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1. History and Summary.

A homaloidal family of curves is one that can be transformed into the
straight lines of another plane by a Cremona transformation. In the
memoir that in 1865 laid the foundation of the plane theory, Cremona
gave 49 types of homalcidal families, of which 44 are essentially distinct,
for general values of the degree n of the form X/JL-\-V, V — 0, 1, ..., /A — 1,
with x = 1, 2, 3, and 4. We shall quote these as C. 1, ..., C.49. Ruffini's
formulae (R. 4, ..., R. 7) contain as particular cases a few of these and
five more for x = 2, of which Larice rediscovered two, and his general
formula (R. m) gives one more for each of the forms of n with x = 3, 4.

By compounding two de Jonquieres transformations, with all possible
varieties of coincidence of the fundamental points in the intermediate
space, Bianchi obtained a very general solution (B.), the form of n in-
volving 3 parameters; the simplest case with no coincidences was given
later by de Jonquieres. These do not produce any new types with x «$; 4.
Palatini repeated Bianchi's work and extended it. In his formula (P.) for
the composition of three de Jonquieres transformations, with arbitrary
coincidences of the fundamental points, n involves 6 parameters. From
this there can be deduced all the remaining types with x = 3, and many
with x = 4. All these general formulae will be found in § 7 below.
Palatini also gives a heavy formula, with 16 parameters, for the composi-
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cion of four de Jonquieres transformations, which has not been analysed
here.

In most of these researches the new general types are obtained by
compounding simpler known types. By this method, there is no guarantee
of completeness, and none of the writings quoted contain all the types of
the kind considered. On the other hand, there is a guarantee of the
existence of such types as are found, as geometrical transformations and
not merely as arithmetical solutions of the equations of condition.

In this paper the equations are attacked from the arithmetical point
of view, so as to ensure completeness; it is shown that all the types for
x = 1, 2, and 3 are given or hidden in one or other of the memoirs.
They are collected and classified in §§ 3, 4, and 5. We make use of
several general conditions that the families do not break up in specified
ways: the final proof of existence is to transform each family either into
one of a general type already proved to exist, or into one for which
M ^ 15, of which more or less accurate tables have been published in
scattered places. A complete table for ? i ^ l l is given by Montesano
(loc. cit. Atti, p. 34).

This method does not lead to the pairing of conjugate solutions;
but by giving this up we are able to tabulate the types, at the end of § 5,
in an order much more convenient for use.

For x = 4, the number of types is much larger; in § 6 they are
classified, and a specimen of each set is given. The same methods could
be applied to any numerical value of x. In § 7 there are given the types
which exist for a general value of x.

There prove to be 2 quite general solutions {x = 1); 6 for n even and
5 for n odd (x = 2); 18 for n a multiple of three, and 16 in each of the
contrary case3 (x = 3). The inequality of these numbers is remarkable.

2. General Conditions.

A plane homaloidal family of degree n is completely determined by its
F-system, that is, the set of fundamental or F-points common to all the
curves of the family together with their multiplicities. Let the .F-system
consist of a,- points of multiplicity i(i = 1, 2, ..., n— 1), and let it be written
2aJ. Cremona showed that the positive integers i, en satisfy the two
equations :

2ia4 = 3 n - 3 (I), 2i2
ai = w 2 - l (II).

We have also certain inequalities expressing that the family is not
wholly degenerate, so that no fixed curve of degree y, determined by the
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F-points, meets one of the family in more than yn pointa. Thus

(straight lines) *i+^2 < n,

(conies) *i + *2+---+V, < 2»,

(nodal cubics) 2 ^ + ^ + • • • ~\~h < 8-»,

(quartics with triple point) 8i1+ia4-•••-^h < 4?i,

(quartics with 3 double points) 2(^-f-^+^-fi,-+••••+*„ <; 4?&,

where iv i2, ... are the highest multiplicities.
More complicated tests are needed when the degrees of both com-

ponents depend on n.
A set of numbers i, au which satisfy I and II but violate any of these

conditions, or for which any a* is negative, form an arithmetical but not
a geometrical solution ; that is, a solution of the equations of condition
to which there does not correspond a homaloidal family of proper curves.

The following known properties will also be used :

(a) ix ^ 7 i — l .

(b) i1+ii-r%z > n ]
\ (Noether).

(c) ix > n/3 J

(d) Hat < 2n — 1 (Montesano).

All those solutions which differ from each other only in the part
independent of n, that is, which have values of at differing by definite
integers or zero when i is independent of n, but equal values of cu when
i involves n, can be quickly obtained from each other by the following
device.

