) =

P

2

(z

0

2

; f(z

0

)) = 0: We will try to �nd a point (~z; w

0

) on the graph with ~z close to z

0

: In

that case ~z 2 S

w

0

and we obtain the proposition by proving a good estimate on z

0

� ~z:

Let C be a constant to be determined below. This constant only depends on the size

of the �rst derivatives of the coe�cients a

j

(w); b

i

(w): Say w

0

6= f(z

0

): If w

0

= f(z

0

) we

are done.

There exists an integer 2 � k � 4n so that P

r

(t; f(z

0

)) has no root t with

(k � 1)C

�

n

p

k w

0

� f(z

0

) k

�

�j t� z

0

1

j� (k + 1)C

�

n

p

k w

0

� f(z

0

) k

�

; r = 1 or 2:

For any � 2 IR; let �

r

(�) = �

r

= kC

�

n

p

k w

0

� f(z

0

) k

�

e

i�

+ z

0

r

and consider the

symmetric product

n

Y

j=1

(g

r

j

(w)� �

r

) = G

r

�

(w):

Then G

r

�

(w) is uniformly Lipschitz. Moreover, j G

r

�

(f(z

0

)) j=j P

r

(�

r

; f(z

0

)) j� C

n

k

w

0

� f(z

0

) k; using the choice of k:

Hence G

r

�

has no zeroes in the ball fw; k w � f(z

0

) k� 2 k w

0

� f(z

0

) kg; if C is

chosen large enough. Hence (�

1

(�); �

2

( ); w) is not on the graph for any w in this ball.

By continuity this means that when w = w

0

there must exist a point (z; w

0

) on the graph

with (j z

r

� z

0

r

j� kC(k w

0

� f(z

0

) k)

1=n

; r = 1; 2:

The proposition now follows immediately.

Let H

d

denote the space of non degenerate holomorphic self maps of degree d in IP

2

:

COROLLARY 4.12. Let f 2 H

d

be holomorphic on IP

2

; d � 2: Then there exists a c > 0

so that if z; w 2 IP

2

; then

dist(f(z); w) � c dist(z; f

�1

(w))

(d

2

)

:

Proof. The maximum multiplicity possible is d

2

:

Let us return to the notation of the proposition 4.11.

COROLLARY 4.13. - There are constants a > 0; r

0

> 0; so that if z 2 K; 0 < r < r

0

;

then

f(IB(z; r)) � IB(f(z); ar

n

):
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Proof. The conclusion of proposition 4.11 holds in a neighborhood of K: Pick r

0

so small

that

������

IB(z; r

0

) is in this neighborhood for all z 2 K; and such that no point has more than

n preimages in any such ball.

Let z

0

2 K; 0 < r < r

0

: Then there exists k; 2n � k � 4n; so that there is no

preimage of f(z

0

) in fr �

k�1

4n+1

�k z � z

0

k� r �

k+1

4n+1

g: Hence if z 2 @IB(z

0

; r �

k

4n

); then

dist(z; S

f(z

0

)

) �

r

4n+1

: Hence k f(z)� f(z

0

) k� ar

n

for some a > 0: But then

f(IB(z

0

; r)) � f(IB(z

0

;

rk

4n

)) � IB(f(z

0

); ar

n

):

Applying this to f 2 H

d

; we get

COROLLARY 4.14. - Let f 2 H

d

: Then there exist constants c > 0; r

0

> 0 so that for

z 2 IP

2

and 0 < r < r

0

; then f(IB(z; r)) � IB(f(z); cr

d

2

):

Next we discuss the size of the image of a ball B(z; r) under iteration of f:

THEOREM 4.15. - Assume f 2 H

d

is holomorphic on IP

2

; d � 3: Suppose that the local

multiplicity of f is at most (d � 1) except on a �nite set S: We assume that S contains

no periodic points. There exists a constant c > 0; so that if fz

j

g

1

j=0

is any orbit of f and

0 < r < 1; then there exist radii fr

j

g

1

j=0

with f(IB(z

j

; r

j

)) � IB(z

j+1

; r

j+1

) for every j:

Moreover r

0

= r; r

j+1

= cr

d

j

j

where 1 � d

j

� d

2

is an integer and d

0

d

1

� � �d

n

�

1

c

(d�

1

2

)

n

for every n:

Proof. The hypothesis on f implies that if N is su�ciently large the local multiplicity of

f

N

is at most

(d

2

)

`

(d� 1)

N�`

� (d�

1

2

)

N

where ` denotes the number of points in S: But then the result follows easily from Propo-

sition 4.11 and Corollary 4.13.

THEOREM 4.16. - Let R 2 H

d

be a holomorphic map on IP

2

: Assume that the local

multiplicity of R is at most (d� 1); except possibly on a �nite set without periodic points.

Let u 2 P; u(�z) = log j � j +u(z): Then u(R

n

)=d

n

! G in L

1

loc

:Hence if �

�

S = dd

c

u;

then (R

n

)

�

S=d

n

! T in the sense of currents.

Proof. The sequence u

n

:= u(R

n

)=d

n

is uniformly bounded above on fk z k� 1g:We show

�rst that no subsequence u

n

i

! �1 uniformly on compact sets. If so, then

1

d

n

i

u

�

R

n

i

k R

n

i

k

�

=

1

d

n

i

u(R

n

i

)�

1

d

n

i

log k R

n

i

k

=

1

d

n

i

u(R

n

i

)�G

n

i

! �1:

Hence the map

R

n

i

kR

n

i

k

on j z j= 1 cannot be surjective, a contradiction.
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Assume that u

n

i

! G

1

in L

1

loc

:We want to show that G

1

= G: Clearly G

1

� G: Since

G

1

is upper semi continuous and G is continuous, fG

1

< Gg is open. Let ! 2 IP

2

be an

open set such that G

1

< G� 2� on �

�1

(!); � > 0: By Hartogs Lemma it follows that for

n

i

large enough,

1

d

n

i

u(tR

n

i

= k R

n

i

k) < ��

on �

�1

(!); t 2 [

1

2

; 1] arbitrary. Hence, �

�1

(R

n

i

(!)) \ f

1

2

�k z k� 1g is contained in

X := fu < ��d

n

i

g: Let L be any line on which u is not identically �1: Since u has

sublogarithmic growth at in�nity, the logarithmic capacity of X \ L is at most e

��d

n

i

:

But a classical estimate, see [Ts], shows that any disc contained in X \ L has a radius of

order of magnitude at most e

��d

n

i

: However, by the previous theorem X \ f

1

2

�k z k� 1g

contains balls of radius of order of magnitude �

(d�1=2)

n

i

for some � > 0 in the image of

�

�1

(!): This contradiction completes the proof.

