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48 JOHN ERIK FORNJESS AND NESSIM SIBONY 

1 Introduction 

The Fatou-Julia theory of the dynamics of rational maps in P 1 has received 
a lot of attention in the past 20 years. The notes by J. Milnor ( [Mi]) or the 
monograph by Carleson-Gamelin ([CG]) give an introduction to the classical 
theory. It is quite natural to extend the theory to holomorphic endomor-
phisms of P\ k 2: 2. Some progress has been made in this direction and 
we refer to the survey articles ( [F]) and ( [S 1]) for a description of the main 
results obtained in this direction. 

The purpose of the present article is to study some families of endomor-
phisms of P 2 that exhibit interesting dynamical properties. Before discussing 
more precisely the content, we recall some basic properties, see ([F]), ([S1]) 
for the proofs. 

Let f be a holomorphic endomorphism of pk. In homogeneous coordi-
nates, f = [fo : · · · : A] where all the fi are homogeneous polynomials of 
degree d. We will say that d is the algebraic degree of f. The topological 
degree is dk. We will assume that d 2: 2. 

The Fatou set for f is the maximal open set where the family of iterates 
(fn) is locally equicontinuous. The complement of the Fatou set is the Julia 
set J = Jf· One has the following characterization for the Julia set (FS2]). 
Let w denote the standard Kahler form in pk. The sequence of forms ( u:rw) 
converges in the sense of currents to a positive closed current T. The support 
of T is exactly the Julia set of f. The current T satisfies the functional 
equation f*T = dT. 

The saddle periodic points with their stable manifolds are contained in 
the Julia set. The periodic points which are repelling are also contained 
in the Julia set. So in contrast with the one dimensional theory, the Julia 
set is not contained in the non wandering set of f. The Julia set can be 
decomposed using the currents of bidegree (£, £), T£ := T 1\ · · · 1\ T, £times. 
We will restrict our attention here to the measure p, := T 1\ · · · 1\ T, k times. 
The measure p, is an invariant measure of maximal entropy log dk. The map 
f is mixing for p,. Moreover as was recently proved by Briend-Duval ([BT]) 
the Lyapunov exponents for p, are strictly positive. Hence the measure p, is a 
limit of f.-tn := d~k Lj Eaj where the sum is over the repelling periodic points 
of order n. 
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DYNAMICS OF 11"2 (EXAMPLES) 49 

A point p is in the support of J.t if and only if for every r > 0 the set 
pk \ Un>ofn(B(p, r)) is pluripolar, in some sense it means that the set is 
"small", for example it is of Hausdorff dimension at most 2(k- 1) ([FS2]). 
Since the map f is mixing for J.t, the support SJ.t of J.t is contained in the non 
wandering set of f. It is in some sense the analogue of the Julia in P 1, for 
example periodic repelling points are dense in Sw 

Besides the Fatou components and SJ.t, there are other pieces of pk where 
interesting dynamics occurs, for example attractors, first investigated in this 
setting in ([FW]) . Recall that a closed set A c pk is an attracting set if 
there is an open set U ::) A such that f(U) cc U and A = njn(U). The 
open set U is called a trapping region. The set A is an attractor, in Ruelle's 
sense ([Ru]), if A is a minimal equivalence class for the relation x >- y defined 
by x >- x for all x and x >- y for x =/= y if there is for every t. > 0 an t. chain 
from x to y, i.e. there are { x = x0 , ... , Xn = y} such that for all 1 :::; j :::; n, 
dist (f(xj_1), Xj)) <E. For example let fo = [P(z, w) : Q(z, w)] be a rational 
map on P 1 with Julia set equal to P 1. Then the map 

]([z: w: t]) := [P(z, w) : Q(z, w) : td] 
has the hyperplane (t = 0) as an attractor. We study in the second section 
perturbations of the map ], we show that for some special perturbations 
JE there is an attractor AE where periodic points are dense and where the 
corresponding unstable manifolds are dense. The attractor AE is not algebraic 
in general, a first example of that phenomenon was given by Jonsson ([J1]), 
see also ([JW]). 

In paragraph 3 we give examples in P2 where the Julia set is equal to 
P 2 . We also generalize to polynomial maps of Ck some standard facts for 
polynomials in C. More precisely let f be a polynomial map of C\ which 
extends holomorphically to pk. Let 

K := {z; (fn(z)) is bounded}. 

If K does not intersect the critical set, then f is strictly expanding on K 
and K = SJ.t, so repelling periodic points are dense inK. 

In paragraph 4 we study perturbations of generalized Henon maps in C2 . 

Consider the automorphisms of C2 defined by 
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50 JOHN ERIK FORNJESS AND NESSIM SIBONY 

fo(z, w) = (p(z) + aw, z) 
where p is a polynomial of degree d. We consider the perturbation 

fe([z: w: t]) = [tdp(zjt) + awtd-1 : ztd-1 + €Wd: td]. 

For € > 0, fe is an endomorphism of P2 . We show that the nonwandering 
set ne of a composition of such maps might contain a countable discrete set 
of repelling periodic orbits. When fo = (z2 + aw, z) and lal >> 1 we give a 
more complete description of the dynamics of 

fe([z: w : t]) = [z2 + awt: zt + €W2 : t2] 

in P2. 

In paragraph 5 we give examples where Supp(J.L) equals the Julia set. 

2 Attractors 

The general form of maps on P2 preserving complex lines through [0 : 0 : 1] 
is 

f = [P(z, w) : Q(z, w) : R(z, w, t)]. 
We will consider the special case 

f = fe = [P(z, w): Q(z, w): td + €Q1(z, w)]. 
We will assume in what follows that the map 

fo = [P(z, w) : Q(z, w)] 
has Julia set equal P1• In the first three subsections we will also normalize 
so that [1 : OJ is a fixed point. 

LEMMA 2.1 For all small enough complex valued €, the only Fatou com-
ponent is the superattractive basin of [0 : 0 : 1]. 
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DYNAMICS OF IP2 (EXAMPLES) 51 

Proof: If p is not in the basin of zero, let D be a disk through p that 
projects (via lines through the origin) onto an open subset of the line P1 at 
infinity. Since the map· preserves lines through the origin and its restriction 
to the line at infinity has Julia set equal to P1 , we see that forward images 
of D will eventually project onto the entire line at infinity. Hence iterates of 
f cannot be normal on D, unless fn(D) tends uniformly to zero, which our 
assumptions disallow. We conclude that pis in the Julia set. 

• 
LEMMA 2.2 Let U be any neighborhood of (t = 0). Then f€ has an attract-
ing set A contained in U for any small enough €. The attracting set intersects 
all lines through [0 : 0 : 1]. 

Proof: When € = 0 the map f fixes (t = 0) and this set is attracting. 
Hence there exists a small neighborhood V C U of (t = 0) so that for all 
small enough €, f€(V) CC V. Set A= nf~(V), then since f~(t = 0) intersects 
all lines, the same must be true for A. 

We note that A is connected since we may take V to be connected. 
The following is obvious. 

• 

THEOREM 2.3 The periodic points in A are the following: Consider any 
periodic orbit in the space of lines. Next there is a unique periodic orbit 
in those lines belonging to A and this is attracting inside those lines. In 
particular, A does not contain any repelling periodic orbit. 

Note that on the fixed line and all its preimages the lines are divided in 
two by the preimages of the quasicircle in the fixed line. On the fixed line 
the boundary of the basin of 0 and the basin of A agree. 

Remark 2.4 If an attracting set A contains a repelling periodic point p of 
period f., then A contains a nonempty open set. Indeed if r is small enough, 
B(p, r) c A and so 
limn--+oo fni(B(p, r)) C A, but fni(B(p, r)) increases, (at least after a lin-
ear coordinate change,) to an open set V C A. If Ji is linearizable in a 
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52 JOHN ERIK FORNJESS AND NESSIM SIBONY 

neighborhood of p, then V is a non degenerate image of C2 , uszng a map 
limn--.00 fn£ O [ (f£)'(0)] -n. 

The following theorem is proved in the same way as Proposition 6.1 of 
([FS2]). 