If y is any given positive integer, then on any solution of (I), (II) we
can superpose any positive or negative multiple of

and obtain another arithmetical solution, which is also a geometrical
solution provided that, in the result, every at ^ 0 and that the family
does not break up. Hence, if at first we admit negative values of ax and
a2 we can put a3 = a4 = ... 0, in the part independent of n, in all the work
until the last stage of all, when from this arithmetical solution or base we
can deduce the corresponding set of geometrical solutions, by systematically

SEE. 2. VOL. 22. KO. 1453. Q
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superposing proper multiples of

Ea = l s ( - 8 ) a 3 \ Et = l 4 ( -6) 2 8 \

E5 = l ^ - l O ) 2 ^ 1 , E6 = 16(-15)224\ &c.

3. x = l.

In any solution for a quite general value of n, both i and at are poly-
nomials in n. Since the solution is to hold for n large, the properties
(a) and (d) of § 2 show that these polynomials are of degrees 0 or 1; and
further, (a) shows that i has one of the forms n—a or cr, where or is a
positive integer, and (d) shows that a* has one of the forms 2«—<r, w + cr, T.
In every case where n occurs, its coefficient is positive.

Since (I) and (II) are satisfied for all values of n, we equate coefficients
of its powers. From the terms in n2 in (I), or in n3 in (II), we see that
i and at cannot both contain n for the same value of i. We therefore
assume an .F-system denoted; with a slight change of notation, by

a - " 2

separating the groups of points for which i involves n from the groups in
which it does not; in the latter only, a; may involve n, if e; > 0.

The upper limits o-0, i0 are positive integers to be determined;
a, <ra, i, €i are positive integers or zero, and a < 2 ; the ^ are integers

which may be negative; if e = 0, then r\i "&> 0; if <?, = 1, then »;£^0:
and if e* = 2, then ^ -< 0.

Now equate coefficients of powers of n in (I), (II), in the order most
convenient for future use.

(1)

(2)

(3)

(4)

(5)

From (1), the first sum has only one term, with a = 1, arising from a
single .F-point; from (2), the second has only one term involving ?i, that
is, with a > 0, which arises from two or one .F-points, giving the two
•cases:

(1) €i = 2, all other et- = 0 ; (2) e.2. = 1, all other e, = 0.

(II n2)

{In)

(II n)

(ID

(II1)

2a

Sa

-22a<r,

— 2ao-0,+2ij7i =

!+2i2i/i =

1,

3,

0,

3,

_ 1 .
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In either case we have the condition

straight lines) n—a-a+i < n, that is, i < <ra.

Case 1.—Since ex = 2, hence 1>i2€i = 2 ;

from (3) <ra = 1, whence i = 1.

Thus there is only one term in the second sum. Then (4), (5) are both
satisfied by r\x = — 2 ; all the constants are now determined, and we have
the well-known de Jonquieres solution, which is Cremona's first general
type:

C. 1 1M-1(2»—2)1.

Case 2.—Here <r.2 = 1, 2*2e; = 4.

From (3) <ra = 2, whence i <: 2,

and there are just two terms in the second sum. Now (4), (5) give

»/i = 3 , >/2 = — 2 ,

and we have the second solution

•C. 2 ln-\n—2)231.

These two, both given by Cremona, are therefore the only types possible
for a quite general value of n.

In both cases a quadratic transformation applied to the three highest
F-points of the family, that is, with its three .F-points coinciding with
them, reduces it to one of the same type and of lower degree. A series of
.such quadratic transformations reduces either family to straight lines or
conies; since these do not break up, neither do the two general families.

4. z = 2.

To find the solutions depending on whether n is odd or even, we write
n = 2fx-\-v, v •=• 0 or 1, and assume i, ah to be polynomials in /u, instead
•of in n, with coefficients depending on v. As before, by (a), (d)

.and i, aL do not involve M both at once. The F-system has the form

2a*-.'LF-*2(ein + tidi (et = 0, 1, 2, 3, or 4).

Here a-p may be negative, but not aa.
Q2
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Equate coefficients of powers of n in (I), (II).

42a + 2/3 = 4 , (l)a

22« + 2 £ + 2 ^ = 6, (2)2

-42a(<ra-i /) - 2 2 ^ + 2 i2e{ = 4i', (3)2

- Z a ( < r a - i / ) - 2 / 3 ^ + 2 ^ = 3»/-3, (4)

2a(o-a-,)2+ Sj&rJ+St9* = , 2 - l . (5)2

Since a, /3 are positive integers, (1)2 gives two alternatives:

1. The first sum has one term, with a = 1, the second sum is absent;

2. The first sum is absent, the second has not more than four terras»
arising from exactly four JP-points.

Case 1.— a = 1, 13 = 0.

From (2)3> (8)2 2iet- = 4, 2i2et- = 4<ra.

The first of these gives five possibilities :

<•! = 4 ; eL = 2 , e.2 = 1 ; e2 = 2 ; ex = 1 , e8 = 1 ; e4 = 1 .