PROPOSITION 4.17. - The hypothesis of Theorem 4.16 is satis�ed in the complement of

a countable union of closed, proper, subvarieties of H

d

; d � 3:

Proof. For f 2 H

d

; let (J

f

= 0) be the equation for the critical set. Then

P

:= f(f; z) 2

H

d

� IP

2

; grad J

f

= 0; J

f

= 0g is an analytic variety. It follows from the example in the

proof of Lemma 5.9 in [FS1] that the projection �(

P

) in H

d

of

P

is not all of H

d

: Hence

�(

P

) is a proper subvariety of H

d

; and for f 62 �(

P

); the local multiplicity is at most 2

except for �nitely many points in (J

f

= 0):

For � small, consider the map

R

�

=

�

z

d

+ �z(w

d�1

+ 2t

d�1

) : w

d

+ �w(z

d�1

+ 2t

d�1

) : t

d

+ �t(z

d�1

+ 2w

d�1

)

�

:

One sees easily that the periodic orbits are the points where two axes cross, or are in the

axes close to the unit circles or close to the torus jzj=jwj=jtj=1.

However one easily checks that none of these points are on the critical set for � 6= 0; �

small enough.

For every n; consider the analytic set

P

n

� H

d

� IP

2

given by

X

n

= f(f; z) ; f

n

(z) = z and J

f

(z) = 0g:

Then each �(

P

n

) is a proper subvariety of H

d

:

The hypothesis of the theorem is then satis�ed for any f 2 H

d

n(�(

P

)[

S

n

�(

P

n

)):

Remark 4.18. - If f is a normal, generic, meromorphic map on IP

2

; and if the local

multiplicity of f is � d � 1 in the set of normality, except on a �nite set without points

belonging to periodic orbits, then the conclusion of the theorem holds provided E has zero

volume.
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Remark 4.19. - A natural question is whether positive closed currents S satisfying

f

�

S = dS are unique. The answer is no in general. Let F = (F

1

(z; w); F

2

(z; w); t

d

); then

(t = 0) is exceptional, i.e. f

�1

(t = 0) = (t = 0): De�ne G

1

(z; w; t) = G(z; w; 0): Then

G

1

� F = G(F

1

; F

2

; 0) = G(F (z; w; 0)) = dG(z; w; 0) = dG

1

(z; w; t): It is easy to check in

this case that G(z; w; t) = sup(G(z; w; 0); log j t j): If F

1

(z; w) = (z � 2w)

2

; F

2

(z; w) = z

2

and if T

1

: �

�

T

1

= dd

c

G

1

we �nd that supp T

1

= IP

2

but that the Julia set is not IP

2

:

Hence a hypothesis on the map R is necessary in order to prove Theorem 4.16.

Remark 4.20. - Let f(z; w) = (z

2

+ c+ aw; z) be the standard H�enon map. One de�nes

G

+

(z; w) = lim

n

1

2

n+1

log

+

[j f

n

1

j

2

+ j f

n

2

j

2

]: Let R[z : w : t] = [z

2

+ ct

2

+ awt : zt : t

2

]

be the corresponding map on IP

2

and G the associated Green function on C

3

: We have

G

+

(z; w) = G(z; w; 1) and G(z; w; 0) = log j z j : If �

+

= dd

c

G

+

considered as a current in

C

2

; it was observed in [FS2] that �

+

has a closed positive extension to IP

2

and it is easy to

check that this extension is just T: Convergence results for the current �

+

where obtained

in [BS1], [BS2], [FS1], more recently the structure of �

+

has been studied in [BLS].

5. - Connectedness of Julia sets.

One of the main developments in the theory of several complex variables is the solution of

the Levi problem. Here we show a dynamical consequence of this fundamental result.

DEFINITION 5.1. - We say that a compact subset X of C

2

satis�es the local maximum

principle if for every p 2 X; all small enough r > 0 and all complex polynomials h;

j h(p) j� Max j h j

@IB(p;r)\X

:

THEOREM 5.2. - Suppose f is a normal generic meromorphic map on IP

2

: Then the

Fatou components are domains of holomorphy. The Julia set J is connected and satis�es

the local maximum principle. If J is a C

1

manifold in a neighborhood of a point on J; then

J is laminated on that neighborhood by Riemann surfaces.

Proof. We �rst show that C

3

n(�

�1

(J) [ (0)) is Stein. Observe that by Theorem 2.12

the function G is plurisubharmonic in C

3

(or � �1) and pluriharmonic precisely on

C

3

n(�

�1

(J) [ (0):

The following result is due to Cegrell [Ce], for the reader's convenience we give a proof.

LEMMA 5.3. - Let M be a complex manifold and u a plurisubharmonic function on M:

If 
 is the maximal open set where u is pluriharmonic, then 
 is pseudoconvex.

Proof of lemma. Fix 0 < r < 1: It is enough to show that if H := f(z; w); z 2 C; w =

(w

1

; � � � ; w

n�1

) 2 C

n�1

; j z j< 1; k w k< r or r <k z k< 1; k w k< 1g and if u is

p.s.h. in a neighborhood of the closed unit polydisc

�

D

n

and pluriharmonic on H; then u

is pluriharmonic on D

n

: Since u is pluriharmonic on H; u = Reh; where h is holomorphic
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on each vertical disc, h being unique after normalization. Then h is holomorphic on H:

Let

~

h be the holomorphic extension of h to D

n

: We clearly have u � Re

~

h on D

n

and

u� Re

~

h = 0 on H: Hence u = Re

~

h on D

n

:

Continuation of the proof of the theorem. Since C

3

n(�

�1

(J) [ (0)) is pseudoconvex it

follows that any Fatou component is locally pseudoconvex. Hence by the solution of the

Levi Problem in IP

2

; the Fatou components are domains of holomorphy (or all of IP

2

; which

cannot happen).

That the Julia set is connected follows from the Hartogs extension phenomenon :

If K � 
 is a compact subset of a domain of holomorphy, then 
nK has exactly one

unbounded connected component 


0

and all holomorphic functions on 


0

extend across

K; hence 
nK cannot be a domain of holomorphy. So if J is not connected, we can write

J = K

1

[ K

2

for disjoint nonempty compact sets, and let 
 = IP

2

nK

1

and K = K

2

to

obtain a contradiction to the solvability of the Levi problem.

