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Intellectus est universalium et non singularium.
Thomas Aquinas, from Summa contra gentiles (1264)

0 Introduction
The Cremona group Cr = Cr(2, K) is the group of birational automorphisms
BirP2 of the projective plane; it is (anti-)isomorphic to the automorphism
group Aut K(x, y) of the rational function field in two variables.

Let W be a 3-dimensional vector space (over an algebraically closed field K
of characteristic zero), and P2 = P(W) its projectivization; V = Aut(P2) =
PGL(W) = PGL(3, K) is the collineation group of P2, that is, the group
of projective linear transformations. Thus V C Cr is a subgroup of the
Cremona group. For a linear representation r: GL(W) —> GL(V), consider
the projectivization

p = P(r): V = PGL(W) -> PGL(V) = AutP(V).

An extension of p is a homomorphism

p: C r -

which restricts to p on V, that is, p\p = p: V —> AutP(V); in other words,
there is a commutative diagram

V - ^ AutP(V)
i i

Cr M BirP(F)

where the vertical arrows are the natural inclusions.

Question Given the projectivization p of a linear representation r, does
there exist an extension p of p to the whole Cremona group Cr ?

I l l
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We shall see that the answer is yes if r = 5m(r0) is the mth symmetric
power of the natural representation r0 of GL(W) in the vector space W* of
linear forms, and m = 2,3,4. In other words, the Cremona group of the plane
has an action on the spaces of plane conies, cubics or quartics, extending the
actions of the group of plane collineations.

A first approach to the above question was proposed by Igor Artamkin in
his thesis [1], [2], where he constructed an action of the Cremona group of the
plane on moduli spaces of stable vector bundles over the projective plane, and
deduced an action on the curves of jumping lines of the bundles. A drawback
of his approach is that the generic curve of degree > 3 is not realized as
the curve of jumping lines of a vector bundle. Moreover, Artamkin's action
applies to curves with the additional structure of an even theta characteristic.

Our approach is more algebraic, although we believe that at a deeper level,
the reasons underlying Artamkin's constructions and ours are the same. A
rough outline of our constructions is as follows.

The group Cr(2, K) is known to be generated by the collineations V and
the standard quadratic transformation. Given a variety and an action of V,
we can obtain the required extension by choosing an action of the standard
quadratic transformation with the lucky property that all the relations hold-
ing between the collineations and the standard quadratic transformation are
satisfied. Of course, to realize this approach, one needs to find a handy and
explicit way to verify the list of relations. Section 1 of this paper carries out
this program. In a sense, this section complements the main theorem of [11];
it was omitted from [11] in view of the length of the paper.

Section 2 contains a series of general definitions of some objects con-
nected with natural actions of the group Cr(n, K), or of a more general group
UCr(n, K) (Definition 2.7), which we call the universal Cremona group. Our
definitions are perhaps too general for applications, but we hope that this
philosophy will clarify our constructions. Section 2 ends with a series of
verifications of relations as just explained.

Section 3 describes actions of the Cremona group of the plane on the
spaces of curves of degrees 2, 3 and 4. We present the first two actions in
some detail, but only sketch the treatment for quartics; we hope to return to
this case on another occasion.

As an introduction to these ideas, we describe the effect of the standard
quadratic transformation so on a generic conic C, following Artamkin [1], We
write C for the dual conic of C; let Po,Pu Pi De the three fundamental points
of s0 and Qo, Qo>Qv QiiQ& Q'i t n e s*x points of intersection of C with the
sides of the fundamental triangle, with Q'^Q" on the side Li opposite the
vertex Pi for 0 < i < 2. Write i?- and R" for the intersection points of Li
and the proper transforms of the lines PiQi and PiQ'l under s0; then all six
points R^ Bl[ lie on a conic D, and the dual conic D is the image of C by the
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action of the standard quadratic transformation on the space of conies.
About the same time, a letter from Dolgachev [7] contained the formulas

xf
0 = xix2, x[ = x2x0, x'2 = XQXU X'3 = x3x0, x'4 = x 4 x i , x'5 = x5x2

for a quadratic transformation of P5, which he considered as an analog for
P5 of the standard quadratic transformation s0. These formulas express the
relation between the coefficients of C and of D in Artamkin's construction
(compare (3.0) below).
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1 Generators and defining relations for Cr
1.1 Generators of the Cremona group
We suppose that the ground field K is algebraically closed; let (XQ : x\ : x2)
be homogeneous coordinates on the projective plane P2 over K. A rational
transformation of ¥2 can be written

£0 = /o(zo, £1, ^2), z'i = /i(zo, xu X2), x2 = /2OE0, £1,2:2), (1-0)

where /o , / i , /2 are either homogeneous polynomials of the same degree, or
quotients of homogeneous polynomials having the same degrees of homogene-
ity. The image of a point (a0 : ai : a2) G F2 under such a transformation
is

,ai,a2) : fi(aQ,aua2) : f2(aOyaua2)).
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Let Cr = Cr(2, K) denote the set of all invertible rational transformations of
P2 over K.

Let V = AutP2 = PGL(3, K) be the set of all projective transformations

C01X1 + C02X2,

x[ = CIOXQ + cnXi + C12X2, with Cij G if and det(c^) 7̂  0. (1.1)
X2 =

We write Q for the set of all quadratic transformations, that is, invertible
rational transformations of the form (1.0), where / c / 1 , / 2 are homogeneous
polynomials of degree 2 with no common linear factor. The set of quadratic
transformations splits into three double cosets under the group of collineations
(more precisely, with respect to the natural two-sided action of V x V on Q):

Q = VSQV U VSIV U Vs2V, (1.2)

(here U means disjoint union), where So is the so-called standard quadratic
transformation, given by

So • XQ — **̂ lX2) X^ — X0X2, X2 — X()Xi, ^ l .o j
f^T* /y* —1— /v» /v» «^__ /v» sy* fy* 1 I f\ I

Next, 5i is the first degeneration of the standard quadratic transformation,
where two of the three fundamental points of So come together, and is given
by

i l l I {1 r\

S\ : XQ = Xj, Xj = X0X1, X2 = X0X2, (l-^/

or x0 = XIXQ^XI, xi = xi, x2 = X2. (1.6)

Finally, 52 is the second degeneration of s0 (or a further degeneration of $1),
where all the fundamental points of So come together to one point, and is
given in formulas by

s2: x'o = XQ, X\ = xoxi, x2 = x\ - xox2, (1.7)
or XQ = X0, x i = x i , x2 = XIXQ xxi - x2. (1.8)

Note that (1.4), (1.6), (1.8) are destined for future noncommutative general-
izations (see (2.9)).

Remark 1.1 The third double coset VS2V of (1.2) contains all nonunit ele-
ments of the following one-parameter subgroup at (with parameter t G K)

at: xf
0 = xj), xi = xoxi, x2 = x0x2 + tx\

or xf
0 = x0, xi = xi, x2 = x2 -h txiXo lxx.
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We can write these elements as composites o~t= P20 $2 °Pi in terms of s2 and
the collineations P\,P2 £ V given by

Pi: xf
0 = #o, #i = —tx\, x'2 = —tX2,

and p2: x'o = x0, x[ = —t~lx\, x'2 = t~lx2.

Theorem 1.1 (Max Noether) The Cremona group Cr(2, if) is generated
byVUQ.

Note that one can, as usual, replace P U Q b y the more economic set of
generators V U {s0}, writing the transformations si,S2 in terms of s0 and
collineations. More precisely,

81 = go o so o g0 o s0 o 0O, (1.9)
where g0: x'o = x\ - x0) x\ = xu x'2 = x2; (1-10)

and

s2 = siogxosu (1.11)
where g\: x'o = x0, x[ = xi, x2 = x0 — x2 (1-12)

Remark 1.2 The identities (1.9) and (1.11) have interesting analogs in the
Cremona group Cr(3, K) of 3-space. The involution

SO'.X'O = XQ1, X[=XI1, X'2 = X2
1, xf

3 = x^ (1.4a)

is the standard cubic transformation of P3. Take the projective transformation

Go' x'o = X\ — Xo, x'i = rci, x'2 = x2 xf
3 = X3 (1.10a)

as an analog of (1.10). Then the composite

Si = Go o So o Go o So o Go, (1.9a)

is the quadratic space transformation

Si: XQ = Xj, 2q = Z0Z1, ^2 = ^o^2) ^3 = £o#3- (1.5a)

Moreover, if we take the collineation

Gi: x'o = x0, xi = xi, x;
2 = x2, x;

3 = xo-x3 (1.12a)

as an analog of g\ in (1.12), then the composite

S2 = S i o G i o S i , (1.11a)
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is the quadratic transformation

(1.7a)

or (in af&ne coordinates x = X\/XQ, y = X2/XQ, Z = Xs/xo)

S2: x' = x, y' = y, z' = x2 - z.

