
ar
X

iv
:1

50
5.

05
49

7v
1 

 [
m

at
h.

G
R

] 
 2

0 
M

ay
 2

01
5

COMBINATORICS OF THE TAME AUTOMORPHISM GROUP

STÉPHANE LAMY

Abstract. We study the group Tame(A3) of tame automorphisms of the 3-
dimensional affine space, over a field of characteristic zero. We recover, in
a unified and (hopefully) simplified way, previous results of Kuroda, Shes-
takov, Umirbaev and Wright, about the theory of reduction and the relations
in Tame(A3). The novelty in our presentation is the emphasis on a simply
connected 2-dimensional simplicial complex on which Tame(A3) acts by isome-
tries.
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Introduction

Let k be a field, and let An = An
k

be the affine space over k. We are interested
in the group Aut(An) of algebraic automorphisms of the affine space. Concretely,
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we choose once and for all an origin and a coordinate system (x1, . . . , xn) for An.
Then any element f ∈ Aut(An) is a map of the form

f : (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),

where the fi are polynomials in n variables, such that there exists a map g of the
same form satisfying f ◦ g = id. We shall abbreviate this situation by writing
f = (f1, . . . , fn), and g = f−1.

The group Aut(An) contains the following natural subgroups. First we have the
affine group An = GLn(k) ⋉ kn. Secondly we have the group En of elementary
automorphisms, which have the form

f : (x1, . . . , xn) 7→ (x1 + P (x2, . . . , xn), x2, . . . , xn),

for some choice of polynomial P in n− 1 variables. The subgroup

Tame(An) = 〈An, En〉

generated by the affine and elementary automorphisms is called the subgroup of
tame automorphisms.

A natural question is whether the inclusion Tame(An) ⊆ Aut(An) is in fact an
equality. It is a well-known result, which goes back to Jung (see e.g. [Lam02] for
a review of some of the many proofs available in the literature), that the answer is
yes for n = 2 (over any base field), and it is a result by Shestakov and Umirbaev
[SU04b] that the answer is no for n = 3, at least when k is a field of characteristic
zero.

The main purpose of the present paper is to give a self-contained reworked proof
of this last result: see Theorem 4.1 and Corollary 4.2. We follow closely the line of
argument by Kuroda [Kur10]. However, the novelty in our approach is the emphasis
on a 2-dimensional simplicial complex C on which Tame(A3) acts by isometries.

In the work of Kuroda [Kur10], as in the original work of Shestakov and Umir-
baev [SU04b], elementary reductions are defined with respect to one of the three
coordinates of a fixed coordinate system. In contrast, we always work up to an
affine change of coordinates. Indeed, our simplicial complex C is designed so that
two tame automorphisms correspond to two vertices at distance 2 in the complex if
and only if they differ by the composition of an automorphism of the form aea−1,
where a is affine and e is elementary. This allows to absorb the so-called “type
I” and “type II” reductions of Shestakov and Umirbaev in the class of elementary
reductions: In our terminology they become “elementary K-reductions” (see §3.D).
On the other hand, the “type III” reductions, which are technically difficult to han-
dle, are still lurking around. One can suspect that such reductions don’t exist (as
the most intricate “type IV” reductions which were excluded by Kuroda [Kur10]),
and an ideal proof would settle this issue. Unfortunately we were not able to do
so, and these hypothetical reductions still appear in our text under the name of
“normalized proper K-reduction”. See Example 6.5 for more comments on this
issue.

One could say that the theory of Shestakov, Umirbaev and Kuroda consists in
understanding the relations inside the tame group Tame(A3). This was made ex-
plicit by Umirbaev [Umi06], and then it was noticed by Wright [Wri15] that this
can be rephrased in terms of an amalgamated product structure over three sub-
groups. In turn, it is known that such a structure is equivalent to the action of the
group on a 2-dimensional simply connected simplicial complex, with fundamental
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domain a simplex. Our approach allows to recover a more transparent description
of the relations in Tame(A3): we directly show that the natural complex on which
Tame(A3) acts is simply connected (see Proposition 5.6), by observing that the
reduction process of [Kur10, SU04b] corresponds to local homotopies.

We should stress once more that this paper contains no original result, and
consists only in a new presentation of previous works by the above cited authors.
In fact, for the sake of completeness we also include in Section 2 some preliminary
results where we only slightly differ from the original articles [Kur08, SU04a].

Our motivation for reworking this material is to prepare the way for new results
about Tame(A3), such as the linearizability of finite subgroups, the Tits alternative
or the non simplicity. From our experience in related settings (see [BFL14, CL13]),
such results should follow from some non-positive curvature properties of the sim-
plicial complex. We plan to explore these questions in a follow-up paper.

1. Simplicial complex

We construct a (n − 1)-dimensional simplicial complex on which the tame au-
tomorphism group of An acts. This construction makes sense over any base field
k.

1.A. General construction. For any 1 ≤ r ≤ n, we call r-tuple of components
a morphism

f : An → Ar

x = (x1, . . . , xn) 7→ (f1(x), . . . , fr(x))

that can be extended as a tame automorphism f = (f1, . . . , fn) of An. One defines n
distinct types of vertices, by considering r-tuple of components modulo composition
by an affine automorphism on the range, r = 1, . . . , n:

[f1, . . . , fr] := Ar(f1, . . . , fr) = {a ◦ (f1, . . . , fr); a ∈ Ar}

where Ar = GLr(k) ⋉ kr is the r-dimensional affine group. We say that vr =
[f1, . . . , fr] is a vertex of type r, and that (f1, . . . , fr) is a representative of vr.
We shall always stick to the convention that the index corresponds to the type of
a vertex: for instance vr, v

′
r, ur, wr,mr will all be possible notation for a vertex of

type r.
Now for any tame automorphism (f1, . . . , fn) ∈ Tame(An) we attach a (n− 1)-

simplex on the vertices [f1], [f1, f2], . . . , [f1, . . . , fn]. This definition is independent
of a choice of representatives and produces a (n−1)-dimensional simplicial complex
Cn on which the tame group acts by isometries, by the formulas

g · [f1, . . . , fr] := [f1 ◦ g−1, . . . , fr ◦ g−1].

Lemma 1.1. The group Tame(An) acts on Cn with fundamental domain the sim-
plex

[x1], [x1, x2], . . . , [x1, . . . , xn].

In particular the action is transitive on vertices of a given type.

Proof. Let v1, . . . , vn be the vertices of a simplex (recall that the index corresponds
to the type). By definition there exists f = (f1, . . . fn) ∈ Tame(An) such that
vi = [f1, . . . , fi] for each i. Then

[x1, . . . , xi] = [(f1, . . . , fi) ◦ f−1] = f · vi. �
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Remark 1.2. (1) One could make a similar construction by working with the
full automorphism group Aut(An) instead of the tame group. The complex Cn

we consider is the gallery connected component of the vertex [id] in this bigger
complex. See [BFL14, §6.2.1] for more details.

(2) When n = 2, the previous construction yields a graph C2. It is not difficult
to show (see [BFL14, §2.5.2]) that C2 is isomorphic to the classical Bass-Serre tree
of Aut(A2) = Tame(A2).

1.B. Degrees. We shall compare polynomials in k[x1, . . . , xn] by using the graded
lexicographic order on monomials. We find it more convenient to work with an
additive notation, so we introduce the degree function, with value in Nn ∪ {−∞},
by taking

deg xa1

1 xa2

2 . . . xan

n = (a1, a2, . . . , an)

and by convention deg 0 = −∞. We extend this order to Qn ∪ {−∞}, since some-
times it is convenient to consider difference of degrees, or degrees multiplied by a
rational number. The top component of g ∈ k[x1, . . . , xn] is the uniquely defined

ḡ = cxd1

1 . . . xdn
n such that

(d1, . . . , dn) = deg g > deg(g − ḡ).

If f = (f1, . . . , fr) is a r-tuple of components, we call top degree of f the maximum
of the degree of the fi:

topdeg f = max deg fi ∈ Nn.

Lemma 1.3. Let f = (f1, . . . , fr) be a r-tuple of components, and consider V ⊂
k[x1, . . . , xn] the vector space generated by the fi. Then

(1) The set H of elements g ∈ V satisfying topdeg f > deg g is a hyperplane
in V ;

(2) There exist a sequence of degrees δr > · · · > δ1 and a flag of subspaces
V1 ⊂ · · · ⊂ Vr = V such that dim Vi = i and deg g = δi for any g ∈ VirVi−1.

Proof. (1) Up to permuting the fi we can assume topdeg f = deg fr. Then for
each i = 1, . . . , r − 1 there exists a unique ci ∈ k such that deg fi > deg(fi + cifr).
The conclusion follows from the observation that an element of V is in H if and
only if it is a linear combination of the fi + cifr, i = 1, . . . , r − 1.

(2) Immediate, by induction on dimension. �

Using the notation of the lemma, we call r-deg f = (δ1, . . . , δr) the r-degree of
f , and deg f =

∑r
i=1 δi the degree of f . Observe that for any affine automorphism

a ∈ Ar we have r- deg f = r- deg(a ◦ f), so we get a well-defined notion of r-degree
and degree for any vertices of type r.

If vr = [f1, . . . , fr] ∈ Cn with the fi without constant term and the deg fi pairwise
distinct, we say that f is a good representative of vr (we do not ask deg fr > · · · >
deg f2 > deg f1). We use a double bracket notation such as v1 = Jf1K, v2 = Jf1, f2K
or v3 = Jf1, f2, f3K, to indicate that we are using a good representative.

1.C. The complex in dimension 3. Now we specialize the general construction
to the dimension n = 3, which is our main interest in this paper. We drop the
index and simply denote by C the 2-dimensional simplicial complex associated to
Tame(A3). To get a first feeling of the complex one can draw pictures such as
Figure 1, where we use the following convention for vertices: A ◦, • or corresponds
respectively to a vertex of type 1, 2 and 3. However one should keep in mind, as
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the following formal discussion makes it clear, that the complex is not locally finite.
A first step in understanding the geometry of the complex C is to understand the
link of each type of vertices. In fact, we will see now that if the base field k is
uncountable, then the link of any vertex or any edge also is uncountable.

◦

•

•

•

•

◦ ◦

•

•

◦

[x1,x2,x3]

[x2,x3]

[x1+Q(x2),x2,x3]

[x1+Q(x2),x2]

[x1+Q(x2),x2,x3+P (x1,x2)]

[x2,x3+P (x1,x2)]

[x1,x2,x3+P (x1,x2)]

[x1,x2]

[x2]

[x3]

[x1,x3]

[x1]

[x1+x3+Q(x2),x2]

[x1,x2,x3+Q(x2)]

[x1+x3]

Figure 1. A few simplexes of the complex C.

Consider first the link L(v3) of a vertex of type 3. By transitivity of the action of
Tame(A3), it is sufficient to describe the link L([id]). A vertex of type 1 at distance
1 from [id] has the form [a1x1 + a2x2 + a3x3] where the ai are uniquely defined up
to a common multiplicative constant. In other words, vertices of type 1 in L([id])
are parametrized by P2. We denote by P2(v3) this projective plane of vertices of
type 1 in the link of v3. Similarly, vertices of type 2 in L(v3) correspond to lines in
P2(v3), and edges in L(v3) correspond to incidence relations (“a point belongs to

a line”). We denote by P̂2(v3) the dual space of vertices of type 2. We will often
refer to a vertex of type 2 as a “line in P2(v3)”. In the same vein, we will sometimes
refer to a vertex of type 1 as being “the intersection of two lines in P2(v3)”, or we
will express the fact that v1 and v2 are joined by an edge in C by saying “the line
v2 passes through v1”.

Now we turn to the description of the link of a vertex of type 2. We can assume
v2 = [x1, x2], and one checks that vertices of type 1 in L(v2) are parametrized by
P1 and are of the form

[αx1 + βx2], (α : β) ∈ P1.

On the other hand vertices of type 3 in L(v2) are of the form

[x1, x2, x3 + P (x1, x2)], P without constant or linear part.

Using the transitivity of the action of Tame(A3) on vertices of type 2, the following
lemma and its corollary are then immediate:
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Lemma 1.4. The link L(v2) of a vertex of type 2 is the complete bipartite graph
between vertices of type 1 and 3 in the link.

Corollary 1.5. Let v2 = [f1, f2] and v3 = [f1, f2, f3] be vertices of type 2 and 3.

Then any vertex u3 such that v2 ∈ P̂2(u3) has the form

u3 = [f1, f2, f3 + P (f1, f2)]

where P is a polynomial in two variables.

In the situation of Corollary 1.5, we say that v3 and u3 are neighbors, with
center v2, and we denote this situation by v3 ≬ u3 (or v3 ≬v2

u3 if we want to insist
on the center). We say that v3 and u3 are simple neighbors if up to a change
of representatives the polynomial P depends on one variable only, that is, if we
can write v3 = [f1, f2, f3] and u3 = [f1, f2, f3 + P (f2)]. In this situation we say
that v2 = [f1, f2], v1 = [f2] is the simple center of the two neighbors, and when
drawing pictures we represent this relation by adding an arrow on the edge from
v2 to v1 (see Figure 2).

◦

•

v3 = [f1,f2,f3]

v2 = [f1,f2]

u3 = [f1,f2,f3+Q(f2)]

v1 = [f2]

Figure 2. Simple neighbors with simple center v2, v1.

The link of a vertex of type 1 is more complicated. Let us simply mention without
proof, since we won’t need it in this paper (but see Lemma 5.5 for a partial result),
that in contrast with the case of vertices of type 2 or 3, the link of a vertex of type 1
is a connected unbounded graph, which admits a projection to an unbounded tree.

2. Parachute Inequality and Principle of Two Maxima

I recall here two results from [Kur08] (in turn they were adaptations from
[SU04b]). The Parachute Inequality is the most important; we also recall some
direct consequences. From now on k denotes a field of characteristic zero.

2.A. Degree of polynomials and forms. Recall that we define a degree func-
tion on k[x1, x2, x3] with value in N3 ∪{−∞} by taking deg xa1

1 xa2

2 xa3

3 = (a1, a2, a3)
and by convention deg 0 = −∞. We compare degrees using the graded lexicographic
order.

We introduce the notion of virtual degree in two distinct situations, which
should be clear by context.

If ϕ =
∑

Piy
i ∈ k[x1, x2, x3][y], and g ∈ k[x1, x2, x3], we define the virtual

degree of ϕ with respect to g as

degvirt ϕ(g) := max
i

(degPig
i) = max

i
(degPi + i deg g).

Denoting by I the set of indexes i that realize the maximum, we also define the
top component of ϕ with respect to g as

ϕ̄g :=
∑

i∈I

P̄iy
i.
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Similarly if ϕ =
∑

ci,jy
izj ∈ k[y, z], and f, g ∈ k[x1, x2, x3], we define the virtual

degree of ϕ with respect to f and g as

degvirt ϕ(f, g) := max
i,j

deg f igj = max
i,j

(i deg f + j deg g).

