The Decomposition, Inertia and Ramification Groups in Birational Geometry

M.H.Gizatullin

Let X be an irreducible scheme, let Bir(X) be its group of birational automorphisms, let G be a subgroup of Bir(X). If $g \in G$, then dom(g) denotes the domain of definition of the map g, g^* denotes the corresponding automorphism of the total ring of fractions on X. Let Y be an irreducible reduced subscheme of X, let p_Y be the generic point of Y, let A_Y be the local ring of p_Y , let m_Y be the maximal ideal of A_Y .

The decomposition group of Y in G is

$$G_Y = \{g \in G \mid p_Y \in \text{dom}(g) \cap \text{dom}(g^{-1}), \quad g(p_Y) = p_Y\}.$$

In other words, G_Y is the stabilizer of p_Y in G. There is a natural homomorphism

$$r: G_Y \longrightarrow \operatorname{Bir}(Y).$$
 (1)

The group G_Y operates on the local ring A_Y , G_Y preserves all the powers of the maximal ideal m_Y , therefore G_Y operates on A_Y/m_Y^{i+1} , $i \ge 0$. The *i*-th ramification group of Y in G is

$$G_{i_Y} = \{g \in G_Y \mid g \text{ operates trivially on } A_Y/m_Y^{i+1}\}.$$

In other words, $G_{i\nu}$ consists of those elements of G_{ν} that operate trivially on the *i*-th infinitesimal neighbourhood of Y in X. Especially, $G_{0\nu}$ is the kernel of the homomorphism (1). The group $G_{0\nu}$ is called the inertia group of Y in G.

Example 1. This example is the origin of the terminology used in the paper. If A is a Dedekind domain, K is its field of fractions, L/K is a finite Galois extension, B is the integral closure of A in L, $X = \operatorname{Spec} B$, Y is a subscheme of X defined by a maximal ideal P of B, $G = \operatorname{Gal}(L/K)$, then G_Y , G_{0Y} , G_{iY} are respectively the decomposition, inertia and ramification groups of P in L/K in the usual sense (see [1], chap. 5, §10).

Example 2. This example indicates that a notion of congruence subgroup is a special case of the notion of the ramification group. Let X be $\operatorname{Proj}\mathbb{Z}[z_0, z_1]$, i.e. X is the projective line over \mathbb{Z} , let Y be a curve on X defined by a prime number p (see picture in Mumford's fifth lecture [2]). The group $\operatorname{Bir}(X)$ is isomorphic to $\operatorname{PGL}(2,\mathbb{Q})$, the group $\operatorname{Bir}(X)_Y$ consists of

linear fractional transformations with integer coefficients and determinant coprime to p. If $G = \mathrm{PSL}(2, \mathbb{Z}), \ G \subset \mathrm{Bir}(X)$, then $G_Y = G, \ G_{iY}$ is the congruence subgroup $\Gamma(p^{i+1})$.

Let us return to the general situation.

Theorem 1. For each $i \geq 0$ the group G_{iy} is a normal subgroup of G_{y} .

Proof. G_{iy} is the kernel of a natural homomorphism

$$G_Y \longrightarrow \operatorname{Aut}(A_Y/m_Y^{i+1}).$$

Theorem 2. $(G_{iY}, G_{jY}) \subset G_{(i+j)Y}$, where $i \geq 0, j \geq 0, (A, B)$ is a subgroup generated by $a^{-1}b^{-1}ab, a \in A, b \in B$.

Proof. If $a \in G_{iY}$, $b \in G_{jY}$, $x \in A_Y$, then

$$a^*(x) = x + \sum_{l} \left(\prod_{k=0}^{i} y_{lk} \right), \qquad b^*(x) = x + \sum_{n} \left(\prod_{m=0}^{j} z_{nm} \right),$$

where y_{lk} , z_{nm} are elements of m_Y . Further

$$b^*a^*(x) \in \left(x + \sum_{n} \left(\prod_{m=0}^{j} z_{nm}\right) + \sum_{l} \left(\prod_{k=0}^{i} (y_{lk} + m_{Y}^{j+1})\right)\right),$$

$$a^*b^*(x) \in \left(x + \sum_{l} \left(\prod_{k=0}^{i} y_{lk}\right) + \sum_{n} \left(\prod_{m=0}^{j} (z_{nm} + m_{Y}^{i+1})\right)\right),$$

hence

$$b^*a^*(x) - a^*b^*(x) \in m_{\gamma}^{i+j+1}, \qquad (bab^{-1}a^{-1})^*(x) - x \in m_{\gamma}^{i+j+1}.$$

Q.E.D.

