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CHARACTERIZATION OF AFFINE TORIC VARIETIES

BY THEIR AUTOMORPHISM GROUPS

ALVARO LIENDO, ANDRIY REGETA, AND CHRISTIAN URECH

ABSTRACT. We show that complex affine toric surfaces are determined by the abstract group structure of

their regular automorphism groups in the category of complex normal affine surfaces using properties of the

Cremona group. As a generalization to arbitrary dimensions, we show that complex affine toric varieties,

with the exception of the algebraic torus, are uniquely determined in the category of complex affine normal

varieties by their automorphism groups seen as ind-groups.

1. INTRODUCTION

In the whole paper we work over the field C of complex numbers and varieties are considered to be

irreducible. Let T be the complex algebraic torus, i.e. T ∼= G
n
m, where Gm = (C∗, ·) is the multiplicative

group of the base field C. A toric variety is a normal algebraic variety endowed with a T -action having

a Zariski dense open orbit. In particular, affine spaces, projective spaces and algebraic tori are toric

varieties. The automorphism groups of affine toric varieties of dimension greater than one are never

algebraic groups and most of the time they are infinite dimensional.

In this paper we are interested in the following question: is a toric variety uniquely determined by

its automorphism group? Our work can be seen in the context of the Erlangen program of Felix Klein,

in which he suggested to understand geometrical objects through their groups of symmetries ([Kle93]).

Note that in general it is impossible to characterize affine algebraic varieties by their groups of regular

automorphisms since most of them have a trivial automorphism group. In this paper, we show that in

the toric case the automorphism group is in most of the cases sufficiently rich to uniquely determine the

underlying variety. Our first main result is:

Theorem 1.1. Let S1 be an affine toric surface and let S2 be a normal affine surface. If Aut(S1) and

Aut(S2) are isomorphic as groups, then S1 and S2 are isomorphic.

This theorem can be seen to be in the spirit of the previous papers [Des06a] and [Ca14] in which the

authors consider abstract embeddings of continuous groups into Bir(Pn).
An important class of elements in Aut(S), where S is an affine surface, are algebraic elements,

i.e. elements that are contained in an algebraic group acting regularly on S (see Section 2.3). The main

idea of the proof of Theorem 1.1 is to consider an automorphism of an affine surface S as an element of

Bir(S), the group of birational transformations of S. We show that an element in Bir(S) is algebraic if

and only if an iterate of it is divisible (Theorem 3.1). From this purely group theoretical characterization

we obtain that algebraic elements are preserved under group homomorphisms and we will be able to

reconstruct the corresponding surfaces.

Much less is known about the group structure of Bir(X) if X is a variety of dimension greater than

two. Hence, we are not able to generalize Theorem 1.1 to arbitrary dimensions. However, the automor-

phism group of an affine variety comes with the additional structure of an ind-group (see Section 2.1).

We show that the automorphism group as an ind-group determines a toric variety in most of the cases:

Theorem 1.2. Let X be an affine toric variety different from the algebraic torus and let Y be a normal

affine variety. If Aut(X) and Aut(Y ) are isomorphic as ind-groups, then X and Y are isomorphic.
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In fact, we show that toric varieties and their automorphism groups are uniquely determined by the

weights of their root subgroups. In the case of finite dimensional algebraic groups this is a property of

reductive groups, see [Sp98, Section 4.4].

Theorem 1.2 can be seen as a generalisation of the results from [Kr15] (see also [Reg17]) showing

that the complex affine space is characterized by its automorphism group seen as an ind-group. The

assumption that X is not an algebraic torus in Theorem 1.2 is necessary, as the following result shows:

Theorem 1.3. Let T be an algebraic torus and let C be a smooth affine curve. If C has trivial auto-

morphism group and no invertible global functions, then Aut(T ) and Aut(C × T ) are isomorphic as

ind-groups.

Note that there exist many curves C with the properties required in Theorem 1.3. For instance, take

any smooth complete curve with a trivial automorphism group and remove one point.

The normality condition in Theorem 1.1 and Theorem 1.2 cannot be removed. Indeed, let Sd be

the quotient of A
2 by the cyclic group µd = {ξ ∈ C|ξd = 1}, |µd| > 1, where µd acts on A

2 by

scalar multiplication. Then Sd is a toric surface and the ring of regular functions of Sd is O(Sd) =⊕
k≥0C[x, y]dk, where C[x, y]dk is the vector space of homogeneous polynomials of degree dk. Denote

by Sl
d the variety with the ring of regular functions C ⊕

⊕
k≥l C[x, y]dk for some l > 0. Then Sl

d is

not normal and its normalization equals Sd. One can show that Aut(Sd) and Aut(Sl
d) are isomorphic as

ind-groups for any d, l ∈ Z>0, d > 1 (see [Reg17] for details).

However, in the particular case of the two-dimensional affine space, one can remove the normality

hypothesis:

Theorem 1.4. Let S be a complex affine surface such that Aut(S) and Aut(A2) are isomorphic as

groups. Then S is isomorphic to A
2.

In [Des06b] it is shown that all group automorphisms of Aut(A2) are inner up to automorphisms of

the base-field C. Together with Theorem 1.4 this implies directly:

Corollary 1.5. Let S be a complex affine surface and ϕ : Aut(S) → Aut(A2) a group isomorphism.

Then S is isomorphic to A
2 and ϕ is given, up to a field automorphism of the base-field C, by conjugation

with an isomorphism between S and A
2.

This corollary can be seen as an algebraic analogue to a result of Filipkiewicz ([Fil82]) about isomor-

phisms between groups of diffeomorphisms of manifolds without boundary.

Acknowledgements. The authors would like to thank J. Blanc, M. Brion, S. Cantat, H. Kraft, A. Pere-

pechko and M. Zaidenberg for useful discussions.

2. AUTOMORPHISMS AND BIRATIONAL TRANSFORMATIONS OF AFFINE VARIETIES

In this section we recall some results that we will need about automorphisms and birational transfor-

mations of normal affine varieties.

2.1. Ind-groups. The notion of an ind-group was introduced by Shafarevich who called these objects

infinite dimensional groups, see [Sh66]. We refer to [Ku02] and the paper in preparation [FK18] for

basic notations in this context.

Definition 2.1. An ind-variety is a set V together with an ascending filtration V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ V
such that the following conditions are satisfied:

(1) V =
⋃

k≥0 Vk;

(2) each Vk has a structure of an algebraic variety;

(3) for every k ∈ Z≥0, the embedding Vk ⊂ Vk+1 is closed in the Zariski-topology.

