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I. Degenerate Homaloids.

A plane Cremona transformation of degree n transforms the straight
lines of the first plane into a homaloidal family in the second plane ;
that is, into a doubly infinite family of rational curves of degree n, such
that two general curves of the family meet in one and only one variable
point of intersection. The remaining intersections are all accounted for
by the base points common to the whole family. The straight lines of
the second plane are transformed into a homaloidal family in the first
plane, also with a set of base points.

To every point p in the first plane there corresponds a unique point P
in the second plane : except that to a base point a there corresponds not
a single point but a curve J. The set of curves J corresponding to the
whole set of base points, taken with proper multiplicities, constitute the
Jacobian of the second homaloidal family.

To a straight line I passing through a there corresponds a homaloid
which breaks up into J, corresponding to the single point a, and a rational
curve 0 of degree less than n, corresponding to all the rest of I. Then J
meets <p in one point other than base points; J is exactly determined by
its passages through base points, and 0 has one degree of freedom, corre-
sponding to the one degree of freedom of the straight line I through a.
We have thus a singly infinite family (<p) of rational curves, which are
transformed into straight lines by a Cremona transformation of degree
higher than that of <p.

If I joins the base points a1} a2, the corresponding homaloid breaks up
into JJf Jo,, <p, where Jly J2 are Jacobian curves, and <j> corresponds properly
to I. Each of Jx, J2 meets 0 in one point other than base points, and <f>
is exactly determined by its passages through base points. If three or
more of the base points a lie on a straight line I, to this there corresponds
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properly a rational curve <f>, which is more than determined by its passages
through base points, which means that the conditions presented to it, by
the required multiplicities at the base points, are not independent: but
are related to one another in the same way as are the conditions presented
to the straight line I by the collinear points a.

Now, if we are given the rational curve <j>, determined or over-determined
by the conditions of having certain base points of assigned multiplicities,
the question arises whether we can always regard it as the effective part
of a degenerate homaloid of higher degree. The answer is negative, and
in the third part of this paper an example is given of a rational curve
which cannot be transformed into a straight line by a Cremona transfor-
mation of however high degree.

Assume that <f> is the effective part of a degenerate- homaloid of degree
n-\-v, the remaining part consisting of an aggregate Jv of degree v of k
curves J belonging to the Jacobian of the homaloidal family. Then Jv

has no multiple points except the base points of the family, and no two
curves J intersect elsewhere ; each / meets <f> at one other point. Let 2
extend to all the base points of the family, including all the assigned
multiple points of <j> and possibly other points. Let <j>, Jv have r, p
branches respectively through a specimen base point; for the additional
points introduced into 2, the value of r is 0 or 1. There are a series of
geometrical facts expressed by equations between these numbers.

<f> is rational: 2 £r (r — 1) = £ (n — 1) (n—2).

<j> can be transformed into a straight line I passing through the k base
points in the other plane which correspond to the k curves / ; if all the
conditions, presented to <f> by its assigned multiple points, were indepen-
dent, it would have 2—& degrees of freedom. We shall say that the
apparent freedom is 2 — k; if &>2, the conditions cannot be independent:

The multiplicity r-\-p of <p.Jv at each base point is the same as that
of a homaloidal family of degree n-\-v ; this family is rational:

and has two degrees of freedom:

2*(r+p)(r+/>+l) = *(n+i/)(n+H-3)-2.

Jv is an aggregate of k rational curves, and is therefore of genus
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— (k—1); all its singularities occur in 2 :

and /„ is exactly determined :

All but k of the nv intersections of <p, Jv fall at base points :

2?Y> = nv—k.

These are equivalent to five independent equations :

= n2-l+k, Sp2= ifi+k,

2 / J = Sv — A;,

= nv—k.

Now in the case studied below, of a sextic with ten double points,

n = 6, r = 2, 1 or 0, 2rp < 22p,

/—k), &<0,

which is impossible if k is positive. It will be shewn that this curve
actually exists ; and it cannot be transformed into a straight line by any
plane Cremona transformation whatever.