Theorem 1 and example 2 motivate the following terminology. We shall say that a triple (X,Y,G_Y) has the positive solution of the congruence subgroups problem (briefly, (X,Y,G_Y)) has p.s.c.s.p.), if each nontrivial normal subgroup of G_Y contains some nontrivial ramification subgroup G_{iY} . In the opposite case we shall say that this triple has the negative solution of that problem (briefly, (X,Y,G_Y)) has p.s.c.s.p.). The congruence subgroup problem for some triples is connected with the unsolved problem of the simplisity of the Cremona group $Bir(\mathbb{P}_2)$.

Theorem 3. Let \mathbb{P}_2 be the projective plane over an algebraically closed field k, let P be a closed point on the plane, let $G = \operatorname{Bir}(\mathbb{P}_2)$ be the Cremona group. If the triple (\mathbb{P}_2, P, G_P) has p.s.c.s.p., then the group G is simple. In other words, if G is not simple, then there exists a normal subgroup $H \subset G_P$ such that $\{e\} \neq (H \cap G_{iP}) \neq G_{iP}$ for each $i \geq 0$.

Proof. Let H be a nontrivial normal subgroup of G.

Lemma 1. $H \cap G_P \neq \{e\}$.

Proof. Let g be a nontrivial element of H, $P_0 \in \text{dom}(g) \cap \text{dom}(g^{-1})$. A replacement of g by a suitable conjugate element makes $P_0 = P$. Suppose that g(P) = Q, $Q \neq P$ (if Q = P, then $g \in H \cap G_P$),

$$M = \{ h \in \operatorname{Aut}(\mathbb{P}_2) \mid h(P) = Q, h(Q) = P \}.$$

The set M is a connected 4-dimensional subvariety of $\operatorname{Aut}(\mathbb{P}_2)$. There exists $h \in M$ such that $hgh^{-1} \neq g^{-1}$. Indeed, if g is a projective transformation, then the existence of h is evident, if g has a fundamental point, then a suitable h moves aside fundamental points of g apart ones of g^{-1} . Thus the transformation $hgh^{-1}g$ is nontrivial and belongs to $H \cap G_P$. Q.E.D.

If the triple (\mathbb{P}_2, P, G_P) has p.s.c.s.p., then $H \cap G_P \supset G_{iP}$ for some natural i. Let x, y be the affine coordinates on the projective plane, let P be the origin. The transformation g, defined by the formulae

$$x' = x, \quad y' = y + x^{i+1} \tag{2}$$

belongs to G_{iP} , hence $g \in H$. It is sufficient to prove that the normal closure $\langle g \rangle$ of g in the group G is the whole G (normal closure of a subset is the smallest normal subgroup containing this subset). The transformation (2) preserves the pencil of lines x = const, therefore it is sufficient to prove the following lemma.

Lemma 2. If a nontrivial birational transformation of the projective plane preserves a pencil of lines, then the normal closure of this transformation in the Cremona group is the whole Cremona group.

Proof. Case I. Let g be a projective transformation. Since the projective group $\operatorname{Aut}(\mathbb{P}_2)$ over an algebraically closed field is simple, we have $\langle g \rangle \supset \operatorname{Aut}(\mathbb{P}_2)$, therefore the involution h, defined by x' = 1 - x, y' = 1 - y, belongs to g. If s is the standard quadratic transformation x' = 1/x, y' = 1/y, then $s^2 = e$, $(hs)^3 = e$, hence $s = (hs)h(hs)^{-1} \in \langle g \rangle$. The set $\operatorname{Aut}(\mathbb{P}_2) \cup \{s\}$ generates G, therefore $\langle g \rangle = G$.

Case 2. Let g be an arbitrary nontrivial element of the group J of all the birational transformations preserving the pencil x = const. Elements of J are defined by the formulae of the following form

$$x' = (px+q)/(rx+s), \quad y' = (a(x)y+b(x))/(c(x)y+d(x)), \tag{3}$$

where $p, q, r, s \in k$, $a, b, c, d \in k[x]$, $ps - qr \neq 0$, $ad - bc \neq 0$. As well as in the proof of lemma 1, there is a transformation h of the form (3) with p = s = 1, q = r = 0, $\{a, b, c, d\} \subset k$ such that $ghg^{-1}h^{-1} \neq e$. Thus the transformation $g_0 = ghg^{-1}h^{-1}$ is nontrivial, g_0 is of the form (3) with p = s = 1, q = r = 0, i.e. g_0 is an element of the group

$$\operatorname{Aut}(k(x,y)/k(x)) = \operatorname{PGL}(2,k(x)).$$

Each nontrivial normal subgroup of the last group contains PSL(2, k(x)), hence $\langle g \rangle$ contains a nontrivial projective transformation, therefore, as it was established in the first case, $\langle g \rangle = G$. Lemma 2 and theorem 2 are proved.