In the first and third of these, the only e,- is even; in the whole F-system>

fx only appears in the form 2/x or 4,u, and we are shut up to types already
met in §3 . In the second and fourth, 2i2e* is not a multiple of 4, so.
these are excluded by (3)2. We are left with the last case:

e4 = 1, <ra = 4,

with the further condition

(straight lines) n—4+i ^ n, that is, i ^ 4.

It remains to satisfy (4)2 and (5)2, which become

We first assume i?3 = J?4 = 0, and obtain the base

Considering the last set of -F-points, we see that only »/4 can be negative.
We therefore superpose negative multiples of Ei} and positive multiples of
Es, for each value of v, in every possible way that leaves ijlr rj2 ^ 0.
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We can, however, exclude many cases and limit the work by another
consideration. Write down the condition that the family does not break
up, one component being of degree y, determined by a {y—l)-fold point at
the {?i — 4)-fold F-point, and 2y simple points at the next highest i^-points,
that is, by F"1(2?/)1. Take

2y = /" + '74+'73~r-|72—P> P^v*

where p is chosen to make this expression even. If our type exists for both
odd and even values of /n, we can take p = 0.

We have the conditicn

yn > (7/-

whence 2»/4+J;3 ^ v—4.

This excludes all but four cases, C. 22, 18, 28, 26, valid for all values of
ix ̂  — rji; they are shown in the table. In certain other cases where
t]2 = 0, and therefore p = 0, the value assumed for y is only possible if /x
is odd (or even, as the case may be), and must be replaced in the opposite
case by

2?/

whence 2«74-f-i73 ^ v — 4+/>-

This leads to some types valid if n is of the form 4/UL+V instead of
we return to these in § 6.

For each existing type, we verify that it does not break up in some
other way by transforming it into a known family of lower degree, by
quadratic transformations applied to the three highest .F-points.

Case 2.—Let cr^, ..., o-̂ , in descending order, refer to the four points
of the second sum, where these o-'s can be equal to each other. We have
the conditions

{straight lines) fi—or^+^u—o-^ ^ 2/A+I/, that is, o-/s,+o-ft ^ —v;

(conies) 4/x — So-^-H ^ 4/tx + 2i/, that is, i

From (2)2 Xia = '2,

giving two sub-cases, as for n general,

(i) ej = 2, (ii) e2 = 1.
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Case 2 i.— a = 0, 2 £ = 4, f l = 2.

From (8)2 oto+^j+0*8+0^ = 1 — 2i/, whence & < 1.

But °"/si+°"^ ^ —l/>

whence oft+oft < 1—v,

and similarly for any other pair. Sum the three inequalities of each type
that involve oft, and use (3)2:

— 1 - . / < 2oft < 2-»/,

and similarly for oft, oft, oft. The only solution of (3)2 compatible with
these is

aPi ~ —v> °>2 = °"/h — ®> Oft = 1 — 1/.

Now, since i < 1, the last sum has only one term; from (4)2, (5)2

—2,

which are compatible since v = 0 or 1. We have the pair of solutions
C.3, 5.

Case 2ii.— a = 0, 2/3 = 4, e2 = 1.

A similar argument leads to 2i2e, = 4, So-p, = 2 — 2v, whence i < 2,

— v < cr/31 + f̂t. ^ 2 — v,

— 2 —1/< 20ft < 4 — 1/.

Here are three possibilities:

crPl = — 1, oft = o-pz = 1 — r, 0-̂  = 1;

or o-ft = oft = 0, c/fe = o-fi4 = l — i/;

or oft = oft = 07,,, = 0, 0-̂  = 2 —2r.

Each gives two types with 1/ = 0 or 1; the last two are the same if v = 1_
but different if v = 0. It is this circumstance that causes the numbers of
solutions for n odd and n even to be unequal.

Now i < 2, and ^ »;.2 are given by (4)2, (5)2; we have Ruffiui's five
solutions, three for n even and two for n odd.

This exhausts the possibilities with n of the form 2/A + J.'.
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5. x = 3.

Next let n• = 3/JL + V, V = 0, 1, or 2. The F-system is

Sec*-'- 20V-»* S/~'r

and the constants satisfy

92a +42/3 + 2y

32a +22/3 + 2y

-62a(<ra-»/) -

— 2a(<ro—i/) — y v

2a(o-a-.)2+ 2/3cr|+

From (1)3 there are four possibilities:

a = l, j8 = y = 0 ; a = 0, 20 = 2, y = 1 ;

a = 0, £ = 1, 2y = 5 ; a = /3 = 0, 2y = 9.

The second is excluded (straight lines), and we have three cases.

Case 1 —From (2)8, (3)3 2iei = 6, 2 ^ = 6o-0,

(straight lines) n—o-a+i ^ n, that is, i <; <ra.

Now every e* ^ 0; if we relax this condition, and then put
e3 = e4 = ... = 0, we have the base for the e».

= 9,

= 9,

= 6,,

= 3 , - 3 ,

= >/2-l.