Observe that ϕ(f, g) can be seen either as an element coming from k[f ][y] or
from k[y, z], and that the two possible notions of virtual degree coincide:

degvirt ϕ(g) = degvirt ϕ(f, g).

Example 2.1.

(1) Let ϕ = x2
3y − x3y

2, and g = x3. Then ϕ(g) = 0, but

degvirt ϕ(g) = deg x3
3 = (0, 0, 3).

(2) Let ϕ = y2 − z3, and g = x3
1, h = x2

1. Then ϕ(g, h) = 0, but

degvirt ϕ(g, h) = deg x6
1 = (6, 0, 0).

We extend the notion of degree to algebraic differential forms. Given

ω =
∑

fi1,··· ,ik
dxi1

∧ · · · ∧ dxik

where k = 1, 2 or 3 and fi1,··· ,ik
∈ k[x1, x2, x3], we define

degω := max{deg fi1,··· ,il
xi1

· · ·xik
}.

We gather some immediate remarks for future reference (observe that here we
use the assumption char k = 0).

Lemma 2.2. If ω, ω′ are forms, and f is a non constant polynomial, we have

degω + degω′ ≥ degω ∧ ω′;

deg f = deg df ;

deg fω = deg f + degω.

2.B. Parachute Inequality. If ϕ ∈ k[x1, x2, x3][y], we denote by ϕ(i) ∈ k[x1, x2, x3][y]
the ith derivative of ϕ with respect to y. We simply write ϕ′ instead of ϕ(1).

Lemma 2.3. Let ϕ ∈ k[x1, x2, x3][y] and g ∈ k[x1, x2, x3]. Then, for m ≥ 0, the
following two assertions are equivalent:

(1) For i = 0, . . . ,m− 1 we have

degvirt ϕ
(i)(g) > degϕ(i)(g),

but

degvirt ϕ
(m)(g) = degϕ(m)(g).

(2) There exists ψ ∈ k[x1, x2, x3][y] such that ψ(ḡ) 6= 0 and

ϕ̄g = (y − ḡ)m · ψ.

Proof. Observe that we have the equivalences

degvirt ϕ(g) > degϕ(g) ⇔ ϕ̄g(ḡ) = 0 ⇔ y − ḡ divides ϕ̄g.

The implication (2) ⇒ (1) is then direct.
To prove (1) ⇒ (2), it is sufficient to show that if degvirt ϕ

(i)(g) > degϕ(i)(g)
for i = 0, . . . , k − 1, then ϕ̄g = (y − ḡ)k · ψk for some ψk ∈ k[x1, x2, x3][y]. The
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remark above gives it for k = 0. Moreover, one checks that if ϕ̄g depends on y then

ϕ′
g = (ϕ̄g)′, hence the result by induction. �

In the situation of Lemma 2.3, we call the integer m the multiplicity of ϕ with
respect to g, and we denote it by m(ϕ, g). In other words, the top component ḡ is
a multiple root of ϕ̄g of order m(ϕ, g).

Following Vénéreau [Vén11], where a similar inequality is proved, we call the
following result a Parachute Inequality. Indeed its significance is that the real
degree cannot drop too much with respect to the virtual degree. However we follow
Kuroda for the proof.

Proposition 2.4 (Parachute Inequality, see [Kur08, Theorem 2.1]). Let f0, · · · , fr ∈
k[x1, x2, x3] be algebraically independent, where r = 1 or 2. Let ϕ ∈ k[f1, · · · , fr][y]r
{0}. Then

degϕ(f0) ≥ degvirt ϕ(f0) −m(ϕ, f0)(degω + deg f0 − degω ∧ df0).

where ω = df1 if r = 1, or ω = df1 ∧ df2 if r = 2.

Proof. Denoting as before ϕ′ the derivative of ϕ with respect to y, we have

dϕ(f0) = ϕ′(f0)df0 + other terms involving df1 or df2.

So we obtain ω ∧ dϕ(f0) = ϕ′(f0)ω ∧ df0. Using Lemma 2.2 this yields

degω + degϕ(f0) = degω + deg dϕ(f0) ≥ degω ∧ dϕ(f0)

= degϕ′(f0)ω ∧ df0 = degϕ′(f0) + degω ∧ df0,

which we can write as

− degω ∧ df0 + degω + degϕ(f0) ≥ degϕ′(f0). (2.5)

Now we are ready to prove the inequality of the statement, by induction on
m(ϕ, f0).

If m(ϕ, f0) = 0, that is, if degϕ(f0) = degvirt ϕ(f0), there is nothing to do.
If m(ϕ, f0) ≥ 1, we have m(ϕ′, f0) = m(ϕ, f0) − 1. Observe also that

degvirt ϕ
′(f0) ≥ degvirt ϕ(f0) − deg f0.

(In fact it is an equality except if the top component ϕ̄f0
does not depend on y).

By induction hypothesis, we have

degϕ′(f0) ≥ degvirt ϕ
′(f0) −m(ϕ′, f0)(degω + deg f0 − degω ∧ df0)

≥ degvirt ϕ(f0) − deg f0 − (m(ϕ, f0) − 1)(degω + deg f0 − degω ∧ df0)

= degvirt ϕ(f0) −m(ϕ, f0)(degω + deg f0 − degω ∧ df0)

− degω ∧ df0 + degω.

Combining with (2.5), and canceling the terms − degω ∧ df0 + degω on each side,
one obtains the expected inequality. �

2.C. Consequences. We shall use the Parachute Inequality 2.4 particularly when
r = 1, and when we have a strict inequality degvirt ϕ(f, g) > degϕ(f, g). In this
context the following easy lemma is crucial. One could say that this is here that
we really use dimension 3.

Lemma 2.6. Let f, g ∈ k[x1, x2, x3] be algebraically independent, and ϕ ∈ k[y, z]
such that degvirt ϕ(f, g) > degϕ(f, g). Then:
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(1) There exist coprime p, q ∈ N∗such that

p deg g = q deg f.

In particular, there exists δ ∈ N3 such that deg f = pδ and deg g = qδ.
(2) Considering ϕ(f, g) as coming from ϕ(f, y) ∈ k[x1, x2, x3][y], we have

ϕ̄g = (yp − ḡp)m(ϕ,g) · ψ = (yp − cf̄ q)m(ϕ,g) · ψ

for some c ∈ k, ψ ∈ k[x1, x2, x3][y].

Proof. (1) We have ϕ(f, g) =
∑

ci,jf
igj. Since degvirt ϕ(f, g) > degϕ(f, g),

there exist distinct (a, b) and (a′, b′) such that

deg fagb = deg fa′

gb′

= degvirt ϕ(f, g).

Moreover we can assume that a is maximal for this property, and that a′ is minimal.
We obtain

(a− a′) deg f = (b′ − b) deg g.

Dividing by the GCD of a− a′ and b′ − b be get the expected relation.
(2) With the same notation, we have b′ = b + pm for some m ≥ 1, and in

particular degy ϕ(f, y) ≥ p. So if p > degy P (f, y) for some P ∈ k[f ][y], we have
degvirt P (f, g) = degP (f, g). By the first assertion, there exists c ∈ k such that
deg gp > deg(gp − cf q). By successive Euclidean divisions in k[f ][y] we can write:

ϕ(f, y) =
∑

Ri(y)(yp − cf q)i

with p > degy Ri for all i. Denote by I the subset of indexes such that

ϕ̄g =
∑

i∈I

R̄i,g(yp − cf̄ q)i. (2.7)

Let i0 be the minimal index in I. We want to prove that i0 ≥ m(ϕ, g). By

contradiction, assume that m(ϕ, g) > i0. Since y−ḡ is a simple factor of (yp−cf̄ q) =
(yp−ḡp), and is not a factor of any R̄i,g, we obtain that (y−ḡ)i0+1 divide all sumands

of (2.7) except R̄i0,g(yp −cf̄ q)i0 . In particular, (y− ḡ)i0+1 doest not divide ϕ̄g: This
is a contradiction with Lemma 2.3. �

We list now some consequences of the Parachute Inequality 2.4.

Corollary 2.8. Let g, f ∈ k[x1, x2, x3] be algebraically independent with deg g ≥
deg f , and ϕ ∈ k[y, z] such that degvirt ϕ(g, f) > degϕ(g, f). Following Lemma
2.6, we write p deg g = q deg f where p, q ∈ N∗ are coprime. Then:

(i) degϕ(g, f) ≥ p deg g − deg g − deg f + deg df ∧ dg;
(ii) If deg g 6∈ N deg f , then degϕ(g, f) > deg df ∧ dg;

(iii) Assume deg g > deg f , deg g ≥ degϕ(g, f), and deg g 6∈ N deg f . Then
p = 2, and q ≥ 3 is odd. Moreover

degϕ(g, f) ≥ deg g − deg f + deg df ∧ dg = ∆(g, f).

In particular if deg f ≥ degϕ(g, f), then q = 3.
(iv) Under the same assumptions as in the previous point, we have

deg df ∧ dϕ(g, f) ≥ deg g + deg df ∧ dg.
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Proof. (i) By Lemma 2.6, we have

degvirt ϕ(f, g) ≥ qm(ϕ, g) deg f. (2.9)

On the other hand the Parachute Inequality 2.4 applied to ϕ(f, y) ∈ k[f ][y] yields

degϕ(f, g) ≥ degvirt ϕ(f, g) −m(ϕ, g)(deg f + deg g − deg df ∧ dg).

Finally dividing the right-hand side by m(ϕ, g) ≥ 1, we obtain

degϕ(f, g) ≥ q deg f + deg df ∧ dg − deg f − deg g.

(ii) From Lemma 2.6 we have deg f = pδ and deg g = qδ. The inequality (i)
gives

degϕ(f, g) ≥ q deg f − deg f − deg g + deg df ∧ dg =

(pq − p− q)δ + deg df ∧ dg. (2.10)

The assumption deg g 6∈ N deg f implies q > p ≥ 2. Thus pq−p− q > 0, and finally

degϕ(f, g) > deg df ∧ dg.

(iii) The assumptions imply q > p ≥ 2. Since qδ = deg g ≥ degϕ(f, g), we get
from (2.10) that q > pq− p− q. This is possible only if p = 2, and so q ≥ 3 is odd.
Replacing p by 2 in (2.10), we get the inequality.

If deg f ≥ degϕ(f, g), we obtain 2δ > (q − 2)δ, hence q = 3.

(iv) Denoting ϕ(f, g) =
∑

ci,jf
igj, and

ϕ′(f) =
∑

ici,jf
i−1gj ;

ϕ′(g) =
∑

jci,jf
igj−1.

we have dϕ(g, f) = ϕ′(f)df + ϕ′(g)dg. In particular dϕ(g, f) ∧ df = ϕ′(g)dg ∧ df ,
and

deg dϕ(g, f) ∧ df = degϕ′(g) + deg df ∧ dg.

We want to show degϕ′(g) ≥ deg g. Recall that by (2.9), degvirt ϕ(g) ≥ 2m(ϕ, g) deg g,
and so

degvirt ϕ
′(g) = degvirt ϕ(g) − deg g ≥ 2(m(ϕ, g) − 1) deg g + deg g.

The Parachute Inequality 2.4 then gives

degϕ′(g) ≥ degvirt ϕ
′(g) −m(ϕ′, g)(deg g + deg f − deg df ∧ dg)

≥ 2(m(ϕ, g) − 1) deg g + deg g − (m(ϕ, g) − 1)(deg g + deg f − deg df ∧ dg)

= (m(ϕ, g) − 1)(deg g − deg f + deg df ∧ dg) + deg g

≥ deg g. �

Corollary 2.11. Let f, g, h ∈ k[x1, x2, x3] be algebraically independent, and ϕ ∈
k[y, z] such that degvirt ϕ(f, g) > degϕ(f, g). Following Lemma 2.6, we write
p deg g = q deg f where p, q ∈ N∗ are coprime. Assume that deg h > deg(h +
ϕ(g, f)). Then

deg(h+ ϕ(g, f)) > p deg g − deg df ∧ dh− deg g

(= q deg f − deg df ∧ dh− deg g).
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Proof. The Parachute Inequality 2.4 applied to ψ = h+ ϕ(f, y) ∈ k[f, h][y] gives

deg h+ϕ(f, g) ≥ degvirt ψ(g)−m(ψ, g)(deg df∧dh+deg g−deg df∧dg∧dh). (2.12)

By assumption deg h > deg(h+ϕ(f, g)), hence degvirt ϕ(f, g) > degϕ(f, g) = deg h.
Thus not only degvirt ψ(g) = degvirt ϕ(g), but also ψ̄g = ϕ̄g, hence m(ψ, g) =
m(ϕ, g) ≥ 1. By Lemma 2.6, we obtain

degvirt ψ(g) ≥ pm(ϕ, g) deg g = pm(ψ, g) deg g

Replacing in (2.12), and dividing by m(ψ, g), we get the result. �

2.D. Principle of Two Maxima. The proof of the following result, which we
call the Principle of Two Maxima, is one of the few places where the formalism of
Poisson brackets used by Shestakov and Umirbaev seems to be more transparent
(at least for us) than the formalism of differential forms used by Kuroda. In this
section we propose a definition that encompasses the two points of view, and then
we recall the proof following [SU04a, Lemma 5].

Proposition 2.13 (Principle of Two Maxima, [Kur08, Theorem 5.2] and [SU04a,
Lemma 5]). Let (f1, f2, f3) be an automorphism. Then the maximum between the
following three degrees is realized at least twice:

deg f1 + deg df2 ∧ df3, deg f2 + deg df1 ∧ df3, deg f3 + deg df1 ∧ df2.

Let Ω be the space of algebraic 1-forms
∑

fidgi where fi, gi ∈ k[x1, x2, x3]. We
consider Ω as a free module of rank three over k[x1, x2, x3], with basis dx1, dx2, dx3,
and we denote by

T =
∞

⊕

p=0

Ω⊗p

the associative algebra of tensorial powers of Ω, where as usual Ω⊗0 = k[x1, x2, x3].
The degree function on Ω extends naturally to a degree function on T. Recall that
T has a natural structure of Lie algebra: For any ω, µ ∈ T, we define their bracket
as

[ω, µ] = ω ⊗ µ− µ⊗ ω.

In particular, if df, dg ∈ Ω are 1-forms, we have

[df, dg] = df ⊗ dg − dg ⊗ df = df ∧ dg.

