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IS THE AFFINE SPACE DETERMINED BY ITS

AUTOMORPHISM GROUP?

HANSPETER KRAFT, ANDRIY REGETA,
AND IMMANUEL VAN SANTEN (BORN STAMPFLI)

Abstract. In this note we study the problem of characterizing the
complex affine space An via its automorphism group. We prove the fol-
lowing. Let X be an irreducible quasi-projective n-dimensional variety
such that Aut(X) and Aut(An) are isomorphic as abstract groups. If X
is either quasi-affine and toric or X is smooth with Euler characteristic
χ(X) 6= 0 and finite Picard group Pic(X), then X is isomorphic to An.

The main ingredient is the following result. Let X be a smooth irre-
ducible quasi-projective variety of dimension n with finite Pic(X). If X
admits a faithful (Z/pZ)n-action for a prime p and χ(X) is not divisible
by p, then the identity component of the centralizer CentAut(X)((Z/pZ)n)
is a torus.

1. Introduction

In 1872, Felix Klein suggested as part of his Erlangen Programm to study
geometrical objects through their symmetries. In the spirit of this program
it is natural to ask to which extent a geometrical object is determined by its
automorphism group. For example, a smooth manifold, a symplectic man-
ifold or a contact manifold is determined by its automorphism group, see
[Fil82, Ryb95, Ryb02].

We work over the field of complex numbers C. For a variety X we denote
by Aut(X) the group of regular automorphisms of X. As the automorphism
group of a variety is usually quite small, it almost never determines the
variety. However, if Aut(X) is large, like for the affine space An, this might
be true. Our guiding question is the following.

Question. Let X be a variety. Assume that Aut(X) is isomorphic to the
group Aut(An). Does this imply that X is isomorphic to the affine space An?

This question cannot have a positive answer for all varieties X. For ex-
ample, Aut(An) and Aut(An × V ) are isomorphic for any complete variety
V with a trivial automorphism group. Similarly, the automorphism group
of An does not change if one forms the disjoint union with a variety with a
trivial automorphism group. Thus we have to impose certain assumptions on
X. Moreover, we assume that n ≥ 1, since there exist many affine varieties
with a trivial automorphism group.
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In [Kra17], the first author studies the problem of characterizing the affine
space An by its automorphism group regarded as a so-called ind-group. It is
shown that if X is a connected affine variety such that Aut(X) and Aut(An)
are isomorphic as ind-groups, then X and An are isomorphic as varieties.
For some generalizations of this result we refer to [Reg17].

In dimension two, a generalization of our guiding question is studied in
[LRU17]. For an irreducible normal affine surface X it is shown that if
Aut(X) is isomorphic to Aut(Y ) for an affine toric surface Y , then X is
isomorphic to Y .

In order to state our main result, let us introduce the following notation.
For a variety X we denote by χ(X) the Euler characteristic and by Pic(X)
the Picard group.

Main Theorem. Let X be an irreducible quasi-projective variety such that
Aut(X) ≃ Aut(An). Then X ≃ An if one of the following conditions holds.

(1) X is smooth, χ(X) 6= 0, Pic(X) is finite, and dimX ≤ n;
(2) X is toric, quasi-affine, and dimX ≥ n.

As a direct application of this result we get that Aut(An\S) and Aut(An)
are non-isomorphic as abstract groups for every non-empty closed subset S
in An with Euler characteristic χ(S) 6= 1.

Let us give an outline of the proof. Let θ : Aut(An)
∼
→ Aut(X) be an

isomorphism. First, we prove that if a maximal torus of Aut(An) is mapped
onto an algebraic group via θ and X is quasi-affine, then X ≃ An (see
Proposition 23). Our main result to achieve this condition is the following.

Theorem 1. Let X and Y be irreducible quasi-projective varieties such that
dimY ≤ dimX =: n. Assume that the following conditions are satisfied:

(1) X is quasi-affine and toric;
(2) Y is smooth, χ(Y ) 6= 0, and Pic(Y ) is finite.

If θ : Aut(X)
∼
→ Aut(Y ) is an isomorphism, then dimY = n, and for each

n-dimensional torus T ⊆ Aut(X), the identity component of the image θ(T )◦

is a closed torus of dimension n in Aut(Y ). Furthermore, Y is quasi-affine.

For the definition of the topology on Aut(X), the definition of the identity
component G◦ of a subgroup G ⊆ Aut(X) and the definition of algebraic
subgroups of Aut(X) we refer to section 2.2.

For the proof of Theorem 1 we first remark that every torus T ⊆ Aut(X)
of maximal dimension n = dimX is self-centralizing (Lemma 10). For any
prime p the torus T contains a unique subgroup µp which is isomorphic
to (Z/pZ)n. In particular, T ⊆ CentAut(X)(µp), and thus the image of T
under an isomorphism θ : Aut(X) → Aut(Y ) is mapped to a subgroup of
the centralizer of θ(µp) inside Aut(Y ). Our strategy is then to prove that
the identity component of the centralizer CentAut(Y )(θ(µp)) is an algebraic
group. Our main result in this direction is the following generalization of
[KS13, Proposition 3.4].
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Theorem 2. Let X be a smooth, irreducible, quasi-projective variety of di-
mension n with finite Picard group Pic(X). Assume that X is endowed with a
faithful (Z/pZ)n-action for some prime p which does not divide χ(X). Then
the centralizer G := CentAut(X)((Z/pZ)

n) is a closed subgroup of Aut(X),
and the identity component G◦ is a closed torus of dimension ≤ n.

For the proof of Theorem 2 we use the fact that p does not divide χ(X)
to find a fixed point of the (Z/pZ)n-action on X (Proposition 16), and the
smoothness of X to show that the fixed point variety X(Z/pZ)n is finite.

Acknowledgements. We would like to thank Alvaro Liendo for fruitful discus-

sions.