(Da

(2)8

(3)3

(4)3

(5)3

ex = 12 — 6<ro, e2 = —3 + 3o-a.

It follows that the geometrical possibilities are

<ra = 1, e1 = 6 ; o - a =2 , e2 = 8; <ra = 3, e3 = 2 ; o-a = 6, e G = l .

In the first two of these, /x only appears in the form S/u, and we have
types already met in § 3. There remain two sub-cases.

Case 1 i.— a = 1, /3 = y = 0, <ra = 3, e3 = 2, i < 8.

Here J?3 can be negative, but not ijv r/2. From (4)2, (5)2 we have the
base

>h = 10—2i / , rj2= — 5 + 2i/, >?3 = 0 ,

whence six types, C. 8, 6, 12, 10, 14, 16, valid for /J. ^ — %.
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Case l i i .— a = 1, /3 = y = 0, <ra = 6, e6 = 1, i <] 6.

Only tj6 can be negative. The base is

ii = 48 —8i/, >72 =* — 2 0 + 5 J / , t}3 = ^ = n5 = rj6 = 0.

"We can exclude many arithmetical solutions by the test of § 4, Case 1.
That argument leads to

A quadratic transformation applied to the three highest .F-points
reduces each of these types to a similar one with /x lowered by 2. To
prove the proper existence of each we have therefore to check it for
fx = — >/3 and — j / 3 + l . Three are found to fail, breaking up in ways other
than those specified so far. The remaining geometrical solutions are
•tabulated ; again the number depends on the form of n, being 8 for v = 0
and 6 for v = 1 or 2.

A general formula for this set can be obtained from (P.) by putting

the remaining parameters I", I'", ?*2 taking all sets of values that make all
the at > 0.

Case 2. —Here we have the conditions:

(straight lines) 2/x—0-13+ /m—<ryi ^ 3/x+i/,

(conies) 2fx. — ap + iiuL — (oy,+<r73+<ryt+<ry.) < 6/u + 2i/,

(nodal cubics) 2(2^—0-^ + 5^—2<ryt+^ <

that is, — 0-0 — v ^ <ryi ^ cr/3+2j/+2o-yi,

Now, from (2)3 we have 2,iei = 2, giving the usual two sub-cases.

Case 2i.— a = 0, /3 = 1, 2 y = 5, ^ = 2, 2iae, = 2.

From (8)a So-yi = 1 — 20-̂ —31/, whence i < 1.

N O W — 0-0 — V < ^ 0-y, ^ 1 — <Tfi — V,

hence each of the five numbers cry, is either — ap—v or 1—crp—v; from
(3)3 we find that 4—8<rp—2i/ have the former value and 1 + 30-18+2^ the
latter.



1928.] PLANE HOMALOIDAL FAMILIES OF GENERAL DEGREE. 238

Sum the inequalities for ayv <ryi, ..., substitute for 2ory, and rearrange:

For each value of v there are two possible values of o-p, and for each of
these the o-y are determined. From (4)3 we have vi = — 2—o> and then
{5)3 is also satisfied. This leads to six more types, C. 7, 9, 13, 11, 15, 17.

Case 2 ii.— a = 0, (3 = 1, 2 y = 5, e2 = 1, 2*2e£ = 4.

The same argument leads to

2o-y, = 2 — "lap—3v, I < 2,

— (Tfi — V ^ <Ty, ^ 2 — (7(3 — V,

— 2 — 2i/ < 3 ^ < 8 —2v.

We find twenty-one sets of values for <ry; then tjlt tj2 are determined by
(4)3, (5)3, and three cases must be rejected because î  < 0. Of the
eighteen geometrical solutions, three are particular cases of (H.?;i). A
general formula for the set arises from (P.) with nx = 2, n3 = 3.

A quadratic transformation, applied to the (2/x —o-^-fold point and any
two points of the next set, reduces the degree of the family to

2(3fx + v) — (2/u—a-p) — (2/x — erYl — <ry2) = 2yu + 2i/+o-/5-fov.+o"v,,

which therefore belongs to § 4. Conversely, we can get all the types of
the present Case 2i and 2 ii by compounding those of § 4 with a quadratic
transformation, letting its F-points coincide in any way with the simple
and double J^-points of the earlier general type. But except when there is
only oue value of <ry, the later type arises several times over.

Case 3.— « = /3 = 0, 2y = 9.

From (2)3, (8)8, (4)3, Zie, = 0, 2y<rv = -3u, 2** = - 3 .

The first of these requires that every e* = 0, and therefore every rji ^ 0,
contradicting the last; there are no solutions in this case, and we have
exhausted the possibilities with n of the form 3/x-\-v.

6. x = 4.