It is easy to check that the bracket satisfies the Jacobi identity: For any α, β, γ ∈ T,
we have

[[α, β], γ] + [[β, γ], α] + [[γ, α], β]

= α⊗ β ⊗ γ − β ⊗ α⊗ γ − γ ⊗ α⊗ β + γ ⊗ β ⊗ α

+ β ⊗ γ ⊗ α− γ ⊗ β ⊗ α− α⊗ β ⊗ γ + α⊗ γ ⊗ β

+ γ ⊗ α⊗ β − α⊗ γ ⊗ β − β ⊗ γ ⊗ α+ β ⊗ α⊗ γ

= 0

since each one of the six possible permutations appears twice, with different signs.
The proof of the Principle of Two Maxima 2.13 now follows from the observation:

Lemma 2.14. Let f, g, h ∈ k[x1, x2, x3]. Then

deg [[df, dg] , dh] = deg h+ deg df ∧ dg.
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Proof. We have

dh =
∑

1≤k≤3

∂h
∂xk

dxk

and

[df, dg] = df ∧ dg =
∑

1≤i<j≤3

(

∂f
∂xi

∂g
∂xj

− ∂f
∂xj

∂g
∂xi

)

dxi ∧ dxj .

Thus

[[df, dg], dh] =
∑

1≤k≤3

∑

1≤i<j≤3

∂h
∂xk

(

∂f
∂xi

∂g
∂xj

− ∂f
∂xj

∂g
∂xi

)

[dxi ∧ dxj , dxk] ;

and the result follows, since deg [dxi ∧ dxj , dxk] = deg xixjxk. �

Proof of the Principle of Two Maxima 2.13. Since by the Jacobi identity

[[df1, df2], df3] + [[df2, df3], df1] + [[df3, df1], df2] = 0,

the dominant terms must cancel each other. In particular the maximum of the
degrees, which are computed in Lemma 2.14, is realized at least twice: This is the
five lines proof of the Principle of Two Maxima by Shestakov and Umirbaev! �

3. Geometric theory of reduction

In this section we mostly follow Kuroda [Kur10], but we reinterpret his theory
of reduction in a combinatorial way in the complex C.

3.A. Degree of automorphisms and vertices. Recall that in §1.B we defined
a notion of degree for an automorphism f = (f1, f2, f3) ∈ Tame(A3). The point is
that we want a degree that is adapted to the theory of reduction of Kuroda, so for
instance taking the maximal degree of the three components of an automorphism
is not good, because we would not detect a reduction of the degree on one of the
two lower components (such reductions do exist, see §6). We also want a definition
that is adapted to working on the complex C, so directly taking the sum of the
degree of the three components is no good either, since it would not give a degree
function on vertices of C.

Recall that the 3-degree of f ∈ Tame(A3), or of the vertex v3 = [f ], is the triple
(δ1, δ2, δ3) given by Lemma 1.3, in particular δ3 > δ2 > δ1, and the degree of f is
the sum

deg f = δ1 + δ2 + δ3 ∈ N3.

We call δ3 the top degree of f . Similarly we have a 2-degree (ν1, ν2) associated
with any vertex v2 of type 2, and a degree deg v2 = ν1 + ν2. Finally for a vertex of
type 1 the notions of 1-degree and degree coincide.

Lemma 3.1. Let v3 be a vertex of type 3. Then

deg v3 ≥ (1, 1, 1)

with equality if and only if v3 = [id].

Proof. If v3 = [f ] with deg v3 = (1, 1, 1), then the 3-degree (δ1, δ2, δ3) of v3 must
be equal to (0, 0, 1), (0, 1, 0), (0, 0, 1), hence the result. �
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Let v3 be a vertex with 3-degree (δ1, δ2, δ3). The unique m1 ∈ P2(v3) such that

degm1 = δ1 is called the minimal vertex in P2(v3), and the unique m2 ∈ P̂2(v3)

such that degm2 = (δ1, δ2) is called the minimal line in P2(v3). If v2 ∈ P̂2(v3)
has 2-degree (ν1, ν2), there is a unique degree δ such that v3 has degree ν1 + ν2 + δ.
We denote this situation by δ := deg(v3 r v2). There is also a unique v1 such that
v2 passes through v1 and deg v1 = ν1: we call v1 the minimal vertex of v2. Observe
that if v2 = m2 ∈ P̂2(v3), then the minimal vertex of v2 coincides with the minimal
vertex of v3, and if v2 6= m2, then v1 is the intersection of v2 with m2.

A good triangle T in P2(v3) is the data of three distinct lines m2, v2, u2, such
that m2 is the minimal line, v2 passes through the minimal vertex m1, and u2

does not pass through m1. Equivalently, a good triangle corresponds to a good
representative v3 = Jf1, f2, f3K with deg f1 > deg f2 > deg f3, by putting m2 =
Jf2, f3K, v2 = Jf1, f3K, u2 = Jf1, f2K.

Let v2 ∈ P̂2(v3) be a vertex with 2-degree (δ1, δ2). We say that v2 has inner
resonance if δ2 ∈ Nδ1. We say that v2 has outer resonance in v3 if deg(v3rv2) ∈
Nδ1 + Nδ2.

3.B. Elementary reductions. Let v3, v
′
3 be vertices of type 3.

Recall that v′
3 is a neighbor of v3 if v′

3 6= v3 and there exists a vertex v2 of type
2 such that d(v3, v2) = d(v′

3, v2) = 1. We denote this situation by v′
3 ≬ v3, or if we

want to make v2 explicit, by v′
3 ≬v2

v3 We also say that v2 is the center of v3 ≬ v′
3.

We say that v′
3 is an elementary reduction (resp. a weak elementary re-

duction) of v3 with center v2, if deg v3 > deg v′
3 (resp. deg v3 ≥ deg v′

3) and
v′

3 ≬v2
v3. Let v1 be the minimal vertex in the line v2. We say that v1, v2, v3 is the

pivotal simplex of the reduction. Moreover we say that the reduction is optimal
if v′

3 has minimal degree among all neighbors of v3 with center v2, and that the
reduction is simple if v3 and v′

3 are simple neighbors, as defined in §1.C.

Lemma 3.2. Let v′
3 be a neighbor of v3 = [f1, f2, f3] with center v′

2 = Jf1, f2K.
Then there exists a polynomial P (f1, f2) such that v′

3 = Jf1, f2, f3 + P (f1, f2)K.
Moreover:

• If v′
3 is a weak elementary reduction of v3, then deg f3 ≥ degP (f1, f2);

• If v′
3 is an elementary reduction of v3, then deg(v3 r v′

2) = degP (f1, f2)
(which is also equal to deg f3 if v3 = Jf1, f2, f3K).

Proof. From Corollary 1.5 we know that v′
3 has the form v′

3 = [f1, f2, f3+P (f1, f2)].
Since by assumption deg f1 6= deg f2, there exist a, b ∈ k such that (f1, f2, f3 +
P (f1, f2) + af1 + bf2) is a good representative for v′

3. So up to changing P we can
assume v′

3 = Jf1, f2, f3 + P (f1, f2)K.
If v′

3 is a weak elementary reduction of v3, then we have

deg f1 + deg f2 + deg f3 ≥ deg v3 ≥ deg v′
3 = deg f1 + deg f2 + deg(f3 + P (f1, f2)).

So deg f3 ≥ deg(f3 + P (f1, f2)), which implies deg f3 ≥ degP (f1, f2).
Finally if v′

3 is an elementary reduction of v3, that is, deg v3 > deg v′
3, then

the same computation gives deg(v3 r v′
2) > deg(f3 + P (f1, f2)), which implies

deg(v3 r v′
2) = degP (f1, f2). �

Remark 3.3. Under the assumptions of Lemma 3.2, if v′
3 is a simple weak reduction

of v3 with center v2 = Jf1, f2K, v1 = Jf2K, and moreover:

(1) v2 is not the minimal line of v3;
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(2) v2 has no inner resonance;

then v′
3 = Jf1, f2, f3 + P (f2)K.

Indeed a priori we have P (f1, f2) = af1 + Q(f2), and we would need to change
the representative for v3 in order to insure a = 0. But our assumptions imply that
deg f1 6∈ N deg f2, and deg f1 = topdeg v3, so that

deg f1 > deg f3 ≥ deg(af1 +Q(f2)) = max{deg af1, degQ(f2)},

which gives a = 0.

Lemma 3.4 (Square Lemma). Let v3, v
′
3, v

′′
3 be three vertices such that:

• v′
3 ≬v′

2
v3 and v′′

3 ≬v′′

2
v3 for some v′

2, v
′′
2 that are part of a good triangle of

v3 (this is automatic if v′
2 6= v′′

2 , and v′
2 or v′′

2 is the minimal line of v3);
• Denoting v1 the common vertex of v′

2 and v′′
2 , v′′

3 is a simple neighbor of v3

with center v′′
2 , v1;

• deg v3 ≥ deg v′
3, deg v3 ≥ deg v′′

3 , with at least one of the inequality being
strict.

Then there exists u3 such that:

• u3 ≬ v′
3, u3 ≬ v′′

3 ;
• deg v3 > deg u3.

Proof. We take v1 = Jf2K, v
′
2 = Jf1, f2K, v

′′
2 = Jf2, f3K. Since v′

2 and v′′
2 are part of

a good triangle, we have v3 = Jf1, f2, f3K. By Lemma 3.2, and since v′′
3 is a simple

neighbor of v3, there exist a ∈ k, Q ∈ k[f2] and P ∈ k[f1, f2] such that

v′
3 = Jf1, f2, f3 + P (f1, f2)K;

v′′
3 = Jf1 + af3 +Q(f2), f2, f3K.

We have

deg f3 ≥ deg(f3 + P (f1, f2)), deg f1 ≥ deg(f1 + af3 +Q(f2)),

with one of the inequality being strict. We will show that one of the following
choices for u3 is good (see Figure 3):

(1) u3 = [f1 +Q(f2), f2, f3 + P (f1, f2)];
(2) u3 = [f1 + af3 +Q(f2), f2, af3 +Q(f2)].

In any case u3 is a neighbor of both v′
3 and v′′

3 , so the problem is only to check that
for one of the choice we have deg v3 > deg u3.

If a = 0, then the following inequalities show that choice (1) is good:

deg v3 = deg f3 + deg f2 + deg f1

> deg(f3 + P (f1, f2)) + deg f2 + deg(f1 +Q(f2))

≥ deg u3.

Now we assume a 6= 0.
First consider the case deg v3 = deg v′′

3 , that is, deg f1 = deg(f1 + af3 +Q(f2)).
If deg f3 > deg(af3 +Q(f2)) then choice (2) is good. If deg(af3 + Q(f2)) ≥ deg f3

then the equality deg f1 = deg(f1 +af3 +Q(f2)) implies deg f1 ≥ deg f3. Moreover
by assumption deg f1 6= deg f3, so we have deg f1 > deg f3, which implies deg f1 +
Q(f2) = deg(f1 + af3 +Q(f2)), and so choice (1) is good.

Now consider the case deg v3 > deg v′′
3 , that is, deg f1 > deg(f1 + af3 + Q(f2)).

If deg f3 ≥ deg(af3 +Q(f2)) then choice (2) is good. If deg(af3 + Q(f2)) > deg f3
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Choice (1) ◦

•

•

•

•

v3=Jf1,f2,f3K

v′

2
=Jf1,f2K

v′

3
=Jf1,f2,f3+P (f1,f2)K

u′′

2
=Jf3+P (f1,f2),f2K

u3=[f1+Q(f2),f2,f3+P (f1,f2)]

u′

2
=[f1+Q(f2),f2]

v′′

3
=Jf1+af3+Q(f2),f2,f3K

v′′

2
=Jf2,f3K

v1

Choice (2)

•

•

•

◦

v3=Jf1,f2,f3K

u′

2
=v′

2
=Jf1,f2K

u3=[f1+af3+Q(f2),f2,af3+Q(f2)]

u′

2
=[f1+af3+Q(f2),f2]

v′′

3
=Jf1+af3+Q(f2),f2,f3K

v′′

2
=Jf2,f3K

v1 v′

3
=Jf1,f2,f3+P (f1,f2)K

Figure 3. Square Lemma 3.4.

then as before deg f1 > deg f3. Then deg f1 > deg(f1 + af3 + Q(f2)) implies that
deg f1 > deg(f1 +Q(f2)), and so choice (1) is good. �

3.C. Differential degree and delta degree. If f1, f2 ∈ k[x1, x2, x3] are two al-
gebraically independent polynomials with deg f1 > deg f2, we introduce the degree

∆(f1, f2) := deg f1 − deg f2 + deg df1 ∧ df2 ∈ Z3.

Observe that for any a ∈ k

d(f1 + af2) ∧ df2 = df1 ∧ df2,

so the following definitions do not depend on a choice of representative. If v2 =
Jf1, f2K is a vertex of type 2, we denote

d(v2) = deg df1 ∧ df2 and ∆(v2) = ∆(f1, f2).

We call d(v2) and ∆(v2) respectively the differential degree and the delta degree
of v2. Observe that for any vertex v2 we have

∆(v2) > d(v2).

The Principle of Two Maxima 2.13 translates as follows.

Lemma 3.5. Let v3 be a vertex of type 3, and v1 ∈ m2 a vertex in the minimal
line of v3.

(1) The function v2 ∈ P2(v3) 7→ deg(v3rv2)+d(v2) is constant, except possibly
at a unique line u2 where it attains its minimum.
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(2) The function v2 ∈ P2(v3) 7→ ∆(v2) is constant on the set of lines distinct
from m2 and passing through v1, except possibly at a unique line u′

2 where
it attains its minimum. In this case, u′

2 is equal to the vertex u2 of the
previous assertion.

Proof. (1) let v2, v
′
2, v

′′
2 be three lines in P2(v3), not passing through the same

point. There exists (f1, f2, f3) a (in general not good) representative of v3, such
that v2 = [f1, f2], v′

2 = [f1, f3], v′′
2 = [f2, f3]. The Principle of Two Maxima 2.13

says that at least two of the following three quantities are equal and realizes the
maximum:

deg(v3 r v2) + d(v2), deg(v3 r v′
2) + d(v′

2), deg(v3 r v′′
2 ) + d(v′′

2 ).

The result follows.
(2) Let v2 6= m2 a line passing through v1. Now we can choose a good repre-

sentative Jf1, f2, f3K of v3 such that v1 = Jf2K, m2 = Jf2, f3K, v2 = Jf1, f2K. We
have

∆(v2) = deg f1 − deg f2 + deg df1 ∧ df2 = topdeg v3 − deg v1 + d(v2).

So for such lines passing through v1 and distinct from m2, the equality ∆(v2) =
∆(v′

2) is equivalent to d(v2) = d(v′
2). Since moreover deg(v3 r v2) = deg(v3 r v′

2) =
deg f3, the result follows from the first assertion. �

3.D. K-reductions. We introduce now the key concept of K-reduction, where we
let the reader decide for himself whether the K should stand for “Kuroda” or for
“Kazakh”. Let v3 and u3 be vertices of type 3.