THEOREM 2.5 Take any forward invariant closed positive (1, 1) current 
CJ, i.e. f*CJ = dCJ, d being the algebraic degree off, on A, for example a 
Cesaro mean of the forward orbits of the current (t = 0). Then v := CJ 1\ T 
is an invariant measure. 

Let B0 be the basin of attraction of 0 and B A the basin of attraction of 
A, i.e. BA = Unf-n(U) where U is any small neighborhood of A. Both are 
totally invariant connected open sets. 

THEOREM 2.6 We have that Supp(J-L) C 8B0 C 8BA. Moreover Supp(J-L) 
projects onto P1 . 

Proof: The basin BA contains the line at infinity (t = 0). So P 2 \ BA is 
a bounded invariant open set in C2 . As a consequence P 2 \ B A is a union of 
Fatou components. Since there is only one Fatou component, namely B0 , we 
have P2 = BA U B0 . It follows that 8Bo C 8BA. 

Let p E Supp J-L, and W any neighborhood of p. Then Ufn(W) ([FS1]) 
is dense in P 2 . Hence W must contain points in B0 and points in B A, so 
Supp J-L c 8Bo n 8BA = 8Bo. 

Let p be a repelling periodic point in Supp(J-L). By the Briend-Duval 
Theorem ([BD]) such p exists. It is a repelling fixed point for some iterate 
gn := ft£ where L is a line through p. The preimages of p under inverse 
iterates of gn are dense in the Julia set of gn. The preimages of p under fare 
in Supp(J-L). Hence Supp(J-L) projects onto P 1 . 

• 
We consider the maps f€ on the space of lines, i.e. the map fo on P 1 = 

(t = 0). Let F be the compact set of histories (x-n)n~o, Uo(X-n-d = x_n) 

in the product topology of z1P 1
• We define a map <I> : F ---+ A. But we first 

need a more precise trapping region. 
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DYNAMICS OF IP'2 (EXAMPLES) 

2.1 Trapping region 

Let rJ > 0. We define the neighborhood W11 about (t = 0) as follows: 

{[z : w : t]; lzl :S lwl, ltl < rJiwl} 
{[z: w: t]; lwl :S lzl, ltl < rJizl} 
w~uw;. 

53 

So WJ.t is the exterior of the bidisc of radius 1/ry in the (z, w) coordinates. 
Clearly, if we fix any small 'f}o > 0 then for all small enough E and all rJ < rJo 
we have f(W11 ) c W1 . Then, for example, if [z : 1 : t] E W~ and f([z : w : 
t]) E Wl we can write 

f([ . 1 . t]) = [P(z, 1) . 1 . td + EQ1(z, 1)] 
z · · Q(z, 1) · · Q(z, 1) · 

Here lzl ::; 1 and IP(z, 1)1 ::; IQ(z, 1)1 so necessarily Q(z, 1) is bounded 
uniformly away from zero. So we see that we get: 

LEMMA 2. 7 There exists a constant C > 0 independent of E so that: If 
we restrict to any line and any 0 < 8 < E < rJ, the image of the disc ~(0, 8) 
around t = 0 is contained in ~(0, C(8d +E)) in the image-line and the deriv-
ative in the t direction is bounded by C8d-l. 

Hence we get a trapping region of the form W2c€ and on these the deriva-
tive in the t direction is bounded by 2d-lCdEd-l. It follows that this trapping 
region contains a nontrivial attracting set, intersecting all lines. In fact we 
see that the attracting set is an attractor by using the fact that in the space 
of lines there are arbitrarily long pseudo-orbits connecting two points. 

2.2 The map q>, 

Let (x-n) be any element of F. For any n consider the image fn(~(O, 2CE)) 
where we take the disc in the line X-n· It follows that the intersection of these 
images contains exactly one point pEA. We set <P((x-n)) = p. So this map 
sends F to A. On the other hand, if p E A, then there is a sequence (P-n) of 
preimages in A (perhaps several), p0 = p. Each of these P-n are in some line 
X-n and necessarily (x-n) E F. Then <P((x-n)) = p. Hence <Pis onto. 

The following Lemma is then obvious. 
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54 JOHN ERIK FORNlESS AND NESSIM SIBONY 

LEMMA 2.8 <P : F ~ A is continuous and onto. Also <P is a semiconju-
gacy. <P maps periodic points to periodic points and hence periodic points are 
dense in the attractor. 

Since [0 : 0 : 1] tJ. A, we can define a projection 1r : A ~ P1 , 1r([z : w : 
t]) = [z: w]. Then 1r is also a semiconjugacy, 1r of= fo o 1r. 

Notice that this construction works even if the map on (t = 0) is non-
chaotic. (Of course periodic points are then not necessarily dense. But we 
always get a semiconjugacy <P : F ~ A.) 

LEMMA 2.9 Let (xi) be an arbitrary repelling periodic orbit for the dynam-
ics in the space of lines and let (Pi) = <P(xi) be the corresponding periodic 
orbit in A. Then (Pi) is a saddle orbit. The unstable curve of any of the Pi 
and with respect to this periodic history is contained in A and is dense in A. 
Also the stable curve of Pi intersects A in a dense set. 

Proof: We prove that the unstable curve wu for a periodic orbit is dense 
in A. It is clear that wu intersects all lines. Let q E A. Let q_l E A be 
such that f(q-l) = q. Now wu intersects the line through q_l at Q. Then 
fl(Q) belongs to wu and must be close to fl(q-l) = q iff>> 1 since fl is 
contracting along the lines through 0 in B A. 

Also the stable manifold must contain all the intersections of the trap-
ping region with the lines in the preimages of the periodic lines. Suppose 
q E A, and let y E wu be in the same line as q, close to q. Let ~ be a small 
irreducible neighborhood in wu of y (in some branch of wu). Then this~ 
must intersect all nearby periodic lines. So ws is dense in A. 

• 
LEMMA 2.10 The set A is an attractor. Moreover fiA is topologically 
transitive. 

Proof:The first statement was observed above. Recall that fiA is topo-
logically transitive if given two relatively open sets U and V in A, there is an 
integer n 2:: 1 so that fn(U) n V =/:- 0. Since by Lemma 2.8 the periodic points 
are dense in A, we can assume that U contains a periodic saddle point p. The 
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DYNAMICS OF IP2 (EXAMPLES) 55 

unstable curve associated top is dense in A (Lemma 2.9) hence Unfn(U) is 
dense in A. 

• 
2.3 Non-Algebraicity of A 

In this section we will restrict to the case of degree d = 2 to simplify calcu-
lations. 

Let z 1 be the fixed point on A contained in the fixed line ( w = 0). Also 
let L be the unique other line in the preimage of ( w = 0) in the space of lines. 
We will make a condition on the coefficients of the polynomials P, Q, Q1 that 
will imply that the image of the trapping region in L is disjoint from z 1. This 
will imply that the intersection of the attractor with the fixed line is infinite 
and hence non-algebraic. 

We fix notation: Write: 

P(z, w) z 2 + azw + bw2 

Q(z, w) - czw + dw2 

Q1(z, w) - ez2 + fzw + gw2 

zl - [a: 0: 1] 

We assume that e, E, c =I= 0. We fix P, Q, Q1 and let E be small enough. 
The following is immediate from the form z ----+ 1+::22 of f on the fixed line. 

LEMMA 2.11 

1 + v'1- 4Ee 1 
a -

Next we observe that the line cz + dw = 0 is the other preimage in the 
space of lines of the fixed line: 
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56 JOHN ERIK FORNJESS AND NESSIM SIBONY 

LEMMA 2.12 The image of the point at infinity on the line cz + dw = 0 
is the point[~ : 0: 1] where 

d2 - acd + bc2 
B= ~~~~~~~ 

(ed2 - fed+ gc2 ) 

The image under f of the trapping region on the line cz + dw = 0 is contained 
in a disc around !l of radius about C for some fixed constant C independent 

E 

of E. In particular if B =I ~ 1 then for all small enough E the image under f of 
the attractor in cz+dw = 0 does not contain z1 nor it's preimage -z1 on the 
fixed line. The second image is already closer to z 1 than C (we can assume 
that C is the same constant as above). Since f is 1 - 1 there, it follows that 
the intersection of the attractor with the fixed line is infinite and hence that 
the attractor is non-algebraic. 

