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Abstract. This note studies the dynamical behavior of polynomial mappings with
polynomial inverse from the real or complex plane to itself.

1. Introduction
Henon showed in 1969 and 1976 that quadratic automorphisms of the plane provide
examples of dynamical systems with very simple definitions but very complicated
dynamics. This note will extend his construction by discussing polynomial
automorphisms of the real or complex plane of arbitrary degree. The structure of
the group G consisting of all such automorphisms has been studied by a number
of authors, starting with Jung in 1942, and is well understood. § 2 describes the
structure of G as an amalgamated free product, and as a union of smooth algebraic
varieties. It shows that every conjugacy class in G either contains an affine or an
'elementary' transformation, or contains a composition of generalized Henon trans-
formations

where p(y) is a polynomial of degree at least two and S ̂  0 is the constant Jacobian
determinant of g. (Here x and y are to be real variables in the real case, or complex
variables in the complex case.) It describes a normal form for the conjugacy class
of such a composition depending on dx + • • • + dm parameters, where d, , . . . , dm

are the degrees of the factors. § 3 studies the periodic points and the non-wandering
set for an arbitrary automorphism gsG, and also studies the larger set K(g)
consisting of all points whose (forward and backward) orbit under iteration of g is
bounded. § 4 describes the basic estimate

for the topological entropy h(g) of a polynomial automorphism g of degree d. Here

= limsupn-1log+|Pern(g)|

is defined to be the rate of exponential growth for the number of periodic points
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of period n. In the real case, h(g) can take all values between zero and log (d), but
in the complex cyclically reduced case it is conjectured that h(g) must always be
equal to log (d). (Added November 1987. A forthcoming note by John Smillie will
prove the authors' conjecture that h(g) = H(g) = log (d) for a cyclically reduced
complex polynomial automorphism of degree d. Smillie's proof is based on the
volume growth inequality of [Yomdin, § 1.4].) § 5 describes examples, modeled on
Smale's horseshoe, for which the entropy and the numbers of periodic points take
on their maximal value. § 6 discusses the classification of elementary transformations
up to conjugacy within G or within the larger group of analytic diffeomorphisms
of the (real or complex) plane, and § 7 discusses the corresponding problem for
generalized Henon transformations. The final section gives estimates for the algebraic
multiplicity of an isolated periodic point.

2. The group G of polynomial automorphisms
We will work over either the real numbers R or the complex numbers C. Let G be
the group of all polynomial automorphisms of the coordinate plane R2 or C2. By
definition, an element g of G is a polynomial mapping

(x, y) ~ g(x, y) = (X(x, y), Y(x, y))

from the (real or complex) coordinate plane to itself which is bijective and has
polynomial inverse. The more explicit notation GR (or Gc) may be used if we wish
to specify that we are working over the real (or the complex) numbers.

Let A c G be the six-dimensional group consisting of all affine automorphisms
of the coordinate plane. Let £ c G be the group consisting of all polynomial
automorphisms which are elementary in the sense that they carry each line of the
form y - constant to a line of the form y = constant'. It is not difficult to check that
a transformation e is elementary if and only if it can be written as

e(x, y) = (ax + p(y), 0y + y)

for some constants a, /? and y with a/3 ^ 0, and for some polynomial function p(y).
Note that £ is a solvable group. In fact its second commutator subgroup is the
commutative subgroup of codimension three consisting of all transformations of
the form e(x, y) = (x + p(y), y). Our starting point is the following statement.

THEOREM OF JUNG. The group G of polynomial automorphisms of the (real or complex)
coordinate plane is generated by these two subgroups A and E.

Proofs of this Theorem may be found in [J, G] or [McK2]. Note that the Jacobian
determinant of any transformation in G must be a non-zero constant. The still
unproved 'Jacobian conjecture' is the converse claim that any polynomial mapping
with non-zero constant Jacobian determinant must necessarily be a polynomial
automorphism. (Cf [BCW].)

We will next sketch a proof of the statement that G is actually equal to the
amalgamated free product of the two subgroups A and E. (Cf [S, K, Wr,
Theorem 4].)
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Definition. A sequence ( g , , . . . , gn) of length n > 1 will be called a reduced word,
representing the group element g = gn° gn-i "• • -° g\, if each factor g, belongs to
either A or £ but not to the intersection S = A D E, and if no two consecutive factors
belong to the same subgroup A or E. By abuse of notation, we will simply refer to
the product gn ° • • • ° g2 ° gi as a reduced word of length n. It follows immediately
from Jung's Theorem that every element of G can be expressed as such a reduced
word, unless it belongs to the intersection A 0 E.

By the degree of a polynomial automorphism (x, y) •-> g(x, y) = (X(x, y), Y(x, y))
will be meant the maximum of the degrees of the two component polynomials
X(x, y) and Y(x, y). Note that g has degree one if and only if it belongs to the
affine group A Our presentation will be based on the following elementary but
basic result.

THEOREM 2.1. The degree of any reduced word g = gn ° gn_, ° • • • ° g, is equal to the
product of the degrees of the factors gt.

(By way of contrast, the degree of the composition of two elementary transforma-
tions is at most equal to the maximum of the two degrees.) Evidently we need
consider only those factors g, which belong to the group E in this computation. In
fact the factors g , e£ all have degree(g,)s2, but the factors which belong to A
have degree(g,) = 1. The proof of Theorem 2.1 will be given at the end of this section.

As one immediate corollary, we see that degree(g~1) = degree(g). (Cf [McKl].)
Here is another important consequence.

COROLLARY 2.2. No reduced word is equal to the identity element of G.

For a reduced word, unless it consists of a single affine factor, must have degree
two or more.

The statement that G is the free product of A and E, amalgamated along the five
dimensional solvable subgroup S = A D E, now follows as a purely formal con-
sequence of 2.2. More explicitly, we have the following.

C O R O L L A R Y 2.3. The expression for a group element g£S as a reduced word g =

gn ° gn-\ °" " • ° g\ is unique up to the following modifications: For any seS and any

I > 1 we can replace g, by the product (g, ° s ) , and simultaneously replace g,_, by

(s~loft-i).
Proof. This follows by a straightforward induction on the length n, using 2.2 to

start the induction. Details will be omitted. " •

In particular, it follows that the length n > 1 of such a reduced word is an invariant
of the group element g. Furthermore, the sequence of degrees of the factors g, also
forms an invariant. Of course every second degree must be equal to one. It will be
convenient to define the polydegree ( d , , . . . , dm) of a non-affine group element g to
be the sequence of integers d} > 2 which is obtained from the sequence
(degree (g , ) , . . . , degree (gn)) by crossing out all of the ones. More explicitly: g has
polydegree (du... ,dm) if and only if some representative of the double coset A ° g ° A
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can be written as a reduced word of the form

em o am_, ° em_, o • • • o a2 ° e2 ° a, ° e,,

wiffi degree (e,-) = df.
Evidently the subset of G consisting of all automorphisms of degree d or less

can be given the structure of an affine algebraic variety, presumably with singularities.
Here is a sharper statement.

LEMMA 2.4. The set G[dt,..., dm~\ <= G consisting of all group elements with poly-
degree (di,..., dm) forms a smooth analytic manifold of dimension dt + - • - + dm+6.

Thus we obtain a partition of G as a disjoint union

G = AUG[2]UG[3]UG[2,2]UG[4]UG[5]U • • •

of smooth Zariski open subsets of algebraic varieties. The proof of 2.4, based on
an explicit normal form, will be given at the end of this section.

Next let us study the problem of finding a normal form for conjugacy classes in
the group G. Note that we can cyclically permute the factors of any reduced word,
without changing its conjugacy class. If a reduced word gn ° • • • ° g, has minimal
length within its conjugacy class, then clearly either:
(1) it has length n = 1, so that the group element g belongs to A or E, or
(2) its length is even, n =2m, so that the two extreme factors gt and gn belong to

different subgroups A and E.
In the second case, which is the dynamically interesting one, we will say that the
group element

g = gim ° • • • ° gi

is cyclically reduced. Thus every cyclically reduced group element of polydegree
(dx,..., dm) is conjugate to a composition of m group elements of the form (a, ° «,-),
with degree (e,) = </,-. If two cyclically reduced words are conjugate to each other, note
that they must have the same polydegree, up to a cyclic permutation. Let us single out
one particularly convenient class of compositions of this form (a ° e).

Definition 2.5. A group element g with Jacobian determinant S, will be called a
generalized Henon transformation if it has the form

g(x,y) = (y,p(y)-8x)

for some polynomial function p(y) of degree d s 2 .
Note that such a generalized Henon transformation has determinant 5 = 1 if and

only if it can be expressed as the composition of two involutions

(x,y) •-+ (p(y)-x,y) >-* {y,p(y)-x).

(cf[Dp.252]).

THEOREM 2.6. Every cyclically reduced element of G is conjugate to a composition
g, S2 g,,,

( x o , x , ) i - » ( x i , x 2 ) <-*••• ^(xm,xm+1)
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of generalized Henon transformations, where gj(x,y) = (y,Pi(y)-8iX). Furthermore,
this composition can be chosen so that the coefficient of highest degree in each polynomial
Pi is ±1, and so that the next highest coefficient is zero. The resulting normal form is
unique up to a finite number of choices.

In other words, we can represent any cyclically reduced conjugacy class of
polydegree (dt,..., dm) by a transformation of the form g(x0, xt) = (xm, xm+1) where
the sequence x2,..., xm+1 is defined inductively by the formula xi+i = p,(x,) - 5,X/̂ ,,
with

p,.(x,-) = ±xf' + (terms of degree srf, -2) .

This normal form depends on just dt+ • • • +dm parameters.
In most cases, the proof will show that we need only use polynomials p, with

leading coefficient +1. The only exceptional case, where we must allow a leading
coefficient of - 1 , occurs when we are working over the real numbers, when the
degree d = d} • • • dm is odd, and when the product of the leading coefficients of the
polynomials p, is negative.

In the real even degree case, the normal form with leading coefficients +1 is
unique up to cyclic permutation of the m factors. However, in the complex case
there is an additional ambiguity since the proof involves extracting a (d - l)st root,
which is well defined only up to multiplication by (d- l ) s t roots of unity. As an
example, the normal form (x, y)>-*(y, p(y) ~ Sx) for the conjugacy class of a general-
ized Henon transformation, with p(y) = yd + (terms of degree < d - 2), is unique
except that we can replace the polynomial p(y) by p(ioy)/co where to can be any
(d — l)st root of unity.