It can, of course, be mapped on a straight line by a Riemann trans-
formation ; for example, a quartic curve of the singly infinite family,
determined by the ten double points and three fixed simple points of the
sextic, meets the sextic in one variable point P, whose coordinates are
therefore rational functions of the parameter of the family, which may
be taken as the coordinate, on a straight line, of a variable point P'
corresponding to P.

The sextic can also be transformed into a curve o? lower degree by
a Cremona space transformation ; the sextic is the projection of a twisted
sextic with one actual double point, which is the residual intersection of av

sextic cone with ten double edges, standing on the plane curve, and a
cubic monoid, with the same vertex as the cone, passing through nine
of these edges. The twisted sextic is projected from its double point
into a plane quartic. This succession of projections can be brought about
by a single Cremona space transformation, which does not, however,
transform the rest of the plane of the sextic into the plane of the quartic.

2 c 2
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II. Extension of Noether's Theorem.

Noether* has proved that every Cremona transformation is the result
of compounding a series of quadratic transformations; because the sum of
the three highest multiplicities of a homaloidal family at base points is
always greater than the degree of the family, and a quadratic transforma-
tion, with these three points as fundamental triad, lowers the degree of
the family. So instead of seeking a Cremona transformation of higher
degree, which transforms <f> into a straight line, we may seek a quadratic
transformation which lowers the degree of the curve.

Noether's proof rests on a manipulation of the equations which express
that a homaloidal family is rational:

and that it has two degrees of freedom :

Z*r(H-l) = in(n+8)-2,

or the equivalent pair
2 w2—1, 2 r = Sn—3,

where n is the degree of the family, 2 extends to all its base points, and r
is the multiplicity of one of them.

Assume that there are at least three multiple base points; the other
cases are trivial, and require separate treatment. Let x, y, z be the three
highest values of r, and let 2' denote a summation from which these three
points are excluded. Let

x = z+\, y =

then X > ix > 0, z > r, z > 1,

2V2 = n 2 - l - a : 2 - - ? / 2 -* 2 ,

2'r = 3n—3—x—y—z.

Multiplying the second of these by z and subtracting the first from it,

which can be put in the form, obtained by Prof. Baker in a more general

* Math. Annalen, Bd. 3, p. 167; Bd. 5, p. 635.
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case,

(x+y+z-n)

Now M-I-X+M, z — 1, 2 are positive; r, z—r, X, fx are positive or zero;
the right-hand side of the last equation is positive, and

x-\-y-\-z > n.

We generalize this as follows: for any curve <p of degree n having
assigned multiplicities r at the points included in 2, let

SJr ( r - l ) = £(w_

2*r(r+l) = i»

whence Sr2 = n2-\-l— p —f = »2—i say,

Then ?̂ is the genus of </>; it cannot be negative if 0 is a proper curve; /
is the apparent freedom of the family having the same multiple points as
0 ; if the conditions which these points present are not independent, / can
be negative. If there are at least two curves of the family, i = / + p — 1
is the number of their intersections which do not fall at base points; it
can be negative, if there is only one curve <j> having the assigned multiple
points.

As before, let x, y, z be the three highest values of r, and let these
three points be excluded from 2'. We find the relation

(x+y+z—n)(n+\+fi)

-2p . (I)

The conclusion x-\-y-\-z > n follows in a great variety of cases besides
that of the homaloidal family, p = 0, / = 2, just considered. It applies
to :

any family of curves of genus 1, p = 1, />= 1;

any family of rational curves, p = 0, / = 1 or 2 ;

any rational curve exactly determined, p = 0, / = 0;

any rational curve for which one of the conditions is a consequence of the
others, so that the apparent freedom is — 1 ,

p = 0,f=-l.
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It also applies, but not so obviously, when p = 0, / = — 2. The
right-hand side of (I) is then

and is certainly positive unless X = /* = 0, x — y = z. Now 2' extends
to multiple points for which z ^ r ^ 2. The terms for which r = z are
each zero ; let /3 be the number of effective terms, for which r < z ; then
ft ^ 0, and since

r{z-r) = ( r - l ) ( * - r -

therefore 2V (0—r) > /3 (0—1),

and the right-hand side of (I)

and is positive unless p = 0, z ^ 3. Then r = z = x = y, and all the
multiple points are of the same order z; let their number be a; the
original equations give

therefore z = 5—J--, 2—3 = v /
8+l

Since n and Sra+l have no common factor, 3 n + l is a factor of \n—9 |,
which could only be if either

