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L Introduction. 

The intersection of  surfaces has been discussed chiefly with regard 
to postulation and equivalence*), i .e . ,  the number of independent con- 
ditions imposed on a surface by making it contain a certain element, and 
the number of points of intersection of three surfaces absorbed by the 
common element These numbers are important in connection with ~rans- 
formation-theory. In the plane, the common elements can only be point% 
and contact ~ always be regarded as the limit of intersection in distinct 
adjacent points; this is not true in three dimensions. Then there may 
also be common eurves~ and though a curve of contact does arise when 
two distinct curves of intersection move up and coincide, this is not the 
most general case of contact along the curve. I f  a surface contains a 
curve, it cannot be thought of as containing an adjacent curve, unless 
the surface is speci,llv~d in a way that involves a certain number of 
singular points of the surface lying on the curve. 

This paper determines the postulation and equivalence of a curve of 
contact on a family of surfaces of sufficiently high degree. Noether's ~ )  

*) Cayley, P~oc. Lend. Math. Soc. S, p. 12~. ~ CoIL Math. Papers VII, p. 189, 1869. 
~) Noether, A-~= di M~t~ (2) 5 (1871), p. 16~. See also Loria, Atti R. Ace. So. 

Torlno 26 (1891), p. 294 footnote. Hudson, Prec. Lend. Math. Soc. (2) 10 (1911), p. 15. 
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lines are closely followed, but the results are also proved by other methods. 
The relation of the curve of contact to its residual is found; this infor- 
mation is useful in the theory of twisted curves. We first examine the 
cases which do arise from the coincidence of two adjacent curves; this 
leads to formulae which apply also in the general cas% when the ex- 
pression may he negative which was at first interpreted as the number 
of intersections of the two curves. 

Approached in this way, the general case is that in which the family 
of surfaces, of degree ~ say, are required to touch a given surface, of 
lower degree x~ along the given curve of order m~ where ~ exceeds a 
certain limit depending on x, m. The formulae do not apply to the case, 
more general from another point of view, in which the surfaces do not 
touch a surface of lower degree along the curve. The other chief res~rlction 
is that the only singularities considered are multiple points of,the simplest 
type, i. % on surfaces, conic nodes, and on curves, double points with 
distinct tangents. 

The theory of moduli*) is not directly applicable to the question, 
because the given conditions do not determine the modulus, without con- 
siderations such as those of w IV below. In certain cases,' another method 
would be to use a birational transformation in which the given curve 
corresponds to a single point in the second space, and to carry out the 
enumerations with regard to the transformed figure; hut this process only 
-transfers the difficulties of the question. 

The following symbols and technical terms will be used: 

1 

(P~)~ •ffi postulation of C~ as an /-fold curve on a surface of degree ~, 

= y  ~(,-t-- 1) (~,-t-2)m- ~ i ( i+1 )  (2i+l)Q, 

(/~)~ ---- equivalence of C~ as an/-fold curve on surfaces of degrees ~,, ~, ~,~ 

where 

- -  m(m +1)  - -  2h ~ r + 2ra -1- 2d; 

is the order of the curve, d~ h the numbers of its real and apparen~ 
double points, .and r its rank (Noether's formulae). 

Functions which equated to zero ~ve a surface having C as a simple 
(or nodal) line are called s~nple (or nodal) terms. 

*) Hilbert, Math. Ann. 86 (1890), p. 473. 
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A function is ~inearly independent of another funct ion f if  it is no t  
the sum of a multiple of f and nodal terms. 

The surface f = 0 is denoted by simply f, which means bo th  the  
surface and the function according to the context. 

Points of intersection of curves and surfaces no t  ly ing  on C are 
called free. 

IL Intersection of adjacent curves. 

Let C~, C~ be adjacent curves of the same character  lying upon  a 
surface f~. having D~ nodes at simple points of U and d~ nodes at double 
points of C. Let C, C' have N '  intersections at simple points  of  C~ and 
let d 1 ----- d -- d 2 be the number of double points of C at s imple points of  f. 

Now let C' move on f to coincide with G. Then t h e r e  are u l t imate ly  
four intersections of C, C" in the neighbourhood of each  of the  d 1 points 
and two in the neighbourhood of each of the d~ points;  the postulat ion 
and equivalence of the system C, C', on any surface fa of  sufficiently 
high degree, are 

where 
i V =  N '  + 4al  + 

Now project C, C' from any point A into two p lane  curves c~ c" o f  
class r having ~ common tangents, which are the t races  of  the common 
tangent planes to C, C' which pass through A. W h e n  C' moves up to 
and coincides with C, the bruiting positions of these r ~ common tangents  
fall into three classes. 