A morphism between ind-varieties V =
⋃

k Vk and W =
⋃

mWm is a map ϕ : V → W such that

for any k there is an m ∈ Z≥0 such that ϕ(Vk) ⊂ Wm and such that the induced map Vk → Wm is a
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morphism of algebraic varieties. An isomorphism of ind-varieties is defined in the usual way. An ind-

variety V can be equipped with a topology: a subset S ⊂ V is open if Sk := S ∩ Vk ⊂ Vk is open for all

k. A closed subset S ⊂ V has the natural structure of an ind-variety and is called an ind-subvariety. An

ind-variety V is called affine if all the Vk are affine varieties.

Definition 2.2. An affine ind-variety G is called an ind-group if the underlying set G is a group such that

the map G×G→ G, defined by (g, h) 7→ gh−1, is a morphism of ind-varieties.

A closed subgroup H of G is again an ind-group under the closed ind-subvariety structure on G. A

closed subgroup H of an ind-group G is an algebraic subgroup if and only if H is an algebraic subset of

G. A proof of the next proposition can be found in [St13]:

Proposition 2.3. LetX be an affine variety. Then Aut(X) has the structure of an ind-group such that for

any algebraic group G, a regular G-action on X induces an ind-group homomorphism G→ Aut(X).

We need the following definition:

Definition 2.4. An ind-group G is connected if for every element g ∈ G there exists an irreducible

curve D and a morphism D → G whose image contains the identity element e and g. The connected

component G0 of an ind-group G is the maximal connected subgroup of G which contains e.

The following observation will turn out to be useful:

Lemma 2.5. Let U ⊂ Aut(X) be a commutative subgroup which coincides with its centraliser. Then U
is a closed subgroup of Aut(X)

Proof. Let u ∈ U and define Gu = {g ∈ Aut(X) | gu = ug}. Since ug = gu is a closed condition

on each filter set, we obtain that Gu ⊂ Aut(X) is a closed subgroup. Hence, ∩u∈UGu = U is closed in

Aut(X). �

2.2. The Zariski topology on Bir(X). Let X be a variety and denote by Bir(X) its group of birational

transformations. Blanc and Furter show in [BF13] that Bir(Pn) is not an ind-group. However, it still

comes with the so-called Zariski topology, which has been introduced by Demazure ([De70]). Let A be

a variety and let

f : A×X → A×X

be an A-birational map, i.e. f is the identity on the first factor, that induces an isomorphism between

open subsets U and V of A×X such that the projections from U and from V to A are both surjective.

From this definition it follows that each a ∈ A defines an element in Bir(X) and we obtain a map

A → Bir(X). A map of this form is called a morphism. The Zariski topology is now defined to be the

finest topology on Bir(X) such that all the morphisms A → Bir(X) for all varieties A are continuous

with respect to the Zariski topology on A. For all g ∈ Bir(X) the maps Bir(X) → Bir(X) given by

x 7→ x−1, x 7→ g ◦ x and x 7→ x ◦ g are continuous.

Assume that X is the projective n-space P
n. With respect to homogeneous coordinates [x0 : · · · : xn]

an element f ∈ Bir(P2) is given by [x0 : · · · : xn] 7→ [f0 : · · · : fn], where the fi ∈ C[x0, . . . , xn] are

homogeneous polynomials of the same degree d without a non-constant common factor. We call d the

degree of f . Denote by Bir(Pn)≤d the elements of Bir(Pn) of degree ≤ d. In [BF13], it is shown that

Bir(Pn)≤d is a closed subset for all d.

2.3. Algebraic subgroups of Bir(X) and Aut(X). An algebraic subgroup of Bir(X) is the image of

an algebraic group G by a morphism G→ Bir(X) that is also an injective group homomorphism. In the

case of Bir(Pn) it can be shown that algebraic groups are closed and of bounded degree. On the other

hand, closed subgroups of bounded degree of Bir(P2) are algebraic subgroups with a unique algebraic

group structure that is compatible with the Zariski topology (see [BF13]). An element g ∈ Bir(P2) is

called algebraic if the closure of 〈g〉 in Bir(X) is an algebraic group; this is equivalent to {deg(gn)}n∈Z
being bounded. A group G ⊂ Aut(X) is called an algebraic subgroup if the induced action G×X → X
is a regular action. An element g ∈ Aut(X) is algebraic if it is contained in an algebraic subgroup. An
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algebraic element g ∈ Aut(X) is also an algebraic element in Bir(X). But a priori it is not clear whether

an automorphism g ∈ Aut(X) that is an algebraic element in Bir(S), is an algebraic element in Aut(X).
However, in Proposition 3.12 we will see that for a normal affine surface S the two notions coincide, i.e.

an element g ∈ Aut(S) is algebraic in Aut(S) if and only if g is algebraic in Bir(S).

3. CHARACTERIZATION OF ALGEBRAIC ELEMENTS ON SURFACES

3.1. Divisibility in the Cremona group. Recall that an element f in a group G is called divisible by n
if there exists an element g ∈ G such that gn = f . An element is called divisible if it is divisible by all

n ∈ Z
+. We use divisibility in order to characterize algebraic elements in Bir(S) for surfaces S:

Theorem 3.1. Let S be a surface and f ∈ Bir(S). Then the following two conditions are equivalent:

(a) there exists a k such that fk is divisible;

(b) f is algebraic.

In order to prove Theorem 3.1, we need some results from dynamics of birational transformations

of surfaces. Let H be an ample divisor class on S and denote by f∗H the total transform of H under

f ∈ Bir(S). The degree of f with respect to H is defined as

degH(f) = f∗H ·H.

If f is an element in Bir(P2) and H the class of a hypersurface then degH(f) = deg(f), the degree we

have defined in Section 2.2. Let H1 and H2 be two different ample divisors. Then there exists a constant

C > 0 such that
1

C
degH1

(f) ≤ degH2
(f) ≤ C degH1

(f)

for all f ∈ Bir(S) (see for example [Da17, Theorem 2]).