We say that u3 is an elementary K-reduction of v3 if u3 ≬ v3 with center v2

and

(K1) the vertex v2 has no inner resonance;
(K2) the vertex v2 has no outer resonance in v3;
(K3) v2 is not the minimal line in P2(v3);
(K4) ∆(v2) > deg(u3 r v2);
(K5) deg v3 > deg u3;

If v1 is the minimal point in v2, as before we call v1, v2, v3 the pivotal simplex of
the elementary K-reduction (denoted by 	 on Figure 4).

We say that u3 is a proper K-reduction of v3 if there exists w3 such that
w3 ≬ v3 (with center m2) and w3 ≬ u3 (with center w2 6= m2), such that

(K6) degw3 ≥ deg v3;
(K7) m2 is the minimal line in P2(w3);
(K8) u3 is an elementary K-reduction of w3.

Observe that the pivot v1 of the reduction is the common vertex of the lines m2

and w2 in P2(w3). The simplex v1, w2, w3 is still called the pivotal simplex of the
reduction.

Let v1, v2, v3 be a simplex, and let s ≥ 3 be an odd integer. We say that the
simplex v1, v2, v3 has Strong Pivotal Form 	(s) if

(	1) deg v1 = 2δ and deg v2 = (2δ, sδ) for some δ ∈ N3;
(	2) the vertex v2 has no outer resonance in v3;
(	3) v2 is not the minimal line in P2(v3);
(	4) deg(v3 r v2) ≥ ∆(v2);
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•

◦

	

v3=Jf1,f2,f3K

v2=Jf1,f2K

u3=Jf1,f2,g3Kv1=Jf2K ◦

• •	

v3=Jf1,f2,f3K

v1=Jf2K

m2=Jf2,f3K

w3=Jg1,f2,f3K

u3=Jg1,f2,g3K

w2=Jg1,f2K

Figure 4. Elementary and proper K-reductions.

In all the previous definitions we took care of working with vertices, and not with
particular representatives. However when proving things it will often be useful to
choose representatives.

Set-Up 3.6.

(1) Let u3 be an elementary K-reduction of v3, with pivotal simplex v1, v2, v3.
Then there exist representatives

v1 = Jf2K v3 = Jf1, f2, f3K

v2 = Jf1, f2K u3 = Jf1, f2, g3K

such that g3 = f3 + ϕ3(f1, f2), where ϕ3 ∈ k[x, y].
(2) Let u3 be a proper K-reduction of v3, with pivotal simplex v1, w2, w3. Then

there exist representatives

v1 = Jf2K w3 = Jg1, f2, f3K

m2 = Jf2, f3K v3 = Jf1, f2, f3K

w2 = Jg1, f2K u3 = Jg1, f2, g3K

such that g1 = f1 + ϕ1(f2, f3) and g3 = f3 + ϕ3(g1, f2), where ϕ1, ϕ3 ∈ k[x, y].

Proof. (1) Pick any good representatives v1 = Jf2K, v2 = Jf1, f2K, v3 = Jf1, f2, f3K,
and apply Lemma 3.2 to get g3.

(2) Pick any good representative v1 = Jf2K (which is unique up to a multiplica-
tive constant), and then pick f3, g1 such that v2 = Jf2, f3K and w2 = Jg1, f2K. Since

v2 is the minimal line in P̂2(w3), we have deg g1 > deg f2 and deg g1 > deg f3, hence
(g1, f2, f3) is a good representative for w3. Now apply Lemma 3.2 twice to get f1

and g3. �

We can rephrase results from Corollary 2.8 with the previous definitions (see also
Example 6.3 for some complements):

Proposition 3.7. Let v3 be a vertex that admits an elementary reduction with
pivotal simplex v1, v2, v3.

(1) Assume v2 has no inner resonance, and no outer resonance in v3. Then

deg(v3 r v2) > d(v2).

(2) If moreover v2 is not the minimal line in P2(v3), then

deg(v3 r v2) ≥ ∆(v2),

so that v1, v2, v3 has Strong Pivotal Form 	(s) for some odd s ≥ 3.
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(3) In particular, the pivotal simplex of a K-reduction has Strong Pivotal Form
	(s) for some odd s ≥ 3.

Proof. (1) We pick good representatives v1 = Jf2K, v2 = Jf1, f2K, v3 = Jf1, f2, f3K.
By Lemma 3.2, the elementary reduction has the form u3 = Jf1, f2, f3 + P (f1, f2)K
with deg f3 = degP (f1, f2). Since v2 has no outer resonance in v3, we have
deg f3 6∈ N deg f1 + N deg f2, hence

degvirt P (f1, f2) > degP (f1, f2).

Since moreover v2 has no inner resonance, we can apply Corollary 2.8(ii) to get the
inequality deg(v3 r v2) > d(v2).

(2) The condition that v2 is not the minimal line in P2(v3) is equivalent to

max{deg f1, deg f2} > deg f3 = degP (f1, f2),

hence the second assertion follows from Corollary 2.8(iii).
(3) The last assertion is an immediate corollary. �

Lemma 3.8. Let u3 be an elementary K-reduction of v3 with center v2, and let
m2 be the minimal line in P2(v3). Then

(1) d(m2) ≥ deg(v3 rm2) + d(v2);
(2) For any line u2 in P2(v3) distinct from v2, we have

deg(v3 r u2) + d(u2) > deg(v3 r v2) + d(v2)

deg(v3 r u2) + d(u2) ≥ 2 deg(v3 rm2) + d(v2).

(3) For any line u2 in P2(v3) distinct from m2 and v2, we have

d(u2) > d(m2) > d(v2).

Proof. We use the notation from Set-Up 3.6.

(1) One the one hand:

df2 ∧ df3 = df2 ∧ dg3 − df2 ∧ dϕ3(f1, f2).

On the other hand, combining Corollary 2.8(iv) for the first inequality and (K4)
for the strict inequality:

deg df2 ∧ dϕ3(f1, f2) ≥ deg f1 + deg df1 ∧ df2 > deg f2 + deg g3 ≥ deg df2 ∧ dg3.

So deg df2 ∧ df3 = deg df2 ∧ dϕ3(f1, f2), and again by Corollary 2.8(iv) we obtain
the expected inequality:

d(m2) = deg df2 ∧ df3 ≥ deg f1 + deg df1 ∧ df2 = deg(v3 rm2) + d(v2).

(2) From the previous inequality we get

deg(v3 rm2) + d(m2) > deg(v3 r v2) + d(v2).

By the Principle of Two Maxima, as formulated in Lemma 3.5(1), we get

deg(v3 r u2) + d(u2) = deg(v3 rm2) + d(m2),

which together with assertion (1) gives the two expected inequalities.
(3) Since by definition of the minimal line deg(v3 r m2) > deg(v3 r u2), the

previous equality gives d(u2) > d(m2), and d(m2) > d(v2) follows directly from
(1). �

Corollary 3.9. Assume that v3 admits an elementary K-reduction, and that one
of the following holds:
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(1) u2, v2, w2 is a good triangle in P2(v3), and d(u2) > d(w2) > d(v2);
(2) m2 is the minimal line in P2(v3), v2 is another line in P2(v3) and d(m2) >

d(v2).

Then v2 is the center of the K-reduction.

Proof. (1) The assumption implies that v2 is the unique minimum of the function

u2 ∈ P̂2(v3) 7→ d(u2).

By Lemma 3.8(3) the center of a K-reduction must be such a minimum.
(2) Pick u2 such that u2,m2, v2 is a good triangle of P2(v3): There is at least

a one parameter space of such lines, so we can assume that u2 is not the center
of the K-reduction. By 3.8(3) we have d(u2) > d(m2), and then we can apply the
previous point. �

3.E. Proper K-reductions.

Proposition 3.10. Let u3 be a proper K-reduction of v3 (via w3). Then (using
notation from Set-Up 3.6):

(1) g1 = f1 + ϕ1(f2, f3) with degvirt ϕ1(f2, f3) = degϕ1(f2, f3).
(2) If the pivotal simplex has Strong Pivotal Form 	(s) with s ≥ 5, then v3 is

a simple neighbor of w3, with center m2, v1, and deg v3 = degw3.

Proof. (1) Assume by contradiction that degvirt ϕ1(f2, f3) > degϕ1(f2, f3). By
non resonance (K1) we can apply Corollary 2.8(ii) and Lemma 3.8(1) to get the
contradiction

degϕ1(f2, f3) > deg df2 ∧ df3 = d(m2) > deg g1.

(2) We have

deg g1 ≥ degϕ1(f2, f3) = degvirt ϕ1(f2, f3).

By Proposition 3.7, we know that v1, w2, w3 has Strong Pivotal Form 	(s), in
particular deg g1 = sδ, deg f2 = 2δ and by (	4) we have deg f3 > (s − 2)δ. As
soon as s ≥ 5 we have s − 2 > s

2 , and in this case ϕ1 has the form ϕ1(f2, f3) =
af3 +Q(f2), as expected. Moreover since degQ(f2) = 2rδ for some r ≥ 2, we have
deg g1 > degϕ(f2, f3) hence deg f1 = deg g1 and deg v3 = degw3. �

We say that a K-reduction is normalized if

• either it is an elementary K-reduction;
• or, if u3 is a proper K-reduction of v3 via w3, the vertex v3 is not a simple

neighbor of w3 with center m2, v1.

By Proposition 3.10(2), in the case of a normalized proper K-reduction the pivotal
simplex has Strong Pivotal Form 	(3). We now prove the converse, with some
estimation of the degrees involved.

Lemma 3.11. Assume that u3 is a proper K-reduction of v3, via w3, and that the
pivotal simplex has Strong Pivotal Form 	(3). Then the reduction is normalized,
and using representatives as from Set-Up 3.6, we have:

deg g1 = 3δ, deg f2 = 2δ, 3
2δ ≥ deg f3 > δ,

deg df1 ∧ df3 = δ + deg df2 ∧ df3 ≥ 4δ + deg dg1 ∧ df2,

deg df1 ∧ df2 = deg f3 + deg df2 ∧ df3.
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Moreover we have the implications:

degw3 > deg v3 =⇒ deg f3 = 3
2δ, deg f1 >

5
2δ.

degw3 = deg v3 =⇒ deg f1 = deg g1 = sδ.

In any case we have

deg df1 ∧ df2 > deg df1 ∧ df3 > deg df2 ∧ df3,

m2 is the minimal line of v3, and for any line ℓ2 ∈ P̂2(v3), we have

d(ℓ2) > d(m2).

Proof. The equalities deg g1 = 3δ and deg f2 = 2δ come from the fact that the
pivotal simplex has Strong Pivotal Form 	(3). Property (	4) gives deg f3 > δ, and
Proposition 3.10(1) says that degvirt ϕ1(f2, f3) = degϕ1(f2, f3). So there exists
a, b, c ∈ k, a 6= 0, such that

w3 = Jg1 = f1 + af2
3 + bf2 + cf3, f2, f3K,

and 3δ = deg g1 ≥ 2 deg f3, with an equality in the case deg g1 > deg f1. In
particular the K-reduction is normalized. By Lemma 3.8(1) we have

deg df2 ∧ df3 = d(m2) ≥ deg(w3 rm2) + d(w2) = deg g1 + deg dg1 ∧ df2. (3.12)

This implies

deg g1 + deg df2 ∧ df3 > deg f3 + deg dg1 ∧ df2.

By the Principle of Two Maxima 2.13, we get

deg g1 + deg df2 ∧ df3 = deg f2 + deg dg1 ∧ df3. (3.13)

Now dg1∧df3 = df1∧df3+bdf2∧df3, and the previous equality implies deg dg1∧df3 >

deg df2 ∧ df3, so that

deg dg1 ∧ df3 = deg df1 ∧ df3.

Now combining (3.12) and (3.13) we get the expected inequality

deg df1 ∧ df3 = δ + deg df2 ∧ df3 ≥ 4δ + deg dg1 ∧ df2.

Finally, since deg f1 +deg f3 ≥ deg df1 ∧df3, when deg f3 = 3
2δ we also get deg f1 >

5
2δ.

For the last equality we start again from g1 = f1 + af2
3 + bf2 + cf3, which gives

dg1 ∧ df2 = df1 ∧ df2 + af3df2 ∧ df3 + cdf2 ∧ df3.

Since (3.12) implies deg(f3df2 ∧ df3) > deg dg1 ∧ df2, the first two terms on the
right-hand side must have the same degree, which is the expected equality. �

Now we can justify the terminology of “reduction”, which was by no mean obvi-
ous in the proper case:

Proposition 3.14. Let u3 be a proper K-reduction of a vertex v3. Then

deg v3 > deg u3.

Proof. We use the notation from Set-Up 3.6. Observe that if degw3 = deg v3, then
the proposition is obvious from (K5) and (K8).

Assume first that the reduction is not normalized, that is, g1 = f1 +af3 +Q(f2).
Since we know that deg g1 = sδ, deg f2 = 2δ and sδ > deg f3 > (s− 2)δ, we obtain
that deg g1 = deg f1 > deg(af3 +Q(f2)), hence degw3 = deg v3 and we are done.
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Now assume we have a normalized properK-reduction, and that degw3 > deg v3.
By condition (K4) we have

δ + deg dg1 ∧ df2 > deg g3.

Adding 3δ = deg g1, and using Lemma 3.11, we get

deg df1 ∧ df3 ≥ 4δ + deg dg1 ∧ df2 > deg g1 + deg g3.

Finally adding deg f2 we get

deg v3 = deg f1 + deg f2 + deg f3

≥ deg df1 ∧ df3 + deg f2

> deg g1 + deg g3 + deg f2

= deg u3. �

Lemma 3.15 (Normalization of a K-reduction). Let u3 be a non-normalized proper
K-reduction of v3, via w3. Then there exists u′

3 such that

(1) u′
3 ≬ v3 and u′

3 ≬ u3;
(2) u′

3 is an elementary K-reduction of v3.

Proof. By Lemma 3.11 the pivotal simplex of the reduction has Strong Pivotal Form
	(s) for some odd s ≥ 5. Hence by Proposition 3.10 we have deg v3 = degw3. By
the Square Lemma 3.4, we get the existence of u′

3 with u′
3 ≬ v3, u′

3 ≬ u3 and
degw3 > deg u′

3. Hence deg v3 > deg u′
3, which is (K5).

Looking at the proof of the Square Lemma 3.4, we see that we are in Choice (1):
indeed deg v3 = degw3 and by non-resonance deg(f3 +Q(f2)) ≥ deg f3.

More precisely (see Figure 5):

• v3 and w3 have same 3-degrees and v2 and w2 have same 2-degrees, which
gives (K1) and (K2);

• m2 is the minimal line of v3, and is distinct from v2, which gives (K3);
• v2 = Jg1 −Q(f2), f2K so d(v2) = d(w2), which gives (K4). �

◦

•

•

•

•

	

	

w3=Jg1,f2,f3K

m2=Jf2,f3K

v3=Jf1=g1−af3−Q(f2),f2,f3K

v2=Jg1−Q(f2),f2K

u′

3
=Jg1−Q(f2),f2,f3+P (g1,f2)K

u2=Jf2,f3+P (g1,f2)K

u3=Jg1,f2,f3+P (g1,f2)K

w2=Jg1,f2K

Figure 5. Normalization of a K-reduction.

