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1.

In a paper read before the London Mathematical Society in 1869,
Cayleyt was the first to call attention to birational transformations in
three dimensions, as an immediate extension of Cremona’s two-dimensional
work. In particular he investigated the 8-8 transformation, which is
most compactly expressed by three bilinear relations between the two sets
of homogeneous coordinates in the two spaces. He shewed that planes in
one space correspond to cubic surfaces in the other, and since three planes
meet in only one point, three of these cubic surfaces meet in only one
variable point, and their remaining intersection is a fixed sextic curve with
seven apparent double points. Cayley gave the formule of transforma-
tion for two cases: (i) when the sextic does not degenerate, and (i) when
it becomes four non-intersecting straight lines and their two transversals.
Soon afterwards Cremona! and Noether§ both gave many examples
proving that the sextic may degenerate in different ways in the two
spaces.

The method of inversion, which is a special form of this transformation,
had long been known ; but since the time of Cremona the general theory

* For the suggestion of this subject I am indebted to Mr. Berry.

t Cayley, Proc. London Math. Soc., Vol. 111, p. 127, 1869.

i Cremona, Rend. R. Ist. Lomb., T. 1v, p. 269, 1871; Math. Anun., Bd. 1v, p. 218,
1871; Ann. di Mat., T. v, p. 131, 1872; and other papers.

§ Noether, Math. Ann., Bd. 111, p. 547, 1871.
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has been greatly developed, and birational transformations are constantly
employed in connection with such problems as singularities of surfaces.*
In particular, the 3-8 transformation, and some of its special cases, have
been very useful, and it seems worth while to attempt a systematic treat-
ment of all its varieties. Many of these have been discussed,t but, as far
as I know, with no attempt at completeness.

The following paper deals with the cases where the first principal
sextic curve consists of six straight lines with eight simple intersections,
or their equivalent in multiple intersections, taking account of all the
possible arrangements of these intersections on the lines.

The different types which arise are as follows :—

No. of Cases.

A 8 simple intersections 5
B 1 triple and 6 simple intersections 7
B’ 1 special triple and 5 simple intersections... 3
C 2 triple and 4 simple intersections .. 4
C' 1 special triple, 1 ordinary triple, and 3 simple intersections 2
C" 2 special triple and 2 simple intersections... 1
D 8 triple and 2 simple intersections 1
E 4 triple intersections 1
F 1 quadruple and 4 simple intersections ... 2
G 1 quadruple, 1 triple, and 2 simple intersections ... 1
H 1 quintuple and 2 simple intersections 1

Total ... ... 28

It appears that for the purpose of this paper the following must be
taken as equivalent :—

An ordinary triple intersection with 2 simple intersections,

A SPGCial ) ” ”» 8 ” ”
A quadruple intersection w 4, ”»
A quintuple ” » 6 ”

* The most recent paper I have seen on birational transformations in general, is by
Margherita Beloch, Ann. di Mat., T. xv1, p. 27, 1909.

t+ v. Krieg, Zeitschrift fr Math. und Phys., Bd. xx1x, p. 38, 1884; Ascioni, Giorn. dt¢
Mat., T. Xxx1, p. 55, 1893 ; Dohlemann, Sitzungsber. d. K. Bay. Ak. der Wiss. su Minchen,
Bd. xxrv, p. 41, 1894 (among many others).
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2.

If we start with the three bilinear relations between the two sets of
homogeneous coordinates zyzw, XYZW of corresponding points in the
two spaces, they can be put into either of the forms

X_pl+ qu+Z‘)'l+ Wsl = O\' .EP1+yQ1+Z.R1+‘IUSI = 0 '
Xpo+Yqa+Zrg+Wsy =0} or zPy+yQa+2R;+wS,=0",
Xps+Yqe+Zrg+Wsg =0 LP3+yQs+2R;+wS; = 0}

where p,...s; are linear functions of «&yzw, and P;...S; of XYZW.
Solving these, XYZ W are proportional to the determinants of the matrix

Dh ¢ 1 &
P2 Q2 72 Saf>
Pg s '3 Sg
Py B S
and zyew to those of P, @ B, S,
Py @ By §

and the first sextic curve arises as the common intersection of the four
cubic surfaces in the first space 0 =X =Y =2Z=W.