The composites (1.9a) and (1.11a) contradict some propositions of Dolgachev
and Ortland [9], p. 93 (which are comparatively lucid paraphrases of some
claims of S. Kantor [13], A. Coble [6], H. Hudson [12], and P. Du Val [10]).

More precisely, write Crreg(3, if) for the subgroup of Cr(3, K) generated
by -So and the subgroup of collineations; the elements of Crreg(3, K) are the
"regular" transformations in the sense of Coble. Let Punct(3, K) be the
set of Cremona transformations of P3 without fundamental curves of the
first kind, that is, transformations without curves whose proper image in the
projective space is a surface, see [12], [9]. The authors listed above start
by asserting (sometimes with some provisos) that "one can prove that all
punctual transformations form a subgroup of the Cremona group". This
is false, because each factor of the right-hand side of (1.9a) is a punctual
transformation, whereas the composite S\ has x0 = 0, x\ — 0 as a fundamental
line of the first kind (maybe, more precisely, a curve infinitely near to this
line is a fundamental curve of the first kind); at any rate, no blowups of
P3 at a finite sets of points can reduce the transformations S\ and S2 to
pseudoisomorphisms in the sense of Dolgachev and Ortland [9]. The identity
(1.9a) also refutes the conjectured equality Punct(n, K) = Crreg(n, K), or
even the inclusion D. Note that the fact that the composites (1.9a) and
(1.11a) have even degree also contradicts Coble's formulas, according to which
the degree of a "regular" transformation of P<* is of the form (d — l)ra + 1.

1.2 Defining relations between the generators V U Q
We now reproduce and comment on the main theorem of [11], Theorem 10.7,
with some changes of formulation. If a, 6, c , . . . are finitely many elements of
the set V U Q of generators of Cr(2, K) (see Theorem 1.1), we write abc- • •
to mean a word over the alphabet P u Q , whereas the expression a o b o c o • • •
means the ordinary composite in Cr, that is, a birational transformation of
P2. The theorem on relations is as follows.

Theorem 1.2 Every relation between the generators V U Q that holds in
Cr(2, K) is a consequence of the 3-term relations of the form

9i929z = 1, (1.13)
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where {#1, #25 #3} i>s &n ordered triple of elements of V U Q for which the
corresponding composite g\og2o g3 of rational maps equals the identity trans-
formation of¥2.

We pull out some special relations from the above large family (1.13), and
each relation of the family will be a consequence of the marked special ones.

1.2.1 The first family of special relations: the multiplication law
of the projective group

They are relations of the form

P1P2P3 = 1, (1.14)

where Pi,P2,P3 £ V are collineations, and p^1 = p2 op3.

1.2.2 Generalities on edge relations

The edge relations arise from the two-sided action of the collineations on the
set of quadratic transformations, and are of the form

PiQiP2 = £2, (1-15)

where pi,p2 £ ^> £1,(72 £ Q, a n d p i o ^ o ^ = £2- More precisely, each relation
(1.15) gives three 3-term relations for use in Theorem 1.2:

Pi£i(P2 ° Q21) = 1> Pi(Qi OP2)Q21 = 1, /
and (pi o q\)p2q2 = 1.

We picture a relation (1.15) as follows:

£1
Pi O — — O P 2

This describes a relation (1.15) as a loop of length 2 going out along an edge
and back along the same edge; our term "edge relation" arises from this. The
family of all relations (1.15) is still too large and cumbersome, but in 1.2.3,
1.2.4, 1.2.5 below, we distinguish three special edge relations which, together
with (1.14), imply all the edge relations. Note that in any relation (1.15), the
quadratic transformations q\ and q2 both belong to the same double coset of
(1.2); this leads us to separate and classify the edge relations according to the
subscript n of the representative sn of the double coset VsnV for n G {0,1,2}.
We call the corresponding relation an (n)-edge relation.
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1.2.3 The (O)-edge relations
Our second family of special relations are edge relations arising from a loop
of length 2 obtained by going out and back along an edge corresponding to
the standard quadratic transformation SQ. The loop in question is a marked

Figure 1: (O)-edge relation

path in the graph I \ (see Figure 1 and compare [11], 4.1, 4.4, 4.5 and 10.5.3).
Let Go be the collineation group consisting of the transformations

g: x'o = toXi, x[=tiXj, x'2 = t2Xk, (1-16)

where {z, jf, k} is a permutation of {0,1,2} and to, £i, t<i £ K*. In other words,
Go = Aut Vo, where Vo —* P2 is the blowup of P2 in the three points

Let g >-» ~g be the involutive automorphism of Go taking (1.16) to

g: XQ = 60 £ J , x± = t^ Xj, a?2 = ^2 *̂ fc# (!••*• • )

Our second family consists of the relations of the form

sogso = 9 for g £ Go C V. (1.18)

More precisely, each relation (1.18) provides three 3-term relations for use in
Theorem 1.2:

sog(so o (g) l) = 1,
and (s0o g)so('g)~1 = 1;

compare (1.15) and (1.15a). Note that one of the simplest consequences of
(1.18) is si = 1 (take g = 1 in (1.18)).

1.2.4 The (l)-edge relations
Our third family of special relations are edge relations arising from a loop
of length 2 obtained by going out and back along an edge corresponding to
the first degeneration si of the standard quadratic transformation (see (L5),
(1.6)). See Figure 2, where we omit arrows that can be deduced by analogy
with Figure 1.
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9 O^—O (g)-1

Figure 2: (l)-edge relation

Let G\ be the collineation group consisting of the transformations

g: XQ = toXo, x\ = t\Xi, x'2 = t2x2 + r^o, (1-19)

where to,ti,t2 G K* and r G K. The group G\ is AutVi, where V\ —• P2 is
the minimal resolution of the indeterminacy of the rational map s\ of (1.5).
Let g »—> ~g be the involutive automorphism of Gi sending (1.19) to

~g\ x'Q = tlt^xi, x[ = tiXi, x'2 = t2x2 + rxi. (1.20)

Our third family consists of the relations of the form

g, (1.21)

where g G G\. More precisely, as in (1.15a) and (1.18a), (1.21) provides three
3-term relations. As before, s\ = 1 is a consequence of (1.18).

1.2.5 The (2)-edge relations
Our fourth family of special relations are edge relations arising from a loop of
length 2 obtained by going out and back along an edge corresponding to the
second degeneration 52 of the standard quadratic transformation (see (1.7),
(1.8)). See Figure 3, where we omit arrows that can be deduced by analogy
with Figure 1, and, here and below, we label the edges by n in place of sn.

Figure 3: (2)-edge relation

Let G2 be the collineation group consisting of the transformations

g: x'o = z0, x\ = txu x2 = t2x2 + rxi + sxQ, (1.22)

where t G K* and r, s G K. The group G2 is isomorphic to the group Aut V2 of
automorphisms of the surface V2, the minimal resolution of the indeterminacy
of the rational map 52. Let g \—> ~g be the involutive automorphism of G\
sending (1.22) to

~g\ x'o = XQ, x[=txi, x2 = t2x2 — rxi — SXQ. (1.23)
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Our fourth family consists of the relations of the form

S29S2 = <?, (1.24)

where g e G2. As in (1.15)-(1.15a), (1.18)- (1.18a), (1.24) provides three
3-term relations. As before, s\ = 1 is a consequence of (1.24).

1.2.6 Generalities on triangular relations

The relations (1.18), (1.21) and (1.24) were pictured as walks around the
edge in Figures 1, 2 and 3. Our remaining special relations are pictured as
marked loops around the triangle of Figure 4 (clockwise, as for the above edge
relations). Here the vertices are marked by collineations P1.P2.P3 € V, and

Figure 4: Triangular relations

the edges by quadratic transformations qi, q2, q$ £ Q. The marked triangular
loop of Figure 4 gives a relation of the form

PiqiP2q2Psq3 = 1, (1.25)

whenever the composite of rational maps pioq1op2oq2op3o qz is the identity.
Although as it stands (1.25) has six terms, it actually reduces to a three-term
relation (1.13) if we set & = Pi o q{. We call (1.25) a triangular relation.

All the triangular relations follow from the special triangular relations
written down in 1.2.7-1.2.12 below, together with the special relations al-
ready listed above. Each special triangular relation is of the form (1.25) with
QiiQ2^q3 taken from the quadratic involutions So»si o r 52 of (1.3)—(1.8). If
(1.25) holds with

Qi = 8n(i)i Q.2 = sn{2) and q$ = sn(3) , (1.26)

we say that Figure 4 is an (n(l),n(2),n(3))-triangle and that the relation
(1.25) is an (n(l),n(2),n(3))-triangular relation. As in 1.2.5, we label edges
with the number n instead of sn.
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1.2.7 The special (O,O,O)-triangular relation

This is the following relation:

= 1, (1.27)

where So is the standard quadratic transformation, and ho the involutive
collineation given by

/ l 0 . XQ — Xoi X-^ — XQ X\y X2 — Xo X2. yL.ZiOj

1.2.8 The special (l,O,O)-triangular relation

This is the identity (1.9) written down as the relation

0 \ /o 9oSigosogoSo = 1, (1.29)

(J9o
where g0 is the projective involution (1.10).