2. Preliminary results

Throughout this note we work over the field C of complex numbers. A
variety will be a reduced separated scheme of finite type over C.

2.1. Quasi-affine varieties. Let us recall some well-known results about
quasi-affine varieties. The first lemma is known for affine varieties and can
be reduced to this case by using open affine coverings.

Lemma 3. Let X, Y be varieties. Then the natural homomorphism

O(X) ⊗C O(Y )→ O(X × Y )

is an isomorphism of C-algebras.

Lemma 4. Let X be a quasi-affine variety. Then the canonical morphism
η : X → SpecO(X) is a dominant open immersion of schemes.

Proof. Let f : SpecO(X) → A1 be a morphism which vanishes on η(X).

Since f can be understood as a regular function f̃ on X, we get the following
commutative diagram

A1

X

f̃
::
t
t
t
t
t
t
t
t
t
t
t

η
// SpecO(X)

f

OO

which shows that f̃ = 0. This implies that η is dominant.
We have an open immersion ι : X → Y where Y is affine, and therefore a

decomposition of ι

ι : X
η // SpecO(X)

α // Y .

In particular, η is injective. For any nonzero f ∈ O(Y ) such that Yf ⊆ ι(X)

we see that ι induces an isomorphism Xι∗(f)
∼
→ Yf , hence the composition

ι′ : Xα∗(f)
η′ // SpecO(X)α∗(f) = α−1(Yf )

α′

// Yf
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is an isomorphism where η′ and α′ are the restrictions of η and α respectively.
Since ι′ is an isomorphism Xα∗(f) is affine and thus η′ is an isomorphism,
because O(X)α∗(f) = O(Xα∗(f)). Therefore, η is a local isomorphism, hence
an open immersion. �

Lemma 5. Let X be a quasi-affine variety and Y a variety. Then every
morphism Y ×X → X extends uniquely to a morphism Y × SpecO(X) →
SpecO(X) via X → SpecO(X). In particular, every regular action of an
algebraic group on X extends to a regular action on SpecO(X).

Proof. We can assume that Y is affine. By Lemma 3 we have O(Y ×X) =
O(Y )⊗CO(X). Hence Y ×X → X induces a homomorphism of C-algebras
O(X) → O(Y ) ⊗C O(X) which in turn gives the desired extension Y ×
SpecO(X)→ SpecO(X). �

2.2. Algebraic structure on the group of automorphisms. In this
subsection, we recall some basic results about the automorphism group
Aut(X) of a variety X. The survey [Bla16] and the article [Ram64] will
serve as references. Recall that a morphism ν : A→ Aut(X) is a map from
a variety A to Aut(X) such that the associated map

ν̃ : A×X → X , (a, x) 7→ ν(a)(x)

is a morphism of varieties. We get a topology on Aut(X) by declaring a sub-
set F ⊂ Aut(X) to be closed, if the preimage ν−1(F ) under every morphism
ν : A → Aut(X) is closed in A. Similarly, a morphism ν = (ν1, ν2) : A →
Aut(X) × Aut(X) is a map from a variety A into Aut(X) × Aut(X) such
that ν1 and ν2 are morphisms. Thus we get analogously as before a topology
on Aut(X) × Aut(X). Note that for morphisms ν, ν1, ν2 : A → Aut(X) the
following maps are again morphisms

A→ Aut(X) , a 7→ ν1(a) ◦ ν2(a)

A→ Aut(X) , a 7→ ν(a)−1

and that ν−1(∆) is closed in A where ∆ ⊂ Aut(X) × Aut(X) denotes the
diagonal. From these properties, one can deduce that Aut(X) behaves a bit
like an algebraic group:

Lemma 6. For any variety X, the maps

Aut(X)×Aut(X)→ Aut(X) , (ϕ1, ϕ2) 7→ ϕ1 ◦ ϕ2

Aut(X)→ Aut(X) , ϕ 7→ ϕ−1

are continuous and the diagonal ∆ is closed in Aut(X)×Aut(X).

Example 1. For any set S ⊆ Aut(X) the centralizer Cent(S) is a closed
subgroup of Aut(X). This is a consequence of Lemma 6.

For a subset S ⊆ Aut(X) its dimension is defined by

dimS := sup

{

d
∣
∣
∣

there exists a variety A of dimension d and an in-
jective morphism ν : A→ Aut(X) with image in S

}

.
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The following lemma generalizes the classical dimension estimate to mor-
phisms A→ Aut(X).

Lemma 7. If ν : A→ Aut(X) is a morphism, then dim ν(A) ≤ dimA.

Proof. Let η : B → Aut(X) be an injective morphism such that η(B) ⊆
ν(A). The statement follows if we prove dimB ≤ dimA. Since η is injective,
there exist points x1, . . . , xk ∈ X such that the map

η′ : B → X × · · · ×X
︸ ︷︷ ︸

n-times

, b 7→ (η(b)(x1), . . . , η(b)(xk))

is injective, see e.g. [Ram64, Lemma 1]. Let

ν ′ : A→ X × · · · ×X
︸ ︷︷ ︸

n-times

, a 7→ (ν(a)(x1), . . . , ν(a)(xk)) .

Since η(B) ⊆ ν(A), we get η′(B) ⊆ ν ′(A) and thus dimB = dim η′(B) ≤

dim ν ′(A) ≤ dimA. �

For a subgroup G ⊆ Aut(X), the identity component G◦ ⊆ G is defined
by

G◦ =

{

g ∈ G
∣
∣
∣

there exists an irreducible variety A and a morphism
ν : A→ Aut(X) with image in G such that g, e ∈ ν(A)

}

.

We call a subgroup G ⊆ Aut(X) connected if G = G◦. In the next propo-
sition, we list several properties of the identity component of a subgroup of
Aut(X).

