
THE DECOMPOSITION GROUP OF A LINE IN THE PLANE

ISAC HEDÉN AND SUSANNA ZIMMERMANN

Abstract. We show that the decomposition group of a line L in the plane, i.e. the
subgroup of plane birational transformations that send L to itself birationally, is gen-
erated by its elements of degree 1 and one element of degree 2, and that it does not
decompose as a non-trivial amalgamated product.

1. Introduction

We denote by Bir(P2) the group of birational transformations of the projective plane
P2 = Proj(k[x, y, z]), where k is an algebraically closed field. Let C ⊂ P2 be a curve,
and let

Dec(C) = {ϕ ∈ Bir(P2), ϕ(C) ⊂ C and ϕ|C : C 99K C is birational}.
This group has been studied for curves of genus ≥ 1 in [BPV2009], where it is linked to
the classification of finite subgroups of Bir(P2).

For the decomposition group of a line, they give the following result: for any line
L ⊂ P2, the action of Dec(L) on L induces a split exact sequence

0 −→ Ine(L) −→ Dec(L) −→ PGL2 = Aut(L) −→ 0

and Ine(L) is neither finite nor abelian and also it doesn’t leave any pencil of rational
curves invariant [BPV2009, Proposition 4.1]. Further they ask the question whether
Dec(L) is generated by its elements of degree 1 and 2 [BPV2009, Question 4.1.2].

We give a affirmative answer to their question in the form of the following result, simi-
lar to the Noether-Castelnuovo theorem [Cas1901] which states that Bir(P2) is generated
by σ : [x : y : z] 799K [yz : xz : xy] and Aut(P2) = PGL3.

Theorem 1. For any line L ⊂ P2, the group Dec(L) is generated by Dec(L) ∩ PGL3

and any of its quadratic elements having three proper base-points in P2.

The similarities between Dec(L) and Bir(P2) go further than this. Cornulier shows in
[Cor2013] that Bir(P2) cannot be written as an amalgamated product in any nontrivial
way, and we modify his proof to obtain an analogous result for Dec(L).

Theorem 2. The decomposition group Dec(L) of a line L ⊂ P2 does not decompose as
a non-trivial amalgam.

The article is organised as follows: in Section 2 we show that for any element of Dec(L)
we can find a decomposition in Bir(P2) into quadratic maps such that the successive
images of L are curves (Proposition 2.4), i.e. the line is not contracted to a point at
any time. We then show in Section 3 that we can modify this decomposition, still in
Bir(P2), into de Jonquières maps where all of the sucessive images of L have degree
1, i.e. they are lines. Finally we prove Theorem 1. Our main sources of inspiration for
technique and ideas here have been [AC2002, §8.4, §8.5] and [Bla2012]. In Section 4 we
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prove Theorem 2 using ideas that are strongly inspired by [Cor2013].

Acknowledgement: The authors would like to thank Jérémy Blanc for helpful dis-
cussions, and Yves de Cornulier for kindly answering their questions.

2. Avoiding to contract L

Given a birational map ρ : P2 99K P2, the Noether-Castelnuovo theorem states that
there is a decomposition ρ = ρmρm−1 . . . ρ1 of ρ where each ρi is a quadratic map with
three proper base points. This decomposition is far from unique, and the aim of this
section is to show that if ρ ∈ Dec(L), we can choose the ρi so that none of the successive
birational maps (ρi . . . ρ1 : P2 99K P2)mi=1 contracts L to a point. This is Proposition 2.4.

Given a birational map ϕ : X 99K Y between smooth projective surfaces, and a
curve C ⊂ X which is contracted by ϕ, we denote by π1 : Z1 → Y the blowup of the
point ϕ(C) ∈ Y . If C is contracted also by the birational map π−11 ϕ : X 99K Z1, we
denote by π2 : Z2 → Z1 the blowup of (π−11 ϕ)(C) ∈ Z1 and consider the birational
map (π1π2)

−1ϕ : X 99K Z2. If this map too contracts C, we denote by π3 : Z3 → Z2

the blowup of the point onto which C is contracted. Repeating this procedure a finite
number of timesD ∈ N, we finally arrive at a variety Z := ZD and a birational morphism
π := π1π2 · · · πD : Z → Y such that (π−1ϕ) does not contract C. Then (π−1ϕ)|C : C 99K
(π−1ϕ)(C) is a birational map.

Definition 2.1. In the above situation, we denote by D(C,ϕ) ∈ N the minimal number
of blowups which are needed in order to not contract the curve C and we say that C is
contracted D(C,ϕ) times by ϕ. In particular, a curve C is sent to a curve by ϕ if and
only if D(C,ϕ) = 0.

Let f : P2 99K P2 be a birational map, and let p belong to P2 as a proper or infinitely
near point. If p is not a base point of f , we define f•(p) via a minimal resolution

S
ν2

��

ν1

��
P2 f // P2

where ν1, ν2 are sequences of blow-ups, as follows. Not being a base point of f , p cor-
responds via ν1 to a point of S or infinitely near. Applying ν2 to this point, we obtain
f•(p); this point belongs to P2 as a proper or infinitely near point.

We recall the following well known result, which will be used explicitly or implicitly
a number of times in the sequel.