If we fix an ample divisor H on S, we can associate to each f ∈ Bir(X) its degree sequence

{degH(fn)}n∈Z+
. The growth of the degree sequence of a birational transformation carries informa-

tion about its dynamical behavior. The following theorem is crucial for the understanding of groups of

birational transformations in dimension two:

Theorem 3.2 (Gizatullin; Diller, Favre; Cantat ([Gi80, DF01, Ca15])). Let S be a complex projective

surface, H an ample divisor on S and f ∈ Bir(S) a birational transformation. Then we are in exactly

one of the following cases:

(a) the sequence {degH(fn)}n∈Z+
is bounded, which is equivalent to f being algebraic;

(b) degH(fn) ∼ cn for some constant c > 0 and f preserves a rational fibration;

(c) degH(fn) ∼ cn2 for some constant c > 0 and f preserves an elliptic fibration;

(d) degH(fn) ∼ cλn for some constant c > 0, where λ is a Pisot or Salem number.

Blanc and Déserti gave lower bounds for the constant c appearing in the cases (b) and (c) of Theo-

rem 3.2 if the surface S is rational:

Theorem 3.3 ([BD15]). Let f ∈ Bir(P2) and let H be the divisor class of a line. Assume that

degH(fn) ∼ cn, then c ≥ 1/2. If f ∈ Bir(P2) such that degH(fn) ∼ cn2, then c ≥ 1/3.

We also need the following:

Theorem 3.4 ([Ca11]). Let S be a projective surface with an ample divisor H and f ∈ Bir(S) such that

deg(fn) grows exponentially with n. Then the centralizer of f equals 〈f〉 up to finite index.

Theorem 3.3 can be generalized to non-rational surfaces of negative Kodaira dimension:

Lemma 3.5. Let S = C × P
1, where C is a smooth projective, non-rational curve. Then there exists an

ample divisor class H on S such that for all f ∈ Bir(S) we are in one of the following cases:

(a) the sequence {degH(fn)}n∈Z+
is bounded and f is algebraic;

(b) degH(fn) ∼ cn for some constant c > 1/2.
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To prove Lemma 3.5, we need some birational geometry. Let f be a birational transformation of a

projective surface X. Whenever we speak of base-points, we consider both, proper and infinitely near

base-points. A base-point p of f is called persistent if there exists an integer k such that p is a base-point

of fk for all k ≥ N but p is not a base-point of f−k for any k ≥ N . In [BD15], the authors show that

if f has no persistent base-points then ϕfϕ−1 has no persistent base-points, where ϕ : S 99K S′ is any

birational transformation to some smooth projective surface S′. In the same reference it is proven that

f has no persistent base-points if and only if f is conjugate to an automorphism of a smooth, projective

surface. Another important fact from [BD15] is the following:

Theorem 3.6 ([BD15]). Let S be a smooth projective complex surface and f ∈ Bir(S). Denote by

b(fn) the number of base-points of fn. Then there exists a non-negative integer ν such that the set

{b(fn)− nν | n ≥ 0} ⊂ Z is bounded.

Proof of Lemma 3.5. Since C is not rational, f preserves the P
1-fibration given by the first projection.

We have Pic(S) ≃ Pic(C) ⊕ Pic(P1), where the embedding of Pic(C) into Pic(S) is given by the

pullback of the first projection π1 : S → C and the embedding of Pic(P1) into Pic(S) by the pullback

of the second projection π2 : S → P
1. Let P ∈ Pic(C) and Q ∈ Pic(P1) be the divisor class of a single

point in C and P
1, respectively and let FP := π∗1P and S := π∗2Q in Pic(S). Define the ample divisor

H := FP + S.

If {degH(fn)}n∈Z+
is bounded, then f is algebraic, by Theorem 3.2. Assume now that the degree-

sequence {degH(fn)}n∈Z+
is unbounded. Since f preserves the fibration given by the first projection,

we have that f∗FP = FP ′ , where P ′ ∈ Pic(C) is the divisor class of another point in C . Moreover,

we have (fn)∗S = aS + D, for some D ∈ Pic(C) and a ∈ Z. Since the pullback of any member

of the linear system S by f intersects each fiber of π1 exactly once, we have that a = 1 and hence

(fn)∗(FP +S) = S +FP ′ +D. It follows that degH(fn) = (fn)∗(FP +S) · (FP +S) = deg(D) + 2
and therefore deg(D) = degH(fn)− 2. We obtain that the total transform (fn)∗S has self-intersection

((fn)∗S) · ((fn)∗S) = 2deg(D) = 2(degH(fn) − 2). Since f preserves the P
1-fibration, all base-

points have order one. The divisor class S has self-intersection 0, hence we obtain that fn must have

2(degH(fn) − 2) base-points. By Theorem 3.6, the number of base-points of fn grows asymptotically

like Kn for some integer K , hence degH(fn) grows asymptotically like (K/2)n. �

Lemma 3.7. Let n > 0 and A ∈ GLn(Z) an element such that Ak is divisible for some k 6= 0. Then A
is of finite order.

Proof. It is enough to show that there exists no divisible element of infinite order in GLn(Z). Let

B ∈ GLn(Z) be of infinite order. For a prime p let ϕp : GLn(Z) → GLn(Fp) be the homomorphism

given by reduction modulo p. We may choose p such that B is not contained in the kernel of ϕp. The

image ϕp(B) is then not divisible by k := |GLn(Fp)|. Hence, B is not divisible by k. �

Lemma 3.8. Let S be a complex projective surface of non-negative Kodaira dimension and f ∈ Bir(S).
If fk is divisible for some k 6= 0, then f is algebraic.

Proof. Since the Kodaira dimension of S is non-negative, there exists a unique minimal model S′ in

the birational equivalence class of S and we have Bir(S) = Bir(S′) = Aut(S′) (see [Ba01, Corol-

lary 10.22]). The action of Aut(S′) on the cohomology groups Hk(S′;Z) yields a homomorphism

ρ : Aut(S′) → GL(H∗(S′;Z)), where H∗(S′;Z) denotes the direct sum over all cohomology groups.

The kernel of ρ is known to be an algebraic group ([Li78]). Let fk ∈ Bir(S) be a divisible element.

Lemma 3.7 shows that ρ(f) has finite order, and so fk is contained in the kernel of ρ for some k. There-

fore, f is algebraic. �

Lemma 3.9. Let S be a complex projective surface and f ∈ Bir(S) an element such that fk is divisible

for some k 6= 0. Then f is algebraic in Bir(S).