Proposition 8. Let X be a variety and let G ⊆ Aut(X) be a subgroup.
Then the following holds:

(1) G◦ is a normal subgroup of G;
(2) The cosets of G◦ in G are the equivalence classes under:

g1 ∼ g2 :⇐⇒







there exists an irreducible variety A
and a morphism ν : A→ Aut(X)
with image in G such that g1, g2 ∈ ν(A) ;

(3) For each morphism ν : A→ Aut(X) with image in G, the preimage
ν−1(G◦) is closed in A. In particular, if G is closed in Aut(X), then
G◦ is closed in Aut(X);

(4) If X is quasi-projective and G is closed in Aut(X), then the index
of G◦ in G is countable.

Proof. (1): One can directly see, that G◦ is a normal subgroup of G.
(2): We first show that “ ∼ ” defines an equivalence relation on G. Re-

flexivity and symmetry are obvious. For proving the transitivity, let g ∼ h
and h ∼ k. By definition there exist irreducible varieties A, B, morphisms
ν : A→ Aut(X), η : B → Aut(X) with image in G and a1, a2 ∈ A, b1, b2 ∈ B
such that ν(a1) = g, ν(a2) = h, η(b1) = h, η(b2) = k. Then

A×B → Aut(X) , (a, b) 7→ ν(a) ◦ h−1 ◦ η(b)
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is a morphism with image in G that maps (a1, b1) onto g and (a2, b2) onto k.
Thus g ∼ k, which proves the transitivity. In particular, G◦ is the equivalence
class with respect to ∼ which contains the neutral element e. This implies
the statement

(3): Let
k⋃

i=1

Bi = ν−1(G◦) ⊆ A

be the decomposition of the closure of ν−1(G◦) into irreducible components
B1, . . . , Bk. Thus Bi ∩ ν−1(G◦) is non-empty. Since ν has image in G it
follows from the transitivity of “ ∼ ” that ν(Bi) ⊆ G◦. Thus Bi ⊆ ν−1(G◦)
for all i. Hence ν−1(G◦) is closed in A.

(4): Let ν : A → Aut(X) be a morphism. Since ν−1(G) ⊆ A is closed, it
has only finitely many irreducible components. This implies that its image
ν(A) meets only finitely many cosets of G◦ in G. The claim follows if we
show that there exist countably many morphisms of varieties into Aut(X)
whose images cover Aut(X). We will show this.

Since X is quasi-projective, there exists a projective variety X and an
open embedding X ⊆ X . For each polynomial p ∈ Q[x] we denote by Hilbp

the Hilbert scheme of X × X associated to the Hilbert polynomial p, and
denote by Up ⊆ Hilbp ×X ×X the universal family, which is by definition
flat over Hilbp. By [Gro95, Theorem 3.2], Hilbp is a projective scheme over
C. For i = 1, 2 consider the following morphisms

qi : (Hilb
p ×X ×X) ∩ Up → Hilbp ×X , (h, x1, x2) 7→ (h, xi)

which are defined over Hilbp. By [Gro66, Proposition 9.6.1], the points h ∈ H
where the restriction

qi|{h} : ({h} ×X ×X) ∩ Up → {h} ×X

is an isomorphism, form a constructible subset Sp of Hilbp. Now choose
locally closed subsets Sp

j , j = 1, . . . , kp of Hilbp that cover Sp. We equip

each Sp
j with the underlying reduced scheme structure of Hilbp. Note that

(Hilbp × X × X) ∩ Up and Hilbp × X are both flat over Hilbp. Therefore,
we can apply [Gro71, Proposition 5.7] and we get that qi restricts to an
isomorphism over Sp

j . Thus for each j we get a morphism of varieties

Sp
j ×X

(q1|Sp
j
)−1

// (Sp
j ×X ×X) ∩ Up

q2|Sp
j // Sp

j ×X // X

which defines a morphism Sp
j → Aut(X). For each automorphism ϕ in

Aut(X), the closure in X ×X of the graph Γϕ ⊆ X ×X defines a (closed)
point in the Hilbert scheme Hilbp for a certain rational polynomial p, which
belongs to Sp. Thus the images of the morphisms Sp

j → Aut(X) cover

Aut(X). Since there are only countably many rational polynomials, the claim
follows. �
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We say that G is an algebraic subgroup of Aut(X) if there exists a mor-
phism ν : H → Aut(X) of an algebraic group H onto G which is a homo-
morphism of groups.

The next result gives a criterion for a subgroup of Aut(X) to be algebraic.
The main argument is due to Ramanujam [Ram64].

Theorem 9. Let X be an irreducible variety and let G ⊆ Aut(X) be a
subgroup. Then the following statements are equivalent:

(1) G is an algebraic subgroup of Aut(X);
(2) there exists a morphism of a variety into Aut(X) with image G;
(3) dimG is finite and G◦ has finite index in G;
(4) there is a unique structure of an algebraic group on G such that for

each irreducible variety A we have a bijective correspondence
{

morphisms of
varieties A→ G

}

1:1
←→

{
morphisms A→ Aut(X)

with image in G

}

given by f 7→ ι ◦ f where ι : G → Aut(X) denotes the canonical
inclusion.

Proof. The implication (1) ⇒ (2) is obvious.
Assume that (2) holds, i.e. there is a morphism η : A → Aut(X) with

image equal to G. By Lemma 7 we get dimG ≤ dimA and hence dimG
is finite. Since A is a variety and thus has only finitely many irreducible
components, it follows from Proposition 8 (2) that G◦ has finite index in G.
This proves (2) ⇒ (3).