Lemma 2.2. Let ϕ1, ϕ2 ∈ Bir(P2) be birational maps of degree 2 with proper base points
p1, p2, p3 and q1, q2, q3 respectively. If ϕ1 and ϕ2 have (exactly) two common base points,
say p1 = q1 and p2 = q2, then the composition τ = ϕ2ϕ

−1
1 is quadratic. Furthermore the

three base points of τ are proper points of P2 if and only if q3 is not on any of the lines
joining two of the pi.

Proof. The lemma is proved by the below figure, where squares and circles in P2
2 denote

the base points of ϕ1 and ϕ2 respectively. The crosses in P2
1 denote the base points of

ϕ−11 (corresponding to the lines in P2
2), and the conics in P2

1 and P2
2 denote the pullback

of a general line ` ∈ P2
3.
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P2
2

p1 = q1

p2 = q2

p3

q3
ϕ1 ϕ2 P2

3

C = ϕ∗2(`)

P2
1

τ

`

τ ∗(`)

E3 E1

E2

ϕ1(q3)

It follows that the base points of τ are E1, E2, ϕ1(q3) if q3 is not on any of the three
lines. If q3 is on one of the three lines, (ϕ1)•(q3) will be a point infinitely near to the

corresponding Ei ∈ P2
1. �

The following lemma describes how the number of times that a line is contracted
changes when composing with a quadratic transformation of P2 with three proper base
points.

Lemma 2.3. Let ρ : P2 99K P2 be a birational map and let ϕ : P2 99K P2 be a quadratic
birational map with base points q1, q2, q3 ∈ P2. For 1 ≤ i < j ≤ 3 we denote by `ij ⊂ P2

the line which joins the base points qi and qj. If D(L, ρ) = k ≥ 1, we have

D(L, ϕρ) =


k + 1 if ρ(L) ∈ (`12 ∪ `13 ∪ `23) \ Bp(ϕ),

k if ρ(L) /∈ `12 ∪ `13 ∪ `23,
k if ρ(L) = qi for some i, and ϕ•(ρ(L)) ∈ Bp(ϕ−1),

k − 1 if ρ(L) = qi for some i, and ϕ•(ρ(L)) /∈ Bp(ϕ−1).

Proof. We consider the minimal resolutions of ϕ; in figures 1-4, the filled black dots
denote the successive images of L, i.e. ρ(L), (π−1ρ)(L) and (ηπ−1ρ)(L) respectively.

We argue by figure 1 and 2 in the case where ρ(L) does not coincide with any of
the base points of ϕ. If ρ(L) ∈ `ij for some i, j, then D(L, ϕρ) = D(L, ρ) + 1, since `ij
is contracted by ϕ. Otherwise, the number of times L is contracted does not change.
Suppose that ρ(L) = qi for some i. If D(L, ρ) = 1, we have (π−1ρ)(L) = Ei, and then

P2

π

P2

η

ϕρ

L

P2

˜̀
jk

˜̀
ik

˜̀
ij

qi

qk

qj

Figure 1: D(L, ϕρ) = k + 1;
ρ(L) ∈ (`12 ∪ `13 ∪ `23) \ Bp(ϕ).

P2

π

P2

η

ϕρ

L

P2

˜̀
jk˜̀

ik

˜̀
ij

qi

qk

qj

Figure 2: D(L, ϕρ) = k;
ρ(L) /∈ `12 ∪ `13 ∪ `23.
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clearly D(L, ϕρ) = 0 since Ei is not contracted by η. If D(L, ρ) ≥ 2 we argue by the
figures 3 and 4.

P2

π

P2

η

ϕρ

L

P2

˜̀
jk˜̀

ik

˜̀
ij

qi

qk

qj

Figure 3: D(L, ϕρ) = k;
ϕ•(ρ(L)) ∈ Bp(ϕ−1).

P2

π

P2

η

ϕρ

L

P2

˜̀
jk

˜̀
ik

˜̀
ij

qi

qk

qj

Figure 4: D(L, ϕρ) = k − 1;
ϕ•(ρ(L)) /∈ Bp(ϕ−1).

�

Proposition 2.4. For any given element ρ ∈ Dec(L), there is a decomposition of ρ
into quadratic maps ρ = ρm . . . ρ1 with three proper base points such that none of the
successive compositions (ρi . . . ρ1)

m
i=1 contract L to a point.

Proof. Let ρ = ρm . . . ρ1 be a decomposition of ρ into quadratic maps with only proper
base points. We can assume that d := max{D(L, ρj . . . ρ1) | 1 ≤ j ≤ m} > 0, otherwise
we are done. Let n := max{j | D(L, ρj . . . ρ1) = d}. We denote the base points of ρ−1n
and ρn+1 by p1, p2, p3 and q1, q2, q3 respectively.

We first look at the case where D(L, ρn−1 . . . ρ1) = D(L, ρn+1 . . . ρ1) = d − 1. Here
both ρ−1n and ρn+1 have a base point at (ρn . . . ρ1)(L) ∈ P2, and we may assume that
this point is p1 = q1 – see Figure 5. Interchanging the roles of q2 and q3 if necessary, we
may assume that p1, p2, q2 are not collinear. Let r ∈ P2 be a general point, and let c1
and c2 denote quadratic maps with base points [p1, p2, r] and [p1, q2, r] respectively; then
the maps τ1, τ2, τ3 (defined by the commutative diagram in Figure 5) are quadratic with
three proper base-points in P2. Note that D(L, τi . . . τ1ρn−1 . . . ρ1) = d−1 for i = 1, 2, 3.
Thus we obtained a new decomposition of ρ into quadratic maps with three proper base
points

ρ = ρm . . . ρn+2τ3τ2τ1ρn−1 . . . ρ1,

where the number of instances where L is contracted d times has decreased by 1.