If J is C

1

near a point, since the complement is pseudoconvex, then J cannot be a real

curve. If J is two dimensional, J must be a Riemann surface. If J is three dimensional,

then J is laminated by Riemann surfaces, (Scherbina [Sch]), and if J is four dimensional

we can also laminate a neighborhood locally by Riemann surfaces. That J satis�es the

local maximum principle is a theorem by Wermer [We]. All these result use just the fact

that the complement of J is a domain of holomorphy.

PROPOSITION 5.4. - For a normal generic meromorphic map the Julia set J does not

have a Stein neighborhood. Hence J intersects the support of any positive closed (1; 1)

current, and in particular any compact complex curve.

Proof. If G � �1; then E = IP

2

; so J = IP

2

and we are done since IP

2

is not Stein. So

assume G 6� �1: In that case T is well de�ned. Suppose U � J is a Stein neighborhood.

Let � be a strictly p.s.h. function in U and let � be a test function supported in U; with

value 1 in a neighborhood of J: Since T is closed we have

< T; dd

c

� >=< T; dd

c

(��) >= 0:

But < T; dd

c

� > bounds the mass of T: So U does not even have p.s.h. functions, strictly

plurisubharmonic near a point of J . The complement of the support of a nonzero, positive

closed (1; 1) current is Stein, as can be deduced from Theorem 4. 1 and Lemma 5. 3. Recall

that a compact complex hypersurface is the support of a positive, closed (1; 1) current [Le].

The following result shows that an open set is in the Fatou set if a subsequence of

(R

n

) is equicontinuous.

PROPOSITION 5.5. - Let R be a generic meromorphic map on IP

2

: Let N be the open set

of nice points. Assume that on an open set 
 � N there is a subsequence R

n

i

uniformly

convergent on compact sets. Then 
 is contained in the Fatou set of R:
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Proof. Let G = lim

1

d

n

log k R

n

k where R : C

3

! C

3

denotes also a lifting of R: We know

that locally on 
 there exist �

n

i

nonvanishing holomorphic functions such that

R

n

i

�

n

i

! h:

Write on �

�1

(
);

G = lim

�

1

d

n

i

log k R

n

i

=�

n

i

k +

1

d

n

i

log j �

n

i

j

�

:

Since the �rst term converges to 0 on �

�1

(
) we have dd

c

G = limdd

c

�

1

d

n

i

log j �

n

i

j

�

= 0;

hence G is pluriharmonic on �

�1

(
): Then Theorem 2.12 shows that 
 is contained in a

Fatou component.

It is natural to introduce the meromorphic Fatou set F

0

(R):

DEFINITION 5.6. - Let R be a generic meromorphic map on IP

2

: A point p 2 IP

2

is

in F

0

(R) if there exists a neighborhood U(p) on which any subsequence of iterates has

a convergent subsequence to a meromorphic map. Here we say that a sequence g

k

of

meromorphic maps converges to a meromorphic map g if there exists an isolated set of

points S in U such that for every compact set K � UnS there exists a k

0

so that the

sequence fg

k

g

k>k

0

is equicontinuous on K and converges to g on K:

THEOREM 5.7. - Let R be a generic normal meromorphic map on IP

2

; with Green

function G: The function G is pluriharmonic on �

�1

(F

0

(R)): Hence F

0

(R) contains no

point of indeterminacy and F

0

(R) = F (R):

Proof. Fix a convergent subsequence on U � F

0

(R): As in Proposition 5.5, and using the

notations of De�nition 5.6, the function G is pluriharmonic on �

�1

(UnS): But �

�1

(S) is

just a union of complex lines in C

3

; hence G is pluriharmonic on �

�1

(U): Consequently

F

0

(R) does not intersect E: If R is normal or if U is contained in the set of nice points of

R then U � F (R) as follows from Theorem 2.12.

Let R be a generic map on IP

2

: If G 6� �1 and if R is normal, the Julia set J(R);

which we also denote J

0

; can be described as the support of the current T: From the

example R = [z

2

: w

2

: t

2

] we see that there is a natural strati�cation of the Julia set

J

0

= f[z : w : t]; j z j=j w j�j t j; j z j=j t j�j w j; j z j=j t j�j w jg:

On the set j z j=j t j= 1; j w j< 1 the sequence (R

n

) is not normal, but this set is foliated by

complex discs and on each of them (R

n

) is normal. We introduce the following de�nition.

DEFINITION 5.8. - Let R be a generic meromorphic map on IP

2

: A point p 2 IP

2

is in

the one dimensional Fatou set F

1

if there is a neighborhood 
 of p and for every point

q 2 
; there exists a (germ of a) complex curve X

q

through q such that the family of

iterates R

n

is equicontinuous on X

q

The one dimensional Julia set J

1

is the complement

of F

1

: The point p 2 IP

2

is in the one dimensional Fatou set F

0

1

if there is a neighborhood


 of p and for every point q 2 
; a (germ of a) complex curve X

q

through q such that the

Green function G is harmonic on X

q

(after normalization).
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Notice that we don't require that the X

q

is the same in the de�nition of F

1

; F

0

1

: Also

note that when restricted to complex curves the �nitely many points of indeterminacy of

any iterate R

n

are always removable.

We denote by F

0

the Fatou set of R and by F

0

0

the maximal open set in IP

2

such that

G is pluriharmonic on �

�1

(F

0

0

): In other words F

0

0

is the complement of the support of

T: Recall that N denotes the set of nice points. Using this notation, we can reformulate

Theorem 2.12 and the de�nitions as follows.