The implication (3) ⇒ (4) is done in [Ram64, Theorem p.26] in case
G = G◦ for irreducible A. Thus in the general case, G◦ carries the structure
of an algebraic group with the required property. Since G◦ has finite index
in G we obtain a unique structure of an algebraic group on G extending the
given structure on G◦. It remains to see that the required property holds
for G. Note that the canonical inclusion ι : G→ Aut(X) is a morphism and
thus each morphism of varieties A → G yields a morphism A → Aut(X)
by composing with ι. For the reverse, let ν : A → Aut(X) be a morphism
with image in G. Since A is irreducible, by Proposition 8 (2) there is g ∈ G
such that the image of ν lies in gG◦. Note that the composition of ν with
θg−1 : Aut(X) → Aut(X), ϕ 7→ g−1 ◦ ϕ is a morphism with image in G◦.
Thus θg−1 ◦ ν corresponds to a morphism A → G◦ of varieties. Using that
G → G, h 7→ gh is an isomorphism of varieties, we get that ν corresponds
to a morphism A→ G of varieties. This proves (3) ⇒ (4).

The implication (4) ⇒ (1) is obvious. �

2.3. Ingredients from toric geometry. Recall that a toric variety is a
normal irreducible variety X together with a regular faithful action of a
torus of dimension dimX. For details concerning toric varieties we refer to
[Ful93]. The first two lemmas are certainly well-known; for the convenience
of the reader we present for both a short proof.
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Lemma 10. Let X be a toric variety, and let T be a torus of dimension
dimX that acts faithfully on X. Then the centralizer of T in Aut(X) is
equal to T . In particular, the image of T in Aut(X) is closed.

Proof. Let g ∈ Aut(X) such that gt = tg for all t ∈ T . By definition, there is
an open dense T -orbit in X, say U . Since gU ∩U is non-empty, there exists
x ∈ U such that gx ∈ U . Using that U = Tx we find t0 ∈ T with gx = t0x.
Thus for each t ∈ T we get

gtx = tgx = tt0x = t0tx .

Using that U = Tx is dense in X, we get g = t0. �

Lemma 11. Let X be a toric variety. Then the coordinate ring O(X) is
finitely generated and integrally closed.

Proof. This follows from [Kno93]. Here is a short direct proof. Let N be the
lattice of one-parameter groups corresponding to the torus that acts on X
and let Σ be the fan in NQ = N ⊗ZQ that corresponds to X. Now, O(X) is
generated as a C-algebra by the intersection of the finitely generated semi-
groups σ∨ ∩ M , where M = Hom(N,Z) is the dual lattice to N , σ is a
cone in Σ and σ∨ denotes the dual cone of σ inside MQ = M ⊗Z Q. As
the intersection of the semi-groups σ∨ ∩M is the intersection of the convex
rational polyhedral cone ∩σ∈Σσ

∨ withM , it is a finitely generated semigroup
(Gordon’s Lemma, see e.g. [Ful93, Proposition 1 in §1.2]). This proves the
first claim.

Since X is normal, every local ring OX,x is integrally closed, and O(X) =
⋂

x∈X OX,x. Hence O(X) is also integrally closed. �

The next proposition is based on the study of homogeneous Ga-actions on
affine toric varieties in [Lie10]. Recall that a group action ν : G → Aut(X)
on a toric variety is called homogeneous if the torus normalizes the image
ν(G). Note that for any homogeneous Ga-action ν there is a well-defined
character χ : T → Gm, defined by the formula

t ν(s) t−1 = ν(χ(t) · s) for t ∈ T, s ∈ C.

Proposition 12. Let X be a n-dimensional quasi-affine toric variety. If X
is not a torus, then there exist homogeneous Ga-actions

η1, . . . , ηn : Ga ×X → X

such that the corresponding characters χ1, . . . , χn are linearly independent.

The proof needs some preparation. Denote by Y the spectrum of O(X).
By Lemma 11, the variety Y is normal, and the faithful torus action on X
extends uniquely to a faithful torus action on Y , by Lemma 5.

The following notation is taken from [Lie10]. Let N be a lattice of rank n,
M = Hom(N,Z) be its dual lattice and NQ = N⊗ZQ, MQ = M⊗ZQ. Thus,
we have a natural pairing MQ × NQ → Q, (m,n) 7→ 〈m,n〉. Let σ ⊂ NQ
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be the strongly convex polyhedral cone that describes Y and let σ∨
M be the

intersection of the dual cone σ∨ in MQ with M . Thus Y = SpecR, where

R := C[σ∨
M ] =

⊕

m∈σ∨

M

Cχm ⊆ C[M ] .

For each extremal ray ρ ⊂ σ, denote by ρ⊥ the elements u ∈ MQ with
〈u, v〉 = 0 for all v ∈ ρ. Moreover, let τM = ρ⊥ ∩ σ∨

M and let

Sρ = { e ∈M | e 6∈ σ∨
M , e+m ∈ σ∨

M for all m ∈ σ∨
M \ τM } .

By [Lie10, Remark 2.5] we have Sρ 6= ∅, and e + m ∈ Sρ for all e ∈ Sρ

and all m ∈ τM . Let us recall the description of the homogeneous locally
nilpotent derivations on R.

Proposition 13 ([Lie10, Lemma 2.6, Theorem 2.7]). Let ρ be an extremal
ray in σ and let e ∈ Sρ. Then

∂ρ,e : R→ R , χm 7→ 〈m,ρ〉χe+m

is a homogeneous locally nilpotent derivation of degree e, and every homo-
geneous locally nilpotent derivation of R is a constant multiple of some ∂ρ,e.

Proof of Proposition 12. Since X is not a torus, Y is also not a torus. Thus
σ contains extremal rays, say ρ1, . . . , ρk and k ≥ 1. Recall that associated
to these extremal rays, there exist torus-invariant divisors V (ρ1), . . . , V (ρk)
in Y . Again, since X is not a torus, one of these divisors does intersect X.
Let us assume that ρ = ρ1 is an extremal ray such that V (ρ) ∩ X is non-
empty. Then using the orbit-cone correspondence, one can see that Y \ X

is contained in the union Z =
⋃k

i=2 V (ρi), see [Ful93, §3.1]. Let e ∈ Sρ be
fixed. We claim that the Ga-action on Y associated to the locally nilpotent
derivation ∂ρ,e+m′ of Proposition 13 fixes Z for all m′ ∈ τM \

⋃

i≥2 ρ
⊥
i .