P2
P2P2

P2

L

P2

τ1 τ3τ2

c1 c2
ρ−1n ρn+1

p1 = q1

r
p2

p3

q2

q3

P2

L

P2

ρn−1 . . . ρ1 ρm . . . ρn+2

Figure 5
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Now assume instead that D(L, ρn−1 . . . ρ1) = d and D(L, ρn+1 . . . ρ1) = d − 1. Then
(ρn . . . ρ1)(L) is a base point of ρn+1, which we may assume to be q1. Furthermore
(ρn . . . ρ1)(L) either does not lie on a line joining two base points of ρ−1n , orD(L, ρn . . . ρ1) ≥
2 and (ρn . . . ρ1)(L) is a base point of ρ−1n (which we may assume to be p1, and equal to
q1), at the same time as (ρn−1 . . . ρ1)(L) is a base point of ρn.

We consider the first case. The lines through q1 and the pi, i = 1, 2, 3 define three tan-
gent directions at q1. At least two of them have to be different from the tangent direction
given by (ρn . . . ρ1)(L), and we may assume that these are given by p2, p3. Then with a
quadratic map c1 := [q1, p2, p3] with base points q1, p2, p3, we have D(L, c1ρn . . . ρ1) =
D(L, ρn . . . ρ1) − 1. Let r, s ∈ P2 be two general points and define c2, c3, c4 with three
proper base points respectively as [q1, r, p3], [q1, r, s], [q1, q2, s]. Note that the correspond-
ing maps τ1, . . . , τ5, defined in an analogous way as in Figure 5, are quadratic with three
proper base points. Note also that D(L, ciρn . . . ρ1) = D(L, ρn . . . ρ1)− 1 for i = 2, 3, 4.
Only for i = 4 this is not immediately clear, so suppose that this is not the case, i.e.
D(L, c4ρn . . . ρ1) = D(L, ρn . . . ρ1). It follows that the tangent direction corresponding
to (ρn . . . ρ1)(L) is given by the line through q1 and q2, but this is not possible by the
assumption that D(L, ρn+1 . . . ρ1) = d− 1.

In the second case we have p1 = q1 and the tangent direction at p1 = q1 corresponding
to (ρn . . . ρ1)(L) is the direction either of the line through p1 and p2 or the line through p1
and p3 (see Figure 3). By interchanging the roles of p2 and p3 if necessary, we may assume
that it corresponds to the direction of the line through p1 and p3. Interchanging the roles
of q2 and q3 if necessary, we may assume that p1, q2, p3 are not collinear. Let r, s ∈ P2

be general points and define quadratic maps c1, c2, c3 with three proper base points
respectively by [p1, p2, s], [p1, r, s], [p1, r, q2]. Then the corresponding maps τ1, τ2, τ3, τ4
are quadratic with three proper base points and D(L, ciρn . . . ρ1) = D(L, ρn . . . ρ1) − 1
for i = 1, 2, 3. The latter holds for c1 since the direction given by p1 and p2 is different
from the tangent direction corresponding to (ρn . . . ρ1)(L), and for c3 it follows from
the assumption that the image of L is contracted d− 1 times by (ρn+1 . . . ρ1) and that
p1, q2, p3 are not collinear.

Both in the first and second case, we again arrive at a new decomposition into qua-
dratic maps with three proper base points

ρ = ρm . . . ρn+2τj . . . τ1ρn−1 . . . ρ1 (j ∈ {4, 5}),

where the number of instances where L is contracted d times has decreased by 1, and
we conclude by induction. �

3. Avoiding to send L to a curve of degree higher than 1.

By proposition 2.4, any element ρ ∈ Dec(L) can be decomposed as

ρ = ρm . . . ρ1

where each ρj is quadratic with three proper base points, and all of the successive images
((ρi . . . ρ1)(L))mi=1 of L are curves. The aim of this section is to show that the ρj even
can be chosen so that all of these curves have degree 1. That is, we find a decomposition
of ρ into quadratic maps such that all the successive images of L are lines. This means
in particular that Dec(L) is generated by its elements of degree 1 and 2.

Definition 3.1. A birational transformation of P2 is called de Jonquières if it preserves
the pencil of lines passing through [1 : 0 : 0] ∈ P2. These transformations form a
subgroup of Bir(P2) which we denote by J .

Remark 3.2. In [AC2002], a de Jonquières map is defined by the slightly less restrictive
property that it sends a pencil of lines to a pencil of lines. Given a map with this property,
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we can always obtain an element in J by composing from left and right with elements
of PGL3.

For a curve C ⊂ P2 and a point p in P2 or infinitely near, we denote by mC(p) the
multiplicity of C in p. If it is clear from context which curve we are referring to, we will
use the notation m(p).

Lemma 3.3. Let ϕ ∈ J be of degree e ≥ 2, and C ⊂ P2 a curve of degree d. Suppose
that

deg(ϕ(C)) ≤ d.

Then there exist two base-points q1, q2 of ϕ different from [1 : 0 : 0] such that

mC([1 : 0 : 0]) +mC(q1) +mC(q2) ≥ d.

This inequality can be made strict in case deg(ϕ(C)) < d, with a completely analogous
proof.