PROPOSITION 5.9. - If R is a generic meromorphic map, then F

0

� F

0

0

: Moreover

F

0

0

\N � F

0

: Equivalently J

0

0

� J

0

and J

0

\N � J

0

0

: Also F

0

� F

1

; F

0

0

� F

0

1

; J

1

� J

0

:

PROPOSITION 5.10. - If R is a generic meromorphic map on IP

2

; then F

1

\N = F

0

1

\N:

Proof. On compact subsets of N;

j1=d

n

log k F

n

k �Gj � c=d

n

:

If G is harmonic on the normalization of a curve X

q

; then G

jX

q

= log j h j for a holomorphic

function h 6= 0 there. So fF

n

=h

d

n

g is a normal family. Hence F

0

1

\N � F

1

\N: Suppose

fF

n

=h

d

n

g is a normal family on X

q

� N: Then it follows that G is harmonic on the

normalization. So F

1

\N � F

0

1

\N:

Example. - The following map is studied in [FS3]

g([z : w : t]) = [(z � 2w)

2

: (z � 2t)

2

: z

2

]:

The point p = [1 : 1 : 1] is �xed and repelling, hence p 2 J

1

: On the other hand it is shown

in [FS3] that

S

n�0

g

�n

(p) is dense in IP

2

: Therefore for this map g; we have J

1

= IP

2

:

6. T ^T =: �:

In the theory of dynamical systems, invariant measures are very useful. In this section

we will discuss invariant measures for holomorphic maps in IP

k

; k = 1; 2:

Let f be a holomorphic map on IP

k

of degree d � 2: For a continuous function ' on

IP

k

de�ne

f

�

'(x) =

X

f(y)=x

'(y):

If x is a critical value we take into account the multiplicity, this coincides with the direct

image of ' considered as a (0; 0) current as de�ned in paragraph 4, see [deRh].

If � is a measure on IP

k

; de�ne the measure f

�

� by the relation

< f

�

�; ' >=< �; f

�

' > :
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This coincides with the pullback of � considered as a (k; k) current provided � has no mass

on f(C) where C is the critical set of f: We also de�ne

< f

�

�; ' >=< �; f

�

' > :

In IP

1

the current T is identi�ed with the probability measure � such that �

�

� = dd

c

G:

The fact that � has mass 1 can be checked as follows. Let ! be the standard K�ahler form

on IP

1

such that

R

IP

1

! = 1: By the change of variable formula we have

Z

IP

1

d� = lim

n

Z

(f

n

)

�

!

d

n

= 1:

Since � does not give mass to locally polar sets in IP

1

(G is continuous and we apply lemma

4.8) f

�

� de�ned above coincides with f

�

T as de�ned in paragraph 4.

If � is a probability measure on IP

1

we de�ne in C

2

u(z; w) =

Z

IP

1

log

j z�

2

� w�

1

j

k � k

d�(�):

Clearly u 2 P and it is easy to check that �

�

� = dd

c

u: This makes explicit the corre-

spondance L

2

in Paragraph 4 between probability measures on IP

1

and plurisubharmonic

functions u in C

2

such that

u(z; w) � log

+

j (z; w) j +0(1)

u(�(z; w)) = log j � j +u(z; w):

Let f be a holomorphic map of degree d on IP

1

and let F = (P;Q) be a lifting of f to C

2

:

If a = [a

1

; a

2

] 2 IP

1

we can assume k a k= (j a

1

j

2

+ j a

2

j

2

)

1=2

= 1: Then the potential u

a

associated to the Dirac mass �

a

at a is u

a

(z; w) = log j za

2

� wa

1

j : It is easy to check

that if a is not a critical value the potential associated to

f

�

(�

a

)

d

is

u

a

�F

d

; by continuity this

holds also if a is a critical value. Similarly we prove that if � is a probability measure with

potential u then the potential associated to

f

�

�

d

is

u�F

d

:

The results we describe in the following theorem are well known, from a di�erent point

of view, see [Ly] [LFM], compare also with [HP]. For background on ergodic theory, see

[Wa].

THEOREM 6.1. - Let f 2 H

d

on IP

1

: Then

(i) f

�

� = d� and hence f

�

� = �; supp� = J(f):

(ii) If u 2 P and � = L

1

(u); then f

�n

�=d

n

! � except if � has positive mass on an

exceptional point. Similarly

u(F

n

)

d

n

! G in L

1

loc

with the same exception.

(iii) � is ergodic and of maximal entropy.

(iv) Let fz

i

g denote the periodic points of order n (or a factor of n); and let �

n

:=

P

1=d

n

�

z

i

: Then lim�

n

= �:
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Proof. (i) The fact that f

�

� = d� is a special case of Theorem 4.10 and is just a consequence

of the functional equation G(f(z)) = dG(z): Since � does not have mass on points, for

every continuous function ' on IP

1

;

d < f

�

�; ' >= d < �; ' � f >=< f

�

�; ' � f >=

< �; f

a

st(' � f) >=< �; d' >= d < �; ' > :

Hence f

a

st� = �: The fact that the support of � coincides with the Julia set is clear from

the remark after Theorem 2.12.

(ii) Let F be a lifting for f: The sequence of plurisubharmonic functions in C

2

; u

n

=

u(F

n

)

d

n

is relatively compact in L

1

loc

:

If u

n

i

converges to �1 the sequence v

n

i

also converges to �1; where

v

n

= u(F

n

)=d

n

� 1=d

n

log k F

n

k= u(F

n

= k F

n

k)=d

n

:

Given M > 0 then for k z k= 1 we have u(F

n

i

= k F

n

i

k) < �Md

n

i

for n

i

large enough.

This contradicts the surjectivity of F

n

= k F

n

k from k z k= 1 to k z k= 1 (u cannot be

arbitrarily small on all of k z k= 1):

So assume u(F

n

i

)=d

n

i

! ' in L

1

loc

: Since u � log k z k +O(1) then ' � G: If

' = G everywhere, we are done. Otherwise since G is continuous ' < G is open. Let

! �� �f' < Gg =: 
: By Hartogs lemma, for i large enough

1=d

n

i

u(F

n

i

) < G� 2� on �

�1

(!)

i.e.

1=d

n

i

u(F

n

i

= k F

n

i

k) < �� on �

�1

(!)

u(F

n

i

= k F

n

i

k) < ��d

n

i

:

This implies that the image under f

n

i

of ! avoids a �xed set of positive measure in IP

1

;

i. e. f

n

i

is a normal family and hence by Proposition 5.5, ! is contained in a Fatou

component. Hence G is pluriharmonic on �

�1

(
): So  := ' � G is a strictly negative

subharmonic function of 
 and is zero on @
: Hence, by the maximum principle, 
 is a

Fatou component.