Corollary 1. Let L be a line on the projective plane over an algebraically closed field, let G be the Cremona group. If the triple (\mathbb{P}_2, L, G_L) has p.s.c.s.p., then the group G is simple.

Proof. Let H be a nontrivial normal subgroup of G, let x, y be the affine coordinates on \mathbb{P}_2 . Suppose that x=0 is the equation of L, P is the origin, f is the Cremona transformation defined by x'=x, y'=xy. By lemma 1 there exists $g_0 \in H \cap G_P$, $g_0 \neq e$. The transformation $g_1 = f^{-1}g_0f$ belongs to G_L , therefore $H \cap G_L \neq \{e\}$, hence this

intersection contains some subgroup G_{iL} . The transformation g of the form (2) belongs to G_{iL} , hence $g \in H$. From lemma 2 it follows that $\langle g \rangle = G$. Q.E.D.

Corollary 2. Let Y be a plane rational curve which admits a birational straightening, i.e. there is a Cremona transformation f such that the generic point p_Y of Y belongs to $dom(f) \cap dom(f^{-1})$ and $f(p_Y)$ is the generic point of some line L. If the triple (\mathbb{P}_2, Y, G_Y) has p.s.c.s.p., then G is simple.

Proof. If f is the straightening, H is a normal subgroup of G, then according to the proof of corollary 1 $H \cap G_L \neq \{e\}$, hence $H \cap f^{-1}G_L f \neq \{e\}$, i.e. $H \cap G_Y \neq \{e\}$. If H contains G_{iY} , then H contains $G_{iL} = fG_{iY}f^{-1}$. By corollary 1 H = G. Q.E.D.

Remark on lemma 2. The methods used in the proofs of lemmas 1, 2 lead to the following result. If a Cremona transformation g transforms some pencil of lines into a pencil of curves of degree d, $d \le 4$, then $\langle g \rangle = G$. Especially, if $\deg(g) \le 7$, then $\langle g \rangle = G$. We omit the proof.

Example 3, or more precisely, a construction of some elements of the decomposition group. Let \mathbb{P}_n be the n-dimensional projective space over a field k of characteristic different from 2, $G=\operatorname{Bir}(\mathbb{P}_n)$, let Y be a reduced irreducible hypersurface in \mathbb{P}_n , $\deg Y=d,\ d\geq 2$, let P be a k-rational point of \mathbb{P}_n such that the multiplicity of P on Y is equal to d-2. We shall construct two involutory transformations $T_P\in G_Y$ and $R_P\in G_{0Y}$. Both of these involutions preserve the general lines through P. Let L be such a line, $L\cap Y=\{P,A,B\}$. The involutions T_P and R_P are defined by the following conditions $T_P(A)=B$, $(T_P\mid L)(P)=P$, $R_P(A)=A$, $R_P(B)=B$. Especially, if d=2, then P does not belong to the quadric Y, $T_P\in\operatorname{Aut}(\mathbb{P}_n)$, R_P is the quadratic inversion with the centre P and fixed quadric Y. If d=3, then Y is a cubic hypersurface, the restriction $t_P=T_P\mid Y$ (i.e. t_P is the image of T_P by the homomorphism (1)) is the involution used by Yu.I. Manin in [3]. If $x=(x_1,...,x_n)$ are the affine coordinates in \mathbb{P}_n , P=(0,...,0), f=0 is the equation of Y, where $f=F_{d-2}(x)+F_{d-1}(x)+F_d(x)$, $F_i\in k[x]$, F_i is a homogeneous polynomial of degree i, then the above transformations are defined by the following formulae

$$T_P: x_i' = -x_i F_{d-2}/(F_{d-2} + F_{d-1}),$$

$$R_P: x_i' = -x_i (F_{d-1} + 2F_{d-2})/(F_{d-1} + 2F_d),$$

$$i = 1, ..., n,$$

$$i = 1, ..., n,$$

OI

$$R_P: x_i' = x_i - (2x_i/(2F_d + F_{d-1}))f,$$

 $i = 1, ..., n.$

Note that the condition $\mathrm{char} k \neq 2$ is essential only for the construction of R_P .

