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DEFINING RELATIONS FOR THE CREMONA GROUP OF THE PLANE
UDC 513.6

M. H. GIZATULL1N

ABSTRACT. By methods of the geometry of rational surfaces and the topology of graphs and
cell complexes connected with them, the author establishes defining relations, connecting
projectives, and quadratic transformations, for the group of birational transformations of
the plane over an algebraically closed field.

Bibliography: 11 titles.

Introduction
At the end of the fourth chapter of the book [1] it is remarked that "Noether has proved

a theorem to the effect that a birational automorphism of the plane can be represented as
the product of quadratic transformations and a projective transformation The interest-
ing question of the extent to which the representation of a birational automorphism in
terms of quadratic ones is unique has not yet been investigated." The results of the present
paper enable one to describe the defining relations of the group Cr of birational
transformations of the plane (over an algebraically closed field), this group being gener-
ated by the union f U 2 of the set *? of projective transformations and the set S of
quadratic transformations (i.e. those that map a generic line to a conic). It turns out that
any relation is deducible from relations of the form g\g2$?, — 1> where {g,, g2, g3} C 9 U
2.. This assertion, a reformulation of Theorem 10.7 proved in [10], is inferred from some
properties of rational surfaces; more precisely, from simple topological properties (namely,
the connectivity and 1-connectivity) of the cell complex A(F) associated to a rational
surface V. The use of such complexes in my view accords well both with the essence of the
problem and with the geometrical methods of combinatorial group theory (see Chapter 3
of [11]). Of course, with respect to the latter methods this work could have been done
more systematic by examining the inductive limit of the complexes and the action of the
Cremona group on the limit, we do not follow that course here, since in any approach to
the problem the main work must be carried out at a finite (prelimit) level corresponding to
an individual surface.

I began to study the groups of transformations of algebraic surfaces by conbinatorial-
topological methods with V. I. Danilov in the process of a joint study of the groups of
automorphisms of affine surfaces. I here extend to him my heartfelt gratitude.
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212 Μ. Η. GIZATULLIN

Plan of the paper. In §0 we list some of the notation and terms used. §§1-6 can be

considered as supplements to §0, since the main theorems are proved in §§7-10, and in

§§1-6 we give a preliminary description of the various constructions.

In §1 we present some information we need on curves contractible to a point. For the

most part these are either well known or simple, and so we do not always give proofs.

Assertions 1.8 and 1.9 are given in a somewhat stronger form than is used.

In §2 we introduce the so-called exceptional sets (see [2, Chapter IV, §4.7]), that yield

birational morphisms of one surface onto another (up to an isomorphism of the dominated

surface). Although we mainly need those morphisms whose image is a projective plane

(given by the exceptional sets called basic in §3), even in the study of these we must deal

with exceptional sets of general form.

In §3 we discuss basic sets (bases, for short). With each pair of bases of a surface there

is associated a double coset of the Cremona group by the projective subgroup.

In §4 we associate to a rational surface V the graph Γ,(Κ) whose vertices are the bases

of V and whose edges join two such bases when their associated double coset consists of

quadratic transformation. In §4.4 we introduce the criterion (which we often use) for the

existence of a basis Μ near a given bases L in Γ,( V) and having a given complement L\M

in L. In §§4.7-4.9 we classify the surfaces that are minimal in the set of surfaces having a

triangle in Γ,. This classification is not necessary for us to deduce the main results of the

paper, but since the triangles in Γ, yield defining relations, we need the classification

elsewhere for a detailed description of the set of defining relations.

In §5 we discuss the family of bases called de Jonquieres sets (or /-sets). Any two

representations of such a family determine a de Jonquieres transformation (see [9]); more

precisely, a double coset in i?\Cr/iP consisting of such transformations. Essential use of

/-sets is made only in §9, but many of the sets of bases considered in §§6-10 are /-sets, so

it seemed reasonable to discuss them in §5.

In §6 we meet the surfaces Vn used to resolve triangular automorphisms of degree η of

the affine plane. Using such automorphisms, we enlarge Γ,(Κ) to a graph Δ,(Κ). We

discuss the form of the graphs Δ, for surfaces in some special series that play an important

role in the proof of the 1-connectivity of Δ(Κ), since the contraction of a loop Δ,(Κ) to a

point is accomplished along cells with one-dimensional skeletons in such graphs.

In §7 we prove Theorem 7.2 on the connectedness of the graph Δ,(Κ). This theorem is

slightly stronger than M. Noether's theorem on the generators of the Cremona group.

Theorem 7.2 allows one to join any two vertices of Δ,(Κ) by a so-called monotonic path.

A monotonic path is an analog of the reduced (or canonical) decompositions used in

group theory (see [10]) and in group-theoretical questions of birational geometry (see

Chapter 5 of [2], whose last section poses the question of the relations among the

generators in Noether's theorem). The proof of Theorem 7.2 makes essential use of ideas

of M. Noether and D. Fano as clarified and made precise by V. A. Iskovskih and Ju. I.

Manin (see [3] and [4]).

The central result of §8 and of the whole paper is Theorem 8.1 on the 1-connectivity of

the complex Δ(Κ).

In §9 we prove that a simplicial complex Γ (gotten in §4 from the graph Γ, by filling in

the one-dimensional skeletons of the simplices) is stably 1-connected in the sense that for

any loop ζ in Γ,(Κ) one can determine a natural number Ν such that if /: U -> V is a

blow-up of Ν points in general position, then we can contract the loop /~\ξ) in the

complex T(U) to a point.
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In §10 we describe a relation among the loops of the graph Γ, and the relations among

the generators of the Cremona group. The result of the preceding section on the stable

1-connectivity of Γ enables us to show that all the relations can be deduced from those

corresponding to the triangles of Γ,.

§0. Notations and conventions

0.1. We shall denote the number of elements of a finite set A by #A. For sets A and B,

A\B will denote the set of elements of A that do not lie in B, and ΑΔΒ will denote the

symmetric difference of A and B; that is, Ab.B - (A\B) U (B\A). We put A\B\C =

(A\B)\C.

0.2. Let A be a partially ordered set and Β a subset of it. We call Β maximal in A if

A\B has no elements a with a 5* b for some b in Β. Β is minimal if A\ Β is maximal.

0.3. Nonnegative integers will be called natural numbers. For natural numbers a and b,

[a, b] will denote the set of natural numbers η such that a < η < b. And δ will denote the

function of two arguments defined on any set such that δ(χ, y) = 0 if χ Φ y, δ(χ, y) = 1

if χ = y.

0.4. All the graphs we consider are combinatorial; i.e. they have looped edges, and any

two vertices are joined by at most one edge. Γο is the set of vertices of the graph Γ, and

Γ, = Γ. We also consider partially oriented graphs, i.e. graphs some of whose edges bear

arrows. For a subset A C Γο, Γ \A will denote the subgraph of the graph Γ generated by

this subset. A partial orientation of a graph Γ induces a partial orientation of T\A. An

edge joining vertices A and Β will be denoted by [A, B] or [B, A], the first choice being

made if there is an arrow from A to B. A path ζ of length η (η s* 0) in a graph will be

given by a sequence of vertices ζ = [AQ, Au... ,An], where for 0 «ε i < η the vertices At

and Al + ] are joined by the edge [At, Λ ( + 1 ], which we shall call an edge of the path ζ. We

p u t ξ~][Αη,...,Α\, Ao]. M o r e o v e r , if η = [Bo, Bt,.. .,Bm] a n d ^ 4 n = Bo, t h e n w e p u t

We shall often consider edge-weighted graphs, i.e. graphs whose edges are endowed with

integers. The weight of an edge [A, B] will be denoted by w[A, B].

0.5. A cell complex (or the scheme corresponding to it by 0.5.1 or 0.5.2) will be called a

filling of a graph Γ if Γ coincides with the one-dimensional skeleton of the complex. We

shall fill in graphs in the following two ways (though in this paper we shall need only the

two-dimensional skeletons gotten by these fillings):

0.5.1. Simplicial filling. For a graph Γ we form the simplicial scheme whose set of

vertices is Γο, a simplex being given by a set of vertices {Ao,... ,An) any two of which are

joined by an edge. Such a scheme (or its topological realization) is called a simplicial

filling of the graph Γ.

0.5.2. Prismatic filling. A prism (more precisely, a simplicial prism) is a Cartesian

product of simplices. By the one-dimensional skeleton of a prism we shall mean the graph

whose set of vertices is the product Ax X · · · XAn of nonempty finite sets Ai,...,An

(n 3= 1), two vertices (a,, . . .,an) and (a\,.. .,a'n) being joined by an edge if ak = a'k for all

values but one of k in [1, «]. Note that if a subgraph of such a graph is isomorphic to the

one-dimensional skeleton of a prism, then this subgraph is generated by a subset of the

form B} X · · · X£B, where B:. c At, 1 =£ /: «£ n. By the prismatic scheme of a graph Γ we

shall mean the set Γο and the collection of all the subsets A of Γο for which Γ | A is the

one-dimensional skeleton of the prism. It is clear how to reduce a cell complex to the
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topological realization of the prismatic scheme of a graph. This realization (as well as the

scheme itself) will be called a prismatic filling of the graph.

We define the concept of a homotopy (in a fixed filling) of paths of a graph in the

standard way: paths £ and η are simply homotopic if one can write ξ = ξ ° £0 ο ξ2 and

V — f ι ° Vo ° ?2> where £0 ° TJQ1 is a loop lying in the one-dimensional skeleton of some cell

of the filling; homotopy is the equivalence relation on the set of paths generated by the

relation of simple homotopy. A contractible loop is one that is homotopic to a point.

0.6. The ground field k will be assumed algebraically closed. All surfaces considered are

nonsingular, irreducible, complete and rational. The symbols U, V and W, possibly with

indices, will denote only surfaces. Kv is the canonical class (in Pic(F)) on V. All

morphisms of surfaces considered are birational, i.e. are (regular) morphisms inducing an

isomorphism of the fields of rational function. In other words, "morphism" always means

" birational morphism."

If/: {/ -» Fis a morphism, then

/ " ' i s the inverse image operation in the sense of the theory of schemes;

/ ' means taking the proper preimage;

), where D is a divisor on U, is the divisorial part of the image of D under /(that is,

is the image of D considered as a one-dimensional cycle); and

/*: Pic(F) -> Pic([/) is the morphism of groups of divisor classes (with respect to linear

equivalence) induced by /.

We shall consider the group Pic(F) as a subgroup of Pic(F) ® Q. We shall often denote

the linear equivalence class of a divisor by the same symbol as the divisor itself; therefore,

to denote equality of elements of Pic(F) we shall sometimes use the symbol ~ .

A curve on V is a nonnegative divisor on F. An exceptional curve on a surface is an

irreducible, nonsingular rational curve with selfintersection (-1). Neg(K) is the set of

irreducible curves on V with negative selfintersection. Comp(C) is the set of (irreducible)

components of the curve C. vE(D) is the multiplicity with which an irreducible curve Ε

occurs in a divisor D.

For divisors D, D' on F(and for D, D' e Pic(F)),

(D • D') is the intersection index,

(D2) is the selfintersection index (or, for short, the selfintersection),

π(Ό) - (D • (D + Ky))/2 + 1 is the arithmetic genus of D, and

\D\= {C| Ο 0, C ~ D) is the complete linear system determined by D.

A class D e Pic(F) will be called effective i f | D | = ^ 0 .U\D\ = \D - C\+C, where C

is a curve on V, but there is no curve C" such that C" > C and \D\ — \D — C'\ + C", then

| D — C| will be called the movable part of the system \D\, and C will be called

immovable or fixed. A system | D \ will be called movable if its fixed part is zero. A system

| D | will be called a fibering by curves of genus 0 if it is one-dimensional, movable, and

each of its parts is connected and has selfintersection zero and arithmetic genus zero.

0.7. A set R = {/>,,... ,Pn) of η pairwise distinct points of a surface F is said to be in

general position if for any subset S C R and any blowing up as: Vs -> V oi S the preimage

Og\R\S) under as of the remaining points does not meet any of the curves occurring in

Neg(F s). In particular, a single point Ρ ε V is in general position if it lies on no curve in

Neg(F).

0.8. In some constructions there arises a series of surfaces, say Vn, that depend not only

on a natural numerical parameter η but also on a continuous parameter (i.e. one that takes
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values in some connected algebraic variety of positive dimension). The existence of an

isomorphism of a surface U with such a surface will be expressed by the phrase "{/is a

surface of type Vn" (with a possible indication of the section where the Vn are constructed).

0.9. The first component of « of a heading n.p (or n.p.q) of a section (subsection or

formula) is the number of the section containing it. Such a heading indicates not only the

start of the formulations of the section (subsection) indicated, but also the conclusion or

the omission of proofs of assertions of the preceding one, except for those cases where it

has been stated earlier that some assertion is proved in §§n.p-n.q or when some

subsections form a series of formulations that may be proved further on.

§1. Contractible curves

1.1. A curve L on V will be called contractible if there is a morphism φ: V -> U such

that <p(L) is a point and L = φ~'(φ(Ζ,)). If φ induces an isomorphism of V\L onto

U\{<p(L)}, then φ will be called a contraction of L and denoted by φ Δ . Two contractions

φ: V -» U and χ: V -> W of a curve L differ by an isomorphism p: U -» W; that is,

χ = ρ ° φ.

1.2. A curve L is contractible if and only if it satisfies all four of the following

conditions:

1.2.1. (L2) = - 1 .

1.2.2. (L • Kv) = - 1 , where V D L.

1.2.3. (L • C) < 0 for all C e Comp(L).

1.2.4. L is connected.

Note that

1.2.5. The matrix of the intersections of the components of a contractible curve is

negative definite.

1.3. From 1.2 it follows that if L is a contractible curve, then Comp(L) contains

one and only one Ε for which (E · L) = - 1 , vE(L) = 1, and (C · L) = 0 for C e

Comp(L — £) . We denote this component Ε by [L]. Under any decomposition of the

morphism <pt (see 1.1) as a composition of successive contractions of components of L, the

contraction σ of the component [L] (more precisely, its image \pL([L]) under the composi-

tion \pL of the preceding contractions) is carried out last, and

φ ζ . = σ ο ψ £ ( L = , ^ ( ^ ( [ L ] ) ) . (1.3.1)

1.4. If L is a contractible curve on V, D e Pic(F), (Z> · [L]) = 0 (respectively, (D · L)

= 0), and the system | D — ah \ is movable, then a s* 0. Indeed, 0 =£ ([L] · (Z> — aL)) — a

1.5. If L is a contractible curve (or, more generally, a curve with negative definite matrix

of intersections of its components), and A is a curve whose support is contained in L, then

\A\={A}.

PROOF. Let D be the fixed part of the system \A \, and Β = A - D. Then (B2) s= 0 and

sup Β C L. From 1.2.5 it follows that Β - 0, so D = A and \A | = {A}.

1.6. For a subset A of a surface V let Q(A) denote the set of all contractible curves L with

suppL C A. The inclusion relation on the supports {equivalent to the usual inequality for

contractible curves, since if L and Μ are contractible and supp L D supp M, then L 3* M)

makes G(A) into an ordered set. A morphism f: U -» Vyields an inclusion Q(A) -> Q(f'](A))

mapping a curve L to the curve f'l(L).
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If L and M are contractible and Μ < L, then
1.6.1. (L • M) = -5(L, M),
1.6.2. Μ =£ L and Μ Π [L] =̂ 0 imply (Μ • [L]) = 1, and
1.6.3. for any exceptional component Ε of L, either Ε (Ί Μ = 0 or £ < Μ.
From 1.6.3 it follows that
1.6.4. For a contractible curve L and curves Μ and Ν lying in l£(L), Μ Π JV either is

empty or coincides with Μ or N.
1.7. For contractible L we distinguish the subset G*(L) οι G(L) consisting of all those

Μ e 0?(L) for which (M • [L]) = 1 (see 1.6.2).
1.7.1. The transitive relation on G(V) generated by a relation M e C*(L) is the

inclusion relation; that is, if Lo, L S (2(K) and Lo < L, then G(V) contains a sequence
Lo, L,,... ,L,, such that L,? = L and L, G G*(Li+i) for 0 < / < n.

1.7.2. From (1.3.1) it follows that a contractible L can be represented in the form
L = [L] + Σ-JL,., where {£,,...,Ls} = G*(L).

1.7.3. 77je intersection index of two distinct contractible curves is always nonnegative.
PROOF. Let L and Μ be such curves. We may assume that neither of the inequalities

L > M o r Μ > L holds (see 1.6.1). We induct on # CompL. If L is irreducible, then
clearly (L • M) > 0. Suppose # CompL > 1. By 1.7.2,

L=[L]+2 L,, (L-M) = ([L] · Μ ) + Σ (L, · M).
1 = 1 ; = 1

By the induction hypothesis, (L,· · M) > 0 for 1 < ι < s. The case ([L] • M)> 0 is clear.
Suppose ([L] · M) < 0. Then [L] = [M], ([L] · M) = -1 , all components of the curve L
other than [L] have nonnegative intersection with M, and at least one such component has
positive intersection with Μ since L and Μ are connected and intersect. Therefore,
(Lj • M)> \ for somey in [1, j]; therefore, (L • M)> 0.

As a supplement to 1.7.3 we prove

1.7.4. Suppose neither of the contractible curves L and Μ of a surface V contains the other,
LD Μ φ 0 and(L • Μ) = 0. Then G(L) contains a curve Ν for which (N • M) > 0.

PROOF. We induct on # CompL. For exceptional L, 1.7.4 clearly holds, so that we may
assume # CompL > 1. Using 1.7.2 we can write 0 = ([L] · M) + 1\(L, • M), where
{LV...,LS} = e * ( L ) . By 1.7.3, (L, · M) > 0 for; G [1, s]. The inequality ([L] · M) > 0
is impossible. If ([L] · Af) < 0, then, as we have seen in the proof of 1.7.3, (L · M) > 0
for sorne '̂ G [1, s\, therefore, we may take Ν = Lj. It remains to consider the possibility
([L] · M) = 0. Then (L, • M) - 0 for / e [1, s]. If [L] C M, then all the curves L,
intersect M\ and, since L is not contained in M, at least one of them, say Lj, is not
contained in M; from this and the induction hypothesis it follows that G(Lj) contains a
curve Ν for which (N • M)> 0. If v[L](M) — 0, then [L] Π Μ = 0; therefore, none of
the curves L, occurs in M; applying the inductive hypothesis to Lj now gives the required
N.

1.8. Suppose L is a contractible curve, L > Μ > 0, where Μ is a divisor that is the sum of
contractible curves, such that if Μ — 0, then L has a distinguished component C. Then there
is a sequence of irreducible curves

c , , c 2 ; . . . , c B , (1.8.1)
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starting with the given curve C, — C for Μ ~ 0, such that
η

L = M+ 2 C,., (1.8.2)
1 = 1

and the inequality

S ' Q + M -C, >0 (1.8.3)
. k=\ I I

holds for 1 < i < η if Μ > 0, and for 2<i^n if Μ = 0 .

PROOF. We induce on # CompL. If L is exceptional, then 1.8 is evident. Suppose L is

reducible, Ε is an exceptional component of L, ν = vE{L), μ = vE(M), d = ν — μ, τ:

V -> F is a contradiction of the curve E, L — τ,,/L), and Μ — τ^(Μ). Suppose C = T # ( C )

if Μ = 0 and T # ( C ) ̂ = 0; and in the cases where Μ = 0, T ^ C ) = 0, or Μ φ 0, Μ = 0,

suppose C is a component of the curve L passing through the point τ ( £ ) . We take a

sequence

C , , . . . , Q , (1.8.4)

satisfying the inductive hypothesis for L and Μ and starting with C for Μ = 0. Let

Cj,..., C, ( / , < · · · < i^) are all the terms of (1.8.4) passing through the point τ(Ε). Note

that the number d of such terms equals ρ — μ ( = vE(L — Μ)). We construct the sequence

(1.8.1) by first taking the proper τ-preimages of the terms (1.8.4) and then placing after

each curve T'(C, ) (1 ̂  α < d) the curve Ε and, moreover, in the case Μ = 0, C = Ε,

interchanging the first two terms. Let us verify conditions (1.8.2) and (1.8.3) for this

sequence. (1.8.2) is a result of applying τ" 1 to the terms of the analogous equation

connecting L, M, and the terms of (1.8.4). Further, suppose / e [1, n], a = #([0, / — 1] Π

{/„...,!•<,}) and β =#({'} η {/„...,/,}). Then

i - 1

k=\

= ( T * ( C , ) - / ? £ ) · τ* \M+ 2 C.-μΕ

ί - 1

k=\

i - l

= \Cr\M+2Ck\\ +βμ>0,

and for β = 1 for the term Ε of the sequence (1.8.1) that follows right after T'(C,-) we have

E-\M+ 2 T ' ( C A ) + aE = \E- τ* Α7+ 2 ί

= 1 + μ > 0 .

1.9. Before deducing Corollary 1.9.1 from 1.8 we make a well-known and simple remark

1.9.0. If C is an irreducible curve on V, D is an effective class in Pic(F) (that is,

|Ζ>|τ^ 0 ) and either (D • C) < 0 or (D • C) = 0 but D' Π C φ 0 for some D' e | £ > | ,

then | D- Ο\Φ 0 .

1.9.1. Suppose L and Μ are curves on V, L > Μ > 0, Μ is the sum of contractible curves,

D e Pic(F), \D - Μ\φ 0, (D • £ ) < 0 for all Ε G Comp(L - M), and also that if

Μ = 0, then

1.9a) (D • C) < 0 for some C G Comp L,

or

1.9b) D' Γ) ΣΦ 0 for some D' G\ D | .