Proof. First we consider the case, where S is rational. Let f ∈ Bir(S) and H an ample divisor on S. If

f is of finite order, there exists a k such that fk = id, which is a divisible element. So we may assume

that f is of infinite order. We consider the four cases, given by Theorem 3.2. If {degH(fn)} is bounded,
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Theorem 3.2 implies that f is algebraic. If deg(fn) ∼ cn, assume that there is a g ∈ Bir(P2) and a

k ≥ 0 such that gk = f . It follows that degH(gn) ∼ c
k
n. By Theorem 3.3, the constant c has to be at

least 1/2, so k ≤ 2c. If degH(fn) ∼ cn2 we obtain similarly that if gk = f then k ≤ 3c. In both cases

it follows that f is only divisible by finitely many elements, hence no power of f is divisible. Finally, if

deg(fn) ∼ cλn, we observe that every element that divides f , centralizes f . So, by Theorem 3.4, there

are only finitely many elements g ∈ Bir(P2) that divide f and again, no power of f is divisible.

If S is non-rational and of Kodaira dimension −∞, we use Lemma 3.5 and proceed with a similar

argument as in the rational case.

If S is of Kodaira dimension ≥ 0, the result follows from Lemma 3.7. �

An algebraic group H is called anti-affine if O(H) = C. If G is an arbitrary connected algebraic

group, there exists a central anti-affine group Gant ⊂ G such that G/Gant is linear (see [Br09]). We

thank Brion for pointing out the reference [Br09] to us in the context of divisibility. Denote by Ga the

additive group (C,+) of the field of complex numbers.

Lemma 3.10. Let G be an algebraic group and g ∈ G. Then there exists a k > 0 such that gk is

divisible.

Proof. We may assume that G is connected. If G is linear, consider the Zariski-closure A := 〈g〉, which

is a commutative subgroup of G. Hence, A ≃ G
n1
m × G

n2
a × H , for some n1 ≥ 0, n2 ∈ {0, 1} and a

finite group H . Let k be the order of H . Then gk is contained in U ≃ G
n1
m ×G

n2
a × {id} ⊂ A, which is

a group in which every element is divisible.

Let Gant ⊂ G be a central anti-affine group such that G/Gant is linear. By [Br09, Lemma 1.6], every

element in Gant is divisible. Let now g ∈ G be arbitrary. As G/Gant is linear there exists a k such that

the class of [gk] is divisible in G/Gant, i.e. for every n ≥ 0 there exists an element f ∈ G such that

fnh = gk for some h ∈ Gant. Since Gant is divisible, there is a h′ ∈ Gant satisfying h′n = h and hence

(fh′)n = gk , i.e. gk is divisible. �

Proof of Theorem 3.1. By Lemma 3.9, every divisible element is algebraic. On the other hand, let

f ∈ Bir(S) be an algebraic element. Then f is contained in an algebraic subgroup G ⊂ Bir(S).
By Lemma 3.10, we obtain that f is divisible. �

3.2. Algebraic elements. A well-known theorem of Weil (see [We55]) implies that an algebraic element

f ∈ Bir(X), where X is a smooth projective variety, can always be regularized, i.e. there exists a smooth

projective surface Y and a birational transformation ϕ : X 99K Y such that ϕfϕ−1 is an algebraic

automorphism of Y . We need a slightly finer version of this result:

Lemma 3.11. Let X be a smooth projective surface and U ⊂ X an open dense subset. Let f ∈ Bir(X)
be an algebraic birational transformation such that the restriction of f to U is an automorphism. Then

there exists a smooth projective surface Y and a birational transformation ϕ : X 99K Y such that the

restriction of ϕ to U induces an isomorphism to its image and such that ϕfϕ−1 is an automorphism of

Y .

Proof. Since f is algebraic, it is, by the theorem of Weil, conjugate to an automorphism and has therefore

no persistent base-points. Note that for any integer k, the base-points of fk are contained in the closed

subset X \ U or are infinitely near to it. We follow now closely the proof of Proposition 3.5 in [BD15]

in order to construct a smooth projective surface Y and a birational transformation ϕ : X 99K Y with the

desired properties.

Let K be the set of all points of S (proper or infinitely near) that are base-points of f i and f−j for

some i, j > 0. Note that all the points of K are contained in X \ U or are infinitely near to it. One can

show that K is finite and that one can blow up all the points of K to obtain an algebraically stable model

of X; i.e. let α1 : Z → X be the blow up of the points K and f̃ := α−1
1 fα1, then no point in Z is a

base-point of f̃ i and f̃−j for any i, j > 0 (see proof of Theorem 0.1 in [DF01] or proof of Proposition 3.5

in [BD15]).
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If Z contains a (−1)-curve C that is contracted by f̃ we contract it by a birational morphism β1 : Z →

Y1. Note that C is contained in Y \ α−1(U), since the restriction of f̃ to α−1
1 (U) is an automorphism.

We obtain a birational transformation β1f̃β
−1
1 of Y1, which is again algebraically stable. We repeat the

process finitely many times until we obtain a birational morphism

α2 = βnβn−1 · · · β1 : Z → Yn =: Y

such that α2f̃α
−1
2 contracts no (−1)-curve. Again, all the curves contracted by α2 are contained in Y \

α−1
1 (U). Let ϕ := α2α

−1
1 . We claim that the birational transformation f̂ := ϕfϕ−1 is an automorphism

of Y . Since we only blew up points and contracted lines that are contained in X \U or infinitely near to

it, this claim will finish the proof.

In order to prove the claim, assume that the birational transformation f̂ is not an automorphism. We

will deduce a contradiction. Let τ1 : V → Y and τ2 : V → Y be a resolution of f̂ , i.e. τ1 is a birational

morphism that blows up the base-points of f̂ and τ2 a birational morphism that blows up the base-points

of f̂−1, in particular f̂ = τ2τ
−1
1 . Let C ⊂ V be a curve that is contracted by τ2 to a base-point p ∈ Y of

f̂−1. Note that such a curve always exists and that τ1(C) ⊂ Y has to be a curve. Since f̂ is algebraically

stable, there is no k > 0 such that p is a base-point of f̂k. Let l > 0 be such that p is no base-point

of f̂−l. Note that such an l exists since otherwise p would be persistent. Let W be a resolution of

f̂1−lτ−1
1 : Y 99K V and π1 : W → Y the birational morphism blowing up all the base-points of f̂1−lτ−1

1

and π2 : W → V the birational morphism blowing up all the base-points of (f̂1−lτ−1
1 )−1. Since p is not

a base-point of f̂−l, the morphism π1 contracts the curve π−1
2 (C). Moreover, there are no base-points

of f̂−l on C or infinitely near to it, since otherwise p would be a base-point of f̂−l. Thus the curve

π−1
2 (C) ⊂ W has still self-intersection (−1). Since τ1(C) is not a (−1)-curve, but is contracted by

f̂−1+l, it has to contain a base-point q of f̂−1+l. Using again that f̂ is algebraically stable, we obtain

that q is not a base-point of f̂ , in particular, q is not blown up by τ1. So π2 has to blow up q. But this

contradicts π−1
2 (C) having self-intersection (−1). �

Proposition 3.12. Let S be a normal affine surface and let g ∈ Aut(S) be an automorphism. If g is an

algebraic element in Bir(S), then g is an algebraic element in Aut(S).