Theorem 4. There are the following relations between the above transformations T_p , R_p and $W \in \operatorname{Aut}(\mathbb{P}_n, Y)$ (i.e. W is a projective k-automorphism preserving Y)

$$R_p^2 = e, \quad T_p R_p = R_p T_p, \quad W R_p W^{-1} = R_{W(p)},$$
 (4)

$$T_P^2 = e, \quad WT_PW^{-1} = T_{W(P)}.$$
 (5)

Moreover if A, B, C are three collinear points of the multiplisity d-2 on Y, then

$$(T_A T_B T_C)^2 = e. (6)$$

Proof. The relations (4), (5) are evident consequences of the construction of T_P , R_P . Let L be the line containing A, B, C. Since the family of planes through L is invariant with respect to T_A , T_B , T_C , then it is sufficient to prove that the restriction of $T_AT_BT_C$ on the general plane of this family is involutory. Thus we shall deal with the case when n=2, Y is a curve (maybe reducible) of degree d, A, B, C are three collinear points of the multiplicity d-2 on Y. If $d\geq 4$, then $L\subset Y$ and either

(i) Y = Z + (d-3)L, where Z is a reduced curve of the degree 3, L is not a component of Z, the points A, B, C are simple on Z, or

(ii) Y = Z + (d-2)L, where Z is a reduced conic, the points A, B, C don't lie on the conic.

Let x, y be the affine coordinates such that y=0 is the equation of L, let h=0 be the equation of Z, let Z_t be the general member of the pencil $h+ty^3=0$ (resp., $h+ty^2=0$) in the case (i) (resp., (ii)). The involutions $T_A^{(t)}$, $T_B^{(t)}$, $T_C^{(t)}$ constructed with the help of Z_t (instead of Z) are independent of the parameter t, i.e. they coincide with T_A , T_B , T_C respectively. It is obvious that $\left(\left(T_A T_B T_C \right) \mid Z_t \right)^2 = e$, therefore (6) is true. Q.E.D.

We shall touch upon the question of the surjectivity of the restriction map $r: G_Y \longrightarrow Bir(Y)$ mentioned in (1). In the classical situation of the example 1 the map r is epimorphism (see [4], ch. 5, n^0 2, Th.2, (ii)).

Theorem 5. Let \mathbb{P}_3 be the projective space over a perfect field k, $G = \operatorname{Bir}(\mathbb{P}_3)$, let $Y \subset \mathbb{P}_3$ be a minimal smooth cubic surface defined over k. Then the map r is epimorphism, moreover the exact sequence

$$\{e\} \longrightarrow G_{0Y} \longrightarrow G_{Y} \longrightarrow \operatorname{Bir}(Y) \longrightarrow \{e\}$$

splits, i.e. there exists a homomorphism $s: Bir(Y) \longrightarrow G_Y$ such that rs = id.

Proof. Let L/k be a quadratic extension of k, A and B be two $\operatorname{Gal}(L/k)$ -conjugate points of Y, $C \in Y(k)$ be a rational point collinear with A and B. Then the transformation $S_{AB} = T_A T_B T_C$ is defined over k. Indeed $\operatorname{Gal}(L/k)$ -conjugate to S_{AB} is $T_B T_C T_A$ which coincides with S_{AB} by (6), hence $S_{AB} \in G$. The transformations $t_P = T_P \mid Y = r(T_P) \in \operatorname{Bir}(Y)$, $s_{AB} = S_{AB} \mid Y = r(S_{AB}) \in \operatorname{Bir}(Y)$ (where $P \in Y(k)$, $A, B \in Y(L)$ for some quadratic extension L/k, A and B are $\operatorname{Gal}(L/k)$ -conjugate) together with the set $\operatorname{Aut}(\mathbb{P}_3, Y)$ generate the group $\operatorname{Bir}(Y)$ (see [3], ch. 5). Therefore r is epimorphic. Defining relations between the mentioned generators are the following

 $t_P^2 = e$, $s_{AB}^2 = e$, $(t_P t_Q t_R)^2 = e$ for each collinear triple P, Q, R, $w t_P w^{-1} = t_{w(P)}$, $w s_{AB} w^{-1} = s_{w(A)w(B)}$, where $w \in \text{Aut}(\mathbb{P}_3, Y) \mid Y$

(see [3]). The analogous relations are true for the transformations T_P , S_{AB} (see (5), (6)), therefore the definition of the required map s by $s(t_P) = T_P$, $s(s_{AB}) = S_{AB}$ is correct. Q.E.D.

Theorem 6. If Y is a plane smooth cubic curve over a perfect field k, $Y(k) \neq \emptyset$, $G = Bir(\mathbb{P}_2/k)$, then the map (1) is surjective.