Proof. Since ϕ ∈ J is of degree e, it has exactly 2e − 1 base-points r0 := [1 : 0 :
0], r1, . . . , r2e−2 of multiplicity e− 1, 1, . . . , 1 respectively. Then

d ≥ deg(ϕ(C)) =ed− (e− 1)mC(r0)−
e−1∑
i=1

(mC(r2i−1) +mC(r2i))

=d+
e−1∑
i=1

(d−mC(r0)−mC(r2i−1)−mC(r2i))

Hence there exist i0 such that d ≤ mC(r0) +mC(r2i0−1) +mC(r2i0). �

Remark 3.4. Note also that we can choose the points q1, q2 such that q1 either is a
proper point in P2 or in the first neighbourhood of [1 : 0 : 0], and that q2 either is proper
point of P2 or is in the first neighbourhood of [1 : 0 : 0] or q1.

Remark 3.5. A quadratic map sends a pencil of lines through one of its base points
to a pencil of lines, and we conclude from Proposition 2.4 and Remark 3.2 that there
exists maps α1, . . . , αm+1 ∈ PGL3 and ρi ∈ J such that

ρ = αm+1ρmαmρm−1αm−1 . . . α2ρ1α1

and such that all of the successive images of L with respect to this decomposition are
curves.

Proposition 3.6. Let ρ ∈ Dec(L). Then there exists ρi ∈ J and αi ∈ PGL3 such that
ρ = αm+1ρmαmρm−1αm−1 . . . α2ρ1α1 and all of the successive images of L are lines.

Proof. Start with a decomposition ρ = αm+1ρmαmρm−1αm−1 . . . α2ρ1α1 as in Remark 3.5.
Denote Ci := (ρiαi · · · ρ1α1)(L) ⊂ P2, di := deg(Ci) and let

D := max{di | i = 1, . . . ,m}, n := max{i | D = di}, k :=
n∑
i=1

(deg ρi − 1).

We use induction on the lexicographically ordered pair (D, k).
We may assume that D > 1, otherwise our goal is already achieved. We may also

assume that αn+1 /∈ J , otherwise the pair (D, k) decreases as we replace the three maps
ρn+1, αn+1, ρn by their composition ρn+1αn+1ρn ∈ J . Indeed, either D decreases, or D
stays the same while k decreases by deg ρn − 1. Using Lemma 3.3, we find simple base
points p1, p2 of ρ−1n and simple base points q̃1, q̃2 of ρn+1, all different from p0 := [1 : 0 : 0],
such that

mCn(p0) +mCn(p1) +mCn(p2) ≥ D
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and

mαn+1(Cn)(p0) +mαn+1(Cn)(q̃1) +mαn+1(Cn)(q̃2) > D.

We choose p1, p2, q̃1, q̃2 as in Remark 3.4. Let q0 := (α−1n+1)•(p0), q1 := (α−1n+1)•(q̃1), and
q2 := (α−1n+1)•(q̃2). Note that p0 and q0 are two distinct points of P2 since αn+1 /∈ J . We
number the points so that m(p1) ≥ m(p2), m(q̃1) ≥ m(q̃2) and so that if pi (resp. q̃i) is
infinitely near pj (resp. q̃j), then j < i.

We study two cases separately which depending on the multiplicities of the base-
points.

Case (a): m(q0) ≥ m(q1) and m(p0) ≥ m(p1). Then we find two quadratic maps
τ ′, τ ∈ J and β ∈ PGL3 so that ρn+1αn+1ρn = (ρn+1τ

−1)β(τρn) and so that the pair
(D, k) is reduced as we replace the sequence (ρn+1, αn+1, ρn) by (ρn+1τ

−1, β, τρn). The
procedure goes as follows.

If possible we choose a point r ∈ {p1, q1} \ {p0, q0}. Should this set be empty, i.e.
p0 = q1 and p1 = q0, we choose r = q2 instead. The ordering of the points implies
that the point r is either a proper point in P2 or in the first neighbourhood of p0 or q0.
Furthermore, the assumption implies that m(p0) + m(q0) + m(r) > D, so r is not on
the line passing through p0 and q0. In particular, there exists a quadratic map τ ∈ J
with base points p0, q0, r; then

deg(τ(Cn)) = 2D −m(p0)−m(q0)−m(r) < D.

Choose β ∈ PGL3 so that the quadratic map τ ′ := βτ(αn+1)
−1 in the below commutative

diagram is de Jonquières – this is possible since τ has q0 as a base point. This decreases
the pair (D, k).

P2

ρ−1
n

~~

αn+1 //

τ

��

P2

ρn+1

  
τ ′

��

P2

  

P2

P2

β
// P2

>>

Case (b): m(p0) < m(p1). Let τ be a quadratic de Jonquières map with base points
p0, p1, p2. This is possible since our assumption implies that p1 is a proper base point and
because p0, p1, p2 are base-points of ρ−1n of multiplicity deg ρn − 1, 1, 1 respectively and
hence not collinear. Choose β1 ∈ PGL3 which exchanges p0 and p1, let γ = αn+1β

−1
1 and

choose β2 ∈ PGL3 so that τ ′ := β2τβ
−1
1 ∈ J . The latter is possible since β−11 (p0) = p1

is a base point of τ , and we have the following diagram.