Then\D - L|=^ 0.
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PROOF. We use the sequence (1.8.1), which for Μ — 0 starts with the component C
either taken from 1.9a) or intersecting the divisor D* indicated in 1.9b). By induction on t
(1 «s / < n) we shall show that

D- M- 2 Φ 0 . (1.9.1./)

From (1.8.3) with / = 1 and from 1.9.1 it follows that (C, · (D - M)) < 0, whence, since
\D - M\ is nonempty, by 1.9.0 we get (1.9.1.1). Suppose (1.9.1./ - 1) holds. Then from
(1.8.3) and the conditions of 1.9.1 we get

D-M- Σ Ck) -C,) < 0 ,
A = l / /

whence, because of (1.9.1.Ϊ - 1), by 1.9.0 we get (1.9.1./).
1.10. We shall represent the set 6(V) of all contractible curves on V as the set of

vertices of an edge-weighted graph (2,(F), considering two vertices L and Μ as joined by
an edge of weight (L · M) if (L · M) > 0.

1.11. To any graph Γ one can associate the opposite (dual) graph Γ with the same
vertices such that in Γ two distinct vertices are joined by an edge if and only if they are
not joined by an edge in Γ. We shall denote the graph dual to QX(V) by Q{V). We shall
denote by Q(V) the partially oriented graph whose unoriented support is Q(V) and in
which an arrow goes from a vertex Μ to a vertex L if Μ G Q*(L) (that is, Μ < L and
([L] · M) = 1; see 1.7). To a morphism/: U -> V there correspond three embeddings of
graphs

given by the assignment Ll·-* f'\L).

§2. Exceptional sets

2.0. We recall some general concepts of the theory of graphs. A subset / of the set of
vertices of a graph Γ is called independent (see [5], §13.3, or [6], p. 95) if not two vertices
in / are joined by an edge. The opposite concept is the concept of a completely dependent
set or clique (see [5], §13.3): a clique is a set of vertices any two of which are joined by an
edge. A clique with three elements (or the subgraph generated by it) will be called a
triangle. It is clear that a set / is independent in Γ if and only if it forms a clique in Γ. For
del Pezzo surfaces V the independent sets in fi,(F) have been used by Manin (see [2],
Chapter IV, 4.7), who called these sets exceptional. We shall use his terms in 2.1.

2.1. DEFINITION. By an exceptional set on a surface V we shall mean a subject I of the
set Q(V) such that

2.1.1. (L • M) = - 5(L, M) for L, Μ G I (in particular, I is independent in 6,(K)),
and

2.1.2.1 is minimal in S(F) (see 0.2); i.e., if L is a contractible curve contained in some
curve in I, then L ε I (in other words, i f M e l then Q(M) C I).

The number # 1 will be called the length of the exceptional set I.
2.2. Some remarks on Definition 1.2.
2.2.1. From 2.1.2 and 1.11 it follows that no element of I can be the end to an arrow in

Q(V) whose start is inside I.
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2.2.2. From 2.1 and 1.7.3-1.7.4 it follows that any two curves in I either do not intersect

or one contains the other. Therefore, if {L],...,Lm} is the set of all maximal curves in I,

then L, Π L•— 0 for / ¥=j, and

(2.2.2.1)

/=!
Conversely, to any subset {L,,...,LOT} CG(V) consisting of pairwise nonintersecting

curves one can assign an exceptional set by means of (2.2.2.1).

2.3. Any exceptional set I on a surface Vyields a morphism ψλ: V -> Κ, (defined up to a

change to ρ ° φ,, where ρ is an isomorphism) such that

2.3.1. <P|(L) is a point on Vxfor all L in I, and

2.3.2. rankPic(K,) = rankPic(F) - # 1 .

For short we say that φ, is the composition of contractible curves in I and the images of

such curves under preceding contractions. Condition 2.3.2 ensures the absence of superflu-

ous contractions. For example, if L G &{V), then φ β ( Ζ - ) = yL (see 1.1).

Conversely, to each morphism φ: V -> W there corresponds a unique exceptional set

1(φ) C Q(V) such that φ — φ,. This Ι(φ) consists of all contractible curves on V that pass

through a point under φ.

2.4. If φ: V -» W is a morphism and D is a divisor on W, then

φ - ' ( Ζ ) ) = φ ' ( Ζ ) ) + ([L] • <p'(D))L. (2.4.φ)

Indeed, (2.4.φ) is well known for a contraction φ of an exceptional curve, and a simple

calculation enables one to deduce (2.4.χ ° ψ) from (2.4.ψ) and (2.4.χ).

2.5. If I and J are exceptional sets, I C J and φ = φ,, then <p(J) will denote the

exceptional set consisting of the images <?„,(£) of the curves L Ε J for which these images

are nonzero.

2.6. For a morphism/: U -> Κ and an exceptional set I on Fwe put

G I } ; (2.6.1)

that is,/"'(I) consists of the contractible curves passing through a point on V or curves in

I under/. The set/"'(I) is exceptional, I = /(/" ' ( I )) .

2.7. On some relations among exceptional sets on a single surface.

DEFINITION. Let I and J be two exceptional sets on V. We call I and J s-contiguous if

#(IDJ) = # I - J = # J - J

and for a suitable numbering of the elements of I\J and J\I we have

I\J = {L,, . . . ,^}, J\I = {Μ,,...,Λ/J,

(LrMj) = 1 -8(i,j) for I <i,j*£s.

2.8. (2.7.1) is equivalent to the matrix equation

(2.7.1)

(L2-M2) (L2 • Ms)

0

1
1
0

(Ls-M2) Us-K) 1 1
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A comparison of this equation with drawing 180 of the book [7] depicting the Schlafli

double six shows that the sixes of this hexahedron, considered as exceptional sets on a

cubic surface, are 6-contiguous.

If I and J are s-contiguous, then (2(F)|(IAJ) is the one-dimensional skeleton of a

simplicial prism that is the product of an (s — l)-dimensional simplex and a one-

dimensional one.

2.9. We now recall some concepts of the theory of graphs such as that of a maximal

independent set of vertices, i.e. an independent set that becomes dependent after addition

to it of any vertex (see [5], §13.3). The opposite thing is a maximal clique. We shall be

interested in maximal independent sets I (I C G(V)) of the graphs C,(F) (for del Pezzo

surfaces V such I are considered in Chapter IV, §4.8 of [2]). Note that for maximal I, 2.1.2

holds automatically.

2.9.0. //1 is a maximal exceptional set in (2(V), then either

# 1 = rankPic(F) - 2 (2.9.1)

or

# 1 = rankPic(F) - 1. (2.9.2)

If {2.9.2) holds for an exceptional set I, then I is maximal and V — P 2 .

PROOF. For maximal I the image F, of a morphism φ, is a relatively minimal model of

the field of rational functions in two variables. Therefore F, is isomorphic either to one of

the surfaces Fn (n s* 0, η ψ 1) or to P2. Now 2.9.0 follows from 2.3.2 and the equations

rank Pic(FJ = 2 and rank Pic(P2) = 1.

§3. Basic sets

3.1. DEFINITION. An exceptional set L on a surface Fis called basic if it satisfies (2.9.2);

that is, # L = rankPic(F) — 1. The set of all bases on a surface F will be denoted by

3.2. An exceptional set £ C Q{V) is basic if and only if F L ^ P2 (see 2.9.0). Therefore, if

F does not admit morphisms onto P2, then ®(F) — 0 .

3.3. NOTATION. For a basic set £ ε %(V) the symbol Lo (i.e. the letter denoting the

basis but with the subscript 0 and not in boldface) will denote the class <ρ£(/) ε Pic(F),

where / is the class of a line in Pic(FL) (recall that F, ~ P2).

Note that if for a morphism f: U -* V and a basis L e S ( F ) we put Μ = /"'(L) (see

2.6.1), then Μ e ®>(U) and Mo = f*(L0).

3.4. The class Lo ε Pic(F) corresponding to a basis L ε <S(F) is characterized by the

conjunction of the following four properties.

3.4.1. ( L g ) = l ,

3.4.2. (Ky • Lo) + 3 = 0,

3.4.3. the system | Lo | is two-dimensional and movable, and

3.4.4. (L • Lo) = OforL eL.

3.5. From 3.4.4 and the maximality of L it follows that the basis L is uniquely recoverable

from the class Lo:

3.6. Let us show that a basic set on F can be enlarged in a natural way to a basis of the

group Pic(F), and establish some properties of the group basis thus obtained.



DEFINING RELATIONS FOR THE CREMONA GROUP 221

3.6.1. / / L e 9>(V), then the set {Lo} U L (more precisely, the union of {Lo} and the set

of equivalence classes of curves in L) is a basis of the abelian group Pic(K).

3.6.2. Κ v~ -3L 0 + 1L

(here and in 3.6.3, Σ is summation over the classes of the curves L in L).

3.6.3. The intersection index of elements X and Υ in Pic( Υ), expressed through the group

basis { Ln} U L by the equation

is given by the formula (X • Y) = xy — Σχ{ yL\ in particular, (χ2) = χ2 — Σχ}.

PROOF. 3.6.2 is a consequence of 3.4.2 and 1.2.2, and 3.6.3 is a consequence of 3.4.1 and

3.4.4.

3.7. Suppose L ε %(V), L G £, and L' is a maximal curve in L containing L (see the

decomposition (2.2.2.1)). The system \Lo — L\

3.7.1. is one-dimensional.

3.7.2. has as its fixed part the curve L' — L,

3.7.3. has as its movable part the system \L0 — L\, making V a fibering by curves of genus

0,and

3.7.4. is movable if and only if L — L'.

PROOF. The images under <pL of the curves of the system \L0 — L\ form the pencil of

lines in P2 passing through the point Ρ — <pL(L). Hence 3.7.1 follows. Clearly L' ~ φ^'(Ρ);

there the system \L0 — L'\, whose generic fiber is the proper preimage of a generic line in

the pencil referred to, is movable and is the movable part of the system \L0 — L\. This

proves 3.7.3. Let D be the fixed part of \L0 - L\. Clearly D *£ L' and (L o - L') + D ~

Lo — L, whence D ~ L' — L; then, by 1.5, D — L' — L, which proves 3.7.2, and so also

3.7.4.

3.8. Let L ε <$>( V), L, Μ G L and L Φ Μ. Then

Lo- L- Μ\Φ 0. (3.8.1)

3.8.2. If at least one of the curves L or Μ is maximal in L, then d i m | L 0 — L — M\= 0;

that is,\L0 — L — M\= {N}, where Ν is a curve.

3.8.3. If L is maximal in L and vlM^(N) = 0, then the curve Ν in 3.8.2 is contractible.

3.8.4. If the set {L, M) is maximal in L (see 0.2), then Ν is contractible.

PROOF. AS in 3.7 let L' be a maximal curve in L containing L, L' φ Μ. According to 3.7

we decompose the system \L0 — L\ into its fixed and movable parts \L0 — L\= (L' — L)

+ \L0 - L'\. Take a curve C in \L0 - L'\ that intersects M. Since (E • C) - 0 for all

Ε ε CompM, by 1.9.1 we have C - Μ > 0; therefore, (U - L) + (C - M) E\L0 - L -

M\, which proves (3.8.1).

Now suppose L is maximal in L, C G | L 0 - L | , C Π Μ Φ 0, \C - M\= Ν + \D\ is

the decomposition of the system \C — M\ into its fixed and movable parts, and D s* 0.

Then (D2) > 0. The matrix of the intersections of the components of C occurring in the

fibering by curves of genus 0, is negative semidefinite and has a one-dimensional isotropic

space; therefore, D ~ n(L0 — L) for some natural number n, whence Ν ~ (1 — n)L0 +

(n — \)L — M, which is possible when η s* 0 and Ν > 0 only if η = 0. This means that

D = 0, which proves 3.8.2.

Let us prove 3.8.3. Because v[M^(M) — 1, the equation v{M](N) = 0 is equivalent to
= 1· 1° proving that Ν is contractible we may assume that Μ — [Μ] (otherwise
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we contract all the curves in Q*(M); these curves either occur in Ν or do not intersect N).

But if we discard from the fiber C of the fibering by curves of genus 0 an exceptional

component Μ occurring in C with multiplicity 1, we are left with a contractible curve

Ν = C — Μ (that TV is contractible follows from conditions 1.2.1-1.2.4, which hold for it).

Assertion 3.8.4 follows from 3.8.3.

3.9. DEFINITION. If L = {L,,..., Lr) G <$( V) and dim | L o - L, - L} \ = 0, then Lt] will

denote a curve such that {LiJ} =\LQ - Li - Lj\, and ltJ will denote the line ((pjJ^L^)

C P 2

3.10. DEFINITION. Let D G Pic(K) ® Q. We shall say that the system \D\ is rationally

empty if for any positive integer η with the property nD G Pic(F) we have \nD\= 0.

We shall show that for any L G 6A(V) and any rational λ with λ > 1/3, the system

\L0 + XKy\is rationally empty.

From 3.6.2 follows

XKV\ = ( 1 - 3 X ) L O + 2 J
LeL

therefore, if a curve C lies in \n(L0 + \Ky)\, where η > 0, then the curve (φΟ*((Γ) lies

in | «(1 — 3λ)/|, where / is a line in P2; and for λ > 1/3 and η > 0 this is impossible.

3.11. We introduce a distance between bases L, Μ G 'S(F) by the formula

p(L,M) = log 2(L 0 · Mo). (3.11.0)

To justify this we establish the following facts.

3.11.1. (L o · Mo) = 1 implies L = M.

3.11.2. For L,M, Ν G 5 ( F )

( L 0 - i V 0 ) < ( L 0 - M 0 ) ( M 0 - i V 0 ) .

PROOF OF 3.11.1. It suffices to deduce L o = Mo from (L o • Mo) = 1, since by 3.5 Lo

determines L uniquely. Suppose (see 3.6) Mo ~ aLQ + 1aLL. From (Mo

2) = 1, (M o · L o )

= 1, and 3.6.3 it follows that a — 1 and aL = 0 for all L in L; that is, Mo = Lo.

PROOF OF 3.11.2. In the expressions of Lo and No in terms of {MQ} U M, i.e.

L o ~ aMQ — ΣαΜΜ and No ~ bM0 — 2bMM, where Σ is the sum over M, we have, by 1.4,

aM ^ 0 and bM ^ 0. Then, by 3.6.3,

( L o · No) = ab- laMbM < ab = (Lo • M0)(M0 • No).

3.12. NOTATION. For L, Μ G ®(F), φ ( ί , Μ) will denote the double coset in

9\CT/9 (where <5P = Aut(P 2)), (3.12.1)

represented by the transformation q>L ° φ~^ (see 2.3 and 3.2; recall that the morphism <pL

is defined up to replacement by;? ° <pL, where Ρ G 9):

ι v 1
<PM 1 J-9L

V(L,M)

3.13. If/: [/ -» Fis a morphism, then

<p(/-1(L),

(for the definition of/"'(I) see 2.6).
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3.14. Any class in (3.12.1) can be represented as <p(L, M). Indeed, if we take a

representative of this call written in the form β ° α"1, where a and β are morphisms of

some V onto P 2, then we may assume, by 2.3, that α = φ Μ and β = <pL for basic sets

Μ = Ι(α) and L = I(j8). Note further that in representing a given double coset in (3.12.1)

in the form qp(L, M) one can satisfy the requirement L ΓΊ Μ = 0 .

3.15. To each transformation g in Cr we can assign a natural number deg(g), the degree

of g (that is, deg(g) — (I • g(/)), where / is a generic line in P2 and g(l) is its image under

g). Multiplying a transformation on the left or right by a projective transformation does

not change its degree; therefore, deg can be considered as a function on the set (3.12.1).

We have

deg<p(L,M) = (Lo-Mo).

Therefore 3.11.1 simply says that a transformation of degree 1 is projective, and 3.11.2

says that the degree of a composition of transformations does not exceed the product of

their degrees.

3.16. Let

L = {L,,...,L r} e<3&(K), M = {MX,...,M,} e © ( F ) , L η Μ = 0 .

We consider the passage from one group basis {Mo} U Μ to another, {Lo} U L:

Lj ~ a0jM0 - 2 atJMt (0 <j < r). (3.16.1)
i=\

The numbers a^ — (Lj • Mt) are nonnegative (by 1.4 and 1.7.3) and satisfy the following

relations:
r r

aojaok ~ Σ <*ijaik = ajoako - Σ aji0ki = (2δ(0, jk) - \)8(j, k),
1=1 1=1

r r

3β<>; " Σ au = 3aJ0 - Σ αμ = 2θ(0, j) + 1.
i = l ι = 1

The relations in the first line are gotten by comparing the intersection indices of the

members of (3.16.1), and those in the second by comparing the expression of Kv in terms

of {Mo} U Μ and {Lo} U L indicated in 3.6.2.

3.17. EXAMPLE. Take a blowing up φ: V-* P2 of five points {PU...,P5} in general

position in P2 and two bases L = Ι(φ) (that is, L = {£,,.. . ,L5), where Lt = <p~\Pt)) and

Μ = {M\,...,M5}, where Af, is the proper φ-preimage of the conic passing through

/*,,... ,P5, and for 2 < ι: < 5, Mt• — Lu (see 3.9; that is, Mi is the proper φ-preimage of the

line passing through Pt and />,). The edges of the graph C , ( F ) | L U Μ are [L,, MJ,

[M,, LJ and [L,·, MJ (1 «£ / *£ 5; there are 13 edges in all).

C(V)\L· U Μ is the one-dimensional skeleton of a polyhedron in the four-dimensional

space gotten from the simplicial antiprism (whose base if the three-dimensional simplices

spanned by {L2,...,L5} and {Λ/2,...,Λ/5}) of the superstructure pyramid on its bases.

The matrix (a,7) considered in 3.16 is this case is

3
2
1
1
1
1

2
1
1
1
1
1

1
1
1
0
0
0

1
1
0
1
0
0

1
1
0
0
1
0

1
1
0
0
0
1
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3.18. EXAMPLE GENERALIZING 3.17. Suppose ά^Ι,ψ: V -» P2 is the blowing up of a set

{P\,... ,P2j-\) of Id — 1 points in general position, L = Ι(φ) = {L,,... ,L2d_x), where

L, = ψ'\Ρί), 1 «£ / =s Id — 1, Μ = (Λ/,,... ,M 2 d _ 1 }, where M, is the proper φ-preimage

of the curve of degree d — 1 passing through P2,.. .,P2d-x and having Px as a point of

multiplicity d - 2, and M, = L,, for 2 *£ / < Id ~ 1 (see 3.9). The graph QX(V) | L U Μ

has edges [Lx, Af,], [M,, L,] and [Ly, Mj] (2 <_/ *z2d — 1) with unit weights, to which, if

d s* 3, one must add the edge [L,, M,] with weight d — 2. The graph (2(F) |L U Μ is a

triangular prism for d = 2; for c/ s* 3 it is the one-dimensional skeleton of a polyhedron in

the 2(d — l)-dimensional space gotten from the simplicial antiprism of the superstructure

pyramid over its two bases. The matrix (aiJ) in this case is

d {d- 1 ) 1 · · • 1

(d-l) (d-2) 1- . .1

1 1 (3.18.1)

\ 1 1

where ln is the η Χ η identity matrix.

§4. The graph

4.1. If bases L and Μ in %(V) are s-contiguous (in the sense of the definition given in 2.7),

then either s = 3 or s = 6.

PROOF. By contracting the part common to L and Μ (L ΓΊ Μ is exceptional), we may

assume that L Π M = 0 , L = {LX,...,LS}, Μ - {MV...,MS} and (L, · M}) = 1 -

δ(ί, j). By the last equation, Ms ~ wL 0 — ΣΊ~'£,-. Further, from 1.2 and 3.6 it follows that

w 2 — i + 2 = 0 and s — 3w = 0, which is possible only for m = 1, 5 = 3 or m = 2, 5 — 6.

4.2. In the sequel, of two related bases with respect to 3-contiguity and 6-contiguity we

shall be interested in the first only.

DEFINITION. We assign to a surface V the graph F,(F) whose vertices are the bases on V

and whose edges join 3-contiguous bases. Bases connected by an edge will be called

contiguous or neighboring. We shall also say that a basis Μ is neighboring (or contiguous)

with L along with set {L{, L2, L3) if L\M = {L,, L 2, L3}.

To a morphism/: U -> Υ there corresponds an embedding of graphs

mapping a vertex L e ® ( F ) to/" '(L) (see 2.6). We shall write/"1 in place of Γ,(/).

4.3. Two distinct bases L,Μ Ε %(V) are neighbors in Γ,(Κ) ;/ and only if each of the

following conditions holds:

4.3.1. # ( L \ M ) < 4, in other words (and more symmetrically in L and M), # ( L Π Μ) >

r — 4, vv/iere r = rank Pic(F) — 1, r being the length of the bases on V.

4.3.2. (L o · Mo) — 2; that is <p(L, M) (see 3.12-3.15) is contained in the set Q of quadratic

transformations, or, in other words, the distance (3.11.0) between L and Μ is least possible

(and equals 1).