Proof. Let X̃ be a projective completion of S. Let π : X → X̃ be a smooth resolution. The birational

morphism π is given by blowing up the singular points of X̃. Let f := π−1gπ and denote by E the

exceptional divisor of the singular points in S, or infinitely near to S, that are blown up. The restriction of

f to π−1(U) is an automorphism. By Lemma 3.11, there exists a birational transformation ϕ : X → Y ,

such that the restriction of ϕ to ϕ−1(S) is an isomorphism. Let f̃ := ϕfϕ−1. By construction, f̃ is

an algebraic automorphism of Y and it preserves the closed set Y \ ϕ(π−1(U)) as well as the closed

set ϕ(E). Therefore, G :=
〈
f̃
〉

, the closure of the group generated by f̃ , is an algebraic group and

preserves Y \ ϕ(π−1(U)) as well as the closed set ϕ(E). We therefore obtain an algebraic action of G
on ϕ(π−1(U)), which we can pull back to π−1(U), and, since the action of G preserves E, it induces an

algebraic action on S. This implies that g is algebraic in Aut(S). �

Proposition 3.13. Let S1 and S2 be normal affine surfaces, ϕ : Aut(S1) → Aut(S2) an abstract group

isomorphism and g ∈ Aut(S1) an algebraic element. Then ϕ(g) is an algebraic element in Aut(S2).

Proof. The element g is algebraic in Aut(S1) and therefore divisible. Since divisibility is preserved by

group homomorphisms, we obtain that ϕ(g) is divisible in Aut(S2). Therefore, by Theorem 3.1, ϕ(g) is

algebraic in Bir(Y ). Proposition 3.12 implies that ϕ(g) is algebraic in Aut(S2). �

4. TORIC VARIETIES

4.1. Root subgroups. In this section we describe so-called root subgroups of Aut(X) for a given affine

variety X. We always consider Ga
∼= SpecC[s] as an algebraic variety so that s is an affine coordinate

of Ga at the identity.
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Definition 4.1. Let T ⊂ Aut(X) be a torus in Aut(X). A closed subgroup U ⊂ Aut(X) isomorphic

to Ga is called a root subgroup with respect to T if the normalizer of U in Aut(X) contains T . Since

Ga contains no non-trivial closed normal subgroups, such a subgroup U is equivalent to a normalized

Ga-action on X, i.e. a Ga-action on X whose image in Aut(X) is normalized by T .

Let U ⊂ Aut(X) be a root subgroup with respect to T . Since T is in the normalizer, we can define

an action ϕ : T → Aut(U) of T on U given by t.s = t ◦ s ◦ t−1 for all t ∈ T and s ∈ Ga. Furthermore,

since Aut(U) ∼= Gm, such an action corresponds to a character of the torus χ : T → Gm, which does

not depend on the choice of automorphism between Aut(U) and Gm. Hence, T and U span an algebraic

subgroup in Aut(X) isomorphic to Ga ⋊χ T .

Definition 4.2. The weight of the root subgroup U is the unique character χ : T → Gm of the torus T
such that t ◦ s ◦ t−1(x) = χ(t) · s(x) for every t ∈ T , s ∈ U and x ∈ X.

Assume that the algebraic torus T acts linearly and regularly on a vector space A of countable dimen-

sion. We say that A is multiplicity-free if the weight spaces Aχ are all of dimension less or equal than one

for every character χ : T → Gm of the torus T . In our proof of Theorem 1.2, we will use the following

lemma that is due to Kraft:

Lemma 4.3 ([Kr15, Lemma 5.2]). Let X be a normal affine variety and let T ⊂ Aut(X) be a torus. If

there exists a root subgroup U ⊂ Aut(X) with respect to T such that O(X)U is multiplicity-free, then

dimT ≤ dimX ≤ dimT + 1.

Additive group actions on affine varieties can be described by a certain kind of derivations. We recall

some of the basics here (see [Fr06] for details). Let λ : Ga → Aut(X) be a Ga-action on an affine

variety X. This action induces a derivation on the level of regular functions by

δλ : O(X) → O(X), f 7→

[
d

ds
λ∗(f)

]

s=0

which has the property that for every f ∈ O(X) there exists an ℓ ∈ N with δℓλ(f) = 0. Derivations

having this property are called locally nilpotent. Furthermore, every Ga-action on X arises from such a

locally nilpotent derivation δ and the Ga-action αδ : Ga → Aut(X) is recovered from δ via

(αδ(s))
∗ : O(X) → O(X), f 7→ exp(sδ)(f) :=

∞∑

i=0

siδi(f)

i!
.

Let T ⊆ Aut(X) be an algebraic torus. The choice of such a T is equivalent to fixing anM -grading on

the ring O(X) of regular functions, where M is the character lattice of the torus. We follow the standard

convention to consider M as an abstract additive lattice and to denote the character corresponding to

m ∈M by χm.

Recall that a linear map δ : A → B between M -graded C-vector spaces is called homogeneous if

there exists an e ∈ M such that for every homogeneous element f of degree m, the image δ(f) is

homogeneous of degree m+ e. We call the element e ∈M the degree of δ and denote it by deg δ.
The next lemma states that normalized Ga-actions are in one to one correspondence with locally

nilpotent derivations that are homogeneous with respect to the M -grading of O(X). A proof can be

found in [Li11, Lemma 2].

Proposition 4.4. Let X be an affine variety and fix a torus T ⊆ Aut(X). A locally nilpotent derivation

δ on O(X) is normalized by T if and only if it is homogeneous with respect to the M -grading on O(X)
given by T . The weight of the corresponding root subgroup is χdeg δ.