P2

ρ−1
n

��

αn+1 //

τ

��

β1

  

P2

ρn+1

��
P2

��

P2

γ

>>

τ ′

��

P2

P2 β2 // P2

Since deg(τρn) = deg ρn − 1, the pair (D, k) stays unchanged as we replace the
sequence (αn+1, ρn) in the decomposition of ρ by the sequence (γ, (τ ′)−1, β2, τρn). In
the new decomposition of ρ the maps (τ ′)−1 and γ play the roles that ρn and αn+1



8 ISAC HEDÉN AND SUSANNA ZIMMERMANN

respectively played in the previous decomposition. In the squared P2, we have

m(p0) = m(β1(p1)) > m(β1(p0)) = m(p1).

Define q′0 := γ−1(p0), q
′
1 := γ−1(q̃1), q

′
2 := γ−1(q̃2), and note that q′0 = β1(q0), q

′
1 = β1(q1)

and q′2 = β1(q2). In the new decomposition these points play the roles that q0, q1, q2
played in the previous decomposition.

If m(q′0) ≥ m(q′1), we continue as in case (a) with the points p0, p1, β1(p2) and q′0, q
′
1, q
′
2.

If m(q′0) < m(q′1), we replace the sequence (ρn+1, γ) by a new sequence such that,
similar to case (a), the roles of q′0 and q′1 are exchanged, and we will do this without
touching p0, p1, β(b2). The replacement will not change (D, k) and we can apply case
(a) to the new sequence.

As m(q′0) < m(q′1), the point q′1 is a proper point of P2. Analogously to the previous
case, there exists σ ∈ J with base-points γ(q′0) = p0, γ(q′1) = q̃1, γ(q′2) = q̃2, and there
exists δ1 ∈ PGL3 which exchanges p0 and q̃1. Since δ−11 (p0) = q̃1 is a base-point of σ,
there furthermore exists δ2 ∈ PGL3 such that σ′ := δ2σδ

−1
1 ∈ J . Let γ2 := δ1γ.

P2

ρ−1
n

��

αn+1 //

τ

��

β1

  

P2

ρn+1

��δ1��
σ

��

P2

��

P2

γ

55

τ ′

��

γ2
// P2

σ′

��

P2

��
P2 β2 // P2 P2 P2δ2oo

Replacing the sequence (ρn+1, γ) with (ρn+1σ
−1, δ−12 , σ′, δ1γ) does not change the pair

(D, k). The latest position with the highest degree is still the squared P2 but in the new
sequence we have

m(γ−12 (p0)) = m(β1(q1)) > m(β1(q0)) = m(γ−12 (δ1(q̃1)))

Since p0, p1, β1(p2) were undisturbed, the inequality m(p0) > m(p1) still holds, and we
proceed as in case (a).

In this proof, we have used several different quadratic maps τ, τ ′, σ, σ′. Note that none
of these can contract C (or an image of C), since quadratic maps only can contract curves
of degree 1. �

Remark 3.7. Suppose that ρ ∈ J preserves a line L. Then the Noether-equalities
imply that L passes either through [1 : 0 : 0] and no other base-points of ρ, or that it
passes through exactly deg ρ− 1 simple base-points of ρ and not through [1 : 0 : 0].

Lemma 3.8. Let ρ ∈ J be of degree ≥ 2 and let L be a line passing through exactly
deg ρ−1 simple base-points of ρ and not through [1 : 0 : 0]. Then there exist ρ1, . . . , ρi ∈
J of degree 2 such that ρ = ρm · · · ρ1 and the successive images of L are lines.

Proof. Note that the curve ρ(L) is a line. Call p0 := [1 : 0 : 0], p1, . . . , p2d−2 the base-
point of ρ. Without loss of generality, we can assume that p1, . . . , pd−1 are the simple
base-points of ρ that are contained in L and that p1 is a proper base-point in P2. We
do induction on the degree of ρ.

If there is no simple proper base-point pi, i ≥ d, of ρ in P2 that is not on L, choose a
general point r ∈ P2. There exists a quadratic transformation τ ∈ J with base-points
p0, p1, r. The transformation ρτ−1 ∈ J is of degree deg ρ and sends the line τ(L) (which
does not contain [1 : 0 : 0]) onto the line ρ(L). The point ρ•(r) = ρ(r) is a proper
base-point of (ρτ−1)−1 in P2 not on the line ρ(L).

So, we can assume that there exists a proper base-point of ρ in P2 that is not on
L, lets call it pd. The points p0, p1, pd are not collinear (because of their multiplicities),
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hence there exists τ ∈ J of degree 2 with base-points p0, p1, pd. The map ρτ−1 ∈ J is of
degree deg ρ− 1 and τ(L) is a line passing through exactly deg ρ− 2 simple base-points
of ρτ−1 and not through [1 : 0 : 0]. �

Lemma 3.9. Let ρ ∈ J be of degree ≥ 2 and let L be a line passing through [1 : 0 : 0]
and no other base-points of ρ. Then there exist ρ1, . . . , ρm ∈ J of degree 2 such that
ρ = ρm · · · ρ1 and the successive images of L are lines.

Proof. Note that the curve ρ(L) is a line. We use induction on the degree of ρ.
Assume that ρ has no simple proper base-points, i.e. all simple base-points are infin-

itely near p0 := [1 : 0 : 0]. There exists a base-point p1 of ρ in the first neighbourhood
of p0. Choose a general point q ∈ P2. There exists τ ∈ J quadratic with base-points
p0, p1, q. The map ρτ−1 ∈ J is of degree deg ρ and τ(L) is a line passing through the
base-point p0 of ρτ−1 of multiplicity deg ρ−1 and through no other base-points of ρτ−1.
Moreover, the point ρ(q) is a (simple proper) base-point of τρ−1. Therefore, τρ−1 has a
simple proper base-point in P2 and sends the line ρ(L) onto the line τ(L), both of which
pass through p0 and no other base-points.