Let � be the measure on IP

1

such that �

�

� = dd

c

'(= dd

c

 on 
): We have identi�ed

(1; 1) positive currents on IP

1

and positive measures on IP

1

: We want to show that � = 0

on 
:

Let � � 0 be a smooth function with compact support in (any connected component

of) 


< �; � >= lim

n

i

1=d

n

i

Z

X

j;f

n

i

(z

j

)=z

�(z

j

)d�(z) � C

�

�(f

n

(
):

If (f

n

i

(
)) are pairwise disjoint then < �; � >= 0: So we can assume 
 is preperiodic. If

f

�1

(
) has other components than 
 we also have < �; � >= 0 because the number of
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points in 
 � supp � grows at most like (d � 1)

n

: So it follows that f

�1

(
) = 
; i.e. f

is a map of degree d on 
: Then f

�n

(z

0

) ! @
 see [Be] or [Mi], except for a z

0

which is

exceptional. Since � is of compact support in 
 we �nd < �; � >= 0 except when � has

mass on an exceptional point, i.e. a point such that f

�1

(z

0

) = fz

0

g: So � is supported on

�(f' = Gg): Hence ' is continuous on support of �': Therefore ' is continuous [Ts]. So

' = G by the maximum principle.

(iii) Let E � IP

1

; a totally invariant set. Assume �(E) = c > 0: De�ne � = �

E

�=c:

Then � is a probability measure and

f

�

�

d

= �: But since

(f

n

)

�

�

d

n

! � this implies that

� = �; hence c = 1; therefore � is ergodic. It is known [Gr]; [Ly] that the entropy of f is

log d: Since f

�

� = d� the conditional measures are just Dirac masses of mass

1

d

in almost

every �ber of f: It follows by classical arguments [Ro] that � is of maximal entropy, see

[Ly] or [FLM].

(iv) One has to show that �

n

:=

1

d

n

P

�

z

n

i

! �; where z

n

i

are the periodic points of

order n: De�ne

v

n

(z; w) =

1

d

n

log j P

n

(z; w)w �Q

n

(z; w)z j

where F

n

= (P

n

; Q

n

):

We have �

�

�

n

= dd

c

v

n

: We want to show that v

n

! G: Since

j P

n

(z; w)w �Q

n

(z; w)z j�k (z; w) kk F

n

k;

any limit ' of any subsequence v

n

i

satis�es ' � G: Assume ' < G somewhere. Since G is

continuous, this set is open. Let 
 be a component of f' < Gg: For every compact K � 
;

there is, by Hartogs Theorem, a � > 0 so that v

n

i

< G� � on K for all su�ciently large i:

Hence

j P

n

i

w �Q

n

i

z j� e

��d

n

i

(j P

n

i

j + j Q

n

i

j);

i.e. f

n

i

! Id u. c. c. on �(
): So, there is at most one periodic point in �(
) and

consequently dd

c

' = 0 on 
: Hence ' and G are both pluriharmonic on 
 and agree

on @
 where G is continuous. It follows that ' = G on 
; a contradiction. Hence

1

d

n

P

�

z

n

i

! �:

Observe that we already proved an analogue of Theorem 6.1 for IP

2

i.e. Theorem 4.16,

for the current T instead of �:

We want now to consider the case of a holomorphic map f 2 H

d

on IP

2

and construct

a measure of maximal entropy. Let ! denote the standard K�ahler form on IP

2

such that

R

IP

2

!

2

= 1:

PROPOSITION 6.2. - Let f : IP

2

! IP

2

be a holomorphic map in H

d

; d � 2: De�ne � by

the identity �

�

� = (dd

c

G)

2

: Then � is a probability measure which satis�es the equations

f

�

� = d

2

� and f

�

� = �: Moreover � does not charge locally pluripolar sets.
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Proof. Let � = (dd

c

G)

2

in C

3

n(0); where (dd

c

G)

2

:= dd

c

(Gdd

c

G): The de�nition makes

sense since G is continuous. Moreover, the (2; 2) current � extends to C

3

as a positive,

closed current [HaP]. As for (1; 1) currents, we can de�ne � by the functional equation

�

�

� = �: Say, in the chart (t 6= 0); � = (dd

c

G(z; !; 1))

2

: Since G is bounded, it follows

that � has no mass on locally pluripolar sets ([BT1], [CLN] or [Kl]).

We show that � = lim

n!1

(f

n

)

�

!

2

d

2n

: We have

�

�

[(f

n

)

�

!

2

]

d

2n

=

(F

n

)

�

�

�

!

2

d

2n

= (F

n

)

�

(dd

c

log k z k)

2

d

2n

=

�

dd

c

log k F

n

k

d

n

�

2

= (dd

c

G

n

)

2

:

So in the chart t 6= 0;

(f

n

)

�

!

2

d

2n

= (dd

c

G

n

(z; w; 1))

2

:

By the change of variable formula, f(f

n

)

�

!

2

=d

2n

g have uniformly bounded mass. Let � be

any weak limit. Since G

n

converge uniformly on compact sets in C

3

n0 to G; by ([CLN ]);

(dd

c

G

n

)

2

! (dd

c

G)

2

in C

3

n0: Hence � = (dd

c

G)

2

= �; for example in the chart t 6= 0; so

� = �:

It follows from the change of variable formula, since f is a d

2

to 1 map, that � is a

probability measure.

We prove that f

�

� = d

2

�: On IP

2

nf

�1

(f(C)); f is a submersion. We then have

�

�

(f

�

�) = F

�

(�

�

�)

= F

�

(dd

c

G)

2

= (dd

c

(G � F ))

2

= d

2

(dd

c

G)

2

= d

2

�

�

�:

So f

�

� = d

2

� on IP

2

nf

�1

(f(C)): Since � does not charge complex curves, then f

�

� = d

2

�

everywhere.

To prove that f

�

� = �; observe that f

�

(' � f)(x) = d

2

'(x) if x 62 f(C) which is a set

of � measure 0. Hence,

< f

�

�; ' > =< �; ' � f >

=

1

d

2

< f

�

�; ' � f >

=

1

d

2

< �; f

�

(' � f) >

=< �; ' >;
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so f

�

� = �:

We recall �rst some results in pluripotential theory, see [AT], [BT1], [Kl].

Let B be the unit ball in C

k

and K a compact set in B(0; r); r < 1: Following [BT1]

de�ne

C(K;B) = sup

�

Z

B

(dd

c

u)

k

; 0 � u � 1; u p:s:h:

�

:

It is shown in [BT1] that C extends to a Choquet capacity whose zero sets are the pluripolar

sets.

De�ne also the Siciak function u

K

of the compact K as follows

u

K

(z) = supfv(z); v � 0 on K; v(z) � log j z j +0(1) at in�nityg:

The uppersemicontinuous regularization of u

K

is a p.s.h. function of logarithmic growth

i� K is not pluripolar.

Alexander and Taylor [AT] proved the following estimate. If K � B(0; r); r < 1 then,

there exists a constant A(r) such that

(1) m

k

:= sup

B

u

K

�

A(r)

C(K;B)

:

Using maximum principle one shows easily that

log

+

k z k� u

K

(z) � m

K

+ log

+

k z k :

Now we prove the following result.