4.2. Root subgroups of toric varieties. An affine toric variety is a normal affine variety endowed with

a faithful action of an algebraic torus T that acts with an open orbit. An affine toric variety X is called

non-degenerate if it has no torus factor, i.e. if it is not isomorphic to Y × A
1
∗ for some variety Y , where

A
1
∗ = A

1 \ {0}.
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In this section we first recall the well known description of affine toric varieties by means of strongly

convex rational polyhedral cones, details can be found in reference texts about toric geometry such as

[Od88, Ful93, CLS11]. Then we provide a description of root subgroups of affine toric varieties.

Let M and N be dual lattices of rank n and consider the duality pairing M × N → Z, defined by

(m, p) 7→ 〈m, p〉 = p(m). Let MR = M ⊗Z R and NR = N ⊗Z R be the corresponding real vector

spaces and let T be the algebraic torus T = SpecC[M ] = N ⊗Z C
∗ ∼= G

n
m. With this choice M is the

character lattice of T and N the lattice of 1-parameter subgroups of T .

By a well known construction, affine toric varieties can be described via strongly convex rational

polyhedral cones in the vector space NR. Let σ be a strongly convex rational polyhedral cone in NR and

let C[σ∨ ∩M ] be the semigroup algebra C[σ∨ ∩M ] =
⊕

m∈σ∨∩M Cχm, where the multiplication rule

is given by χm · χm′

= χm+m′

and χ0 = 1. In the following, we denote σ∨ ∩M by σ∨M .

The main result about affine toric varieties is that Xσ := SpecC[σ∨M ] is an affine toric variety, where

the comorphism α∗ : C[σ∨M ] → C[M ]⊗C C[σ∨M ] of the T -action is given by χm 7→ χm ⊗ χm. Further-

more, every affine toric variety arises via this construction.

We now describe root subgroups of the automorphism group of a toric variety. Let σ ⊆ NR be a

strongly convex rational polyhedral cone. Following the usual convention, we identify a ray ρ ⊆ σ with

its shortest non-trivial vector, called its primitive vector. The set of all the rays of σ is denoted by σ(1).

Definition 4.5. We say that a lattice vector α ∈ M is a root of σ if there exists ρα ∈ σ(1) such that

〈α, ρα〉 = −1 and 〈α, ρ〉 ≥ 0, for every ρ ∈ σ(1) different from ρα. We call the ray ρα the distinguished

ray of the root α. We denote by R(σ) the set of all roots of σ and by Rρ(σ) the set of all roots of σ with

distinguished ray ρ.

Let α ∈ R(σ). One checks that the linear map given by

δα : C[σ
∨
M ] → C[σ∨M ], χm 7→ 〈m,ρα〉 · χ

m+α

is a homogeneous locally nilpotent derivation of the algebra C[σM ]. Furthermore, it was proven implic-

itly in [De70] and explicitly in [Li10, Theorem 2.7] that every homogeneous locally nilpotent derivation

of the algebra C[σ∨M ] arises this way. We summarize these results in the following proposition.

Proposition 4.6. Let Xσ be the toric variety given by a strongly convex rational polyhedral cone σ ⊂
NR. The root subgroups of Aut(Xσ) with respect to T are in one to one correspondence with the roots

of the cone σ. The correspondence is given by assigning to every α ∈ R(σ) the root subgroup whose

homogeneous locally nilpotent derivation is δα with weight character χα.

It is straightforward to verify from Proposition 4.6 that the root subgroups corresponding to δα and

δα′ commute if they have the same distinguished ray. The following corollary follows directly from

Proposition 4.6 since all actions of tori of dimension dimXσ on a toric variety Xσ are conjugate (see

[De82]).

Corollary 4.7. Let Xσ be an affine toric variety and let T ⊂ Aut(Xσ) be a maximal subtorus. Then all

the root subgroups of Aut(Xσ) with respect to T have different weights.

4.3. Toric surfaces. In this section we prove our first main result stated in Theorem 1.1. The next

lemma is known and can, for example, be found in [KRS17, Lemma 10].

Lemma 4.8. Let X be an affine toric variety and let T be a torus of dimension dimX which acts

faithfully on X. Then the centralizer of T in Aut(X) equals T . In particular, T is closed in Aut(X).

Lemma 4.9. Let X be an affine variety and G,H ⊂ Aut(X) be commuting algebraic subgroups. Then

the closure of the group 〈G,H〉 generated by G and H is an algebraic group.

Proof. Let Aut(X) = ∪Wi be a filtration of an ind-group. Since G and H are algebraic subgroups of

Aut(X), G ⊂ Wi, H ⊂ Wj . Then G ×H ⊂ Wi ×Wj ⊂ Wk, because Aut(X) is an ind-group. The

claim follows. �

Proposition 4.10. If Ga ×Gm acts on a normal affine surface X, then X is toric.
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Proof. Let X be an affine surface and let λ : Ga × Gm → Aut(X) be a Ga × Gm action on X. The

Gm-action λ|Gm
corresponds to a Z-grading on the ring of regular functions O(X) =

⊕
i∈ZAi and

in this context the action λ|Ga
is determined by a root subgroup of weight zero, or equivalently, by a

homogeneous locally nilpotent δ : O(X) → O(X) of degree zero. In [Li10] a classification of homo-

geneous locally nilpotent derivations on normal affine T -varieties was given. Since δ has degree zero,

there must be elements of the kernel of δ in all graded pieces Ai and so, in the notation of [Li10, 3.17

and Lemma 3.23], we have ω := ω(δ) = {0} and Aω = O(X). Now, [Li10, Remark 3.24 (1) and

Lemma 3.23] yields that X is toric. �

Recall that every connected one-dimensional affine algebraic group is isomorphic to Gm or to Ga.

The proof of the next lemma is straightforward and we leave it to the reader.

Lemma 4.11. Let G be a connected one-dimensional affine algebraic group that acts non-trivially on a

connected one-dimensional affine algebraic group H by conjugation. Then G ∼= Gm and H ∼= Ga.

Let Gd,e = 〈g〉 be the cyclic group of order d of Aut(A2) that is given by g : (x, y) 7→ (ξex, ξy)
where ξ is a d-th primitive root of unity, 0 ≤ e < d and (e, d) = 1. Every affine toric surface is either

isomorphic to A
1
∗ × A

1
∗, to A

1 × A
1
∗, or to some Xd,e = A

2/Gd,e. Furthermore, the toric surface Xd,e

is described in standard correspondence between toric varieties and convex polyhedral rational cones

by the cone σ spanned by ρ1 = β∗2 and ρ2 = dβ∗1 − eβ∗2 in NR, where {β∗1 , β
∗
2} is a Z-basis of the

1-parameter subgroup lattice N of the 2-dimensional torus ([CLS11, Proposition 10.1.3]). Let {β1, β2}
be the corresponding dual Z-basis of the character lattice M of the 2-dimensional torus. By [CLS11,

Proposition 10.1.3] we have the following lemma:

Lemma 4.12. The toric surface Xd,e is isomorphic to Xd′,e′ if and only if d′ = d, and e = e′ or ee′ = 1
mod d.