So, we can assume that ρ has at least one simple proper base-point p1. Let p2 be a
base-point of ρ that is a proper point of P2 or in the first neighbourhood of p0 or p1.
Because of their multiplicities, the points p0, p1, p2 are not collinear. Hence there exists
τ ∈ J quadratic with base-points p0, p1, p2. The map ρτ−1 is a map of degree deg ρ− 1
and τ(L) is a line passing through p0 and no other base-points. �

Lemma 3.10. Let ρ ∈ J of degree 2 that sends a line L onto a line. There exist
ρ1, . . . , ρn ∈ J of degree 2 with only proper base-points of P2 such that

ρ = ρn · · · ρ1
and the successive images of L are lines.

Proof. Since ρ sends L onto a line, the line L must pass through exactly one of the
base-points of ρ. In particular, this base-point is a proper point of P2.

Suppose that ρ has apart from [1 : 0 : 0] exactly one other proper base-point q. Pick
a general point r ∈ P2 not contained in L. There exists ρ1 ∈ J of degree 2 with base-
points [1 : 0 : 0], r, q. The transformation ρ2 := ρρ−11 ∈ J is of degree 2, sends L onto
a line, and has three proper base-points. Since ρ1 also sends L onto a line, we conclude
with ρ = ρ2ρ1.

Suppose that [1 : 0 : 0] is the only proper base-point of ρ. Then ρ has a base-point q
which is in the first neighbourhood of [1 : 0 : 0]. Pick a general point r ∈ P2 that is not
on L. There exists ρ1 ∈ J of degree 2 with base-points [1 : 0 : 0], q, r. Since q /∈ L, the
map ρ2 := ρρ−11 ∈ J is of degree 2, sends L onto a line, and has at exactly one proper
base-point other than [1 : 0 : 0]. Since ρ1 sends L onto a line, we can apply the first case
to ρ1, ρ2. �

Theorem 1. For any line L, the group Dec(L) is generated by Dec(L)∩PGL3 and any
of its quadratic elements having three proper base-points in P2.

Proof. By conjugating with an appropriate automorphism of P2, we can assume that
L is given by x = y. Note that the standard quadratic involution σ : [x : y : z] 799K
[yz : xz : xy] is containd in Dec(L). It follows from Proposition 3.6, Remark 3.7,
and Lemmata 3.8, 3.9 and 3.10 that every element ρ ∈ Dec(L) has a composition
ρ = αm+1ρmαmρmαm−1 · · ·α2ρ1α1, where αi ∈ PGL3 and ρi ∈ J are quadratic with only
proper base-points in P2 such that the successive images of L are lines. By composing
the ρi from the left and the right with linear maps, we obtain a decomposition

ρ = αm+1ρmαmρmαm−1 · · ·α2ρ1α1
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where αi ∈ PGL3∩Dec(L) and ρi ∈ Dec(L) are of degree 2 with only proper base-points
in P2. It therefore suffices to show that for any quadratic element ρ ∈ Dec(L) having
three proper base-points in P2 there exist α, β ∈ Dec(L) ∩ PGL3 such that σ = βρα.

By Remark 3.7, for any quadratic element of Dec(L) the line L passes through exactly
one of its base-points in P2.

Let q1 = [1 : 0 : 0], q2 = [0 : 1 : 0], q3 = [0 : 0 : 1]. They are the base-points of σ, and
σ sends the pencil of lines through qi onto itself. Furthermore, q3 ∈ L but q1, q2 /∈ L. Let
s := [1 : 1 : 1] ∈ L. Remark that σ(s) = s and that no three of q1, q2, q3, s are collinear.

Let ρ ∈ Dec(L) be another quadratic map having three proper base-points in P2.
Let p1, p2, p3 (resp. p′1, p

′
2, p
′
3) be its base-points (resp. the ones of ρ−1). Say L passes

through p1 and ρ sends the pencil of lines through pi onto the pencil of lines through
p′i, i = 1, 2, 3. Pick a point r ∈ L \ {p1}, not collinear with p2, p3. Then no three of
p1, p2, p3, r (resp. p′1, p

′
2, p
′
3, ρ(r)) are collinear. In particular, there exist α, β ∈ PGL3

such that

α :

{
qi 7→ pi
s 7→ r

, β :

{
p′i 7→ qi
ρ(r) 7→ s

Note that α, β ∈ Dec(L) ∩ PGL3. Furthermore, the quadratic maps σ, ρ′ := βρα ∈
Dec(L) and their inverse all have the same base-points (namely q1, q2, q3) and both
σ, ρ′ send the pencil through qi onto itself. Since moreover ρ′(s) = σ(s) = s, we have
σ = ρ′. �

4. Dec(L) is not an amalgam

Just like Bir(P2), its subgroup Dec(L) is generated by its linear elements and one
quadratic element (Theorem 1). In [Cor2013, Corollary A.2], it is shown that Bir(P2) is
not an amalgamated product. In this section we adjust the proof to our situation and
prove that the same statement holds for Dec(L).

The notion of being an amalgamated product is closely related to actions on trees,
or, in this case, R-trees.