Corollary 3.16. Let v3 admitting a K-reduction u3, and write v3 = Jf1, f2, f3K as
in Set-Up 3.6. Then one of the following holds:

(1) Any line u2 in P2(v3) has no inner resonance;
(2) deg f1 = 2 deg f3 and 2 deg f1 = 3 deg f2.
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Proof. If the K-reduction is elementary, we have deg f1 = sδ, deg f2 = 2δ and
deg f3 > (s− 2)δ for some odd s. Moreover when s ≥ 5, we cannot have deg f3 =
s−1

2 deg f2 by property (K2). This leaves the two stated possibilities.
If theK-reduction is proper, either deg g1 = deg f1 and we can apply the previous

case; or deg g1 > deg f1 and we can assume the K-reduction is normalized. Then
by Lemma 3.11 we have 3δ > deg f1 > 5

2δ, deg f2 = 2δ, deg f3 = 3
2δ, hence

deg f1 6∈ N deg f2 + N deg f3, deg f2 6∈ N deg f3 and we are in case (1). �

3.F. Stability of K-reductions. Consider v3 a vertex that admits a normalized
K-reduction. In this section we want to show that most elementary reductions of
v3 still admit a K-reduction. First we prove two lemmas that give some constraint
on the (weak) elementary reductions that such a vertex v3 can admit.

Lemma 3.17. Let u3 be a normalized K-reduction of v3, with pivot v1. Let u2

be any line in P2(v3) not passing through v1. Then v3 does not admit a weak
elementary reduction with center u2.

Proof. We start with the notation from Set-Up 3.6. Replacing f1, f3 by f1 + af2,
f3 + bf2 for some a, b ∈ k, we can assume that u2 = Jf1, f3K. However, it is possible
with such a choice that [f2, f3] is not a good representative anymore of m2. There
are two possibilities:

(1) either (f1, f2, f3) is still a good representative for v3, and deg f2 = deg(v3 r

u2);
(2) or deg f2 = deg f3 > degm1 where m1 is the minimal point of v3, and

deg f2 > deg(v3 r u2).

Assume by contradiction that v3 admits a weak elementary reduction with center
u2: there exists a non-linear polynomial P ∈ k[x, y] such that

deg(v3 r u2) ≥ degP (f1, f3).

On the other hand we know from Proposition 3.7 that the pivotal simplex of the K-
reduction has Strong Pivotal Form 	(s), hence deg f3 > (s−2)δ ≥ δ and 2 deg f3 >

deg f2 = 2δ. In consequence we have degvirt P (f1, f3) > deg f2 ≥ deg(v3 r u2), so
that

degvirt P (f1, f3) > degP (f1, f3).

By Lemma 3.8(2) we have

deg(v3 r u2) + d(u2) ≥ 2 deg(v3 rm2) + d(v2). (3.18)

In the first alternative of Corollary 3.16, we can apply Corollary 2.8(ii) to get c

deg(v3 rm2) > deg(v3 r u2) > d(u2).

This is contradictory with (3.18).
Now consider the second alternative from Corollary 3.16, which implies

1
2 deg(v3 rm2) = 1

2 deg f1 = deg f3

2
3 deg(v3 rm2) = 2

3 deg f1 = deg f2 ≥ deg(v3 r u2)
(3.19)

We apply Corollary 2.8(i) which gives

deg(v3 r u2) ≥ degP (f1, f3) ≥ d(u2) − deg f3,

which we rewrite as

deg f3 + 2 deg(v3 r u2) ≥ deg(v3 r u2) + d(u2).
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Combining with (3.18) and (3.19) we get the contradiction

(1
2 + 4

3 ) deg(v3 rm2) > 2 deg(v3 rm2). �

Lemma 3.20. Let u3 be a normalized proper K-reduction of v3, with pivot v1. Let
v′

2 6= m2 be a line in P2(v3) passing through v1. If v′
3 is a weak elementary reduction

of v3 with center v′
2, then this reduction is simple with center v′

2, v1.

Proof. We use the notation from Set-Up 3.6, and set v′
2 = Jh1, f2K with h1 =

f1 + af3. Then v3 = Jf1, f2, f3K = Jh1, f2, f3K and v′
3 = Jh1, f2, f3 + P (h1, f2)K for

some polynomial P . We want to prove that P (h1, f2) ∈ k[f2]. It is sufficient to
prove deg h1 > degvirt P (h1, f2). Assume the contrary. Then

degvirt P (h1, f2) ≥ deg h1 > deg f3 ≥ degP (h1, f2).

By Corollary 3.16 we have deg h1 = deg f1 6∈ N deg f2, so we can apply Corollary
2.8(ii) to get

deg f1 > degP (h1, f2) > deg dh1 ∧ df2 = deg(df1 ∧ df2 − adf2 ∧ df3).

Then Lemmas 3.11 and 3.8(1) give

deg df1 ∧ df2 = deg f3 + deg df2 ∧ df3 > deg f3 + deg f1,

hence a contradiction. �

Proposition 3.21 (Stability of aK-reduction). Let u3 be a normalized K-reduction
of v3, and v′

3 a weak elementary reduction of v3. If u3 is an elementary K-reduction,
assume moreover that the centers of v′

3 ≬ v3 and u3 ≬ v3 are distinct. Then u3 is a
proper K-reduction of v′

3, and moreover:

(1) If u3 is an elementary K-reduction of v3, then u3 is a (possibly non-
normalized) proper K-reduction of v′

3 via w′
3 that satisfies degw′

3 = deg v3;
(2) If u3 is a normalized proper K-reduction of v3 via w3, then u3 also is a

normalized proper K-reduction of v′
3 via w3.

Proof. We denote by v′
2 the center of v′

3 ≬ v3, and by v1 = Jf2K, v2 = Jf1, f2K,
v3 = Jf1, f2, f3K the pivotal simplex of the K-reduction u3. By Lemma 3.17, the
line v′

2 passes through v1.
First assume that u3 is an elementary K-reduction of v3, which is (K8). If v′

2 is
the minimal line of v3, since by assumption deg v3 ≥ deg v′

3, we directly get (K6)
and (K7), so that u3 is a proper K-reduction of v′

3 (via v3). Now assume that v′
2

is not the minimal line of v3, so v′
2 = Jf1 + af3, f2K, and a 6= 0 since we assume

v′
2 6= v2. Then by Lemma 3.2 we can write v′

3 = Jf1 + af3, f2, f3 + P (f1 + af3, f2)K
with deg f3 ≥ degP (f1 +af3, f2). If we can show that P depends only on f2 we are
done: indeed then u3 is a proper K-reduction of v′

3 via w′
3 = Jf1, f2, f3 + P (f2)K,

where m′
2 = Jf2, f3 +P (f2)K is the minimal line of w′

3 (see Figure 6). To show that
P depends only on f2 it is sufficient to show that deg f3 ≥ degvirt P (f1 + af3, f2).
By contradiction, assume that this is not the case. Then

degvirt P (f1 + af3, f2) > deg f3 ≥ degP (f1 + af3, f2).

Since v′
2 has the same 2-degree as v2, it has no inner resonance, and by Corollary

2.8(ii) we get

degP (f1 + af3, f2) > deg(df1 ∧ df2 + adf3 ∧ df2).
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By Lemma 3.8 we have deg df3 ∧df2 > df1 ∧df2 and deg df3 ∧df2 > deg f3, so finally
we obtain the contradiction

degP (f1 + af3, f2) > deg df2 ∧ df3 > deg f3.

Now assume that u3 is a normalized proper K-reduction of v3. If v′
2 = m2 the

minimal line of v3, which is also the minimal line of the intermediate vertex w3, then
the conclusion is direct. Otherwise by Lemma 3.20 the reduction from v3 to v′

3 is
simple with center v′

2, v1. But then by lemma 3.2 we should have v′
2 = Jf1 +bf3, f2K

and v′
3 = Jf1 + bf3, f2, f3 + P (f2)K. By Lemma 3.11 we have

deg f2 = 2δ > 3
2δ ≥ deg f3,

so degP (f2) > deg f3 and we get a contradiction with deg v3 ≥ deg v′
3. �

◦

• •

•

	

	

v′

3
=Jf1+af3,f2,f3+P (f2)K

v′

2
=Jf1+af3,f2K

v3=Jf1,f2,f3K

v2=Jf1,f2K

u3

v1

m′

2
=Jf2,f3+P (f2)K

w′

3
=Jf1,f2,f3+P (f2)K

Figure 6. Stability of an elementary K-reduction.

4. Reducibility Theorem

4.A. Reduction paths. Let v3, v′
3 be vertices of type 3. A reduction path of

length n ≥ 0 from v3 to v′
3 is a sequence of type 3 vertices v3(0), v3(1), . . . , v3(n)

such that:

• v3(0) = v3 and v3(n) = v′
3;

• For all i = 0, . . . , n − 1, v3(i + 1) is either an elementary reduction, or a
K-reduction, of v3(i).

Furthermore we say that a reduction path is optimal if each elementary reduc-
tion in the path is optimal, and normalized if each K-reduction in the path is
normalized.

Given a vertex v3 with a choice of good triangle T , we call elementary T -reduction
any elementary reduction with center one of the three lines of T . We say that a
vertex v3 is reducible is for any good triangle T , v3 admits either an elementary
T -reduction or a (proper or elementary) K-reduction. We say that v3 is totally
reducible if v3 admits a reduction path to the vertex [id], such that each vertex
in the path is reducible.

In the following sections we want to prove the main result:

Theorem 4.1 (Reducibility Theorem). Any vertex of type 3 in the complex C is
totally reducible.

We remark that this result immediately implies that Tame(A3) is a proper sub-
group of Aut(A3):
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Corollary 4.2. The Nagata’s automorphism

f = (x1 + 2x2(x2
2 − x1x3) + x3(x2

2 − x1x3)2, x2 + x3(x2
2 − x1x3), x3)

is not tame.

Proof. Denote f = (f1, f2, f3) the components of f . Assume that f is tame, let
v3 = Jf1, f2, f3K be the associated vertex in C, and let T be the good triangle
associated with this representative. We have deg f1 = (2, 0, 3), deg f2 = (1, 0, 2)
and deg f3 = (0, 0, 1).

On the one hand, if f admits a K-reduction, by Proposition 3.7 one of the fi

(the pivot of the reduction) should have a degree of the form 2δ: this is not the
case.

On the other hand, the degrees of the fi are pairwise N-independent, so for
any distinct i, j ∈ {1, 2, 3} and any polynomial P we have degvirt P (fi, fj) =
degP (fi, fj). This implies that if f admits an elementary T -reduction, then one of
the deg fi should be a N-combination of the other two. Again this is not the case.

Thus v3 is not reducible, a contradiction. �

4.B. Reduction of a strongly pivotal simplex. First we describe the set-up
that we shall use in this section.

Set-Up 4.3. Let v1, v2, v3 be a simplex in C with Strong Pivotal Form 	(s) for
some odd s ≥ 3. We choose some good representatives v1 = Jf2K, v2 = Jf1, f2K and
v3 = Jf1, f2, f3K. Condition (	1) means that

deg f1 = sδ, deg f2 = 2δ.

By (	3) we have deg f1 > deg f3. By (	4) we have

deg f3 ≥ (s− 2)δ + deg df1 ∧ df2.

Condition (	2) is equivalent to the condition

deg f3 6∈ N deg f2.

Since deg f3 > (s− 2)δ ≥ δ, we also obtain

deg f2
3 > deg f2 and deg f2 6∈ N deg f3. (4.4)

In particular m2 = Jf2, f3K, which is the minimal line of v3, has no inner resonance.
Observe also that

deg f1 6∈ N deg f3 except if s = 3 and deg f1 = 2 deg f3. (4.5)

Lemma 4.6. Assume Set-Up 4.3. Then v3 does not admit a normalized proper
K-reduction.

Proof. Assume v3 admits a normalized proper K-reduction, via w3. Then we get a
contradiction as follows:

d(m2) > d(w3 rm2) by Lemma 3.8(1)

≥ d(v3 rm2) by (K6)

> d(v3 r v2) ≥ ∆(v2) by (	3) and (	4)

> d(v2) > d(m2) by Lemma 3.11. �

Lemma 4.7. Assume Set-Up 4.3. Assume that v3 admits a weak elementary re-
duction v′

3 with center v′
2. Then v′

2 passes through v1.
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Proof. By contradiction, assume that v′
2 does not pass through v1. We take v1 =

Jf2K, and we can choose f1 such that v2 = Jf1, f2K and v2 ∩ v′
2 = Jf1K. Then

let Jh3K be the intersection of v′
2 with the minimal line of P2(v3). Then we have

v′
2 = Jf1, h3K, v3 = [f1, f2, h3], and by Lemma 3.2 v′

3 = Jf1, f2 + ϕ2(f1, h3), h3K
for some polynomial ϕ2. We have deg f1 > deg f2 ≥ degϕ2(f1, h3), and either
deg f2 = deg h3 or deg f3 = deg h3, hence in any case by (4.4)

degvirt ϕ2(f1, h3) > degϕ2(f1, h3).

By Lemma 2.6 there exist coprime q > p ≥ 2 ∈ N∗ such that

q deg h3 = p deg f1 = psδ.

Observe that even if (f2, h3) is not a good representative of the minimal line in
P2(v3), in any case we have deg h3 ≥ deg(v3 r v2) = deg f3, and Property (	4)
gives

deg h3 ≥ (s− 2)δ + deg df1 ∧ df2.

Then Corollary 2.11 yields:

2δ = deg f2 ≥ deg(f2 + ϕ2(f1, h3)) ≥ p deg f1 − deg df1 ∧ df2 − deg h3

≥ p deg f1 − deg h3 + (s− 2)δ − deg h3

Multiplying by q and replacing deg f1 = sδ and q deg h3 = psδ we get:

0 ≥ (pqs− 2ps+ sq − 4q)δ,

hence

0 ≥ ps(q − 2) + q(s− 4).

This implies s = 3, and we get the contradiction:

0 ≥ 3pq − 6p− q = (3p− 1)(q − 2) − 2 ≥ 5 − 2. �

Lemma 4.8. Assume Set-Up 4.3. Assume that v3 admits an elementary reduction
v′

3 with center m2, the minimal line of v3. Assume moreover that v′
3 is reducible.

Then v′
3 also admits an elementary reduction with center m2.