1. The traces of the n tangent planes to f~. at points  of  C, which  
pass through A, where n is the class of the developable formed by  all 
these tangent planes. Considering the intersections o f  C with the first  
polar of A with regard to f~., we have 

(g--  1)m = n + D, + 2d~. 

2. The N'  § 2d tangents to c at the projections of  the u l t imate  
intersections of C, C'. 

3. The double tangents to c each counted twice.  The number  of  
these ---- the number of double points on the reciprocal of  c, whose degree 
is r and class m, 

= 
2 

Therefore 

N ~  N' + 2d + 2d~ ~ ~ + D~ -- rm, 
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Therefore unless the surface f~ has at least ~ m - - ~  nodes at simple 
points of C, it cannot be thought of as containing a curve C' adjacent to C. 

Now when C, C" coincide, the postulation and equivalence re-main 
unaltered, and hence for ~he cases of contact which arise in this way, 
their values are 

2io  - 2 E , -  
where 

N = ~ + D ~ - - x m .  

Now f~ touches the same developable as f~ and has the same d~ nodes: 

Zm - -  D~ = n + m + 2d~ = xra - -  D~,, 

and is independent of Z or u; also . N =  O . q - . D ~ -  ) ,m,  which has a 
mourning even when it is negative, and can no longer mean the number 
of intersections of adjacent curves. We shall show that these formulae 
still hold. 

HI.  Postulat ion,  Noether's method. 

1. Straight ~ine. 
Let the equations of the straight line C be z = w = O~ and let the  

given surface f~ containing C be 

L -= z%_l(x,  y) + we:_l (x ,  y) + higher powers of 

and let it have JD~ nodes on C. 
Then the tangent plane to f~ at any point (x y 0 0) of C is given 

by the group of terms in f,. linear in z, w, if in them x, y are regarded 
as constants. Now if (x 1 Yl 0 0) is a node of f~, at t~is point the tangent 
plane is indeterminate and r ~ '  both vanish, and % r have a common 
factor xy  1 - -  yx l ,  which does not affect the position of the tangent plane 
at other points and can be removed from their equations. Similarly for  
all the other nodes. 

Therefore r  r  have a common factor of degree D~, whose linear 
factors vanish one at each node; let the remaining factors of r r  be 
~g, ag,; Wen these have no common factor. 

Then the surface of degree ~ ' =  z -  D~, viz. 

f~, = z~  + w~', 
has no node on C; it has the same tangent plane as f~ except at the D~ 
points where f~ is singular, and at these points f~, touches the l imiting 
position of the t~ngent planes to f~ as we approach the node along C. 

Now if a surface f~ of any de~ee is required to touch f~ along C, 
it also touches f~,, and the surface fx,, formed from fz in the same way,  
must coincide with f~,. 
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Therefore 

where n is the class of the common tangent developable to f,, f~ along C: 

f~ ~ (l)2x �9 fx' -t- quadratic and higher powers of z, w, 

and f~ is subject to 3 ) ~ -  D~ conditions, i. e. the postulation of contact 
with f~. along C is 

. P  = - - -  - N ,  

where 
N = 2  + O ~ - - k = l - - n .  

Now this straight line of contact can be thought of as a pair of 
adjacent straight lines in two cases only, when they do or do not intersect, 

----1 or 0, n = 0  or 1, D ~ - - I  or ~t--2.  But D~ can have any 
value from 0 to • -- 1 inclusive (if D~. > ~ -- 1, then C is a nodal line 
on (~), and there are )~ types of contact for surfaces of degree • along 
a straight line. 

2. Tota~ intersection. 
Let C,~ be the total intersection of fx and another surface g~. The 

general surface of degree L containing C is 

_= f,. % - ,  + go o. 
If p~., Pa are the tangent planes ~o f~, g~ at any point of C, then 

the tangent plane to fz at the same point is 
p~(I) + p~(P', 

where the coordinates of the point of contact are substituted in (1), q)'. 
l~ow since this plane coincides with p~, and in general j% is a dif- 

ferent plane: 
r  0 at all points of C, and d)' is a simple and g~ '  a nodal term~ 
In considering the number of independent terms in f~, we must admit 

1. nodal and higher terms, in number ---(~ 3)- 

2. multiples of f~ where in order not to cotmt terms twice, we must 
exclude all simple and higher terms from the multiplier, leaving (/),)~_~ 
independen~ terms. 