Definition and Lemma 4.1. A real tree, or R-tree, can be defined in the following
three equivalent ways [Cis2001]:

(1) A geodesic space which is 0-hyperbolic in the sense of Gromov.
(2) A uniquely geodesic metric space for which [a, c] ⊂ [a, b] ∪ [b, c] for all a, b, c.
(3) A geodesic metric space with no subspace homeomorphic to the circle.

We say that a real tree is a complete real tree if it is complete as a metric space.

Every ordinary tree can be seen as real tree by endowing it with the usual metric
but not every real tree is isometric to an ordinary tree (endowed with the usual metric)
[Cis2001, §II.2, Proposition 2.5, Example].

Definition 4.2. A group G has the property (FR)∞ if for every isometric action of G
on a complete real tree, every element has a fixed point.

We summarize the discussion in [Cor2013, before Remark A.3] in the following result.

Lemma 4.3. If a group G has property (FR)∞, it does not decompose as non-trivial
amalgam.

We will devote the rest of this section to proving Proposition 4.4 and thereby showing
that Dec(L) is not an amalgam.

Proposition 4.4. The decomposition group Dec(L) has property (FR)∞.

By convention, from now on, T will denote a complete real tree and all actions on T
are assumed to be isometric.
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Definition 4.5. Let T be a complete real tree.

(1) A ray in T is a geodesic embedding (xt)t≥0 of the half-line.
(2) An end in T is an equivalence class of rays, where we say that two rays x and y

are equivalent if there exists t, t′ ∈ R such that {xs; s ≥ t} = {y′s; s′ ≥ t′}.
(3) Let G be a group of isometries of T and ω an end in T represented by a ray

(xt)t≥0. The group G stably fixes the end ω if for every g ∈ G there exists
t0 := t0(g) such that g fixes xt for all t ≥ t0.

Remark 4.6. [Cor2013, Lemma A.9] For a group G, property (FR)∞ is equivalent to
each of the following statements:

(1) For every isometric action of G on a complete real tree, every finitely generated
subgroup has a fixed point.

(2) Every isometric action of G on a complete real tree has a fixed point or stably
fixes an end.

Definition 4.7. For a line L ⊂ P2, define AL := PGL3 ∩ Dec(L). If L is given by the
equation f = 0, we also use the notation A{f=0}.

Lemma 4.8. For any line L ⊂ P2 the group AL has property (FR)∞.

Proof. Since for two lines L and L′ the groups Dec(L) and Dec(L′) are conjugate, it
is enough to prove the lemma for one line, say the line given by x = 0. Note that
A = (aij)1≤i,j≤3 ∈ PGL3 is in A{x=0} if and only if a12 = a13 = 0.

Let A{x=0} act on T and let F ⊂ A{x=0} be a finite subset. The elements of F
can be written as a product of elementary matrices contained in A{x=0}; let A be the
(finitely generated) subring of k generated by all entries of the elementary matrices
contained in A{x=0} that are needed to obtain the elements in F . Then F is contained
in EL3(A), the subgroup of SL3(A) generated by elementary matrices. By the Shalom-
Vaserstein theorem (see [EJZ010, Theorem 1.1]), EL3(A) has Kazhdan’s property (T)
and in particular (as EL3(A) is countable) has a fixed point in T [Wat1982, Theorem
2], so F has a fixed point in T . It follows that the subgroup of A{x=0} generated by F
has a fixed point [Ser1977, §I.6.5, Corollary 3]. In particular, by Remark 4.6 (1), A{x=0}
has property (FR)∞. �

From now on, we fix L to be the line given by x = y. It is enough to prove Propo-
sition 4.4 for this line since Dec(L) and Dec(L′) are conjugate groups (by linear ele-
ments) for all lines L and L′. As before, we denote the standard quadratic involution
by σ ∈ Bir(P2); with our choice of L, it is contained in Dec(L).

Let DL ⊂ PGL3 be the subgroup of diagonal matrices that send L onto L, i.e.

DL := {diag(s, s, t) s, t ∈ C∗} ⊂ PGL3.

Lemma 4.9. We have 〈DL, µ1, µ2, P 〉 = AL, with the three involutions

µ1 :=

−1 0 1
0 −1 1
0 0 1

 ∈ AL, µ2 :=

−1 0 0
0 −1 0
1 0 1

 ∈ AL, and P :=

0 1 0
1 0 0
0 0 1

 ∈ AL.
Proof. Given any λ ∈ C∗, the matrices

Aλ :=

1 0 0
0 1 0
λ 0 1

 , Bλ :=

1 0 0
0 1 0
0 λ 1

 , and Cλ :=

1 0 λ
0 1 λ
0 0 1


belong to 〈DL, µ1, µ2, P 〉. Indeed, we haveAλ = diag(−λ−1,−λ−1, 1)·µ2·diag(λ, λ, 1), Bλ =
PAλP and Cλ = diag(1, 1, λ−1) · µ1 · diag(−1,−1, λ).
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Left multiplication by these corresponds to three types of row operations on matrices
in PGL3 and right multiplication corresponds in the same way to three types of col-
umn operations. We denote them respectively by r1, r2, r3, c1, c2, c3, and we write d for
multiplication by an element in DL.

Let A = (aij)1≤i,j≤3 ∈ PGL3 be a matrix which is in AL, i.e. such that a13 = a23 and
a11 +a12 = a21 +a22. We proceed as follows, using only the above mentioned operations.