In what follows this process is reversed. First, I enumerated the
particular forms of degenerate sextics to be considered. For each of these
I wrote down the most convenient equations, and obtained by inspection
four linearly independent cubic surfaces 0 =X=Y=Z2 =W con-
taining them; in every case degenerate surfaces are available. (It is
possible to express the conditions that the general cubic surface contains
the sextic ; these conditions can be used to reduce its twenty coefficients
to linear functions of four; these four then are multiplying XYZW.)
Then I find by inspection the three bilinear relations between
XYZW. (Again it is possible to write down the general form
Xp+Yq+Zr+ Ws, containing sixteen arbitrary constants, and express
that this is identically O; this must leave three arbitrary constants,
each multiplying the left-hand side of one of the bilinear equations
sought.) Having obtained these equations I solved them for z : y : 2 : w;
these are proportional to four cubic functions of XYZW, which equated
to O give four cubic surfaces in the second space whose common intersec-
tion is the second sextic. One of the chief interests of the investigation
lies in the extraordinary variety of forms assumed by this curve. The
only constant feature, besides the essential one of having seven upparent
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double points, is that in all the cases here investigated, 7.c., where the first
sextic is six distinct straight lines, the second sextic consists partly of
three straight lines. In twelve of the twenty-eight cases considered it is
of the same kind as the first sextic; in two others it is a different set of
six straight lines, in ten it is a conic and four straight lines and in the
remaining four cases, a cubic and three straight lines.

I have given the work at length in a typical case; for the rest I have
stated the bilinear relations in their simplest form and shewn each sextic
in a diagram. A closed oval represents a conic and an unclosed curve &
cubic. The tetrahedron of reference is shewn in each figure, the vertices
being marked 1, 2, 8, 4, and where the directions of three lines that meet
in a point are parallel to a plane, this is also marked by a small arc meet-
ing the three. The intersections shewn are the actunal intersections; any
which would be introduced by producing lines would be apparent in-
tersections.

8.

The distribution of the eight intersections on the six straight lines
1s restricted by the fact that the system lies on a cubic surface. Thus:

(i) Not more than three can lie in a plane; for if so the four linearly
independent cubic functions, which are proportional to the four coordinates
in the other space, equated to O give degenerate surfaces consisting of
this plane and a quadric through the other two lines; the functions have
8 common linear factor which can be removed, and the transformation is
not cubic but quadratic. In particular, there cannot be five intersections
between four lines.

(@ii) If three of the straight lines lie in a plane, all the other three must
meet one or other of them ; for, as above, the cubic surfaces cannot meet
the plane in any other point.

(iii) Again, the six straight lines cannot all lie in two planes or on a
quadric surface; for if so the quadric and an arbitrary plane form a cubic
surface with four arbitrary constants containing the system, and is there-
fore the most general cubic that does so; the four independent cubic
functions have a common quadratic factor and the transformation is
linear. (The case in which a cubic surface, though containing six
generators of a quadric, need not contain the quadric, does not arise, for
they are three generators of one system and three of the other, involving
nine intersections.)
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4,
The general cubic. surface will be taken in the form
A+ B2’y + Czy* + Dy’ + 2(Ex*+ Fry+ Gy +w(Haz*+ Jry + Ky
+22(Lz+ My) + 20 (Nz+ Py)+1* (Qr+ Ry)
+ 883+ T2+ Uzw?+ Va® = 0.

It meets any straight line in three points, and if it meet it in a fourth it
contains the whole line; therefore to contain a straight line imposes four
conditions. If the line (a) is 0 = z = w, the four conditions are

4d=B=C=D=0.