The case x = 4 is. treated on the same lines. We assume n = 4/x + t-,
v — 0, 1, 2, or 3 ; the -F-system is
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and the constants satisfy

162a +92/3 + 4 2 y + 2 ( 5 = 16, (1)4

42a +32/3 + 2 2 y + IS + 2 ^ = 12, (2)4

. -82a(<ra-»/) -62/3<7-/3-42y<ry-22&r6+2i2e{ = Su, (3)4

= Sv— 3, (4)4

= , 2 - l . (5),

— 2a(<r,

2a (<r,

From (1)4, the

a - v ) - 2 / 3 ^ -

a - , ) 2 + 2/3<r|,+
possibilities are

a —1 0

/3 = 0 1

2y = 0 1

25 == 0 3

0

1

0

7

2 y o - y -

2yc

0

0

4

0

0

0

3

4

26

0

0

2

8

O"fi + ^

0-S + -

0

0

1

12

Zi%

0

0

0

16.

The second is excluded (straight lines), and the last by condition (c)
of § 2. There remain six cases to examine.

Case 1.— a = 1, /3 = y = <? = 0.

From (2)4, (3)4 2iet- = 8, 2i2e£ = 8<ra,

(straight lines) i ^ <ra.

The base for the ei is ex = 16 —8<ra, e2 = — 4+4o-a.

We consider these for <ra = l, 2, ..., and deduce the admissible sets of
values with each e, ;> 0 and i <; cra. In every case except one, every e is
even, and the types have occurred already in §§3, 4.

Case 1 i.—In § 4, Case 1, we met types with o-a = 4, t]i = 2 in the
notation of this section, which arose there but really belong here. By the
methods shown there, we find eight types, C. 24, 20, 32, 30, 40, 34, 48, 44.

A specimen of the set is

C. 24. n = 4/u, lM-4(2/Jc — 2)4136\

which is compounded of C. 1 and a quartic transformation with the
F-system 1361. Since 2/m is even, this can be reduced, by a series of
quadratic transformations, to the type with fx = 1,

n = 4, I3 6\
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which is proper. But if 2fx is replaced by an odd number, 2/A + I , we

° b t a i n n = 4M + 2, r - 4 (2 A t - l ) 4 l 3 6 1 ,

which can be reduced to the type with n = 1,

n = G, I 4 l 8 l a 6 \

which breaks up, one component being the straight line joining the two
highest F-points.

Case lii.—The only other sub-case to pursue is

cro = 8, ex = e2 = ... = <r7 = 0, e8 = 1, i < 8 ;

we can also obtain the condition

From (4)4, (5)4 the base for the >7 is

whence a large number of geometrical solutions. All the types of this
set involve /x in the same way, the .F-systems beginning with ln~s/x8, ^nd
differing only in the integers IJ8> ..., ^ that follow ; »;fi is always negative.
Each is reduced, by a quadratic transformation, to one of the same type
with ix lower by 2, and the process repeated brings /x down to — >/8 or

If in (P.) we put N = 8, nx = 4, fx = 2»3—I', we obtain thirty-two
different types of this set, in all of which, however, >/.2 = 0. An example
other than these, given at the end of this section, is compounded of C. 2
and a quartic transformation with 3231.

Case 2.—From (2)4, 2ie,- = 2, giving the usual two sub-cases.

Case 2 i.—

By straight lines, nodal cubics, and quartics with a triple point, we
arrive at the limits

For each of v = 0, 1, 2, 3, there are two possible values for cr^ and for
each of these, one set of values of <TSV ..., a-s,. We find eight solutions,
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C. 25, 21, 33, 81, 41, 35, 49, 45, the first being compounded of a quartic
transformation with 1361 and C. 1.

Case 2 ii.—With e2 = 1, a similar argument leads to a set with i ^ 2,
which is given by (P.) when n1 = 2, n3 = 4 ; there are twenty-six types,
seven for each of the even forms of n and six for each of the odd forms.
The first is also contained in (R.w), and is compounded of a quartic
transformation with 1361 and C. 2.

All the types of Case 2 i and 2 ii arise in many ways from § 4, Case 2,
by compounding with a quadratic transformation.

Cased.— a = l3 = 8 = 0, Sy —4, 2iei = 4) 2i2
ei = 8»/+42yoy

Again excluding the cases where every e£ is even, we are left with
e4 = 1, i ^ 4. The specimen of this set is compounded of a quadratic
transformation and C. 22. All these can be obtained in many ways from
§ 4, Case I. None of them is included in (P.).

Case 4.—Again 2ie» = 2, and we subdivide.

Case 4 i.—

« = /3 = 0, 2y = 3, 25 = 4, €]_ = 2,

Straight lines, nodal cubics, and conies give limits for <ry and as, and
quartics with three double points give i <; 1. We find eight types, C. 23f

19, 29, 27, 39, 37, 47, 43. Each of these is compounded of a quadratic
transformation and one of § 4, Case 2i, the simple .F-points of the two
coinciding in any way. The resolution is unique.

