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M.H.Gizatullin

Let X be an irreducible scheme, let Bir(X) be its group of birational automorphisms, let
& be a subgroup of Bir{X).If g € G, then dom(g) denotes the domain of definition of the
map g, g* denotes the corresponding automorphism of the total ring of fractions on X
Let ¥ be an irreducible reduced subscheme of X » let py be the generic point of ¥, let A,
be the local ring of py., let ., be the maximal ideal of 4, .

The decomposition group of ¥ in G is
Gy ={g€G|py € dom(g)Ndom{g™), g(py)=py}.
In other words, G is the stabilizer of Dy In 5. There is a natural homomorphism
T Gy ——Bir(¥), (1

The group G, operates on the local ring Ay, Gy preserves all the powers of the maximal
ideal m., therefore G'y operates on 4, /mEY, i > 0. The i-th ramification groupof ¥ in
Gis

Giy = {g € Gy | g operates trivially ondy /mi},
In other words, G, consists of those elements of G that operate trivially on the i-th
infinitesimal neighbourhood of ¥ in X Especially, Gy is the kernel of the homomeaerphism
(1}. The group Gyy is called the inertia groupof ¥ in G.

Example 1. This example is the origin of the terminology used in the paper. If A is a
Dedekind domain, K is its field of fractions, I/ K is a finite Galois extension, B is the
integral closureof Ain L, X = SpecB, Yisa subscheme of X" defined by a maximal
ideal Pof B, G = Gal(L/K hithen Gy, Goy, Giyp are respectively the decomposition,
inertia and ramification groups of P in L/K in the usual sense {see [1], chap. 5, §10).

Example 2. This example indicates that a notion of congruence subgroup is a special case
of the notion of the ramification group. Let X be ProjZ [z, z;], i.e. X is the projective line
over Z,let ¥ be a curve on X defined by a prime number p (see picture in Mumford’s fifth
lecture [2]). The group Bir(X) is isomorphic to PGL(2,Q), the group Bir(X), consists of
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linear fractional transformations with integer coefficients and determinant coprime to p. If
G = PSL{2,2), G C Bix(X), then Gy = G, Gy is the congruence subgroup I'(pt+).

Let us return to the general situation.
Theorem 1. For each i > 0 the group Gy is a normal subgroup of G.

Proof. G, is the kernel of a natural homomorphism
Gy ——Aut(4, /mi).

Theorem 2. (Giy, Gyv) C Glipqyy, where 20, 7 2 0, (A, B) is a subgroup generated
bya~*b~tab, a € 4, beB.

Proof. Ifa € Gi, b€ Gy, z € Ay, then

ae*{z) = $+JZ(£IDWC~), b (z Z(ﬁ 7nm),

where ¥k, Znm are elements of m, . Further

s (s S )+ S ([ )

v T k=0
j
a*b*(z) € ($+Z(H1Jzk)+2(n(znm+mﬁ,“ )),
k=0 m=0
hence i
b*a*(z) — a*b (2} € miFIt, (babta~ Y (z) — & € miFiHL,
Q.ED.

Theorem | and example 2 motivate the following terminology. We shali say that a tri-
ple (X,Y,G,) has the positive solution of the congruence subgroups problem (briefly,
{X.,Y,Gy) has p.s.c.s.p.), if each nontrivial normal subgroup of Gy contains some pon-
trivial ramification subgroup ;. In the opposite case we shall say that this triple has
the negative solution of that problem (briefly, (X,Y, G ) has p.s.c.s.p.). The congruence
subgroup problem for some triples is connected with the unsclved problem of the simplisity

of the Cremona group Bir(Ps).

Theorem 3. Let Py be the projective plane over an algebraically closed field k, let P be ¢
closed point on the plane, let G = Bir(Py) be the Cremona group. If the triple (5, P, G )
has p.s.c.s.p., then the group G is simple. In other words, if G is not simple, then there exists
a normal subgroup H C Gp such that {e} # (H N Gsp) # Gip foreach i > 0.

Proof. Let H be 2 nontrivial normal subgroup of G.

Lemma 1. H NG, # {e}.