Every automorphism of the toric surface Xd,e is induced by a unique automorphism of A2 and the

description of the automorphism groups in [AZ12] implies in particular, that A1 × A
1
∗ is the only affine

toric surface whose automorphism group consists only of algebraic elements.

For the proof of Theorem 1.1 we need to describe the characters of root subgroups of affine toric

surfaces Xd,e. By Proposition 4.6, root subgroups in a toric variety are uniquely determined by their

weight characters. Let e′ and a be the unique integers with 0 ≤ e′ < d such that ee′ = 1 + ad. We have

the following lemma.

Lemma 4.13. The weight characters of the root subgroups of Aut(Xd,e) are:

• with distinguished ray ρ1 the characters χα with α = −β2 + l · β1, for all l ∈ Z≥0; and

• with distinguished ray ρ2 the characters χα with α = (aβ1 + e′β2) + k · (eβ1 + dβ2), for all

k ∈ Z≥0.

Proof. By Proposition 4.6, weight characters χα correspond to vectors α ∈ M with 〈α, ρα〉 = −1 for

some ray ρα in σ(1) and 〈α, ρ〉 ≥ 0 for all the other rays. The ray ρα is called the distinguished ray.

In this case we have only two rays: ρ1 = β∗2 and ρ2 = dβ∗1 − eβ∗2 . Assume that α is of the form

α = c1β1 + c2β2 and let ρ1 be distinguished ray. Then we have c2 = −1 and c1d− c2e ≥ 0. This yields

the first family in the lemma. Let now ρ2 be the distinguished ray. Then we have c1d − c2e = −1 and

c2 ≥ 0. A straightforward computation yields the second family in the lemma. �

Proposition 4.14. Let S1 be an affine toric surface that is not isomorphic to A
∗
1 × A

∗
1 and let S2 be an

affine surface. Let T ⊂ Aut(S1) be a maximal torus. Assume that there is an isomorphism of groups

ϕ : Aut(S1) → Aut(S2). Then we have the following:

• the image ϕ(T ) is a maximal torus in Aut(S2);
• the normalization of S2 is an affine toric surface that is not isomorphic to A

∗
1 × A

∗
1 ;

• the normalization of S2 is isomorphic to A
1
∗ × A

1 if and only if S1 is isomorphic to A
1
∗ × A

1.

Proof. Since S1 is not isomorphic to A
∗
1 × A

∗
1, Aut(S1) contains a root subgroup with respect to the

maximal torus T with a non-trivial character. Choose t1, t2 ∈ T of infinite order and a unipotent element
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u ∈ Aut(S1) in such a way that t1 commutes with u and t2 ◦ u ◦ t−1
2 = u2. By Proposition 3.13, the

elements ϕ(t1), ϕ(t2), ϕ(u) ∈ Aut(S2) are algebraic. We observe that the two algebraic groups 〈ϕ(t1)〉

and 〈ϕ(t2)〉 commute with each other and do not coincide. If one of the groups 〈ϕ(t1)〉 or 〈ϕ(t2)〉 has

dimension strictly bigger than 1, Proposition 4.10 implies that the normalization of S2 is toric. Hence, we

may assume that the groups 〈ϕ(t1)〉 and 〈ϕ(t2)〉 are one-dimensional. In case one of the groups 〈ϕ(t1)〉
◦

or 〈ϕ(t2)〉
◦

is isomorphic to Gm, the normalization of S2 is again toric by Proposition 4.10. The only

case we have to consider is when both groups 〈ϕ(t1)〉 and 〈ϕ(t2)〉 are isomorphic to Ga. But then

〈ϕ(t2)〉 acts nontrivially by conjugation on 〈ϕ(u)〉. This is not possible by Lemma 4.11. Therefore, the

groups 〈ϕ(t1)〉 and 〈ϕ(t2)〉 are isomorphic to Gm. Hence, from Lemma 4.9 it follows that the algebraic

group generated by ϕ(t1) and ϕ(t2) contains a two-dimensional algebraic torus which coincides with its

centralizer by Lemma 4.8. We obtain that ϕ(T ) is a maximal algebraic torus which proves the first claim

of the statement. Since every algebraic group action on S2 lifts to an action on the normalization of S2
it follows that the normalization of S2 is toric. Moreover, A∗

1 × A
∗
1 is the only toric surface such that

the automorphism group contains an infinite set of elements that normalize the maximal torus but do not

centralize it. Since S1 is not isomorphic to A
∗
1 × A

∗
1 by assumption, the normalization of S2 is therefore

not isomorphic to A
∗
1 × A

∗
1.

As A
1
∗ × A

1 is the only affine toric surface such that all elements from its automorphism group are

algebraic, the third claim of the statement holds.

�

In the proof of the next lemma we will need the notion of an irreducible derivation of a C-algebra A
which is a derivation that can not be written as a multiple of a non-constant element of A and another

derivation. Recall that Aut(A1
∗ × A

1
∗) ≃ GL2(Z) ⋉ G

2
m, where GL2(Z) is the group of monomial

transformations.

Lemma 4.15. Let S be an affine normal surface. If Aut(S) is isomorphic to Aut(A1
∗ × A

1
∗) as an

abstract group, then S is isomorphic to A
1
∗ × A

1
∗ as a variety.

Proof. Let ϕ : Aut(A1
∗×A

1
∗)

∼
−→ Aut(S) be an isomorphism of groups and let T ⊂ Aut(A1

∗×A
1
∗) be a

maximal subtorus. Since T coincides with its centralizer (see Lemma 4.8), ϕ(T ) ⊂ Aut(S) is a closed

subgroup by Lemma 2.5. Let d ∈ T be an element of infinite order. Then, by Proposition 3.13, ϕ(d) is

an algebraic element of Aut(S). Hence 〈ϕ(d)〉 ⊂ ϕ(T ) is a commutative algebraic subgroup of positive

dimension.