PROOF. If L and Μ are 3-contiguous, then # ( L \ M ) = # ( M \ L ) = 3, which proves the

necessity of 4.3.1. Suppose 1 *£ s < 4, L\M = {L,,...,LS}, and

M0~a0L0- a,/, - · · · -asLs. (4.3.3)
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Thena 0 » 2 by 3.11.1, and from 3.16 we get

a\-a\ a2=\, (4.3.4)

3ao-fl, as = 3. (4.3.5)

Multiplying (4.3.4) by (-9) and (4.3.5) by 6a0 and adding, we get

2 (3a, - aQf = -a2(9 - s) + \%a0 - 9. (4.3.6)

The quadratic trinomial in a0 on the right side of (4.3.6) is nonnegative only on the real

interval with endpoints (9 - 3/f )/(9 - s) and (9 + 3/i)/(9 - s). For 1 < s < 4 this

interval contains an integer a0 greater than one only when s s* 3 and a 0 = 2. The last

equation establishes the necessity of condition 4.3.2. Let us establish its sufficiency (and

with it finally 4.3.1). From aQ = 2 and (4.3.3)^(4.3.5) it follows that exactly three of the

numbers a,,..., say ax, a2, a3, are equal to one, and the rest are zero. Therefore, s = 3 (if

5 s= 4, then (L 4 · Mo) = a4 = 0, and then, by 3.5, L4 ε Μ Π L), and

M O ~ 2 L O - L , - L 2 - L 3 . (4.3.7)

M\L, as well as L\M, consists of three curves. Suppose Μ G M\L, and Μ ~ b0L0 —

biLl - b2L2 - b3L3. From (M2) = (M • Kv) = -\, (M • Mo) = 0, and (4.3.7) it follows

that

bl ~lbf = -3b0 +2b, = - 1 , 2b0 - Σ b, = 0,
i = l ; = 1 ; = 1

which is possible only when b0 = 1 and (bt, b2, b^) is a permutation of the sequence

(1,1,0). Therefore, we may assume that M \ L = {Mu M2, M3}

M,~L0-L2-L2, M2~LO-Ll-L3, M3~LO-L]-L2, (4.3.8)

whence follows (2.7.1) with s = 3, proving that L and Μ are contiguous.

4.4. For a basis L G 9>(V) and a three-element subset Λ = {L,, L2, L3) of it, there is a

basis Μ neighboring L along Λ (that is, A = L\M) // and only if the following three

conditions hold:

4.4.1. Λ is a maximal subset ofL; that is, L\A contains no curve containing a curve in Λ

(see 0.2).

4.4.2. | L, — Lj — Lk\= 0 for any permutation (i, j , k) of the triple (1,2,3); that is, none

of the curves in Λ contains the sum of two other curves in Λ; in particular, the triangle

&(V) | Λ does not contain two arrows with a common end (see 1.11 and 1.7.2).

4.4.3. | L o - L , - L 2 - L 3 | = 0 .

PROOF. The intersection L Π Μ of exceptional sets is exceptional and so minimal in

Q(V); therefore, Λ = L\(L Π Μ) is maximal in L, proving the necessity of 4.4.1. For

neighboring L and Μ and for a curve C lying in the left part of 4.4.2 or 4.4.3, from (4.3.7)

we obtain (Mo • C) = - 1 , contradicting the movability of | Mo | .

Let us prove the sufficiency of 4.4.1-4.4.3. From 4.4.1 it follows that the set I = L\A is

exceptional. Put φ = φ1 (see 2.3). The basis <p(L) G ̂ (V^ (see 2.5) and its (coincident)

subset φ(Λ) satisfy conditions 4.4.1-4.4.3. If iB(Kj) contains a basis different from <p(L),

by 4.3.1 it will neighbor <p(L), and then its φ-preimage in the sense of 2.6 will neighbor L.

Therefore, in the sequel we may assume that L = Λ; in particular, #(L) = 3 and

rankPic(K) = 4; i.e., the morphism <pL: V -» P2 is the composite of three successive
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contractions of exceptional curves. The graph 6(V)|L (with a suitable numbering of its
vertices L,, L2, L3) can have, by 4.4.2, only one of the following forms To, Γ, or T2:

To is a triangle without arrows,
Γ, is a triangle with the single arrow [L3, L,], and
Γ2 is a triangle with the two arrows [L3, L2] and [L2, L,].
There is precisely one (up to isomorphism) surface Va (a — 0,1,2) gotten from P2 by

three such blowings up of points such that the composition φα: Va -» P2 of these blow ups
defines a basis L = Ι(φα) = {L,, L2, L3} satisfying 4.4.2 and 4.4.3 and generating in
G(Va) a subgraph G(Va)\L isomoφhic to the graph Ta. Let us describe <pa.

ψ0 is the blow up of a triple {/>,, P2, P3) C P2 in general position.

Φ) = Ψι ° χ,, where ψ, is the blow up of a pair {P,, P2) C P2, χ is the blow up of a

point P3 lying on ΨΓ'(Λ)\Ψί('ΐ2)' an<^ '12 ' s t n e l m e through P, and P2.
φ2 = ψ2 ° χ 2 ° £2» w n e r e Ψ2 i s t n e blow up of a point Px ε P2, χ 2 is the blow up of a

point P2 ε ΨΓ'(Ρ,), ξ2 is the blow up of a point P3 ε χ 2 '(Ρ 2)\(ψ 2 ° X2)V12), and /12 C P2

is a line containing P, whose proper ψ2-preimage contains the point P2.
It is not hard to verify separately for each of the three surfaces constructed that for

1 < /'• <j < 3 the system \L0 — Lj — Lj\ is zero-dimensional, and the curves LtJ (see 3.9)
are contractible and form a basis Μ = {L23, L l 3, Ln) on Va.

4.5. Some remarks on the surfaces Va that arose in the preceding proof and on the elements
of the set ®>(Va) - {L,M}.

4.5.1. G(Ca) = {L,, L2, L3, L23, L13, Ln) = L U Μ, β,(Κβ) is a hexagon, where L, is
joined by an edge to LiJ (we consider L(.. = L ,̂), and β(Κα) is the one-dimensional
skeleton of the triangular prism with bases C(Va)\M and G(Va)\L. The vertex Ltj of the
first base is joined by an edge to the vertex Lk of the second if {/', j , k) = {1,2,3}. The
assignment LjJ H» Lk enables one to define an isomorphism of graphs 6(Va)\M ^ G(Va)\L
(= Ta\ see 4.4.4) whose arrows map G(Va) to G(Va).

4.5.2. In the double coset 5a = = <p(L, M) (see 3.12) one can find a quadratic transfor-
mation sa given, in a suitable choice of homogeneous coordinates (x0, xx, x2) on P2, by
the formulas

x' - x2

Xo — Λ, ,

Μ

" 2 — Λ ,= χ η

ν ~' 2

- Υ 2

Note further that 2. = So U 5, U 52, i.e., the set 2, of all quadratic transformations falls
into three double cosets Sa = 9s29, where α = 0,1,2 and φ = Aut(P2).

4.5.3. Let us use the surfaces Va to transform the graph F,(F) of an arbitrary surface V
into an edge-weigh ted graph. To the edge [L, M] of the graph F,(F) we assign the weight
w[L, Μ] = α if F L n M — Va (a = 0,1 or 2). For example,

4.6. We pass from edges to triangles (in the sense of 2.0). For a three-element set
T— {K,L,M} CiB(K) to be a triangle in F,(F) it is necessary and sufficient that the
following three conditions hold:

4.6.1. {K, L}, (L, M} are pairs of neighboring vertices in Γ,(Κ),

# ( ( L \ K ) n ( L \ M ) ) = 2.
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4.6.2. # ( K i l L n M ) = r - 4 = rank Pic(K) — 5, where r is the length of the bases on

V.

4.6.3. There exist a surface U, a morphism f: V -> U, and a subset Τ C <$({/) such that

rankPic(i/) = 5 and Τ - f ~\Γ).

PROOF. Let us discuss conditions 4.6.1 and 4.6.2. Suppose

L = { L , , . . . , L r } , L \ K = { L , , L 2 , L 3 ) L\M = {L,, Ll+l, L, + 2),

where/ G [2,4]. Then Κ Π L Π Μ = {L, + 3, Ll+4,.. .,Lr}.

We must show that Κ and Μ are neighbors if and only if / = 2. By (4.3.8) the classes in

Pic(K) of the basis Μ (respectively K) are

L ] , . . . , £ , - _ , , L o — L j + l — L j + 2 , L Q — L j ~ L i + 2 , L o — L,· — L i + i , L / + 3 , . . .

( L o — L 2 ~ L 3 , L o — L ] — L 3 , L o — L , — L 2 , L 4 , . . . ) .

From this and 1.5 it follows that # ( K \ M ) is 3 when / = 2, and 6 when / = 4. By 4.3.1, Κ

and Μ are contiguous if and only if # (K\M) < 4, i.e. when i = 2.

The necessity of 4.6.3 comes from the fact that for I = Κ Π L Π Μ, if we put U = F,,

/ = φ, and Τ — f(T), we get, by 4.6.2 and 2.3.2, the required objects. The sufficiency of

4.6.3 follows from condition 4.6.2, guaranteeing that T' is a triangle, and from the fact

that/, the preimage of a triangle, is a triangle.

4.7. To describe the triangles in Γ, and the surface minimal in this respect, by 4.6.3 we

must enumerate the surfaces U for which #<3J(t/) > 3 and rank Pic(t/) = 5. From the last

equation and 4.3.1 it follows that in Γ,(ί/) any two vertices are joined by an edge. Here we

construct five surfaces U0,...,U4 and a one-parameter family of surfaces denoted by Us.

More precisely, we construct morphisms φ ;: Ul• -» P 2.

φ 0 is the blow up of four points {P,,... ,P4} C P2 in general position; that is, UQ is a del

Pezzo surface of degree 5.

φ, is the blow up of four points {/>,,... ,P4] C P2 containing exactly one collinear triple

{Λ. P2> P3)-

φ2 (φ 3 ) is the composition ψ ° χ of the blow up ψ of a triple {/",, P2, P3} of collinear

(noncollinear) points and the blow up χ of a point P4 on the curve ψ~'(Ρ3) but not on (on)

the curve ψ'(/ ) 3), where /13 is the line through /", and P3.

<p4 is the composition ψ ° χ of the blowing up ψ of a pair (P,, P2} C P 2 and the blowing

up χ of a pair {P3, P4) C ψ" ' (Ρ 2 )\ψ" ' (/ 1 2 ) , where /,2 is the line through Px and P2.

Ψί = Ψ ° X ° I. where ψ is the blowing up of a point P] G Ρ, χ is the blowing up of

P2 e ψ" '(/Ί), ξ is the blowing up of a pair

and /12 is the line containing /", whose proper ψ-preimage passes through P2.

4.8. To describe the properties of Un we agree on some notation:

4.8.0. If /: U -» V is a morphism, W is an intermediate surface between U and V (that
β

is, / = β ° a, a composition U-> W-> V), then for a point i e ^ w e put / (P) =

a'\P).

On Un (0 =s η ^ 5) we take four contractible curves LK = <f>~{{Pk) (where 1 < k < 4; Pk

is the point occurring in the construction of φη; see 4.7) that form a basis L = Ι(φπ) =

{L,,...,L 4}. Below, using the notation of 3.9, we shall use curves of the form Lkl. A

vertex Lk (Lk/) of a graph with zero-dimensional skeleton Q(Un) will be denoted by the

symbol k (by kl).
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For 0 < ι• < 2

6(1/,) = {LUL2, L 3, L 4 , L, 2, L 1 3 , L l 4 , L 2 3 , L 2 4 , L 3 4 ) ,

and for 3 < i < 5 there is not well-defined curve L 3 4 on Ut (since | L o — L 3 — L41 has as its

movable part a fibering by curves of genus 0 and so is one-dimensional), and here

β^) = {L,, L2, L 3, L 4 , L l 2 , L 1 3 , L 1 4 , L 2 3 , L 2 4 ) .

For 0 < / =£ 2 the graph C,(i^) is a Petersen graph (see Figure 15.1.3 in [5] or Figure 9.6 in

[6]), and for 3 < ι< 5 the graph C,(L^) is gotten from the graph C,(i/0) by removing the

vertex 34. The graph Q(Ut) is gotten from Q(U,) by attaching the set of arrows indicated in

the /th column in Table 4.8.1, where a, bis the arrow [a, b].

TABLE 4.8.1

0 1

1,23

2,31

3,12

2

1,23

2,31

3,12

4,3

13,14

23,24

3

3,14

12,24

4,1

4,3

4

3,2

4,2

4,13

12,13

12,14

3,14

5

3,2

4,2

4,13

12,13

12,14

3,14

2,1
13,23

14,24

In Chapter IV, §4.9 of [2] it is remarked that β,(ί/0) "cannot be drawn so that its many

symmetries become evident". The fact is that the natural ambient space for the Petersen

graph is the real projective plane P2(R), for this graph is gotten by factoring the graph of a

dodecahedron by a central involution (see in [7], Figure 167, a picture of the Petersen

graph in P2(R)). On Uo there are five bases; the bases different from L are determined by

sets of vertices {a, be, cd, db) (such a set we denote for short by (a)), where {a, b, c, d) —

{1,2,3,4}. The bases on Uo correspond to the cubes inscribed in a dodecahedron; more

precisely, they are the images of the sets of vertices of these cubes under the factorization

mentioned above. Using the notation (a) just introduced (1 ^ a *s 4) and the notation (0)

for L, Φ ( φ is described by the /th column of the Table 4.8.2.

TABLE 4.8.2

0

(0)

(1)
(2)

(3)

(4)

1

(0)

(1)
(2)

(3)

2

(0)

(1)
(2)

3

(0)

(3)

(4)

4

(0)

(3)

(4)

5

(0)

(3)

(4)

The graph Γ,(ί/0) is the one-dimensional skeleton of a four-dimensional simplex all of

whose edges have weight zero, and Γ^ί/,) is the skeleton of a triangular pyramid the edges

of whose base have weight one and whose side edges have weight zero. The weights of the
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edges of the triangles Γ,(ί^) (2 < ;' < 5) are described by the triples (in order of increasing

/) (2,1,1), (1,1,0), (1,1,1) and (2,2,2).

To complete the description of Ui we make some remarks on the group Aut(L^) of

(biregular) automorphisms of the surface Ut. The connected component of the identity

Aut(£^)o of this algebraic group and the group Aut(r,(t^·)) of automorphisms of the

edge-weighted graph Γ,(ί^) can be put into an exact sequence (where all the homomor-

phisms are naturally defined):

{1} - Aut(£4)0 - Aut(t^) - A u t ( r , ( ^ ) ) - {1};

that is, 77O(Aut( £/)) — Aut(r, (£/,)). The last group is isomorphic to the symmetric group

S n , where η = 5 for / = 0, η = 3 for i = 1,4,5, and η = 2 for i = 2,3. The group Aut(Lf-)

for i = 0 is trivial,

for ι = 1 is the one-dimensional torus Gm,

for / = 2 or 4 is two-dimensional and isomorphic to Aut(A,),

for i = 3 is the two-dimensional torus Gm X Gm, and

for i = 5 is four-dimensional and isomorphic to the group of affine transformation of

the form x' = a + βχ, y' = y + a + bx, {a, b, α, β} C k, β Φ 0.

Using the morphism φ 0 : Uo -> P2 and the isomoφhism @5 — Aut(i/0), one can get a

representation of @5 in Cr. The description of this representation in coordinates can be

accomplished as follows (see [8], p. 21). On the line P, fix homogeneous coordinates

(x 0 , x,); on it we take the five points

ρ, = ( ο , ι ) , β 2 = ( ι , ο ) , ρ 3 = ( ι , ι ) , β 4 = 0 . * ) . Qs = (hy).
For any permutation σ of these five points we introduce new coordinates (x0, χ , ) σ on P,

such that

σ- 1 (β,) = (0,1)α, α - 1 ( β 2 ) = (1,0) σ , o~\Q3) = (1, l ) e .

The permutation σ corresponds to the Cremona transformation

x'=fo(x>y), y' = ga(x,y),

where/, and ga are rational functions such that

4.9. A surface U for which rankPic(t/) = 5 and #%{U) > 3 is isomorphic to one of the

surfaces Uo,..., U5 considered in 4.7 and 4.8.

PROOF. On U fix a basis L = {Lv... ,L4}, put φ = qpL and P( — tpiJL^, 1 < ι < 4. We

shall use the notation Lij and ltJ from 3.9. From the fact that any Μ Ε <$>(t/)\{L} is

uniquely determined by the triple L\M, it follows that #<S(t/) «£ 5. Let ®(i/) =

{L, L l , . . . ,L r }, where r = #B(U) - 1 G [2,4]. Let us agree that L' Π L = {L,} for 1 =£ i

< r; in particular, the curve Lt, being the unique element of the exceptional set L' Π L, is

exceptional, the basis L' neighbors L along the set Λ, = L\{L,} and L' =

{L,, Lkl, LJt, Ljk), where {/, j , k, 1} = {1,2,3,4}, \ < i < r.

If r = 4, then all the curves in L are irreducible, and φ is the blowing up of the four

points <p(L) C P 2, in which each triple is not collinear, in view of 4.4.3 for L and Λ,;

therefore i/ - t/0.

Suppose r = 3. Then ®(t/) contains a basis consisting of irreducible curves. Indeed, L,,

L2 and L3 are irreducible. In case L 4 is reducible, say, for L4 > L,, the basis L1 suits us,

since for 2 < i, j =s 4 the curve L / ; coincides with <p'(/,7), and so is irreducible. Thus we
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assume that r — 3 and L,,... ,L 4 are irreducible. That ®(£/) lacks a basis neighboring L

along Λ4 is explained only by violating condition 4.4.3 for L and Λ4, i.e. by the

collinearity of the points Px, P2, P3; hence U — Ux.

The rest of the proof will be carried out in §§4.9.1-4.9.7; in it we shall assume r = 2; in

particular, that L, and L2 are irreducible.

4.9.1. At least one of the curves L3 or L4 is reducible.

Indeed, if all Li £ L are irreducible, then we will have U = Uo, r = 4, if <p(L) lacks

collinear triples; if there is exactly one such triple, then U = Ux and r = 3; and if there is

more than one collinear triple in <p(L), then all quadruples in (p(L) are collinear and

# © ( t / ) = #{L} = 1 < 3 .

In the sequel we shall assume L3 reducible.

4.9.2. If L4 is irreducible and L3 > L4, then U — U2.

PROOF. Here P4 = P3 and <p(L) = {Px, P2, P3). The triple <p(L) is collinear, since

otherwise, when φ is represented as ψ ° χ, where ψ is the blowing up of <p(L) and χ is the

blowing up of a point Q £ ψ"'(Ρ 3), we see that Q cannot lie outside the curve ψ'(/13 + / 2 3 ),

since then U = Ux and r = 3, nor on this curve, since then Λ, or Λ2 would violate

condition 4.4.3. From this condition it also follows that the intersection of L4 with the

proper φ-preimage of the line / containing qp(L) is empty, whence it is not hard to deduce

that C/- U2.

4.9.3 If L4 is irreducible and Comp(L3) Π {Lx, L2] Φ 0 , then U - U3.

PROOF. Suppose L3> L,. The only cause of the lack of a basis joining L along Λ4 is a

violation of condition 4.4.3, i.e. the nonemptiness of | L o — L, — L2 — L3 \. If Ε £ | Lo —

Lx — L2 — L3\, then Ε Π L4= 0 (else \L0 — L, — L3 — L4\¥= 0 ) ; therefore, Ε is irre-

ducible and (E2) = -2. Hence it is clear that U ^ U3.

4.9.4. // L3 and L4 are reducible and L3 Π L4 — 0 , then U ~ t/3.

PROOF. Here L3 and L4 have two components. We may assume that L3> L, and

L4> L2. Since A2 and Λ, satisfy condition 4.4.3, it follows that L2 Π L3 4 — L, Π L3 4 =

0 , so U = U3.

It remains to discuss the possibility that one of the curves L3 or L4 has more than two

components. We make three remarks on such curves:

1) The dual graph of a contractible curve with three components can have only one of

the following three forms:

-1 -2 -2 -1 -3 -1 -2 -1 -3
-Ο Ο—7-Q Ο

2) From condition 4.4.2 for Λ, and Λ2 it follows that neither L3 nor L4 can have the

form (c).

3) From going through all ten graphs for contractible curves with four components it

follows that if Q(L) = {L{, L2, M, L), {Lu L2) C Comp(L), and neither of the inequal-

ities L ^ M + L , ( / = 1,2) holds, then L has the form

4.9.5. IfL4 has the form (a), then U - U2.

PROOF. We may assume that L4> L3 > L2 and L, Π L4 — 0 . The system \L0 — L4\

(see 3.7) fibers Uby curves of genus 0. Since the sets L, Π L4, \L0 — L2 — L3 — L4\ and
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| L o — L, — L 3 — L41 are empty, it follows that this fibering has exactly two degenerate

fibers one of which contains the curve L, and the other the curves L2, L3 and L 3 4. From

this it is clear that U = U2.

4.9.6. IfL3 has the form (c) and L4 is irreducible, then U — U4.

PROOF. L4 does not occur in L3; otherwise, either L3> L4 + L, or I 3 > L 4 + L 2,

contradicting 4.4.2 for Λ, and Λ2. Since the sets L3 Π L 4, \L0 — L2 — L3 — L4\ and

| Lo — L | — L3 — L41 are empty, it follows that the fibering of | L o — L31 contains exactly

three degenerate fibers (one contains L,, another L 2, and the third L4). Hence it is clear

that U-U4.

4.9.7. // #Comp(L 4 ) - 4, then U is a surface of type U5 (see 0.8).

PROOF. By conditions 4.4.2 and 4.4.3 for Λ, and A2, the curve L4 has the form

indicated in 3), and L, Π φ'(/3 4) = L2 Π φ'(134) = 0 , so ί/ — ί/5.

§5. De Jonquieres sets

5.1. DEFINITION. By a de Jonquieres set (or J-set) on a surface V we mean a union

£ U £' for which the following these conditions hold:

5.1.1. £c®(F), £' Cg(F).