Proof. Let g be a nontrivial element of H, P, € dom{g) N dom{g™!}. A replacement of
g by a suitable conjugate element makes Py = P. Suppose that g(P) = @, Q # P (if
Q=PFtheng € HNGy),
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M = {h € Aut(Pg) | M{P) = Q, h{(Q) = P}.
The set M is a connected 4-dimensional subvariety of Aut{lP;). There exists A € M such
that Agh™! # g~*. Indeed, if g is a projective transformation, then the existence of k is
evident, if g has a fundamental point, then a suitable & moves aside fundamental points of
g apart ones of g%, Thus the transformation hgh ™" g is nontrivial and belongs to H 1 G .
Q.E.D.

If the triple ("2, P, G ) has p.s.c.s.p., then H N G > Gy, for some natural 7. Let z, ¥
be the affine coordinates on the projective plane, let P be the origin, The transformation g,
defined by the formulae

:It:r = Ty y’ =y -+ ggi'i"l (2}
belongs to Gy, hence g € H. It is sufficient to prove that the normal closure (g} of g in
the group G is the whole & (normal closure of a subset is the smatlest normal subgroup
containing this subset). The transformation (2) preserves the pencil of lines z = const,
therefore it is sufficient to prove the following lemma.

Lemma 2. If a nontrivial birational transformation of the projective plane preserves a
pencil of lines, then the rormal closure of this transformation in the Cremona group is the

whole Cremona group.

Proof. Case 1. Let g be a projective transformation. Since the projective group Aut(Pa) over
an aigebraically closed field is simple, we have {g) D Aut(P;)}, therefore the involution h,
definedby 2’ = 1 -z, y' = 1—y,belongsta g. If 5 is the standard quadratic transformation
' = 1/x, v = 1/y, then s* = ¢, {hs)® = e, hence s = (hs)h(hs)~! € {(g). The set
Aut(IPy) U {s} generates G, therefore {g) = G.

Case 2. Let g be an arbitrary nontrivial element of the group J of all the birational trans-
formations preserving the pencil # = const. Elements of J are defined by the formulae of

the following form
o ={pz+q)/(rz+s), v = (alo)y +b(x))/(clz)y +d(z)), (3)

wherep, ¢, 7, s €k, a, b, ¢, d € k{z], ps—qr #0, ad — bc # 0. As well as in the
proof of lemma I, there is a transformation h of the form 3y withp =5 =1, ¢ =r =
0, {a,b,c,d} C k such that ghg=1h™! # e. Thus the transformation gg = ghg~ k™! is
nontrivial, gg is of the form (3) withp = ¢ = 1, g = r = 0, i.e. go is an element of the
group
Aut(k(z,y)/k(z)) = PGL(2, k(z)).

Each nonrtrivial normal subgroup of the last group contains PSL(2, k{z)}, hence (g) contains
a nontrivial projective transformation, therefore, as it was established in the first case,
{g} = (. Lemma 2 and theorem 2 are proved.

Corollary 1. Let I be a line on the projective plane over an algebraically closed field, let
(7 be the Cremona group. If the triple (P, L, G ) has p.s.c.s.p., then the group 3 is simple,

Proof. Let 4 be a nontrivial normal subgroup of G, let z, y be the affine coordinates on Py,
Suppose that z = 0 is the equation of L, P is the origin, f is the Cremona transformation
defined by ° = =z, ¥y’ = zy. By lemma 1 there exists go € H N Gp, g0 # e.
The transformation g; = f~*gof belongs to G, therefore H N G, # {e}, hence this
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intersection contains some subgroup ;.. The transformation g of the form (2) belongs to
Gy, hence g € H. From femma 2 it follows that {g) = &. Q.E.D.

Corollary 2. Let Y be a plane rational curve which admits a birational straightening,
i.e there is a Cremong tran§formation f such that the generic point py of ¥ belongs to
dom(f)ndom(f~*) and f(p, ) is the generic point of some line L. Ifthe triple (P, Y, G)
has p.s.c.5.p., then G is simple.

Proof. If f is the straightening, JT is a normal subgroup of G, then according to the proof of
corolary 1 H NGy, # {e}, hence HN f~1G, f # {e},ie. HNGy # {e}. If H contains
Giv, then H contains Gi, = fGiy f~1. By corollary 1 H = G. QE.D.