Proof. By Lemma 3.2 we can write v′
3 = Jf ′

1, f2, f3K, where f ′
1 has the form

f ′
1 = f1 + ϕ1(f2, f3)

for some polynomial ϕ1. Working with the good triangle associated with the repre-
sentative (f ′

1, f2, f3), we want to prove that v′
3 does not admit a K-reduction, nor

an elementary reduction with center Jf ′
1, f2K or Jf ′

1, f3K: Indeed since v′
3 is reducible

by assumption, the only remaining possibility will be that v′
3 admits an elementary

reduction with center m2 = Jf2, f3K, as expected. The proof is quite long, so we
prove several facts along the way. The first one is:

Fact 4.9. If degvirt ϕ1(f2, f3) > degϕ1(f2, f3) then Lemma 4.8 holds.

Proof. If degvirt ϕ1(f2, f3) > degϕ1(f2, f3) then by Lemma 2.6, there exist p, q
coprime such that q deg f2 = p deg f3. Observe that (4.4) implies p, q 6= 1. We have

sδ = deg f1 > deg f ′
1 = deg f1 + ϕ1(f2, f3) by Lemma 3.2

> p deg f3 − deg df1 ∧ df2 − deg f3 by Corollary 2.11

≥ p deg f3 − (deg f3 − (s− 2)δ)) − deg f3 by (	4)

= (p− 2) deg f3 − 2δ + sδ.
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Multiplying by p, recalling that deg f2 = 2δ, p deg f3 = q deg f2 and putting δ in
factor we get:

0 > 2q(p− 2) − 2p = (2p− 4)(q − 1) − 4 ≥ 2p− 8. (4.10)

It follows that 3 ≥ p. Now we deduce p = 3. If p = 2, then deg f3 = qδ. Condition
(	4) gives

sδ > deg f3 > (s− 2)δ,

so q = s− 1, which contradicts q coprime with 2.
Replacing p = 3 in the first inequality of (4.10) we get 6 > 2q, hence q = 2. We

obtain deg f3 = 4
3δ, and the condition deg f3 > (s− 2)δ yields s = 3. Finally

deg f1 = 3δ, deg f2 = 2δ, deg f3 = 4
3δ, 3δ > deg f ′

1 >
7
3δ.

First these values are not compatible with v′
3 admitting a K-reduction. Indeed, an

elementary K-reduction would imply 2 deg f ′
1 = s′ deg f3 for some odd integer s′,

and since 3δ > deg f ′
1, by Lemma 3.11 a normalized proper reduction would imply

deg f3 = 3
2δ. On the other hand, if v′

3 admit an elementary reduction with center
Jf ′

1, fjK with j = 2 or 3, by Corollary 2.8(iii) there exists q′ ≥ 3 odd such that
2 deg f ′

1 = q′ deg fj: contradiction. �

From now on we assume degvirt ϕ1(f2, f3) = degϕ1(f2, f3).

Fact 4.11. deg f1 = 2 deg f3.

Proof. By contradiction, assume deg f1 6= 2 deg f3. Then deg f1 6∈ N deg f3 by (4.5).
Moreover we know that deg f1 6∈ N deg f2 and deg f2 + deg f3 > deg f1. This is not
compatible with the equalities

deg f1 = degϕ1(f2, f3) = degvirt ϕ1(f2, f3). �

We deduce from (4.5) and Fact 4.11 that s = 3, so that

deg f1 = 3δ, deg f2 = 2δ, deg f3 = 3
2δ,

and there exist a, c, e ∈ k such that

ϕ1(f2, f3) = af2
3 + cf3 + ef2 with a 6= 0. (4.12)

Now come some technical facts.

Fact 4.13. deg df1 ∧ df3 = deg df ′
1 ∧ df3 = δ + deg df2 ∧ df3.

Proof. We have 3
2δ = deg f3 > deg df1 ∧ df2, so

3δ > deg f3 + deg df1 ∧ df2.

Since deg f1 = 3δ we get

deg f1 + deg df2 ∧ df3 > deg f3 + deg df1 ∧ df2.

By the Principle of Two Maxima 2.13 we have

deg f2 + deg df1 ∧ df3 = deg f1 + deg df2 ∧ df3.

Passing deg f2 to the right-hand side we get the first expected equality

deg df1 ∧ df3 = deg f1 − deg f2 + deg df2 ∧ df3 = δ + deg df2 ∧ df3.

From (4.12) we get
df ′

1 ∧ df3 = df1 ∧ df3 + e df2 ∧ df3.

By the previous equality we obtain deg df1 ∧ df3 = deg df ′
1 ∧ df3. �
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Fact 4.14. deg df ′
1 ∧ df2 = 3

2δ + deg df2 ∧ df3.

Proof. From (4.12) we get

df ′
1 ∧ df2 = df1 ∧ df2 + 2af3 df3 ∧ df2 + c df3 ∧ df2.

By (	4) we have deg f3 > deg df1 ∧ df2, so 2af3 df3 ∧ df2 has strictly larger degree
than the two other terms of the right-hand side. Finally,

deg df ′
1 ∧ df2 = deg f3 df3 ∧ df2 = 3

2δ + deg df2 ∧ df3. �

Fact 4.15. deg f ′
1 > δ.

Proof. Consider P = f1 + ay2 + cy + ef2 ∈ k[f1, f2][y]. We have

degvirt P (f3) = deg f1 > deg f ′
1 = degP (f3).

On the other hand P ′ = 2ay+c, so that degvirt P
′(f3) = degP ′(f3) = deg f3. Thus

m(P, f3) = 1, and the Parachute Inequality 2.4 yields

deg f ′
1 = degP (f3) ≥ degvirt P (f3) + deg df1 ∧ df2 ∧ df3 − deg df1 ∧ df2 − deg f3

> deg f1 − deg df1 ∧ df2 − deg f3

= deg f3 − deg df1 ∧ df2.

Recall that by (	4) we have

deg f3 ≥ deg f1 − deg f2 + deg df1 ∧ df2 = δ + deg df1 ∧ df2.

Replacing in the previous inequality we get the result. �

Fact 4.16. The vertices Jf ′
1, f2K and Jf ′

1, f3K do not have outer resonance in v′
3 =

Jf ′
1, f2, f3K.

Proof. Fact 4.15 implies

2 deg f ′
1 > deg f2 > deg f3,

so that deg f3 is not a N-combination of deg f ′
1 and deg f2. We also have

2 deg f3 > deg f2,

which implies that deg f2 is not a N-combination of deg f ′
1 and deg f3. �

Now we are ready to finish the proof of Lemma 4.8.

Fact 4.17. v′
3 does not admit an elementary K-reduction.

Proof. By contradiction, assume that v′
3 admits an elementary K-reduction. From

Facts 4.13 and 4.14 we have

deg f ′
1 ∧ f2 > deg f ′

1 ∧ f3 > deg f2 ∧ f3.

By Corollary 3.9(1), it follows that the center of the reduction is Jf2, f3K. But
then by Proposition 3.7(2) we should have 2 deg f2 = s′ deg f3 for some odd integer
s′ ≥ 3, and this is not compatible with deg f2 = 2δ and deg f3 = 3

2δ. �

Fact 4.18. v′
3 does not admit a normalized proper K-reduction.

Proof. By contradiction, assume that v′
3 admits a normalized proper K-reduction

u3 via w3. Since v′
2 is the minimal line of both v′

3 and v3, we get that u3 is also a
proper K-reduction of v3 via w3. This is a contradiction with Lemma 4.6. �

Fact 4.19. v′
3 does not admit an elementary reduction with center Jf ′

1, f2K.
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Proof. By contradiction, assume there exists ϕ3(f ′
1, f2) such that

degϕ3(f ′
1, f2) = deg f3.

By Fact 4.16 we have degvirt ϕ3(f ′
1, f2) > degϕ3(f ′

1, f2), and on the other hand
Proposition 3.7 gives

3
2δ = deg f3 = degϕ3(f ′

1, f2) > deg df ′
1 ∧ df2.

This is a contradiction with Fact 4.14. �

Fact 4.20. v′
3 does not admit an elementary reduction with center Jf ′

1, f3K.

Proof. By contradiction, assume there exists ϕ2(f ′
1, f3) such that

degϕ2(f ′
1, f3) = deg f2.

By Fact 4.16 we have degvirt ϕ2(f ′
1, f3) > degϕ2(f ′

1, f3). By Lemma 2.6 there exist
p, q ∈ N∗ with p ∧ q = 1, and γ ∈ N3 such that

deg f ′
1 = pγ, deg f3 = qγ.

Corollary 2.8(i) then yields

2δ = deg f2 = degϕ2(f ′
1, f3) ≥ pqγ + deg df ′

1 ∧ df3 − pγ − qγ.

By Fact 4.13 we know that deg df ′
1 ∧ df3 = δ + deg df2 ∧ df3, so that

δ ≥ deg df2 ∧ df3 + (pq − p− q)γ. (4.21)

We know that qγ = deg f3 = 3
2δ > δ, and by Fact 4.15 we have pγ = deg f ′

1 > δ, so

min{p, q} > pq − p− q.

By Fact 4.16 we know that p 6= 1 and q 6= 1. The only possibilities for the pair
(p, q) are then (2, 3) or (3, 2).

If (p, q) = (2, 3) then Fact 4.15 gives the contradiction

3δ = 2 deg f3 = 3 deg f ′
1 > 3δ.

If (p, q) = (3, 2), one checks that

deg f ′
1 = 9

4δ, γ = 3
4δ, pq − p− q = 1.

The inequality (4.21) becomes

δ
4 > deg df2 ∧ df3.

Corollary 2.11 then yields

deg(f2 + ϕ2(f ′
1, f3)) > 2 deg f ′

1 − deg f2 ∧ f3 − deg f ′
1

≥
(

9
4 − 1

4

)

δ

= 2δ.

This is a contradiction with 2δ = deg f2 > deg(f2 + ϕ2(f ′
1, f3)). �

This finishes the proof of Lemma 4.8. �

We introduce now an induction hypothesis that will be the corner-stone for the
proof of the Reducibility Theorem 4.1.

Induction Hypothesis 4.22 (for degrees ν, µ in N3). Let v3 be a totally reducible
vertex such that ν ≥ deg v3. Then any neighbor u3 of v3 with µ ≥ deg u3 also is
totally reducible.
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Lemma 4.23. Let µ > ν ∈ N3 be two consecutive degrees, and assume Induction
Hypothesis 4.22 for degrees ν, ν. Let v3 be a totally reducible vertex with µ ≥ deg v3.
Then v3 admits an optimal and normalized reduction path to [id], such that each
vertex in the path is reducible.

Proof. The lemma is obvious when deg v3 = (1, 1, 1), that is, when v3 = [id]. Now
we proceed by induction on the degree of v3, and assume (Secondary Induction
Hypothesis) that the lemma is true for any reducible vertex of degree less than
deg v3.

First assume that u3 is non-normalized proper K-reduction of v3, appearing as
the first step of a reduction path from v3. By Lemma 3.15, there exists u′

3 an
elementary K-reduction of v3, such that u′

3 ≬ u3. Since ν ≥ deg v3 > deg u3, by the
Induction Hypothesis 4.22 we get that u′

3 is totally reducible. We conclude by the
Secondary Induction Hypothesis.

Finally assume that u3 is a non-optimal elementary reduction of v3, with center
v2, such that u3 is totally reducible. Let u′

3 be an optimal elementary reduction
with the same center v2. By the Induction Hypothesis 4.22 we get that u′

3 is totally
reducible, and again, we conclude by the Secondary Induction Hypothesis. �

Proposition 4.24. Let µ > ν ∈ N3 be two consecutive degrees, and assume Induc-
tion Hypothesis 4.22 for degrees ν, ν. Let v3 be a vertex that is part of a simplex
v1, v2, v3 with Strong Pivotal Form 	(s) for some odd s ≥ 3. Assume that v3 is
totally reducible, and that µ ≥ deg v3. Then

(1) v3 admits an elementary reduction;
(2) Any such elementary reduction admits v2 as a center;
(3) Any such optimal elementary reduction is an elementary K-reduction.

In particular there exists an elementary K-reduction u3 of v3 with center v2, such
that u3 is totally reducible.

Proof. We write v3 = Jf1, f2, f3K as in Set-Up 4.3. By Lemma 4.6 there is no nor-
malized proper K-reduction for v3. By Lemma 4.7 there is no elementary reduction
of v3 with center Jf1, f3K. So by reducibility of v3, there exists a reduction path
from v3 that starts with one of the following elementary reductions, which gives
(1):

(i) An elementary reduction v′
3 with center Jf2, f3K;

(ii) An elementary K-reduction;
(iii) An elementary reduction with center v2 = Jf1, f2K.

In case (i), by Lemma 4.23 we can moreover assume that the elementary reduc-
tion v′

3 is optimal. Then Lemma 4.8 gives a contradiction.
In case (ii), by Lemma 3.8(1) we have

d(m2) > topdeg v3.

Moreover by (	4) we have

topdeg v3 > deg(v3 r v2) ≥ ∆(v2) > d(v2).

By Corollary 3.9(2) we conclude that v2 is the center of the K-reduction, hence we
are in case (iii), which gives (2).

Finally assume that u3 is an optimal reduction of v3 with center v2. We want
to prove that ∆(v2) > d(u3 r v2), that is, Property (K4), which will imply that
u3 is a K-reduction of v3. By contradiction, assume d(u3 r v2) ≥ ∆(v2), which is
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condition (	4). Then v1, v2, u3 has Strong Pivotal Form, and from assertion (2) we
conclude that u3 admits an elementary reduction with center v2. This contradicts
the optimality of the reduction from v3 to u3. �

Corollary 4.25. Let µ > ν ∈ N3 be two consecutive degrees, and assume Induction
Hypothesis 4.22 for degrees ν, ν. Let v3 be a totally reducible vertex with µ ≥ deg v3,
and assume that u3 is an optimal elementary reduction of v3 with pivotal simplex
v1, v2, v3. If v2 has no inner resonance, and no outer resonance in v3, then either
v2 is the minimal line of v3, or u3 is an elementary K-reduction of v3.

Proof. Assume v2 is not the minimal line of v3. By Proposition 3.7, the simplex
v1, v2, v3 has Strong Pivotal Form, so we can apply Proposition 4.24(3). �

4.C. Vertex with two low degree neighbors.

Set-Up 4.26. Let µ > ν ∈ N3 be two consecutive degrees, and assume the Induc-
tion Hypothesis 4.22 for degrees ν, µ. Let v3, v

′
3, v

′′
3 be vertices such that

• µ ≥ deg v3, deg v3 > deg v′
3, deg v3 ≥ deg v′′

3 ;
• v′

3 ≬v′

2
v3 and v′′

3 ≬v′′

2
v3 with v′

2 6= v′′
2 ;

• v′
3 is totally reducible (hence v3 also is by the Induction Hypothesis);

• v′
2 is minimal, in the sense that if u3 is an elementary reduction of v3 with

center u2, which is the first step of a reduction path, then degu2 ≥ deg v′
2.