THEOREM 6.3. Let f 2 H

d

on IP

2

: The measure � is mixing and of maximal entropy.

Proof. It is enough, [Wa], to show that given two non negative smooth test functions

';  we have

lim

n!1

Z

 (f

n

)'d� = (

Z

'd�)(

Z

 d�):

De�ne

�

n

(a; ') :=

(f

n

)

�

'(a)

d

2n

=

1

d

2n

X

i

'(f

�1

i

(a)):

We show �rst a lemma.

LEMMA 6.4. There exists a constant M such that

�(j �

n

(a; ')� c j� s) �

M j ' j

2

s d

n

:
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Here c =

R

'd� and j ' j

2

denotes the C

2

norm of ':

Proof. It is enough to prove the above estimate locally in IP

2

: So �x coordinates, say

t = 1 and de�ne

K

s

= fa = (z; w) 2 B(0;

1

2

); �

n

(a; ')� c � sg:

Let u

s

be the Siciak function for K

s

in C

2

and de�ne v

s

in C

3

by

v

s

(z; w; t) = u

s

�

z

t

;

w

t

�

+ log j t j :

Let S be the closed (1; 1) current in IP

2

such that �

�

S = dd

c

v

s

: Recall that �

s

:= S ^ S is

a probability measure, Theorem 4.4 in [FS4]. Since �

s

is supported where �

n

(a; ')� c � s;

we have

s �

Z

(�

n

(a; ')� c)d�

s

=

Z

�

n

(a; ')d�

s

� c

=

Z

�

n

(a; ')d�

s

�

Z

�

n

(a; ')d�:

We have used that

(f

n

)

�

�

d

2n

= �; hence c =< �; ' >=< �;

f

n

�

'

d

2n

> : So

s �

Z

�

n

(a; ')[S ^ S � T ^ T ] =

Z

�

n

(a; ')[S � T ] ^ [S + T ]

=

Z

'

d

n

(f

n

)

�

[S � T ] ^

(f

n

)

�

(S + T )

d

n

:

Now we have

�

�

(f

n�

)(S � T ) = (F

n

)

�

�

�

(S � T ) = dd

c

[(v

s

�G) � F

n

]:

The function v

s

�G is well de�ned in IP

2

so

(f

n

)

�

(S � T ) = dd

c

[(v

s

�G) � f

n

]:

We then have

s �

Z

dd

c

'

d

n

(v

s

�G)(f

n

) ^

(f

n

)

�

(S + T )

d

n

�

j ' j

2

d

n

sup j v

s

�G j

Z

! ^

(f

n

)

�

(S + T )

d

n

;

since the last integral equals 1 we get

(2) s �

j ' j

2

d

n

sup j v

s

�G j :

We now estimate sup j v

s

�G j : Let m(s) = sup

B

u

s

: Since

log

+

k z; w k� u

s

(z; w) � m(s) + log

+

k z; w k;
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we get

u

s

(

z

t

;

w

t

)�G(

z

t

;

w

t

; 1) � m(s)�G

�

z=t; w=t; 1

k (z=t; w=t) k _1

�

� m(s) +M

where M is a constant independent of s: Similarly

G

�

z

t

;

w

t

; 1

�

� u

s

�

z

t

;

w

t

�

� G

�

z=t; w=t; 1

k z=t; w=t k _1

�

�M:

So relation (2) gives

(3) s �

j ' j

2

d

n

sup j v

s

�G j�

j ' j

2

d

n

(m(s) +M):

Using the Alexander-Taylor inequality (1) we get

m(s) +M �

A(1=2)

C(K

s

; B)

+M �

A(1=2) +MC(K

s

; B)

C(K

s

; B)

�

M

0

C(K

s

; B)

since C(K

s

; B) � C(B;B):

So using (3)

C(K

s

; B) �

1

s

j ' j

2

M

0

d

n

:

In the chart t 6= 0; � = (dd

c

G(z; w; 1))

2

: The function � =

1

2

 

G(z;w;1)

sup

B

jG(z;w;1)j

+ 1

!

is p.s.h.

on B and 0 � � � 1: So by the very de�nition of C(K

s

; B) we have the existence of a

constant � such that

C(K

s

; B) �

Z

B

(dd

c

�)

2

� �(K

s

)�

�1

:

Finally

�(K

s

) � �C(K

s

; B) �

�

s

M

0

d

n

j ' j

2

:

A similar computation with the set H

s

= fa=c � �

n

(a; ') � sg �nishes the proof of the

lemma.

End of proof of Theorem 6.3. De�ne

I

n

:=< �;  (f

n

)' > � < �;  >< �; ' > :

Observe that

< �;  (f

n

)' > =<

(f

n

)

�

d

2n

�;  (f

n

)' >

=< �;

(f

n

)

�

d

2n

 (f

n

)' >

=< �;  �

f

n

�

'

d

2n

> :
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So

I

n

=< �;  [�

n

(a; ')� c] > :

Let q > 1 and p such that

1

p

+

1

q

= 1: Using H�older's inequality we have, if L = 2 sup j ' j;

j I

n

j �

�

Z

 

q

d�

�

1=q

�

Z

j �

n

(a; ')� c j

p

d�

�

1=p

�k  k

q

 

Z

L

0

p s

p�1

�(j �

n

(a; ')� c j� s)ds

!

1=p

�k  k

q

 

Z

L

0

p s

p�2

M

j ' j

2

d

n

ds

!

1=p

�k  k

q

�

p

p� 1

�

1=p

(2 k ' k

1

)

p�1

p

j ' j

1=p

2

d

�n=p

M

1=p

� C

p

k  k

q

k ' k

(1�1=p)

1

j ' j

1=p

2

d

�n=p

:

So lim I

n

= 0 and � is mixing.

Remark 6.5. Observe that we have given in the proof of Theorem 6.3 an estimate of

the decay of the coe�cient of correlation. Indeed we have shown that if ' is C

2

and  is

bounded then for � > 0 there exists C

�

such that

�

�

�

�

Z

 (f

n

)'d�� (

Z

 d�)(

Z

'd�)

�

�

�

�

� C

�

j ' j

2

j  j

1

�d

�n(1��)

:

Given f 2 H

d

on IP

2

we de�ne J

0

1

as the support of �: We don't know whether J

0

1

is equal to the Julia set of order one as de�ned in De�nition 5.8. It has however some

properties showing that it is the right analogue of the Julia set in one variable.