Remark on lemma 2. The methods used in the proofs of lemmas 1, 2 lead o the following
result. [¥ a Cremona transformation g transforms some pencil of lines into a pencil of curves
of degree d, d < 4, then (g} = G. Especially, if deg(g) < 7, then {g) = &. We omit the
proof.

Example 3, or more precisely, a construction of some elements of the decomposition group.
Let P, be the n-dimensional projective space over a field & of characteristic different from
2, G = Biz{lP,), let ¥ be a reduced irreducible hypersurface in P, deg¥ =d, d > 2,
let P be a k-rational point of P, such that the multiplicity of P on ¥ is equal to d — 2.
We shall construct two involutory transformations Ty € Gy and B, € Gy, Both of these
involutions preserve the general lines throughP. Let L be such a line, LNY = {P, 4, B}.
The involutions T» and i, are defined by the following conditions Tw(A) = B, (T |
L)P)=P, Rs(A)= A, Rp(B)= B.Especially, if d = 2, then P does not belong to
the quadric ¥, T € Aut(P,), R, isthe quadratic inversion with the centre P and fixed
quadric ¥. If d = 3, then ¥ is a cubic hypersurface, the restriction { = T5 | ¥ (i.e. ts is
the image of 7% by the homomorphism (1)) is the involution used by Yu.I. Manin in [3]. If
T == (21, ..., T ) are the affine coordinates in P, P = (0,...,0), f = 0is the equation of
Y, where f = Fy o(x) + Fy_:{z)+ Fy(z), F, € kiz], F;isahomogeneous polynomial
of degree 4, then the above transformations are defined by the following formulae

Tr: = —ziFy o/ (Fyoa + Fyo1),

R,.: a:; = ~gi{Fy1 + 2Ey.9)/(Fy 1 + 2F3),

or
Rp: I; =Z; — {2$2‘/(2Fd + Fd_l))f,

i=1,..,n.




The Decomposition, Inertia and Ramification Groups in Birational Geometry 43

Note that the condition chark # 2 is essential onty for the construction of R,..

Theorem 4. There are the Jollowing relations between the above transformations T,
By and W € Aut(P,,Y) (ie. Wisa projective k-automorphism preserving Y )

Ry =e¢, ToR,=R.To, WR.W™ = Ru(r)s (4)
T2 =¢, WT,W-!= W(m)- (5)

Moreover if A, B, C are three collinear points of the multiplisity d ~ 2 on ¥, then
{TATBTC)z = 2. (6}

Proof, The relations (4), (5) are evident consequences of the construction of 7, R,. Let
L be the line containing 4, B, . Since the family of planes through L is invariant with
respect to T, Tw, T, then it is sufficient to prove that the restriction of T°, 73T on the
general plane of this family is involutory. Thus we shall deal with the case whenn =2, ¥
is a curve {maybe reducible) of degree d, A, B, C are three collinear points of the
multiplicity d ~ 2 on Y. If d > 4, then L C Y and either

(DY = Z 4 (d - 3)L, where Z is a reduced curve of the degree 3, L is not a component
of Z, the points 4, B, C are simple on Z, or

(i)Y = Z + (d— 2)L, where Z is a reduced conic, the points 4, B, C don't lie on the
conic.

Let z, y be the affine coordinates such that ¥ = ( is the equation of L, let A = 0 be the
equation of Z, let Z; be the general member of the pencil h + ty® = 0 (resp., h + ty? = 0)
in the case (i) {tesp., {i1)). The involutions T,Et), T,gt), Tc(t) constructed with the help of
Zy (instead of Z) are independent of the parameter £, i.e. they coincide with ", T, Te
respectively. It is obvious that ((TA TpTe) i Z,l)2 = e, therefore (6} is true. Q.E.D.

We shall touch upon the question of the surjectivity of the restriction map
7 : Gy —Bir(Y') mentioned in (1). In the classical situation of the example t the map r

is epimorphism (sce [4], ch. 5, n%2, Th.2, (ii)).

Theorem 5. Let Py be the projective Space over a perfect field k, G == Bir(P3), let
Y C P; be aminimal smooth cubic surface defined over k. Then the map r is epimorphism,

moreover the exact sequence
splits, L.e. there exists a homomorphism s : Bir(Y')—-» Gy such that rs =id.