COROLLARY 2.13 The fixed point z1 has only one preimage in the at-
tractor (itself). The same is then true for a whole neighborhood in A. The 
set of points with only one preimage is open. In particular, these attractors 
are not completely invariant. 

We don't need in the above arguments that the Julia set of fo = [P : Q] 
is P1 . It suffices to assume that fo has no attracting periodic points. Hence 
we have: 

PROPOSITION 2.14 Let fo = [P(z, w) : Q(z, w)] be a rational map on 
P1 without attracting periodic points. Then for E =I 0 small enough the map 

fE = [P(z, w) : Q(z, w) : td + EQ1(z, w)] 

has a nontrivial attractor A. If the Julia set of fo is different from P1 , then 
fEIA is not topologically transitive and periodic points are not dense in A. 
When fo is of degree 2 and [1 : 0] is a repelling fixed point for fo then A is 
non algebraic with the above conditions on the coefficients. 

Remark 2.15 Assume fo has a Siegel disc D centered at the fixed point 
[z0 : 1]. Then the sequence of iterates f:" 1v converges uniformly to a limit 
disc which is invariant and with the same rotation number as the original 
Siegel disc. This Siegel disc is contained in A. 
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PROPOSITION 2.16 Let f E 'Hd. If A is an attractor, A =/= pk, then A 
is disjoint from SJ.L, the support of f.L· 

Proof: Let U be a neighborhood of A such that f(U) cc U. Assume 
that SJ.L n U is nonempty. Since by ([FS1]), Unfn(SJ.L n U) covers pk except 
for a pluripolar set, we get a contradiction by choosing U, U =/= pk. 

• 
PROPOSITION 2.17 Let 8 > 0. Then for all small enough E each slice 
of the attractor for fe in a line through [0 : 0 : 1] has Hausdorff dimension 
less than 8. 

Proof: We know from Lemma 2.7 that there exists a trapping region 
Wee where the derivative in the t direction is bounded by C1IEid-1. It follows 
that the image of a disc of radius r in the t direction is contained in a disc 
of radius C1IEid-1r, here r << 1. 

For a given line £0 through 0, let A0 := An£0 . The closed set Anfe-n(A0 ) 

is contained in d2n discs of radius Eo < 1. Hence A0 is contained in ~n discs 
of radius CfiEin(d-1)E0 . To e~timate the Hausdorff measure of dimension 8, we 
calculate d2n(CfiEin(d-1)Eo) 8 . This is finite if d2C1kl"(d-1) < 1. So it suffices 

1 

h ( 1 ) 6(d-1) to c oose E < d2c1 • 

• 
THEOREM 2.18 ([Guj) Every neighborhood of the support of a positive 
closed current of bidegree (1, 1) contains a compact complex curve. Hence 
every neighborhood of a nontrivial attractor contains a compact complex curve. 

2.4 Subhyperbolicity of attractors. 

In this subsection we want to extend the subhyperbolicity of the critically 
finite maps fo := [(z-2w)2 : z2] on P 1 to attractors for fe := [(z-2w)2 : z2 : 

t 2 + EQ1(z, w)] and show that unstable curves are dense. This generalizes to 
other post-critically finite maps, but we use fo for computational simplicity. 
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58 JOHN ERIK FORNJESS AND NESSIM SIBONY 

The critical points of fo in (w = 1) are {0, 2} with orbits 2---+ 0---+ oo---+ 
1 +--> • Then there is a metric d(J on P 1 ([CG]) which is smooth except at 
the points 0, oo, 1, for which the map is strictly expanding. The singularites 
are d(J "' idzi/ ~in local coordinates near 0 and d(J "' idzi/izi 314 in local 
coordinates around oo and 1. 

Next, we define a pseudometric d(J* on P 2 near (t = 0). Pick a smooth 
Hermitian metric ds, and pick a point (p, e) in the tangent bundle of P 2 , p 
near (t = 0). We can decompose e = 6 +6 where 6 is along the line through 
0 and p in (t = 1) and 6 is perpendicular to 6 in the ds- metric. There 
is a natural projection to (t = 0) and this projects 6 to a vector tangent to 
(t = 0) which we also denote by 6. We set 

d(J*(e) := yl(d(J) 2(6) + (ds)2(e2)· 
With this singular metric on the attractor, the map f is contracting in 

one direction and expanding along the line at infinity. This generalizes the 
concept of subhyperbolicity in one dimension. 

Pick any p in the attractor A for the maps above. Let {P-n} be any 
history in A. For each n let ~n denote small discs of about the same radius 
around [p_nJ, the projection of P-n to (t = 0). Let :En := fn(~n)· 

THEOREM 2.19 The curves :En converge to a nonconstant image of C 
contained and dense in A, and passing through p. 

Proof: First we give a brief outline of the proof. In the first part of 
the proof we show that the inverse maps in the space of lines are strongly 
contracting. Next we show that the inverse images of a small disc therefore 
will always stay far away from the critical orbit. This implies that the for-
ward images in P 2 of these small discs are all graphs, and hence have good 
convergence properties. This defines the local unstable manifolds and then 
the forward images of the discs ~n converge to the global unstable manifolds. 

To proceed with the details of the proof, we will first assume that [p] is 
not one of the points on the critical orbit. Fix a small 8- neighborhood, V 
of [1]. 

Note that none of the points in the history are in the critical orbit. In 
local coordinates near [1], the map is z ---+ -4z. We can assume that [p] is 
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DYNAMICS OF JP2 (EXAMPLES) 59 

further than 8 from the critical orbit. To prove the theorem we will first 
construct the local unstable manifold through p with the given history. Our 
first step is to estimate the expansion of the map along the history and close 
to it. 

If [p_n]---. [1], the growth of l(fn)'l "'4n. We assume next that [p_n] does 
not converge to [1]. Let I = [p_k, ... ,P-k+t] be a maximal interval in V. 
Then the derivative of J-l at P-k+l is about 4 -l and the distance from [p-k] 
to [1] is about 8/4t. This implies that P-k-1 has distance about 8j4l from oo 
and that the derivative of J-l- 1 is about 4-t. Therefore P-k-2 is at distance 
about n from 0 and the derivative of ,-l-2 is about 

_1_4-l"' _1 __ 1_ 2n 2vs v;tr 
1 

Next (p-k-3] is at distance about ( ~) 4 from [2] and the derivative of 
f-l- 3 is about 

1 1 1 1 1 
2 (~) ~ 2..(8 J4l "' 48i 4t. 

Next [p_k_4] is away from the critical orbit so the derivative follows the 
general expansion of the mapping measured in a given subhyperbolic metric 
(which is smooth there). Let next ~~ C ~n denote the local preimages 
in (t = 0) of ~ 0 containing [p_n]· Since these estimates hold uniformly, we 
get that the diameters of the discs ~~ shrink exponentially and since they 
are always contained in sectors of small angles when they pass near critical 
points, we also get that f-n : ~ 0 ---. ~n have well defined branches and are 
biholomorphic. 

Next we consider the forward images in P2 of~~- Set Jk(~~) := Dn,k, 0 :5 
k :5 n. 

Suppose r is a graph over ~~ (or a subset), r contained in the trapping 
region. Since f, as a map on the space of lines is 1 - 1 on ~~ and maps ~~ 
to ~~_ 1 , j(r) is a graph over ~~- 1 . In particular, the sets Dn,k are graphs 
over ~n-k· 

In particular, we then get the graphs fn(~~), r n over ~ 0 • Moreover, 
these r n converge uniformly over ~0 as graphs to a limit graph r 0 because 
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60 JOHN ERIK FORNJESS AND NESSIM SIBONY 

of the uniform contraction in the t direction. Moreover, r 0 is contained in 
the attractor and is the local unstable manifold of p with the given history. 
Since {f-n} are strongly contracting in the space of lines, we can replace ~~ 
by minimal larger round discs ~" n ::Y:> (1 + 8)/- 1 (~~- 1 ) for a fixed 8 > 0. 
(Here the factor ( 1 + 8) refers to an expansion of the radius.) For small 
enough 8 > 0 the discs ~" n are still shrinking exponentially. The inductive 
limit of{~" n} is a C. In particular, as map on the space of lines, for any n, 
Jk(~~+k) cover P 1 in the space oflines for all k 2: k(n). The forward images 
fn(~" n) converges to the global unstable set, which is dense in the attractor. 