Case 4 ii.— a = £ = 0, 2y = 3, 16 = 4, e . 2 = l .

In the same way, each of these arises, once only, by compounding a
quadratic transformation with one of § 4, Case 2 ii; there are forty such.

Case 5.— a = /3 = 0, 2y = 2, IS = 8.

A quadratic transformation applied to the three highest F-points would
reduce this to § 5, Case 3, which we have seen does not exist; neither does
the present case.

Case 6.— a = /3 = 0, y = 1, IS = 12.

From (2)4, Siet = —2, which is impossible, and Case 6 is also excluded.
We have therefore discussed all the solutions with n = 4/x + y. There are
seven kinds, of which the following types are specimens, with n ==• 4.JUL.
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Case l i . C. 24. ln-4(2/i — 2)41861.

l i i . l " " 8 ^ - ^ ^ 1 .

2i. C.25. l8*6*l'1-1(2/i-2)1.

2ii. Km.

3. ( / )

4i. C. 23. 8^8'4l'i-l(2M-2)1.

4 ii. 32'1P+13'1-1(/a-2)231.

7. a; general.

Let ?i = ^ + 1 / , and let us search for solutions valid for general values
•of x, fx. "We assume i, a* to be multinomials in x, ix, with coefficients
•depending on v. The conditions

i < n—1, 2a£ < 2>i— 1

show that the multinomials are linear in each of x. IU.. The conditions

show that there is one and only one point for which i has a term in x/x,
and the coefficient is 1. We assume provisionally an F-system of the form

Here a, d, e^O, and if a = 0, then /3, y ^ 0.
Equate coefficients of certain powers of x, /x in I I :

= 0,

(f) = 0,

(.r3) I/3^2 = 0,

(M3) 2ye2 = 0.

Hence for every term in which a > 0, we have d = e = 0.

a = 0, 0 > 0, „ d = 0.

a = 0, y > 0 , „ e = 0.

•Slightly changing the notation, we have the .F-system more closely
represented by
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Here a, b <; 0; d, f > 0 (for if either = 0, the term would be absorbed
in the last sum); a, y, e ^ 0 ; e = 0, 1, or 2 ; if e = 0, then rj, £ ̂  0.

Equate coefficients of the remaining powers of x, fx in (I), (II):

= 3,

= 0,

= 0,

(I)

(ID

(x/tx)

(x)

00

(1)

(x2fx)

1

a

b

c

2a X1 = 0:

(V) 26 +2y/a = 0,

(x2) a2 +2(3d2 = 0,

(x) 2ac -\-l2(3de-{-Hyg2 -\-2t]i2 = 0,

(M) 26C + S a e 2

(1) c2 +^e2

In (I Xfi), every term ^ 0; also from (II x2/u) we have an even value for
2ad2; thus we cannot have Had = 1, which would give, say, ax = dx = ] ,
every other a = 0, and therefore 2afZ2 = 1. Similarly for the other sums.
Hence one of these three sums = 2, and the other two = 0.

If lei = 2, lad = 2y / = 0,

then from (II x2/u, x/u.2, x2, /x2, I x, fx) we find

Make the substitutions c = v—<ra, 6% = eij>+»7i;

then x, jx enter only in the combination xn-\-v=.n, and the remaining
equations are equivalent to the set of § 3. We are shut up to the two
types there found, valid for any form of n.

The other two possibilities are obtained from each other by inter-
changing x, ix ; we need only investigate one. We therefore take

lad = 2, lyf=lei = 0,
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that is, every y, e = 0, and therefore every 8, >/, £ ̂  0. We have also

(II XM2) b = 0,

(yoi2) 2<5/2 = 0, hence every S = 0 as well as every y, and the
second sum is entirely absent.

(JUL) 2ae 2 +2^ 2 = 0, hence e = 0 if a > 0, 2ae, 2a<2e, 2ae2 = 0, and
also every £ = 0 . Then (I/x) is satisfied.

(Xfi.) C = l>.

(Straight lines) (a+d)n + e < 0

for all values of n, hence d ^. —a.

Since Sad = 2, we have the following cases :

Case 1.— <*! = 2, ^ = 1 ]
I all other a — 0.

Case 2.— aj = 1, £?j = 2 )

The apparent possibility of two terms with a = <? = 1 does not arise ; for
e = 0 whenever a > 0, the two terms would have the same index fx, and
would coalesce into a single term a = 2, d = 1, reducing this to Case 1.

Case 1.—Here Sad2 = 2 .

(II aV) a = - l .

But 0 < £Z <! —a, hence every d=l.

(llx2) 2 / 3 = - 1 .

(I x) 2>?i = 2,

giving two sub-cases

(i) ^ = 2, 2 i ^ = 2; (ii) • f a = l , 2»;i2 = 4,

with every other >/ ^ 0 in each case.

Case 1 i.—

(II x) 20e = i/—1.