Thus the postulation is 

= ~ V ,  - -  ( ~ - - ~ ) ,  

and since every node of f~. on C is a double point of' C, we have D, ~ 0 
and our previous formula (a~ ~he end of w II) is established for this case. 

3. Any cwrve. 
Now let C~ degenerate (the total number of apparent double points 

remaining unaltered), into two curves C,~., C~',, intersecting one another 
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in I points, supposed simple points of each, of which xr 1 are simple points 
of f~ and I 2 are nodes of f-x, where I---- I 1 + I~: 

m == m' -4- m", ~ -----( + ( '  + 2I~ 

.P----- { ( 2 Z + x + 4 ) m ' - -  20'} + {(23. + x + 4 ) m " - -  2~"} -- 4Z  

But 

P -~ P '  + P "  - a i I 1  - ~ I ~ ,  

where P ' ,  P "  are the postulations of contact with f~ along C', C" separately, 
and at, a~ are the reductions in total postulation due to the two kinds 
of intersection respectively. Then 

1 (4 -- al)/1 -- x (4--  6 )  I , .  P ' =  ( 2 Z + ~ t +  4)m' - -  2~ ' - -  ~ y 

Now al, a~ depend only on the behaviour of the curves and surfaces 
in the immediate neighbourhood of the intersection, and not on their 
general characteristics (degree, genus etc). They are therefore absolute 
constants and can be determined from the simplest possible cases, viz. 
when C, C" are straight lines, and f~. is a plane or a pair of planes. 
This gives a 1 -~ 4, a~ = 2,  and 

P ' =  (2Z + u + 4 ) m ' - -  2 q ' - - / 2 .  

Now r  is any curve on f~., and I~ is ~ e  number of nodes of f ,  at 
simple points of C'. 

If  we drop the dashes and write D,  for I , ,  we have 

P =  ( 2 Z + ~ + 4 ) m - -  2 0 - D .  
ffi 2 / ~ -  (~ + D , - - ~ m ) ;  

and this formula is general, provided only that Z is great enough for 
Noether's formulae for (2P~)~, (P1)a-, to be applicable. 

IV. Postulation, second method. 

We shall now give two direct algebraic proofs that if f,  has a node 
at a simple point A of C, we can construct a surface f '  touching f along U, 
but with a simple point at A and therefore linearly independent of f. 
Then in the general equation of the family of degree Z touching f along U, 
we admit not only nodal terms and multiples of f, but also multiples 
of f ' ;  and we shall prove that the latter give only one independent term. 

Also all other nodes of f on C are nodes of f ;  so if we form another  
surface f '  corresponding to another node B of /, then f has a node  
at 33, and f "  has not; fl' is independent of f '  as well as o f / ,  and the  
reduction in postulation is exactly 1)~. 
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Now at a node of f at a double point of C, f touches two different 
planes along the two branches of C, and it is geometrically impossible 
to construct f '  touching f along C, and having a simple poin~ at this 
node of f, so that such nodes do no~ reduce the postulation. 

[~his gives a second proof of the formula 

which is equivalent to the one obtained in the last paragraph. 
We shall first treat as an example the simplest curve which is not 

a total intersection, viz. the twisted cubic. 
1. Twisted cubic. 
Let the curve C s be given parametrically by 

x : y :  z : w =  l : 8:  8~: O s, 

and also as the common intersect/on of the three quadrics 

g ---- x z  - -  y~, 9"=--- x w  - -  y z ,  g " =  y w  - -  z ~, 

Let/~, p ' , / '  be the tangent planes to g, g, g" at ~he point of 6' whose 
parameter is O. 

Now let fy. be a surface containing G and having a node at (1, 0, 0, 0) 
i. e. the point 0 = 0. Then we may assume 

$ 

in which the general term can also be written 
l - - I  

x~-~-~(y, ~, w X y, z, w X g, 9', g"). 

The tangent plane to f~ at the poinl 8 is 

P,  - = 2 ( e ,  e ~, 8~ I ~ , / , / ' )  

=OK say. 

Now K can be interpreted as the tangent plane at the point 0 to 
t - - I  

Z ; - 2 ~  ~-~-~ (~, ~, ~ I y, ", ~ I g, g. g"), 
which has a simple point at 0 = O. Since f, f" have ideutieal tangent 
planes at all points of C except 0 - ~ 0  and 0~= o% where they axe 
respectively singular, they are in contact along C. 

l~ow 
~--1 

x f - -  y f '  = . ~ x " - ~ - "  (0, g, g' X Y, ~, w X g, g', g"), 
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which is nodal, and similarly zf', wff only differ from multiples of f by 
nodal terms, but x f" is linearly independent of f. 