5.1.2. There is a bijection £ -> £' assigning to each basis L in £ a curve L, lying in this

basis (the curve L, will be called the distinguished curve of the basis L; we emphasize that

the distinguished curve of a basis will be denoted by the same letter as the basis with the

subscript 1, but not in boldface).

5.1.3. All classes of the form L o — L, in Pic(K) coincide; that is,

LO-LX~MO-MX, (5.1.3.1)

where L, Μ G £, and L, and M, are distinguished curves in L and Μ respectively.

In 5.2 we shall show that all distinguished curves may be assumed maximal in the bases

corresponding to them under the bijection of 5.1.2.

For bases L and Μ lying in a ./-set let us agree to denote by L(M) the set L\M\{L,}.

If for a set £ C %(V) there exists a subset £' C Q{V) which becomes a /-set after being

united with some £, we shall say tha £ has a /-supplement (or, being somewhat careless, is

a /-set), and £' is a /-supplement to £.

5.1.4. Note that if on a surface V we have a family of /-sets {£, U £,' | / G /} such that

the nerve of the sets {£,|z G /} contained in %{V) is connected and for all /", j G / the

bijections £, -» £,' and £y -» £j define identical mappings of the intersection £(. Π £. onto

G(V), we can form the /-set ( U £,) U ( U £;).

5.2. If for some basis £ in a /-set £ the distinguished curve L, is not maximal in L, then

by 5.1.3 and 3.7 in any other basis Μ in £ the distinguished curve M, is also not maximal

because the system \M0 — Μλ\, coinciding with | L o — L, | , will have a nonzero fixed

part. Using 3.7 we can agree to change the distinguished curves in all the bases in £ so that

the new distinguished curves become maximal in their corresponding bases. In what

follows we shall always assume this.

In 5.3-5.7 we discuss the properties of/-sets consisting of two bases.

5.3. If {L, M} is a /-set, then any transformation g in the class <p(L, M) (see 3.12) maps

some pencil of lines in P2 to another such pencil; more precisely, if g — (pL ° φ ^ , then

from (5.1.3.1) it follows that the generic member of the pencil of lines passing through

φ Μ ( Μ , ) (where, we recall, M, is the distinguished curve of the basis M) is mapped by the

transformation g to a line passing through qpL(L,).
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Conversely, if a Cremona transformation g is represented as φ, ° φ ^ , where {L, M} C
6A(V), L Φ Μ, and g maps the pencil of lines passing through the point Q to the pencil of

lines passing through P, then {L, M} has a /-supplement, and the distinguished curves L,

and M, can be chosen so that 9 L (L,) = Ρ and <pM(M,) = Q. A Cremona transformation

mapping some pencil of lines in P2 to another such pencil is called a de Jonquieres

transformation (see [9]). For an arbitrary point Q G P2, JQ will denote the set of de

Jonquieres transformations that map the pencil of lines through Q to this same pencil. It is

clear that JQ is a subgroup of Cr, JQ Π ty = <3ρ is the stabilizer of the point Q in the

projective group ?P, and tfjgty is the set of all de Jonquieres transformations.

5.4. Two EXAMPLES.

5.4.1. Quadratic transformations are de Jonquieres transformations.

If L and Μ are neighbors in Γ,(Κ), L\M = {L,, L 2, L3}, M\L = {AT,, M2, M3}, and

Mi ~~ Ljk, where {/, j , k) — {1,2,3} (see 3.9 and (4.3.8)), then as a /-supplement to

{L, M} we may take (L,., M,}, where L, is maximal in L (and then, by 5.2, Mi is maximal

in M). Therefore, to the pair (L, M}, defining an edge of weight α (Ο < α < 2; see 4.5.3) in

Γ,(Κ), we can choose a/-supplement in (3 — a) ways.

In 4.5.2 we noted the decomposition of the set Q into three double cosets with respect to
6}; here we note that Q C\ JQ (where Q G P 2; see 5.3) decomposes into four double cosets

with respect to PQ; if we take coordinates (x0, xu x2) on % in which Q = (0,0,1), then

these four classes can be represented by the transformations s0, j , , s2 and ε 0 2 ί ,ε 0 2 ; the first

three are indicated in 4.5.2, and e0 2 is the projective involution mapping xQ to x2.

5.4.2. Cubic transformations are de Jonquieres transformations.

If L, Μ G <$>(V), (L o · Mo) = 3 and L Π Μ = 0 , then Mo ~ 3L0 - Σία,Χ,., with a, > 0

for 1 < / « / · . From (Mo

2) = 1 and (Mo • Kv) = -3 it follows that

Σ «? = 8, Σα, = 6;
; = 1 i = l

therefore, one of the numbers a ; (say a,) equals 2, and the others equal 1, r — 5; that is,

M o ~ 3L0 - 2L, - L 2 - L 3 - L 4 - L 5. Further, from M £ M i t follows that (M • Mo)

— 0 and ( M 2 ) = (M • Kv) = - 1 ; from this it is not hard to deduce that Μ = {Μ,,

Ln, Ln, L,4, Li5}, where M, is a curve whose class in Pic(F) is 2L 0 — S^L,. It is now

clear that L o — L, ~ Mo — M,. Here the matrix {au) introduced in 3.16 can have its

columns put in the form 3.17.1 by some permutation of its rows. The pair {L, M} from

Example 3.17 is a de Jonquieres set. Moreover, L and Μ in Example 3.18 also form a /-set

since, by 3.18.1, f o r / = 0,1,

M, ~{d- i)L0 - ( d - i - 1)L, -L2 L2d_x,

whence Lo — L{ ~ Mo — Mv

5.5. The matrix 3.18.1 is the matrix (a,7) for a /-supplement of a pair of bases without

generic curves if we number the curves in these bases suitably. More precisely, let {L, M}

be a J-set with two elements, L, and M, their distinguished curves, d = (L o · Mo), and Σ the

summation over the elements o/L(M) {see 5.1). Then

L, (5.5.1)

-^L, (5.5.2)

and

#L(M) = #M(L) = 2(d- 1) (5.5.3)
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and there is a bijection a: M(L) -» L(M) such that for any curve Μ in M(L)

M~ Lo- L, - a{M). (5.5.4)

PROOF. Since Mo has zero intersection with all the curves in M, in particular in L Π Μ

(and, moreover, by 3.5, L ΓΊ Μ = {L|L G L, (L • Mo) = 0}), Mo can be expressed in

terms of {Lo, L,} U L(M), Mo ~ dL0 — d]L] — 2d,L; in the last sum (over the elements

of L(M)) all the coefficients dL are positive. From (5.1.3.1) we get

Mx~{d- \ ) L 0 - { d x -

Since

- 3 - (K-Mo) = -M + d, +2dL,

we have

dx=d-\, 2d-^dl^2, 2d~^dL = 2.

From the last two equations and the positivity of the dL it follows that dL — 1 for all L in

L(M). This proves (5.5.1)-(5.5.3).

Let M e M(L) and Μ ~ bL0 - b]L] - 2bLL. From (M • (Mo - M,)) = 0 and (5.1.3.1)

it follows that b = &,; then from (M2) — -1 it follows that exactly one of the numbers bL

is 1, and the other bL are zero. Put L — a{M); if bL = 1 (i.e. if (L • M) = 1), we get

(5.5.4).

5.6. If for a J-set {L, M} we have (Lo • Mo) > 2, then the distinguished curve in the basis

L is uniquely determined {for example, by the condition (L, · Mo) = (Lo • Mo) — 1 or by

the condition (L, · Mo) > 1).

This follows from (5.5.1).

5.7. The bijection α used in (5.5.4) reverses order; i.e., if M', M" G M(L) and M' > M",

then a(M') < a(M"). Let us extend α to a one-to-one mapping, again denoted by a,

{Mo} U Μ -> {Lo} U L, by mapping Mo to I o , M, to I , , and having the rest of the

elements of L Γι Μ fixed. We shall also consider the automorphism a[L, M] of the

quadratic module Pic(F) mapping the elements of the basis {Mo} U Μ into their images

under o. The automorphism a[L, M] is an involution; more precisely, it is the symmetry

with respect to the submodule of elements orthogonal to M(L) (or, what is the same, to

L(M)). We shall assume that a[L, M] = a[M, L] and a[L, L] = id.

For any /-triple of bases (L, Μ, Ν} we have

a[L,N] = a[L,M]a[M,N] = a [ N , M ] a [ M , L]. (5.7.1)

5.8. For a J-triple {L, Μ, Ν} we have

L(M)AL(N) = a[L,M](M,(N)) . (5.8.1)

PROOF. Changing the places of the bases Μ and Ν in (5.8.1) does not change its terms;

this is evident for the left term, and for the right it follows from (5.7.1):

a[L,N](N(M)) = a[L,M](a[M,N](N(M))) = a[L,

Suppose that the curve L lies in the left-hand member of (5.8.1). By the symmetry in Μ

and N, we may assume that L G L(M) Π Ν and prove that a[L, M](L) G M(N). If the

last relation does not hold, then the elements a[L, M](L) lies in Μ Π Ν and is fixed under
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α[Ν,Μ]; therefore, a[L,M](L) ~ Lo - L, - L implies a[N,M](a[M,L](L)) ~ LQ- Lt

— L; from this and (5.7.1) it follows that a[L,N](L) ~ Lo — L, — L, contradicting the

hypothesis L G L(M) Π Ν C L Π Ν.

Suppose the curve L lies in the right-hand member of (5.8.1). If L does not lie in the left

member (that is, L G L(M) (Ί L(N)), then, on the one hand, a[L, N](L) ~ Lo- L} — L\

on the other hand, by (5.7.1),

a[L,N](L) = a[N,M](a[M,L](L))

~ Mo- Mi- a[M,L](L) ~ Lo- Lx- o[M,L](L),

whence it follows that L = a[L, M](L); that is, L G L Π Ν, contradicting the fact that L

belongs to L(N).

5.9. Suppose a /-set £ has a specially chosen element L. To each pair {Μ, Ν} of

elements of £ we assign the mark μ(Μ, Ν), a subset of L\{L,}, by putting

μ(Μ,Ν) = μ(Ν,Μ) = L(M)AL(N). (5.9.1)

From (5.5.3) and (5.8.1) we obtain

#μ(Μ,Ν) = 2 ( ( Μ 0 · ^ 0 ) - ΐ ) . (5.9.2)

In particular,

5.9.3. Two bases in £ are contiguous in Γ,(Κ) if and only if the pair generated by them is

marked by a set with two elements.

If Κ, Μ and Ν are three bases from a /-set L pointed by L, then

μ(Μ,Κ) = μ(Μ,Ν)Δμ(Ν,Κ). (5.9.4)

The mark of a pair of bases and one of the bases in this pair uniquely determine another

basis and its distinguished curve, since if Μ and μ(Μ, Ν) are known, then, by (5.8.1),

M(N) = α[ί ,Μ](μ(Μ,Ν)),

and the set M(N) is uniquely determined by the involution a[M, N], the basis Ν =

α[Μ, N](M), and the curve Nx, since

{TV,} = N\«[M,N](M(N) U (Μ Π Ν)).

5.10. If (L,Μ} C ®(F) is a de Jonquieres pair, then we can apply to the graphs

β, |(Κ)|LAM and (2(F)|LAM the description of the analogous pairs given in 3.18. But

at one undistingusihed vertex of the graph 6(V) | LAM no more than one arrow can enter,

since if arrows going form L' and L" enter at L £ L(M), then L', L" G L(M), the system

| L — L' — L" | is nonempty, but the intersection index of a member of this system with

the members of the movable system |Afo| is -1 by (5.5.1). For similar reasons, at a

distinguished vertex (that is, at L, or M,), no more than (L o · Mo) — 1 arrows in

β(Κ) | LAM can enter.

§6. The graph A,(K)

6.1. Below, in 6.2, we consider examples of surfaces V for which %(V) has a J-

supplement and consists of two bases without common curves. Later, in 7.14, we shall see

that these surfaces Vo, F,, V2 and those indicated in 4.4 and 4.5 are exhausted by the

surfaces V for which #<S(K) = 2 and <S(K) = {L,M}, L Π Μ = 0 . Let us discuss the

notation used to describe these examples. The surfaces occurring in the constructions will

be the domains of definition of a composition of the form σ, ° • • • ° ar that take values in

P2 and consist of blowings up σ, with one-point centers i>; Ρλ G P2. By £,- we shall denote
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both the curve σ, '(/>,) and its proper (σ,+ , ο . . . ο σ,)-preimages. On P2 we fix a line E{)

passing through /*,, and by Eo we also denote the curves (σ, ° • • • ° σ,)'(£0). In the basis

L = Ι(σ, ° ·•• ° σ,.) = {L,,... ,L r}, L, denotes the curve (σ, ° · · · ° σΓ)"'(/>

/), 1 < / ' < r.

The unique intersection point of curves A and Β that intersect transversally will be

denoted by A • B.

-Zn-Z

n-l

-z

n+)/-Z\ . . . /-Z
Zn-t

FIGURE 6.2.1

6.2. Suppose η s* 2. Consider the surface Vn (more accurately called a "surface of type

Vn"; see 0.8) gotten from P2 by successively blowing up points P\,---,P2n-\, where

Ρ, ε Eo, P2 = Eo- £,, P, = Ei • Et_} for 3 =£ / =s « and P, G Ej_]\(Ej_2 + £,) for « <y

< In. Figure 6.2.1 shows the set of curves {Eo, £ , , . . . ,£ 2 «-i) o n «̂ which coincide, as we

have seen in 6.4, with Neg(Fn). Note that L = Q(Lt), Eo ~ Lo — Lx — L2, Et. — L, — L / + l

for 2 < / < 2 n - 2, £, = L, - L 2 - · · · - L n , £ 2 n _ , = L 2 n_,,

η - 1 2 η - 1 n - l 2 η - 1

L o ~ £ 0 + 2 ' ι , + η Σ En Lx = ^i + Σ ( ' " !)£,- + ( « " ! ) Σ £,-,
i~\ i — /i / = 2 / = η

and L^ = 2f=^'£, for 2 < fc < 2/j. We take the following curve, which is symmetric with

respect to L, (cf. the symmetry of Figure 6.2.1):

2n-2

M, = (n -
/=n+l

and we put Μ = β(Μ,) = {Μ,,... ,M2n_j}, where for 2 < / < In

2n-2

( 2 / 1 - 1 - ( « - Ο
; = «+ 1

0 + Σ

For the class of Mn we have

2/;-2
Σ {2η-ι)Ε, + η Eo +

r

ΣΕ,
1 = 2

whence it follows that

M 0 ~ « L 0 - ( « -
2/1-1

i = 2

2 n - l

- Σ A>
i = 2

(6.2.2^

- M, ~ Lo -

therefore {L, M} U {£,, M,} is a de Jonquieres set in the sense of Definition 5.1.
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6.3. If we take morphisms <pL and φ Μ of a surface Vn to P2 and introduce coordinates

(xo,x,, jc 2 )onP 2 sothat9 L (L,) = φΜ(Λ/,) = (0,0,1) and <pL(£0) = φ Μ (£ 2 , ,-,) = [xol

then the transformation <pL ° φ ^ can be given by formulas of the form

x'Q = Xo, x[ = χ'ό~ι(αχ0 + βχχ), x'2 = yx'i\-]x2 + Fn(x0,X]), (6.3.1)

where α, β, γ G k, βγ G k*, and Fn(x0, JC,) is a form in x0 and xx of degree η with

coefficients in A:, with Fn(0,1) ̂  0. In the affine coordinates χ = xx/x0, y = x->/xQ, the

transformation (6.3.1) can be rewritten as

χ' = α + βχ, y' = yy+f(x), (6.3.2)

where/(JC) G k[x] and deg/(x) = n; (6.3.2) is called a triangular transformation of the

affine plane A2 = P2\[;t0].

Denote by Tn the group of triangular transformations (6.3.2) with d e g / ( * ) < « . In

Aut(A2) we take the set Φ,, of all double cosets with respect to the group Γ, that have

representatives in T,\Tn_l, and form the set Φη/Θ gotten from Φ,, by factoring by the

involution θ by factoring by the involution θ given by inversion in Aut(A2). The quotient

set Φ,,/θ is in one-to-one correspondence with the set of surfaces of type Vn. Hence it is

clear that up to isomorphism there is one surface V2 and one surface V3, while for η > 4

the surfaces of type Vn depend on continuous parameters.

OANegiKJ ={£„, . . . ,£ 2 B _,} .

PROOF. Suppose a curve C is irreducible, different from all the Ei (0 *£ ; < In), and

(C 2) < 0. For such a C we have

C~a0LQ- ^ a,L,, aQ > 0, ai > 0 ( K /

a0 — ax > 0 (since | Lo — L, | is a movable system whose degenerate member consists of

curves £,. with / > 2),

a0 — a] — a2= (C • £ 0 ) > 0,

α! - α 2 - a,, = (C· £,) > 0 ,
fl/ - α,+1 = (C · £,) > 0 for 2 < / < In - 2.

The summands of the left side of the equation

2 n - l

3*0" Σ a, = 2-2w{C) + (C2)
; = 1

can be regrouped:

3(a0 - ax) + (a] - a2 -an) + (a, - an+} aln_x),

after which it is easy to see its incompatibility with the inequalities introduced above and

with7r(C) 3=0.

6.5. From 6.4 follows

e(vn) = e(E0 + • • • + £ 2 H _ 1 ) = e(L,) υ e(M,) = L U M ;

therefore the graphs <2,(KM) and S(Fn) coincide with the graphs 6,(F) |L U 9IL and

C ( K ) | L U M , respectively, described in 3.18, and the set of arrows of the graph

Q{Vn) — e(Fn)|LAM is shown in Figure 6.5.1. The last graph is extremal with respect to

the restrictions on such graphs established in 5.10.
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h <<z
Ο

FIGURE 6.5.1

6.6. «
PROOF. Not all the curves of a basis on Vn can be contained in the set Neg([/)\{£,},

since the maximal exceptional subsets of the latter are 6(Σι"~ '£,·) and

e
ι

Eo
{

+ Σ
ι = 2

\

1
υ e

1

I 2 n - 1

Σ
\ 1 = 1+ \

each of which contains In — 2 curves, whereas for a basis on Vn, 2n — 1 are required.

Therefore, each basis on Vn contains a contractible curve containing £,, which can be

either L, or Mx\ therefore, a basis on Vn coincides with either 6 ( L , ) or Q{MX).

6.7. The set L and Μ are linearly ordered (see Figure 6.5.1). We shall show that if on a

surface V two bases L and Μ form a pair with a J-supplement and the sets L\M and M\L

are linearly ordered by inclusion, then VLnM = <Pt,nM(V) ' s a surface of type Vn, where

n-(L0- Mo).

PROOF. We may assume that L Π Μ = 0 . Suppose that

L = { L : , L 2 , . . . , L 2 n _ , } , M = { Μ , , Μ 2 , . . . , ,

L2> >L2n_t Μχ>Μ2η_χ> M2.

Because of their maximality the curves L, and A/, are distinguised in the sense of 5.1; see

5.2. Further, for 2 =£ / < 2n, by 5.7 and (5.5.4), M, ~ LQ - L, - L,, and by (5.5.1),

- L 2

The sum of any two curves in the set L(M) = {L2,...,L2n_l} cannot occur in a curve

belonging to it, since if C = L, - L} - Lk> 0, where /, j , k > 2, then the intersection

index of C with the members of the movable system | Mo | will be negative, a contradiction.

Hence a maximal curve L2 in L(M) has the form E2 + E3 + • · · +E2n__u where the £,. are

irreducible, (£ 2

2

n _,) = - 1 , (£, 2) = -2 for 2 < / < 2« - 1, £, = L, - L 1 + l , and the sup-

port of the sum M2 + Lx assumes the form indicated in Figure 6.2.1 if in this figure we

replace Eo by M2 and η by k in the middle part of 6.2.1, where k is some number in

[2, In — 1]. We shall show that k — n. Since the divisor L, — L 2 — · · • — Lk is effective

and its intersection index with Mo is nonnegative, we have k < n; and from the now

evident equation suppAf, = M2 + £, + · · · + £ l

2 n - 2 a n < ^ symmetry considerations it fol-

lows that k > n.

6.8. For η s* 3

in particular, the graph Γ,(Κη) is not connected. We want to correct this deficiency of the

functor Γ,.

DEFINITION. TO a surface V we assign the graph Γ,(Κ) whose set of vertices is %{V),

two vertices L and Μ being joined by an edge of weight η if and only if K L n M is a surface
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of type Vn, where Vo, V{ and V2 are the surfaces described in 4.4 and 4.5, and for η > 2 the

surfaces of type Vn are described in 6.2-6.6. If L and Μ are joined by an edge in Δ,(Κ),

then we shall say the basis Μ is contiguous with (or that it neighbors) L along the set L\M.

Clearly Γ,(Κ) is a subgraph of Δ,(Κ).

6.9. //L and Μ are contiguous in Δ,(Κ), then

6.9.1. {L,M}=<p- L

1

n M (*(K L n M )) ,

6.9.2. ί/ie />a/> {L, M} has a J-supplement in the sense of 5.1, and for w[L, M] 5= 2 fftw

J-supplement is uniquely determined and the sets L\M and M\L are linearly ordered, and

6.9.3. for any maximal curve L, of the set L\M iAe/r is precisely one J-supplement

(L,, Μ,} ίο {L,Μ} containing it.

6.10. SUPPLEMENT TO 4.4. /or L e "S>(K) and for a given subset Λ C L there is a basis Μ
contiguous with L along Λ swc/i /Λαί w[L, Μ] = η 3* 3 if and only if the following conditions

hold:

6.10.0. #Λ = 2« - 1.
6.10.1. Λ w maximal in L.