(i) n = 1 or 2, 0 = 1,

-which is impossible since the base points are multiple, or

(ii) n = 9, z = 3,

but then a is not integral.
If p = 0, / = — 8, the ,right-hand side of (I) is

if this is not positive, X = /J. = 0, and it becomes

2'r(2—r)— 22+4 ^ (/3_2)(»—

which is positive unless either

(i) £ = 0, x = y = z = r > 2,

or (ii) # = 1, x = y = z > 3 .
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(i) If /3 = 0, as before,

Z ~ 3 n + 2 ' Z~ ~~ 3n-f-2 '

and since n, 3n-\-% can only have the factor 2 in common, 371+2 is a
factor of 2 | w—6 | . This can only be if n = 1, 2 (which do not apply)
or 6; hence n = 6, z = 2, a = 10, and we are led again to the sextic
with ten double points.

(ii) If /3 = 1, there are a—1 ( > 3) base points of multiplicity * (> 3),
and one of lower multiplicity r ( ^ 2), then

(a-1) ,^+r2 = 7i2+4 > 31, n > 6, r2 < ?i2-23,

therefore

If 71 = 6, r = 2 or 3
7, 2 ... 5
8, 2 ... 6
9, 2 ... 7

10, 2 . . . 8

and the only case in which z is an integer
above 2 is

n = 9, r = 2, s = 3, a = 10.

If / = — 3, then whatever the genus,

= 3a2+6a3+10a4+15a5+21a6+28a7+.. . ,

where ar is the number of base points of multiplicity r. If, as before,
£+2/-f*<rc> then n > 6, since 2 > 2.

If 71 = 6, £ = y = z = 2, a2 = 10, the case already referred to.
If n = 7 or 8, r <; 7, and casting out the threes, a4 + a7 = 2 (mod 3);

there are at least two fourfold or higher points, and x-\-y-\-z > 8.
Thus the rational sextic with ten double points is the simplest curve,

as regards genus, degree and freedom, which cannot be transformed into
a curve of lower degree by any plane Cremona transformation. The next
curve is of degree 9 at least.

III. The Sextic with Ten Double Points.

The total intersection of a quadric and a cubic surface is a twisted
sextic curve with six apparent double points. If the two surfaces touch
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at four points the sextic has, in addition, four actual double points, and
its projection from any point of space on to any plane is a plane sextic
with ten double points. This way of generating the curve was suggested
by Mr. Richmond.

Take homogeneous coordinates xxx2x3x4, the four points of contact
A1A2A3A[ being the corners of the tetrahedron of reference. The general
quadric through these points is

Q = a1x2x3+a2x3x1-\-asx1x2+a'iX1xi+a'2x2xi-\-a'3x3xi = 0, (1)

•or, say, 2Q = x1u1+x2u2+x3u3-]-xiui>

where ux = a3x2-{-a2x3-\-a[x4, ..., u4 = a[x1-\-a^x2-{-a^x8,

and ux ... u4 are the tangent planes to Q at Ai... A[.

The general cubic surface touching the same planes at the same
points is

+ bix1x2x3 = 0, (2)

and the total intersection is a twisted sextic S with four actual double
points Ax... A\.