We denote by v1 = Jf2K the intersection point of the lines v′
2 and v′′

2 . We fix
choices of f1, f3 such that v′

2 = Jf1, f2K and v′′
2 = Jf2, f3K. Observe that it is possible

that deg f1 = deg f3, and in this case (f1, f2, f3) is not a good representative of v3.
In any case there exist some non linear polynomials in two variables P1, P3 without
constant terms such that

(1) v3 = [f1, f2, f3];
(2) v′

3 = Jf1, f2, f3 + P3(f1, f2)K;
(3) v′′

3 = Jf1 + P1(f2, f3), f2, f3K.

◦

••

v′

3
=Jf1,f2,f3+P3(f1,f2)K

v1=Jf2K

v′

2
=Jf1,f2K

v3=[f1,f2,f3]

v′′

3
=Jf1+P1(f2,f3),f2,f3K

v′′

2
=Jf2,f3K

Figure 7. Set-Up 4.26.

In this section we shall prove:

Proposition 4.27. Assume Set-Up 4.26. Then v′′
3 is totally reducible.

We divide the proof in several lemmas. The proposition will be a direct conse-
quence of Lemmas 4.29, 4.31, 4.32 and 4.33.

We start with a consequence from the minimality of v′
2 and v′

3.

Lemma 4.28. Assume Set-Up 4.26. If v′
2 has inner resonance, then v′

2 is the
minimal line of v3.
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Proof. Assume first that there exists a ∈ k and r ≥ 2 such that deg f2 > deg(f2 +
af r

1 ). Then consider the vertex w3 = [f1, f2 + af r
1 , f3], which satisfies deg v3 >

degw3. Assume by contradiction that v′
2 is not the minimal line of v3. Then we

have deg f2 > deg f3, hence m2 = [f1, f3] is the minimal line of v3. By the Square
Lemma 3.4, we find u3 such that u3 ≬ w3, u3 ≬ v′

3 and deg v3 > deg u3. By applying
the Induction Hypothesis 4.22 successively to v′

3 ≬ u3 and u3 ≬ w3, we find that w3

is totally reducible. So we can take w3 as the first step of a reduction path from
v3, which contradicts the minimality of v′

2.
Now assume that there exist a ∈ k and r ≥ 2 such that deg f1 > deg(f1 + af r

2 ).
If v′

2 is not the minimal line, we have deg f1 ≥ deg f3.
If deg f1 = deg f3, there exists b ∈ k such that deg f1 > deg(f1 + bf3). Then

[f2, f1 + bf3] is the minimal line of v3, and we consider w′
3 = [f1 + af r

2 , f2, f1 + bf3],
which satisfies deg v3 > degw′

3. By the Square Lemma 3.4 and the Induction
Hypothesis 4.22, we obtain that w′

3 can be chosen to be the first step of a reduction
path from v3. This contradicts the minimality of v′

2.
If deg f1 > deg f3, v′′

2 = Jf2, f3K is the minimal line of v3. We consider w′′
3 =

[f1 + af r
2 , f2, f3] which satisfies deg v3 > degw′′

3 . As before w′′
3 can be chosen to be

the first step of a reduction path from v3, with center v′′
2 : again this contradicts

the minimality of v′
2. �

Lemma 4.29. Assume Set-Up 4.26. If v′
2 is not the minimal line in v3, and has

outer resonance in v3, then v′′
3 is totally reducible.

Proof. First consider the case deg f2 = topdeg v3. The assumption on outer res-
onance means that deg f3 = deg f r

1 for some r ≥ 2. The existence of a weak
reduction via v′′

2 gives the existence of P (f2, f3) with deg f1 ≥ P (f2, f3). We have
deg f2 6∈ N deg f3, otherwise we would have deg f2 ∈ N deg f1, that is, v′

2 would
have inner resonance, and by Lemma 4.28 this would contradict v′

2 6= m2. Corol-
lary 2.8(iii) then gives 2 deg f2 = 3 deg f3, and deg(v3 r v′′

2 ) ≥ ∆(v2), that is, (	1)
and (	4). In other words, (	2), (	3) and the existence of such a P implies that
[f3], v′′

2 , v3 has Strong Pivotal Form 	(3). But then by Lemma 4.7 the center v′
2 of

the elementary reduction from v3 to v′
3 should pass through [f3]: contradiction.

Now consider the case deg f1 = topdeg v3. In particular deg f1 > deg f2 and
v1 = Jf2K is on the minimal line of v3. Now we distinguish two subcases (see Figure
8):

• Case deg f1 > deg f3. Then there exists r ≥ 2 such that deg f3 = deg f r
2 , and

v′′
2 is the minimal line of v3. We apply the Square Lemma 3.4 to get u3 common

neighbor of v′′
3 and w′

3 = [f1, f2, f3 + af r
2 ], and then we conclude by the Induction

Hypothesis 4.22.
• Case deg f1 = deg f3. Then there exists b 6= 0 and r ≥ 2 such that deg(bf1 +

f3) = deg f r
2 . Then there exists a ∈ k such that u′

3 = [f1, f2, bf1 + f3 + af r
2 ] and

u′′
3 = [bf1 +f3 +af r

2 , f2, f3] are (simple) elementary reductions of v3 with respective
centers v′

2 and v′′
2 . Moreover u′

3 and u′′
3 are neighbors, with center [bf1+f3+af r

2 , f2].
Again we conclude by applying the Induction Hypothesis 4.22 to v′

3 ≬ u′
3, u′

3 ≬ u′′
3

and u′′
3 ≬ v′′

3 successively. �

Lemma 4.30. Assume Set-Up 4.26. Assume v′
2 has no outer resonance in v3.

Then the vertex v1 is on the minimal line m2 of v3.
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•

•

•

•

◦

u3

v′′

3

v3

w′

3

v′

3

•

• •

◦

v′′

3

v3

v′

3

u′′

3
u′

3

deg f1 > deg f3 deg f1 = deg f3

Figure 8. Lemma 4.29, case deg f1 = topdeg v3.

Proof. If v′
2 is the minimal line of v3, there is nothing to prove. So we can assume

that v′
2 is not the minimal line of v3, and by Lemma 4.28 we can assume that v′

2

has no inner resonance.
By contradiction, assume that v1 is not on m2. In particular, we have

deg f2 > max{deg f1, deg f3}.

We are going to prove that v′
3 is a K-reduction of v3 with pivot [f1]. Since v′′

3 is
a weak elementary reduction of v3 with center v′′

2 , and v′′
2 = Jf2, f3K does not pass

through [f1], Lemma 3.17 will give the expected contradiction.
We show that v′

3 is an elementary K-reduction of v3 = [f1, f2, f3], with pivot
v′

1 = [f1]. Conditions (K1) and (K2) come from our assumptions of non resonance.
Condition (K3) follows from our assumption v′

2 6= m2. Condition (K5) is immediate.
Finally, since deg f2 > deg f3 ≥ P (f1, f2), Corollary 2.8(iii) gives

P (f1, f2) ≥ ∆(f2, f1),

hence (K4). �

We conclude the case where v′
2 is not equal to the minimal line m2 of v3 with

the following:

Lemma 4.31. Assume Set-Up 4.26, v′
2 6= m2 is not the minimal line in v3, and

has no outer resonance in v3. Then there exists u3 an elementary K-reduction of
v3 with center v′

2. In particular, v′′
3 is totally reducible, and there exists a reduction

path starting with a proper K-reduction from v′′
3 to u3.

Proof. By Lemma 4.28, we know that v′
2 has no inner resonance. Then Corol-

lary 4.25 says that any optimal elementary reduction of v3 with center v′
2 is an

elementary K-reduction. The last assertion follows by Stability of K-reductions
3.21. �

Now we treat the situation where v′
2 = m2 is the minimal line of v3, and first we

identify some cases that we can handle with the Square Lemma 3.4.

Lemma 4.32. Assume Set-Up 4.26, and v′
2 = m2. In the following cases, v′′

3 is
totally reducible:

(1) v3 admits a simple elementary reduction with center v′
2, v1;

(2) v3 admits a simple elementary reduction with center v′′
2 , v1;
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(3) v′′
3 is a simple weak elementary reduction of v3.

v1

•

•

•

•

◦

u3

v′′

3

v3

w′

3

v′

2

v′

3

v1

•

•

•

•

◦

u3

w′′

3

v3

v′

3

v′′

2

v′′

3

v1

•

•

•

•

◦

u3

v′′

3

v′′

2

v3

v′

3

Case (1) Case (2) Case (3)

Figure 9. Lemma 4.32.

Proof. Since m2 = Jf1, f2K, we have v3 = Jf1, f2, f3K with deg f3 = topdeg v3.

(1) Denote by w′
3 a simple elementary reduction of v3 with center v′

2, v1. By
the Square Lemma 3.4, there exists u3 a neighbor of both w′

3 and v′′
3 such that

deg v3 > deg u3 (see Figure 9). Then the Induction Hypothesis 4.22 applied to
v′

3 ≬ w′
3, to w′

3 ≬ u3, and then to u3 ≬ v′′
3 yields that all these vertices are totally

reducible.
(2) Denote by w′′

3 a simple elementary reduction of v3 with center v′′
2 , v1. By

the Square Lemma 3.4, there exists u3 a neighbor of both w′′
3 and v′

3 such that
deg v3 > deg u3. Then the Induction Hypothesis 4.22 applied to v′

3 ≬ u3, to u3 ≬ w′′
3

and finally to w′′
3 ≬ v′′

3 yields that all these vertices are totally reducible.
(3) By the Square Lemma 3.4, there exists u3 a neighbor of both v′′

3 and v′
3 such

that deg v3 > deg u3. Then the Induction Hypothesis 4.22 applied to v′
3 ≬ u3, and

to u3 ≬ v′′
3 yields that all these vertices are totally reducible. �

Lemma 4.33. Assume Set-Up 4.26, v′
2 = m2, and that we are not in one of the

cases covered by Lemma 4.32. Then there exists u′′
3 an elementary K-reduction of

v3 with center v′′
2 such that u′′

3 is totally reducible. In particular, by the Induction
Hypothesis 4.22, v′′

3 is totally reducible.

Proof. It is sufficient to check that the simplex v1, v
′′
2 , v3 has Strong Pivotal Form

	(s) for some odd s ≥ 3: indeed then one can apply Proposition 4.24 to get the
result.

On the one hand deg f3 > deg f1 ≥ degP1(f2, f3), and on the other hand since
we are not in the situation of Lemma 4.32(3) we have P1(f2, f3) 6∈ k[f2], so that

degvirt P1(f2, f3) > degP1(f2, f3).

We also have deg f3 6∈ N deg f2 since otherwise we could apply Lemma 4.32(1). So
we are in the hypotheses of Corollary 2.8(iii), and there exist a degree δ and an odd
integer s ≥ 3 such that deg f2 = 2δ, deg f3 = sδ and

sδ > degP1(f2, f3) ≥ ∆(f3, f2).

It remains to check (	2): if v′′
2 = Jf2, f3K had outer resonance in v3 then we

would have deg f1 ∈ N deg f2, and we could apply Lemma 4.32(2), contrary to our
assumption. �
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4.D. Proof of the Reducibility Theorem. Clearly Theorem 4.1 is a corollary
of

Proposition 4.34. If a vertex v3 of type 3 is totally reducible, then any neighbor
of v3 also is totally reducible.

Proof. We plan to prove Proposition 4.34 by induction on degree: we need to prove
that for any ν ∈ N3, the Induction Hypothesis 4.22 holds for degrees ν, ν. Clearly
when ν = (1, 1, 1) this is true (because empty!).

Let µ > ν be two consecutive degrees in N3. It is sufficient to prove the two
following facts.

Fact 4.35. Assume the Induction Hypothesis 4.22 for degrees ν, ν. Then it also
holds for degrees ν, µ.

Fact 4.36. Assume the Induction Hypothesis 4.22 for degrees ν, µ. Then it also
holds for degrees µ, µ.

To prove Fact 4.35, consider v′
3 a totally reducible vertex with ν ≥ deg v′

3, and
let v3 be a neighbor of v′

3, with center v′
2, and with deg v3 = µ (otherwise there is

nothing to prove).
If v′

2 is the minimal line of v3, then v′
3 is a T -reduction of v3 for any good triangle

T and we are done.
If v′

2 is not the minimal line of v3, and has no inner or outer resonance in v3,
then by Corollary 4.25 any optimal reduction u3 of v3 with respect to the center v′

2

is an elementary K-reduction of v3. Since u3 is a neighbor of v′
3 and ν ≥ deg u3,

we conclude by the Induction Hypothesis 4.22.
Finally assume that v′

2 has resonance, and that v′
2 is not the minimal line of v3.

By Lemma 3.2 we can write

v3 = Jf1, f2, f3K, v′
3 = Jf1, f2, g3K, v′

2 = Jf1, f2K,

with deg f1 > max{deg f3, deg f2} and g3 = f3 + P (f1, f2) for some polynomial P .
If v′

2 has inner resonance, then deg f1 = r deg f2 for some r ≥ 2. There exists
a ∈ k such that v′′

3 = [f1 − af r
2 , f2, f3] is an elementary reduction of v3 with center

Jf2, f3K, which is the minimal line of v3. Then we can apply the Square Lemma 3.4
to get u3 with ν ≥ deg u3 and u3 ≬ v′

3, u3 ≬ v′′
3 . Again we conclude by the Induction

Hypothesis 4.22.
If v′

2 has no inner resonance, but has outer resonance in v3, then deg f1 >

deg f3 > deg f2 and deg f3 = r deg f2 for some r ≥ 2. There exists Q(f2) such
that deg f3 > deg(f3 + Q(f2)) and deg(f3 + Q(f2)) 6∈ N deg f2. Let T be a
good triangle of v3, one of the line has the form u2 = Jf1 + af3, f2K. Set u3 =
Jf1 + af3, f2, f3 + Q(f2)K, which is an elementary reduction of v3 with center u2,
and a neighbor of w3 = Jf1, f2, f3 + Q(f2)K. By the Induction Hypothesis 4.22
applied successively to v′

3 ≬ w3 and w3 ≬ u3, we obtain that u3 is totally reducible.

To prove Fact 4.36, consider v3 a totally reducible vertex with deg v3 = µ, and
let v′′

3 be a neighbor of v3, with center v′′
2 , such that

deg v3 ≥ deg v′′
3 .

First assume that v3 admits a reduction path such that the first step is a proper
K-reduction v′

3. Then by Stability of K-reduction 3.21, we obtain that v′
3 is also a

K-reduction of v′′
3 , and we are done.
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Now we assume that v3 admits a reduction path such that the first step v′
3 is

an elementary reduction, with center v′
2. Moreover we assume that v′

2 has minimal
degree between all possible such first center of the path.