THEOREM 6.6. - Let f 2 H

d

; f : IP

2

! IP

2

: Let U be an open set intersecting J

0

1

: De�ne

E := IP

2

n

S

1

n=0

f

n

(U): Then E is a closed locally pluripolar set in IP

2

:

Proof. Let W :=

S

1

n=0

f

n

(U) and let � be the characteristic function of W: Since f(W ) �

W; we have that � � � � f: The ergodic theorem [Wa] applied to � implies that

1

N

N�1

X

0

� � f

n

(x)!

Z

�d�; � a: e:

So � a.e., � �

R

�d� hence

R

�d� = 1; so W is an open set of full measure for �:
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Assume there is a small ball B such that the closed set K := E \

�

B is not pluripolar.

We can consider that K is contained in the chart t 6= 0; identi�ed with C

2

; let

U

K

(z; w) = (supfv(z; w); v � 0 on K; v � log k (z; w) k +0(1) at 1g)

�

;

where * denotes the uppersemicontinuous regularization. The fact that K is not pluripolar

is equivalent to the fact that U

K

is not +1 and hence is a locally bounded p.s.h. function,

such that

U

K

(z; w) � log k (z; w) k +O(1)

at in�nity. Let � := (dd

c

U

K

)

2

: It is known that � is supported on K see [Kl]. De�ne

v(z; w; t) = U

K

(

z

t

;

w

t

) + log j t j : The function v belongs to P:

We have :

v(F

n

)

d

n

�

1

d

n

log k F

n

k=

1

d

n

v

�

F

n

kF

n

k

�

= O

�

1

d

n

�

: Hence v

n

:=

v(F

n

)

d

n

converges

uniformly on compacts subsets of C

3

n0 to G: So by [CLN] or [BT1] (dd

c

v

n

)

2

! (dd

c

G)

2

in

the sense of currents. Let �

n

be the probability measures such that �

�

�

n

= (dd

c

v

n

)

2

: We

get that �

n

! �: So �

n

(�)! 1; hence support of �

n

� f

�n

(K) intersects W; contradicting

that K � E: Therefore E is locally pluripolar.

COROLLARY 6.7. - Let f 2 H

d

; f : IP

2

! IP

2

: If J

0

1

contains a nonempty open set then

J

0

1

= IP

2

:

Proof. If U is an open set in J

0

1

; then

S

1

n=0

f

n

(U) is dense in IP

2

and contained in J

0

1

; so

J

0

1

= IP

2

:

Remark 6.8. - Let f : IP

2

! IP

2

be a meromorphic, non holomorphic, generic map.

When the product � = T ^ T is de�ned, it turns out that � = 0: This is clear from

the functional equation f

�

� = d

2

� if we apply the change of variable formula since f is

generically a d

0

to 1 map with d

0

< d

2

; as shown in Proposition 1.3. We will consider

the problem of constructing interesting invariant measures for meromorphic maps in a

forthcoming paper.

As we have said, we don't know whether J

0

1

is equal to the Julia set of order one. But

we have the following result, that we will use when we discuss hyperbolicity.

PROPOSITION 6.9. - Let f 2 H

d

; f IP

2

! IP

2

: Then J

0

1

� J

1

: In particular J

1

is non

empty.

We �rst prove a lemma.

LEMMA 6.10. - Let u be a continuous function on a closed ball

�

B in C

k

: Assume that u

is p.s.h. in B and that through any point p in B; there is a holomorphic disc �

p

such that

u

j�

p

is harmonic. Then (dd

c

u)

k

= 0 in B:

Proof. A holomorphic disc is by de�nition the image of the unit disc under a non constant

holomorphic map ': That u j

�

p

is harmonic means that u � ' is harmonic on the unit
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disc. Let v be a continuous function on

�

B; p.s.h. in B: Assume v � u on @B: We show

�rst that v � u on B: Suppose not. Let K = fz=(v� u)(z) =Mg where M is the positive

maximum of v�u on

�

B: Let p be a peak point for a function h 2 C(K) which is a uniform

limit on K of holomorphic polynomials, i.e., h(p) = 1 and j h j< 1 on Knfpg: Since on

�

p

; v � u +M and v � u reaches its maximum at p : we get that v � u = M on �

p

;

hence �

p

� K; contradicting that p is a peak point. It follows that u is the solution of

the Bremerman Dirichlet problem with boundary data u j

@B

: Hence by a result due to

Bedford-Taylor [BT2] (dd

c

u)

k

= 0:

Proof of Proposition 6.9. We have to show that � vanishes on F

1

: Let B be a ball B �� F

1

:

Given any point in B; there is an analytic variety of dimension one through p; X

p

; such

that f

n

jX

p

is normal. This means that we can �nd holomorphic functions �

n

i

on �

�1

(X

p

)

such that

F

n

i

�

n

i

is normal on �

�1

(X

p

): So if G

n

=

1

d

n

log k F

n

k we have

G

n

i

=

1

d

n

i

log k

F

n

i

�

n

i

k +

1

d

n

i

log j �

n

i

j :

The �rst term in the sum converges uniformly to zero so

1

d

n

i

log j �

n

i

j converges uniformly

to G on �

�1

(X

p

); hence G is pluriharmonic on �

�1

(X

p

): If � is a holomorphic section of �

and G

�

= G � � we get that G

�

is harmonic on X

p

; consequently by Lemma 6.10 we have

(dd

c

G

�

)

2

= 0 on B: So �(B) = 0:

7. - Hyperbolicity.

In this section we consider f : IP

2

! IP

2

; f 2 H

d

:

We de�ne �rst hyperbolicity (See Ruelle [Ru]). Let K � IP

2

be a compact set. We

assume that K is surjectively forward invariant, that is f(K) = K: The space

^

K = K

N

of orbits fx

n

g

0

n=�1

; f(x

n

) = x

n+1

is compact in the product topology. By the tangent

bundle T

K

of

^

K we mean the space of (x; �) where x = fx

n

g 2

^

K and � 2 T

IP

2

(x

0

) is

a tangent vector. We give this tangent bundle the obvious topology. Then f lifts to a

homeomorphism

^

f :

^

K !

^

K and f

0

lifts to a map

^

f

0

on T

K

in the obvious way.