Proof. Let L /k be a quadratic extension of k, A and B be two Gal(L/k)-conjugate points
of ¥, € € Y(k) be a rational point collinear with 4 and B. Then the transformation
Sap = T,T5T, is defined over k. Indeed Gal(L/k)-conjugate to S, is TyT,1, which
coincides with S, by (6), hence Sis € G. The fransformations tp =

To | Y =1(Te) € Bir(Y), s, = Sun | Y = r{S4s) € Bir(Y) (where P ¢
Y (%), A, B € Y{L) for some quadratic extension L/k, Aand B are Gal(L/k)-conjugate)
together with the set Aut(P3,Y) generate the group Bir(Y') (see {31, ch. 5). Therefore 7 is
epimorphic. Defining relations between the mentioned generators are the following
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2 =e, 52 =e, (tpteln)® = e foreach collinear triple P, @, R,

whew ™ = ey, WSasW T = Su(a)w(s), Where w € Aut(Py, Y)Y
(see [3]). The analogous relations are true for the transformations T, S.5 (see (5), (6)),
therefore the definition of the required map s by s{tp) = T, ${(s45) == Sas is correct.
QE.D.
Theorem 6. If Y is a plane smooth cubic curve over a perfect field k,
Y(k) #9, G = Bix(P2/k), then the map (1) is surjective,
Proof. If Y (k) # @, then the group Bir(Y') is generated by the set Aut(P2,Y) { ¥ and the
reflections t- = T | ¥, where P € Y{k). Q.ED.

The next point is the nontriviality of the higher ramification groups.

Theorem 7. If' Y is an irreducible reduced k-hypersurface in the projective space I, over
a field k of characteristic different from two, the set M(Y) of points P € P, (k) with
multy(Y) = d— 2 is infinite, then all the groups Gy (where G = Bir(P,, /k}) are different
Sfrom {e}.

Proof. Let P € M(Y}, R, be the transformation constructed in example 3, f = 0 be an
affine equation of V.

Lemma LRL{f) = — f(mod m2).

Proof. Let £ = (21,...,1,) be the affine coordinates in B, P = (0,...,0), f =
Fo o+ Fy.q + Fy, where Fpy = Fi(z) is a homogeneous polynomial of degree m.
IfD = (Fd._; + ZFd_g}/(QFd + Fd_1), E == 2/(2Fd + Fd——l)) then D = —1 +
Ef, Ri{z;)=—=zD, i=1,...,7n(sec cxample 3). Therefore

Ri(f) = Fa_o(—zD)+ Fy_1(~zD) + Fa(~2D) = (=D)*?(Fy_y — DF4_y + D*Fy)
= (=D Fyo+ Fy_y + Fy — Ef(Fy_y + 2F5) + B2 fFy)
= (=D)*¥(~f + E*f?Fy) = - f(mod m?).

QE.D.

Lemma2. [fP, Q& M(Y), P#Q,then RpRy #¢, (ReRo)*(f) = f{mod m?).

Proof. The points P, @ are among the fundamental points of the transformation R, Rq,
hence this transformation is nonprojective. The congruence of the lemma follows from the

preceding lemma. Q.E.D.

Lemmal. [f P, Q, U, V arefourdifferentpoints of M(Y'), a = RpRg, b= RyRy, 9=
(a,b),ie. g=0a b ab, theng#e, g€ Gy,

Proof. These four points belong to the set of fundamental points of g, hence g #£ e. If zisan
element of the local ring Ay, then o*(2) = z 4 sf(mod m2), b*(z) = z + ¢f{mod m?)
because of @, b € Goy. By lemma2 b*a*(z) = z + (s + ) f(mod m2), a*b*(z)

= z+(s+8)f(modm2), hence b*a*(z) = a*b*(z)(mod m2), (a,b)*(z) = z(mod m?),
i.e. {a,b)is an element of G1». QED.

Let (P, Q.U V),(P1, G, Uy, W), (P2, @2, Uz, Va), ... be disjoint quadruples of points of
M(Y),letg, g1, g2, ... be the corresponding commutators constructed in lemma 3. Then
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these commutators belong to Gyy, (g,9:} € Goy by theorem 2, {(g,91) # e by the reason
pointed in the proofs of lemmas 2, 3, ((9,91),92) is a nontrivial element of 3y, ele.
Q.ED.
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