(i) S is in general a proper sextic. It also lies on the surface

C' — Q(c1x1-\-...+c4xi) = b[x2x3x4+... + b[x1x2x3 = 0, (3)

where b[... K are other constants, and its projection from A\ on the plane
AiA2As is given by eliminating xi between (1) and (3). We find

{^x^+b'zXzXi+b'zXiX^isL^x^a^x-L+a^Xz)—b'^x^x^^ = 0,

which is a proper plane quartic if ax ... bi have general values. Hence, if
S broke up, it could only be into one or two straight lines through A[ and
a proper residual of degree 5 or 4 ; but by the same argument, the straight
lines would have to pass through each of Al... A'4, which is impossible ;
therefore S does not break up.

(ii) S has six apparent double points. Take any two points
Y(yi, y2,y$, yd, Z, of space, and express the condition that the straight
line YZ shall meet S in I ; then X lies upon Q and C. We may put
x = \y-\-fxz for all suffixes ; let the result of substitution be

= 0,

= 0.
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Eliminate \ : /x; this gives the equation

F= 0, 0, Qn, O12, Q22 = 0 ,

0 , C m , Cll2, Ci22> ^222

C m , C112, C122, Ca22> 0

of degree 6 in y, 6 in z. If Y is fixed, this equation in z represents the
sextic cone projecting S from Y and vice versa.

If Y is a point of S, then Qn = Cm = 0 : we can divide by /J. before
eliminating, and obtain

K' = 0, Q12, = 0,

C112, Ci22» C222

of degree 2 in y, 5 in 0. If Y is fixed, this equation in z represents the
quintic cone projecting S from Y. If Z is fixed, this equation in y repre-
sents a quadric, meeting S in twelve points Y, which are such that each
of the cones projecting S from these points passes through Z; in other
words, such that each of the straight lines YZ meets S again, in another
of the twelve points of intersection of the quadric K'(y) with S. These
twelve points therefore fall into six pairs, each collinear with Z; as
viewed from the arbitrary point Z, the curve S has six apparent double
points.

(iii) The six apparent double points of S are in addition to its four
actual double points. If the coordinates (1, 0, 0, 0) of Ax are substituted
for y,

Qn becomes EE uz say,

C[122

and K' breaks up into uz and another factor, but does not vanish. Hence
K' (y), which contains the ends of the six chords of S through Z, does not
contain the four actual double points, which are therefore in addition to
the apparent double points.
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(iv) The six chords of S through any point lie on a quadric cone. If
we put y = z, Q12 becomes 2Q22, and (7m, £122 each become 3C222; then

K- — Q<22 C/2222 0,

2,

3,

2,

1.

3,

1

0

1

— — Q22 G2222 .

which does not vanish; K'(y) does not in general pass through Z, and the
six chords of S are not generators of K'iy), unless Z lies either on Q or
on C.

This investigation holds if instead of C we take G = C' + Q.P, where
P is any plane, for G is another cubic surface through S, and touches the
same planes as C at A1... A\. We have thus a whole family of quadrics
(K) such as K' through the same twelve points of S, which is, in fact, the
family K'-\-\Q. In particular, if P is chosen so that G passes through Z,
we have C222 = 0, and K vanishes when we put y = z. This quadric K
passes through Z, meets each of the six chords of S through Z in three
points, and therefore contains them altogether. Hence K is a quadric
cone on which the six chords lie.

Since now C222 = 0, we have identically

— V22 say,

F = Q22 °> Qu> Qn> Qi

QlV Ql2> QQZ> 0

0, t ' l l l * ^112> ^ ]

111» ^ 1 1 2 ' '-'122> w

= = -^2 (V12 ̂ 111—Qii ^112) "T (Qn ^

say,

say,

where

the suffixes shewing the degrees in y. Here F6, K2 are cones containing
the six chords of S through Z, which are double edges on FG; this identity
shews that they also lie on the cubic surface K3. They are therefore
double on K\ as well as on F6; therefore, by the same identity, they are
double on K%.K±. Since they are simple but not double edges on K2,
they lie on K4.