To contain two straight lines imposes eight conditions, unless the lines
intersect, when one condition is the same for both, viz., that their common
point lies on the surface. If the second line (b) is 0 = y = w, the three
further conditions are E = L = S = 0. Similarly for every intersection
a condition is lost. Six non-intersecting straight lines would impose
twenty-four conditions ; but since there are fifteen real or apparent double
points, if the set of six straight lines is a particular case of Cayley’s sextic
curve with seven apparent double points, there are eight intersections,
reducing the nuwmber of conditions to sixteen, and leaving four independent
coefticients. There are therefore four linearly independent cubic surfaces
through the six straight lines; these, or four linear functions of them,
are proportional to the second set of coordinates.

A. Eight simple intersections.

Of the six lines abcdef, let « be the one that meets most. 1t cannot
meet them all, for if so there would be three intersections between bedef';
one (b) would meet two others (¢d) and abcd would lie in a plane. '

(1) If @ meets bede (and not f), f may meet bede, or

(2)  f may meet bcd and ¢ meet b, or

3 f may meet bc; then b¢ cannot meet (for if so «b¢f lie in a
plane), nor can d (or e) meet both of them (for if so wbed lie
in a plane); therefore d meets b, and ¢ meets c.
And f cannot meet only b, for if so there are three intersections
between bcde, one (b) must meet two others (cd) and abded lie
in a plane.

If @ meets bcd (and not e or f) (i.e., considering the case where
no line meets more than three), then if bcd do not meet each
other, either

4) ¢ and f do not meet, one (¢) meets all of bed and f meets be, or
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(5)  ef meet, and each meets two of bed; say, e meets bc; then f
cannot meet the same two (for if so bcef lie in a plane) but meets
bd.

And if bc meet, they lie in a plane with @ ; def all meet this
plane on one of the lines; but a meets d, and bc are only to
meet one more each ; therefore b meets ¢, and ¢ meets f, and
there are two intersections between def. But this configura-
tion is the same as in (5) where bef form the triangle.

B. One triple and siz simple intersections.

If abc meet in a point, they may or may not lie in a plane.

If they do not, let their equations be 0 =z=w, 0=y =w,
=y = z. To contain these imposes ten conditions on the cubic

A=B=C=D=E=L=S=H=Q=V=0,

so that this singularity counts as two simple intersections and one apparent
double point, and it can be obtained from A by letting two simple inter-
sections come together. It is a conical point on all the cubic surfaces.

No one of def can meet all three arms of the triple point without
passing through the vertex and forming a quadruple point (F below), and
no two of def can meet the same two arms without both lying in their
plane.

(1) If def do not meet each other, each meets a different pair of arms.

(2) If e meets f (and neither meets d), since one of them (¢) must
meet two arms (ac), f can only meet b (for if it met a, acef
would lie in a plane), and then d must meet b and a (or ¢).

If f meets de (but de do not meet), there are four intersections
between def and the arms, either two on two of def or two on
one and one on each of the others.

(3) If f meets bc, then d and ¢ must each meet a, for they cannot
meet b or c.

4) If f meets ¢ only, one of d or ¢ must meet a and b, and the
other a (or b).

(5) If f meets no arm, d and ¢ meet different pairs of arms.

If def form a triangle, all three arms meet one or other of them,

either :

(6) each arm meets a different side, or

(Vh] two arms meet one side and the third meets another side.
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B'. One special triple and five simple intersections.

If the three arms of the triple point lie in a plane, let their equations

be 0=z=w, 0=y =w, O=w, y=2

There are only nine conditions
A=B=C=D=E=L=S=F=G+WU=0.

The reason for this is that all the cubic surfaces meet the plane ab in
@, b and a third straight line. If two other points in the plane lie
on all the surfaces, the straight line ¢ joining them is part of the common
intersection ; so ¢ -only gives two more conditions and must be considered
as meeting both a and b.

Such a triple intersection will be called special; it is not a comical
point on the surfaces. It is equivalent to three simple intersections, and
can be obtained from A by making a triangle diminish to a point, the
sides remaining in a plane.