6.10.2. Λ is linearly ordered, i.e. A = { L , , . . . , L 2 n _ , } with L , >L2> ··· > L 2 n _ ] .

6.10.3. In the notation of 6.10.2

|L,-L2 Lj* 0, \L,-L2 L n + 1 | = 0 .

6.10.4. | L, - Ly - Lk | = 0 /o/· /, j , k > 2.

Tonditions 6.10.2-6.10.4 can be replaced by the single condition

6.10.5. 77ze set of arrows of the graph Q{V) \ Λ /?αί the form indicated in the left half of

Figure 6.5.1.

PROOF. The necessity follows from the construction of Vn\ the sufficiency (in consider-

ing which one may assume L = Λ, since, by 6.10.1, L\A is exceptional) follows from the

requirements on the points Pi indicated in 6.2 that are guaranteed by condition 6.10.5, qpL

consisting of blowings up of the Pt.

6.11. From 6.8 it follows that

We shall discuss a surface with a somewhat more complicated graph Δ,.

Suppose η 3s 2, σ: Wn -» Vn is the blowing up of a point Q] in general position (see 0.7) on

the surface Vn described in 6.2-6.6, and o"'(L) (respectively a~\M)) is denoted by L (by

M); that is, L = {L,,...,L 2 n_,, X) and M= {M,,. . . ,M 2 n _,, Z ) , wAere Α Γ = σ - 1 ( β 1 )

and Li (M,) w ?/?e complete σ-preimage of the curve lying on Vn denoted by the same symbol.

There exist bases Α, Β in ®(W^) (distinct for η s* 3 α«ί/ coincident for η = 2) such that

(W/

/ !)A n B is α surface of type Vn_, /or « ^ 3 a«J is a projective plane for η — 2, Ao ~ 2L 0 —

L, - L2 - X,

BQ~nL0- ( n - 1)L, - L 2 L2n_2-X, (6.11.0)

?) = {L,M,A,B},6J(W;)/iasa/-5Mp/>/e»ieni, the graph L^(Wn)(n ^ 3)

L o — o M
= ΐ | |ι

Α ο - ο Β
M - l

//ie surface W2 is isomorphic to the surface U2 considered in 4.7-4.8.
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PROOF. Denote by £,, 0 < j < In, the proper σ-preimage of the curve on Vn denoted by

the same symbol. Wn is fibered by the system \L0 ~ Lx | = | £ 0 + Sf""1^,! of curves of

genus 0, £, being a secant curve of this fibering. The fiber containing X is X + F, where F

is as exceptional curve; see Figure 6.11.2. On Wn we take the curves

Ax = F+ £,

2 η - 3

n-\ ln-\

2 (' ~ 2)£,- + (« - 2) 2 £„
/ — 3 i — n

= F + £, + 2 (2/i - 2 - /)£,. + (« - 2)
;=H+1

£, + £ 0
i = 2

These curves are contractible,

2«-2

AX~LO-L2- X, Bx~(n- 1)LO - (« - 2)L, - 2 A " X,

and the sets A = {£.„} U G(AX) and Β = {E2n_x} U β ( ΰ , ) (coincident for η = 1) are

bases on Wn. Clearly

2n-l

2 £/
1 = 3

Μ ΓΊ Β = G \ 2 £/
2n-3

whence, by 4.3.1, we see that in Tx(Wn) L is contiguous with A, and Μ with B. The

contractions of the intersections L Π A and Μ Π Β map Wn to Vx; therefore, w[L, A] =

w [ M , A ] = l . Further, Α Π Β = {F, £ 0 , E2n_x); comparing Figures 6.11.2 and 6.2.1

shows that (Wn)AnB is a surface of type Vn_x. For the set {A,B, L,M} a /-supplement is

{Ax, Bx, Lx, Mx). That 9>{Wn) is exhausted by the bases constructed is proved like the

analogous claim for 9>(Vn) in 6.4-6.6; in particular, one must first verify that the whole

set Neg(W^) is depicted in Figure 6.11.2; we omit these details.

6.12. At the start of 6.8 we noted that the graph Tx{Vn) is not connected when η > 3.

However, after lifting two vertices of this graph to a suitable surface W dominating Vn, we

can join them by a path in Γ , ( ^ ) . More precisely, if on the surface Vn we take η — 2 points

Q\,· • • iQn-i ' n general position (see 0.7) and blow up the set R = {Qx,... ,Qn_2} by a

morphism Σ: W'-» Vn, then the bases 2"'(L) and Σ~'(Μ) can be joined by a path in the

graph TX(W) whose set of vertices has a J-supplement.

PROOF. Σ = σ ° Τ, where σ is the blowing up of the point Qx, and Τ is the blowing up

of the set σ"'(Λ\{2,}). We shall use the notations and results of 6.11. Let φ = φ Α η Β :

Wn -> Vn_x. The composition φ ° Τ is the blowing up of the set φ(Α Π Β) U R', where

R' = <p(a~\R\{Qx})); therefore, it can be represented as Σ, ° τ, where Σ, is the blowing
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up of the set R', and τ is the blowing up of the set Σ^~'(φ(Α ΓΊ Β)):

Ι ι
w - wn - vn

Τ a
Tj, lq>

W - Kn_,

The points of the set R' are in general position on Kn_,; therefore, inducting on «, in

TX(W) we can pass a path f from Σ,-'ίφίΑ)) to Σ;Λφ(Β)); and then in V(W) the bases

Σ " ' ( ί ) and Σ~'(Μ) can be joined by the path

[E-'(L), Γ-'(Α)] ο τ -·(η ο [r-'(B), Σ-'(Μ)].

The existence of a /-supplement for the set of vertices of ζ follows from the induction

hypothesis and 5.1.4.

6.13. Here and in 6.14 we shall examine the conditions under which a chain of three

bases in Δ,(Κ) can be supplemented by a fourth to form a quadrangle induced by the

quadrangle of Δx{Wn) in (6.11.1).

Suppose [K, L, M] is a path in Δ,(Κ) such that

w [K, L] = η > 3, w[L, M] = 1, #((L\K) Π (L\M)) = 2.

Then Kj, where I = Κ Π L Π Μ, w α surface of type Wn; therefore, there is a basis Ν on V

such that

A,(F)|{K,L,M,N} = i| |i
N»-«M

n - l

7V0 ~ «Lo - (n - 1)L, - L 2 L 2 n _ 2 - Jf, (6.13.1)

{L,,...,L 2 n_,}, L, > L2 > · · · > L2,,_, a«dL\M = {Lx, L2, X}.

PROOF. We may assume 1—0 and prove that V is of type Wn. It is clear that

K n L = { X } ; therefore, the contraction φχ maps V on a surface Vx of type Kn. Now we

must only show that the point φχ{Χ) does not lie on curves in ~Neg(Vx). This follows from

the fact that X is not contained in L, (since w[L, M] = 1 ) , and X is not contained in L, 2

(see 3.9) since, by condition 4.4.3 for L\M, we have \L0 — L, — L2~ X\= 0.

6.14. Suppose [K, L, M] is a path in Δ, ( F ) such that the following conditions hold:

a) w[K,L] = η > 2 and w[L,M] = 1.

b) #((L\K) Π (L\M)) = 1.

c) | L 0 - L , - L 2 - y | = 0 , w*e« L\K = {L,,...,L2 l I_,}, L, > L 2 > - - ^ L , ^ ,

andL\M = {L,, X, 7}, L, > X

d) L Π Κ contains a maximal curve L2n for which \L2n_x — L2n\=fc 0 and \L2n_2 —

L2n-X-L2n\= 0.
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Then the set I = (Κ Γι L (Ί M)\{L 2 n} is exceptional, and Vt is a surface of type Wn+];

therefore, there is a basis Ν G %(V) such that

K °

A,(F)|{K,L,M,N} =
N o — °M

n+\

N0~{n+\)L0-nL,- L,· - (6.14.1)

PROOF. Clearly, the curve L2n lies in the intersection Κ Π L Π Μ and is maximal in it,

so I is exceptional. We may assume 1 = 0 and prove that V is of type Wn+y Suppose

J = Κ ΓΊ L and φ = ψΛ. Evidently J = {X, Y, L2n}, and Vj is a surface of type Vn. On V3

we take curves £ 0 = cp(L, 2 ) and £, — φ([£,]), 1 < i < In, whose position is described in

Figure 6.2.1. We must show that

φ(Χ)^Ει\Εη, φ(Υ)&Ε0\Ε2, <p(L2n)GE2n_x\E2n_2.

The first relation follows from the fact that, by c), L, contains X but L2 does not (see b)

and c)); the second follows from c) and the fact that L2 does not contain Υ (again, see b)

and c)); and the third follows from d).

'• Ι ~-ι

Sk-z -zi

Zn-1

- \7;
• Zn-n7i-?SJ-2

A

FIGURE 6.15.1

6.15. The classification of the minimal surfaces U having a triangle in Γ,(ί/) that was

presented in 4.7-4.9 will be supplemented in 6.15-6.16 by a description of the minimal

surfaces V having a triangle in Δ,(Κ). Let us first consider the surface Wmn (where

2 < m < n) gotten from Vn by successively blowing up m — 1 points P2„,...,Pr, where

r = 2n + m — 2, such that (using the notation and conventions of 6.1) P2n G £ m \ ( £ m _ ,

+ £ m + 1 + £ 0 + £,) and Pi G £ , _ 1 \ ( £ , _ 2 + Em) for In < i < r. We argue as in 6.4,

proving that Neg(Wmn) = {£ 0 , . . . ,Er} (see Figure 6.15.1).

Note that W22 is a surface of type t/5 in 4.7 and 4.8. If the curve (σ2η ° • • • ° ar)'\L^)

is denoted by L,, the curve (σ2 π ° · · · ° σΓ)"'(Μ,) by Λ/,, and on Wmn we take the curve

2 n - l

*•,=£, , + (m-l)\E0+
m-\

i=2

n-\

-<)£,+ Σ ('-!)£,,
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then L = G(LX), K = 6(K2) and Μ = β(Μ,) are bases on Wmn,
 bMK,n) = {K,L,M},

Ax(Wmn) is a triangle, and

w[K,L]=m, w[L,M] = w[M,K] =w.

A surface of type Wmn can also be gotten from Vn by blowings up with a different

arrangement of the centers P2n,... ,Pr(r — 2n + m — 2), namely,

P2» ^ E2,,-n\(E2n-\ + E2n-m-\ + E2n-n,-\ + E2n-m+\ + £ l ) ·

/> e ^.-Λί^,-ζ + £ 2 n _ J (2n < / < r ) .

If we introduce L,, A/,, L and Μ as above and put

* , = £ ,
ι = η + I

2/1-1

/ — 2 Η i ~ 2 η — m + \

Κ = (5( A"|), then {K, L, M} is the set of all bases of the surface thus constructed in whose

graph Δ, we have

w[K,L] = w[L,M] = Λ , w[M,K] = w.

In both variants of the construction of Wmn the triple {K, L,M} has 7-supplement

6.16. We supplement 4.6 and 4.9 with the following assertions.

6.16.1. // {K,L} and {L,M} are neighboring bases in Δ,(Κ), w[K,L] s= 2, w[L,M] > 2

and #((L\K) Π (L\M)) > 2, i^e« Δ,(Κ)| {K,L,M} is a triangle, and Vx is a surface of

type Wah, where I = Κ Π L Π Μ and

b = max{(L0 · Ko), (Lo • M o )}, a = (Lo • Ko) + (Lo • Mo) - #((L\K) η (L\M)).

6.16.2. //Δ,(Κ) | {K, L, M} is a triangle and I = Κ Π L Π Μ, then F, is either isomorphic

to one of the surfaces Uo,... ,U4 in 4.7 and 4.8 or is a surface of type Wah, where a and b are

given in 6.16.1.

PROOF OF 6.16.1. We may assume that I = 0 , η > m, L\K = {Lu.. •,L2n--l}, L\M =

{*ι,···,*2«ΐ-ι}' L\> L2> ·•• > L2n_x and Xx> X2> ••• > X2m-X. These two chains

of contractible curves cannot be enlarged; i.e., there is no contractible curve C with

L, > C> Li+X (or Xt> Ο Xi+X), since the curve suppL, — suppL,+ | is irreducible.

Since the sets L\K and L\M are maximal in L, so is their intersection, which therefore

has the form {Lx,.. .,Lr), where L, — Xx,... ,Lr — Xr. By hypothesis, r > 2.

We shall prove that r > m. If r + 1 < m, then both the curves Xr+X and Lr+X intersect

both [Lx] and [Lr]. From the absence of triple points in suppL, it follows that

[Lx] Π [Lr] ΓΊ (Xr+X + Lr+X) is empty, and from the 1-connectivity of the dual graph of

the curve Lx it follows that Xr+X Π Lr+X φ 0 ; from this and 1.6.4 we get either

Xr+X < Lr+X or Lr+X =e Xr+X. Now the fact that the chains Lr > Lr+l and Xr > Xr+X

cannot be enlarged entails Xr+, = Lr+,, contradicting the definition of r.

Thus r s* m. Clearly r < 2 m — 1. We can write

L = [Lx, L2,... ,L2n_x, Xr+X,- •. i^zm-Mi

K={Kx,K2,...,K2n_x,Xr+x,...,X2m_x), (6.16.3)

M = {Lr+l,...,L2n_l,Ml,M2,...,M2m-l},
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where Kj ~ Lo - Lx - L, for 2 < / < 2« and Mj ~ LQ- L, - Xj for 2 <y" < 2m. From

this and 1.5 it is evident that K: — Mi for 2 *s ι =£ r, and

Κ Π Μ = {K2,...,Kr},

M\K={Ml,M2m_l,...,Mr+l,Lr+l,...,L2n_i}.

The triple {K, L, M} has the triple {Kx, L,, Af,} as a /-supplement. To prove that Κ and

Μ are neighbors in Δ,(Κ) it suffices, by 6.7, to establish that K\M and M\K are linearly

ordered, for which it suffices to prove the inequalities Kr+i > Xr+X and M r + 1 > Lr+i, i.e.

to prove the effectiveness of the classes Kr+] — Xr+) and A/r+1 — Lr+l, coinciding with

Lo — L{ — Lr+] — Xr+]. But the class Lo — L, — L2 is effective (~ M2), and so are

L2 — L 3 , . . . ,L r _, — L r, L r — L r + 1 — Xr+\ (the last follows from the nonemptiness of

[Lr] ΓΊ Lr+X and [LJ Π Xr+i). By putting together classes enumerated, we get what is

required.

Note that either r = m or r> m = n, since |L, — L 2 — • • · — L m | ^ 0 but | L , — L 2

- · · · - L m + 1 1 = 0 . That Kis a surface of type HfaA follows from (6.16.3) and 6.15.

PROOF OF 6.16.2. We may assume that the given triangle is different from those

considered in 4.6-4.9 containing an edge of weight η 3* 3, say η — w[L, K],

L \ K = {L, ,L 2 , . . . ,L 2 n _,} , K \ L = {Κλ,Κ2,...,Κ2η_,},

L, > L2 > • •• > L2n_]y Kx > K2n__x > K2n_2 > · · · > K2.

Put m = (L o · Mo) and L\M = {^Ί,· · -,X2m-\}> where A", is a maximal curve in L\M.

Let us show that L, ε L\M. If L\M does not contain L,, then, since it is maximal in

L, it contains none of curves L,, so (L\M) Π (L\K) = 0 . From 5.5.1-5.5.4 we get

2 n - l 2m-\

MQ ~ mnK0 - m(n - l)fc, - (m - \)XX - m Σ Ki ~ Σ ^ · .
/=2 i=2

whence it is clear that (Κ, Μ} has no ./-supplement.

Thus L, e L\M, and L, is maximal in L. By 6.9.3, Μ has a curve M, such that

Mo — M, ~ Lo — L,; from this and 5.1.4 it follows that {Ku L,, M,} is a /-supplement

to{K,L,M}.

To prove that F, is of type Wab, by 6.16.1 it suffices to show that L(K) Π L(M) is not

empty and w[L, M] > 2. But if this intersection is empty or w[L, M] < 1, then, by (5.9.1)

and (5.9.2),

1) (Ko • Mo) = #(L(K)AL(M))/2 + 1 > η ^ 3,

2) the set L(K)AL(M) is not linearly ordered by inclusion, and

3) the set M(K), which by (5.8.1) consists of curves whose classes are Lo — L, — L,

where L ε L(K)AL(M), is also not linearly ordered.

It remains to note that 1) and 3) contradict Κ being contiguous to M.

6.17. An ordered quadruple of bases (K, L, M, N} will be called a quadrangle if Δ,(Κ)

contains edges [K, L], [L, Μ], [Μ, Ν] and [Ν, Κ]. Clearly, if in such a quadruple we reverse

the order or change it cyclically, the quadruple becomes a quadrangle. If there exists an

edge joining opposite vertices of a quadrangle, this edge will be called a diagonal. Here

and in 6.18 and 6.19 we construct some surfaces V with quadrangles without diagonals in
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FIGURE 6.17.1

We take the surface Wn in 6.11 and the blowing up a: W® -> Wn of a point Q lying in

El\(F+ En) (see Figure 6.11.2); denote by Υ the curve a~\Q), by G the exceptional

curve on Wn° which, together with Y, forms the fiber Υ + G of the fibering \F + A"| by

curves of genus 0, and by F, X, E0,...,E2n_l the proper σ-preimages of these curves on

Wn\ we shall write L,M, A,B instead of a~'(L),... ,σ"'(Β) respectively. As in 6.4 we can

show that (see Figure 6.17.1)

N e g ( ^ , 0 ) = {F,G,X,Y,E0,...,Eln_,}. (6.17.0)

The contraction τ of the curve F maps W® on a surface of type Wn\ it turns out that b^ses

A and Β in %(]¥η

ο) can be considered as the τ-preimages of the bases in UJD(T(H^ 0))

denoted in the same way. We take bases Κ and Ν on W° such that {K, A} and {Ν, Β} are

pairs of neighboring bases, {K,N, A,B} = ^ ' ( © ( τ ^ , 0 ) ) ) . More explicitly, Κ = {G} U

and Ν = {G} U β(Ν,), where

(ι "
ί = 2

=F+ [ η - Ι )

2;ι-1

) ^^ i '

2η-\

2 (2η - 1 - /)£,..
/ = / ( + !

Note that

(0~2L0-L] - Χ- Υ, Ν0~(η + l)L0 - «L, -
2 η - !

Lt-X- Y. (6.17.2)

(6.17.0) implies that each basis on W° contains a curve with component £,, whence

B(Wn°) = {K,L,M,N,A,B}.

Μ

*,«) =

ϋ -

;

1/

\
;

//
/

4
5

η

Β /

\ /

\

/

V
κ Ν

FIGURE 6.17.3
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6.18. Suppose «, m s* 2 and r = In + 2m — 3. Consider the surface Vmn gotten from Vn

(see 6.2) by successive blowings up a2n,... ,ar of 2(m — 1) points P2n,... ,Pr, where (see

6.1 in connection with the notation used) P2n £ El\En, F, = £, · £,._, for 2n < i <2n +

m — 2, and /*,- ε Ej_]\(El + £,-_2) for 2« + w — 1 < / < r. Suppose F is an irreducible

rational curve with selfintersection on Vn that intersects Ex transversally in the point P2n,

and let Fo be its proper preimage on Vmn. As in 6.4, Neg(Kmn) = (F o , E0,...,Er) (see

Figure 6.18.1). Let

1 = 0

where

suppL, = Ε ~(E0 + Fo), suppM, = E- (F0 + £ 2 n ^ , ) ,

suppA:, = Ε - ( £ 0 + £ r ) , suppA ,̂ = £ - (Er + E2n_x).

7 - / 7 - / 7 7

2/7-/

FIGURE 6.18.1

Note that
r

Ko ~ mL0 — (m — 1)L, — 2 L ;,

No ~ (n + m - 1)LO - (n + m - 2)L, - 2 ^/·

From the description of the set Neg(Fmn) it follows that

®(K M J={K,L,M,N},

Ko — oL

(6.18.2)

(6.18.3)

6.19. // [K, L, M] is a path in A,(F), w[K, L] ^ 2, w[L, M] > 2,

# ( ( L \ K ) n ( L \ M ) ) = l , (6.19.1)
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and I — Κ Π L Π Μ, then F, is a surface of type Vmnfrom 6.18; in particular, V has a basis

Ν such that the graph Δ,(Κ) | {K, L, Μ, Ν} is the quadrangle depicted in Figure 6.18.3, and,

according to 6.18.2,

2m- 1 2/1-1

N0~(n + m-l)L0-(n + m-2)L}- Σ Α ~ Σ χι· (6.19.2)
i=2 i=2

whereL\K={L),...,L2m_]}andL\M = {Li,...,X2m_]}.

PROOF. We may assume I = 0 , L = (L\K) U (L\M) and

Li>L2> •••>L 2 m _ 1 , LX>X2> • • • > * 2 n _ 1 .

From the maximality of L in L\M it follows that the set J = L\K\{L,} is exceptional

and that the point <Pj(L2) of the surface V3 (of type Vn) does not lie on the curve y3(X2).

§7. Connectivity of the graph Δ,(Κ)

7.0. In this section we obtain the possibility of passing from one basis on V to any other

basis on V along on edge of the graph Δ,(Κ). Moreover, in §8 we shall need the existence

of a sufficiently good (monotonic; see 7.1) path in Δ ̂ F ) joining two given vertices.