To complete the proof, we consider the case when the point [p] is on the 
critical orbit. But in this case the points [p_4] are not in the critical orbit 
and we can forward iterate the unstable variety of p_4 . 

• 
3 When the compact set of points with bounded 

orbit is disjoint from the critical set 

3.1 J = P2 

We investigate examples where .:J = P 2 , the line (t = 0) is preserved, and 
Supp(J.L) is a Cantor set. 

Fix in this section [P(z,w) : Q(z,w)] a map with Julia set P1 . Let 
L1, ... , Lr be those complex lines on which det(P, Q)' = 0 and let Lj ·-
(P, Q)(Lj)· Pick any point (a, b) ~ uLj. 

THEOREM 3.1 If the complex number cis sufficiently large and 

fc = [P(z, w) - catd : Q(z, w) - cbtd : td] 

then Jfc = P2. 

Proof: We can assume that a=/:- 0. There exist strictly positive constants 
A, B so that 

All(z,w)lld ~ II(P(z,w),Q(z,w))ll ~ Bll(z,w)lld· 
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Set R = 2 (ll<a~bc)ll) a and U = {max(lzl, lwl) < R}. 

61 

LEMMA 3.2 If (z, w) fj. U and lei is sufficiently large, then f~(z, w) --+ oo. 

Proof of the Lemma: Suppose that (z, w) fj. U. Then we get: 

llfc(z, w)ll - II(P(z, w)- ca, Q(z, w)- cb)ll 
> II(P(z, w), Q(z, w))ll -lclll(a, b)ll 

> All(z,w)lld- ll(z~w)lllclll(a,b)ll 

> ll(z,w)ll [AII(z,w)lld- 1 _1clll~,b)ll] 

> ll(z,w)ll [ARd-1 _ lclll~,b)ll] 

> II (z, w)ll [ A2d-1 (11 (ac, be) II)';;' _ lclll(a, b)ll,] 
A 2 ( ll(a~bc)ll) d 

> 1 d-1 [ d 1 1] ll(z, w)IIAa ll(ac, bc)ll---.r 2 - - 2 
If lei is large enough: > 2ll(z, w)ll 

d 

So lei ~ Co := ~ 1 II( \)II will suffice. 
AT-1 [2d-L~] T-T a, 

• 
Continuation of the Proof of the Theorem: It follows from the pre-

vious Lemma that the set K of points whose orbits are bounded is contained 
in 

U1 := {(z, w) E U; IP- cal < R 1\ IQ- cbl < R}. 

LEMMA 3.3 If lei is sufficiently large, the map fc is uniformly expanding 
on U1 . More precisely, for some constant 8o > 0, lf~(z, w)(e)l ~ t5olcl 1 -~ lei 
on U1. 
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Proof of the Lemma: If (z, w) E ub then IP(z, w)l 2:: leal- R. Hence 

Bll(z, w)lld > IP(z,w)l 
> jcaj-R, 

ll(z, w)lld > 1~1-~ 
1 

1~1-
2 ( ll(a~bc)ll) il 

ll(z,w)lld > B 
ll(z, w)ll 

1 > tiel il (for some fixed t > 0, jcjlarge enough) 
1 

Hence, if we set s = 4 ( ll(~b)ll) il , 

1 1 
U1 c {tjcjil::; ll(z,w)ll::; 2R::; sjcjil}. 

By homogeneity, there exists a continuous, nonnegative function -X(p) on 
the space of lines, -X(p) = 0 {:::} L E { Lj}, and increasing near these lines, so 
that 

I(P,Q)'(z,w)(€)12:: -X([z: w])ll(z,w)lld-11€1 

for any tangent vector e. 
Suppose that (z, w) E U1. 
Then 

1 
IP(z, w)- cal < sjcjil 

1 
IQ(z, w)- cbl < sjcjil 

Hence for large c the spherical distance 

d([P(z,w): Q(z,w)], [a: b]) ;S jcj~- 1 . 
It follows that the spherical distances 

- 1 -d([P(z,w): Q(z,w)], {Lj}) 2:: 2d([a: b], {Lj}) 
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forlarge enough lei- Hence, for some T > 0 independent of c, d([z : w], { Li}) 2: 
T and 

I(P,Q)'(z,w)(~)l > .X([z: w])ll(z,w)lld- 1 1~1 
> .X([z: w])(tlcl~)d-11~1 
> 21~1 for large enough lei 

• 
Remark 3.4 We have in particular shown that there are no critical points 
in u1 for large lei· 

End of the Proof of the Theorem: The set K of points with bounded 
orbits is contained in U1 and fc is expanding there, hence these points are in 
the Julia set. However, points outside K are in the basin of the line (t = 0). 
Since the map is chaotic on (t = 0) it follows that Jfc = P2 . 

• 
PROPOSITION 3.5 If lei is large enough, K is a Cantor set, Supp(J.-t)=K 
and repelling periodic points are dense in K. 

Proof: The map fc : U1 ---+ U is proper and has no critical value by the 
above remark. So we have d2 well defined inverse branches on U, g1 , ... , gd2. 

Each gi is uniformly contracting and gi(U)ngi(U) = 0 fori =J j. Consequently 
every connected component of K is a point, and by symbolic dynamics, K 
has no isolated points, i.e. K is a Cantor set. 

Using symbolic dynamics again, it is clear that periodic orbits are dense 
in K, and they are all repelling since f is expanding. Suppose p E P2 \ K. 
Then there exists an r > 0 so that ufn(B(p, r)) n K = 0. By ([FSl]), see 
below, Supp J.-t C K. To show the other inclusion, let p E K and r > 0. It is 
again clear from symbolic dynamics that Ufn(B(p, r)) contains K. As Supp 1-£ 

is completely invariant and closed, this implies that p, hence K C Supp J.-t. 
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Here we are using the following result from ([FSl]). 

PROPOSITION 3.6 Let f E 1-ld. A point q is in SJL if and only if 
Un~ofn(B(q, r)) = pk \ E where E is pluripolar. 

• 

Proof: If q E SJL then Un~ofn(B(q, r)) is pluripolar, see ([FSl]). If 
q ~ SJL then since SJL is totally invariant and nonpluripolar ([FSl]), then 
Un~ofn(B(q, r)) omits SJL for r small enough. 

• 
PROPOSITION 3.7 The Hausdorff dimension a(c) of K satisfies 

( ) 2log d ac<-----,---=----,----
- log8o + (1- J) log lei 

for all large enough I cl-

Proof: Recall from Lemma 3.3 that the map fc is expanding on U1 by 
8 0 icl 1 -~ where 80 is a fixed constant. 

1 1 

The d2 components of f-1(U) have diameter at most diam(U) icl;o- so at 
each step the diameter of a component is multiplied by at most the (small) 

1 1 h 
constant lcl;o- . At the nt step K is covered by d2n open sets each of diam-

1 ln(;1- 1) 21 d 
eter at most diam(U) c on . It follows that a ::; I 0 ( ogl) I ,. 

o og o+ 1- d log c 

• 
3.2 Support of J-l· 

We now consider the following situation. Let f be a polynomial map of 
algebraic degree d, f : Ck ---+ Ck. We assume that f extends as a holomorphic 
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map into Pk. So the hyperplane at infinity given by (t = 0) is an attracting 
set for f. We define 

K = {z; (fn)(z) is bounded}. 

The assumption on f implies that K is a compact polynomially convex 
set in Ck. Indeed, there is R such that for llzll 2: R, (fn(z)) converge to 
infinity. So we have 

K = {z; lfn(z)i ~ R for n 2: 0}. 

Clearly the set K is totally invariant. 