DEFINITION 7.1. - Let K � IP

2

be a compact surjectively forward invariant set. Then

f is hyperbolic on K if there exists a continuous splitting E

u

� E

s

of the tangent bundle

of

^

K such that

^

f

0

preserves the splitting and for some constants C; c > 0; � > 1; � < 1

depending on the choice of a Hermitian metric on IP

2

;

j D

^

f

n

(�) j� c�

n

j � j; � 2 E

u

j D

^

f

n

(�) j� C�

n

j � j; � 2 E

s

; n = 1; 2; � � �

THEOREM 7.2. - Let f : IP

2

! IP

2

be a holomorphic map of degree d � 2: Then f cannot

be hyperbolic on IP

2

nor on J

0

:
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Proof. Assume f is hyperbolic on IP

2

: Since the critical set is nonempty the �bre dimension

of E

u

is � 1: If dimE

s

= 2 then all periodic orbits are attractive. Pick one, p; with

immediate basin of attraction 
: Since f is surjective, @
 is a non empty, compact, forward

invariant subset of IP

2

: Hyperbolicity implies that orbits of points q 2 
 close to @


converge to @
 contradicting that they are in the attractive basin of p: Hence dimE

s

= 1:

Then we have a lamination of IP

2

by stable curves, and on each curve the family (f

n

) is

equicontinuous, so IP

2

� F

1

: We get J

1

= ;: This contradicts Proposition 6.9.

Assume J

0

is hyperbolic. Necessarily J

0

intersects C; the critical set (Proposition 5.4).

Hence the �bre dimension of E

u

= 1; so dimE

s

= 1: This implies that through every point

p in IP

2

there exists an analytic disc �

p

on which f

n

j �

p

is equicontinuous (clearly this is

true for points not in J

0

; and for points p in J

0

; we consider the stable manifold through

p): So F

1

= IP

2

and this is again impossible since J

1

6= ;:

Next we consider the question whether there exist maps which are hyperbolic on the

nonwandering set.

DEFINITION 7.3. The nonwandering set of a map f : IP

2

! IP

2

is the set of points p

such that for every open neighborhood U(p); there exists a positive integer n such that

f

n

(U) \ U 6= ;:

It is clear that the nonwandering set is compact, surjectively forward invariant.

THEOREM 7.4. - Let S

l

be a compact hyperbolic, surjectively forward invariant set of

unstable dimension l: For l = 0; S

0

� F

0

and S

0

is a �nite union of attractive periodic

orbits. If l = 1; S

1

� J

0

and if l = 2; S

2

� J

1

:

Proof. There is an arbitrarily small �nitely connected neighborhood V of S

0

such that

f

n

(V ) �� V for all n large enough and f

n

is strictly distance decreasing on each compo-

nent of V: Hence f

n

j V converges to attractive periodic orbits.

Case l = 1: We need to show that S

1

� J

0

: Let x 2 S

1

\ F

0

: Then f

n

is equicontinuous

on some neighborhood of x: Let � 6= 0 be an unstable tangent vector at x: The iterates

(f

n

)

0

(x)(�) have to blow up, a contradiction.

Case l = 2: We need to show that S

2

� J

1

: Suppose x 2 S

2

\F

1

: Then there is a complex

curve X through x so that ff

n

j Xg is equicontinuous. We can assume thatX is irreducible

at x: If x is a regular point, let � be a nonzero tangent vector to X at x: Then this is an

unstable tangent vector, a contradiction. So it remains to consider the case when x is a

singular point of X:

We parametrize X; ' : �! X; t! (t

p

; t

q

+ � � �) = (z; w) in local coordinates, q > p:

We assume x = O:The sequence ff

n

�'g is equicontinuous and f

n

('(t))�f

n

('(0)) = O(t

p

)

independently of n: This contradicts that 0 is an unstable point in all directions.

Assume from now on that the nonwandering set 
 is hyperbolic. We divide
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 = 


0

[ 


1

[ 


2

where 


j

has unstable dimension j:

THEOREM 7.5. - If the nonwandering set 
 of a holomorphic map f of degree at least 2 is

hyperbolic, then all Fatou components are preperiodic to �nitely many attractive periodic

basins.

Proof. Pick a Fatou component U: Assume at �rst that f

n

j U does not converge u. c.

c. to the Julia set. So for some compact subset K � U and some subsequence f

n

k

; the

iterates converge uniformly to a holomorphic map with values outside some neighborhood

of J: These values must then be in a periodic Fatou component, which we may assume is

U: Replacing f by an iterate, we may assume that U is �xed. Hence we may assume that

for some other subsequence f

n

k+1

�n

k

the iterates converge to a holomorphic map with a

�xed point in U: This point is then necessarily nonwandering so by the above theorem is

an attractive periodic point for f:

On the other hand assume that the iterates f

n

j U converge u. c. c. to J: Pick

q 2 U: Let p be any cluster point of the iterates f

n

(q): Then p must be nonwandering.

Any such cluster point belongs to S

1

[S

2

: Note however because of the repelling nature of

S

2

; it is impossible to only cluster at S

2

without also clustering at other points arbitrarily

close to S

2

: Since S

1

and S

2

are disjoint compact sets, the cluster set must be contained

in S

1

: However in a small neighborhood of S

1

we can use the hyperbolicity on sectors in

the tangent space to conclude that the iterates of f j U must be diverging. Since unstable

sectors are mapped to corresponding unstable sectors, the derivatives blow up since we

always stay in a neighborhood of S

1

; contradicting that we are in a Fatou component. So

this case is impossible. We have shown then that all Fatou components are preperiodic to

a �nite number of attractive basins.

Question 7.6. - Let S

1

be a compact hyperbolic, surjectively forward invariant set of

unstable dimension 1. Is S

1

� F

1

nF

0

?

Example 7.7. - Consider the map f = [z

2

: w

2

: t

2

]: Then this map has three superat-

tractive �xed points, [0 : 0 : 1]; [0 : 1 : 0]; [1 : 0 : 0]: The complement of the three basins

of attraction is the Julia set. More precisely, J

0

= f[z : w : t] ; such that two coordinates

have modulus one and the third has modulus at most oneg. In addition to the set of

superattractive �xed points S

0

the nonwandering set contains the set S

1

consisting of the

three circles where one homogeneous coordinate is 0 and the other two have modulus one

and also the set S

2

consisting of the totally real torus where all three coordinates have

modulus one. This example is hyperbolic on the nonwandering set.

Question 7.8. - Assume that X is a closed totally invariant set for f and that X is

disjoint from the closure of the forward orbit of the critical set. Is f hyperbolic on X ?
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