The four actual double points Ax... A\ of S are double points on F6;
they lie on Q, C, and their coordinates make Qn, C1U vanish ; they there-
fore lie on K3, Kit but not on if2. They are double on F6—IQ, and there-
fore double on K^.K^; since they do not lie on K2, they are double on if4.
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The point Z lies on C but not on Q. It is six-fold on F6, and double
on K2; the substitution of z for y make Cm, Cu2, C222 all vanish, so Z lies
on jKg and K±. It is therefore triple at least on FG—K2.Kit and therefore
triple on Kz; this can only be if it is double on K3. It is then fourfold

on FQ—KS, and therefore fourfold on K2.K4; since it is double on K2, it
is double on if4.

These multiplicities can be set out in a table:

Surface. The Six Chords. Ax... A'K Z

FG 2 2 6
K2 1 0 2
K3 1 1 2
Z4 1 2 2

Take the sections of these four surfaces by the plane AXA2A3, by
putting y4 = 0. Let the six chords meet the plane in Bx... B6, and let
A'iZ meet it in A4. The four plane curves are:

a sextic/6 with ten double points at Ax, A2, A3; A4; BX...B6; this will
be indicated by fG(Ax ...A^BX...B^f;

a conic k2 (Bx... B^}1;

a cubic k3{AxA2A3Bx... JBg)1;

a quartic ki(AxA2 A3f (Bx... BJ1;

yfith. the relation / 6 = &2.&4-t-fc3.

The existence of/6 presents three conditions to the ten points AX...B6;
k2 gives a single condition, among Bx... B6: we shall call it a condition
curve; k3 gives no condition, it is exactly determined by its nine simple
points; &4 is another condition curve, for it is exactly determined by its
three double points AXA2A3 and five simple points BX...B5: there is
therefore one condition that B6 should lie on this quartic.

There exists another cubic k'z determined by passing through the
nine points A2A3A^Bx... B6. Then /6+X&'3

2 is a family of sextics
k6(A2A3AiBx... JB^2, and each meets k2 in Bx... B6 counted twice and no
other point. If we use X to make k6 pass through another point of k2, it
must break up into k2, which passes through Bx ...B6 once and not through
A2A3Ait and a quartic k\{A2A3A^{Bx...B^1. Similarly there exist two
other condition quartics k'i(AxA3Ai)

2(Bx...B6)
1 and hi'(A1AaAJa(B1...BjL:

the point A4 is on exactly the same footing as AXA2A3.
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By employing other exactly determined curves instead of these cubics,
we can prove that there exist an unlimited nnmber of condition curves of
higher degree determined by the ten double points of the sextic: see
below. Each of these curves, whose existence gives a single condition, is
of apparent freedom — 1.

To obtain the actual equation of the plane sextic, put y4 = 0 in the
determinant F&. In order to simplify the expressions, take the coordinates
of Z to be (1, 1, 1, 1); there is no loss of generality, as Q, C have no
metrical properties. Also when we replace C by C = C'-\-Q .P, we can
use the four coefi&cients of P to make the new cubic surface not only pass

%j x.

through Z, but also have double points at AlA2A3. The effect of this is
the same as if in C we assume

c l — C2 — C3 — 0,

and the plane curve is

= 0,

C112> C122>

= 0,

where

#22 =

m =

C122 =

The equation of/6 contains the eleven constants
subject to one condition; as the first ten enter homogeneously, there are
nine independent parameters. In the plane, we have fixed the coordinate
system by taking AXA2A3 as the triangle of reference and assigning the
coordinates (1, 1, 1) to A4. The twelve coordinates of the remaining six
double points Bx... B6 are functions of the nine parameters, and are
therefore connected by three independent relations. It is probable that
the existence of three condition curves, for example k2, kit k*, ensures the
existence of / 6 ; but I have no proof that this is so.
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IV. Transformations of the Sextic.

A quadratic transformation, with any three of the ten double points
A, B as fundamental triad, transforms /6 into another plane sextic with
ten double points, but these may be differently grouped. If the funda-
mental triad is B4B5B6,

f 6 ( A 1 . . . AiB1... Bb)
2 becomes h^{Ax... A4BX... B6)2,

y... B 6 ) \

and for these new curves there is the identity /*6 = hxh5-\-h\. Apparent
freedom is not altered by the transformation ; h3 is exactly determined,
and hlf h5 are condition curves. The ten double points of h6 are grouped
into three collinear points B±B2B3, and seven others, instead of into six
points on a conic, and four others.