One special case of 2.6 is particularly noteworthy:

COROLLARY 2.7. Every automorphism geG of prime degree is affinely conjugate either
to a generalized Henon transformation or to an elementary transformation.

(Cf [E].) The proof is straightforward.
In the simplest case, if g has degree d = 2 and is not affinely conjugate to an

elementary transformation, we obtain a unique normal form

(x,y)~> {y,y2+c-8x)

depending on two parameters c and 5. This is completely equivalent to the normal
form studied by [H2].

It is now time to begin some proofs.

Proof of Theorem 2.1. We must compute the degree of a composition where the
factors are alternately elementary and affine. Consider first a polynomial automorph-
ism (x, y) i-> (X{x, y), Y{x, y)) where X and Y are polynomials in x, y which satisfy
the condition degree (A") <degree (Y) = d0. For example we could start with the
identity transformation, or with any affine transformation. Let us compose with an
elementary transformation to obtain the polynomials

X'=aX + p(Y), Y' = /3Y+y

in x and y. If this elementary transformation does not belong to the intersection
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S = An E, then the degree d of the polynomial p must satisfy d >2 , and

degree (X') = ddo> degree (Y') = d0.

Next let us compose with an affine transformation

X ' ^ A U X ' + A ^ Y ' + K , , Y " = A 2 1 X ' + A 2 2 Y ' + K : 2 ,

which does not belong to S. Then the coefficient A21 must be non-zero, and it follows
that

degree (X") < degree (Y") = dd0.

Thus, in this situation, whenever we compose with an elementary transformation of
degree d > 2 followed by a non-elementary affine transformation, the degree will be
multiplied by d. Theorem 2.1 follows by induction. •

Proof of Lemma 2.4. We will first construct a fibration

over the product P1 x P 1 of two (real or complex) projective lines. We will identify
the projective line P1 with the coset space A/S. In fact, each a e A maps the family
of 'horizontal' lines y = constant to some family of parallel lines, and this image
family is determined precisely by the coset a° S. The fiber F= F[dx,..., dm] will
consist of all group elements / which can be written as reduced words of the form

f=em° am~i° em-i° • • -° at° eu (2.8)

with elementary transformations at both ends, and with degree («,-) = d,. It follows
by definition that every element g e G[dx,..., dm] can be written as a product
a' °f° a w i t h / e F as above, where a' and a can be arbitrary affine transformations.
The cosets a'° S and S° a are uniquely defined by Corollary 2.3. Hence we can
define the projection v by the formula

Tr(a'°f°a) = (a-l°S,a'oS).

It is not difficult to check that n is a locally trivial fibration.
If 7r(g) e Pl x P1 corresponds to the pair of lines (L, L') through the origin, then

we can characterize L as the unique line through the origin such that the degree of
the polynomial mapping g restricted to L is strictly less than the degree d of g.
Similarly, L' is the unique line through the origin such that the degree of g"1

restricted to L' is strictly less than d. In the simplest case m = 1, note that g maps
lines parallel to L linearly onto lines parallel to L'. The inverse image under ir of
the diagonal in P1 x P1 plays a particularly noteworthy role.

LEMMA 2.9. For g e G[dt,..., dm], the image ir(g) lies off of the diagonal in P1 x P l

if and only if g is affinely conjugate to a cyclically reduced word of polydegree

( < * „ . . . , < U .

For if tr(a' °f° a) lies off the diagonal, then evidently the product a° a' does not
lie in the subgroup S, and hence g = a'°f°a is affinely conjugate to a cyclically
reduced word

(a°a')°em°am-x°- • • ° a, ° ex
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of polydegree ( d , , . . . , dm). On the other hand, if ir(g) does belong to the diagonal,
then g is conjugate to a group element am_, ° em_, ° • • • °a, ° (e, ° a ° a' ° em) which
has degree strictly less than dx • • • dm.

The proof of 2.4 continues as follows. We will next show that the expression (2.8)
can be simplified so that only one affine transformation is needed. In fact let / be
the reflection t(x,y) = (y,x). It is not hard to see that the double coset S°t°S
consists precisely of all affine transformations which do not belong to the subgroup
S. Thus every a, in the reduced word (2.8) belongs to this double coset. If we absorb
the S factors into the adjacent elementary transformations, then we obtain an
expression of the form

f = e ' m ° t ° e ' m _ l o t ° - • - o t ° e [

with e'j e E. However, this expression is not yet unique, since the equation s"1 ° t ° s' =
t may be satisfied for suitably chosen elements 5 and s' in S. Evidently any such
pair s~l and t°s°t = s' can be absorbed into the adjacent elementary transforma-
tions without changing the value of the product /

Let S <= S be the group of all diagonal affine transformations

This is precisely the largest subgroup of S which is normalized by t. Let E c E be
the group consisting of all elementary transformations of the form e(x, y) =
(x + p(y),y), where p(0) = 0 so that e fixes the origin.

LEMMA 2.10. Every element of the fiber F= F[dl,..., dm] can be written uniquely
as a reduced word of the form

(sm°em)°t°em-1°- • -°t°ex

with smeS and with e, e E. Hence this fiber F can be parametrized by an open subset
of the (dt + • • • + dm + 4) - dimensional coordinate space.

Proof. Uniqeness of this expression follows from 2.3. Existence is proved by induc-
tion on m, as follows. For m — 1 this is just the easily verified statement that every
element e^e E can be written as a product st ° ex with sxe S and exe E. For the
inductive step, we need only multiply the given expression on the left by em+, ° t,
observing that em+I ° t° sm can be written as e' ° t for some e'e E, which itself can
be written as sm+} ° em+x. This proves 2.10, and completes the proof of 2.4. •

Proof of Theorem 2.6. Proceeding just as in the proof of 2.4, we see that every
cyclically reduced word is conjugate to a composition of the form

g = ( t ° e m ) ° • • • ° ( t ° e , ) .

Let us set t ° et: (*,_„ j>,_,) >-* (*,, y>), where

x, = fry,--, + y,, y, = a(Xf_, +pi(yi-l).

Using 2.3, we see that this expression for g is unique, except that we can permute
the factors cyclically without changing the conjugacy class, and we can modify by

A

elements of the diagonal affine group S. The effect of such a modification will be
to transform each of the variables xt and y, by a one-dimensional affine transforma-
tion, where we must apply exactly the same transformation to xm or to ym as we
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do to x0 or y0. To begin, let us simply replace each variable y,-, by the expression
Xj = Pd>i-j + yt. Then t ° e, will be replaced by an expression of the form

(*,-_,, X,-) •-> (x,-, ^(x.O-SjX,-,),

or in other words by a 'generalized Henon transformation'.
We can still simplify further by applying an affine transformation to each variable

x,-. Define the 'center of gravity' of a polynomial p{y) of degree d > 2 to be the
unique point at which its (d-l)st derivative vanishes. In the complex case, this
can be identified with the average of the roots, or the average of the critical points
or the fixed points. If p{y) has center of gravity c, note that any polynomial of the
form p( y + c) — constant has center of gravity at y = 0. Thus an appropriate transla-
tion of each of the coordinates xt will replace the polynomials q{ by polynomials
q't with next to highest coefficient equal to zero.

We are still free to make a scale change, replacing each coordinate x, by say
Xi = xf/1], where the 17, are non-zero constants. This has the effect of replacing each
q'i(Xj) by the polynomial q"(Xt) = gKfy-X'iV^.+i, with corresponding changes in the
constants 8j. If the polynomial q'i(x) has degree d{ and leading coefficient K, then
q" will have leading coefficient r)?'Kj/r]i+i. In order to set all of the leading coefficients
equal to +1 , we must solve the system of n equations

Vi+i = vf'Ki,

in n variables 17,5* 0, with indices i taken modulo n. In the complex case, it is not
difficult to check that there are exactly d -1 distinct solutions, where d = dx- • • dn

is the total degree. In fact ij, can be any (d - l)st root of an appropriate monomial
in the K,, and the remaining 77, are then uniquely determined. In the real case, it
follows that there is a unique solution when d is even, and either two solutions or
no solutions when d is odd, according as the product of the leading coefficients is
positive or negative. Thus, in the real odd degree case, we must allow one of the
leading coefficients to be ± 1 in order to guarantee a solution. Further details will
be left to the reader. •

3. Periodic points and the non-wandering set
Let g be a polynomial automorphism of R2 or of C2. We would like to count the
number of fixed points of g, and more generally the numbers of fixed points of the
various iterates g° g, g° g° g, Evidently these numbers will not change if we
replace g by a conjugate h° g° /?"'. Hence, according to the results of § 2, we need
only consider the case where g is elementary, or affine, or the case where g can be
expressed as a cyclically reduced word.

THEOREM 3.1. IfgeG is cyclically reduced of degree d, then the number of fixed
points of g is less than or equal to d. In fact, in the complex case, each fixed point can
be assigned a multiplicity /J. a 1 so that the sum of the multiplicities for all of the fixed
points of g is precisely equal to the degree d.

As an immediate corollary, it follows that the number of fixed points of the n-fold
iterate g°" = g° • • • ° g is less than or equal to d". For clearly this iterate is cyclically
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reduced of degree d". (In the generic case, we will see in 3.2 that the number of
complex fixed points of g°" is precisely equal to dn.)

Proof of 3.1. We need only consider the complex case, since every real polynomial
automorphism extends to a complex one. According to § 2.6, the map g is conjugate
to a composition of generalized Henon maps. Suppose for example that g =
gm ° ' • • ° gi is the composition of the generalized Henon maps

\xo,x\) l~* \xi > x2) >—* i—* (xm, xm+l)

where
X2= P\(Xt) — 5 1 x 0 , . . . , xm+1 = pm\Xm) — 5mxm_,. (*)

For a fixed point of g, we must have x0 = xm, x, = xm+1; and these equations reduce
to a system of m polynomial equations in m complex variables. Let dt > 2 be the
degree of the polynomial p,(x), so that d = dx • • • dm is the total degree of g. We
must prove that this system of equations (*) has exactly dx • • • dm solutions, counted
with multiplicity.