THEOREM 3.8 Let f be a polynomial map as above. Let C be the critical 
set for f. Assume K n C = 0. Then 
i) The map f is strictly expanding on K. 
ii) Repelling periodic points are dense inK. 
iii) K = Support J.t. 

Proof: From the assumption, the critical set C is in the basin of attrac-
tion of the hyperplane at infinity. Let B denote the open ball of center 0 and 
radius R. Let Bn := f-n(B). We have Bn+l CC Bn for every n. The map 
f: Bn+l----+ Bn is proper. We can choose n large enough so that Bn does not 
intersect the critical set C. Let K£ denote the infinitesimal Kobayashi metric 
forB£. 

Since f is a covering map from Bn+l to Bn we have 

for any vector e. Since Bn+l cc Bn, there is a constant c > 0 such that 
Kn+l(z, e) 2: (1 + c)Kn(z, e), for z in Bn+l· We then have 

This proves that f is strictly expanding on K. 

ii) Let p E K. Assume that for a sequence nj, pj : = fni (p) converges 
to q. We are going to show that q is a limit of periodic points (they are 
necessarily contained in repelling orbits). Fix r > 0 small. Then for j 
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large enough, there is an Oj, Pj E Oj CC B(pj, r /2) C B(Pj+l, r) for which 
fni+l-nj : Oj --+ B(PJ+b r) is a biholomorphism. Hence there is a fixed point 
qj for fni+ 1 -ni in B (Pj, r). So q is a limit of periodic orbits. 

To prove that p is a limit of periodic points, it is enough to show that 
preimages of repelling periodic points are approximable by periodic orbits. 
We can assume that qj as above has a preimage in B(p, r). Indeed for n large 
enough fn(B(p,r)) contains B(pj,r). Since qj is on a periodic orbit we will 
then also have a repelling periodic orbit passing through B(p, r). Assume 
fm(q) = q E K and (jJ(q)) is repelling. Let f-(p0) = q. There is a curve"( 
from p0 to q and a neighborhood U of"(, such that U n [U~=ofn( C)] = 0. This 
is because C is in the domain of attraction of the hyperplane at infinity. It is 
then possible to define in U, inverse branches 9n of fn such that 9n ( q) = q. It 
follows from a Theorem by Ueda, ([U]) that the family 9n is equicontinuous. 
Hence (gn) converges in U to the periodic orbit (jJ ( q)). Let B (p0 , r) be a small 
neighborhood of p0 and consequently, since 9nm converges to q, there is a set 
0 cc B(p0 , r) for which fnm+f(O) = B(p, r) is biholomorphic. Therefore 
there is a periodic orbit passing through B(p, r ). This is the classical Julia's 
argument to construct homoclinic orbits, see Milnor ([Mi]) and Jonsson ([J2]). 

iii) We show first that Sf-£ := Support M c K. But if p ~ K, there exist 
small r > 0 for which ujn(B(p, r)) n K = 0. So by ([FSl]), p ~ Sw 

We want to show next that K C S M· We have proved that every point 
inK is non wandering. Since SJJ. is totally invariant there is a neighborhood 
V of SJJ. such that j-1(V) cc V. So points in V \ f-n(V) are wandering. 
Hence K n V = Sw Let K 1 := K \ Sw We just proved that K 1 is closed 
and totally invariant. Since f is expanding on K 1 there is a neighborhood 
Vi ::) K such that f-1 (VI) cc Vi. Given any point q E SJJ., if B(q, r) n V1 = 0 
then ujn(B(q, r)) is disjoint from V1 . This contradicts that q E Sw Hence 
K1 is empty and K = Sw 

• 
We now consider again in C2 the family of polynomial maps 

fc = (P(z, w)- ca, Q(z, w)- cb) 

introduced in this paragraph. We assume that on P1 the map [P : Q] is 
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chaotic, i.e. it's Julia set is equal to P 1. 

if 

The critical set for fc is (t = 0) Uj Li. Define 

Kc - {(z, w); U:(z, w)) is bounded} 
1-l - {(z, w, c); U:(z, w)) is bounded} 

We have proved in Lemma 3.2 that 

1-l C {ll(z,w)ll < 4ll(a,~cll~} 

d 1 1 1 lei 2:: Co := 2d- 1 -1- d • ll(a,b)ll Ad-1 [2d-l_ ~Jd-1 

67 

So 1-l is closed in C3 and each slice Kc is polynomially convex. By analogy 
with the Mandelbrot set for the quadratic family we define: 

PROPOSITION 3.9 With the previous notation the set M is closed and 
bounded. When c is in the unbounded component Coo of C \ M, then Kc is a 
Cantor set. 

Proof: Lemma 3.3 implies that M is bounded. That M is closed is obvi-
ous. The result that Kc is a Cantor set was proved for large lei, in Proposition 
3.5. The previous result implies that for c ~ M, the map fc is strictly ex-
panding on Kc. It follows that in the connected component C00 , we have a 
smooth family of strictly expanding map on Kc. A theorem in Ruelle ([Ru]) 
implies that for any c0 E Coo there is a neighborhood ~(c 0 , 8) and for every 
c E ~(co, 8) a homeomorphism ¢c: Kc0 ----+ Kc such that fc o ¢c =¢co fco· It 
follows that Kc is a Cantor set for every c E C00 • 

• 
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PROPOSITION 3.10 Theorem 3.8 remains valid for holomorphic maps 
on P2 when the critical set is in the basin of an attractor. 

PROPOSITION 3.11 Let f be a polynomial map on C2 which extends as 
a holomorphic map on P2 . Assume K n C = 0 and that the restriction to the 
hyperplane at infinity is hyperbolic on its Julia set. Then f is s'-hyperbolic. 

Proof: The notion of s-hyperbolicity was introduced in ([FS2]); It fol-
lows from Theorem 3.8 that the set 82 is totally invariant. It is also clear that 
81 is totally invariant which is more strict than the notion of s-hyperbolicity . 

• 
4 Isolated repelling points 

4.1 Isolated repelling orbits 

In this section we investigate small perturbations of polynomial automor-
phisms of C2 , in order to construct infinitely many isolated repelling points 
in the nonwandering set of an endomorphism of P2 . 

Let f0 (z, w) = (P(z, w), Q(z, w)) be a biholomorphism of C2 of degree 
d. Assume that the indeterminacy set of fo as a rational map on P2 is 
I+= [0: 1 :OJ and the indeterminacy set of / 01 is L = [1 : 0: OJ. Let P, Q 
denote the homogeneous polynomials of degree d, such that P(z, w, 1) = 
P(z, w), Q(z, w, 1) = Q(z, w). Notice that f((t = 0) \I+) = L. Hence 
Q(z, w, 0) = 0. Since I+ consists of only [0 : 1 : OJ it follows that P(z, w, 0) = 
azd. We may assume that a = 1. 

Using a result of Jung, see ([FM]), we can assume that fo is a finite 
composition of Henon maps. We consider the endomorphisms /f. of P2 defined 
by 

ff.[z: w : tJ = [P(z, w, t) : Q(z, w, t) + Ewd : tdJ. 

The restriction of ff. to (t = 0) is given by [zd : Ewd : OJ, whose Julia set 
1 

is the circle lzl = fd- 1 in w = 1. Observe that (t = 0) is an attracting set. 
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Moreover fe-1(/+) =I+ and fe-1(L) = L. So/+ and L are superattractive 
fixed points for fe. 

Let B+, B_ denote the basins of attraction of/+ and L respectively, they 
are clearly totally invariant and B+ U B_ contains a neighborhood in P2 of 
( t = 0), the common boundary near ( t = 0) is made of the stable manifolds 

1 
corresponding to the Julia set 8 1 := {lzl = Ed-1 } in (t = 0). (The unstable 
manifold is just (t = 0), z, w =f:. 0 for every such point.) We will consider also 
BA, the basin of attraction of (t = 0), it consists of B+ U B_ and the stable 
set of 81. 

For R > 0, define 

VR 

v: 
Vi 

-
-
-

{lzl ~ R, lwl ~ R} 
{lzl 2:: R, lwl ~ lzl} 
{lwl 2:: R, lwl 2:: lzl} 

This decomposition of C2 was introduced by Friedland-Milnor ([FM]). 
They showed that for the automorphism fo, there is R such that fo(VR U 
vt) c vRuvt. 