1.2.9 The special (2,l,l)-triangular relation

This is the identity (1.11) written down as the relation:

CQ—^—Oe

1 \ /I 525l5fl5l = 1? (l.oUj

U9i

where g\ is the projective involution (1.12) and e eV the identity.

1.2.10 The special (O,l,l)-triangular relation

This is the following relation:

where / is the collineation
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Remark 1.3 It is interesting to note in passing that the relation (1.31) yields
as a corollary:

the set V U {si} generates the group Cr(2, K)

(if K is an algebraically closed field, of course).
In contrast, the set VU{s2} does not generate Cr(2, if). Indeed, VU{s2}

is contained in the subgroup Cr^(2,AT) C Cr(2, K) consisting of Cremona
transformations (/o,/i,/2) (in the notation of (1.0)) having Jacobian de-
terminant a perfect cube; this is a proper subgroup because, for example,

1.2.11 The special (1,1,1)-triangular relation
This is the relation:

hi Q—^ O hi
= 1, (1.32)

where hi is the projective transformation

h i : x'o = xi- x 0 , x[ = xi, x'2 = x 2 .

1.2.12 The special (2,2,2)-triangular relations
Our final family of relations depends on a parameter t G K, with t ^ 0,1.
Write pt for the projective transformation:

pt\ XQ = £o, x\ = —txi, x2 = tx2i

and 52 for the second degeneration of the standard quadratic transformation
as in (1.7). Then our final special triangular relations are:

Pt"S2Pt'S2PtS2 = 1, where t' = 1 — - and t" — . (1.33)

Remark 1.4 There is a more natural and convenient form of (1.33), namely,
the multiplication law for the one-parameter group crt of Remark 1.1, that is,
the relation

at(7s = a t + a ,

where s,t G K, with s,t ^ 0 and 5 + 1 ^ 0. Note that the last equality is
of the form presented by (1.25) with pi = p2 = Pz = 1, qi = <Jt+s, q2 = cr_s,
93 = cr-t-
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1.2.13 Theorem 1.2 revisited
The more detailed statement of the theorem on relations is as follows.

Theorem 1.3 Every relation holding between the generators V U {sOi si, s2}
of the Cremona group Cr(2, K) is a consequence of the special relations (1.14),
(1.18), (1.21), (1.24), (1-27), (1.29), (1.30), (1.31), (1.32), (1.33).

For the proof, see [11], 10.6-10.7.

2 The universal Cremona group
2.1 Admissible triples, their spaces and maps
Definition 2.1 An admissible triple is a triple (R, A, M), where:

1. R is a commutative ring with a unit.

2. A is an i?-algebra, not necessarily commutative or associative, but at
least alternative; this means that R is contained in the centre of A and
the subring of A generated by any two elements is associative.

3. M C A is an i?-submodule such that

mMm C M for every m G M.

4. If m G M has a total inverse m~l in A, then m~l G M; here a iota/
inverse of a (Mal'tsev [15], Chap. II, 4.3) means an element a~l such
that

a~l(ax) — (xa)a~1 = x for every x E A.

Let G(M) denote the set of units or totally invertible elements of M.

Definition 2.2 Let R be a commutative ring having an involutive auto-
morphism r H-> f; by default, ~ is the identity map if no involution is specified.

An R-algebra with involution is an i?-algebra A with a semilinear invo-
lutive anti-automorphism a i—» a*; that is, * is an involution satisfying the
identities

(ra + sb)* = fa* + sb* and (ab)* = b*a*.

We write

A+ = {a e A | a* = a}, A" = {a € A | a* = - a }

for the set of *-invariant (respectively *-anti-invariant) elements of A.
For an i?-algebra A with involution, a triple (i?, A, M) is admissible if it

is admissible in the sense of Definition 2.1, and M* = M.
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Remark 2.1 If A is an i?-algebra with involution, then both (i?, A, A+) and
(R,A,A~) are admissible triples in the sense of Definition 2.2.

Let R be a commutative ring and n > 0 an integer. We construct a functor
§ n from the category of admissible triples to the category of sets.

Definition 2.3 If (R, A, M) is an admissible triple, we say that an (n + 1)-
tuple m = (mo,. . . , mn) G Mn+1 is invertible if AomoH hAnmn is invertible
in A for some Ao,..., An G R; in other words, if the components of m generate
an i?-submodule of M having nonempty intersection with G(M).

On invertible (nH-l)-tuples, we introduce the equivalence relation ~ which
is generated by the elementary relation

3g G G(Af) such that (ra0 , . . . , m'n) = {gmogy..., gmng).

(This is the point at which we need A to be alternative.) In other words,
two (n + l)-tuples m and m' are equivalent if and only if there are elements
<7i5 • • • » gk € G(M) such that

mi = 9i(' •' (gk-i(gk(mi)gk)gk-i) • * • )g\ for each 0 < i < n.

We write (mo : • • • : mn) (or sometimes simply m) for the equivalence class of
m = (mo,. . . , mn), and define Sn(i?, A, M) as the set of equivalence classes
of invertible (n 4- l)-tuples under ~ . We define the functors SJ and §~ on
the category of i?-algebras with involution by

and S~(A) = §n(R, A, A').
Remark 2.2 The main example in what follows is the functor §+, especially
its value §+(Matp(AT)) on the if-algebra Ma,tp(K) of p x p matrices with
entries in an algebraically closed field K, where the involution * is matrix
transposition.

In general, S£(A) is the set of (n 4- l)-tuples (a0 , . . . ,an) with â  G A+

and with an invertible iMinear combination J2^iai ^ G(i4), modulo the
equivalence relation:

(oo, ...,On)~ (a 0 , . . . , a'n) 4=^ baob = a0 , . . . , banb = a'n,

where b G G(A) is a product of elements of G(A+). §+(^4) is called the
spherical n-space or the n-sphere over A. This is partly justified by the
fact that if A is an algebra with involution * over E or over C, such that
A+ = R, then SJ(A) is in natural one-to-one correspondence with the unit
sphere Sn C Rn+1.

If K is an algebraically closed field, then the set G(Matp(K)+) of invertible
symmetric matrices generates the whole group GL(p, if), hence the spherical
space §J(Matp(if)) coincides with the "noncommutative projective space" of
Tyurin and Tyurin [17].
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Under certain conditions, we define the polynomial A (if, A, M)(m) and
some other polynomials F(A), usually considered up to proportionality. These
polynomials depend on dual variables (u0,..., un) and (rc0,..., xn), and define
hypersurfaces in Pn and the dual Pn.

Let A be a finite dimensional associative algebra over the ground field if,
and NA/K' A—> K its norm (see Bourbaki, Algebre, [4], Livre II, Chap. VII;
for our purposes, we can use the so-called principal norm in the sense of the
exercise in [4], loc. cit, or the reduced norm if A is a semisimple algebra).
Write p for the degree of the characteristic polynomial of A ([4], loc. cit),
and let K[UQ, . . . , un]d be the vector space of homogeneous polynomials of
degree d. We assume that the restriction of the norm NA/K to the subspace
M C A is the exact qth. power of a polynomial: NA/K\M

 = (N°)q, where
N%K G K[M\.

Definition 2.4 For a fixed m = (ra0 : • • • : mn) G Sn(M), we set

A(if, A, M)(m)(uo,... ,un) = NO
A/K(uomo H h unmn);

thus A(if, A, M) e K[UQ, . . . , un] is a homogeneous polynomial of degree p/q.
If F: K [u0,..., un]p/q —• if [ajo, • . . , xn] is a contravariant and has nonzero

value at A(if, A, M)(m), then F(A(if, A, M)(m)) is an equivariant like de-
fined polynomial in the sense of Remark 2.5 below.

Remark 2.3 If A = Matp(if) is a matrix algebra over a field if, with invo-
lution matrix transposition, then A (if, A, A+)(a) = det(a).

Remark 2.4 If dimK A < oo, the hypersurface A(M)(m)(w0,... ,un) = 0
coincides with the so-called spectrum set of m, that is, with the set of all
points (t/o • * * * ' Vn) £ Pn(if) for which the linear combination yorriQ H h
ynmn is a noninvertible element of M. Indeed, by [4], Chap. VII, Proposi-
tion 12, an element x € A is invertible in A if and only if its norm NA/K{X)
is invertible in if.