Now def must all meet the plane abc on one of the arms, and none of
them can meet two arms without making a fourth line in the plane; there-
fore they have two intersections among themselves, say df, ¢f. Then «
cannot meet def, for if so the four lie in a plane; therefore either

(1) @ meets de, and f meets b, or
(2) @ meets df, and e meets b, or

(8) a meets d, and e meets b, and f meets c.

C. Two triple and four simple tntersections.

If neither triple point is special, each is a conical point on all the cubic
surfaces, the line joining them lies on all the cubics and the triple points
have a common arm ; let them be abe, ade.

Now b (or ¢) cannot meet both d and e, for if so abde would lie in a
plane ; therefore there are at most two intersections between the arms,
bd, ce, and at least two on f. Also f cannot meet @, for if so it must also
meet another (b) ; then neither f nor b can meet any other, and ¢ would
have to meet both d and ¢, which is impossible ; therefore either

(1) f meets bcde, or

(2) f meets bcd, and ¢ meets b (or ), or

(8) f meets bc, one of these (b) meets d, and ¢ meets e, or
(4) f meets bd, b meets ¢, and ¢ meets d.

These cases can be obtained from B.
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C'. One special triple, one ordinary triple, and three simple inter-
sections.

The special triple point is not a conical point on the surfaces, and the
two need not have a common arm. If they do, let them be (abc), ade;
then neither d nor ¢ can meet the plane abc again, all the three intersec-
tions must lie on f, viz., one where it meets the plane abc, and two with
d, e. But then the whole set lies in the two planes abc, def, and the
transformation degenerates ; therefore the triple points have not a common
arm. Let them be (abc), def; then def each meet one or other of abe.
Either

(1) each meets a different one, or

(2) two meet @ and one meets b.
For def cannot all meet @ without the four lying in a plane.

These cases can be obtained from B or B’.

C". Two special triple and two simple intersections.

The two must have a common arm, for if not the six lines would lie
in the two planes. Let them be (abc), (ade). None of these can meet
again, for if so all five would lie in & plane ; therefore there are two inter-
sections on f, where it meets the two planes. f cannot meet a, for if so it
could meet neither plane again ; therefore it meets b (or ¢) and d (or e).

This case can be obtained from B’.

D. Three triple and two simple intersections.

With three triple points and only six lines, each pair must have a
common arm, and three of the lines are the sides of the triangle of triple
points. None of them can be special, for if so there would be a fourth line
in the plane of the triangle. There must be two intersections between the
remaining three arms.

This case cat be obtained from C.

E. Four triple intersections.

As in the last case, no one can be special, and the six lines are the six
edges of the tetrahedron of triple points.
This case can be obtained from D.
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If four straight lines meet in a point, and no three lie in a plane, let
their equations be

O0=z=w, 0=y =w, 0=y =z, y=z=w, .
giving the twelve conditions
A=B=C=D=E=L=S=H=Q=V=F+J+N
= G@+K+M+P+R+T+U=0,

so that this singularity is equivalent to four simple intersections. It
cannot, in general, be obtained from B by making a fourth line pass
through the triple point, as that would only absorb three intersections,
except in the two cases where (i) the triple point was special, (ii) the
fourth line met two of the arms; each of these leads to a special quad-
ruple point with three arms in a plane. Now, if three arms lie in a plane,
let the equations of the last be replaced by y =2, 0 = w; then the last
two conditions are replaced by two others, viz., F = G+M =0, so in
this case also the quadruple point is equivalent to four simple intersec-
tions, we have a particular case and not a fresh type. The analytical
view of this is as follows :—

Each straight line through the vertex (1, 0, 0, 0) imposes one condition
on the coefficients of each power of z. Now, there are : one term in z°, three
in 2% six in 2', ten in 2°. The first straight line imposes four conditions
and abolishes the term in 2%. The second and third impose three condi-
tions each, and abolish the terms in z2, unless the three lines lie in a
plane, when the three conditions on the coefficients of terms in z? reduce
to two (and the factor multiplying z® gives the equation of the plane).
With four arms, which cannot all lie in a plane, taking first three which
do not, they impose ten conditions and abolish the terms in z% z%. The
fourth, whether it lie in a plane with two of the others or not, imposes
two conditions, on the coefficients of terms in ', z° respectively. A fifth
and sixth also impose two conditions each, and abolish the terms in z' (in
which case z has disappeared entirely, the cubic surfaces are all cones,
and cannot have a single variable point of intersection : the transformation
breaks down); except in the case where the sixth straight line lies on the
quadric cone through the first five, given by the factor multiplying z.
But in this case the six lines lie on a quadric and do not give rise to a
cubic transformation. Therefore a sextuple point need not be considered.
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F. One quadruple and four simple intersections.