It is easy to check that for f 0 , L is a superattractive fixed point. 

LEMMA 4.1 There exist Eo > 0 and R > 0 such that for all 0 < E ~ Eo, 

fe(VRuVJ) C VRuVJ. Moreover every point in VR has at most one preimage 
in VR. 

Proof: In C2 we have 

fe(z, w) = (P(z, w), Q(z, w) + Ewd) = (zb w1). 
We can chooseR and E1 > 0 so that in V.t 

2 

IP(z, w)l 2:: ~~d 
and 

Licensed to Biblio University Jussieu.  Prepared on Tue Jun 14 08:37:46 EDT 2016for download from IP 81.194.27.158.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



70 JOHN ERIK FORNJESS AND NESSIM SIBONY 

lz1l . I lw1l ~ 2 If IE ~ E1. 
If (z, w) E VR it is clear that, after possibly increasing Rand decreasing 

fl, for lEI~ fl we have that fE(VR) c VR u v;. 
Since for fo there is only at most one preimage of (z, w) E VR, the same 

holds for fE if E is small enough. 

• 
From now on we omit the subscript Rand we assume that the Jacobian 

of f0 , is larger than one in modulus. 

LEMMA 4.2 Assume pis a repelling periodic point for f€, f~(p) = p, and 
p E V. Then p is isolated in the nonwandering set n€ of f€· 

Proof: Assume first that f€(p) = p. Let U0 be a neighborhood of p such 
that Uo n f- 1(U0) cc U0 , and U0 C V. 

Define by induction Ui := f-1 (Ui_1) n U0 , j 2: 1. We want to show that 
every point in U1 \ {p} is wandering. Suppose q E D..i := Ui-l \ Ui. By 
modifying U0 slightly we can assume that q is in the interior of D..i. If q is 
nonwandering, there is a first n such that fn(t:..i) n Uj-l # 0. 

So there is y E D..i with fn(y) = x E Ui-ll but fn- 1(y) fj Ui-l· On the 
other hand, since F(V+) c v+, fn- 1(y) E f- 1(Ui-d n Uo = Ui c Ui-ll a 
contradiction. So q is isolated in 0€. 

If q is periodic, f~(q) = q, the whole orbit of q is in V. We can just apply 
the above argument to f~. 

• 
THEOREM 4.3 There is an endomorphism f€ of P2 such that the non wan-
dering set n€ contains a countable discrete set of repelling periodic orbits. 
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Proof: We can start with a one parameter family gt of volume decreasing 
complex Henon maps with real coefficients so that g0 has a generic .• .~oclinic 
tangency for some saddle point in V n ~_2. It is known, see ([Ga]) that for 
generic perturbations the perturbed maps have infinitely many sinks. Define 
ft = gt"1. Fort: small enough the family ((ft)fw)-1) has a generic homoclinic 
tangency and hence for some t, ((ft)fw)-1) has infinitely many sinks. Conse-
quently Ut)f has infinitely many repelling orbits in V. It follows from Lemma 
4.2 that they are isolated in nf. 

• 
Remark 4.4 Support of J-tf is disjoint from V. Indeed for q in V, Un>ofn(V) 
omits v- so by Proposition 3.6, the point q cannot belong to Support(J-tf). 
The existence of a repelling periodic point not in the support of J-tf is already 
stated in ([HPj, p. 345}. We thank M. Jonsson for mentioning that. 

Remark 4.5 It is possible to construct hyperbolic sets of dimension 1 and 
unstable dimension 3, for endomorphisms of P3 , that are disjoint from Sup-
port of J-t· It is enough to consider the map gf([z : w : t : u]) = [P(z, w, t) : 
Q(z, w, t) + t:wd : td : ud]. So the first three components are the components 
of ff. A repelling periodic orbit in V for ff gives rise to a circle of unstable 
dimension 3. 

We now restrict attention to the family 

ff(z, w) = (z2 + aw, z + t:w2), Ia I > > 1. 

The critical set for /f is defined by the equation 4t:zw- a= 0. 

PROPOSITION 4.6 Suppose lal > 1. Then for 0 < kl < t:0 (a), the only 
Fatou components for ff are B+ and B_. The compact set K := C2 \ (B+ U 
B_ u W 8 (S1)) = C2 \ BA is the set of points in C2 with bounded orbit. 

Proof: For a given a, define V, v+ and v- as: 
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R 10ial + 3 
V - {(z, w); lzl ~ R, lwl ~ SR} 

v+ {(z, w, ); lzl > R, lwl ~ Slzl} 
v- { (z, w); lwl > SR, lzl < lwi/S} 

lz1l lz2 +awl 

> lzl2- Slallzl 
> lzl(lzl- Sial) 
> 3lzl 

lw1l - lz + Ew21 
< lzl + 64IEIIzl2. 

We get that lw1l ~ Slz1l provided lzl (1 + 641EIIzl) ~ Slzl (lzl- Sial) which 
follows if lEI < 61;0 . Next, ff maps v+ to itself and multiplies the z variable 
by at least 3. If (z,w) E V, then w1 = z+Ew2 , so lw1l ~ R+64IEIR2. Then 
lw11 ~ SR provided that lEI~ 64(lolal+3)" In that case ff(V) c V U v+. 

It follows that v+ is in the basin of the line at infinity. Next we observe 
that points in y- with lwl 2:: 2/E are also in the basin of the line at infinity. 
Also note that points in v- with lwl ~ 3/(4E) are iterated forward until they 
reach v u v+. 

We get on V that the Jacobian determinant I4Ezw- al 2:: lal- 32jEIR2 2:: 
Jal;l provided that lEI ~ 64 d~~~~ 3 ) 2 • Hence the only Fatou component in-
tersecting V will be the one containing v+, i.e. the basin of attraction of 
[1 : 0: 0). 

Hence if there is a Fatou component B other than the basins of attrac-
tion of [1 : 0 : 0), [0 : 1 : 0), then it must be contained in U := {(z, w, E 
v-; 3/(4IEI) < lwl < 2/IEI}. Since the Jacobian determinant is 4EZw- a, B 
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must intersect the set of points in U for which /4aw -a/ :::; 1. At such a 
point 

/z/ 
4 3 
3/z/4 
4 < 3/uw/ 
1 

< 3 [/4uw - a/ + /a/] 

< /a/+ 1. 

However JE maps such points to v+. 

• 
4.2 The compact set K of points with bounded orbit. 

It is clear that the compact set K := C2 \ BA is the set of points defined by 

4 
K = {(z,w); /Jn(z,w)/:::;- for every n.} 

E 

We define K 1 := K n V and 

/w/ 3 2 K 2 := {(z, w); fn(z, w) E K n {(z, w); /z/ < -, -4 < /w/ <-} 'v' n}. 8 E E 

Observe that K 2 is totally invariant. 

LEMMA 4.7 JE is expanding on K 2 and Supp(f..LE) = K 2 . 

Proof: Let (u, v) be an arbitrary tangent vector at (z, w) E K 2 . Then 

(u', v') := J;(u, v) = (2zu + av, u + 2Ewv). 
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if lui < lvl/4: 

then lv'l > ~lvl-fj 
2 4 
5 > -I vi 4 

::::} 

max{lu'l, lv'l} > 5 
4 max{ lui, lvl} 

if lui > lvl/4: 
then lu'l > 2lzllul- 4lallul 

(i) lzl > 2lal +3 
lu'l > 6lul 

> 3 2 max{ lui, lvl}. 

(ii) lzl < 2lal +3 
::::} 

f£(z, w) E v+ 
::::} 

(z, w) rt K2. 

Since Supp(J.t£) is totally invariant and contained in the non-wandering 
set, it is necessarily contained in K 2 . (Because of Proposition 3.6, the support 
of the measure cannot intersect the line at infinity.) 
That Supp(J.t£) is equal to K 2 follows from the argument in Theorem 3.8 of 
([FS2]). 