Remark 2.5 The group PGL(n + 1, if) of projective transformations

n

9: x'i = ^9ijxj for z = 0 , . . . , n
i=o

acts (on the left) on Pn and (on the right) on Pn by the transpose map

71

gT: u[ = ^^gjiUj for i = 0 , . . . , n.
j=0
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This group acts (on the right) on P(AT[uo,... ,um]d): if F(u) G K[u]d,
then g(F)(u) = F(gT(u)). It also acts (on the left) on §n(K,M,A):

n
g(m) = (m'o : • • • : m^), where vn!i = /]gijTrtj.

3=0

A(K,A,M)(g(m))=g(A(K,A,M)(m)),
, A, M)(g(m))) = g^Atf, A,

Note that

The last equality means that the map

T(A(K, A, M)): Sn(K, A, M) - V(K[x0,..., xn})

is equivariant with respect to PGL(n + 1,K), because the correspondence
g \—• (^ - 1)T is an automorphism of this group.

In the following two definitions, we now construct an analog of homo-
geneous rational functions, specially adapted to the noncommutative case;
these are certain expressions in variables which are either letters, or ele-
ments of a if-algebra A. The pattern of our construction follows that of
the well-formed formulas in the calculus of mathematical logic (for example,
see Church's book [5]); our functions are always derived from well-formed
rational expressions. Moreover, for a well-formed homogeneous rational ex-
pression / , we define at the same time its domain of definition dom / C Mn+l

(here M is the third component of an admissible triple (K, A, M)), its value
/ (m) G M a t point m = (mo,... ,rnn) G dom/ , and the notion of the do-
main of invertibility dom/" 1 C M n + 1 of such an expression. The degrees of
homogeneity of our functions / (xo , . . . ,xn) are the numbers +1 and —1; in
what follows, e stands for an element e G {-hi,—1}. The ground field K is
fixed, and its elements are called constants.

Definition 2.5 (i) For each i G {0 , . . . , n}, we define the coordinate func-
tion / ( x 0 , . . . , xn) = Xi to be an expression of degree 1. Its domain of
definition domxj is the whole of Mn + 1 , its value at m = (ra0, . . . , mn)
is equal to m*, its domain of invertibility is

{ m = ( r a ( ) , . . . ,m i , . . . ,m n ) |m i G G(M)}.

(ii) If / is an expression of degree e = ±1 and A a nonzero constant, A/
is an expression of degree e by definition. Its domain of definition (or
invertibility) coincides with that of / , and its value at m is equal to
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(iii) If / and g are expressions of the same degree e = ±1, the sum f + g
is an expression of degree e. Its domain of definition is the intersection
of the corresponding domains for / and g, its value (/ + g)(m) equals
/(m) + g(xn) and its domain of invertibility is

{m | m G dom(/ + g) and (/ + g)(m) G G(Af)}.

(iv) If / is an expression of degree e, then f~l = 1// is an expression of
degree — e by definition. The domain of definition and the domain of in-
vertibility of the expression f~l coincide with the domain of invertibility
of / . The value f~l(m) is equal to (/(m))"1.

(v) If f,g are expressions of degree e then fg~lf and f~lgf~l, are ex-
pressions of degree e and — e respectively by definition. The domain
of definition or invertibility of each product is the intersection of the
corresponding domains for all the three factors, and

The smallest set of expressions satisfying the above conditions (i)-(v)
is the set of well-formed homogeneous /f-rational expressions of variables
(xo,... ,xn). Every /^-rational expression / has a definite degree deg/ G

Remark 2.6 If /(x) = /(x0 , . . . ,xn) is a if-rational expression of degree 5
and #o(y), • • •, 9n(y) are n expressions in variables y = (y0,..., ym) of degree
£, then the composite /(go> • • • ,9n) is obviously a rational expression in y of
degree eS.

If / is a well-formed expression of degree e, and m G Mn+1 belongs to
dom/, then bmb G dom/ for any b G G(M), and f(bmb) = b£f(m)b£.

Definition 2.6 If / and g are two well-formed homogeneous expressions in
(n + 1) variables, each with nonempty domain of definition in some Mn+1,
we say that / and g are equivalent (and write / = g) if for every admissible
triple (K,A,M) and for every element m G dom/ D doing C Mn+1, the
equality /(m) = #(in) holds. A homogeneous K-rational function is defined
as an equivalence class of well-formed homogeneous if-rational expressions
/(x0, . . •, xn) with a nonempty domain of definition in some Mn+1; the set of
these is denoted by Rat(n-hl, K). Note that nonzero homogeneous K-rational
functions fall into two sets according to their degree.
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Remark 2.7 We have the following identities in two variables x,y:

(x-1)-1 = x, (x-'yx-1)-1 = xy-'x,

(x~l — y~l)~l = x(x — xy~lx)~lx

xy-'x = x - {x~l - (x - y)~l)-\ (2.1)

x(x — xy~lx)~lx = x — x(x — y)~lx (2.2)

{x-l-y-lyl = x-x(x-y)~lx. (2.3)

See Mal'tsev [16], Chap. 2, 4.3 for (2.1); (2.3) follows from (2.1) on substitut-
ing 2/1—• rr — 2/, and (2.2) is similar.

Definition 2.7 A well-formed if-rational map from projective n-space to
projective p-space is given by a (p + l)-tuple of if-rational functions of the
same degree in variables (xo, • • •, xn):

/(x) = ( /o(x) : . . . : / p (x)) ; (2.4)

or / : xf
0 = fo(xo,...,xn),...,x'p = fp(x0,...,xn).

Two (p + l)-tuples give the same map if they are equivalent under the equi-
valence relation generated by the following primitive relation: another (p+1)-
tuple (<7o(x) : • • • : &>(*)) is equivalent to (2.4) if there exists a K-rational
function h(x) with deg(/i) = — deg(^) and with nonempty domain of in-
vertibility, such that we have equivalences (in the sense of Definition 2.6)
fi = hgih for each 0 < i < p.

The identity map is the transformation given by xf
0 = x 0 , . . . , x'n = xn.

The map /(x) (2.4) induces a family of partially defined maps Sn(M) —»
SP(M), one for every admissible triple (K, A, M); it follows from Remark 2.6
that these maps are well defined. The domain of definition of a (p + l)-tuple
(2.4) consisting of rational expressions fi is

{m | m G dom/i, for 0 < i < p},

and on it / (m) defines a point of §P(M) in the sense of Definition 2.3.
A well-formed if-birational transformation of projective n-space is a well-

formed rational map F of this space to itself such that there is an inverse
map G with the property that both composites F o G and G o F are equal
(more precisely, equivalent) to the identity map. We call such a map F a uni-
versal Cremona transformation; the group of all these is called the universal
Cremona group, and is denoted UCr(n, K).

A partially defined map / : §n(M) —• §n(M) with a nonempty domain of
definition, where M is the third component of an admissible triple (K, A, M),



Marat Gizatullin 129

is a Cremona transformation if there is an element F G UCr(n, if) inducing / .
We identify two such maps if they coincide on some nonempty intersection of
the domains of definition of some well-formed representatives for both maps.
The group of these maps will be denoted by Cr(n, M).

Thus the universal Cremona group UCr(n, if) is endowed with a family
of epimorphisms

n(n, M): UCr(n, if) -> Cr(n, M). (2.5)

Our immediate goal is to construct (for the case of an algebraically closed
ground field if) a section S(2, if) of the epimorphism 11(2, if).

Remark 2.8 If A is a finite dimensional associative algebra with involution
over an algebraically closed field K and (if, A, M) an admissible triple such
that the set G(M) generates a semisimple algebraic subgroup G of G(A),
then, at least birationally, one may view Sn(if, A, M) as a geometric quo-
tient of Mn+1 with respect to the two-sided diagonal action of G. Thus a
generic element of Sn(if, A, M) may be viewed as a generic point of some al-
gebraic variety over if; and moreover, we may view the transformations of the
§n(K, A, M) induced by elements UCr(n, if) as birational transformations of
the variety.

2.2 An action of the Cremona group of the plane on
the 2-spaces S2(K,A, M)

Let A be a if-algebra over an algebraically closed field K and (K,A,M)
an admissible triple. The collineation group V = PGL(3, K) acts on the
set S2(if,A, M). Our goal is to extend the action to the whole Cremona
group (see the Introduction), making it act on §2(if, A, M) by birational
transformations. The group Cr(2, M) acts on ^(K-iA^M) and, according
to equation (2.5) (see (2.6) below), we have the epimorphism 11(2, M) of
the universal Cremona group UCr(2, if) onto Cr(2, M), hence this universal
group acts on §2(M). A special case of (2.5) is

n(2, if): UCr(2, if) -> Cr(2, if). (2.6)

If the homomorphism (2.6) admits a section

E(2, if): Cr(2, if) -* UCr(2, if), (2.7)

(of course, by definition, so that the composite 11(2, if )oE(2, if) is the identity
of Cr(2, if)), then this section provides the required extension.
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In the rest of this section, our plan is as follows. First, we already have a
natural inclusion

£?,:P-+UCr(2,#). (2.8)
of the collineation group V into the universal Cremona group.