Proof. If $Y(k) \neq \emptyset$, then the group Bir(Y) is generated by the set $Aut(\mathbb{P}_2, Y) \mid Y$ and the reflections $t_P = T_P \mid Y$, where $P \in Y(k)$. Q.E.D.

The next point is the nontriviality of the higher ramification groups.

Theorem 7. If Y is an irreducible reduced k-hypersurface in the projective space \mathbb{P}_n over a field k of characteristic different from two, the set M(Y) of points $P \in \mathbb{P}_n(k)$ with $\operatorname{mult}_P(Y) = d - 2$ is infinite, then all the groups G_{iY} (where $G = \operatorname{Bir}(\mathbb{P}_n/k)$) are different from $\{e\}$.

Proof. Let $P \in M(Y)$, R_P be the transformation constructed in example 3, f = 0 be an affine equation of Y.

Lemma 1. $R_p^*(f) \equiv -f \pmod{m_Y^2}$.

Proof. Let $x=(x_1,\ldots,x_n)$ be the affine coordinates in \mathbb{P}_n , $P=(0,\ldots,0)$, $f=F_{d-2}+F_{d-1}+F_d$, where $F_m=F_m(x)$ is a homogeneous polynomial of degree m. If $D=(F_{d-1}+2F_{d-2})/(2F_d+F_{d-1})$, $E=2/(2F_d+F_{d-1})$, then D=-1+Ef, $R_p^*(x_i)=-x_iD$, $i=1,\ldots,n$ (see example 3). Therefore

$$R_p^*(f) = F_{d-2}(-xD) + F_{d-1}(-xD) + F_d(-xD) = (-D)^{d-2}(F_{d-2} - DF_{d-1} + D^2F_d)$$

$$= (-D)^{d-2}(F_{d-2} + F_{d-1} + F_d - Ef(F_{d-1} + 2F_d) + E^2f^2F_d)$$

$$= (-D)^{d-2}(-f + E^2f^2F_d) \equiv -f(\text{mod } m_v^2).$$

Q.E.D.

Lemma 2. If $P, Q \in M(Y), P \neq Q$, then $R_P R_Q \neq e, (R_P R_Q)^*(f) \equiv f \pmod{m_Y^2}$.

Proof. The points P, Q are among the fundamental points of the transformation $R_P R_Q$, hence this transformation is nonprojective. The congruence of the lemma follows from the preceding lemma. Q.E.D.

Lemma 3. If P, Q, U, V are four different points of M(Y), $a = R_P R_Q$, $b = R_U R_V$, g = (a, b), i.e. $g = a^{-1}b^{-1}ab$, then $g \neq e$, $g \in G_{1Y}$.

Proof. These four points belong to the set of fundamental points of g, hence $g \neq e$. If z is an element of the local ring A_Y , then $a^*(z) \equiv z + sf \pmod{m_Y^2}$, $b^*(z) \equiv z + tf \pmod{m_Y^2}$ because of a, $b \in G_{0Y}$. By lemma $2 \ b^*a^*(z) \equiv z + (s+t)f \pmod{m_Y^2}$, $a^*b^*(z) \equiv z + (s+t)f \pmod{m_Y^2}$, hence $b^*a^*(z) \equiv a^*b^*(z) \pmod{m_Y^2}$, $(a,b)^*(z) \equiv z \pmod{m_Y^2}$, i.e. (a,b) is an element of G_{1Y} . Q.E.D.

Let (P, Q, U, V), (P_1, Q_1, U_1, V_1) , (P_2, Q_2, U_2, V_2) , ... be disjoint quadruples of points of M(Y), let g, g_1, g_2, \ldots be the corresponding commutators constructed in lemma 3. Then

these commutators belong to $G_{1\gamma}$, $(g,g_1) \in G_{2\gamma}$ by theorem $2,(g,g_1) \neq e$ by the reason pointed in the proofs of lemmas 2, 3, $((g,g_1),g_2)$ is a nontrivial element of $G_{3\gamma}$, etc. Q.E.D.

References

- [1] O. ZARISKI, P. SAMUEL. Commutative algebra, vol.1, Van Nostrand, 1958.
- [2] D. MUMFORD. Lectures on curves on an algebraic surface, Princeton, 1966.
- [3] Yu. I. MANIN. Cubic forms, Moscow, 1972 (Engl. transl.: North Holland, Amsterdam, 1974, 2-nd edition 1986).
- [4] N. BOURBAKI. Eléments de Mathématique: Algebre commutative, chap. 1-7, Paris, Hermann, 1961-1965.