Let us fix m′ ∈ τM with 〈m′, v〉 > 0 for all v ∈
⋃

i≥2 ρi. Note that the
fixed point set of the Ga-action on Y corresponding to ∂ρ,e+m′ is the zero
set of the ideal generated by the image of ∂ρ,e+m′ . The divisor V (ρi) is the
zero set of the kernel of the canonical C-algebra surjection

pi : C[σ
∨
M ]→ C[σ∨

M ∩ ρ⊥i ] , χm 7→

{
χm, if m ∈ ρ⊥i
0, otherwise

,

see [Ful93, §3.1]. Thus we have to prove that for all i = 2, . . . , k the compo-
sition

C[σ∨
M ]

∂ρ,e+m′

−→ C[σ∨
M ]

pi
−→ C[σ∨

M ∩ ρ⊥i ]

is the zero map. Since, by definition, ∂ρ,e+m′ vanishes on τM = ρ⊥ ∩ σ∨
M , we

have only to show that for all m ∈ σ∨
M \ τM the following holds:

〈e+m′ +m, v〉 > 0 for all v ∈ ρi, i = 2, . . . , k.

This is satisfied, because 〈m′, v〉 > 0 and 〈e +m, v〉 ≥ 0 (note that e ∈ Sρ

implies e+m ∈ σ∨
M ). This proves the claim.
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Since τM spans a hyperplane inM and e 6∈ τM , we can choosem′
1, . . . ,m

′
n ∈

τM \
⋃

i≥2 ρ
⊥
i such that e+m′

1, . . . , e+m′
n are linearly independent in MQ.

Hence, the homogeneous locally nilpotent derivations

∂ρ,e+m′

i
, i = 1, . . . , n

define Ga-actions on Y that fix Z and thus restrict to Ga-actions on X.
Moreover, the character of ∂ρ,e+m′

i
is χi = χe+m′

i . In particular, χ1, . . . , χn

are linearly independent, finishing the proof of Proposition 12. �

2.4. Some topological ingredients. For the convenience of the reader,
we insert the following well-known statement.

Lemma 14. For a complex variety X, the rational singular (co)homology
groups are finitely generated.

Proof. Using the universal coefficient theorem for cohomology, it is enough to
prove this for the homology groups. If X is affine, then X has the homotopy
type of a finite CW-complex (see [Kar79] or [HM97, Theorem 1.1]), and
hence all homology groups are finitely generated. Since every variety can be
covered by finitely many open affine subvarieties and since intersections of
open affine subvarieties are again affine, the lemma follows from the Mayer-
Vietoris exact sequence. �

For a variety X, the Euler characteristic is defined by

χ(X) =
∑

i≥0

(−1)i dimQH i(X,Q) ,

where H i(X,Q) denotes the i-th singular cohomology group with rational
coefficients. We will use the following properties of the Euler characteristic,
see [KP85, Appendix].

Lemma 15. The Euler characteristic has the following properties.

(1) If X is a variety and Y ⊆ X a closed subvariety, then χ(X) =
χ(Y ) + χ(X \ Y ).

(2) If X → Y is a fiber bundle which is locally trivial in the étale topology
with fiber F , then χ(X) = χ(Y )χ(F ).

2.5. Results on the fixed point variety. If G is a group, acting on a
variety X, then we denote by XG the fixed point variety of X by G.

The first result gives us a criterion for the existence of fixed points for a
p-group action.

Proposition 16. Let G be a finite p-group for a prime p and let X be
a quasi-projective G-variety. If p does not divide the Euler characteristic
χ(X), then the fixed point variety XG is non-empty.

Proof. Assume that XG is empty, i.e. every G-orbit has cardinality pk for
some k > 0. We prove by induction on the dimension of X that p divides
χ(X). Since X is quasi-projective, the same is true for the smooth locus Xsm
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and thus the geometric quotient π : Xsm → Xsm/G exists, see [ByB02, The-
orem 4.3.1]. By generic smoothness [Har77, Corollary 10.7, Chp. III] there
exists an open dense subset U in X/G such that q := π|π−1(U) : π

−1(U)→ U
is étale. Since π : X → X/G is finite, q is also finite and thus q is an étale
locally trivial fiber bundle, see [Gro71, Corollaire 5.3]. Since each fiber of q
is a G-orbit, it follows by Lemma 15 that the Euler characteristic of π−1(U)
is divisible by p. By assumption, G acts without fixed point on X \ π−1(U)
and thus by induction hypothesis, χ(X \ π−1(U)) is divisible by p. Using

χ(X) = χ(π−1(U)) + χ(X \ π−1(U))

(see Lemma 15) we get that p divides χ(X). �

The second result is a consequence of a theorem of Fogarty [Fog73].

Proposition 17. Let G be a reductive group acting on a variety X. Assume
that X is smooth at some point x ∈ XG. Then XG is smooth at x and the
tangent space satisfies Tx(X

G) = (TxX)G.

Proof. Let us denote by X(G) ⊆ X the largest closed subscheme which
is fixed under G, see [Fog73, §2]) for details. It then follows that XG =
(X(G))red. For x ∈ X we denote by CxX the tangent cone in x, i.e. CxX =
Spec grOX,x where grOX,x :=

⊕

i≥0 m
i
x/m

i+1
x is the associated graded alge-

bra with respect to the maximal ideal mx ⊆ OX,x. By definition, there is
a closed immersion µx : CxX →֒ TxX, and X is smooth at x if and only if
µx is an isomorphism. If x ∈ XG is a fixed point we obtain the following
commutative diagram of schemes where all morphisms are closed immersions

Cx(X
(G))

⊆ //

⊆
��

Tx(X
(G))

⊆
��

(CxX)(G) ⊆ // (TxX)(G) .