A =

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 d−→

∗ ∗ ∗∗ ∗ ∗
∗ ∗ 1

 r3−→

∗ ∗ 0
y z 0
∗ ∗ 1

 c1 and c2−→

 ∗ ∗ 0
y z 0
−y −z 1


r3−→

 ∗ ∗ 1
0 0 1
−y −z 1

 d−→

1 −1 1
0 0 1
∗ ∗ 1

 r1−→

1 −1 1
0 0 1
0 ∗ ∗

 r2−→

1 −1 1
0 0 1
0 ∗ 0


d−→

1 −1 1
0 0 1
0 1 0

 r3−→

1 0 1
0 1 1
0 1 0

 c3−→

1 0 0
0 1 0
0 1 −1

 r2−→

1 0 0
0 1 0
0 0 −1

 d−→

1 0 0
0 1 0
0 0 1


In the first step (d) we assume that a33 6= 0 – this can always be achieved by performing
a row operation of type r1 on A if necessary. In the second step (r3), we use that
a13 = a23. The entries on place (2, 1) and (2, 2) after the second step are denoted by y
and z respectively. In the fifth step (d), we use that the entry on place (1, 1) is nonzero;
this follows from the assumption a11 + a12 = a21 + a22 and that A is invertible. �

Lemma 4.10. Suppose that Dec(L) acts on T so that AL has no fixed points. Then
Dec(L) stably fixes an end.

Proof. Since AL has property (FR)∞ and has no fixed points, it stably fixes an end
(Remark 4.6 (2)). Observe that this fixed end is unique: if AL stably fixes two different
ends ω1, ω2, then AL pointwise fixes the line joining the two ends and has therefore fixed
points (this uses that the only isometries on R are translations and reflections [Cis2001,
§I.2, Lemma 2.1]).

Let ω, respresented by the ray (xt)t≥0, be the unique end which is stably fixed by AL
and define C := 〈DL, P 〉. Being a subgroup of AL, C obviously also stably fixes ω. Note
that the end σω is stably fixed by σALσ−1. In particular, since σCσ−1 = C, the end
σω is also stably fixed by C. If σω = ω, then ω is stably fixed by σ and by Theorem 1,
ω is stably fixed by Dec(L). Otherwise, let l be the line joining ω and σω 6= ω. Since C
stably fixes ω and σω, it stably fixes both ends of l. In particular, the line l is pointwise
fixed by C. Since µ1, µ2 ∈ AL, µ1, µ2 stably fix the end ω and therefore, xt is fixed by
µ1, µ2 for t ≥ t0 for some t0, and hence, by Lemma 4.9, xt is fixed by all of AL for t ≥ t0,
contradicting the assumption. �

Proof of Proposition 4.4. Recall that µ1, µ2 ∈ AL and note that σµ1 has order 3 and
that σµ2 has order 6. It follows that

σ = (µ1σ)µ1(µ1σ)−1

By Theorem 1, Dec(L) is generated by σ and AL. It follows that A1 := AL and A2 :=
σALσ generate Dec(L).

Consider an action of Dec(L) on T . It induces an action of AL, which has property
(FR)∞ by Lemma 4.8 (i.e. AL has a fixed point or stably fixes an end by Remark 4.6
(2)). If AL has no fixed point, Lemma 4.10 implies that Dec(L) stably fixes an end, and
then we are done.

Assume that AL has a fixed point. We conclude the proof by showing that in this
case, even Dec(L) has a fixed point.
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For i = 1, 2, let Ti be the set of fixed points of Ai. The two trees are exchanged by σ.
If T1 ∩ T2 6= ∅, Dec(L) has a fixed point since 〈A1,A2〉 = Dec(L). Let us consider the
case where T1 and T2 are disjoint.

Let S := [x1, x2], xi ∈ Ti, be the minimal segment joining the two trees and s > 0
its length. Let C := 〈DL, P 〉. Then S is pointwise fixed by C ⊂ A1 ∩ A2 and reversed
by σ. For i = 1, 2, the image of S by µi is a segment µi(S) = [x1, µix2]. By Lemma 4.9,
〈C, µ1, µ2〉 = A1, so it follows that for i = 1 or i = 2, we have µi(S) ∩ S = {x1}.
Otherwise, because T is a tree and A1 acts by isometries, both µ1, µ2 fix S pointwise and
so A1 fixes S pointwise and in particular it fixes x2 – this would contradict T1 ∩T2 = ∅.
Choose an element I ∈ {1, 2} such that µI(S) ∩ S = {x1}.

Finally we arrive at a contradiction by computing d(x1, (σµI)
kx1) in two different

ways. On the one hand we see that this distance is sk, on the other hand we have
(σµI)

6 = 1. More generally, we show that

d( (σµI)
kx1, (σµI)

lx1) = |k − l|s
for all k, l. Since we are on a real tree, it suffices to show this for k, l with |k − l| ≤ 2
(cf. [Cor2013, Lemma A.4]). By translation, we only have to check it for l = 0, k = 1, 2.
For k = 1, we have d(σµIx1, x1) = d(σx1, x1) = d(x2, x1) = s. For k = 2, the segment
µI(S) = [x1, µIx2] intersects S only at x1. In particular, d(µIx2, x2) = 2s and hence

d(σµIσµIx1, x1) = d(σµIσx1, x1) = d(µIσx1, σx1) = d(µIx2, x2) = 2s.

It follows that T1 and T2 cannot be disjoint, and we are done. �
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