• 
Let 0 denote the non wandering set for f£ in C2 . Define 

n1 .- nnv, 
3 2 u .- v-n{~<lwi<H}. 
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PROPOSITION 4.8 The non wandering set n is the union of the two 
disjoint closed sets 0 1, Supp /1€· The set n does not intersect the critical set 
C. The map f€ is bijective on 0 1. 

Proof: It is clear that 0 1 is closed. Since f€ is expanding on n n U, and 
since Supp /1€ is totally invariant, there is a neighborhood U1 ~ Supp /1€ such 
that f€-£(U1) CC U1 for large£. If a point in U is non wandering it has to be 
in K2 hence in Supp(J.1€). 

The critical set Cis disjoint from V so C n n = 0. We also know that 
any point in V has at most one preimage in V. 

• 
PROPOSITION 4.9 The set K has no isolated point. The local Hausdorff 
dimension of any point inK\ Supp /1€ is at least 2. 

Proof: Given any q E Supp /1€, we know that Supp(J.1€) is not pluripolar 
near q ([FS2]), so q is not isolated inK. We next show that the local Haus-
dorff dimension of any point in K \ Supp /1€ is at least 2. Let q E K \ Supp /-Le 
Fix r > 0 such that the ball B(q, r) nSupp /1€ = 0. So on B(q, r) we have that 
(ddcG+) 2 = 0 and KnB(q, r) = {(z, w); (z, w) E B(q, r), c+(z, w) = 0}. The 
function c+ is the solution in B(q, r) of the Dirichlet problem for the Monge 
Ampere equation ( ddcu )2 = 0 with UI8B(q,r) = c+. The solution u is equal 
to the maximum of plurisubharmonic functions on B ( q, r) which are smaller 
than a+ on 8B(q, r) ([BT]). Hence q is in the polynomially convex hull of 
Kn8B(q, r). Hence, for every r > 0 the Hausdorff dimension of Kn8B(q, r) 
is at least one. Consequently the Hausdorff dimension of K at q is at least 
2, see ([S2]). 

• 
We want to show next that for lal >> 1 the maps f€ satisfy strong 

hyperbolicity conditions. 
Let f = (z2 + aw, az) be a hyperbolic Henon map. Define 
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V {lzl ::; 2lal2 + 2, lwl ::; 4lal3 + 4lal}, 
v+ {lzl > 2lal 2 + 2, lwl ::; 2lallzl}, 
v- {lwl > 4lal3 + 4lal, 2lallzl < lwl}, 
K+ {(z, w)} with bounded orbits, 
K- - { ( z, w)} with bounded inverse orbits, 

K - K+nK-. 

Then K C int(V). Let next S C K consist of the nonwandering points 
of f. We assume that f is hyperbolic on S. So S = S0 U 5 1 u 52 , disjoint 
compact sets, Si has stable dimension j. (Of course S0 or S2 must be empty 
and they are anyhow finite sets.) By ([BS1]) periodic points are dense inS, 
i.e. S satisfies Axiom A. 

THEOREM 4.10 For all E =f. 0, lei small enough, the maps fE := [z2+awt: 
azt + Ew2 : t 2] satisfy Axiom A on the non wandering set. 

Proof: Let 0 = OE denote the nonwandering set. Then 0(, :=on (t = 0) 
contains two attracting fixed points, [1 : 0 : 0] and [0 : 1 : 0] in 50 and a 
saddle set {lzl .lcwl}n(t = 0) c 51. Moreover, since (t = 0) is an attracting 
set, 0 0 is isolated in the non wandering set. Also, fE satisfies Axiom A there. 

The set v+ is contained in the basin of attraction of [1 : 0 : OJ. The 
set vis mapped to v u v+. If (z,w) E v-, lwl 2: 2lEI' then laz + Ew21 > 
clwl 2 - 1~1 2: lwl so (z, w) is in the basin of attraction of (t = 0). Also if 
(z, w) E v-' lwl ::; 2fEI' then laz + Ew21 < ¥ + 1 ~ 1 = lwl. So the orbit lands 
eventually in v u v+. Hence the set OE = 0(, u OJ. u 02 where OJ. c v and 
02 C \f- := {(z, w) E v-; 2fEI < lwl < 2lEI }. 

Next consider the nonwandering points 02. Since 02 C K 2 , hence fE is 
expanding on 02. We prove as in Theorem 3.8 that periodic points are dense 
in 02. So fE satisfies Axiom A on 02. 

Finally, it follows from Ruelle ( [Ru]) that fE also is hyperbolic on 01 and 
satisfies Axiom A there. 

• 
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5 Examples of endomorphisms such that 
Supp f..l = Julia set. 

77 

In general the Julia set for an endomorphism of P 2 doesn't coincide with the 
support of the equilibrium measure J.1. The simplest example is 

f([z : w : t]) = [zd : wd : td]. 

In this paragraph we give examples where the Julia set for f coincides 
with the support of 11· The Briend-Duval theorem ([BD]) will then guarantee 
that repelling periodic orbits are dense in the Julia set. 

We first give a general criterion. 

THEOREM 5.1 Let (J>..)>..Eb.. be a holomorphic family of holomorphic en-
domorphisms of algebraic degree d 2': 2 in P2 . Here~ denotes the unit disc 
in C. Assume 
(a) i} There is an algebraic curve V0 in P2 such that J>..(V0 ) = V0 , ,\ E ~ and 
the Julia set for the restriction (J>..)wo is equal to Vo. 
ii} There is an integer£, such that P2 \ U~=of>:j (Vo) is Kobayashi hyperbolic 
and hyperbolically embedded for ,\ E ~. 
(b) There exists p E V0 n Supp(J.1o), a repelling fixed point for f 0 . 

Then there exists a 8 > 0 such that Supp /1>.. = J>.. for,\ E ~(0, 8). 

Remark 5.2 If f>.. has in addition an attracting fixed point, we also have 
that Supp J.1>.. = J>.. # P2 . This is the case in examples below. 

LEMMA 5.3 Let (J>..)>..Eb.. be a holomorphic family of endomorphisms in P2 

of algebraic degree d 2': 2. Assume that J>..(p) = p, ,\ E ~ and that p E Supp f-lo 
and is repelling for f 0 . Then there is a 8 > 0 such that p E Supp /1>.. for 
,\ E ~(0, 8). 

Proof: Recall that the support of /1>.. =: S>.. is a totally invariant closed 
set. A point q belongs to S>.. if and only if for every r > 0, Unf'f(B(q, r)) 
omits at most a pluripolar set. To simplify notation, assume p is the origin 
of coordinates in C2 . Since it is a fixed repelling point, there is an£> 1, and 
<5o> O,p > O,c > 0 such that 

lfi(z)i 2': (1 + c)jzj, izl :S p and>. E ~(0, <5o). 
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Hence for all A E ~(0, 80 ), given r:>.. > 0 we have 

Un?.df(B(O, r)..)) :J B(O, p/2). 

The total invariance of s).. implies that if 0 fj. s).. then there is r). > 0 so 
that J.L:>..(Un?.df(B(O, r:>..)) = 0. As a consequence J.L:>..(B(O, p/2) = 0. On the 
other hand we know ([FSl]) that A ---+ J.L:>.. is weakly continuous. Since we 
have assumed that 0 E S0 , J.L:>..(B(O, p/2)) > 0. It follows that we cannot have 
0 fj. S:>..k for a sequence Ak converging to 0. 

• 
LEMMA 5.4 Let fo E 'Hd. Assume there is an algebraic curve Vo such that 
fo(Vo) = Vo and (fo)wo is chaotic. Assume that there is a repelling fixed point 
p0 E Von SJJ.o. If there is an integer f such that P2 \ U1=ofoi (Vo) is Kobayashi 
hyperbolic and hyperbolically embedded, then Supp J.Lo = .Jo, the Julia set of 
fo. 

Proof: The total invariance of So = Support J.Lo implies that Vo C S0 . 

The assumption on Kobayashi hyperbolicity implies that P2 \ S0 is Kobayashi 
hyperbolic and hyperbolically embedded. Since P2 \So is invariant under f 0 , 

the family of maps (f0)n is equicontinuous on P2 \ S0 , hence the Julia set .10 

of fo satisfies .10 C S0• The other inclusion is obvious. 