Let the quadruple point be abcd. Then neither e nor f can meet
three arms.

(1) If they do not meet each other, ef each meet two arms; not the
same pair, for if so the four lie in & plane; and not distinet
pairs, ab, cd, for if so the whole lies in the two planes abe, cdf ;
therefore one (¢) meets ab and f meets ac.

(2) If ¢f meet, one (¢) meets two arms and lies in their plane, and f
meets a third arm.

These cases cannot be obtained from former ones.

G. One quadruple, one triple, and two simple intersections.

Let these be abcd, aef, for there must be a common arm. Then e, f
each meet a different one of bcd. The triple point cannot be special, for
if so one intersection would make four lines lie in & plane.

This case can be obtained from F.

H. One quintuple and two simple intersections.

If the quintuple point is abede, then f meets two of the arms.
This case cannot be obtained from any former one.

5.

I give a specimen of the work in detail.
d b c
a \ /
\ 1 / 2
4

N
3

¥

With this set of intersections, taking the tetrahedron of reference as shewn, the equa-
tions of the six lines can be

(@) 2 =w=0, ) y=w=0, d) w=Ilr+my+nz =0,

(NHNr=y =0, () 2=ax+By =0, (e) 3 =pz+qy+sw =0.

By inspection four sets of three planes are found to contain these, and we write
X Y Z w

ysw  TIW = W (az + BY)( px + qy + sw) = yz(le ~ my + ne)
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These satisfy the three bilinear relations
Xz = Yy, Zz = (BX + uY)(p2 + qy + sw), Ww = X (lx + my + ne).
Solving these, we find

x

teeee— = i
Y[ZW-nsX(BX +aY)] X[ZW—nsX (BX+aY)) BX+aY) (WX +pY)+5X (mX +1Y)

— w ——
T X(Z (mX+1Y)+n(BX+aY)(qX+pY)]

The denominators equated to 0 give four cubic surfaces whose common intersection is the
second sextic. This is found to consist of three straight lines 4, B, C and a cubic K, the
equations being

(4) X=Y¥Y=0, (B)X=W=0, (C)Z=8X+a¥=0,
and B, K are the complete intersection of the two quadrics
W(gX+pY)+sX(mX+1¥Y) =0, ZW=nsX(BX+aY).

A K
A
B3 /
2

NN

In this, putting a = 0, abc, BCK concur (B1) ; p = 0, abe concur and K degenerates (B2);
a =8 =0, abc, cef concur (C8), &c.; » =m = ¢ =a =3 =0, abe, cef, ade, bdf concur (E).
In the last case the sextic in each space consists of the six edges of a tetrahedron, and the
transformation is the well known one of inversion.

6.
| |
2 X (s+w) = Z (az +By) B 2
Al. W(z+y) = Y (yz+3dw)
3 (X+yY) 2= (aZ+ W)z 3 4

Cayley, Proc. London Math. Soc., Vol. 1, p. 174; Noether, Math. Ann., Bd. m, p. 571 ;
Cremonsa, ib. Bd. 1v, p. 221 ; v. Krieg, Zeitschr. fiur Math., Bd. xx1x, p. 60; Ascioni, Giorn. di
Mat., T. xxx1, p. 79.

sl / .
/ Zg = Ww
A2. 7 Y(y+2) = Ww+d2z) 4
4 1 [B(rW+sZ)—X]z = (Y—2)(qy + 72+ sw)
2
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B1,