There are seven cubics such as h3, each exactly determined by passing
through the three points of the first group and six out of the seven points
of the second group ; four of these cubics arise by transformation from
the four curves such as ks; the other three, such as h'z(Ax ...AiB1 ...Bg)1,
arise from the exactly determined quartics such as

As above, a discussion of the family h6-\-\hl proves that one of its mem-
bers breaks up into. \ and h5; and so we can prove the existence" of the
four condition curves such as h5; in just the same way, a discussion of
/jg+X/^2 proves the existence of three condition curves ti5, passing once
through B1B%B3, and twice through the remaining sets of six points out
of the seven of the second group. li5{Al ... A4B4B^{BXB2B3)

1 arises
from Zc6(B4B5)

3(^41... ^44)
2(B1B2B3B6)

1, which is a condition curve con-
nected with the original sextic, and whose existence could have been
proved independently. Since Jc'6 divides the six B's into two sets of two
and four points, there are fifteen such curves ; the remaining twelve give
by transformation other condition curves, connected with the second type
of sextic which has three collinear double points. These two principles,
of transformation and of symmetry, lead to an infinite number of condition
curves connected with either of the two types of sextic with ten double
points.

Instead of the triad BBB in the auxiliary quadratic transformation,
we can use a triad ^4BB, AAB, or A A A, and we are led to other types of
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sextics, each with ten double points grouped in some way, and a series of
condition curves connected with each. In particular, a transformation
using A1A2B1, followed by another using A3AiB1 (equivalent to a single
cubic transformation) transforms the original k2 (Bx ... B6)

1 into a
ki{B1)

3(A1... A4B2... BJl, and transforms the original &4's into other
quartics with triple points; there is now no grouping of the ten double
points, which are all on the same footing for this type of sextic.

If we apply quadratic transformations systematically, using every
possible variety of triads, to every type of sextic that arises, we obtain
five different types and no more, given by the following table.

Reference
Number.

1

2

3

4

5

Grouping of
Double Points.

Al...A,;Bl...B,

A^,; Bi...B,

Ax . . . ^ 4 i 0

Simplest
Condition Curves.

MB,.. .B6)i

(three such)

kA(Air(A,...Al0y
(ten such)

Some other Condition Curves.

k9(Al*Ai)(Bl...BJ)*

ki(Bl...B6)-(AlA,A,y

M 5 l ) 3 ( 4 l W ( ' - 5 7 ) 1

In the first type, what is for the sake of uniformity called Jc0, a curve
of zero degree, is a single point. Two of the double points, A1A2, coin-
cide, and the sextic has a tacnode there; we may think of A 2 as the point
adjacent to Ax along the tacnodal tangent. Each of the condition curves
k6, k8 has three branches through Av one of which, passes through A2,
that is, touches the tacnodal tangent.

The existence of any of the condition curves in the last column can be
proved, if we assume the sextic and any other condition curve of the same
row, by considering a suitable curve exactly determined, corresponding to
&3 in the original discussion, and obtained from it by some series of trans-
formations. For example, in the original case (3), to prove the existence
of k6 we assume k2 and consider the exactly determined quartic
ki(BlB2)

2(A1...AiB3...BJ\ Then f6.[_k1(B1B2)
l]2+\kl is a singly
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infinite family of octavics k8(BlB^ii(A1... AiBs... B6)
2, each meeting

ft2 in the equivalent of sixteen points at Bx... B&, and in no other point.
One member of the family therefore breaks up into k% and another condi-
tion curve k6{BlB2)

3{A1... AA)2(B3 ... -B6)\ All the properties of any one
type follow from the existence of any one of its condition curves ; if there
exists a condition quartic with three double points, the type is (3), and
so on.