It is shown in [Fog73, Theorem 5.2] that for a reductive group G we have

Cx(X
(G)) = (CxX)(G). If X is smooth at x we get (CxX)(G) = (TxX)(G).

Hence all morphisms in the diagram above are isomorphisms. In particular
X(G) is smooth at x and thus XG = (X(G))red is smooth at x. Moreover, we
get Tx(X

G) = (TxX)G. �

Remark 2. Assume that (Z/pZ)n acts faithfully on a smooth quasi-projective
variety X. If p does not divide χ(X), then dimX ≥ n.

In fact, by Proposition 16 there is a fixed point x ∈ X, and the action
of (Z/pZ)n on the tangent space TxX is faithful [KS13, Lemma 2.2], hence
n ≤ dimTxX = dimX.
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3. Proof of Theorem 1 and Theorem 2

Let us introduce the following terminology for this section. Let X be a
variety and let M ⊆ Aut(X) be a subset. A map η : M → Z into a variety
Z is called regular if for every morphism ν : A→ Aut(X) with image in M ,
the composition η ◦ ν : A→ Z is a morphism of varieties.

3.1. Semi-invariant functions.

Lemma 18. Let X be an irreducible normal variety, and let f ∈ O(X)
be a non-constant function such that the zero set Z := VX(f) ⊂ X is an
irreducible hypersurface. Let G ⊆ Aut(X) be a connected subgroup which
stabilizes Z. Then we have the following.

(1) The function f is a G-semi-invariant with character χ : G → C∗,
i.e. f(gx) = χ(g)−1 · f(x) for all x ∈ X and g ∈ G.

(2) The character χ : G→ C∗ is a regular map.

For the proof we need the following description of the invertible functions
on a product variety due to Rosenlicht [Ros61, Theorem 2]. We denote for
any variety X the group of invertible functions on X by O(X)∗.

Lemma 19. Let X1, X2 be irreducible varieties. Then O(X1 × X2)
∗ =

O(X1)
∗ · O(X2)

∗.

Proof of Lemma 18. (1) Since X is normal, the local ring R = OX,Z is a
discrete valuation ring. Let m be the maximal ideal of R. By assumption,
fR = m

k for some k > 0. Since m is stable under G, the same is true for
m

k. Hence, for every g ∈ G, there exists a unit rg ∈ R∗ such that gf = rg · f
in R. Since f and gf have no zeroes in X \ Z, it follows that rg is regular
and nonzero in X \ Z. Moreover, the open set where rg ∈ R is defined and
nonzero meets Z, hence rg is a regular invertible function on X. Consider
the map

χ : G→ O(X)∗ , g 7→ rg .

For all x ∈ X \ Z, g ∈ G we get f(gx) = χ(g)(x)−1f(x), and f(gx), f(x)
are both nonzero. Since for each morphism ν : A → Aut(X) with image in
G, the map ν̃ : A×X → X, (a, x) 7→ ν(a)(x) is a morphism, we see that

A× (X \ Z)→ C∗ , (a, x) 7→ χ(ν((a))(x) = f(x) · f(ν̃(a, x))−1

is a morphism. If A is irreducible, then by Lemma 19 there exist invertible
functions q ∈ O(A)∗ and p ∈ O(X \ Z)∗ such that χ(ν((a))(x) = q(a)p(x).
If, moreover, ν(a0) = e ∈ G for some a0 ∈ A, then

1 = re(x) = χ(ν(a0))(x) = q(a0)p(x) for all x ∈ X \ Z ,

i.e. p is a constant invertible function. In this case, the composition χ ◦
ν : A 7→ O(X)∗ has image in C∗. Since G is connected, this implies that the
whole image of χ lies in C∗.
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(2) Choose x0 ∈ X \ Z. As before, for each morphism ν : A → Aut(X)
with image in G, the map

A→ C∗, a 7→ χ(ν(a)) = f(x0) · f(ν(a)(x0))
−1

is also a morphism. �

Lemma 20. Let X be an irreducible normal variety, and let G ⊆ Aut(X)
be a connected subgroup. Assume that f1, . . . , fn ∈ O(X) have the following
properties.

(1) Zi := VX(fi), i = 1, . . . , n, are irreducible G-invariant hypersurfaces;
(2)

⋂

i Zi contains an isolated point.

If χi : G→ C∗ is the character of fi (see Lemma 18), then

χ := (χ1, . . . , χn) : G→ (C∗)n

is a regular homomorphism with finite kernel.

Proof. Let G act on An by

g(a1, . . . , an) := (χ1(g)
−1 · a1, . . . , χn(g)

−1 · an).

Then the map f := (f1, . . . , fn) : X → An is G-equivariant. Let Y ⊆ An be
the closure of f(X). By assumption, f−1(0) =

⋂

i Zi contains an isolated
point, hence f : X → Y has finite degree, i.e. the field extension C(X) ⊃
C(Y ) is finite. This implies that the kernel K of χ : G → (C∗)n is finite,
because K embeds into AutC(Y )(C(X)). By Lemma 18, χ is regular. �

3.2. Another centralizer result. For an irreducible normal variety X, we
denote by CH1(X) the first Chow group, i.e. the free group of integral Weil
divisors modulo linear equivalence (see [Har77, §6, Chp. II]).

Proposition 21. Let X be an irreducible normal variety of dimension n
such that CH1(X) is finite. Assume that for a prime p the group (Z/pZ)n

acts faithfully on X with a (not necessarily unique) fixed point x0 which is a
smooth point of X. Then G := CentAut(X)((Z/pZ)

n) is a closed subgroup of
Aut(X) and the identity component G◦ is a closed torus of dimension ≤ n.