Next, we find three universal birational maps So, Si, S2 £ UCr(2, K) that
map to the quadratic transformations SQ,SI,S2

 under 11(2,K). Finally, we
check that all the relations mentioned in Theorem 1.3 hold in UCr(2, K)y or
more precisely, the relations obtained from those by substituting So,S\,S2
respectively for s0, Si, s2.

Let x = (XQ : x\ : x2). We define the effect of the action on x of the
quadratic maps So, Si, S2 (compare (1.4), (1.6), (1.8)) in the following natural
way:

S0(x) = (XQ1 : x^1 : x2
l),

Si(x) = (zi^o1^ : £i : x2),
S2(x) = (x0 : xi

Note that, to be correct, we should perhaps write "=" instead of "=" in
all the verifications below, but we neglect to do it.

2.2.1 Verifying the relations (1.14)
These relations hold because the natural inclusion (2.8) of the collineation
group of the plane into the universal Cremona group is a homomorphism.

2.2.2 Verifying the relations (1.18)
If G is the collineation G(x) = {toXi : t\Xj : t2Xk) (more precisely, the image
of the collineation (1.16) under the inclusion (2.8)), then

GSo(x) = (toxrl : t&J1

that is, SoGSo = G, where G = Tsp{g). Thus (1.18) is satisfied here.

2.2.3 Verifying the relations (1.21)

Set G = Ep(#), where g is the collineation (1.19) and G = Ep(y)), where ~g
is (1.20); then

SiGSi.(x) = (tixi(toxixo ^ i ) " 1 ^ ! : tixi : t2x2 + rx0)
= (tlt^xo : totiXi : t2x2 + rx0) = G(x).

Thus (1.21) is satisfied here.
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2.2.4 Verifying the relations (1.24)
Similarly, set G = T,-p(g), where g is the collineation (1.22), and G = £T>(#),
where ~g is (1.23); then

GS2(x) = (x0 : tixi : £2(XIXQ ^ I - ^2) + rai + sx0),
52G52(x) = (xo : toi : —^(xix^xi — X2) — rx\ — sxo + tx\XQltx\)

= (x0 : tx\ : t2x2 — rxi — sx0) = G(x).

Thus (1.24) is satisfied here.

2.2.5 Verifying the relation (1.27)
Let Ho = Ep(/i0), where /i0 is the collineation (1.28). We have to check that

SoHoSo(x) = HoSoHo(x).

First, on the left-hand side,

So(x) = (XQ1 : X11 : x^1),

Similarly, on the right-hand side,

So#o(x) = (XQ X : (x0 - si)"1 : (x0 - X2)"1),
H0S0H0(x) = (XQ1 : x^1 - (x0 - X1)"1 : XQ l - (x0 - x2)-1)

= (x0 : x0 - xp(x0 - xi)"1xo : x0 - xo(xo - x2)"1x0).

Thus the required relation follows from the identity (2.3).

2.2.6 Verifying the relation (1.29)
Let Go = E^(^o), where go is the collineation (1.10). We have to check that

5i(x) = GoSoGoSoGo(x).
We build the following pyramid of equivalences:

G0(x) = (xi - x 0 : xi : x2),
5oGo(x) = ((xx-xo)"1^1^1),

Go5oGo(x) = ( x r 1 - ( x i - x 0 ) - 1 : x r 1 : x 2 - 1 ) ,
5oGo5oGo(x) = ((xr1 - (xi - xo)"1)"1 : xx : x2),

GoSoGoSoGo(x) = (xi ~ (XTX ~ (xi " ^o)"1)"1 : a* : x2).
By virtue of the identity (2.1), the first component of the last triple coincides
with xixo"1xi. Hence the required relation is established.
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2.2.7 Verifying the relation (1.30)

Let G\ = £p(#i), where gi is the collineation (1.12). We have to check that

52(x) = SiGiSi(x).

This is easy; indeed,

5i(x) = (XIXQ XXX : xi : x2),

*xi - x2),

= (x0 : xi : XIXQ lxx - x2) = 52(x).

2.2.8 Verifying the relation (1.31)
Let F = £p(/) , where / is the collineation of (1.31). We have to check that

As before, this is easy; indeed,

Si(x) = (XIXQ^I : xi : x2),
F5i(x) = (x2 : xi : 1

2.2.9 Verifying the relation (1.32)

Let #1 = Sp(/ii), where hi is the collineation participating in (1.32). We
have to check that

First, on the left-hand side,

5i(x) = (XIXQ xxi : xi : x2),

ffiS'i(x) = (xi - XIXQ xxi : xi : x2),
5iffi5i(x) = (xi(xi - XIXQ ^ i ) " ^ ! : xi : x2).

Next, on the right-hand side,

ifi(x) = (xi - x0 : xi : x2),
5iffi(x) = (xi(xi - xo)"1^! : xi : x2),

HiSiHi(x) = (xi - xi(xi - xo)"1^! : xi : x2).

Thus the required relation now follows from the identity (2.2).
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2.2.10 Verifying the relation (1.33)

Let pt be the collineation of 1.2.12, and Pt = ̂ v{Pt) its image; as in (1.33),
write if = 1 - \ and if' = ^ . Then

S2(x) = (x0 : xi
PtS2{x) = (x0 : - t e i : t(xxXQ lxx - x2)),

x) = (xo:-tx1:{t2-t)(xlXQlx1)+tx2),

= {x0 : (t - l)x1 : -(t -
Pt»S2Pt>S2PtS2(x) = (x0 : xi : x2).

All our verifications are now completed. Q.E.D.

3 Conies, cubics and quartics
3.1 Left and right actions of the Cremona group of the

plane on the space of plane conies
Let A = Mat2(K) be the 2 x 2 matrix algebra over an algebraically closed
field K of characteristic ^ 2, with involution given by transposition * = T;
thus A+ is the set of symmetric matrices. We write D(P,Q) for the mixed
determinant of two 2 x 2-matrices P, Q; in other words, if

\P21
Pl2\
P22j '

1 /Ipil
2 \\p21

0

922
911
921

912
922

P\2
P22

then

The spherical 2-space S^A) consists of triples (mo,mi,m2) of symmetric
matrices m; € A+, such that some if-linear combination Ao?noH-Aimi4-A2m2
is invertible, modulo the equivalence relation: (rao,mi,ra2) ~ (^0,^1,^2) if
rti = CrriiCT for some invertible matrix C G A. Let m = (mo : mi : m2)
denote the equivalence class of (mo,mi,m2). The collineation group V acts
(on the left) on S f ^ ) . The P-anti-equivariant map

A:

(compare Definition 2.4) sends each triple m = (m0 : m\ : m2) to the ternary
quadratic form

-f- uimi + u2m2) =
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considered up to proportionality; here ^ ( m ) = D(mi,rrij). The Cremona
group of the plane acts (on the left) on S^(^4). It is possible to define a
natural (right) action of this group on the space of conies in such a way that
A is a Cr(2, if )-anti-equivariant map. Indeed, we can use the identities

) = (det(P))"1, D(P,P)=det(P),

det(P)det(Q)'

^ Q ) .

D{QP~lQ,P) = 2D(P,Q)2(det(P))-1-det(Q),

n(np-in m 2D(P,Q)D(Q,R)-D(P,R)det(Q)D(QP Q,R) = ^ •

For s0, we get

ai:j(So(m)) = aij(m)(aii(m)ajj{m))-'1 for 0 < i, j < 2;

to write down explicit formulas for the actions of the three quadratic trans-
formations 5o,5i,S2 on conies. That is, in other expressions, the right action
of the standard quadratic transformation on the space of plane conies is de-
scribed by the formulas

aa'12 = ai2aOo, ^02 = a02^n, a01 =

Similarly, we get the following formulas for s\ and 52:

. *

JJ-^aiitm))2, an(Si(m)) = an(m),
= a22(m), ai2(5i(m)) = ai2(m),
= aOi(m)aii(m)(aOo(m))-1,

aO2(5i(m)) = (aoo(m))~1(2aoi(m)ai2(m) -

and

aOo(52(m)) = aoo(m), an(52(m)) = an(m), a0i(52(m)) = aOi(m),
ai2(52(m)) = a1i(m)aoi(m)((aOo(m))-1 - ai2(m),
aO2(52(m)) = 2(aOi(m))2(aOo(m))-1 - aO2(m) - on(m), (3.2)
a22(52(m)) = a22(m) -h (aoo(m))-1((aii(m))2

+ 2aO2(m)aii(m) - 4aOi(m)ai2(m)).
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An alternative way of writing the action of 5i is as follows:

a00 = a n , a u = anaoo, a'22 = a22&oo, / o ., N
(o.laj

and similarly for the action of 52:

a o o = aoo> a i i
a'12 = anaoi - ai2aOo, a'O2 = 2a^ - (aO2 + an)aoo, (3.2a)

All the special relations (where, of course, we replace each collineation g
by its transpose gT, and reverse the order of terms in products) are satisfied
here.