7.1. In the definition below we shall denote by A the class of Ao (see 3.3) corresponding

to the path at the origin in a basis A.

DEFINITION. A path ζ — [A,... ,K,L,...] in the graph Δ,(Κ) is called monotonic if, for

any edge [K, L] of this path and for curves C,, C2 in L\K satisfying the additional

requirements that the pair {C,, C2) is maximal in L\K and the pair {(C, · A), (C2 · A)} is

maximal in {(L • A) | L e L\K}, the following conditions hold:

7.1.0. ( ( L o - Ko) -A)>0.

7.1.1. m a x { ( C , · A),(C2 • A)} = m a x { ( L · A)\L G L } .

7.1.2. // neither of the curves C, and C2 is contained in the other, then for L G L\K and

L' G L\K

{{L- L') -A)>0.

7.1.3. // C2 « contained in C,, ?Ae« /or a«j c«rue L in L\K

((2L + C , - L o ) - ^ ) > 0 . (7.1.3.1)

7.1.4. // C2 w contained in C,, w[L,K] > 2, α«ί/ L Π Κ Ααί cwroes Ζ and Υ that

{C,, A', Y) is maximal in U Ct > X,\L0 - C] - C2- Y\^ 0, and

{(L0-C]-X-Y)-A)^0, (7.1.4.1)

then either

7.1.4.2. L ΙΊ Κ contains a curve L that is contained in all the curves in L\K and satisfies

(7.1.3.1),

or

7.1.4.3. %(Y) contains bases K' and K" forming, together with Κ and L, a quadrangle

without diagonals {K', K, L, K"} (in the sense of 6.17) of the form considered in 6.18 α«β?

6.19, and {C,, X} C L\K" and any curve L in L\K" saris/'" (7.1.3.1).

7.2. THEOREM. For any two bases A, L G %(V), Δ,(Κ) contains a monotonic path starting

at A and ending at L.

In 7.4 we shall deduce this theorem from Proposition 7.3.
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7.3. PROPOSITION. Suppose L e <$>{V) and A is an element o/Pic(K) such that
7.3.1. Α Ψ Lo,
7.3.2. (A2) >0,
7.3.3. the system \A\is movable, and
7.3.4. the system \ A + λ Κ v\ is rationally empty for allλ in Q Π ]1/3, oo[ (see 3.10).
Then there exists a basis Κ neighboring L in Δ,(Κ) that satisfies the requirements

7.10-7.1.4.

7.4. Deduction of Theorem 7.2 from Proposition 7.3. Let A and L be two distinct bases on
V. By 3.4, 3.5 and 3.10, for A - Ao all the conditions 7.3.1-7.3.4 hold. Let Κ be the basis
guaranteed by the proposition. If Κ = A, the required path is [A, L]. If Κ Ψ A, then,
inducting on (A · Lo) and using 7.1.0, we can extend a monotonic path ξ from A to K.
Then the path ξ ° [Κ, Κ] is the required one.

We shall prove Proposition 7.3 in 7.5-7.13.
7.5. Let the curves of the basis L = {L,,... ,Lr} be numbered so that
7.5.0. Lt > Lj implies / <_/',

in particular,
7.5.1. each subset {£,,.. -,LS} is maximal in L, where 1 «ε ί < r,

and

7.5.2. in the expression A = /0L0 — /,Ζ,, — · · · —lrLroi the class of A in terms of the
group basis {Lo} U L, the coefficients /, satisfy the inequalities

/,> /2 > · · · > / , . (7.5.3)

We put

p = max({i|/,. >0} U {0}). (7.5.4)

In the process of the proof we shall often use both the decomposition of A + λ Κ ν in
terms of the basis {Lo} U L,

r

A+\KV= (l0 - 3X)L0 + Σ (λ - l,)Lit (7.5.5)
i = 1

and the decomposition of A + \Ky in terms of other bases consisting of effective classes.
Note the effectiveness of the classes

A0 = L 0 - L , , A,. = L 0 - L , - L , (2 < ι < r) (7.5.6)

(see 3.7 and 3.8). From 7.3.1-7.3.3 follows

/ 0 > 2 ; lQ>li for 1 «: / =s r. (7.5.7)

Further,

3/,>/0 (7.5.8)

(in particular, δ > 1), since otherwise after substituting the number λ = /0/3 in (7.5.5)
(which, by (7.5.7), is greater than 1/3) all the coefficients in (7.5.5) become nonnegative,
contradicting 7.3.4.

7.6. We show that

P>2, (7.6.1)

2/ 2 + / , > / „ . (7.6.2)
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Consider the expression of the class A + \KV in terms of the group basis {Λο} U L

(Λ ( ) was introduced in (7.5.6)):

r

A+\KV= (/„ - 3λ)Λ0 + ( / „ - / , - 2X)L, + Σ (λ - l,)L·,. (7.6.3)
/ = 2

If (7.6.1) or (7.6.2) does not hold (that is, p = 1 or l2 < (/0 - /,)/2), then putting

λ = (/0 — /,)/2 in (7.6.3) produces nonnegative coefficients in its right-hand side.

7.7. We show that

/ 0 * / , + / 2 . (7.7.1)

and if equality holds in (7.7.1), then ρ > 3.

The introduction index of the members of the movable system | A | with the effective

class Λ2 introduced in (7.5.6) is nonnegative and equals the difference between the left

and right sides of (7.7.1). If this difference is zero and ρ = 2, then (7.5.5), taken with

λ = 1/2, can be rewritten as

A + Kv/2 = (l2 - \)L0 + (/, - 1/2)Λ2 + (/, - 12)L2.

In the last equation all the coefficients are nonnegative, contradicting 7.3.4.

7.8. We shall prove the inequalities

P > 3 , (7.8.1)

/, + / 2 + / 3 > / 0 . (7.8.2)

If /, + l2 - l 0, then 7.7 implies ρ > 3, and then l3 > 0 by (7.5.4); that is, (7.8.1) and

(7.8.2) hold. Therefore, we assume (7.7.1) to be a strict inequality. Let us decompose

A = \Ky in terms of the group basis {Λο, λ,} U (L\{L}) (where Λ, = Λ2 + L,, and Λο

and Λ2 are given in (7.5.6)):

A +\KV= (/, - λ ) Λ 0 + ( / „ - / , - 2 λ ) Λ ,

+ ( / 0 - / , - / 2 - λ ) Ι 2 + Σ (λ-/,.)£,..
ι = 3

If (7.8.1) or (7.8.2) does not hold, then replacing λ by the number l0 — /, — l2 in the latter

(which, by the strictness of (7.7.1), is not less than one), we get, by (7.5.3), (7.5.8) and

(7.6.2), nonnegative coefficients in the right-hand side, and this is impossible by 7.3.4.

7.8.3. We shall show that if L2 is not contained in L,, then there is a basis K G S ( F )

for which 7.1.0-7.1.4 hold and

L \ K = { L , , L 2 , L 3 } .

Let us check that conditions 4.4.1-4.4.3 hold for L and {L,, L 2, L3}. Condition 4.4.1

follows from 7.5.1, 4.4.2 from 7.5.0 and the assumption that L, does not contain L 2, and

4.4.3 from 7.3.3 and (7.8.2).

Let Κ be a basis neighboring L along (L,, L2, L3}. Since Ko ~ 2L0 — L, — L2 — L3,

7.1.0 is equivalent to (7.8.2). If {C^,C2} = (L,, L2}, then 7.1.2 and 7.1.3 follow from

(7.5.3) and (7.8.2); and the inequality C2 < C, is impossible here. In case {CVC2} Φ

{Lv L2), we have l2 = /3 and again 7.1.2 and 7.1.3 follow from (7.5.3) and (7.8.2), and the

inequality C2 < C, and w[L, K] > 2 are impossible.
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In the following parts of the proof of Proposition 7.3 we shall assume that L1<LV

7.9. Let £(91t) be the subset of L\{L,} (L\{L,, L2}) consisting of those L for which

Ζ,)+ / , > / „ (7.9.1)

(|L, - L 2 - L | = 0 , | L 2 - L | = 0 ) . (7.9.2)

Note that:

7.9.3. L2 e £ (see (7.6.2)).

7.9.4. 91LDL\e(L,).

7.9.5. £\{L2} and 911 are maximal in the set £\{L,, L2}.

Therefore we have

7.9.6. The intersection £ Π 9His maximal in L\{L,, L2}.

Further,

7.9.7. For any three curves L, L', L" in £ the system | L — L' — L" | is empty.

In fact, otherwise (7.9.1) and 7.3.3 would imply

contradicting (7.6.2) and (7.5.3).

7.10. We shall show that if £ Π <31tΨ 0 and L is a maximal curve in £ Π 911 for which

(L • A) 2* (C • A) when C e £ Π 9H, then there is a basis Κ that neighbors L along the set

Λ = {L,, L2, L) and satisfies 7.1.0-7.1.4.

We first verify 4.4.1-4.4.3 for Λ. The maximality of Λ in L follows from 7.9.6 and 7.5.1;

that 4.4.2 holds follows from (7.9.2) and 7.5.1; and the emptiness of | L 0 — L, - L 2 — L\

follows from (7.9.1) and (7.5.3).

Let Κ be a basis neighboring L along Λ. Inequality 7.1.0 follows from (7.9.1), and 7.1.1

follows from

If C, = L, and C2 = L2, then, since C, > C2, it makes no sense to verify 7.1.2; but if

C, = L, and C2 = L, then (L • A) = l2, and 7.1.3 follows from 7.6.2. Since \L2 - L\- 0

(see (7.9.2)), we must have w[K, L] = 1, and so it does not make sense to verify 7.1.4.

In the remaining parts of the proof of the proposition we shall assume that L2< Lu

£ η 9H = 0 , and in particular (see 7.9.3 and 7.9.4), £ C 6(L,) .

7.10.1. From 7.9.7, 1.7.2 and 1.11 it follows that the set of arrows of the graph Q(V)\t

is the disjoint union of oriented paths £,,...,£/ (some of which may have length zero) of

the form

Ο «- Ο «- Ο «- Ο.

Let L' be the set of vertices of the path f,., t(i) = # L ' , and L' = {L\,... ,L'r(;)}, where the

curves in L' are numbered so that L'a> L'p for 1 =£ α < β < ί(/). Suppose that, for

/ e [1, /], s(i) is the largest possible number in [1, t(i)\ such that {L\,.. .,L's(i)} C Q*(Ll)\

i.e., the graph Q(V) has arrows ending at L, and starting from the vertices L\,.. -,L's(i) but

none from the other vertices Lj G L' ( j > s(i)) (see 1.7 and 1.11). The set of arrows of the

graph §(K) | £ U {£,}is shown in Figure 7.10.2.
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h
FIGURE 7.10.2

7.11. We shall prove that there exists ; e [1, /] such that

t(i)>2s(i).

Put

σ = 1 + τ= 1 + Σ φ).

(7.11.1)

(7.11.2)
/ = Ι

Consider the basis of the group Pic(F) consisting of the following effective classes:

Ao = Lo- L] (see (7.5.6)), Λ, - L, - l'i=llfi\L'J (the effectiveness of Λ, follows from

1.7.2, 1.11 and Figure 7.10.2), Λ^ - Lo - L, - L), where 1 *zj < i(/) and 1 « / < /

(compare (7.5.6)), and LK, where τ < k < r.

Since the curves LT,...,Lr do not lie in £, we have

2lk^lo-h forr< k^r. (7.11.3)

Further, the elements of the old basis {Lo} U L lying in {Lo, L,} U (U(L') are expressed

in terms of the new basis as follows:

Lo = σΛ0 + Λ, - 2 Σ Λ;., L, = (σ - 1)Λ0 + Λ, - 2 Σ *j,
; = 1 ν = 1 / = 1 7 = 1

L) = Λ ο - Λ^ for 1 < / < /, 1 <j < t(i).

Therefore

Kv = (τ - 2σ - 2)Λ0 - 2Λ, + Σ Σ Κ ~ Σ
ι = ι \ y = i j=sUY

and if the class A is expressed in terms of the old basis by the equation

/
A = 1OLO — liLl — 2/

then its expression in terms of the new one is

+ Σ Lk,

σ/0 - (σ - 1)/, - Σ Σ 1}: A0 + (/0-/,)A,
ί = 1 7 = 1 /

+ Σ - Σ
( = 1 7 = 1 7=ί(/)+1
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Hence for the class A + \KV adjoint to A we get the following expression:

λ ( τ - 2 σ - 2 )
'"=1 7 = 1

Λ 0 + ( / 0 - / , - 2 λ ) Λ ,

(7.11.4)

Inequality (7.11.1) for some / ε [1, /] will be proved by contradiction; i.e., assume that for

all ζ in [1,/]

t(i) <2s(i) - 1; (7.11.5)

we shall derive a contradiction to 7.3.4 by showing that the coefficients in (7.11.4) are

nonnegative for λ = (/0 — /,)/2. We go through these coefficients from right to left.

From (7.11.3) follows λ —/\. 3* 0 for τ < k < r. Further, the nonnegativity of the

coefficients I) - λ and /, - /0 + I] + λ follows from L) ε £ and (7.9.1). The coefficient of

Λ, is zero; and the doubled coefficient of Λο in (7.11.4) (recall that λ = (/0 — /,)/2) is

easily verified to equal the expression

' .-Σ
·= 1 j= 1

(/-!)(/„-/,)

+ 2 (2s(i) - φ ) - ι ) / ; + 2 2 Σ (/{ - / ; ) , (7-11.6)

in which, because of (7.11.5) and the effectiveness of the classes Λ, and L\ — L'r each

difference in parentheses is nonnegative.

7.12. Suppose the natural number i whose existence was proved in 7.11 (see (7.11.1))

equals 1; i.e.,

/ ( / ) > 2 i ( l ) . (7.12.1)

Assume that L f i K contains no curves X and Υ with the properties indicated in 7.1.4 if we

take C\ = Lx and C2 = L\ in 7.1.4. Putting

n = s(\) + \, Λ = { £ „ £ ' , , . . . , 4 n _ 2 } ,

we see that L and Λ satisfy 6.10.0-6.10.5; therefore, there is a basis Κ neighboring L along

Λ for which all the requirements 7.1.0-7.1.4 hold. Indeed, 7.1.0 is a consequence of (6.2.2)

and (7.9.1); further, we must have C, = Lx and C2 — L\, so 7.1.1 is evident, and 7.1.2 and

7.1.4 need not be checked, while 7.1.3 is a consequence of (7.9.1)

7.13. Now assume that for the basis Κ given in 7.12, for the basis L and the curves

C, = L, and C2 = L\, 7.1.4.2 does not hold, which means that equality holds in (7.12.1),

since if strict inequality held in (7.12.1), the curve L = L]

2s0)+] would satisfy 7.1.4.2. It is

now evident that to complete the proof of the proposition it suffices to show that

/ > 2 (7.13.1)

and that there exists i ε [2, /] for which either the inequality (7.11.1) is strict, i.e.

r ( / ) > 2 i ( i ) , (7.13.2)

or
and X<EL'. (7.13.3)
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To prove (7.13.1) it suffices to note that X e L , since combining the inequalities

Ό - ' ι " ' ι ~ ( Υ · Α ) > 0 , -/ο + /, + ( X - A ) + ( Y - A ) > 0

that follows from condition 7.1.4 yields (X • A) — l\ > 0, whence (X • A)> I] > (/0 -

/,)/2. Assume that, contrary to (7.13.2), for all / e [2, /]

t(i)<2s(i). (7.13.4)

If at least one of the inequalities (7.13.4) is strict, say ?(/) + 1 «£ 2s(l), then the group of

summands

i=\

occurring in (7.11.6) can be rewritten as

and we see that the sums as well as the whole expression (7.11.6) are nonnegative,

contradicting 7.3.4. But if for all / in [2, /] we have equality in (7.13.4), then, taking an

/' e [2, /] for which X e L', we get (7.13.3). It remains to note that if we assume (7.13.3) to

hold with / = 2, then for bases K,L and K", where L\K" = {L,, L\,... ,Lj{2)) and

X = L], we can see that the hypotheses of assertion 6.19 are satisfied (if we replace Μ by

K" in it); and then, denoting by K' the basis Ν of 6.19, we get the required quadrangle

{K',K,L,K"}.

Proposition 7.3 and Theorem 7.2 have been proved.

7.13.5 REMARK. From the proof of the proposition and from 5.1.4 and (5.5.1) it is

evident that if {A,L} U {Ax, Lx) is a de Jonquieres set, then the set of vertices of the

monotonic path from A to L constructed in the proof has a /-supplement, and the

/-supplement may be assumed to contain {Λ,, L,}.

In 7.14-7.17 we present some consequences of the connectedness of Δ,(Κ).

7.14. JfuS>(V) consists of precisely two bases L and Μ for which L Π Μ = 0 , then V is a

surface of type Vn, η s* 0 (see 4.4, 4.5 and 6.2-6.8).

7.15. // a class A G Pic(F) satisfies 7.3.2-7.3.4 and %(V) Φ 0 , then there is a basis

A G ($>(¥) such that A = Ao.

PROOF. It suffices to show that

min{(L 0 · A)\L G %(V)} = 1,

since if L is a basis for which (Lo • A) = 1, then 7.3.3 implies (compare the proof of

3.11.1) A = Lo. Assume that the minimum considered equals μ , μ > 1 , μ = (Ζ, 0 ·Λ) and

L e <S(K). Then for L and A all the conditions 7.3.1-7.3.4 hold. If Κ is the basis given in

Proposition 7.3, then, by 7.1.0, (A ô • A) < (Lo • A) = μ, which is impossible.

7.16. The graph Γ, is stably connected in the sense that for any two bases L and Μ on the

surface V one can find a natural number Ν such that any blowing up f: U -» V of a set

consisting of Ν points in general position on V guarantees the possibility of joining by a path

in the graph Γ,(ί/) the vertices /" '(L) andf'\M) of this graph.

PROOF. Let f = [L 0,. . .,L'] be a path in Δ,(Κ) starting at L° = L and ending at

L1 = M. Let n, - w[LT\L''] (1 < / < /), and Ν = max{0, n, - 2,.. .,n, - 2}. We take a

blowing up /: U -» Κ of a set of Ν points of V in general position. From 6.12 it follows

that the vertices/"'(L'~') and/" '(L') are joined by a path in Γ,(ί/), and this proves 7.16.
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7.17. From 7.16 follows M. Noether's theorem: Any birational transformation of the

plane (over an algebraicaly closed field) is a composition of quadratic and projective

transformations.

PROOF. Any birational transformation of P2 can be represented as (pL ° φ ^ (see

3.12-3.14), where L and Μ are two bases on some V. We may assume that L and Μ are

joined by a path in Γ,(Κ) (otherwise, using 3.13, 7.16 and the morphism /: U -> V, we

could lift to the surface U, where f~\L) and /" ' (M) are already joined by a path in

Γ,({/)). If L o , . . . ,L n are the vertices of this path, Lo — L,... ,Ln = M, then

Φ Μ = («PL0 ° Φΐ',)

and the birational transformations of the plane in parentheses are quadratic by 4.2 and

4.3.

§8. 1 -connectivity of the complex Δ( V)

8.0. Here we introduce the complexes T(V) and Δ(Κ) for an arbitrary surface V.

DEFINITION. T{V) is the simplicial complex gotten as the simplicial filling of the graph

Γ,(Κ) (see 0.5.1), and Δ(Κ) is the cell complex gotten as the prismatic filling of the graph

Δ,(Κ) (see 0.5.2).

We need only the one-dimensional skeletons of these complexes. In A(V) the two-

dimensional cells are triangles and quadrangles without diagonals (in the sense of 6.17).

Theorem 7.2 implies that the complex Δ(Κ) is connected. As is evident from considering

the surface V22 (see Figure 6.18.3 with m = η = 2), the complex T(V) can be connected,

but need not be. The simplicial fillings of the graphs Ai(Vmn) and Δ,(Η^) when η > 3 (see

Figures 6.18.3 and 6.11.1) coincide with these graphs, so they are not 1-connected. This

matter is simpler for a prismatic filling.

8.1. THEOREM. The complex Δ(Κ) is \-connected.

The proof occupies the rest of this section, i.e. 8.2-8.15.

8.2. Suppose fis a loop in Δ(Κ) (i.e., ζ is a closed path in the graph Δ,(Κ)). A G %(V),

and A is the origin of the loop ζ. Using Theorem 7.3 we may join the origin of this loop to

any vertex of it by a monotonic path; therefore, to prove Theorem 8.1 it suffices to prove

the contractibility of a loop of the form

ξ = £° [L,M] ° T T \ (8.2.1)

where £ and η are monotonic paths with origin A, L is the end of ξ, Μ is the end of η, and

[L, M] is an edge of Δ,(Κ).

We introduce some notation.

8.3. For a loop ζ of the form (8.2.1) we put

*(£) - m a x { U 0 • L o ) , (Ao • Mo)} (8.3.1)

is the height of the loop f) and

-L0),(AQ-M0)) (8.3.2)

(that is, 8(ξ) = 1 when ((L o - Mo) • Ao) = 0, and 8(ζ) = 0 otherwise); 8(ξ) characterizes

the inclination of the edge [L, M] with respect to the vertex A.

8.4. The proof that the loop (8.2.1) is contractible will be carried out by induction on

the pairs (h($), δ(ξ)) in lexicographic order (see 8.3). In case A(f) «£ 2, the loop lies on a
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simplex, and so is contractible. In what follows we shall assume the inequality

- M o ) - ^ 0 ) > 0 (8.4.0)

(if this does not hold, we replace f by its opposite). Denote by [K, L] the last edge of the

path ξ; that is, £ — ξ0 ° [Κ, L], where ξ0 is a monotonic path (possibly of length zero) with

origin A and end K. In 8.6 we shall reduce Theorem 8.1 to the following proposition.