Proof. By [KS13, Lemma 2.2] we get a faithful representation of (Z/pZ)n on
Tx0X, and thus we can find generators σ1, . . . , σn such that (Tx0X)σi ⊂ Tx0X

is a hyperplane for each i, and that (Tx0X)(Z/pZ)
n
= 0. By Proposition 17,

the hypersurface Xσi ⊂ X is smooth at x0, with tangent space Tx0(X
σi) =

(Tx0X)σi . Hence there is a unique irreducible hypersurface Zi ⊆ X that
is contained in Xσi and contains x0; thus Zi is G◦-stable. Moreover, since
(Tx0X)(Z/pZ)

n
= 0, it follows that x0 is an isolated point of

⋂

i Zi. Since a

multiple of Zi is zero in CH1(X), there exist G◦-semi-invariant functions
fi ∈ O(X) such that VX(fi) = Zi (Lemma 18), and the corresponding
characters χi define a regular homomorphism

χ = (χ1, . . . , χn) : G
◦ → (C∗)n
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with a finite kernel (Lemma 20). It follows that dimG◦ ≤ n. Indeed, if
ν : A→ Aut(X) is an injective morphism with image in G◦, then χ◦ν : A→
(C∗)n is a morphism with finite fibers, and so dimA ≤ n. This implies, by
Theorem 9, that G◦ ⊆ Aut(X) is an algebraic subgroup and that χ is a
homomorphism of algebraic groups with a finite kernel. Hence G◦ is a torus.
Since G is closed in Aut(X) the same holds for G◦, see Proposition 8. �

3.3. Proof of Theorem 2. Now we can prove Theorem 2 which has the
same conclusion as the proposition above, but under different assumptions.
We have to show that the assumptions of Proposition 21 are satisfied. Since
X is smooth, it follows that CH1(X) ≃ Pic(X) is finite. Proposition 16
implies that the fixed point variety X(Z/pZ)n ⊆ X is non-empty. Now the
claims follow from Proposition 21. �

3.4. Images of maximal tori under group isomorphisms.

Proposition 22. Let X and Y be irreducible quasi-projective varieties such
that dimY ≤ dimX =: n. Assume that the following conditions are satisfied:

(1) X is quasi-affine and toric;
(2) Y is smooth, χ(Y ) 6= 0, and Pic(Y ) is finite.

If θ : Aut(X)
∼
→ Aut(Y ) is an isomorphism, then dimY = n, and θ(T )◦

is a closed torus of dimension n in Aut(Y ) for each n-dimensional torus
T ⊆ Aut(X).

Proof. Let θ : Aut(X) → Aut(Y ) be an isomorphism. Since χ(Y ) 6= 0 it
follows that there is a prime p that does not divide χ(Y ).

Let n = dimX and denote by T ⊂ Aut(X) a torus of dimension n.
We have that T = CentAut(X)(T ) (Lemma 10), and thus θ(T ) is a closed
subgroup of Aut(Y ). Let µp ⊂ T be the subgroup generated by the elements
of order p, and let G := CentAut(Y )(θ(µp)) which is closed in Aut(X). Note
that θ(T ) ⊆ G and that dimY = n by Remark 2. Now Theorem 2 implies
that G◦ is a closed torus of dimension ≤ n in Aut(Y ), and by Proposition 8
and Theorem 9, θ(T )◦ is a closed connected algebraic subgroup of G◦.

In order to prove that dim θ(T )◦ ≥ n we construct closed subgroups {1} =
T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tn = T with the following properties:

(i) dimTi = i for all i;
(ii) θ(Ti) is closed in θ(T ) for all i.

It then follows that θ(Ti)
◦ is a connected algebraic subgroup of θ(T )◦. Since

the index of θ(Ti)
◦ in θ(Ti) is countable (Proposition 8), but the index of

Ti in Ti+1 is not countable, we see that dim θ(Ti+1)
◦ > dim θ(Ti)

◦, and so
dim θ(T )◦ ≥ n.

(a) Assume first that X is a torus. Then Aut(X) contains a copy of the
symmetric groups Sn, and we can find cyclic permutations τi ∈ Aut(X) such
that Ti := CentT (τi) is a closed subtorus of dimension i, and Ti ⊂ Ti+1 for
all 0 < i < n. It then follows that θ(Ti) = Centθ(T )(θ(τi)) is closed in θ(T ),
and we are done.
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(b) Now assume that X is not a torus. By Proposition 12 there exist
one-dimensional unipotent subgroups U1, . . . , Un of Aut(X) normalized by
T such that the corresponding characters χ1, . . . , χn : T → C∗ are linearly
independent. Since

ker(χi) = {t ∈ T | t ◦ ui ◦ t
−1 = ui for all ui ∈ Ui} = CentT (Ui)

it follows that

Ti :=

n−i⋂

k=1

ker(χk) = CentT (U1 ∪ · · · ∪ Un−i) ⊆ T

is a closed algebraic subgroup of T of dimension i. It follows that the image
θ(Ti) = Centθ(T )(θ(U1)∪· · · ∪θ(Un)) is closed in θ(T ), and the claim follows
also in this case. �

3.5. Proof of Theorem 1. Using Proposition 22, it is enough to show
that a smooth toric variety Y with finite (and hence trivial) Picard group
is quasi-affine.

For proving this, let Σ ⊂ NQ = N⊗ZQ be the fan that describes Y where
N is a lattice of rank n. Let N ′ ⊆ N be the sublattice spanned by Σ ∩ N
and let Y ′ be the toric variety corresponding to the fan Σ in N ′

Q = N ′⊗ZQ.