The 'Theorem of the Nonlinear Alternative', which is a special case of Bezout's
Theorem, asserts that the algebraic number of solutions of such a system of m
polynomial equations in m complex variables is precisely equal to the product of
the degrees, providing that the following condition is satisfied: If we throw away all
but the terms of highest degree in each of these polynomial equations, then the resulting
system must have only the trivial solution. (See for example [W] or [F].) In our case,
the equations (*) reduce to the equations

x,1 -v, • • •, x^" - u ,

which manifestly have only the trivial solution. •
Recall from § 2.4 that the group G splits as a disjoint union

G = AuG[2]uG[3]uG[2,2]uG[4]u • ••

of smooth algebraic varieties, where each g e G[dx,..., dm] has degree d =
dx--dm. Let us say that a property of g is true for generic g e G[dx,..., dm] if it
is true for all g outside of a countable union of lower dimensional subvarieties.

LEMMA 3.2. If g is a generic element of G[dx,..., dm], then every iterate g°" has
exactly d" distinct complex fixed points, each with multiplicity /* = 1.

Proof. According to §2.8, every g e G[dlt..., dm] outside of a codimension 1
sub-variety is cyclically reduced, up to affine conjugacy. Furthermore, for each n > l ,
it is not difficult to check that those g for which g°" has fewer than d" fixed points
form an algebraic subvariety Vn <= G[dx,..., dm]. To complete the proof, we need
only show that Vn is a proper subvariety. That is, for each n we must exhibit at
least one example of an element g e G[dx,..., dm~\ for which gon has d" distinct
fixed points. To do this, consider the family of maps g, depending on a single
parameter S, given by g = gm ° • • • ° g, where

In the degenerate case 5 = 0, a brief computation shows that the iterate g°" has
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exactly d" distinct fixed points, consisting of all pairs (x, y) with x = xd" and y = xdm.
Since the fixed point equations have d" distinct solutions when 5=0, it follows
that they must have at least d" distinct solutions whenever \s\ is sufficiently close
to zero. •

Remarks. It is certainly not true that the multiplicity /i is always equal to one. As
an example, consider the classical Henon map

g:(x,y) •-» (y,y2-Sx + c)

of degree d = 2. In the generic case, the d2 = 4 fixed points of g ° g consist of two
fixed points of g, together with one periodic orbit of period two. However, for
particular values of the two parameters these orbits may degenerate. In fact, whenever
c = (1 + 8)2/4 the two fixed points coincide, and whenever c = -3(1 + S)2/4 the orbit
of period 2 collapses to one of the two fixed points.

It seems natural to conjecture that every cyclically reduced ge G must have complex
periodic points of all sufficiently large periods, and in fact that the number of such
points grows exponentially with the period. However, to prove this we would need
some good upper bound for the multiplicity of a periodic point. To illustrate the
problem, any fixed point of g is also a fixed point of g°", and hence is assigned a
multiplicity /j.n > 1, for every n > 1. According to Shub and Sullivan, this sequence
of multiplicities is bounded. Can the maximum multiplicity of a point of period n grow
exponentially with «? Some partial results about multiplicities are described in § 8.
These imply, for example, that a cyclically reduced complex polynomial automorph-
ism with determinant 5^1 must have periodic points of all large prime periods
(§ 8.5). However, we have not been able to obtain more precise results.

Remark 3.3. Thus far, we have discussed the multiplicity of a fixed point only in
the complex case. The multiplicity of an isolated fixed point of a homeomorphism
g of the real plane R2 can be defined as the local degree of the map (x, _y)>-»
g(x, y) - (x, y) at the fixed point. If the eigenvalues a, /3 of the first derivative at
the fixed point are both different from +1, then this multiplicity is equal to the sign
of (a —1)(/3 — 1). With this definition, one can show that the sum of the multiplicities
of the fixed points for a composition of real generalized Henon maps is equal to
zero when the total degree d is even, and is equal to either +1 or -1 when d is
odd according as the coefficient of the highest degree term is negative or positive.

Next let us study the non-wandering set O(g). By definition, a point in the
coordinate plane belongs to H(g) if and only if, for every neighborhood N of the
point, there exists an M > 0 SO that the M-fold forward image g°"(N) intersects N.
Evidently fl(g) = ft(g~') is a closed subset of the plane which contains all of the
periodic points of g. If g is cyclically reduced, then we will show that this non-
wandering set ft(g) is compact.

LEMMA 3.4. For every generalized Henon map

g:(x,y) >-> {y, z) = (y,p(y)-Sx)

there exists a constant K SO that \y\ > K implies that either \z\ >\y\ or \x\ >\y\ or both.

Proof. Since p(y) has degree two or more, we can choose K so that |/>(j>)|> M + |£y|
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whenever \y\> K. It then follows that either |x|> \y\ or

\z\ = \p(y)-Sx\s:\p(y)\-\8y\>\y\,
whenever \y\> K. D

Now consider any composition g = gm ° • • • ° gt of generalized Henon maps. Let
D be the closed disk of radius K centered at the origin, where the constant K must
be large enough so as to satisfy the conditions of 3.4 for every one of the maps
O 1 » * * * » O Ttl '

LEMMA 3.5. With these hypotheses, it follows that the non-wandering set Cl(g) is
contained in the bidisk D x D, and hence is compact.

Proof. We will use the notation
gi(Xi-i, Xt) = (*,, Xi+l),

where it is convenient to extend periodically by setting gi+m = gt so that this formula
makes sense for all integer values of i. Then the full orbit of (xo,x,) under the
composition g is given by

• • • -»• (x_m, x_m + 1) •-»• (xo, x,) -> (xm, xm+l) >-»• (x2m, x2m+l) >-> • • • .

We will show that this full orbit is bounded if and only if \xn | < K for every integer
n. Suppose, to the contrary, that |xn| > K for some n. Then according to 3.4 we must
have either |xn|<|xn+1|, which implies inductively that

\xn\ <- |*n + l| < |*n+2l < ' ' ' >

or |xn|<xn_,| which implies that

|Xn| "^ |Xn_i | "^ |Xn_2| <~

In either case the resulting monotonic sequence of numbers must diverge to infinity.
For if it remained bounded, then the x, would have a limit point whose orbit would
contradict the inequality 3.4.

It follows immediately that the set n(g) = fl(g'1) is contained in the product
D x D. In fact, every point which does not belong to this bidisk has either an open
neighborhood whose forward images diverge monotonically to infinity or an open
neighborhood whose backward images diverge monotonically to infinity. •

Definition 3.6. Following Hubbard and Oberste-Vorth, let K+ = K+(g) be the closed
set consisting of all points whose forward orbit under g remains bounded, and let
X_ = K_(g) be the closed set consisting of points whose backward orbit is bounded.
The intersection will be denoted by K = K+ n X_.

If g is a composition of generalized Henon maps, then the discussion above
shows that

In particular, the set K is compact. Note that the complements of K+ and K_ are
unbounded open sets. In the real case, it is not difficult to check that these com-
plementary sets are contractable when the degree is even, and that each one consists
of two contractable components when the degree is odd. However, in the complex
case they have a rather complicated topology. (See [H].) It is conjectured that both
K+ and K- are connected, although the intersection K may well be disconnected.
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Since the set K is bounded, its Lebesgue measure \(K) (2-dimensional in the
real case or 4-dimensional in the complex case) is certainly finite. To say more about
the measure theoretic behavior of these sets K, K+ and K_, we must consider three
different cases, according as the transformation g increases, decreases, or preserves
volumes. Let S = 5, • • • Sm be the constant determinant of the first derivative of g;
where we continue to assume that g is a composition of generalized Henon maps.

LEMMA 3.7. If \S\ = 1, then the Lebesgue measures \(K) = X(K_) = \(K+) are finite
and equal, so that almost every point in K± actually belongs to K. On the other hand,
if \8\<1, then \(K) = A(K_) = 0, while \(K+) must be either zero or infinite. The
case \S\> 1 is similar, except that the roles of K+ and KL are interchanged.

The proof is straightforward, and will be left to the reader.
Thus, when \t>\ > 1, almost every forward orbit escapes to infinity, and when \S\ < 1

almost every backward orbit escapes to infinity. In the exceptional case |S| = 1, for
almost every point, the forward orbit remains bounded if and only if the backward
orbit remains bounded. The problem of deciding just which automorphisms g have
the property that \(K+) = A(K_) = 0, so that almost every orbit escapes to infinity
in both directions, seems quite difficult. In the complex case, it seems possible that
A(K+)>0 if and only if there exists a stable periodic orbit. However, in the real
case, the set K+ has positive measure also whenever there is a 'strange attractor'
or, in the area preserving case, whenever there is an invariant circle.

The behavior of the elementary and afifine transformations in G is quite different.
Such transformations may have infinitely many fixed points, and the sets il and K
may well be unbounded.

LEMMA 3.8. An elementary or affine transformation can have at most one isolated
fixed point, and the multiplicity of such an isolated fixed point is necessarily equal to
+ 1 in the complex case or to ±1 in the real case.

(Cf 3.3.) Proof Let e(x, y) = (ax + p(y), (}y) have a fixed point at the origin. If
a = 1 or j8 = 1, then there is an entire curve of fixed points through the origin; while
otherwise it is easy to check that there is only one fixed point with multiplicity equal
to the sign of (a - l)( /3 - 1 ) is the real case, or to +1 in the complex case. The proof
in the affine case is similar. •

Combining this result with 3.1 we obtain the following.

COROLLARY 3.9. In the complex case, no elementary or affine transformation can be
topologically conjugate to a cyclically reduced element of the group G.

Here is a brief description of results which will be described in more detail in § 6.

LEMMA 3.10. Ifg e G is conjugate either to an affine transformation or to an elementary
transformation, then O(g) = K(g). If we choose a suitable representative g0 within the
conjugacy class, then the set £l(go) = K(g0), if non-vacuous, is either a linear space
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on which g0 acts linearly, or a union of finitely many 'horizontal' lines y = constant,
consisting entirely of periodic points, on which g0 acts by an isometry.

Here the linear space can have dimension 0,1, or 2, and the linear map must be
linearly conjugate either to an orthogonal transformation (in the real case) or to a
unitary transformation (in the complex case). For any geG which is conjugate to
an affine or elementary transformation, it follows from 3.10 that the set ft(g) = K(g)
is a smooth manifold which contains periodic points of at most finitely many distinct
periods. For details, the reader is referred to § 6.8.