If we want a left action of the Cremona group of the plane on the space
of plane conies, then we must pass to the dual conic. Let (̂ 4ij)o<i,j<2 De the
adjoint matrix of (a^); then the left action of So is given by the formulas

a>ij = auajjAij (3.0b)

The left action of Si is defined by

aoo =

o!l2 = aOianA)2 - anai2A22, (3.1b)

^01 = ^00^12^02

The left action of 52 is defined by

+ ^ ^ 2 2 ,

4- 4a^A22, a22

a02 = ~aOO»114o2 ^

aoo =

aoi =
(3.2b)

More precisely, if a matrix g G PGL(3, K) = V, viewed up to scalar multiples,
acts on the space of symmetric 3 x 3 matrices (also viewed up to scalar
multiples)

a = (ay) € F5(K) = F(S2(W*))

according to the rule

g(a) = ( f f - 1 ) ^ " 1 ) ,
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and the quadratic transformations so,si,S2 ac^ o n ^s(^0 according to for-
mulas (3.0b), (3.1b), (3.2b) respectively, then we have a well-defined (left)
action of Cr(2, K) on the space of plane conies.

Note that our good luck in the case of conies is based on the fact that the
map A is a birational isomorphism (for some analogs of this fact see below,
3.2.5, Theorem 3.3 and 3.5, formulas (3.39)-(3.40)).

3.2 Left and right actions of the Cremona group of the
plane on the space of plane cubics

Now let A — yi&tz(K) be the 3 x 3 matrix algebra over an algebraically closed
field K of characteristic ^ 2 ,3 , with the involution given by transposition
* = T ; thus A+ is again the set of symmetric 3 x 3 matrices. Let D(P, Q, R)
denote the mixed determinant of three 3 x 3 matrices; tha t is, ifei P12 P

1 P22 P23
1 P32 P33J

then 6D(P, Q, R) equals

'011 012 <3
1 = I 021 022 023

1 032 033>
^22 ^

7*32 ^33 >

Pll
P21
P31

012
022
032

7*13
7*23
7*33

+
Pll
P21
P31

+
011
021
031

7*12
7*22
7*32

7-12
7*22
7*32

013
023
033

+

Pl3
P23
P33

011
021
031

+ 7*2

Pl2
P22
P32

1 Pl2
1 P22
1 P32

7*13
7*23
7*33

013
023
033

+
7*11 012 Pl3
7*21 022 P23
7*31 032 P33

The spherical 2-space Sj{A) consists of triples of matrices (ra0, mi, m2) in
A+ for which some if-linear combination Aorao + Aimi + A27n2 is invertible,
and (m0, mi,m2) ~ (n0, ni, n2) if there exists an invertible matrix C G A such
that rti = CmiCT. We write m = (m0 : mi : m2) for the equivalence class.
The collineation group V acts (on the left) on Sj (^)- The P-anti-equivariant
map (see Definition 2.4)

A: S+ (Mat3(/0) -+ W) = P(^[^o^i^2]3)
associates with each triple m = (m0 : mi : m2) the ternary cubic form

A(m)(u0, uu U2) = det(ttomo + u2m2) =

(up to proportionality), where a ^ m ) = D(mi,mj,mk). The cubic curve
A(m)(uo,ui,U2) = 0 inherits an additional structure from the matrix triple
m, namely, an even theta characteristic, that is, a nonzero 2-torsion point;
we now treat these relations more explicitly.
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3.2.1 Invariants, covariants, contravariants and 2-torsion of plane
cubic curves

We take the three variables xo,xi,x2 to be homogeneous coordinates on P2,
and normalize the coefficients a^ of XiXjXk in a cubic form F as follows:

F =
(3-3)

•+•

Let uo,ui,u2 be dual homogeneous coordinates on the projective plane P2.
The Hessian form He(F) of the cubic (3.3) is defined by

where HE(F) is the Hessian matrix

/

HE(F) =

d2F
dx2

0

d2F
dxidxo

d2F

d2F
dxodxi

d2F
dx\
62F

d2F
dxodxz

d2F
dx\dx2

82F

(3-4)

dx\ I

Note that our Hessian form differs slightly from that of Salmon's book [16]
or Dolgachev and Kanev [8] (ours is multiplied by 6). Normalized coefficients
by monomials XiXjXk of the Hessian are written down in [16], N° 218. The
Cayley form Ca(F) of F is

Ca(F) = 3 x

GOOO

^ 0 0 1

&002

2u0

0

0

&110

a m

0

2tii

0

&220

»221

<*222

0

0

2u2

Q>012

ana

«122

0

u2

Ui

^002

aoi2

O>022

U2

0

UQ

«001

aon

«012

0

There is a well-defined natural scalar product (or convolution) (F, G) of two
ternary forms F(XQ,XI,X2) and 0(^0,^1,^2) of the same degree in dual vari-
ables. For example, if F and G are ternary cubic forms (where F is (3.3),
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and G has normalized coefficients 6^), then

(F, G) = aooô ooo + aiii&m -f a222&222 + 6aOi2&oi2
4- 3aOo2̂ oo2 + 3ano6no (3.5)

The Aronhold invariants 5 = S(F), T = T(F) and R = R(F) of a cubic form
F are defined by

S(F) = - ( F , Ca(F)), T(F) = -(He(F), Ca(F)), R(F) = T(F)2 - 5(F)3

(compare [16], N°s 220-221). It is convenient to use the following contravari-
ant cubic form

D(F) = - (T(F) Ca(F) - Ca(He(F))). (3.6)
3

The operation D is an analog of passing to the dual of a quadratic form.
Indeed,

D(D(F)) = -S2R(F)6S(F)2F, (3.7)

or in other words, D iterated twice yields the initial cubic form (up to a
factor). We may consider D a s a "birational null-correlation", because the
contravariant D(F) defines a hyperplane in the space of cubic curves, and F
belongs to this hyperplane: (F, D(F)) = 0, where ( , ) is the scalar product
(3.5). The operation D interchanges the Hessian and the Cay ley forms up to
a factor, in the sense that

He(£>(F)) = 2i?(F)2 Ca(F)
and Ca(£>(F)) = -4R(F)2 He(F).

We refer to the pencil of cubic forms

uF(xo, xi, x2) + v He(F)(xo, £i, x2),

as the Hessian pencil (an alternative term syzygetic pencil is due to L. Cre-
mona), and

u Ca(F)(uo, u\, u2) + vD(F)(uo, ui,u2)

as the Cayley pencil The Hessian operation preserves both these pencils,
giving rise to the following actions (compare [16], N° 225). On the Hessian
pencil:

He(uF + v He(F)) = 3t; (u2S + 2uvT + ^ S 2 ) • F (3.9)

-I- (u3 - ZSuv2 - 2?V) • He(F),

in particular He(He(F)) = 352F - 2THe(F). (3.10)
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(Here and below, we write S = S(F), T = T(F), R = R(F).) On the Cayley
pencil:

He(uCa(F) + vD(F)) = 6u(u2 - 2Tuv + Rv2} • D{F) (3.11)

+ 2(2Tu3 - 3Ru2v + flV) • Ca(F),
in particular He(Ca(F)) = 6T(F) Ca(F) - 2 Ca(He(F)). (3.12)

The Cayley operation takes the Hessian pencil into the Cayley pencil; namely,

S(F) Ca(uF + vKe(F)) = 3v(u2 - S(F)v2} • D(F)

+ (s(F)u3 + 3T(F)u2v + 3S(F)2uv2 + T(F)S(F)v3^ • Ca(F);

The operation D acts in a similar way. Furthermore,

Ca(uCa(F) + vD{F)) = 12S(F)2U(RV2 - u2) • F

+ 4 (T(F)u3 - 3R(F)u2v + 3R(F)T(F)uv2 - R(F) V ) • He(F), (3.13)

and

D(wCa(F) + vD(F)) = 16S2R$(u,v)2[2uSUe(F) - {Tu + 2Rv)F],

where

In particular,

= 288R(F)S(F)2 (T{F)F - S(F) He(F)) • (3-14)

Evaluating the Aronhold operations S(-), T(-), and /?(•) on our two pencils
gives the following: on the Hessian pencil,

S{uF + v He(F)) = u4S + 4u3vT + 6uVS2

+ 4uv3ST + v\AT2 - 353), (3.15)
in particular 5(He(F)) = 4T2 - 353 = T2 + 3R. (3.16)

Also,

T{uF + v He(F)) = u6T + 6u5vS2 + 15uVST
+ 20u3v3T2 + 15u2v4S2T (3.17)
+ 6uv5(3S3 - 2T2)S + v6(9S3 - 8T2)T,

in particular T(He(F)) = (953 - 8T2)T = T3 - 9RT. (3.18)
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Further, (3.15) and (3.17) give

R{uF + v He(F)) = (u4 - 6Su2v2 - STuv3 - 3S2v4)3R,
in particular R(Ke(F)) = - 27S6R(F).