B2,

B3,
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| 4
/ Z2 = Y(pzx +qy + sw)
s Ww = X (lx +my +nz)
1 2
(aX—vZ)(x+2)+ (BY—-3W)(y+w) =0
3 4 (X~ Y)(ax + By) +(Z— W) (yz+3w) = 0
X(az—By)+BY (y+w)—Z (v2+ow) = 0
-
2 1
Yy = Ww
3 Z(z+w) = Y(z+y+2+dw)
/ X+ Zy = W(r+y+2z+8w)
| 2 Xz =Yy
Zz = X (px +qy +sw)
Ww = X (lz +my +nz)
/3 AN

Cremona, Rend. R. Ist. Lomb., T. 1v, p. 319.

\
N

Xz =Yy
Zz = (BX +aY)(y+w)
N Ww=X(x+3)
L3
2 Xx = Zs

Y(E+y)=Z (2+dw)
4 (3pZ—-W)w = (Y- X)(pz +qy)

L~ /t |
./

2
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B(X+2)+W)w = (Y-X)(z+y+2)

1 2
B4.
3 4
{
\
1 2
B6. \
] NN
3 &*_
I
1 2
B6. s A
4
| N\
BT. \K
4l
2
B'1,
4
o |
B’a. N
3
\ 2
’ 3 /]
B'3. <

w
y

Xz =272
Y{z+y) =2 (s+dw) P

—

Xz=1Yy

— 3
Zs = (X+Y)(z+w) / 2
Ww=X(z+35)

Yy = Ww -
Z (z+w) = Y(y+2z+dw) 4
Xz+Zy = W(y+z2+w)

Xz =Yy=Wuw
Zz=(X+Y)oaz+y+w)

Xx =22
Y(+y) = Z(s+w)
(X+W)w = (Y-X)(y +2)

/

Xz =Yy
22 = Y(z+w)
Ww =X (z+y+3)

Yy = Ww
Z(z+w)=Y(x+y+8s)
Xz+Zy=Wi(E+y+e)
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C1.

3

4
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Xe =Yy =Wuw
Zz = (X + Y)(pz+qy)

Ascioni, Giorn. di Mat., T. XXXI. p. 69.

3

C2.

Z\
C3.

C4.

c'2.

Xz =Yy =12z
Ww = (X-Y)(y+2)

Xz =Yy

Zs =X (x+y)

Ww = X (z+2)
Xz =Yy
Zz = Y{y+w)
Ww =X (z+2)
Yy = Ww

Z(a+w) = Y(y+2)
Xe+Zy =Wi(y+9)

Xz =Yy =Ww
Zz= (X+Y)x+y+w)

[March 10,
L/ \
Iz
3 2
N\ 3
2
N
1
N3/
Y
-
3
N

1

(A straight line touches the conic.)
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Xz = Y‘y 2 1
Zz =Y (z+w)
Ww=X(y+s)
3 4

c".
(Two straight lines touch the cubic.)
1 3
Xe=Yy=2z
D. Ww = X(z +3) -
2 4 2 Y
7 AN 7 Y
1
E. Xe=Yy=28=Ww .
q
2 3 2 3
74 ~ -7 AN
Inversion : passim.
2z =(Y—-BX)z = 3 3
F1. Ww = Y (z+y)
X(y+8w) = Y(s+w)
1

(Two straight lines coincide.)

If in the first figure the three lines lie in a plane, in the second two lines meet on the conic.
sER. 2. VoL.9. 1071. F
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Xz = Y(yy+9) i 7y
F2 X (s+w) = Z (y +B83)
Ww = gdz—Y (s +w)
1 3
3/
L
Xz = Zz2 3 4
G. 2 Yy+Bz) = X(z+w)
2) Ww=2Z(+w)—BYz A
\ 2
4
Xz = Wu
H. Yy =12z

X[(Q=yy+(1-Be+(1—Byw]

/ =(1-By) Zz+[B(1l—-Y+vy(1—-8)Z]w
N

N

If in the first figure three lines lie in a plane, in the second two lines coincide.

AN

)/