8.5. PROPOSITION. Suppose [K, L, M] is a path in the graph Δ,(Κ), I = Κ Π L Π Μ, A is

an element of Pic( V), where the system \A\is movable,

{(Lo-Mo)-A)>0, (8.5.a)

and for any curves C, and C2 in L\K the pair {C\,C2} is maximal in L\K, the pair

{(C, · A),(C2 • A)} is maximal in {(L • A)\L G L\K}, and the following conditions (almost

coinciding with 7.1.0-7.1.4) hold:

8.5.0. ((Lo-Ko)-A)>0,

8.5.1. m a x { ( C , · A),(C2 • A)} = m a x { ( L -A)\LG L \ I } .

8.5.2. // neither of the curves C, or C2 contains the other, then for L Ε L\K and

L' G ((L Π K)\I)

( ( L - U) -A) 3=0.

8.5.3. // C2 is contained in C,, then for any L G L\K

( ( 2 L + C, ~ Lo) -A) > 0 . (8.5.3.1)

8.5.4. // C2<CU w[L,K] > 2, and (L Π K)\M contains curves X and Υ such that

{C,, X, Y) is maximal in L, C, > X and \ Lo - C, - C2 - Υ\Φ 0, ((L o - C, - X - Υ)

• Λ) < 0, /Λ̂ « either

8.5.4.1. L (Ί Κ contains a curve L that is contained in all the curves in L\K and satisfies

(8.5.3.1),

or

8.5.4.2.6S(K) contains bases Κ' α«ί/ Κ" which, together with Κ and L, /orw α quadrangle

(K',K,L,K"} of the form considered in 6.18 and 6.19, and {C,, X} C L\K" and any curve

L in L\K" jai/s//« (8.5.3.1).

77ze« /Ae graph A,(F) contains a path κ = [K°, K1,... ,Kr] /or ννΛ/cA ?Λβ following

conditions hold:

8.5.5. K° = K W K r = M.

8.5.6./. ((Lo - #ί) · Λ) >0, w êre 0 < / < r.

8.5.7. Γ/ie Λ%>/? [K, L , M ] » K " ' w contractible in the complex Δ(Κ).

8.5.8. A J-supplement (if one exists) to the triple (K, L, M} can be enlarged to a

J-supplement to the set of vertices of the loop [K, L, M] OK" 1 .

8.6. Deduction of Theorem 8.1 from Proposition 8.5. Let us apply 8.5 to the situation

where ζ is a loop of the form (8.2.1), ξ = £0 ο [Κ, L] and A = Ao, where A is the origin of

ξ. The movability of \A \ was proved in 3.4.3, condition (8.5.a) coincides with (8.4.0), and

requirements 8.5.0-8.5.4 follow from the properties of the monotonic path ξ. Join the

vertex A to the vertices Κ (1 < i < r) by monotonic paths £,, and denote the path η by £ r.

For / G [1, r] put



DEFINING RELATIONS FOR THE CREMONA GROUP 255

By 8.5.7 the loop ζ is homotopic in Δ(Κ) to the composition f, <> · · · ο £.. From the

induction hypothesis (recall that we are inducting on the lexicographically ordered pairs

(A(?)> ̂ ))' w h e r e h a n d δ a r e defined by (8.3.1) and (8.3.2) respectively) it follows that

each of the paths f, (1 =s / =£ r) is contractible, since for i < r we have A(f,·) < A(f), and

for ξr we have

Proposition 8.5 will be proved in 8.6-8.15. After constructing the path κ the main point

will be to check that the conditions 8.5.6./ (1 =£/</·) hold, and the truth of 8.5.5, 8.5.7

and 8.5.8 will be an evident consequence of the construction.

8.7. We introduce the following notation:

n-(L0-K0), m = (LO- MO),

L \ K = { L 1 , . . . , L 2 B _ 1 } , K\L = {*,,. . . , * , „ _ , } ,

L\M = { * „ . . . , J f 2 M _ , } , M \ L = { M 1 , . . . , M 2 M _ 1 } , ( - - >

l, = (LrA) forO</<2«, x,. = (*,·· Λ) for 1 *£ / < 2ro.

We shall assume that Lt> Lj or Xt> Xj implies i<j; in particular, if w[L, K] 3= 2

(respectively, w[L, M] > 2), then L, > L2 > · · · > L2n_, and so

Ί > ' 2 > •••>'2«-i (8-7.2)

(respectively, Xx > X2 > • · • > X2m-i a n d so

χλ>χ2>···>χ2Μ-ι- (8-7.3))

If we consider a supplement for the pairs {K, L} ({L, M}), we shall consider it to be

{A",, L,} ({Χ,, Λ/,}) and then, by 5.5, we have

A~o = «^o — ( « - l)-i-i — L2— • • • —L2n_\,

Mo = mL0 -(m-l)X,-X2 Jf2m_,.

From this and 8.5.0, (8.5.a) follows:

(n - l)(/ 0 - /,) - l2 /2 B_, < 0, (8.7.4)

(m - l)(/ 0 - x,) - x 2 x2m-l < 0. (8.7.5)

From (8.7.4) we obtain

2 m a x { / 2 , . . . , / 2 n _ , } > / 0 - / 1 . (8.7.6)

From the assumption Li > L2 follows the stronger assertion (see (8.5.3.1)) that

2/,. > / 0 - / , f o r a l l / e [ l , 2 w - 1]. (8.7.7)

From (8.7.5) we get

2max{* 2 , . . . ,x 2 m _ 1 } > / „ - * , . (8.7.8)

8.8. Here we examine the possibility

# ( ( L \ K ) Π (L\M)) > 2. (8.8.1)

Since L\K and L\M are maximal subsets in L, we may assume that L, = Χλ and

L2 = X2. If either w[L, K] > 2 and w[L, M] > 2, or w[L, K] « 2 and w[L, Μ] ̂  2, then, by

6.16.1 and 4.6.1, Δ,(Κ)| (Κ, L, Μ} is a triangle whose edge [K,M] can be taken to be the

required path κ.
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We must still consider the cases

w[L,K]s*3, w [ L , M ] < l (8.8. l.a)

and

w [ L , K ] < l , w [ L , M ] > 3 . (8.8. l.b)

Let us begin with (a). From (8.8.1) and (8.8.l.a) it follows that w[L,M] - 1, L\M =

{L,, L2, X3), Lx > L2, G(X3)\{X3} C I and

A - 3 G ( ( L \ M ) n K ) \ e ( L , ) . (8.8.2)

The set J = I U {X3} is exceptional; Vj is a surface of type Vn (see 6.2). The point

Q = φΛ(Χ3) cannot lie on curves in Neg(F,), since if Q G <pj(L,·), 1 < / < In, then

X3<LU contrary to (8.8.2); but if Q G <p3(E), where Ε G\L0 - L, - L2\, then \L0 -

L, — L2 — X3 \¥" 0 , contrary to condition 4.4.3 for L\M. Thus the blow up of the point

Q leads us to a surface F, of type Wn (see 6.11). Taking a basis K1 on V such that

{K',K,L,M} =ΦΤ 1 (®(' /

1 )) 5

we get in Δ,(Κ) a quadrangle {Κ',Κ, L, M} of the form indicated in Figure 6.11.1. Put

κ = [Κ, Κ1, Μ]. We prove 8.5.6.1, which by 6.11.0 is equivalent to the inequality

(n — l ) ( / 0 — /,) — l2 — • • · — / 2 n - 2 — x3 <0-

If the opposite inequality

were true, then, combining it with the inequality -/0 + /, + l2 + x3 > 0, which in our case

is a reformulation of (8.7.5), we get

which is impossible by (8.7.7).

Let us discuss (8.8.1.b). Here w[L, K] = 1, L\K = {L,, L2, L 3), L\M =

{L,,L2, Ar

3,...,X2m_,}, L3 G L \ e ( L , ) , and e(L 3)\{L 3} C I. The set J = I U {L3} is

exceptional, and F, is a surface of type Vm (see 6.2). The point Q = (pj(L3) does not lie on

curves in Neg(Kj), since L3 is not contained in L, and \L0 — Lx — L2 — L3\— 0 .

Therefore, the surface Vl gotten from V3 by blowing up the point Q is of type Wm (see

6.11). Let us define a basis K1 G ®(F) and a path κ as we did in discussing (8.8.l.a). The

inequality 8.5.6.1 in this case can be written as

(m - l)(/0 - /,) - l2 - x3 x2m_2 - /3 < 0. (8.8.3)

If x2 m_, — /3 < 0, then, using (8.7.5), we get (8.8.3). Suppose x 2 m_, > l3. Then, since

l3>(l0-l})/2 (8.8.4)

(see (8.7.7.)) and (8.7.3), it follows that

Xi>(lo- l\)/2 for2^7=£2m - 2. (8.8.5)

Combining (8.8.5) and (8.8.4), we get (8.8.3).

8.9. In 8.9-8.14 we discuss the possibility

#((L\K) η (L\M)) = 1,

which we call the J-case since here, by the maximality in L of the intersection considered

in (8.9.1), we may assume that (L\K) Π (L\M) = {£,} = {X,}, and, according to 6.9.3,
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the curves Kx and Af, may be assumed to satisfy

KQ-KX~LO-L,~MQ-MX\

that is, {AT,, L,, M,} is ay-supplement to {K,L,M}. Moreover, we shall assume that (see

(5.5.4)) K, ~ Lo - L, - Li and M, ~ Lo - L, - X} for 2 *£ ι < 2n and 2 <y" < 2m. Put

A = max{(L-/ l ) |LeL\K} = max{/ /2 n_,}. (8.9.2)

8.10. Assume that we are in the ./-case; let us prove the proposition under the additional

assumption

/ , < λ , (8.10.1)

where λ is taken from (8.9.2).

From (8.10.1) it follows that L\K contains at least two maximal curves; therefore,

w[L, K] < 1, η = 2 and L\K = {Lx, L2, L3}. Suppose /, = λ and L2, as well as L,, is a

maximal curve in L\K. We shall assume that x2 ** x^ ** · · · s» x2n-\ a n d * n a t X2 is

maximal in L\M\{L,}. Let us prove the inequality

/ 0 - /, - l2-x2<0. (8.10.2)

If the opposite inequality

l0- /, - l2 -x2>0, (8.10.3)

holds, then combining it with the inequality -/0 + /, + 2x2 > 0 (see (8.7.8)), we get

x2 3= l2; but, by 8.5.2,12 s* x2; therefore, l2 = x2, and then (8.10.3) contradicts (8.7.6).

We now prove the existence of a basis neighboring L along Λ = {L,, L2, X2}\ i.e., we

prove that L and Λ satisfy 4.4.1-4.4.3. Conditions 4.4.1 and 4.4.2 follow from the

maximality in L of the subsets K\M, {Lx}, {L2} and {L,, X2). Further, if the system

| Lo — L, — L2 — X21 is not empty, then by intersecting its members with the members of

the movable system \A | we find that (8.10.3) is impossible.

Let K1 be a basis neighboring L along Λ. By 4.6.1, K1 also neighbors K, since

( L \ K ' ) n ( L \ K ) = { L , , L 2 } .

This means that Δ,(Κ) | {Κ1, Κ, L} is a triangle. Because of (8.10.2), 8.5.6.1 holds. Further,

conditions 8.8.1 and 8.5.0-8.5.4 also hold for K1, L and Μ if Κ is replaced by K' in them;

therefore, by 8.8, the path κ1 from K1 to Μ required by Proposition 8.5 (with K1 replacing

Κ) does exist. It remains to put κ = [Κ, Κ'] ° κ1.

8.11. In further discussion of the /-case we shall assume that /, = max{/,,... ,/2n_,},

and we may then assume that inequalities (8.7.2) hold.

Suppose that in the /-case we have

w[L,K]>2, w[L,M] s*2. (8.11.1)

Then, according to 6.19, F, is a surface of type Vmn, and, taking in <$>(V) the basis K1,

denoted by Ν in 6.19, we get the quadrangle Δ,(Κ) | {K1, K, L, M} depicted in (6.18.3) if in

the latter we replace m by n, and Ν by K1. Further, by (6.19.2), inequality 8.5.6.1 is

equivalent to

2 n - l 2m~\

(/n + « - 2 ) ( / 0 - / , ) - Σ li~ Σ x,<0,
1=2 /=2

and this is indeed true, as one sees by combining (8.7.4) and (8.7.5). Therefore, in the

/-case, in (8.11.1) we may take κ = [Κ, Κ1, Μ].
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8.12. We shall show that in the/-case we can assume

LX>L2, Lt>X2, (8.12.1)

where X2 is a maximal curve in L\M{L,} such that

x2 = ma\{x2,...,x2m_]).

Suppose that at least one of the curves L2 or X2 is not contained in L,. Let us verify

conditions 4.4.1-4.4.3 for the set Λ = [Lx, L2, X2}. The set Λ is maximal in L, and none

of the curves in Λ can contain the sum of two other curves in Λ; all this is evident. By

combining (8.7.6) and (8.7.8) we get

/ 0 - /, - l2-x2<Q, (8.12.2)

whence | L o - L, - L 2 — X2 \— 0 . Suppose K' is a basis on V such that L\K' = Λ. That

8.5.6.1 holds is guaranteed by (8.12.2), and now the final reasoning of 8.10 allows us to

conclude the discussion of the /-case with a violation of condition (8.12.1).

From what has been proved here and in 8.11 it follows that in further investigating the

/-case we may assume that either

L{>L2, L, > X2, w[L,K] = l, (8.12.a)

or

L , > L 2 , L,>A- 2 , w [ L , K ] = 2 , w[L,M] = 1, (8.12.b)

where X2 is a maximal curve in L(M) and x2 = max{x2,... ,x2,,,_1}.

8.13. We shall prove the proposition under condition (8.12.a). From (8.7.7) and (8.7.8) it

follows that /0 — /, — /3 — x2 < 0. We now reduce the matter to the final two arguments

of 8.10, where it is only necessary to replace L 2 by L3, and to replace the reference to the

impossibility of inequality (8.10.3) by a reference to the inequality contrary to the one just

adduced.

8.14. To complete our work with the /-case it remains to examine the possibility

(8.12.b). Here L\M = (L,, X2, X3} and L, > X2.

Let us first assume that, besides (8.12.b),

L0-Lx -L2- X2\= 0. (8.14.1)

Put J = I U {X2, X3). The set J is exceptional, Vj is a surface of type Vn (in 6.2), and

<Pj(X3) is a point in general position on Vi (see 0.7). The last follows from (8.14.1) and

(8.12.b), which entails the impossibility of the inequality L, > X3. In the notation of 6.2,

the point ψΛ{Χ2) lies on the complement E\En. Therefore, the surface Vx gotten from Vs

by blowing up on the pair φΛ(Χ2 U X3) is a surface of type W® in 6.17, and we may

assume that the bases K, L, Μ e ®(F,) introduced in 6.17 induce, by means of φ\\ bases

on V denoted by the same letters respectively. If we put Κ1 = φΐ'(Ν), where Ν is as in

6.17, then the path κ = [Κ, Κ1, Μ] is the required one. Indeed, we need only verify that

8.5.6.1 holds; and by 6.17.2 it is equivalent to the inequality

But this follows by combining (8.7.4) and (8.7.5).

Now assume that (8.12.b) holds and

0. (8.14.2)
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Here we need condition 8.5.4, applied to the situation where

C j — -^1» ^ 2 — 2 > — 2 ' — 3 '

The inequality ((Lo - C, - A' - Y) • A) < 0 from 8.5.4 is equivalent to (8.7.5) if we take

m = 2 and C, = L, = X,.

Assume that 8.5.4.1 is true; that is, there is a curve L e L Π Κ such that

L<L2n_t, ((2L + Lt - Lo) • A) > 0. (8.14.3)

Take a maximal possible L with these properties and denote it by L2n. Clearly, L2n ε

e*(L 2 n ^,) (see 1.7.1). Putting, in harmony with the notation of (8.7.1), l2n = (A • L2n),

we can rewrite (8.14.3) in the form

2/2B > / „ - / , · (8.14.4)

All the conditions a)-d) of assertion 6.14 hold here. Therefore, <$(K) contains the basis Ν

indicated in 6.14; here we denote it by K'. To prove that the path κ[Κ, Κ1, Μ] is correct, we

must verify 8.5.6.1, which, by (6.14.1), is equivalent to the inequality

This evidently follows from (8.14.4), (8.7.4), (8.7.8) and the equation x, = /,.

Finally, assume that the conclusion of 8.5.4.2 holds. Denote the bases K' and K" given

in it by K1 and K2 respectively. Put

L \ K 2 = { L , , x 2 , y 3 , . . . , y 2 j _ , } , yi = (vrA),

where 3 =s / < 2s and s = w[L, K2]. Note that

x2>(l0-l])/2, j , . > ( / 0 - / , ) / 2 , where/£ [3,2s - 1]. (8.14.5)

Combining all these inequalities, we get

(s - l ) ( / 0 -l}) + x2+y2 + ··· + J 2 j _ , < 0, (8.14.6)

which is equivalent to 8.5.6.2. By (6.19.2), the inequality 8.5.6.1 is gotten by combining

(8.7.4) and (8.14.6). Further, K2, L and Μ satisfy

K ' o - o K 2

and also (8.8.1) and 8.5.0-8.5.4, if we replace Κ in them by K2; therefore, according to 8.8

the path κ2 from K2 to Μ required by Propostion 8.5 (with K2 replacing K) does exist. It

remains to put κ = [Κ, Κ1, Κ2] ° κ2; this completes our examination of the ./-case.

8.15. Suppose (L\K) Π (L\M) = 0 . We may assume that

/, > l2, and the pair {/,,/2} is maximal in {/i,...,/2«-i}> (8.15.1)

x, =max{x I,...,jc 2 m_ 1}. (8.15.2)

We shall prove that

/ 0 - / i - / 2 - * i < 0 . (8.15.3)

If the contrary inequality x, < /0 — /, — l2 holds, then x, < (/0 — /,)/2 by (8.7.6) and

(8.15.1); from this and (8.15.2) and (8.7.5) we get

(m - l)(/0 - X l ) + (2m- 2)(/0 - /,)/2 < 0.
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Dividing out by m — 1 we get 3/, < /0, which, by (8.15.1) and (8.7.6), is impossible. Thus

(8.15.3) is proved, and we have incidentally established that

*i > ( / 0 - / , ) / 2 - (8.15.4)

There exists a basis Ν neighboring L along Λ = {L,, L2, Χλ), since conditions 4.4.1

and 4.4.2 for L and Λ follows from the maximality in L of the subsets {L,, L2] and {X^;

and 4.4.3 follows from (8.15.3). From (8.15.3) it also follows that

(N0-A)<(L0-A). (8.15.5)

The triple K, L, Ν (Ν, L, Μ) satisfies conditions 8.5.0-8.5.4 if in them we replace Μ (Κ) by

Ν; moreover,

(L\K) η (L\N) = {L,, L 2}, (8.15.6)

(L\N) Π (L\M) = { * , } . (8.15.7)

From (8.15.5), (8.15.6) and 8.8 we deduce the existence of a path from Κ to Ν satisfying

the requirements of Proposition 8.5, where Μ has been changed to N; and from (8.15.5),

(8.15.7) and the previous examination of the /-case (8.9.1) it follows that there is a path κ2

from Ν to Μ that satisfies the requirements of Proposition 8.5, where Κ has been replaced

by N. From κ1 and κ2 we can compose the needed path κ = κ1 ° κ2.

Proposition 8.5 and Theorem 8.1 have been proved.

§9. The stable simple connectedness of the complex Γ

9.1. THEOREM. For any surface V and any loop ζ in the graph Γ,(Κ) there is a natural

number Ν such that, for the blowing up f: U -> V of a set of Ν points in general position on

V, the loop /" '(£) in the complex T(U) (see 8.0) is contractible.

This theorem will be proved in 9.2-9.5; subsections 9.2-9.4 are devoted to de Jonquieres

paths, i.e., paths f = [A,B,...], the set of whose vertices f0 = (A,B,...} has a J-

supplement in the sense of 5.1. By f, we shall denote the one-dimensional complex whose

support is the loop f. For a subcomplex £ of T(V) (or in A(F)), £,. will denote its

/-dimensional skeleton.

9.2. PROPOSITION. Let f be a J-loop of the graph Γ,(Κ). There is a natural number Ν such

that for any blowing up f: U -> V of a set of Ν points in general position T(U) contains a

simplicial subcomplex £ such that

a) £/i connected and of dimension < 2.

b)£D/-'(?,), £0 η/-'(®(n\f o)= 0>and

c) £ 0 can be J-supplemented to a set t'o containing /~'(£ό)> where ζ'ο is a given
J-supplement to ξ0.

Proposition 9.2 will be proved in 9.3 and 9.4.

9.3. Here we introduce some notation. Let L = L° = L" be the origin of the loop

f = [L°,L',...,L"]; this L we assume distinguished in f0 in the applications of 5.9;

suppose £ό = {L°,... ,L"} is a /-supplement to f0. The superscript /' of L' and L\ we shall

consider as the residue class modulo n. For / G Z/nZ we denote by (/) the pair

(/', [L', L'+']), which we shall call the ith edge of the loop ζ. As the cyclic distance between

edges (/) and (j) we take the minimum of the pairs of smallest natural numbers (see 0.3)

that are residues modulo η of the numbers i —j andj — i. By 5.9 we can assign to each

edge [L',L'+1] (and then to (/) too) the mark μ(ί) = μ(ΙΛ L'+ 1), a two-element (see (5.9.3)
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subset of L\{L,}. For a curve L in L\{L,} we shall denote by sLtf) the least possible

cyclic distance between the various edges of ζ whose marks contain L. If L does not occur

in the marks, we take sL(£) = oo. Note that (5.9.4) implies that the symmetric difference

μ(1)Δμ(2)Δ · · • Δμ(« — 1) is empty; therefore, any L meets the marks of the edges of

loops an even number of times.