On the Cayley pencil, we get

S(uCa(F) + vD(F)) = 4 x ((4T2 - 3i?)u4 - ARTu3v

+ 6RTW - AR2Tuv3 + i?3u), (3.19)
in particular, 5(Ca(F)) = 4(4T2 - 3iJ) and S(D(F)) = AR{F)\

Also,

vD(F)) = 8 x (-T(9i? - 8T2)u6 + 6i?(3i? - 2T2)u5v

- 15R2Tu4v2

in particular

T(Ca(F)) = 8T(8T2 - 9R) and T(D(F)) = -8R(F)4T(F). (3.20)

Finally,

i?(Ca(F)) = (-125(F))3(T(F)2 - 5(F)3)2 = -123S(F)3i?(F)2,
R{D(F)) = 64R{F)8S(F)\

3.2.2 The space of marked cubics
An even theta characteristic of a nonsingular plane cubic curve is a nonzero
2-torsion point on the Jacobian curve of this cubic. The right parameter
space for marked cubics (that is, cubics with a marked 2-torsion point) is the
weighted projective space P(11O;2) with coordinates

(F; 6) = (aOoO) a m , ̂ 222) aooi, aoo2> ̂ no, an2, a22o> tym, a ° 1 2 ' ^ ) -

A similar statement holds for the spherical 2-space Sj (Mat3(K)), compare
Theorem 3.3 below.

Definition 3.1 The space of marked cubics is the hypersurface V C P(l10; 2)
defined by the equation

03 - ZS{F)0 - 2T{F) = 0. (3.21)
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Remark 3.1 The affine equation

\y2 + x3 - 3S(F)x - 2T(F) = 0 (3.22)

defines the Jacobian curve of the generic cubic curve F = 0, where F is
the form (3.3); hence a 2-torsion point of the Jacobian corresponds to a
zero of the left-hand side of (3.22) of the form (x, 0); this justifies the above
definition. Here 0 is an "irrational invariant" of a ternary cubic form, and
its degree equals 2. The fact that 6 is invariant ensures that the action
of V on the space of cubic forms extends to 7 . A point of V is a cubic
curve with a marked 2-torsion point. The hypersurface V is birationally
equivalent to the project ive space of bare (unmarked) plane cubics (compare
Dolgachev and Kanev [8], who attribute this result to G. Salmon [16]). We
give two constructive proofs of the Salmon-Dolgachev-Kanev theorem (see
Theorem 3.1, Claims (A) and (B) below).

Example 3.1 Let F be a generic cubic form and He(F) its Hessian; then
twice the value of the Aronhold T-invariant of F defines a 2-torsion point of
He(F). That is, 6 = 2T(F) is a root of the equation

03 - 3S(He(F))<9 - 2T(He(F)) = 0.

This follows from (3.18) and (3.16). Hence we get a map

he: P9 -> V defined by he(F) = (He(F); 2T(F)) (3.23)

from the space Pg of ternary cubic forms to the space V of cubics with a
marked 2-torsion point.

Example 3.2 Let F be a generic cubic form and Ca(F) its Cayley form;
then -4T(F) defines a 2-torsion point of Ca(F). That is, 6 = -4T(F) is a
root of the equation

03 - 3S(Ca(F))0 - 2T(Ca(F)) = 0.

This follows from (3.20) and (3.19). Hence we get a map

c a : P 9 - + F defined by ca(F) = (Ca(F); -4T(F)) (3.24)

from the space Pg of ternary cubic forms to the space V of cubics with a
marked 2-torsion point.

The next theorem shows that each of (3.23) and (3.24) is a birational
equivalence.
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Theorem 3.1 (A) The map g: V -> P9 defined by

g((F;9)) = 6F + Ee(F) (3.25)

is a birational inverse of the map he of (3.23).

(B) The map d: V -> P9 defined by

d{(F; 6)) = R(F) Ca(F) + (9S{F) + T(F))D(F)

is a birational inverse of the map ca of (3.24)-

Proof of (A) This follows from (3.9), (3.10) and (3.25):

g{he(F)) = <?((He(F); 2T(F))) = 2T(F) He(F) + He(He(F)) =

hence g o he = idp9. The right hand side of (3.17) equals:

-(Su2 + 2Tuv + S2v2)2uv + T(u3 - 3Suv2 - 2Tv3)2 +

+ hu3 - 3Suv2 - 2Tv3)((Su + Tv)2 + SRv2).

Using this, together with (3.15), (3.17), (3.23), (3.25), we get

he(g((F;e))) =he(6F + Ee(F))

= (Ee(6F + He(F)); 2T(6F + He(F))

= (Z(S(F)02 + 2T(F)6 + S(F)2)F; 9(S(F)62 + T{F)6

This point of P(11O;2) coincides with {F\6), hence he op = idv.

Proof of (B) Substituting from (3.14), (3.20), (3.19) gives

d(ca(F))=d((Ca(F);-4T(F)))
= i?(Ca(F))Ca(Ca(F)) + (T(Ca(F)) - 4T(F)5(Ca(F)))D(Ca(F))
= -123R{F)2S{F)2S{C&{F))F,

that is, d(ca(F)) is proportional to F, hence do ca = idp9.
To study the inverse composite ca od, and for some further comments on

the theorem (Remark 3.2), we need an additional series of identities.
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Lemma 3.1 Suppose that 6 satisfies (3.21), and set

(3.26)

Then the coefficient o/He(F) in (3.13) vanishes at u = R(F), v = r:

r3 - 3T(F)r2 + 3R(F)r - T(F)R(F) = 0. (3.27)

Furthermore,

(F) + TD(F)) = 72R4S6(-9Tr2 + 8Rr - 3TR),
(r2 - R)26 = -2S2(-9TT2 + 8Rr - 3TR), (3.28)

-4T(i?Ca(F) + TD(F)) = (12R2S2(r2 - R))26.

Moreover, if we set

A(r) = T(F)T2 - 2R{F)T + T(F)R(F), (3.29)

then

A(r)3 = S6(9TT2 - SRT - 3TR)r2, (3.30)
+TD(F)) = 6R2A{T)T-1(T Ca(F) + D(F)). (3.31)

These identities can be checked directly, but we omit the details.

Proof of (B), continued Applying (3.14), (3.27) and (3.28) yields:

#Ca(F) +TD(F); -4T(Ca(i?Ca(F)

= (l2S2R2(r2 - R)F; (12S2R2)2(r2 - i?)2^

This point of P(l10; 2) coincides with (F; 0), hence caod = id.

Remark 3.2 Comparing the two assertions (A) and (B) gives new infor-
mation concerning two birational transformations: (1) the transformation
D: Pg —+ Pg of (3.6) of the projective space of plane cubics, and (2) an in-
volutive transformation E: V —• V described below of the space of marked
cubics.

First, D equals the composite g o ca (and the composite d o he): for

s(ca(F)) = ^(Ca(F); -4T(F)) = He(Ca(F)) - 4T(F) Ca(F) = 6Z?(F),

by (3.12) and (3.6). Our second map E is the composite he od (which is equal
to cao<7). We claim that

E(F; 0) = ((0S + T) Ca(F) + D{F)\ -4S2(T02
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or in terms of the notation (3.26), (3.29),

E(F- 0) = (r Ca(F) + D(F); -4A(r)) .

For, applying (3.28), (3.30), (3.11), (3.31), we get

he(d(F)) = he(i?Ca(F) + rD(F) ; 2T(i?Ca(F) +

); -4(6/i2A(r)r-1)2A(r))

3.2.3 A birational transformation of the space of marked cubics

We describe a birational transformation Eo of the variety V and of the ambient
weighted projective space P(l10; 2). This transformation is an analog of the
action of the standard quadratic transformation on the space of conies. It is
convenient to make a coordinate change (F; 6) H-> (F; 77) in P(l10; 2), replacing
the final coordinate 6 by

ry = - 1 ( 0 + 2P), (so that 0 = —477 - 2P),

where P = a012 — G, and G = anoa22o + aooi^22i

In the new variables, the hypersurface V C P(l10; 2) of (3.21) is now denned
by the equation:

+ 48P772 + 6(4P2 -S)r) + T + 4P3 - 35P = 0. (3.32)

We introduce the monomial birational transformation £0 of
given by (a; 77) 1—• (a*, 77*), where:

a000 — a l l l a 222? fl*n = ^000^222,
a001 = a110^222, ^002 =

a*12 = 0221^000, ^ 2 0 =

= ^000^1110222^012-

Theorem 3.2 (04.̂  T/ie map Eo 25 an involutive birational transformation
O / P ( 1 1 0 ; 2 ) .