Then using a curve of degree /x, determined by P~1(2M)1,
 we find

hence the last sum has only one term, with i=l.
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Using a curve of degree n — 1, we find

e> -1.

(Straight lines) e ^ 0>

hence e = 0 or —1, and the first sum has only two terms. The i^-system
is reduced to V

(II x2) ft+ft = - 1 | hence ft = *-2,

(II a-) -82-—v-l\ ft=l-i/,

and »/ ^ 1 since ft ^ 0.

(I 1) ex = r - 2

and (II 1) is satisfied. The solution is therefore

(B) l l l - B (2 / u+v—2) x ( l —i/)Jt~1

valid if i> ^ 1, 2x^*2 —v. If v ^ 0, this is equivalent to Bianchi's.
formula for the composition of two de Jonquieres transformations (C. 1)
with —v of the simple F-points of the two transformations coinciding in
the intermediate space.

Case 1 ii.— *]2 = 1 , 2r]i2 = 4 .

The same argument gives

S/3e=r,,—2, i < 2 , e=0, — 1, o r — 2 ;

there are three terms in the first sum and two in the last. The i^-system is.

(II a;) —ft—2/33 = i;—2,

( i i ) e1+2ea = i / - i ,

(IID ^ + 4 / 3 3 + ^ + 4 ^ = - 1 .

We can express the solution in terms of one of the constants as parameter
say /3a,

ft
ft = 2-i/.-2ft, 02 = - 1 - f t .

SER. 2. VOL. 22. NO. 1454.
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All the solutions are derived from the common base

by superposing a suitable multiple (3S of

1 « ( - 2 ) X - 1 1 X - 2 ( - 1 ) 2 2 1 .

The conditions for fia are /38 > 0,

As ̂  0, that is, 2/38<2—v, whence v < 2,

^ > 0 , that is, 2 / 3 3 > — l - i / .

If v = 2 or 1, then /33 = 0; if v < 0, there are always two values for /38,
their form depending on whether v is even or odd.

Since v can take all negative values, but only two positive values, it is
convenient to write

, T = 0, 1;

then cr ̂ s — 1 and /33 = <r+l or o-, provided these ^ 0.

We thus have two solutions, given in the table. In the first put

tr= 0, T = 0 ; ?i = fxx; lM-x(2/A-2)*l*-a(aj-2)231.

< r = - l , T = 0 ; n = t ^ 1

( r = - l , T = 1 ; n = /
These can be expressed in the following single formula, equivalent to
Ruffini's, with n = xix-\-v,

(Km) ln-*(2/i-2)a elx + 1 '-Ma;-i(^-3i/+4)}2(^-2i/+3)1
> v = 0, 1, 2r

Case 2.— aj = l, ^ = 2,

(II «V) a = - 2 .

(Straight lines) c? = 1 or 2, and if d = 2, then e <; 0.

The first sum now consists of three sorts of terms:

one with ax = 1, dx •=. 2, e = 0, /3 = /3ls say;

a set with a = 0, d := 2, e < 0 ; let 22 refer to these;

a set with a = 0, d = 1; let 2a refer to these.
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Using a curve of degree i0u+/31-|-£2/8), we find

<II x2) 4j81+42aj8+2llS = - 4 ,

(I x) 2&+22aj8+21/8+2i;i = 2,

whence A + ^ / S = — 3 + | 2 ^ > — 8.

Therefore A+22i8 = — 3 or - 2 .

In the first case, every »? = 0, every 0 ^ 0 ; further,

(II a;) 422£e+221/3e = 4r,

(II) 2.2/3e+ 21|8e+20j = 2i/-8l

— 22/3e + 20* = - 3 .

But in every term of S2 we have /3 ̂ s 0, e < 0 ; in the last equation,
every term on the left ^ 0, which is impossible. Hence we must have

Now use a curve of degree /* —1 determined by lti~3(fx — Sf51, we find that
in any term of 22,

e > —2.

Hence 22 consists of two terms, say ffif~l$\x~'2.
Now use a curve of degree y = i(ju — 2+_p), p = 0, 1, 2, 3, or 4,

determined by F " 1 (2?/)1. This leads to

where 2 e is 0 or the sum of the values of e at any set of p out of the
00

four points of 2X.

(II a;) . 4Z2(

Use a curve of degree IJ. determined by lM~'2(/x — 2)251:

Since 2 ^ = 2, there are the usual two sub-cases.

Case 2 i— ^ = 2, 2»;i2 = 2, i = 1.
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(II x) -4/8s-2j89+21/8e = 2i / - l ,

(I 1) - 2 f t - ft+S^e +0! = 2i/-8,

(II 1) 4ft+ ft+2^+01 = - 1 ,

2ft + 21/3e2 =1.

Hence ft = 0, and in 21} for one of the four points, e2 = 1, e = + 1 , and
for the other three, e = 0.