• 
Proof of the Theorem: Lemma 5.3 implies that the point p is repelling 

and in Supp J.L:>.. for A E ~(0, o). One can then apply Lemma 5.4 to the maps 
f:>.. for A E ~(0, o). 

• 
We next give an example of the situation of the Theorem. Let f -

[P(z,w): Q(z,w)] be a map of degree d ~ 3 on P1 . Assume that f has no 
exceptional points. Also, let S(z, w) be a homogeneous polynomial of degree 
d- 1. Let (p0 ) be those points in P1 on which S vanishes. 
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We assume next that we have the following nondegeneracy condition: Let 
p E P1 . Then f-1 (p) contains at least one point not in {Pa}· 

We extend f to P 2 as a two parameter family: 

f>.,c := [P + ctd : Q + ctd: td + >.tS]. 

The next result shows that points in the Julia set off belongs to Sw 

THEOREM 5.5 (i} There exists a Ao > 0 and for all>., 1>-1 ~ >.0 there is 
a c0 (>.) so that if c E C, lei < co(>.), then [p : q : 0] belongs to Support J.L>.,c 
whenever [p : q] belongs to the Julia set of f. Moreover the maps l>.,c have an 
attracting fixed point. 
(ii} There exists Ao > 0 so that if 1>-1 ~ Ao and lei > 1, then [p : q : OJ belongs 
to Supp(J.L>.,c) whenever [p : q] belongs to the Julia set of f. 

Proof: We show that if U is any neighborhood of [p : q : 0], then 
Unf'f: c ( U) contains the complement of a pluripolar set (actually an attract-
ing fixed point) provided we impose the indicated conditions on A, c. It will 
follow then from ([FS1]) that [p: q: 0] belongs to Supp J.L>.,c-

Note that after finitely many iterations, f'f.c(U) contains a neighborhood 
of the line at infinity. 

Let R = R>.,c,u ~ 0 denote the smallest number so that ll(z, w)ll > R =} 

[z: w: 1] E V := Unf'f.c(U) \ (t = 0). We want to show that R = 0. 

We fix (small) discs Da C (t = 0) around the Pa· If the discs are small 
enough, the nondegeneracy condition on f implies that f(P1 \ UaDa) = P 1 . 

Notice that if >., c = 0 then the line at infinity (t = 0) is an attracting 
set, which is why we need some assumptions on the constants. We will first 
consider the case when >. is large, but c = 0, and then consider the case c # 0 
as a small perturbation. 

There exist constants cl, c2 > 0 so that if [z: w] ¢:. UDa then IS(z, w)l ~ 
Clll(z,w)lld-1, while IS(z,w)l ::; C2ll(z,w)lld-l everywhere. Choose con-
stants A, B > 0 so that 

All(z,w)lld::; II(P(z,w),Q(z,w))ll::; Bll(z,w)lld· 
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Suppose that Ao 2:: ~ + 2 and that ll(z, w)lld-1C1 2:: 1. If [z: w] i UDa 
and IAI 2:: Ao, then 

llf>,,o(z, w)ll < II (P(z, w), Q(z, w)ll 
11 + AS(z, w)l 

11 + AB(z, w)l > IAIIS(z, w)l - 1 

> (~ +2) C111(z,w)lld-1-1 

> 1 > 0. 

llf>,,o(z, w) II < Bll(z, w)lld 
IAIIS(z,w)l-1 

< Bll(z,w)lld 
~C1II(z, w)lld-1 

< ll(z,w)ll 
4 

Since the maps f>....o maps lines to lines, it follows that the forward images 
1 

of U cover at least the complement of the ball of radius ( J1 ) d- 1 • 

1 

Next, in case (i) assume that ll(z, w)ll = (JJ d-1 • 

II f>....o II ( z, w) < II(P,Q)II 
~C1II(z, w)lld-1 

B < 0c ll(z,w)ll 
2 1 

< k 
IAI 

for some constant k. Hence it follows that the forward images of U cover 
the complement of the ball of radius 1f1. 

Next, we estimate the image of points in the ball of radius 1f1. We get, 
using the condition d 2:: 3 : 
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lli>.,o(z, w) II ~ 
Bll(z, w)lld 

1 -I.AIC2 C~)d- 1 

< 2B c~,) d-l ll(z,w)jj 

< ll(z, w)ll 
2 

if .A0 is chosen larger if necessary. 
This shows that the forward images of U cover all of P2 \ (0) when e = 0. 

If e =f. 0, but small, depending on A, f>.,c has an attracting fixed point P near 
the origin and by a continuity argument, f'f c(U) still covers the complement 
of the basin of attraction of P, hence P2 \ (P). 

Next, in case (ii), we estimate the images when e =f. 0. This is done by 
a perturbation argument. First of all notice that there are small discs ~z 
around each point z in (t = 0) \ UD~ where D~ are slight extensions of Da of 
approximately the same size so that the image of the boundary of ~z does 
not contain the image of z. Also notice that for II ( z, w) II sufficiently large, 
dependent one, we still have llh,cll(z,w) ~ ll(z,w)ll/2. More precisely, there 
exists then an L > 0 such that if ll(z,w)ll 2: Llel~ in addition to the above 
conditions, we still get that the forward iterates of U cover the complement 

1 

of the ball of radius maxLiel ~, (b) d- 1 . 

Since we may assume that lei 2: 1, we can, by increasing L, assume 
1 

that L I el ~ 2: (b) d- 1 and hence that the forward iterates of U cover the 
complement of the ball of radius Llel ~. 

Next, assume that ll(z,w)ll = Llel~-

II h,c II ( z, w) < II(P+e,Q+e)ll 
~CII(z, w)lld-1 

< B ll(z w)ll + lei 
t;tc ' t;tcll(z,w)lld-1 
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Hence it follows that the forward images of U cover the complement of 
the ball of radius 1~ lei~. 

Next, we estimate the image of the ball of radius 1f1 1el ~. We get 

llh,c(z, w)ll > lei - II (P, Q) II 
11+-XSI 

> lei -II(P, Q)ll for some constant C' 
C' I d-1 1 + I-XI 1;. 1a-1 el <t 

K 1 > jjf lela if 

I-XI > some,\0 >> 1. 

But this implies that the ball of radius 1f 1 1cl~ is in the image ofit's com-
plement. This shows that the forward images of U cover all of P2 . 

• 
We next make some further hypothesis. 

(1) [P: Q] = [v(z- 2w)d: zd], ( 11 ~ 2 t = 1, which is critically finite and 
chaotic with repelling fixed point [v: 1]. Then SJL contains (t = 0) and all its 
preimages. 

(2) S(z, w) = zd-1 , d ~ 3. 

Then the preimages of ( t = 0) contains the lines in ( t = 1) : z = 

( -~) d.:_ 1 =: e;.,j, j = 1, ... , d- 1. The preimages of these lines are given 
by 

:E. = v(z- 2w)d + e = e . 
J { 1 + ,\zd-1 >-,J}. 
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Note that for each value of z =f:. C>..,i, there is at least one value for w 
for which (z, w) E :Ei, and as j varies these must be different. Also note 
that these are ( d - 1) branched covers over the z axis. Hence Kobayashi 
hyperbolicity of the complement of Sp. follows. To show that P2 \ uf-i (Vo) is 
hyperbolically embedded, observe that for c =f:. 0, each :Ei intersects the line 
{ z = C>..,i} at d distinct points. 

If we apply Lemma 5.4 to each f>..,c and the repelling fixed point [v: 1: 0], 
we find that Supp(J.t>..,c) = J>..,c· We have thus obtained: 

THEOREM 5.6 There exists a Ao > 0 such that if I-XI ~ Ao and lei < eo(-X), 
then Supp(J.t>..,c) = J>..,c =f:. P2 for the maps 

f>..,c = [v(z- 2w)d + ctd: zd + ctd: td + -\tzd-1]. 

When lei > 1 we only know that Supp(J.t>..,c) = J>..,c· 
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