If v′
2 = v′′

2 , then v′′
3 is a neighbor of v′

3 and by the Induction Hypothesis 4.22 we
are done. If on the contrary v′

2 and v′′
2 are two different lines in P2(v3), we are in

Set-Up 4.26. Then we conclude by Proposition 4.27. �

5. Simple connectedness

Now that the Reducibility Theorem 4.1 is proved, all previous results that were
dependent of a reducibility assumption become stronger. This is the case in par-
ticular for:

• The Induction Hypothesis 4.22, which is always true;
• Lemma 4.8;
• Proposition 4.24 and Corollary 4.25;
• Set-Up 4.26, hence also all results in §4.C.

In particular we single out the following striking consequences of the Reducibility
Theorem 4.1.

Proposition 5.1. Let u3 be an elementary K-reduction of v3, with center v2. Then
v3 does not admit any elementary reduction with center distinct from v2.

Proof. By contradiction, assume that v′
3 is an elementary reduction of v3, with

center v′
2 distinct from v2. Then by Stability of K-reduction 3.21(1), there exists

w3 with degw3 = deg v3 such that u3 is a proper K-reduction of v′
3 via w3. In

particular, v′
3 is an elementary reduction of w3 with center m2, the minimal line

of w3. Now consider v′′
3 an optimal elementary reduction of w3 with center m2:

Lemma 4.8 gives a contradiction. �

Corollary 5.2. Let u3 be a proper K-reduction of v3, via w3. Then degw3 =
deg v3.

Proof. By Proposition 5.1 we cannot have degw3 > deg v3. �

We also obtain that the situation of Lemma 4.33 never happens:

Corollary 5.3. Assume Set-Up 4.26, and v′
2 = m2. Then we are in one of the

cases covered by Lemma 4.32.

Proof. Otherwise by Lemma 4.33 there would exist an elementary K-reduction
of v3 with center v′′

2 , in addition to the elementary reduction with center v′
2, in

contradiction with Proposition 5.1. �

We call locally geodesic loop of length n ≥ 2, with base point the vertex [id],
a sequence of vertices v3(i), i = 0, . . . , n, such that

(1) v3(0) = v3(n) = [id];
(2) For all i = 0, . . . , n− 1, v3(i) ≬ v3(i + 1) with center v2(i);
(3) For all i = 0, . . . , n−1, v2(i) 6= v2(i+1), where by convention v2(n) = v2(0).

The maximal vertex of such a loop is defined as the vertex v3(i0) that realizes
the maximum max deg v3(i), with i0 maximal. In particular, we have

deg v3(i0) > deg v3(i0 + 1) and deg v3(i0) ≥ deg v3(i0 − 1).
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Lemma 5.4. Let v3(i0) be the maximal vertex of a locally geodesic loop. Then the
path v3(i0 − 1), v2(i0 − 1), v3(i0), v2(i0), v3(i0 + 1) is homotopic in C to a path from
v3(i0 − 1) to v3(i0 + 1) where all type 3 intermediate vertices have degree strictly
less than deg v3(i0).

Proof. Let v′
2 be a vertex of minimal degree such that v3 = v3(i0) admits an ele-

mentary reduction v′
3 with center v′

2. Then we apply Set-Up 4.26 twice, taking v′′
3

to be successively v3(i0 − 1) and v3(i0 + 1) (the case where v′
3 and v′′

3 share the
same center being trivial).

If v′
2 = m2 then by Corollary 5.3 we are in one of the cases covered by Lemma

4.32, and the homotopy is clear in all cases (see Figure 9).
If v′

2 6= m2, and v′
2 has outer resonance in v3, then we are in one of the two cases

covered by Lemma 4.29, and again the homotopy is clear (see Figure 8).
If v′

2 6= m2, and v′
2 has no outer resonance in v3, then by Lemma 4.31 there

exists u3 a K-reduction of v3 with center v′
2. By Proposition 5.1, this can only

happen in the case v′′
3 = v3(i0 −1). By Stability of K-reduction 3.21, u3 is a proper

K-reduction of v3(i0 −1), and up to a local homotopy (see Figure 6) we can assume
that the intermediate vertex is v3(i0). If this proper K-reduction is not normalized,
we obtain the expected homotopy from the normalization process (see Figure 5).
Otherwise, by Proposition 5.1 again, we get deg v3(i0 − 1) = deg v3(i0), and by
Stability of K-reduction 3.21 we get that u3 is a normalized proper K-reduction of
v3(i0 − 2). Iterating this process, we obtain the contradiction that u3 is a proper
K-reduction of [id] = v3(0). �

We need one last ingredient before proving the simple connectedness of the com-
plex C.

Lemma 5.5. The link of a vertex of type 1 is a connected graph.

Proof. By transitivity of the action of Tame(A3) on vertices of type 1, it is sufficient
to work with L([x3]). Let v3 = Jf1, f2, x3K be a vertex of type 3 in L([x3]). First
observe that v3 does not admit an elementary K-reduction: if s ≥ 5 we should have
deg x3 = 2δ for some δ ∈ N3, and if s = 3 we should have deg f2 = 2δ for some
δ ∈ N3, and (0, 0, 2) = deg x2

3 > deg f2: impossible. It follows that v3 also does
not admit a proper K-reduction: such a reduction would be via w3 = Jg1, f2, x3K,
but we just proved that such a w3 cannot admit an elementary K-reduction. By
Theorem 4.1, we conclude that v3 admits an elementary reduction v′

3, which clearly
must admits [x3] as pivot (since there is no polynomial P ∈ k[x1, x2, x3] with
deg x3 > degP ). In particular, v′

3 also is in L([x3]), and by induction on degree,
we obtain the existence of reduction path from v3 to [id] that stays in L([x3]). �

Now we recover a result of [Umi06] and [Wri15], about relations in Tame(A3).
Precisely, Umirbaev gives an algebraic description of the relations, and Wright
shows that this result can be rephrased in terms of an amalgamated product struc-
ture over three subgroups. Our proof follows the same strategy as in [BFL14,
Proposition 3.10].

Proposition 5.6. The complex C is simply connected.

Proof. Let γ be a loop in C. We want to show that it is homotopic to a trivial loop.
Without loss in generality, we can assume that the image of γ is contained in the
1-skeleton of the square complex, and that γ(0) = Jx1, x2, x3K is the vertex of type
3 associated with the identity.
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A priori (the image of) γ is a sequence of arbitrary edges. By Lemma 5.5, we
can perform a homotopy to avoid each vertex of type 1. So now we assume that
vertices in γ are alternatively of type 2 and 3: Precisely for each i, γ(2i) has type
3 and γ(2i+ 1) has type 2. We can also assume that γ is locally injective.

Let v3(i) = γ(2i), this is a locally geodesic loop. Let v3(i0) be the maximal vertex
of the loop, and δ its degree. Then by Lemma 5.4 we can conclude by induction on
the couple (δ, i0), ordered with lexicographic order. �

Since Tame(A3) acts on a simply connected 2-dimensional simplicial complex
with fundamental domain a simplex, we can recover the group from the data of
the stabilizers of each type of vertex. This is a simple instance of the theory
of developable complexes of groups in the sense of Haefliger (see [BH99, III.C]).
Following Wright we can phrase this remark as follows:

Corollary 5.7 ([Wri15, Theorem 2]). The group Tame(A3) is the amalgamated
product of the three following subgroups along their pairwise intersections:

Stab([x1, x2, x3]) = A3;

Stab([x1, x2]) = {(ax1 + bx2 + c, a′x1 + b′x2 + c′, αx3 + P (x1, x2))};

Stab([x1]) = {(ax1 + b, f2(x1, x2, x3), f3(x1, x2, x3)}.

6. Examples

We gather in this last section a few examples of interesting reductions.

Example 6.1 (Elementary K-reduction with s = 3). Let

g = (x1, x2, x3 + x2
1 − x3

2),

t1 = (x1 + αx2x3 + x3
3, x2 + x2

3, x3).

Clearly in the composition g ◦ t1 the terms of degree 6 cancel each other. Moreover,
if we choose α = 3

2 this is also the case for terms of degree 5:

g ◦ t1 =
(

x1 + 3
2x2x3 + x3

3, x2 + x2
3, x3 + x2

1 − x3
2 + 3x1x2x3 +

x2

3

4 (8x1x3 − 3x2
2)

)

.

Consider now a triangular automorphism preserving the quadratic form 8x1x3−3x2
2

that appears as a factor:

t2 = (x1, x2 + x2
1, x3 + 3

4x1x2 + 3
8x

3
1).

A direct computation shows that the automorphism f = g ◦ t1 ◦ t2 = (f1, f2, f3)
admits the following 3-degree:

(9, 0, 0), (6, 0, 0), (7, 0, 1).

Finally, u3 = [t1 ◦ t2], whose 3-degree is

(9, 0, 0), (6, 0, 0), (3, 0, 0),

is an elementary K-reduction of v3 = [f1, f2, f3]. Following notation from Proposi-
tion 3.7, we have s = 3 and δ = (3, 0, 0). Moreover

df1 ∧ df2 = − 3
2 (x2

1 − x2)dx2 ∧ dx3 + (27
16x

2
1x2 + 9

8x
2
2 + 3

2x1x3 + 1)dx1 ∧ dx2

+ (− 9
4x

3
1 − 3

2x1x2 + 2x3)dx1 ∧ dx3.

so that deg df1 ∧ df2 = (4, 0, 1), from the contribution of the factor x3
1dx1 ∧ dx3.
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Example 6.2 (Elementary K-reduction with s = 5). One can apply the same
strategy to produce examples of K-reduction with s ≥ 3 an arbitrary odd number.
I give the construction for s = 5, and leave the generalization to the reader. Let

g = (x1, x2, x3 + x2
1 − x5

2),

t1 = (x1 + αx2
2x3 + βx2x

3
3 + x5

3, x2 + x2
3, x3).

Observe that αx2
2x3 + βx2x

3
3 + x5

3 is homogeneous of degree 5, by putting weight 1
on x3 and weight 2 on x2. By choosing α = 15

8 , β = 5
2 , we minimize the degree of

the composition:

g ◦ t1 =
(

x1 + 15
8 x

2
2x3 + 5

2x2x
3
3 + x5

3, x2 + x2
3, x3 + 1

8x
4
3(16x1x3 − 5x3

2) + · · ·
)

.

Now take the following triangular automorphism, which preserves the polynomial
16x1x3 − 5x3

2:

t2 =
(

x1, x2 + x2
1, x3 + 5

16 (3x1x
2
2 + 3x3

1x2 + x5
1)

)

.

We compute the 3-degree of f = g ◦ t1 ◦ t2 = (f1, f2, f3):

(25, 0, 0), (10, 0, 0), (20, 3, 0).

Finally, u3 = [t1 ◦ t2], whose 3-degree is

(25, 0, 0), (10, 0, 0), (5, 0, 0),

is an elementary K reduction of v3 = [f1, f2, f3]. Here we have s = 5 and δ =
(5, 0, 0). Moreover

df1 ∧df2 = − 15
8

(

x2
1 + x2

)2
dx2 ∧dx3 +

(

2x3 − 5
8 (5x5

1 − 9x3
1x2 − 3x1x

2
2)

)

dx1 ∧dx3

+
(

75
128 (5x4

1x
2
2 + 9x2

1x
3
2 + 3x4

2) + 15
8 (x3

1x3 + 2x1x2x3) + 1
)

dx1 ∧ dx2,

so that deg df1 ∧ df2 = (5, 3, 0), from the contribution of the factor x4
1x

2
2dx1 ∧ dx2.

Example 6.3 (Elementary reduction without Strong Pivotal Form). We give ex-
amples of elementary reduction that show that the three assumptions in Proposition
3.7 are necessary to get Strong Pivotal Form.

(1) Let f = (f1, f2, f3) ∈ Tame(A3) and r ≥ 2 such that

deg f1 > deg f3 = r deg f2.

In particular there exists a ∈ k such that deg f3 > deg f3 + af r
2 . For instance

f = (x1 + x3
3, x2, x3 + x2

2) is such an automorphism, for r = 2 and a = −1. Then
u3 = Jf1, f2, f3+af r

2 K is an elementary reduction of v3 = Jf1, f2, f3K, and the pivotal
simplex does not have Strong Pivotal Form. Observe that v2 = Jf1, f2K has outer
resonance in v3.

(2) Let u3 = Jf1, f2, f3 + P (f1, f2) be an elementary K-reduction of w3 =
Jf1, f2, f3K, with 2 deg f1 = s deg f2 for some odd s ≥ 3. For instance we can
start with one of the examples 6.1 or 6.2. Pick any integer r ≥ s+1

2 . Then v′
3 =

Jf1 + f r
2 , f2, f3 +P (f1 − f r

2 , f2)K is an elementary reduction of v3 = Jf1 + f r
2 , f2, f3K,

and the pivotal simplex does not have Strong Pivotal Form. Observe that the center
v2 = Jf1 + f r

2 , f2K has inner resonance.
(3) With the notation of Example 6.1 or 6.2, the elementary reduction from

Jg ◦ t1K to Jt1K gives an example of an elementary reduction where the center m2,
which is the minimal line, does not have inner or outer resonnance, and again the
pivotal simplex does not have Strong Pivotal Form.
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Example 6.4 (Non-normalized proper K-reduction). Pick the elementary K-
reduction from Example 6.2, and set v′

3 = [f1 + f2
2 , f2, f3], which is a weak ele-

mentary reduction of v3. Then u3 is a non-normalized proper K-reduction of v′
3,

via v3. This corresponds to case (1) of Stability of a K-reduction 3.21. We men-
tion again that it is an open question whether there exists any normalized proper
K-reduction.

Non Example 6.5 (Hypothetical type II and type III reductions). From Propo-
sition 3.7 we know that if v3 admits an elementary K-reduction with coefficient
s = 3, then v3 = Jf1, f2, f3K with deg f1 = 3δ, deg f2 = 2δ and deg f3 > δ. It is
not clear if there exists an example of such a reduction with 3

2δ > deg f3, or even
2δ > deg f3. Observe that such an example would be the key for the existence of
the following reductions (for the definition of a reduction of type II or III, see the
original paper [SU04b], or [Kur10, §7]):

(1) If 3
2δ > deg f3, then v′

3 = Jf1 + f2
3 , f2, f3K would admit a normalized proper

K-reduction, via v3: This would correspond to a type III reduction.
(2) If 2δ > deg f3 >

3
2δ, then v3 would admit an elementary K-reduction such

that the pivot [f2] is distinct from the minimal vertex [f3]: This would
correspond to a type II reduction.

(3) If 3
2δ > deg f3, then v′′

3 = Jf1, f2 + f2
3 , f3K would be an example of a vertex

that admits a reduction along a center with outer resonnance in v′′
3 , but

that does not admit a reduction with center the minimal line of v′′
3 (see

Lemma 4.29).
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