( ^ It preserves the hypersurface V.
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Proof It is obvious that Eo is an involution, because on double application
of Eo, each weight 1 coordinate is multiplied by

M = aOooaiiia222, (3.34)

and the final weight 2 coordinate rj is multiplied by M2.
Let A = if [aooo, flin, ^222, aooi, aoo2, ano> aii2, ^220, a221l ^ e t n e polynomial

ring generated by all the coefficients of cubics except a0i2- The first nine
equations of (3.33) define an endomorphism * of A; write /* for the image of
/ G A under *. Expanding the terms in the defining equation (3.32) of V in
powers of aOi2 gives:

4P2 - 5 = 4£a0i2 + 4C,
T + 4F 3 - 35P = 32Mag12 - 48G*a2

)12 + 24£a0i2 + D,

where M, B,C,D,E G A (here M is the multiplier spelt out in (3.34)),

(0.00)
, E* = M2C, G** = M2G.

We can rewrite (3.32) as

3 Ma3
012) 2 2 4

+ 24Br)a012 + 24(Cr/ + ^012) + D = 0. (3.36)

Using this, we see that applying formulas (3.33) defining Eo (see especially
the last two formulas of (3.33) and (3.35)) to the left hand side of (3.32) or
(3.36) multiplies it by M2. Q.E.D.

3.2 .4 A birat ional m a p of t h e spherical space of s y m m e t r i c 3 x 3
matr ices o n t o t h e space V of marked cubics

We write fh for the adjoint matrix of a symmetric 3 x 3-matrix m and £>(-,-,•)
for the mixed discriminant of three symmetric 3 x 3 matrices. For a triple
m = (mo, m i , ra2), we define a ternary cubic by

( o o 1 1 H~

and a number 0(m) by

D(m0) mi,mi)D(mo, m2, m2) (3.37)
, m0, mo)i^(mi, m2, m2) + ^(m 2 , m0, mo)D(m2, mi, mi)).
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Theorem 3.3 For a triple m = (mo : m\ : ra2) £ §2(Mat3(if)), the point
{Fm;9(m)) belongs to V, and

a: Sf (MatsW) -> V C P(11O;2) ^wen 6y a(m) = (Fm;0(m)) (3.38)

25 a well-defined birational map, having the inverse

; (9) = (m0 : mx : ra2),

£0^0+0:17711+2:2^2 = #HE(F)+HE(He(F)); see (3.4) for the Hessian
matrix HE(F).

TTie map a zs V-anti-equivariant, and has the following compatibility with
the action of the standard quadratic transformation

E0(a(m)) = a(S0(m)).

Remark 3.3 Formula (3.37) is borrowed from the end of Salmon, Conic
sections [15]. Salmon gives a different formula for 0(m), which he attributes
to Burnside. Namely, write [*,*,•] for the determinant made up of three
ternary linear forms, and

det(x o mo A12

A22

where Aij = Aij(xo)xi,x2) are linear forms and Aij = Aji for i,j = 0,1,2.
Then

0(m) = 2 x (-8[AOi, A12, A20}2 + [^00, ^ n , ^ 2 2 ] 2

+ 4[A2i, Aio, Ao2][Aoo, A n , A22] + 4[A00, A n , A12][A00, A22, A12]
H- 4[An, A22, A02][An, Aoo, A02] + 4[A22, Aoo, A0i][A22, A n , AOi]
-f- 8[An, A02, Aoi][A22, A02, AOi] -f 8[A00, A i 2 , AiO][A22, A i 2 , Ai0]
-f 8[A0 0,A2i, A2o][An, A2i , A20] - 8[A00, A02, AOi][An, A22, Ai2]
- 8[Au, Aio, Ai2][A22, Aoo, A20] - 8[A22, Aio, Ai2][A00, A n , AOi]).

Salmon [15] also sketches a proof tha t a is well defined.

P r o o f of T h e o r e m 3.3 We introduce some notation. Let m and m! be
two symmetric 3 x 3-matrices and [m, m'\ their mixed adjoint matrix, that is,

(um + vmf) = u2fh + uv[m, mf] + v2m', in particular [m, m] = 2m.

For six ternary quadratic forms A, B, C, £>, E, F (or the corresponding
symmetric matrices), we write [A, B, C, D, E, F] for the 6 x 6 determinant
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whose columns are these forms, written out as normalized coefficients in the
order 00,11,22,12,02,01. Salmon's (or Burnside's) second invariant M =
M(m) is

M = [[mo, mo], [mi, mi], [m2, m2], [mi, m2], [m0, m2], [m0, mi]].

The Aronhold invariants of the above symmetric determinant F = F m are
the following expressions (see Conic sections, [15], loc. cit.)

S(F) = 62- 24M, T(F) = 63 - 366M, R{F) = 432M2(32M - 02),

where 0 = 0(m) and M = M(m). Hence (F;0) satisfies (3.21) and belongs
to V C P(11O,2). Thus the map a is well defined. Further, if (F;0) G V,
and if we identify m and the corresponding linear form with their matrix
coefficients, then

a(/3(F; 0)) = a(0HE(F) + HE(He(F)))
= (He(0F + He(F)); 2T(0F + He(F)) = (F;0)

by the proof of Theorem 3.1, (A). Because they map between varieties of
the same dimension, it is now obvious that a and (3 are birational. That a
is compatible with the standard quadratic transformation follows from the
observation that the mixed determinant of adjoint matrices in formula (3.37)
corresponds to the rj of Theorem 3.1 and from the behaviour of mixed deter-
minants of the third order when the matrices involved are replaced by their
inverses (or adjoints). Q.E.D.

3.2.5 An action of the Cremona group on the space of cubics

Consider the following two composite maps from the space of plane cubics to
the spherical 2-space over 3 x 3-matrices:

F(S3(W*)) ^ V -^ Sf(Mat3(/O),

VT)) - ^ V -£+ Sf (Mat3(/0).

Each of these maps leads to an action of the Cremona group on the space of
plane cubics, the first on the right, the second on the left. If C is a plane
cubic defined by a form F , and g G CT(2,K) (or g e UCr(2,/f)), then we
may define

g(C) = (J3 o he)-10;(C9 ° he)(F))) or g(C) = (/? o ca)-1 ($((/? o ca)(F))).
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3.3 An action of the Cremona group of the plane on
the space of quartics

Let K be an algebraically closed field of characteristic zero. Every ordered
triple of symmetric 4 x 4-matrices rao,rai,ra2 G MatJ(If) defines a net of
quadrics XQMQ + X\M\ + x^M^ = 0 in P3; here M* is a quaternary quadratic
form with matrix m*, and the X{ are parameters in the net. GL(4, K)-
equivalence classes of stable nets correspond one-to-one to points m = (mo :
m\ : 777-2) £ Sj(Mat^if)). The discriminant curve C(m) of such a point
is well defined and also has degree 4. This curve has a marked even theta
characteristic 0(m) (at least, provided that it is nonsingular, see [3]). Thus a
point of spherical 2-space defines a point of the variety Mfv of plane quartics
with a marked even theta characteristic. By results of Barth [3], the map

7: S£(Mat4(#)) -> M? Siven b y r n n (C(m); 0(m)) (3.39)
is one-to-one on some open subset, and hence birational.

Moreover, every ternary quartic F G S*(W*) defines a pair (S(F);6(F)),
where S(F) is the Clebsch covariant of degree 4 for F, and 0(F) is an even
theta characteristic of the plane quartic S whose equation is S(F) = 0 (at
least, provided that F is weakly nondegenerate, see [8] for details). This map

Sc:P(S4(iy*))-+M4
ev given by F *-* (S(F);0(F)) (3.40)

is the Scorza map. By a theorem of Scorza (see [8], 7.8), Sc is a P-equivariant
birational isomorphism. Thus, we get the following possibility to define a
(right) action of the Cremona group on the space of plane quartics: if F G
F(S4{W*)), and g G Cr(2, K) (or g G UCr(2, K)), then we may define

Remark 3.4 Let X C S^A) be the subset defined by the equations
det(?7li77lj77lfc — TYlkTYljTYli) = 0,

where (i,j, k) is an arbitrary permutation of (0, 1, 2). Equivalently, X is the
subvariety whose generic point x = (xo : x\ : #2) satisfies the equations

det(xixT1Xfc - xkxJxXi) = 0.
In other words, Barth's commutators (see [3]) for x have rank < 2.

The variety X is preserved by collineations and the standard quadratic
transformation; this is clear for collineations. As for the standard quadratic
transformation, So substitutes Xi H-> X"1, and

x^XjX^1 - x^XjXj1) = det(x~x(xjX^Xi - XiX^lXj)xJl)

= (det(xi))~2 det(x jX^Xi — XiX^Xj).
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Therefore the action of the Cremona group we have just constructed on the
space of quartics with an even theta characteristic extends Artamkin's action
(see the Introduction) on the space of special marked quartics corresponding
to certain vector bundles.
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