In the case of a single Henon map

g:(x,y) •-* (y,p(y)-5x)

over the real numbers, it is interesting to note that the sets K+(g) and K_(g), if
non-vacuous, must always contain at least one fixed point of g. For if the fixed
point equations x = y = p(y) — 8y have no solution at all, then the polynomial
P(y) — (1 + 8)y must be either strictly positive or strictly negative for all y. Suppose,
to fix our ideas, that it is strictly positive. Then it follows that the linear function
Kx,y) = y~&x must increase monotonically under g; hence every forward orbit
must diverge to infinity, and similarly every backward orbit must diverge to infinity.
We do not know whether a corresponding statements holds for compositions of
Henon maps. It certainly fails for elementary maps. As an example, the map

(x,y) •-»• (x + y2-l,-y)

has points of period 2, but no fixed point.

4. Entropy estimates
The topological entropy h(f) is usually defined for a continuous map / from a
compact metrizable space into itself. (See for example [W].) It will be convenient
to extend, this definition to the case of a proper map from a suitable locally compact
space X into itself by defining h(f) to be the topological entropy of the canonical
extension of/ over the one point compactification Xuoo. With this understanding,
it follows that every polynomial automorphism g of the real or complex plane has
a well defined topological entropy h(g) > 0. We will also study the auxiliary quantity

H(g) = lim sup «"' log+ |Pern

where |Pern (g)| is the number of periodic points with period exactly equal to n,
and where log+ (x) is defined to be the maximum of log (x) and zero. If g is an
elementary transformation or an affine transformation, then it follows easily from
§ 3.10 that h(g) = H(g) = 0. Hence we will concentrate on the case of a cyclically
reduced polynomial automorphism.

THEOREM 4.1. If g is cyclically reduced of degree d, then

0< ft(g)< H(g)^ log(d).

In the real case, this is a best possible estimate for the entropy:
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THEOREM 4.2. Given any number h0 between 0 and log (d), and given any numbers
dt Sr 2 with product d, there exist real generalized Henon transformations g, of degree
dj so that the topological entropy h(gm ° • • • ° g,) is equal to h0.

Unfortunately, the proof is rather non-constructive. It seems quite difficult to estimate
the topological entropy of any given g, or to decide when h(g) is actually equal to
H(g). In fact it seems plausible to conjecture that

h(g) = H(g)

for every real or complex polynomial automorphism. Smillie has recently shown that
the equality

h(g) = H(g) = log (d)

always holds in the complex cyclically reduced case.

Proof of 4.1. The inequality 0</i(g) is true by definition, and the inequality
H(g)< log(rf), is an immediate consequence of 3.1. The inequality /i(g)<H(g)
has been proved by [Kap. 171] for any diffeomorphism of a real compact 2-
dimensional manifold. The non-compactness of our coordinate plane does not affect
his argument, since all of the interesting dynamics is concentrated in a neighborhood
of the set ft(g), which is compact by § 3.5. Thus, to complete the proof, we need
only show that Katok's argument applies also to a complex 2-dimensional manifold.
The key to his argument is the statement that any diffeomorphism of a 2-manifold
with strictly positive entropy must have an invariant ergodic measure with no
Lyapunov exponent equal to zero. He shows this by noting that, in any dimension,
there must be at least one strictly positive Lyapunov exponent, and at least one
strictly negative Lyapunov exponent. In the two dimensional case, this exhausts all
of the Lyapunov exponents, so that none can be zero. But, for a complex diffeomorph-
ism, the Lyapunov exponents of the underlying C°° manifold are clearly equal in
pairs. So, in the complex 2-dimensional case, if at least one Lyapunov exponent is
positive and at least one is negative, it again follows that no Lyapunov exponent
can be zero. •

Remark 4.3. It follows easily that 0< / i (g )< / / (g )< log(d) for a completely
arbitrary polynomial automorphism g e G of degree d. This in turn implies the
sharper statement that

0< h(g) < H(g)s lim log (degree g°")/n.
rt-»OO

Here the right hand side is a conjugacy class invariant which vanishes for an affine
or elementary transformation and coincides with log (d) in the cyclically reduced
case.

We will begin the proof of 4.2 in this section, but complete the proof only in § 5.
The key to the proof is the observation that the topological entropy h(g) of a
composition of generalized Henon transformations of degrees dx,..., dm varies
continuously with the dx + • • • + dm parameters of § 2.6. In fact upper semi continuity
under C°° variation of the mapping has been proved by [Y] and by [N], while a
proof of lower semi continuity in the 2-dimensional case has been promised by
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[K M]. These papers all assume compactness. However, as g varies within a neighbor-
hood of some fixed g0, it follows from § 3.5 that the non-wandering set of g varies
within some compact subset of the plane; and this suffices for the proofs.

Remark 4.4. This proof of continuity works only if we stay within the class of
cyclically reduced group elements. It definitely is not true that the topological
entropy h is a continuous function throughout the entire algebraic variety
G[dt,..., dm] of § 2.4. Here is an example. Let

go(x,y) = (y,y2 + c-8x)

be a classical Henon transformation, and let {A,, A2} be the eigenvalues of the first
derivative of g0 at one of the two fixed points of g0. Then it is not difficult to check
that the two parameters c and 8 can be expressed as polynomial functions of A,
and A2. In fact

S = A,A2, C = O-(1 + 8-<T),

where o- = (\l + A2)/2. (Cf § 7.) We want to choose g0 so that these two eigenvalues
are real, and so that the entropy h(g0) is strictly positive. For example, for any fixed
8, these conditions will be satisfied whenever a is sufficiently large. (Cf § 5.) Now let

so that the two eigenvalues of the derivative of e0 at the origin are also A, and A2.
Then h(e0) = 0 since e0 is elementary, and yet every neighborhood of e0 within the
variety G[2] contains transformations which are conjugate to g0 and hence have
entropy equal to h(go)>0. By way of contrast, if a sequence of elements g,e
G[di , . . . , dm] tends smoothly to a limiting function of degree dx • • • dm which has
determinant 8=0, then it seems likely that the entropies ft(g,-) must converge to a
limit, which can be identified with the entropy of the associated one-dimensional
polynomial map.

The proof of 4.2 continues as follows. Within each connected component of our
dx + • • • + dm dimensional real parameter space, we will produce one example of a
transformation with h(g) = H(g) = 0, and one example with h(g) = H(g) = log (d).
It will then follow from the intermediate value theorem that all topological entropies
between 0 and iog(d) must also occur. To provide an example with topological
entropy zero, we simply apply Lemma 3.5. If each of our generalized Henon
transformations gi'-(x,y)>-*(y,Pi(y)-8ix) satisfies

whenever \y\> K, then 3.5 asserts that the non-wandering set fl(g) is contained in
the square |x| s K, \y\ < K. In particular, if we can take K = 0, then it will follow that
this non-wandering set is vacuous or reduces to a single point, so that the equality
h(g) = H(g) = 0 must hold. As an example, suppose that we define the polynomials
Pi by the formula

Pi(y) =

when the degree dt is odd, and

pi(y) = ±v(l+y"1)
when di is even, with r\ S: 1 +15|. Then a brief computation shows that we can take
K = 0, and it follows that h(g) = H(g) = 0.
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Corresponding examples in which the entropy h(g) takes on its maximal possible
value will be described in the next section.

5. d-fold horseshoes
This section will describe variants of the Smale horseshoe. Our condition that / is
a d-fold 'weak horseshoe' is strong enough to guarantee that the topological entropy
h(f) is at least equal to \og(d), but weak enough to be easily verified in many
cases. (For a general discussion of horseshoes, see for example [GH]. More detailed
studies of horseshoes in the context of Henon mappings may be found in [D] or
[DN] for the real case, and in [H] for the complex case.)

Consider the following situation. (Cf figure 1.) Let D" <= R" be a closed n-
dimensional ball, with boundary S"~\ We consider maps from the product space
Rm x R" into itself.

Definition. A map / from Rm x R" into itself will be called a d-fold topological
horseshoe, with respect to the bidisk Dm x D", if the intersection

(DmxD")nr\DmxDn)

is the union of disjoint sets X , , . . . , Xd, each of which maps homeomorphically
onto Dm x D" under the correspondence (x, y)>->(x, y'), where f(x,y) = {x',y'). In
other words we assume that, for each fixed x0, the set of y with f(x0, y) e Dm x D"
is a union of d disjoint topological disks; and furthermore, setting/(x0, y) = (x', y'),
we assume that each of these disjoint disks maps homeomorphically onto D" by
the correspondence y-^y'. We will always assume that d>2 .

bottom

/(top) /(bottom)

FIGURE 1. A 2-fold topological horseshoe in R2xR'.

If/ is a homeomorphism from Rm xR" to itself, and also a d-fold topological
horseshoe, note that the inverse transformation f~x is itself a d-fold topological
horseshoe, after renumbering the coordinates. (More explicitly, the linearly conju-
gate transformation t°f~x ° t~l is a topological horseshoe, where t(x, y) = (y, x).)

In the application to polynomial automorphisms, we will have either m = n = 1,
to study real polynomial automorphisms, or m = n = 2, to study complex polynomial
automorphisms. In both cases we will use the abbreviated notation D for the disk
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Dm = D". Let us first look at the real case. To fix our ideas, let D be the closed
interval [0, d]. Note that the values of a polynomial p(y) of degree d can be
prescribed arbitrarily at the points 0 , 1 , . . . , d of D.

LEMMA 5.1. If the real polynomial p( y) of degree d has values p(0),p(l), • • • ,p(d)
which are alternately less than -d\S\ and greater than d + d\S\, then the generalized
Henon map g'-(x,y)^(y,p{y)-dx) is a d-fold topological horseshoe with respect to
the square [0, d] x [0, d~\.

Proof. (Cf figure 2.) Let 0 < c, < • • • < cd_x < d be the critical points of p. It will be
convenient to set c0 = 0, cd = d. Clearly the polynomial p maps each interval [c,_,, c,]
homeomorphically onto an interval which contains [-d|5|, d + d|g|]. Let X, be the
set of all pairs (x, y) e [0, d] x [ <;,•_,, c,] such that 0</?(y) - &c< d. Then evidently
the correspondence

Uy) r t (x,p(y)~Sx)
maps this set X, homeomorphically onto [0, d] x [0, d], as required. •

It is interesting to note that the sign of the determinant 5, and-also the sign of
the leading coefficient of p(y), can be prescribed arbitrarily in this construction.
Thus we obtain d-fold topological horseshoes in every isotopy class of generalized
Henon maps of degree d.