Therefore, if f~_~ is subject to the single condibion of passing through 
the node of f~., then f~_~.f~ is not independent; i. e., the multiples of f~" 
give only one independent term in fa. 

There is a certain amount of arbitrariness in the way of put t ing  
(y, ~, w)' rote the form (~, ~, w X Y, ", w)~-l; but: the various forms of f" 
that  arise differ only by nodal terms. 

2. Any curve. _F~st method. 
Let the curve C,~ be given parametrically by 

x :  v :  ~ : w = x o , _ d z ,  Y, 2): :rr zo,_~: 0,, 
where 

r r, z) = o; 
the last equation is that of a plane projection of (7. Let C be given also 
as the common intersection of as many surfaces g~ as may be necessary. 

W e  assume 

and its tangent plane at any point of C is 

P~---2%-.)," p~ 
where �9 is what f becomes when xyzw are replaced by their values h i  
terms of the parameters of the point, and p is the tangen~ plane to g a g  
the point. Since these planes ~o all contain the tangent line to C, t h e y  
are connected by a certain number of linear identities. 

Now let f have a node at the poin~ X ~ Y ~  Z; then ab this point: 
the plane iP~. is indeterminate, and by using if necessary the identi t ies 
between the/o,  we can put B~ into the form 

i% =_y{ ( x -  ~%_~),_~ ~- ( r -  2)%_.),_, b~ 
Now since X = Y =  Z is a point of C, it lies on Ore; and 

%---- ( X - -  r ) % _ ~  + (Y- -Z)V~_~ .  

We suppose that @~_~ does not vanish at the point; then 

%_,~.= (r-z)2%_o),+._~. = ( r -  z ) x  
say, where 

O(~-~)z+~-~ ~ @m-l" IF(~-~)~rt -- ~m-iO(,.- a)~-i �9 

Now K can be biterpreted as the tangent plane to 

of degree 
~ ' - - - ( ~ ) l  + m + a -  2, 

which touches f along C and has a simple point at ~he node of f ,  a n d  
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is therefore linearly independent of f; but if fi-~., passes through the 
node, its parametric expression has the form 

( X - -  1r)r + ( Y - - Z ) T ,  
and the tangen~ plane to fa-~," f:, is 

~-i 

so that fz-~'" f~' is the sum of a multiple of f and nodal terms. 
3. Any curve. Second method. 
If f~, touches f~ along C, there must exist an identity 

(1) f ~ , ~ _ ~ , -  f~cp~_ ~. ~ nodal terms, 

where r does not contain C. 
Now suppose that ~ is quite arbitrary; then (1) imposes (P2)= con- 

the only solutions are Se  obvious ones in which f', cp" are the sums of 
nodal terms and the same multiple of f, cp respectively. 

But if cp is specialized, some of the (P~)~ conditions may fall upon 
the coefficients of f, q~ and not on those of f', r in this case there are 
solutions for f '  other than those just enumerated. 

Now (1) shows that f '  must contain C, and that the nodes of f on 0 
are nodes on f'cp, and, if ~ is general, are nodes on f'; i. % some of the 
(P~)~ necessary conditions express that f '  has nodes at these points. 

Now subject ~ to the single condition of passing through a node A 
of f on C; then one of the necessary conditions is satisfied by virtue of 

f t this specialization and does not fall on ~he coefficients of f ,  ~ ,  and in 
this case there is just one independent solution for f'. 

We arrive at the same solution f', whatever be the surface ~ through 
A. For, the same problem, with the same f, r but with x ' +  e, a - f - s  
instead of x,  r is satisfied by f~. f '  where f~ is arbitrary. But we have 
seen that there is only one such solution; so f~. f '  ceases to be indepen- 
dent if f~ is subject to a eerf~in single condition, which is clearly that it 
pass through A, i. e. f '  is the solution if we start with fo instead of ~. 