In order to prove that a certain quadratic transformation changes a
certain type into a certain other type, we only have to prove that it
changes the simplest condition curve of the first type into some condition
curve of the second.

Applied to type (1), a quadratic transformation using BXB^BZ does not
alter the type; using AXBXB^ it gives type (2), from which (1) was
originally derived. A specialized transformation, with two fundamental
points coinciding at AXA^ does not alter the type.

Whatever the triad, the kx and k2 of types (2) and (3), and suitable
ones of the &3's of type (4), and of the &4's of type (5), are all transformed
into rational curves of degree ^ 4. If the degree is 0, 1, 2, or 3, the type
obtained is (I), (2), (3), or (4) ; while the two kinds of rational quartics,
with three double points or one triple point, give types (3) and (5) respec-
tively.

All these condition curves are rational; the only other curves of
degree 6 or less, of any genus determined or over-determined by ten or
fewer base points, are such that if we identified the base points with the
double points of/6, the number of intersections with / 6 would exceed the
maximum, and /6 would either break up or coincide with the condition
curve ; as, for example, ^(lO)1 or A;6(9)2(l)1.

The curve A;6(l)
3 (7)2 (I)1 only appears in the particular case when the

simple point is adjacent to the triple point, type (1). This can be proved
directly : assume the existence of /6C4.B1....B7CJD)2 and k6(A)*(B1...B1)*(C)1.
Then / e + X ^ g U ^ ... ^ C ) 1 ] 2 is a family of sextics k'6{ABx ... £7C)2, each
meeting k in 36 points. If we use X to make k' contain any other point
of k, it coincides with it entirely. For this value of X therefore,

k=f6+\kt=k'UBl...B1C)\
shewing that k has a double point at G and not merely a simple point as
assumed. But k is already rational, and cannot have an additional double
point; therefore G coincides with one of the other singularities, either A
or B, where / 6 has a tacnode, two distinct branches touching the same
tangent line I, and ks touches I also ; while all the family k', including k,
have two branches touching I at G. If G coincided with B, then k would
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have a tacnode, which reduces the genus by two, so that k would break
up; hence G coincides with A. Then k has a triple point with one
branch touching I; the other two branches form a curve having a double
point at A, which curve must be considered as touching any straight line
through A, and therefore touching I; and k must be considered as having
two branches through A touching I. But the triple point is not specialized,
and does not reduce the genus by more than before.

The equation of the singly infinite family k' having a tacnode at
.4(1, 0, 0), both branches touching #3 = 0, has the form :

(a+b\)x\x\+x\x2 {(c1+^1X)^+(c2+^2X)a;2^3+(c3+^3X)a;3l

terms of lower degree in x1 = 0,

and k is the member of the family for which X = — a/b, the first group
of terms is absent, and k has an ordinary triple point, one branch touch-
ing x2.

There probably exist other types of the sextic, which are such that no
combination of the three conditions among the ten double points expresses
the existence of a curve. But we can shew, generally, that if a condition
curve exists, of any degree, genus or negative freedom, then the sextic is
of one of the five types enumerated.

Let a proper curve kv of degree v be over-determined by passing pk

times through the point Ajc {k = 1 ... 10, p ^ 0); let its genus be p and
its freedom/:

2)_p {p>Q)}

/ ( / < - 1).

Double and subtract:

2 2/0 = 6v+2(p—f— 1).

If the A'8 are the double points of /6(10)2, then 22p is the number of
intersections of kv,/6 which fall at A's ; if the curves do not break up nor

coincide, V O ^ - A « / I -^ A
2/2/O^DI/ , p—f—1^0,

which can only be so if
p = 0, / = - l ,

and kv is a rational curve of freedom —1 ; and as we saw in Part I, it can
be transformed into a straight line kx (3)1 by a series of quadratic trans-
formations, using triads of its multiple points, which changes ke into
another sextic with ten double points, which is of type (2) because of the
existence of kv It was therefore formerly of one of the types which arise
from (2) by quadratic transformations, which are the five types enumerated
above.