In the complex case, examples are also easy to find. Let D be the closed disk of
radius r centered at the origin in C, and let D' = (l + \S\)D be the concentric disk
of radius (l + |5|)r.

f(A) i

D

AD)

AC)

FIGURE 2. Three-fold horseshoe associated with a real cubic polynomial.
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LEMMA 5.2. If the complex polynomial p(y) of degree <i >2 has no critical values in
the disk D', and if the full inverse image p~1(D') is contained in D, then the map

g:(x,y) .-> (y,p(y)-8x)

is a d-fold topological horseshoe with respect to Dx D.

Proof. For each fixed x e D, note that the set of y with p{y) - Sx e D, is a union of
d disjoint subdisks of D. It follows easily that the intersection (Dx D)n g'\D x D)
splits as a union X, u • • • u Xd of disjoint compact sets, each homeomorphic to
D x D a s required. •

Next we will show that this condition is satisfied whenever the constant term of
the polynomial p(y) is sufficiently large.

COROLLARY 5.3. Suppose that we start with an arbitrary complex polynomial p( y) of
degree d > 2 and an arbitrary complex constant 8 ̂  0. Then there exists ao> 0 so that,
whenever \a\ > a0, the generalized Henon map

(x,y) -> (y,p(y) + a-8x)

is a d-fold topological horseshoe with respect to some bidisk Dx D.

Proof. Choose a constant k so that |p(j')|>3(l + |8|)|>'|-fc for all y; and let ft be
the maximum of the absolute values of the critical values of p. Then for \a\> k + 2ft
we can choose the radius r so that

(k + \a\)/2<r(l + \8\)<\a\-fi,

and a brief computation shows that the hypotheses of 5.2 are satisfied. •

In order to study the properties of topological horseshoes, it will be convenient
to introduce a more general concept. We will work with the quotient space

S = (D m xD") / (D m xS"- ' ) ,

which is obtained from the bidisk by collapsing part of its boundary to a base point
o-0. Let q:DmxD"^1 be the natural map, with q(Dm x S"~x) = cr0. Note that 2
has the homotopy type of an n-sphere, so that it makes sense to refer to the 'degree'
of a map from £ to itself.

Definition 5.4. A map/ from Rm x R" to itself will be called a d-fold weak horseshoe
with respect to Dm x D" if there exists disjoint compact sets

Xu...,XdcDmxDn,

each of which satisfies the following conditions. The map / must carry the relative
boundary

X, nclosure ((Dm x R")-Xi)

into DmxS"~\ so that the correspondence fi:q(x)<->q(f(x)), for xeXt, extends
to a continuous mapping f:1-*1 which preserves the base point cr0, and which
maps everything outside of q{Xj) to a0. Furthermore, this map / must have degree
±1. In other words, it must induce an isomorphism of the homology group Hn(1)
to itself.
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LEMMA 5.5. Every topological horseshoe is a weak horseshoe. Conversely, for the
special case of real or complex polynomial automorphisms of degree d, every d-fold
weak horseshoe is a d-fold topological horseshoe.

Proof. The first statement is straightforward. To prove the second, for any xoe D
consider the polynomial mapfo:yi-*y' of degree <d, where f{xo,y) = (x',y'). Note
that all critical values of f0 must lie outside of the disk D. For if there were some
critical value fo(c) = veD, then the equation /0(y) = v would have at most d-1
distinct solutions. But the condition that / is a d-fold weak horseshoe guarantees
that this equation has d distinct solutions, all lying inside the disk D. It now follows
easily that the preimage fo\D) consists of d disjoint disks, smoothly embedded in
D, and varying smoothly with the parameter xoe D. •

Following are some of the basic properties of weak horseshoes.
LEMMA 5.6. Iffis a d-fold weak horseshoe and f is a d'-fold weak horseshoe, with
respect to a common bidisk Dm x D", then the composition f°f is a dd'-fold weak
horseshoe.

Proof. This is essentially just the observation that each composition / °/j has degree
±1. •
LEMMA 5.7. Given any infinite sequence of integers i(0), i(l), i (2 ) , . . . between 1 and
d, there exists at least one point xoe XW) whose successive images xo

H-»xI'--»X2>~* ' ' "
under iteration of f satisfy the condition that xk e Xl(k) for every fc>0.

Proof. Since the n-fold composition

2 >S > >2

has degree ±1, it follows that there exists a point x 0 e2 whose image under this
iteration is not the base point in 2. By the definition of f(k), this means that the
image xk =fok{xo) must belong to Xi(k) for k = 0 , 1 , . . . , n -1. Passing to the limit
as n -> oo, we see by a straightforward compactness argument that this condition
can be satisfied for all k > 0. •

COROLLARY 5.8. Iffis a d-fold weak horseshoe, and iff is proper so that the topological
entropy h(f) is defined, then /i(/)>rlog (d).

Proof. Let e > 0 be the minimum distance between two distinct Xt. For any n>0
we have constructed d" distinct orbits of length n such that any two differ by at
least e somewhere. It follows that /j(/)^limn^colog (d")/n =log (d). (See for
example [W, § 7.2].) •

If a polynomial automorphism g of degree d is a weak d-fold horseshoe, then
clearly it follows that the entropy h(g) = H(g) is precisely equal to log (d). We can
now complete a proof from the previous section.

Proof of Theorem 4.2. To finish this argument, we must find generalized Henon
maps g i , . . . , gm of specified degrees d, , . . . , dm so that the entropy h{gm ° • • • ° g,)
of the composition is equal to log (d, • • • dm). Using Lemma 5.1, we simply choose
each gj to be a d,-fold topological horseshoe with respect to some fixed square
DxD. The conclusion then follows by 5.6 and 5.8. •
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Here is a further property of weak horseshoes.

LEMMA 5.9. Every d-fold weak horseshoe f has at least d distinct fixed points.

Hence the M-fold iterate/0" has at least d" distinct fixed points. In particular, in
the case of a polynomial automorphism of degree d which is also a d-fold horseshoe,
it follows that the number of fixed points of the M-fold iterate is precisely d".

Proof of 5.9. If / is a weak horseshoe, and X = X, c Dm x D" is a closed subset
satisfying the conditions of definition 5.4, then we will show that X contains at
least one fixed point of/ Suppose, to fix our ideas, that Dm and D" are the standard
unit disks. Let

dX = X n closure {Rm x R" - X)

be the full boundary of X. For each (x,y)eX, we will use the notation f{x,y) =
(x', y') eDmx D". Define a one-parameter family of maps </>,: X -» Rm x R" by the
formula

<t>i(x, y) = (x - tx', y'- ty)

for 0< t < 1. If/ has no fixed point in dX, then we claim that each <j>, maps dX into
the complement of the origin. For a point (x, y) e dX must satisfy either \y'\ = l>\y\
or JJC| = 1 > |x'|. In either case, the pair ( x - tx', y'—ty) can be zero only if / = 1 and
x = x' and y = y', which is impossible since we have assumed that there are no fixed
points in dX.

Next note that each of the resulting maps

0,: (X, dX) -> (Rm x R", RmxRn- (0, 0)),

from the set X modulo its boundary to Euclidean space modulo the complement
of the origin, has a well defined degree. For the case t = 0, the degree of this map
</>0: (x, y)i-^(x, y') is equal to ±1. In fact, for each fixed x, the definition 5.4 requires
that the correspondence y<->y' yields a map of degree ±1 between appropriate sets;
and this degree is not changed when we raise the dimension by adding x as an
extra variable. Now, since the degree cannot change under homotopy, it follows
that the map </>,: (x, y) •-» (x - x', y' - y) must also have degree ± 1. Hence the equation
<Ai(x, y) — (0, 0) must have a solution; and this solution is the required fixed point
o f / i n X . •

Concluding remark. It should be possible to prove much sharper results about
polynomial automorphisms of degree d which are also d-fold weak horseshoes.
One would like to know that the set K = K(g) is always a hyperbolic Cantor set,
and that g restricted to K is always homeomorphic to a full shift on d symbols.
Furthermore, one would like to know that the sets K+ and X_ have measure zero,
so that almost every orbit of g diverges to infinity in both forward and backward
time. In the complex case, the methods of Hubbard and Oberste-Vorth should
provide a strong attack on such questions. For the real case, compare [D] or [DN].

6. 77ie elementary maps
This section will study the classification of elementary transformations up to con-
jugacy, either within the group E of elementary transformations, within the group
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G of polynomial automorphisms, or within the larger group consisting of all analytic
diffeomorphisms of the (real or complex) plane. Here by analytic we mean real
analytic if we are working over the real numbers, or complex analytic if we are
working over the complex numbers. Given an elementary transformation

e(x, y) = (ax + p(y), Py+ y),

we want to choose / within the required group so that the conjugate / " ' ° e°f has
the simplest possible description. First suppose that f(x, y) = (Ax + g(y), By+ C)
is also elementary. Computation shows that the conjugate e = / " ' ° e °f is given by
e(x,y) = (ax + p(y), Py+y) with

Ap(y)=p(By + C) + aq(y)-q(py+y), By = (p-l)C + y. (6.1)

In particular, the two coefficients a and /3 are invariants of the £-conjugacy class
of e.

Remark. If we allow conjugation by elements of the larger group G, then we can
say only that the unordered pair {a, /?} is an invariant. In fact, if e has a fixed point,
then a and p are equal to the two eigenvalues of the derivative at that fixed point,
and hence are actually invariant under analytic conjugacy. If there is no fixed point,
then the pair {a, /?} must be equal to {1, 8}, where the jacobian determinant S of e
is clearly a G-conjugacy invariant.

In practice, we will break the problem into two steps by noting that E splits as
the semi-direct product of its commutator subgroup £', which consists of all
transformations of the form

f(x,y) = {x + q(y),y+C),

with the subgroup of diagonal linear transformations f(x, y) = (Ax, By). Thus we
can conjugate by an arbitrary element of E in two steps, first conjugating by an
element of E', and then by a diagonal linear transformation.

LEMMA 6.2. Every elementary transformation is E'-conjugate to a unique normal form
which is either an affine transformation

a(x, y) = (ax, y + y) (6.2a)

with y T* 0, or a transformation of the form

e(x,y) = (ax + ah(y),py) (6.2b)

where h(y) is a polynomial which satisfies the identity ah(y) = h(Py), and where the
coefficient of the term of next to highest degree in h is zero ifh is non-constant.