Therefore the existence of the node of f~ at A reduces by 1 the 
postulation of contact with f~ along 0, whatever be the degree of the 
family considered. 
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V. Equivalence. 
1. Cayley' s method.*) 
Let f~., f~,, f,  be three surfaces touching one another along C~,. Let 

them have D~, D~,, 1), distinct nodes at simple points of C respectively, 
and d~ common nodes at double points of C. Let the residual intersection 
C ~ , _ 2 ~  of fz, f~ meet U in Z points. These are in general distinct from 
the nodes; for one of the D z points is simple on f#, and through it pass 
two branches of the total intersection, viz. U counted twice; and one of 
the d~ points is a common node, and through it pass four branches of 
the intersection, viz. the two branches of U each counted twice. At each 

. 

of the I points, U" touches f,. 
"~ Therefore C' meets f, in ~ ( ~ - - g m ) -  2 I  points not lying on U, 

which are the free intersections of fz, f~,, f,; the remaining intersections 
are absorbed by C; the equivalence is 

= 2 v m  + 21. 
To find 1, consider an auxiliary surface f~ containing C bu~ no~ 

touching f~, and having no singularities on C. It meets C' in the 1 
points on U and in ~ ( i F - - 2 m ) -  1 other points, which are the free 
intersections of fz, fu, f~. 

Now ~ e  residual intersection Cl'~_,, of/ ' l ,  f~ passes through the 1)~ 
nodes of fa, but not through the d~ nodes; let it also meet C in 1' simple 

, points, at which it touches fz" 
Therefore C" meets fz in /~(~t~--m i - - D ~ -  21" other points which 

are again the free intersections of f~, fl,, f~. Equating these two values, 
we have 

I =  ( . ~ - 2 ~ ) m  + D z +  2I'.  

To find r ,  consider the locus f~+~_~ of points whose polar planes 
with regard ~o fx, f~ meet in a straight line which intersects an arbitrary 
straight line. This meets C in (i  + ~ - - 2 ) m  points, consistiug of 

the 1' intersections of C, C", } being points of contact of f~, f~, 
.~he d 1 double points of C, 
the D 1 + d~ nodes of f~ and 
the r points of 0 at which the tangent line to C meets the arbitrary line. 

Therefore: 
I ' ~  (Z + ~ -  2)m -- r --  D~--  2d~-- 9d~, 

I = ( 2 z + ~ ) m  - 2~) - / ) z ,  
.B = 2(z + ~ + ~,)m - 4~, + ~ ( z m - / ) ~ )  

= - 2 i v ,  

*) C~yley, Phil. Trans. 159, p. 22L ~ Coll. Ma~h. Papers VI, p, 350, 1869. 
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where 

Since E must be symmetrical in )., 9, ~', this proves again that D ~ -  ~m 
is independent of ;t. 

2. SalMon's method.*) 
The value of 1 can also be found as follows. 
Let C, C' have H apparent intersections: 

I § H = (~tl~ -- 2m)m. 

To find H, consider the equation F =  0 obtained by eliminating 
between 

I �9 t �9 t f~(~x + x', ~y + y ,  e z +  z , ~ ' w + w ' ) =  f~ (x ' , y , z ,  w ), 

f , , ( ~  + ~,, ~y + y ,  ~ + ~', ~ + w') = f,,(~,', y', ~', ~').  

It is of degree ;t~ -- 1 in xyzw ,  and of degree (~t-- 1) (~--  1) in x'y'z'w'. 
Let these be the coordinates of two points A, A'. Now if A' is a common 
point of f~, f~,, ~ e n  F ,  regarded as the locus of A, is the cone vertex 
A' standing on ~ the to~al intarseclion of f~, f~,; i. e., if A' is on C', then 
F consists of: 

the cone of degree m standing on U counted twice and 
the cone of degree ~ -  2 m -  1 standing on C'. 
But if A' is on C, then F consists of: 

the cone of degree m -  1 standing on C counted twice, 
the cone of degree ~ / z -  2m standing on C' and 
the common tangent plane at .4' to f~, f~. 

Now let A be fixed, and regard F as the locus of A'. It  meets C 
in (4 - -1 ) ( /~ - -1 )m points consisting of: 

the H feet of s~raight lines through A meeting C and C', 
the 2h feet of stxaight lines through A meeting C twice, 
the d s common nodes of f~, f~ and 
the n points of C at which the common tangent plane to f~, f~ passes 
through A, where as before 

Also, since when A' is on C, F has a squared factor which vanishes a~; 
the 2h points, these count ~wice in ~he intersection of F, C. 

Therefore 
H = ( 4 - 1 )  ( ~ - -  1)m - 4~  - -  ~ a , -  ~, 

I --  (~ § ~)m - -  2~ - D ~ +  Xm, 
as before. 

*) Salmon, Geom. of Three Dim. 4 'h ed. p. 309, Dublin 1882. 
6* 
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Y I .  E x a m p l e s  and o b s e r v a t i o n s .  