With the upper sign, the equations give

ft=l-r/, ft = -

and with the lower,

0t = -v, ft = -

The two solutions are given in the table.

Case 2 i i . — rj.2 = 1, 2>/i2 = 4, i = 1 or 2.

(11 x) 2 2 ^ + ^ / 3 6 = 2 . - 2 .

Now we have shown

22/3e<»s 2a)Sc + 21)9e<i/> and also 22/3e < 0.

Hence there are three possibilities :

22ft = „-*/, £1/3e = 2?/-2, y = 0, 1, 2,

provided v—?/ ^ 0.

We have also proved 2l2fie-\-'2e ^ .,
(p)

whence 2e <: ?/, _p = 1, 2, 3, or 4.
(P)

Thus for each value of y there are two sets of values of e in 2t . The
simultaneous values are given in the following list:

y ex e2 e3 e4 2a^e2

0 0 0 0 - 2 4

0 0 0 - 1 - 1 2

1 1 0 0 - 1 2

[ 1 0 0 0 0 0]

2 2 0 0 0 4

2 1 1 0 0 2.
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We can now determine all the remaining constants in terms of one of
them, say ft, from the relations

ft+ ft = - 2 - A ,

—ft—2ft = v—y,

(I 1) - f t - ^ f t + S ^ e +^+202 = 2i/-3,

(II 1) /32+4i83+21)Se2+ei+4e2 = - 1 ,

The solution is ft = y—2 — y+ ft,

ft = —"

Now we must have ft ^> 0, 0X ̂  0,

which give — v-\-y > 2ft ^ —

and also, by addition, Sj/Se2— 1 ^ 0,

which excludes one line of the list.
Since ft !> 0, we see again that v—y ^. 0. We can take any arbitrary

value of v ^ y; there are then either two or one value of ft according as
SjiSe2 is 4 or 2, the form of ft in terms of v depending on whether v is
even or odd. As before, let

— v = p = 2cr-f-T, T = 0 or 1 ;

in the five surviving cases of the list we find

/ 3 3 = (T Or <T—1, <T, <T-\-T, ( 7 + 1 01' (7, O " + l ,

which give the seven types tabulated below.
We can prove that they actually exist as follows.
Certain quadratic transformations have the effect of altering the values

of the constants, in a way depending on the multiplicities of the points
used, as follows:
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Multiplicities. Effect.

n—Zx 2x %x ix — 2 for /x

n—2x 0 0 /x + 2 for /x

n—2x 2x Zx — 1 /x —2 for Mi " + 1 for v

n—2x 1 0 fx + 2 iov n, v—1 for »/

?i—2a: 2z 2^—2 M—2for/x, i/+2 for i/, ft—1 for ft

?&—2z 2 0 /* + 2for,u, i/—2 for J/, ft+1 for ft

provided none of these changes introduces a negative number of points.
By combining these, we can independently vary

A* by ±2 , i, by ± 1 , ft by ± 1 ,

and the existence of each type depends on that of the particular case in
which these parameters have their extreme values,

fi = 2 or 3, v- y, ft = 0,

and these are ten types found in §§ 3, 4.
This exhausts the possible types with n = x/x+v where x, ix can take

all values > certain lower limits depending on J\ In every case, v has
an upper limit ^ 2, but can take an infinite number of negative values.

Many types can be constructed, with n depending on three or more
parameters, by compounding two or more of the foregoing types. The
parameters of the new type are those which already occur in the com-
ponents and a new set determining the coincidences of jP-points. Thus
(R. m) is compounded of a C. 1 of degree x and a C. 2 of degree ix-\-v, the
(x — l)-fold point of the C.I being of multiplicity v for the C. 2, where
v = 0, 1, or 2. Since v has just three different values, the numbers of
simple and double .F-points in the result can be expressed as quadratic
functions of v.

Another example is Palatini's formula for compounding three
de Jonquieres transformations, frequently referred to above :

(P) n = n^N-Vih-Vi^-D-l'", N = n^—l,

Owing to its large number of parameters, this includes, as particular cases,
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a great many of the types which we have been examining, but as it admits
only seven different values of i other than unity, it is not exhaustive, for
at least one of our types has eight.

n = x/ti—p, p = 2o-f*T.

li . 1 — ( 2 M - P - 2 ) * ( p + i r 1 (fce-p-2)1

lii. 1^(2^-0— T - ^ T * " 1 (cr+1)*-2 (cr_(r_2)2(3_T)i

1X+1SX

(aj-o— 2)2(3-V)1

(X — cr— l)a(l—T)1

- o — T-2)2^r2r-1 o-21-2 2a:2r;-1 (a;—a—1)2(1—T)1

- ^ x - o — T - 1 ) 2 T1

(s-o—8)9(8—r)1

-2x(/UL-<T-r-3)2j5 T2*"1 (cr+l)2a:-22r+12j; (iC-cr-2)a(l—r)1.