Note that in Case 6.2b the 'horizontal' line y = 0 is invariant under e, but that in
Case 6.2a no horizontal line y = constant is invariant. One very useful consequence
of the equation

ah(y) = h(Py) (6.3)

is the following simple expression for the fe-fold iterate of e.

e°k(x, y) = (ak(x + kh(y)), pky). (6.4)

The equation (6.3) can be best understood by expressing h (y) as a linear combination
of monomials y", and noting that ah(y)-h(Py) is then a corresponding linear
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combination of monomials (a —f3n)yn. Thus (6.3) is satisfied if and only ifh(y) is
a linear combination of monomials y" for which a = /3". In particular, if h(y) is
non-zero of degree d, then the coefficients a and /3 must satisfy the equation a = /3 d.
If p is not a root of unity, then there can be no other integer n satisfying a = /8",
hence h(y) must simply be a multiple of yd. We can now give a precise normal
form for conjugacy classes in E as follows.

THEOREM 6.5. Every element ofE is E-conjugate either to a diagonal linear transforma-
tion (x, y)>-+(ax, /3y), to an aperiodic affine transformation

(x,y)^> (ax,y + l) or (x,y) -> (x+ 1, £y), (6.5a)

to a transformation of the form

e(x,y) = (pd(x + yd),l3y) (6.5b)

for some integer d > 1, or to a transformation

e(x,y) = (p»{x + y'*q(yr)),py) (6.5c)

for some / t > 0 , where {) is a primitive rth root of unity and where q(z) is a non-constant
polynomial of the form ±zk + qk^iz

k~l + • • • + q^z+\, with leading coefficient +1 in
the complex case and with coefficient qk^} equal to zero in the special case fi = r = 1.
This normal form is unique except that, in Case 6.5c, the polynomial q(z) may be
replaced by q(ioz), where a> can be any kth root of unity in the complex case, and
where a> = ±1 when fi = 1 (but w = 1 when j5 = -1 ) in the real case.

Remark 6.6. This integer /J., if it is not zero, is called the multiplicity of the line y = 0
as a line of periodic points of e. Similarly in Case 6.5b, if /3 is a root of unity, then
the integer d > 1 is called the multiplicity of the periodic line y = 0. More generally,
if an analytic transformation (x, y)>-*(fl(x, y),f2(x, y)) has a non-singular curve
v(x, y)= 0, of periodic points, then the multiplicity j a > l of this curve is defined
as follows. After replacing the m a p / b y a suitable iterate, we may assume that 77 =0
is actually a curve of fixed points. The multiplicity is defined to be the largest integer
/A such that both of the analytic functions /,(x, y) — x and /2(x,y)—y are divisible
by T)(X, yY throughout a neighborhood of this fixed curve. Evidently n is well
defined, and invariant under analytic conjugacy. (This /t should not of course be
confused with the multiplicity of an isolated fixed point, as discussed in Sections
3 and 8.)

Proof of 6.2 and 6.5. First suppose that fi ^ 1. By 6.1 there is a unique choice of
the vertical translation constant C so that y = 0. Then

If we express both p{y + C) and q(y) as linear combinations of monomials y", then
evidently we can choose q( y) so as to kill off all of the monomial summands of
p(y) except those for which a = f3". Thus we obtain the normal form 6.2b. If y3 = 1
and y = 0, then the proof is essentially the same. However, in this case we are free
to choose the constant C so as to set the center of gravity of the polynomial h(y)
equal to zero, or in other words to set the next to highest coefficient equal to zero.
Finally suppose that @ = 1 and y ^ 0. Then it is not difficult to show that there exists
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a polynomial q(y) which satisfies the equation

so that e(x,y) = (ax,y + y). This proves 6.2; and the proof of 6.5 is now completely
straightforward. •

The problem of conjugacy within the larger group G can be settled as follows.

LEMMA 6.7. An elementary map e(x,y) = (ax + p(y),f3y+y) of degree d > 2 has
minimal degree within its E-conjugacy class if and only if a = /3d and either /3 ^ 1 or
y = 0. An element satisfying these conditions also has minimal degree within its
G-conjugacy class, and two such are G-conjugate if and only if they are E-conjugate.

To complete the picture, it is easy to see that two linear transformations are
G-conjugate (or even analytically conjugate) if and only if they are linearly conju-
gate; and that two affine transformations without fixed point are G-conjugate if and
only if they have the same determinant. The proof of 6.7 is based on § 2.1 and § 2.3
together with the arguments above, and will be left to the reader. •

Next let us study the dynamical properties of these elementary transformations,
so as to prove the statements in § 3.10. The case of a linear transformation is easily
dealt with. In the case of an affine transformation of the form 6.2a or 6.5a, it is
clear that every orbit diverges to infinity, so that the sets ft = K are vacuous. Thus
we need only prove the following.

LEMMA 6.8. If'e is an elementary transformation which is not E-conjugate to an affine
transformation, then the non-wandering set ft(e) is equal to K(e), and consists of
either a single source or sink, or a finite union of horizontal lines on which e acts by
an isometry. If there is more than one such horizontal line, then ft consists completely
of periodic points.

Here the condition that e is not E- conjugate to an affine map is needed to exclude
examples like (x, y)>->(2x— y2, y), which has a parabola of fixed points.

Proof of 6.8. After conjugating by an element of E, we may assume that e has the form

e{x,y) = (a(x + h(y)),py),

with ah{y) = h(f}y) as in 6.2b, and where h(y) is non-linear. Recall from 6.4 that
the n-fold iterate of e is given by

e°"(x,y) = (a"{x+nh(y)),l3"y).

If \a\, |/3|<1, then every non-trivial orbit converges to the origin as «-»+oo and
diverges to infinity as «-» -oo; hence the set ft = K consists of a single sink at the
origin. Similarly, if \a\, |/3|> 1, then ft = K consists of a source at the origin. If
|a| = |j8| = l, then the set il = K coincides with the locus h(y) = 0; for every point
in this locus has a bounded recurrent orbit, and every point outside it has an orbit
which diverges to infinity. In Case 6.5b, where h(y) = yd, this locus consists of the
coordinate line y = 0. In Case 6.5c, where the polynomial h{y) is not homogeneous,
this locus consists of a finite union of horizontal lines, and every point in it is
periodic, with period dividing r. (In the complex case the locus h(y) = 0 must
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contain at least two distinct lines, but in the real case it may even be vacuous.) Note
that the same description holds for any transformation which is conjugate to e
within the group E, since the elements of E carry horizontal lines to horizontal
lines. This proves 6.8, and the proof of 3.10 can easily be completed. •

Next let us study the analytic behavior of an elementary transformation in the
neighborhood of a fixed point, which we may take to be the origin.

LEMMA 6.9. An elementary transformation e(x, y) = (ax + p(y), fiy), with afixedpoint
at the origin, is locally analytically conjugate to a linear map if and only if either
(1) it is already E-conjugate to a linear map, or
(2) the coordinate line y = 0 is a line of periodic points and has multiplicity /x = l.

Proof. By 6.2, we may take e to have the normal form e(x,y) = (ax + ah(y), fiy),
with ah(y) = h(fiy). In Case (2) the polynomial h(y) must be divisible by y but
not by y2. (Cf 6.6.) Therefore the correspondence f(x, y) = (x, h{y)) is an analytic
diffeomorphism on some neighborhood of the line y = 0. (In the real case, it may
even define a global analytic diffeomorphism of If2. For example this is the case if
h(y) = y + y3-) Now computation shows that/° e °f~1 is equal to the linear transfor-
mation (x, y)>-+a(x + y, y). Conversely, if neither (1) nor (2) is satisfied, then the
polynomial h{y) must be divisible by y2. In particular, the first derivative of e at
the origin must be a diagonal linear transformation. Therefore, if e were analytically
conjugate to any affine map, it would necessarily be analytically conjugate to a
diagonal linear map. This would imply the existence of two transverse e-invariant
curves through the origin, corresponding to the two coordinate lines for the diagonal
linear map. In fact there clearly does exist one smooth e- invariant curve through
the origin, namely the coordinate line y = 0. Any second curve transverse to this
one could be described locally as the graph of an analytic function x = <f>{y). Such
a curve is e- invariant if and only if the identity

is satisfied. But an argument completely analogous to the proof of 6.2 shows that
there can be no such function <t>(y). •

In the complex case, we can give a precise classification of elementary maps up
to analytic conjugacy.

THEOREM 6.10. Let e and f be two complex elementary maps each of which has at
least one periodic point. Then e and fare conjugate in the full group of complex analytic
diffeomorphisms ofC2 if and only if they are already conjugate within the group G = Gc-

The proof begins as follows. It is easy to check that two linear maps are analytically
conjugate if and only if they are linearly conjugate. Thus we need only consider
the normal forms of 6.5b and 6.5c. Note that these two cases are essentially different
from each other, since the non-wandering set is a point or a line in case 6.5b, but
is the union of two or more parallel lines in case 6.5c. For the transformation
e(x, y) = (tid(x + yd), fiy) of 6.5b, if d = 1 then we are in the linear case, while if
d > 1 then e is not locally analytically conjugate to a linear map by Lemma 6.9,
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and the normal form is uniquely determined by the two eigenvalues, together with
the multiplicity of the x-axis as a line of periodic points when the eigenvalues are
roots of unity. Thus we need only consider the case 6.5c. Let e(x, y) =
(a(x + h(y)), fiy) where ah(y) = h(f}y), and where ft is a primitive rth root of unity.
Recall that the non-wandering set Cl coincides with the locus h(y) = 0, and consists
of two or more horizontal lines. Any conjugacy to another elementary transformation
would have to carry il to some (possibly different) set of horizontal lines. In fact
each of these lines has a certain multiplicity as a zero of h(y), or equivalently as
a periodic line of e, and again it is not difficult to check that these multiplicities are
local analytic invariants. We will need the following result which was suggested to
us by W. Thurston and by C. Fefferman.