It follows from [Ful93, p. 29] that

Y ≃ Y ′ × (C∗)k

where k = rankN/N ′. Thus Y ′ is a smooth toric variety with trivial Picard
group. Hence it is enough to prove that Y ′ is quasi-affine and therefore we
can assume k = 0, i.e. Σ spans NQ. By [Ful93, Proposition in §3.4] we get

0 = rankPic(Y ) = d− n

where d is the number of edges in Σ. Let σ ⊂ NQ be the convex cone spanned
by the edges of Σ and let σ∨ denote the dual cone of σ in MQ = M ⊗Z Q

whereM = Hom(N,Z). Since d = n, the edges of Σ are linearly independent
in NQ and thus σ is a simplex. From the inclusion of the cones of Σ in σ
we get a morphism f : Y → SpecC[σ∨ ∩M ] by [Ful93, §1.4], and since each
cone in Σ is a face of σ it is locally an open immersion (see [Ful93, Lemma in
§1.3]). This implies that f is quasi-finite and birational and thus by Zariski’s
Main Theorem [Gro61, Corollaire 4.4.9] it is an open immersion. �

4. Proof of the Main Theorem

4.1. A first characterization.

Proposition 23. Let X be an irreducible quasi-affine variety. If Aut(An)
∼
→

Aut(X) is an isomorphism that maps an n-dimensional torus in Aut(An)
to an algebraic subgroup, then X ≃ An as a variety.
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Proof. Since all n-dimensional tori in Aut(An) are conjugate (see [BB66]),
all n-dimensional tori are sent to algebraic subgroups of Aut(X) via θ. The
standard maximal torus T in Aut(An) acts via conjugation on the subgroup
of standard translations Tr ⊂ Aut(An) with a dense orbit O ⊂ T and thus
we get Tr = O ◦O.

This implies that S := θ(T ) acts on U := θ(Tr) via conjugation and we
get U = θ(O) ◦ θ(O). Hence, for fixed u0 ∈ θ(O) ⊂ U the morphism

S × S → Aut(X) , (s1, s2) 7→ s1 ◦ u0 ◦ s
−1
1 ◦ s2 ◦ u0 ◦ s

−1
2

has image equal to U . Now it follows from Theorem 9 that U is a closed
(commutative) algebraic subgroup of Aut(X) with no nontrivial element of
finite order, hence a unipotent subgroup.

We claim that U has no non-constant invariants on X. Indeed, let ρ : Ga×
X → X be the Ga-action on X coming from a nontrivial element of U . If
f ∈ O(X)U is a U -invariant, then it is easy to see that

(∗) ρf (s, x) := ρ(f(x) · s, x)

is a Ga-action commuting with U . Since U is self-centralizing, we see that
ρf (s) ∈ U for all s ∈ Ga. Moreover, formula (∗) shows that for every finite di-

mensional subspace V ⊂ O(X)U the map V → U , f 7→ ρf (1), is a morphism
which is injective. Indeed, ρf (1) = ρh(1) implies that ρ(f(x), x) = ρ(h(x), x)

for all x ∈ X, hence f(x) = h(x) for all x ∈ X \Xρ. It follows that O(X)U

is finite-dimensional. Since X is irreducible, O(X)U is an integral domain
and hence equal to C, as claimed.

Since X is irreducible and quasi-affine, the unipotent group U has a dense
orbit which is closed, and so X is isomorphic to an affine space Am. Since m
is the maximal number such that there exists a faithful action of (Z/2Z)m

on Am (see Remark 2), we finally get m = n. �

If X is an affine variety, then X has the structure of a so-called affine ind-
group, see e.g. [Kum02, Sta13, FK17] for more details. The following result
is a special case of [Kra17, Theorem 1.1]. It is an immediate consequence of
Proposition 23 above, because a homomorphism of affine ind-groups sends
algebraic groups to algebraic groups.

Corollary 24. Let X be an irreducible affine variety. If there is an isomor-
phism Aut(X) ≃ Aut(An) of affine ind-groups, then X ≃ An as a variety.

Corollary 25. Let X be a smooth, irreducible quasi-projective variety such
that χ(X) 6= 0 and Pic(X) is finite. If there is an isomorphism Aut(An) ≃
Aut(X) of abstract groups and if dimX ≤ n, then X ≃ An as a variety.

Proof. Theorem 1 shows that for an isomorphism θ : Aut(An)
∼
→ Aut(X)

and any n-dimensional torus T ⊆ Aut(An), the identity component of the
image S := θ(T )◦ is a closed torus of dimension n in Aut(X), dimX = n, and

X is quasi-affine. Thus we can apply Theorem 1 to θ−1 : Aut(X)
∼
→ Aut(An)
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and get that θ−1(S)◦ is a closed torus of dimension n in Aut(An). Since

θ−1(S)◦ ⊆ θ−1(S) ⊆ T ,

it follows that θ−1(S) = T , i.e. θ(T ) = S is a closed n-dimensional torus
in Aut(X). The assumptions of Proposition 23 are now satisfied for the

isomorphism θ : Aut(An)
∼
→ Aut(X), and the claim follows. �

4.2. Proof of the Main Theorem. If (1) holds, i.e. X is a smooth, irre-
ducible, quasi-projective variety of dimension ≤ n such that χ(X) 6= 0 and
Pic(X) is finite, then the claim follows from Corollary 25.

Now assume that the assumptions (2) are satisfied, i.e., that X is quasi-
affine and toric of dimension ≥ n. Let T ⊆ Aut(X) be a torus of maxi-

mal dimension. We can apply Theorem 1 to an isomorphism θ : Aut(X)
∼
→

Aut(An) and find that S := θ(T )◦ ⊂ Aut(An) is a closed torus of dimension
n. Since the index of the standard n-dimensional torus in its normalizer in
Aut(An) has finite index and since all n-dimensional tori in Aut(An) are
conjugate (see [BB66]), it follows that S has finite index in θ(T ). Hence
θ−1(S) has finite index in T . Since T is a divisible group, θ−1(S) = T is
an algebraic group. Thus we can apply Proposition 23 to the isomorphism
θ−1 : Aut(An)

∼
→ Aut(X) and find that X ≃ An as a variety. �
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Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexan-
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