1. Common nodes. 
The family (fx) has in general no common nodes other than the d~ 

nodes at double points of C, but three particular members of the family 
may have common nodes, which will absorb some of the free intersections 
and increase the equivalence. If D of the nodes are common, Cayley's 
method gives 2D as the additional equivalence. 

E. g., let C be the twisted cubic, and f~ the quadric cone g: then 
d~ = 0, D~= 1. Now g is touched along C by the cubic family 

f s ~  wg'--  z g " +  fig, where fi is arbitrary. 

This family has four nodes on C all varying with/'1; and/)3 = 4, D = 0. 
Now consider the three quartie surfaces touching g along C viz. 

@~g, @its, (g', g")~ where r @1 are arbitrary. 

Here D~= 7, D----0, E----42, and we veri~ that the remaining 22 free 
intersections lie 2 on g, @1; 8 on @2, @iV and 12 on @~, @a" But if @1 
passes through the node of g, the three surfaces have a common node 
a~ this point, which absorbs the first two of the free intersections; D ~ 1, 
E= 44. 

2. Maxima a ~  minima of P, .E. 
If we only know that the surfaces (f;.) touch one another along a 

given curve U~, without knowing what fixed surface they touch, then 
there are a whole series of values possible for B, E depending on the  
values of D~--urn, where x is ~he degree of any surface f~ contain.ing C, 
and D~ is the number of nodes of f~ at simple points of C. When i is 
given, the maximum of B is (B~) l -  1, when there is only one indepen- 
dent surface fa for which C is not a nodal line; then f ~ f x ;  and can 
be the most general surface of degree ~ through C, which, if I is gre~t 
enough, has no nodes at either simple or double points of C. 

The formula for P does not hold, since ~ -  ~t = 0 and (P1)l-~ has 
no meaning; but instead 

P = P~-- 1 =  3(~- t -2)m--  5 ~-Q-- i. 

To find the equivalence in this case we may suppose that C is nodal  
on fg, f,; then their residual intersection meets C in ~ ( g + v ) m - - 4  0 
points, and since now i = #  = v, we have 

1~ = 8 ~m - -  4q.  

The minima of B, .E when 1 is given are much more complicated, 
and depend on the nature of the surfaces of lowest degree through (7. 
Since xm -- D~ = m -f- n + 2d~, the absolute minima of P, E for a given 
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value of m occur when n ~ d ~  0 and f,. is a plane; then C is a plane 
curve and ~ ~ r e (m+ 1), giving 

P ~ 2_P 1 - -  ~n ~, .E = 2 E 1 -  2 m  ~, 

as for twv distinct eoplanar curves intersecting in m s points. 
3. Gaps in the series o f  values o f  1 ) . 
When ~, C~ are given, then x m - - J 0 ,  varies between 2m and a 

fixed minimum, but the intermediate values may not all be possible. E.g., 
consider the C 5 which with a straight line makes up the total inter- 
seotfion of a non-singular quadric g~ and a cubic surface g~ having one node 
on C. No other quadric passes through C, and if u = 2 then D~=  0 i 
but the general cubic surface through C is 

g3 + figs, 
for which D~. = 0 or 1 only, 

Thus ~ m -  D~ cannot lie between 10 and 14. 
This is connected with the fact that if two distinct adjacent curves 

of this nature lie on the same quadric, they megt in 12 points; if they 
lie on ~he same ~ubic surface, they are residual to the same straight 
line C1' , and meet in 8 or 7 points according as the surface has or has 
not a node on'C(; but the number of their intersections cannot lie between 
12 and 8. 

4. Application to twisted curves. 

Concerning the residual C ~ _ ~ ,  we know that it meets C in I points, 
and the number h' of its apparent double points is given by Salmon's 
formula (1. c., p. 311), provided we regard C as a pair of curves meeting 
in N points, i. % as a curve of order 2m with 2 h  + m ' ~  17 apparent 
double points, and this holds even when h r is negative. E. g., let two 
cubic surfaces touch along a s~raight line; 

z- -5 ,  _ , v = - x ,  h',=12, 
and the residual is a septic of genus 3 with one 5-secsnt.*) 

C a m b r i d g e ,  January 1912. 

*) l~oether, Zur Grundlegung der Theorie der algebr. Raumkurven. w 17. Ab- 
handlungen d. K. Preul}. Ak. d. Wiss, 1882 (where ~her~ are some more examples), 