LEMMA 6.11. If a complex analytic diffeomorphism ofC2 carries two or more horizontal
lines y = constant into horizontal lines, then it carries every horizontal line to a horizontal
line, and hence has the form

Proof. Suppose that some horizontal line y — c did not map to a horizontal line.
Then the projection of f(x, c) to the second coordinate would be a non-constant
entire holomorphic function of x which omits at least two values. This is impossible
by Picard's Theorem; and the rest of the argument is straightforward. •

Thus, after composing with the inverse of the affine map (x, j>)>-»(x, Cy + D), we
may assume that every horizontal line maps into itself. The proof of 6.10 now
continues as follows. Suppose that e is analytically conjugate to another transforma-
tion e' of the same form. After conjugating by an elementary affine transformation,
we may assume that e'(x,y) = (a'x + p'(y), /3'j>) where the two polynomials p and
p' have the same zeros, with the same multiplicities. Thus p' is some multiple of p,
and after conjugating by an appropriate diagonal linear transformation we may
assume that p' = p. Finally, the root of unity )3 has a geometric description since
the transformation e acts as a rotation by p on the set of lines in fl. Hence this
coefficient /3 must also be preserved by the analytic conjugacy. •

We conclude by noting that the hypothesis that our maps have periodic points
is essential.

LEMMA 6.12. An elementary map without periodic points is always analytically conjugate
to a translation in the complex case, or to a map of the form a : (x, y)>->(±x, y +1) in
the real case.

Proof. In the complex case, it follows from 6.5 that such a map must be G-conjugate
to an affine map of the form a(x, y) = (Sx, y +1). Setting S = exp (k), we have

r1°e°f(x,y) = (x,y + l),

where / is the global analytic diffeomorphism /(x, y) = (exp (ky)x, y). In the real
affine case, we can only set 8 equal to ±exp (fe), thus obtaining an analytic conjugacy
between the maps (x,>>)>-»(Sx,y + l) and (x,y)>-+(±x,y + l). In the real case, we
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may also have an aperiodic elementary transformation of the form 6.5c:

e(x,y) = (x + p(y),±y),

where p( y) = p(± y) is a polynomial without real zeros. In this case, the diffeomorph-
ism f(x, y) = (x/p(y), y) satisfies / ° e °f~\x, y) = (x +1, ±y). •

7. Uniqueness of the quadratic and cubic Henon maps
Let / be a complex polynomial automorphism which has only isolated fixed points,
and let n be the sum of the multiplicities /i & 1 of these fixed points. If n s, 1, then
it follows from §§ 2 and 3 that / is conjugate in the group G = Cc to an elementary
map. On the other hand, if n > 2, then/is conjugate to a composition of (generalized)
Henon maps which has degree d equal to n. According to § 6.8, two maps with
n = 1 are conjugate by a complex analytic diffeomorphism of C2 if and only if they
are conjugate in G. It seems plausible to conjecture that the same statement holds
when n > 1. However, we have been able to prove this only in the cases n = 2 and
n=3.

THEOREM 7.1. Assume that f and g are complex polynomial automorphisms of C2

which have either two or three isolated fixed points, counted with their multiplicities.
Iff and g are complex analytically conjugate then f and g are conjugate in G.

This theorem remains valid in R2 if we assume that / and g are real Henon maps
of degree at most three whose fixed points are all real.

Before we start our computations we make the following observations. Suppose
that two polynomial automorphisms / and g of C2 are conjugate by some homeo-
morphism T from C2 to itself. Then every fixed point (x, y) of / is mapped by T
to a fixed point (*', y') of g, and this one-to-one correspondence between fixed
points preserves the multiplicity of each fixed point. Thus the algebraic number n
of fixed points is invariant under topological conjugacy. In particular, if / and g
are cyclically reduced, then they must have the same degree. Now suppose that /
and g are analytically conjugate under a complex analytic diffeomorphism T of
C2. Then T induces a similarity between the 2x2 complex Jacobian matrices
J(f)(x, y) and J(g)(x', y'). In particular, these two matrices have the same trace
and the same determinant. The same arguments apply to the periodic points of/
and g. Thus T induces a one-to-one correspondence between the periodic points
of / and g which preserves the period, the multiplicity, and the trace associated
with each periodic point. In particular, if the polynomial automorphisms / and g
are cyclically reduced of degree d = n > 2, then we get infinitely many distinct
complex invariants which must coincide for / and g. (In principle, this yields an
infinite number of polynomial identities which must be satisfied by the coefficients
of the maps / and g.) This helps to motivate our conjecture that / and g must be
conjugate in G.

If/ has a prime number of fixed points, counted with their multiplicities, then
Corollary 2.7 yields that / is conjugate to a (generalized) Henon map. In what
follows we shall assume that / and g are two Henon maps of degree n

) = (y,p(y)-Sx), g(x,y) = (y, P(y)-Ax),
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which are normalized as in Theorem 2.6 so that the polynomials p(y) and P(y)
have leading coefficient +1 and next coefficient zero. Each fixed point of/ is of the
form (x, x) with p(x) - Sx = x, and with

det (J(f)(x, x)) = 8, trace (J(/)(x, x)) =p'(x).

If / and g are analytically conjugate, then it follows that 8 = n. Suppose that the
fixed points of/ are (x,, x,) for j = 1 , . . . , n. We deduce that

p(x) = (x-x,) • • • (x-xn) + (l + 8)x.

In the case n = 2, since the trace at (x,, x,) is equal to 2x, and is an analytic conjugacy
invariant, the normal form is uniquely determined. On the other hand if n > 2, since
the center of gravity of p(x) is 0, we have

x, + x2+- • -+x n =0 . (7.2)

If the fixed points of g are (yjt yj),j = 1 , . . . , n, where T carries (x,, x,) to (yJt yj),
then equating the traces of / and g at the fixed points we get the identities

(X7-X,) • • • (Xj-Xj^)(Xj-Xj+i) • • • (Xj-Xn)

= (yj~yi) • • • (yj-yj-xKyj-yj+i) • • • (yj-yn) (7.3)

for j = 1 , . . . , « .

LEMMA 7.4. Let {x , , . . . , xn} and {yx,..., yn) be two sets of n complex numbers,
with n < 3. Assume that the center of the gravity of each the two sets is zero, and that
the identities (7.3) hold. Then

(x -x , ) • • • (x-xn) = (x-wyi) • • • (x-wyn)

for some a) with a)"'1 = 1.

Proof. For n = 2 the equalities (7.2) and (7.3) yield immediately that x1=_y1 and
x2 = y2. For n = 3, adding the equations (7.3) in pairs, we obtain three equations of
the form (X J -X , ) 2 = (;K1->'J)

2. Combining these new equations with (7.3), we see
that there is a sign w = ±l so that (xi — Xj) = a>{yi—yJ) for every i and / Since
x, + x2 + x3 = 0 and therefore 3xi = {xi-xJ) + (xi-xk), it follows that x, = «y, as
required. This proves 7.4; and Theorem 7.1 follows easily. •

The following example due to McKay shows that Lemma 7.4 is false for n = 4. Let

(x,, x2, x3, x4) = (1, - 9 , 5,3), (yi, y2,y3,y4) = (7, -13 ,1 , 5)/31/3.

Thus any proof of 7.1 for maps of degree four or more would have to make use of
periodic points of period greater than one.

To conclude this section, let us study what happens if we allow real diffeomorph-
isms (not preserving the complex structure) of the space C2. We will only be able
to deal with the classical Henon maps with degree n = 2. We will identify C2 with
the real vector space R4, so that every polynomial automorphism / of C2 can also
be considered as a real polynomial automorphism of R4. Let z be a fixed point of
/ Denote by A = J(f){z)c and B = J(f)(z)R the 2 x 2 complex valued and the 4 x 4
real valued Jacobian matrices of/at z. If A has eigenvalues {a, /3} and characteristic
polynomial (t-a)(t-f3) = t2-Tt + 8, then B has eigenvalues {a,d,p,J3} and
characteristic polynomial (t2- rt + 8)(t2- ft + 8). In fact B is similar over C to the
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direct sum of A and A, its complex conjugate. Denote by f* the polynomial
automorphism of C2 obtained from / by conjugating all the coefficients appearing
in the components off. Thus / and f* are real linearly conjugate by the involution

THEOREM 7.5. Let f and g be two polynomial automorphisms ofC2 which have exactly
two fixed points counted with their multiplicities. Assume that f and g are conjugate
by a real diffeomorphism of C2. Then g is conjugate either to for to f* in G.

Proof. We may assume that

Assume that the fixed points of/ are (M, W) and (v,v) and that the fixed points of
g are (U, U) and (V, V). Note that the trace T of the Jacobian matrix of/ at the
fixed point (w, M) is equal to 2w. A brief computation shows that

u + v = 8 + l, uv = c, U+V = &+1, UV=C. (7.6)

Suppose that the diffeomorphism T carries (M, U) to (U, U) and (v, v) to (V, V).
Denote by Ax and A2 the 2x2 complex valued Jacobian matrices of/ at (u, w) and
(v, v) and by B, and B2 the 2x2 complex valued Jacobian matrices of g at (U, U)
and (V, V) respectively. Then Aj®Aj is similar to B}®Bj for j = 1, 2. Equating the
characteristic polynomials of these two matrices for 7 = 1, we obtain the equations

|5|2 = |A|2, Re(S«) = Re(At7),

Re (5) + 2|u|2 = Re (A) + 2|t/|2, Re (M) = Re (U),

and there are corresponding equations for j = 2, with v and V in place of u and U.
It then follows from (7.6) that Re (5) = Re (A); and hence Im(S) =
±Im(A), Im(u) = ±Im {U) and Im (t;) = ±Im (V). Using the equation Re(5w) =
Re(At7), we see that the three signs must either all be +1 or all - 1 , so that
(A,C) = («,c)or(A,C) = («,c). •

8. Fixed point multiplicities
This section will supplement § 3 by discussing the multiplicity of an isolated fixed
point of a complex analytic map / By definition, a fixed point JC is 'simple' if the
graph of / intersects the diagonal transversally at the point (x,x), or equivalently
if the eigenvalues of the first derivative of / at x are all different from +1. The
multiplicity of an arbitrary isolated fixed point can be defined intuitively as the
unique integer fi with the property that an arbitrarily small perturbation of / will
replace this fixed point by a cluster of /A nearby fixed points, each of which is
simple. The proof that there is a well defined integer fi > 0 with these properties
can be carried out either by topological methods, as described for example in
[Mil, Appendix B], or by algebraic methods, as described in [Fu, pp. 7-14].
However, for computational purposes, it is convenient to choose a more algebraic
form of the definition.

In practice we are interested in the case of two complex variables. It is convenient
to write the given map as

(8.1)
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Thus a fixed point of / is just a common zero of the complex valued functions p
and q, and such a fixed point x = {x, y) is simple if and only if the Jacobian
determinant d(p, q)/d(x, y) is non-zero at x. Whether or not this determinant is zero,
the multiplicity (j. could be defined topologically as the local degree of the mapping
(x, y)>->(p, q) at x. Algebraically, it is defined as follows. Let us suppose for
convenience that JC = 0.