Put i(f) = min{sL(£) | L G L\{L,}}, let ί(ζ) be the number of edges in f,, and call the

pair (ί(ζ), s(£)) the characteristic of the loop f. Note that ί(ξ) < η and j( f) *£ [n/2],

where « is the length of ζ, and [ ] is the integral part.

9.4. We prove 9.2 by induction on the lexicographically ordered set of characteristics.

Note that what is essential in the hypothesis and conclusion of 9.2 is not the loop ξ itself

but its support f,. In particular, the order of traversing its vertices is inessential; an

additional wandering over parts lying in ζ, has no essential effect on 9.2.

Assume that ξ has no point of selfintersection. Then we can choose loops ξ and TJ in the

graph F,(F) such that

9.4.0. f, — £, U TJ,, f ( | ) < ί(ξ), i(rj) < ?(f), and ξ, Π η, is a connected and simply

connected graph.

For £ let us take the number N{ guaranteed by the induction hypothesis. Let /,: i/, -• V

be the blowing up of N{ points in general position, and £' C Γ(ϊ/,) a subcomplex

satisfying the requirements of 9.2 (where we have replaced ζ by ξ,/by/,, £ b y £', and ζ^

by the subset ξ'ο C ζ^). For the 1οορ/,~'(η) let us take the number N2 and put Ν = Nt + N2.

If /: U — F is the blowing up of Ν points in general position, then we may assume that

/ = /, °/2, where f2: U -» i/, is the blowing up of 7V2 points. If £ 2 C Γ(ί/) is the

subcomplex for the loop f{'(η), we put

£ = /2-'(£')u£2, £^=/2-'((£i)')u(£0

2)'.

The connectedness and simple connectedness of £ follows from / / ' ( £ ' ) Π £ 2 =

/~'(li n ^ι) a n d from the fact that £' and £ 2 have these properties.

In what follows we shall assume that ζ has no selfintersections and ί{ζ) = η.

Assume that s($) = 1; i.e., that L\{L,} contains a curve L that meets the marks of two

successive edges of the loop ζ, say for the edges (0) and (1), μ(0) = {L, Α}, μ(1) = [L, B).

Since L° ψ L2, we have Α φ Β and, by (5.9.4),

from this and (5.9.3) it follows that the bases L° and L2 are neighbors in Γ,(Κ). For the

l o o p s £ = [L0,L',L2,L°]andi? = [L°,L2,L3,.. .,V] we have (compare 9.4.0) f, C | , U TJ,,

ί(ξ) = 3, ί(η) < i(f), and | , Π TJ, = [L°,L2], and we conclude the discussion of the case

s(f) = 1 by following the argument of 9.4.0 if in the latter we take iV, = 0, /, = \y, and £'

a triangular cell spanned by {L°, L1, L2}.

Now suppose j(f) = s > 1. Take the blowing up φ: W -» F of a point β in general

position and put A '= <p~'((2); we shall write L', L'Q, L\, ζ instead of (p"'(L'),... , φ " 1 ( ί )

respectively. The plan of what follows is that in Γ,(Μ^) we construct over the polygon ζ as

a base the one-dimensional skeleton of an antiprism (see Figure 9.4.1) whose upper base

(on the inside in Figure 9.4.1) turns out to lie outside (p~'(r,(F)) and with characteristic

less than the characteristic of the lower base; and we apply to the upper polygon the

induction hypothesis and include in the subcomplex the lateral surface of the antiprism.
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η-Ζ

η-1

FIGURE 9.4.1

Recall that the superscripts in L', L'o and L\ are considered as elements of Z/nZ. The
transformation a[L°,L'] (see 5.7 and 5.8) mapping L° to L' bijectively will be denoted by
a,. The marks μ(ζ') = {At, B:) of the edges [L',L' + I] will be assumed ordered so that the
element α,(Λ,) e L' is maximal in the pair α,(μ(ζ')) = {α,(Λ,), α,(5,)}.

For any i G Z/nZ we shall prove the existence of a basis Μ' £ %{W) such that

L'\M'= {L\,a,(A,),X}; (9.4.2)

that is, we shall verify 4.4.1-4.4.3 for L' and for the set on the right-hand side of (9.4.2).
This set is maximal in L', since in L' the subsets

{X}, {/,',}, L'\L'+1 = {Ζ,',,α,.Μ,), «,(*,)},

are maximal and the curve <*,(/!,) is maximal in {α,·(Λ(-), α,(β,)}. For the same reason
4.4.2 holds. Further, if | Z.jj — L\ ~ α,(Λ,) - Χ\Φ 0, then the point Q - 2(X) lies on a
curve of the system \L'O — L\ — ai(Ai)\ (on V; here we violate our last notational
convention for the moment) consisting, by 3.8.3, of one contractible curve, contradicting
the fact that Q is in general position (see 0.7).

From (9.4.2), 5.4.1 and 5.1.4 it follows that f0 U ( U p '{M'}) can be /-supplemented by
the set φ-'(?ό) U (U"~l{M{}, where {M{} =\V0- at{A,) - X\. For the edges of the
antiprism we then have the following marks (that these are actually edges in Y\{W)
follows from (5.9.3) and the fact that the marks have two elements):

M(L',L'+1) = μ,·, Β,}, μ(υ,Μ') = {Χ, Α,},

= μ(ϋ,υ+1)Δμ(ΙΛΜ') = {Χ, Β,},
1,Μ'+ 1) = {Β,, Ai

If s(f) = s = jB(f), where Β Ε. L\{L,}, and Β coincides with some Bj in the marks
considered, then, by the definition of sB(^) in 9.3, on ζ, there is a path consisting of the
edges (/), (J1 + 1),...,(/ + s) endowed with the marks

where Β = Β, = Aj+S. (If Β is not second in μ(/') (i.e. the curve a,(B) is not minimal in
α,(μ(ζ)), then we can replace the loop ξ by its opposite.) Then the segment [M1,... ,Μ' + ϊ ~']
of the loop η = [M°, M\. . . ,M"] will have the marks
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whence it is clear that sB(y) *z s — 1; since ί(η) < ί(ξ) we have

We apply the induction hypothesis to η, take the corresponding Nt, and put Ν — Nt + 1.

If/: U -» F is the blowing up of JV points in general position, we may assume/ = φ ° / ,

where/ : {/-> ff is the blowing up of TV, such points. If £' C Γ(ί/) is the subcomplex

corresponding to TJ, we can take £ to be the union of £' and the /-preimage of the

simplicial filling of the graph in Figure 9.4.1, and complete the proof of the proposition.

9.4.3. REMARK. The Λ' in 9.2 can be assumed to depend only on the length n of the loop

f; for example, Ν = («!)"'.

9.5. Deduction of 9.1 from 9.2, 8.1 and 6.12. Let ζ be a loop in Γ,(Κ). By 8.1, ζ is

homotopic in Δ(Κ) to a point. Let us take the subcomplex % C A(V) along whose cells

the loop ξ passes to a point by successive replacements by a simply homotopic loop (see

0.5) to be finite and of dimension < 2.

In what follows we lift to a surface U dominating V, then partition the edges of % into

smaller ones according to the weights of the edges in Γ,(ί/), and contract each two-

dimensional cell of % to a simply connected triangulated film by triangles in T(U).

Let A be the set of all edges a of the complex % for which w(a) > 2, JV, = Σα(Ξ/4νν(α) —

2#A, a n d / : Ut -> V is the blowing up of Nt points in general position. By 6.12, for all

pairs of vertices L, Μ Ε/~'(ίΚ 0) joined by an edge in A, we can choose /-paths £(L, M) in

the graph Γ,(ί/,) going from L to Μ such that £(M, L) = £(L, M)~' and the common

vertices of any distinct such paths can only be their boundary, if the paths are not inverses

(this last is evident from the construction 6.11, 6.12 and the choice of TV,). If vertices L

and Μ in ff\K0) are joined by and edge in/f'(9C) Π Γ,(ί/,), then | [L, M] will denote the

path [L, M]. If [L°, . . . ,L 3 ] ([L0,.. .,L4]) is a path describing a triangular (quadrangular)

cell in/,"'(5C), then the path

€(L°,L')o . . . o£(L2 ,L3) ( | (L° ,L ' )o . . . o | ( L 3,L 4 ) )

is, by 6.12 and 5.1.4., a de Jonquieres loop in Γ|(ί/,). Let Β = {/?,,... ,/?„} be a set of such

paths taken one from each two-dimensional cell of f ~ \ % ) ; let N- be the number

corresponding to the loop /?, by 9.2, N2 — Σ" Ν- (of course, N2 also corresponds to each

/?,), and Ν = Nt + N2.lff: U -* V is the blowing up of iV points in general position, then

we may assume / = / ° /2, where / has been considered above. By 9.2 we can find n

connected, simply connected subcomplexes £' C T(U) of dimension «s 2 such that

£ ' D / 2 - ' ( £ . ) , £< n/2-'(®(i/,)\(A)0) = 0>
£ ' η £; c (/?,), η (/?,), for/*/.

It is now clear that the loop/~'(f) can be deformed to a point by successively moving its

links along the cells of the subcomplex U" £'.

Theorem 9.1 is proved.

§10. Relations between projective and quadratic transformations

10.0. The goal of this section is to prove the assertion on the relations that was stated in
the Introduction.

We use the notation *dP and 2 given there. Here and in 10.1 we introduce a series of
definitions analogous to those in the introductory chapter of [10], only here we shall
consider as "trivially equal to unity" not only gg~] but also (see 10.1.3 and 10.1.4) the
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words that arise from the multiplication law in ty (i.e. the words P\P2P3, where pj G 9,

P3 = (P\ ° Pi) ' a n d from t n e actions of group 9 on 2. from both the left and the

right (i.e. the words pqxqx and q4q3p, where ρ G 9, q, e S , q2

 = (P ° <7i)~' ar>d ?4 ~

(ft °/>)"')•
By a *f ̂ word (Qrword) we shall mean a finite sequence

g,.g2.---.«n. (10.0.1)

where η s* 1; Λ is called the /e«gi/i of the word, and g,G tf U 2, (g,. e 2.) for 1 «s / *£ rc.

We shall consider / G <? as the word of length zero. The sequence (10.0.1) will be written

without commas, i.e. in the form g\g2

m"gn, and the composition of the birational

transformations of the sequence (10.0.1) will be written as

S\ ° 82° • · · ° En- (10.0.2)

For a word w (of the form (10.0.1)) the inverse word is w~l — g~l- • -gf1. The word (10.0.1)

is called a relation if the composition (10.0.2) equals 1; in this case we shall also write the

relation as g,g2 · · · g,, = 1.

10.1. Let F be a set of ^S^words. A word w is called simply deducible from F if w is

gotten as a result of applying one of the following operations to some word υ in F:

10.1.1. inserting one of the words w, u'\ gg~x or 1 (where u G F and g G 9 U 2.) either

between two neighboring terms of v, or before, υ, or after v,

10.1.2. removing from ν parts that coincide with one of the words given in 10.1.1,

10.1.3. changing a pair g, h of neighboring terms in v, of which at least one is in <3\ to

the termg ° h, or

10.4. by changing a term/in ν to two successive terms gh, where g and h are such that

at least one is in 9 and g ° h = f.

A word w is called deducible form F if there is a sequence of words w0, w[,...,wl such

that w0 = 1, w; = w, and each word w, (1 < / < /) is simply deducible from (w 0,... ,νν,_,}

U F.

Two sets of words F and F' are called equivalent (written F ~ F') if each word in F' is

deducible from F and vice versa. Words w and tv' are called equivalent if {w} ~ {v/}·

10.2. Three remarks on the definitions in 10.1 α«ί/10.1:

10.2.1. If F consists of relations, then any word deducible from F is a relation.

10.2.2. Two mutually inverse words or two words gotten from each other by a cyclic

permutation of terms are equivalent.

10.2.3. Any tf 2/·word w is equivalent to either some 2^word gotten from w by applying

the operation 10.1.3 or a 'J-word of length < 1.

10.3. To each Qrword

w = qxqr..qn (10.3.1)

let us assign a surface V and a path

ξ = [L°,LI,...,L"] (10.3.2)

in the graph Γ,(Κ) such that

10.3.3. to any set of morphisms ψ,: V -» P 2 with the property Ι(ψ,) = L' (0 < ; < n) (see

2.3) there corresponds a sequence of projective transformations pQ, pv...,pn satisfying the

equations

q. ο q.+ l ο . . . ο q, = pt_x ° ψ,._, ο ψ" 1 ο pj\ (10.3.3.1)

for 1 < / < / « £ « .
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For this we take surfaces Xt and morphisms «,: X, -> P2 and υ,: A', -» P2 such that

<?,. = t>,. °M,r' ( l ^ / < n ) . (10.3.4)

By induction on η it is not hard to establish the existence of a surface Fand morphisms/:

V -> Xi satisfying the equations

vl+jl+l=uifi, (10.3.5)

i.e. making the following diagram commutative:

V

(10.3.6)

(10.3.7)

(10

(10.

(10.3

.3.8)

.3.9)

i.10)

Put

Φο = ϋ ι/ ΐ ' Ψί-^Ji for

Ι7 = 1(φ,.) (0 < / <

From (10.3.5)-(10.3.7) it follows that

Ψί-ι = vi° fi for 1 =s /

and from (10.3.7) and (10.3.9)

whence in turn we get

q, °ql+] ° · · · ° q,- <p,-_, ° <P7' (1 < / < / < « ) . (10.3.11)

Let ψ ο , . . . ,ψ η be the moφhisms in 10.3.3. Then by (10.3.8) and 2.3, for some pQ,.. .,pn

in bJ we get

Φ,·=ΑΨ/ ( 0 < i < n ) , (10.3.12)

which, together with (10.3.11), implies (10.3.3.1).

We make two remarks

10.3.3. If the word (10.3.1) is a relation, then (10.3.3.1) with / = 1 and / = η yields

ΨοΨ,Γ1 G <dP; that is, L° = L", and ξ is a loop.

10.3.14. If f is the path in T,(F) constructed from the word (10.3.1) and/: U -> F i s a

morphism, then the path/" ' ( f ) is also suitable, i.e. satisfies 10.3.3.

10.4. To any triple (ξ, φ, ψ), where f = [L°, L',... ,L"] w a path of positive length η in

F,(F) and φ and ψ are morphisms from V to P2 for which 1(φ) — L° and Ι(ψ) = L", we

assign the family F(f, φ, ψ) consisting of the Swords of length η that are equivalent (as

tyQrwords) to each other. Moreover:

10.4.1. If w G F(S, φ, ψ), then among all possible paths constructed for the path w by the

process in 10.3, the path ζ is found.

10.4.2. If {ζ, Φ, Ψ) is another such triple with the same path ζ and

χρ-ιφ = ψ~ιΦ, (10.4.2.1)
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In particular,

10.4.3. If ζ is a loop in TX(V), then the family Ρ(ζ, φ, φ) does not depend on the choice of ψ

(so we shall denote such a family by F($)).

Furthermore,

10.4.4. The family Ρ(ξ) in 10.4.3 consists of^relations. We also agree that if ξ = [L°] is a

path of length zero and Ι(φ) = L°, then F(f, φ, φ) = F(cp) = {1}.

To construct Ρ(ξ, φ, ψ) we take morphisms φ,: V — P2 (0 *£ /' *£ n) satisfying (10.3.8)

and the equation

φ > 0 = Ψ"'Φ· (10.4.5)

We define quadratic transformations qt using (10.3.10) and form the word (10.3.1). Thus

for all possible sets {φ,|0 < i*£ n) satisfying (10.3.8) and (10.4.5), words of the family

F(f, φ, ψ) are also defined.

Let us take another such set {ψ,} and from it construct the words /·,,...,/·„, where

r, - ψ,-,ψ,"' (1 < ' ^ «)· The />, indicated in 10.3.3 satisfy (10.3.12) and, by (10.4.5), the

equation ψ,,"'ψο = f n W whencep0 — pn. Therefore, by (10.3.3.1) with 1 </' = / < n, the

sequence r, ,...,/·„ coincides with the sequence

and so it is clear that the words /·,···/·„ and qy-qn are equivalent. Then assertions

10.4.1-10.4.4 are evident.

10.5. Some supplements to 10.4.

10.5.0. If for paths ξ, η and f of the graph Γ,(Κ) we have ξ — ξ ° -η and α, β and γ are

morphisms from V to P2 for which I(a) is the origin of £, \(β) is the end of ξ = origin of

η, and Ι(γ) is the end of η, then we can choose words u G F(£, α, β) and υ e F(TJ, β, γ)

such that the word uv lies in F(f, α, γ).

For this we can construct a word u (υ) from the set {φ,} beginning with α (β) and

ending with β (γ).

10.5.1. If two loop η and ζ are gotten from each other by a cyclic permutation of the

vertices or by changing the direction of traversal, then the families Ρ(η) and F(£)

introduced in 10.4.3 are equivalent.

This follows from 10.2.2.

10.5.2. If a loop ζ has length 2 (i.e. is gotten by going back and forth along some edge),

Indeed, in F(f) there is a word of the form qq~] which is equivalent both to the other

words in F(f) and to 1.

10.5.3. For a loop ξ in F,(F) and a morphism/: (/-> Fwe have

10.6. Here we discuss the set Τ of three-termed (or triangular) relations.

To any relation of the form q{q2qj — 1, where <?, 6 2 , / = 1,2,3, there corresponds, by

10.3 and 10.3.13, a triangular loop θ = [K,L,M,K] in the graph F,(F) of some surface V.

Conversely, to any triangular loop θ there corresponds, by 10.4, a family F{6) of

three-termed ^relations. Therefore

T= U F(6), (10.6.1)
v,e
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where V runs through the set of all surfaces with triangles in Γ,(Κ) and θ runs through the

set of all triangular loop in Γ,(Κ). By 10.5.3, in (10.6.1) we can take not all of V but just

the minimal surfaces among those containing triangles in Γ,, i.e. the surfaces U(), ί/,, U2,

i/3, U4 and the surfaces of type U5 in 4.7-4.9. Further, if we are interested in making a list

of representatives of the equivalence classes of triangular relations, then in (10.6.1) we can

choose one triangle in each Γ,(ί/α) (the group Aut(t/Q) acts transitively on the set of

triangles in Γ,(£/α); see 4.8); for each such triangle we can choose a loop traversing it (by

10.5.1 any change in the order of the vertices in θ does not change the equivalence class of

the family F{6)); finally, for each θ chosen we can choose one word in F{6). We shall not

do all this here.

10.7. THEOREM. Any tfQ-relation is deducible {in the sense of Definition 10.1) from the set

Τ {see 10.6) of triangular ^relations.

PROOF. By 10.2.3 any i?2^relation is equivalent to some ^relation, which, by 10.3.13,

10.4.3 and 10.4.4, can be assumed to lie in 'ϊϊ(ξ), where ξ is a loop in Γ,(Κ) for some V.

Replacing V, if necessary, by a surface U gotten from V by a morphisms /: U -> V and ξ

by/"'(?)> a n c * using 9.1 and 10.5.3, we may assume that ζ is contractible in the complex

T(V); i.e., that there exists a sequence ξ°, ξ\...,ζ" of loops in Γ,(Κ) such that (see 0.5)

for 0 < ι < η the loops ζ' and ζ'+' are simply homotopic in Γ(Κ), ζ" = ξ, and ξ° is a path

of length zero. Hence it is clear that to prove the theorem it suffices to establish the

following fact.

10.7.1 If paths ξ and η of the graph F,(F) are simply homotopic in the complex T{V) {in

particular, they have the same origin Μ and end N) and there are morphisms φ: V -» P2 and

ψ: V -> P2 such that Ι(φ) = Μ, Ι(ψ) = Ν, and φ = ψ if at least one of the paths has length

zero, then the sets of words Τ U F{£, φ, ψ) and J u F ( i ) , φ, ψ) {see 10.4—10.6) are

equivalent in the sense of 10.1.

PROOF OF 10.7.1. Put F - F ( | , φ, ψ) and F' = F(t), ψ, ψ). Since any member of the

family F (or F') is equivalent to the rest of its members, it suffices to find words w Ε F

and w' G F' such that Τ U {w} ~ Τ U {w'}. Let ξ = ξ ° ξ0 ° ζ2 and η = ξ, ° η 0 ° ζ2,

where the loop ζ = ξο° TJQ1 lies in the one-dimensional skeleton of some simplex s of the

complex T{V) (see 0.5). We may assume that 1 < dim s < 2 and length(f) ^ 3. Denote by

Κ the common origin of the paths £0 and η 0 , and by L their common end; choose

morphisms a: V -> P2 and β: V -> P2 such that \{a) = Κ and 1{β) = L, and such that if

f], f2. ^o or τ)0 has length zero, then, respectively, α = φ, β = ψ, α = β or α = β. By 10.5.0

we may choose the four words

so that

w = w,«w2 £ f , w' = W]uw2 G F'.

Note that wu"1 e F(f)· If dim ί = 1, then, by 10.5.2 and 10.1.1, {w} ~ {w'}. If dim 5 = 2,
then F(f) C Τ (that is, wu"1 is a triangular relation); it is now clear that

Τ U {w} D {uv-\w} ~ {uv~\w'} C Τ U (w'},

which was to be proved.
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