Definition. If the analytic map (8.1) has an isolated fixed point at the origin, then
the multiplicity fj. of this fixed point is equal to the codimension of the ideal generated
by p and q in the local ring C[[x, y]] consisting of all formal power series in the
indeterminates x and y.

Note that /u, = 1 if and only if the origin is a simple fixed point. Here we could
equally well work in the subring C{x, y} of convergent power series (alias germs
of complex valued holomorphic functions). If p and q are polynomials, then we
could work in the local ring consisting of rational functions whose denominator
does not vanish at the given point. For the proof that these alternative versions of
the definition are equivalent, the reader is referred to [Fu]. All of these definitions
extend easily to the case of a complex analytic map in dimension three or more.

We want to study the relationship between the multiplicity of the origin as a fixed
point of the mapping f:C2^C2 and its multiplicity as a fixed point of the various
iterates f". To this end, it turns out to be convenient to study curves through the
origin which are mapped into themselves by / In order to avoid convergence
problems, we will study only 'formal' curves, that is curves which are defined by
formal power series of the form

t»-» y(t) = vlt + v2t
2 +

Here vt is to be a non-zero vector in C2, called the tangent vector of y at the origin.
Such a curve is invariant under/ iff(y(t)) = y(g(t)) for some formal power series
g(t) = git + g2t

2+ • • •. If y is invariant, note that the tangent vector t>, must be an
eigenvector of the first derivative of / at the origin. Conversely, we will prove the
following.

LEMMA 8.2. Let a and (i be the eigenvalues of the first derivative of' fat the origin,
and let »i ^ 0 be an eigenvector corresponding to the eigenvalue a. If fi # ak for every
integer k s 2, then there exists one and only one formal curve with tangent vector vl

which is invariant under f.

Proof. After conjugating by a linear change of coordinates, we may assume that
»! = (1,0). Hence any formal curve tangent to vt can be reparametrized as the graph
of a formal power series

If we set/(x, y) = (fi(x, y),f2(x, y)), then the condition of/-invariance is expressed
by the equation

in C[[x]]. Here f and f2 are given, and this equation must be solved for the
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coefficients <)>k. Using the fact that (1,0) is an eigenvector with eigenvalue a, we
see by a straightforward computation that the coefficient of xk in this expression is
equal to ( a ' — f3)<f>k plus a polynomial in the (f>j with j < k. Therefore, we can solve
inductively for the required coefficients </>k. •

Here are two examples to show that the conditions on a and /3 are necessary.
(See also §6.) If f(x, y) = (y, y2 + x) with eigenvalues ±1, then Lemma 8.2 shows
that there exists an invariant curve corresponding to the +1 eigenvalue; but a brief
computation shows that there is no invariant curve corresponding to the -1 eigen-
value. For the map f(x, y) = (x + y3, y + x2) with both eigenvalues equal to +1, a
similar computation shows that there are no invariant curves at all.

Remark 8.3. If we assume also that \a\ ^ 1, with a/? ^ 0, then the invariant formal
curve which is constructed in 8.2 is actually given by a convergent power series. In
fact, if the origin is either an attractive or a repulsive fixed point, then according
to [R] the map / is conjugate by a germ of an analytic diffeomorphism either to a
linear diagonal map (x, y)i-»(ax, /3y) or to the map (x, y)>-*(ax + yk, py) where
o- = fik for some positive integer k. (Compare § 6.5.) In both cases y = 0 is an invariant
curve in the a direction. On the other hand, if \a\ < 1 s |/?| or \a\ > 1 > |/ j | , then the
existence of such an analytic invariant curve follows from the 'stable manifold
theorem'. Standard proofs of this theorem for the real case, as described for example
in [Sh], extend easily to the complex case. If we assume also that f is an analytic
diffeomorphism of C2, then such an invariant curve extends uniquely to an invariant
embedded submanifold which is analytically diffeomorphic to C and contains no other
periodic point off. In fact such a submanifold has a preferred complex coordinate
z, well defined up to multiplication by a constant, characterized by the fact that /
maps a point with coordinate z to a point with coordinate az. This preferred
coordinate can first be constructed locally; and the map/can then be used to extend
it.

The main result in this section is the following.

THEOREM 8.4. Let f:C2^ C2 be an analytic map with a fixed point of multiplicity
fi>l at the origin. If the Jacobian determinant 8 off at the origin is not equal to +1,
then every iterate f°" with 8" ?* 1 has a fixed point with this same multiplicity \x at the
origin. In particular, if8 is not a root of unity, then every.f°" with n # 0 has this same
fixed point multiplicity at the origin.

Proof. Evidently the two eigenvalues of the first derivative at the origin are equal
to 1 and to 5 # 1. By 8.2 there is an invariant formal curve corresponding to the +1
eigenvalue, and after conjugating by a formal change of variable we may assume
that this invariant curve is just the x-axis. In other words we can replace / by a
formal map of the form g(x, y) = (g,(x, y), g2(x, y)) with g,, g2 s C[[x, y]], where
gi(x, 0) = 0. We now claim that g,(x, 0) = x + x'iu(x), where n > 1 is the multiplicity
and where u(x) is a unit in the ring C[[x]]. In other words

g(x, 0) = (x + ex" + (higher order terms), 0) (8.5)

with c 7s 0. To prove this, recall that fi is defined as the codimension of the ideal
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generated by g, - x and g2-y in the local ring C[[x, y]]. But

g2(x, y) = y(8 + (higher order terms))

with 8 7* 1, hence g2-y is equal to y multiplied by a unit in this ring. Thus if we
factor out by the ideal generated by g2 - y, then we have effectively set y equal to
zero. It follows that the multiplicity ju. is equal to the codimension of the ideal
generated by g,(x,0)-x in C[[x]]. The required formula (8.5) follows. (Caution:
note that this argument is valid only if 8 ¥= 1.)

Now if we replace the formal map g(x, y) by its w-fold iterate, then the x-axis
will remain an invariant curve, and the expression gi(x, 0) = x + cxM + (higher order
terms) will simply be replaced by x + ncx* + (higher order terms). If the Jacobian
determinant 8" is not equal to 1, then the formula (8.5) still applies, so it follows
that the multiplicity fx does not change. •

On the other hand, if 8" = 1, then the multiplicity will definitely increase. As an
example, the map f(x,y) = {y, x + y") has fixed point multiplicity fi = n at the origin,
but f°f has multiplicity fi = n2.

COROLLARY 8.6. Every cyclically reduced polynomial automorphism of the complex
plane with Jacobian determinant 8 # 1 has periodic points of period p for every sufficiently
large prime p.

Proof. If/ has degree d, then we know that the algebraic number of fixed points of
/ ° p is equal to dp > d. If there are no periodic points of period p, then there must
be at least one fixed point of/ whose multiplicity as a fixed point of fOp is strictly
larger than its multiplicity as a fixed point of/ Let us call a prime p 'exceptional'
for / if it has this property. Let a and /3 be the eigenvalues of the first derivative
at the fixed point. If a ^ 1 and /? ̂  1, so that the fixed point x is simple, and if x
is not simple as a fixed point of fOp, then it clearly follows that either ap = 1 or
Pp = 1. On the other hand, if a = 1 and hence /? = 8 ̂  1, then it follows from 8.4
that the multiplicity can increase only if 8P = 1. Since the map / can have at most
d fixed points, and since each equation of the form ap = 1 with a # 1 can have at
most one prime solution, it follows that there can be at most 2d exceptional primes.

•
Added in Proof. The hypothesis that 5 ^ 1 can be eliminated by using Shub and

Sullivan's 1974 result that the sequence of fixed point multiplicities of the iterates
of any C1 map at a fixed point is necessarily bounded. [Topology 13,p. 189. See
also Chow, Mallet-Paret and Yorke, Springer Lecture Notes 1007 (1983), 109-131.]

In fact it is conjectured that there must exist periodic points of all sufficiently
large periods, for any 5.

To conclude this section, let us describe some other methods for computing or
estimating the multiplicity of a fixed point. One more computational form of the
definition can be given as follows. Using the Weierstrass preparation theorem,
the analytic function p(x, y) can be written uniquely as the product of a unit in
the ring C{x, y} and a 'Weierstrass polynomial' of the form P(y) =
xJ(ym + a1(x)ym~l+ • • • +am(x)) withj>0, where the coefficients ak(x)e C{x} are
all divisible by x. Similarly, q(x, y) is the product of a unit and a Weierstrass
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polynomial Q(y) of degree say n in y. The resultant of these two polynomials in y
is a certain (m + n)x(m + n) determinant in the coefficients. If the system of equations
p = q = 0 has an isolated zero of multiplicity /x at the origin, then this resultant is equal
to x" multiplied by a unit of the ring C{x}. [(Fu, p. 10].)

Following are some rough lower and upper bounds for the multiplicity /A. Let us
write the Taylor expansions of p and q as

P=Pm+Pm+i+- ••, q = qn + qn+l+- • •

with p m # 0 and qn^0, where the polynomials pk = pk(x, y) and qk = qk(x, y) are
homogeneous of degree k. Then according to [C] we have /J, s mn. Furthermore, if
the origin is an isolated zero of the system of equations pm = qn= 0, then /J. = mn.
If m, n > 1, then it follows easily that every iterate of the map

f(x, y) = (x + p(x, y),y + q(x, y))

has this same fixed point multiplicity fi = mn at the origin.
An inequality due to Hormander and Lojasiewicz states that the origin is an

isolated zero of the equations p(x, y) = q(x, y) = 0 if and only if there exist positive
constants K and d so that

\p\2 + \q\2>K(\x\2 + \y\r (8.7)

whenever the pair (x, y) is sufficiently close to the origin. Here we may assume that
d is a positive integer. Thus for actual computation of the multiplicity we can replace
p and q by polynomial maps of degree at most d, simply by removing all terms of
degree greater than d in the Taylor expansions of p and q. Also, we can perturb
the coefficients of the terms of degree d and still preserve the inequality (8.7). Thus
we can suppose that p and q satisfy the conditions of the 'non-linear alternative',
as described in § 3. It then follows easily that fi<d2. As an example, if f(x, y) =
(x + xd, y + yd), then evidently this inequality is sharp. All of these inequalities
extend easily to the higher dimensional case.
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