If S is a toric surface, the claim of the statement follows from Proposition 4.14. So assume that

S is not toric. In this case, Proposition 4.10 implies that S does not admit a faithful action of G
2
m

or of Ga × Gm. Hence, for all algebraic elements h ∈ Aut(A1
∗ × A

1
∗) of infinite order the algebraic

subgroup 〈ϕ(h)〉 ⊂ Aut(S) is one-dimensional. Assume that there are t1, t2 ∈ T of infinite order such

that the commutative groups 〈ϕ(t1)〉
◦

and 〈ϕ(t2)〉
◦

do not coincide. Since, by assumption, S is not

toric, 〈ϕ(t1)〉
◦

and 〈ϕ(t2)〉
◦

are both isomorphic to Ga. If 〈ϕ(t1)〉
◦

and 〈ϕ(t2)〉
◦

have different orbits,

the algebraic group generated by 〈ϕ(t1)〉
◦

and 〈ϕ(t2)〉
◦

is unipotent and acts with an open orbit on S,

which implies that S ∼= A
2 - a contradiction to our assumption that S is not toric. Hence, all the one-

dimensional unipotent algebraic subgroups of ϕ(T )◦ have the same orbits and therefore the same ring of

invariants, which we denote by O(S)ϕ(T )◦ . In fact, there exists an irreducible locally nilpotent derivation

δ of O(S) such that

ϕ(T )◦ = {exp(cfδ) | c ∈ C, f ∈ O(S)ϕ(T )◦}.

Denote by U the Ga-action on S that corresponds to δ. Then O(S)ϕ(T )◦ = O(S)U and O(S)U is finitely

generated.

The image of the monomial transformations ϕ(GL2(Z)) normalizes ϕ(T ) and hence it also normalizes

ϕ(T )◦. This induces an action of ϕ(GL2(Z)) on O(S)U . Let us observe that the kernel K of this action

acts on U and is a non-solvable group. Since the automorphism group of U ≃ Ga is solvable, K acts on

Ga with a non-trivial kernel K̃ . Hence, by the structure of ϕ(T )◦, the kernel K̃ acts trivially on ϕ(T )◦.
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But this means that GL2(Z) acts on a subgroup of ϕ(T ) of countable index with a non-trivial kernel,

which implies that the action of GL2(Z) on a countable index subgroup of T has a nontrivial kernel.

Since such a subgroup is dense in T it follows that GL2(Z) acts on T with a nontrivial kernel which is

not the case. Therefore, S is toric. �

Lemma 4.16. Let S1 and S2 be two affine surfaces endowed with positive dimensional maximal tori T1
and T2 respectively. Assume that there is an isomorphism ϕ : Aut(S1) → Aut(S2) such that ϕ(T1) =
T2. Then any root subgroup of Aut(S1) with respect to T1 is sent by ϕ to a root subgroup of Aut(S2)
with respect to T2.

Proof. If Aut(S1) contains no root subgroup, the lemma is trivially true. Otherwise, let U be a root

subgroup of Aut(S1) with respect to T1, then T1 acts on U with two orbits. Hence, ϕ(U) is a group

normalized by T2 = ϕ(T1) which also acts on ϕ(U) with two orbits. Since any orbit of the algebraic

group action is open in its closure, we obtain, by considering the kernel of the actions, that ϕ(U) is a

quasi-affine curve. This implies that ϕ(U) is a one-dimensional algebraic group. Moreover, ϕ(U) is a

union of ϕ(U) and at most one point. Then ϕ(U) contains at most one root of unity. Hence, ϕ(U) is

isomorphic to Ga and normalized by ϕ(T1) = T2. Moreover, ϕ(U) = ϕ(U) and the claim follows. �

Proof of Theorem 1.4. Let Tr = {(x+ c, y+ d) | c, d ∈ C} ⊂ Aut(A2) be the subgroup of translations.

The group Tr coincides with its centralizer in Aut(A2). Hence, ϕ(Tr) ⊂ Aut(S) is a closed subgroup

by Lemma 2.5. The maximal torus T ⊂ Aut(A2) given by the group of diagonal automorphisms acts on

Tr by conjugation with finitely many orbits. By Lemma 4.14, ϕ(T ) ⊂ Aut(S) is a maximal subtorus.

Therefore, the closed subgroup ϕ(T ) ⊂ Aut(S) also acts on ϕ(Tr) faithfully and with finitely many

orbits and hence ϕ(Tr) ⊂ Aut(S) is an algebraic subgroup of dimension 2. Since Tr does not contain

elements of finite order, the group ϕ(Tr) is unipotent. If two different Ga-actions in ϕ(Tr) have different

orbits, then ϕ(Tr) acts with an open orbit and because ϕ(Tr) is unipotent it follows that S ∼= A
2. Now

assume that all the Ga-actions from ϕ(Tr) have the same orbits. Then the ring of invariants O(S)ϕ(Tr)

contains non-constant functions and there exists a locally nilpotent derivation δ such that every Ga-action

in ϕ(Tr) is of the form {exp(cgδ) | c ∈ C} for some g ∈ O(S)ϕ(Tr). But in this case for any k ≥ 0

and any f ∈ O(S)ϕ(Tr), the Ga-action {exp(cfkδ) | c ∈ C} commutes with all the Ga-actions in

ϕ(Tr) which implies that the centralizer of ϕ(Tr) is infinite-dimensional. This contradicts the fact that

dimϕ(Tr) has dimension two and the claim follows. �

Proof of Theorem 1.1. Let ϕ : Aut(S1)
∼
−→ Aut(S2) be an isomorphism of groups and fix a maximal

torus T1 ⊂ Aut(S1). If S1 or S2 are isomorphic to A
1
∗ × A

1
∗, to A

1
∗ × A

1, or to A
2 then the claim

follows from Lemma 4.15, Proposition 4.14, or Theorem 1.4 respectively. Now let S1 be isomorphic to

some Xd,e different from A
2. By Lemma 4.14, S2 is a toric surface Xd̃,ẽ. Moreover, T2 = ϕ(T1) is a

2-dimensional torus.

By Lemma 4.16, all the root subgroups of Aut(Xd,e) with respect to T1 are mapped by ϕ to root

subgroups of Aut(Xd′,e′) with respect to T2. Hence, to conclude the proof, it is enough to show that we

can recover Xd,e from the abstract group structure of its root subgroups and their relationship with the

torus. Assume that the torus T1 acts on a root subgroup Ga with character χ. The center of the semidirect

product Ga⋊χ T1 is exactly {0}⋊χ kerχ. The image ϕ(Ga) is a root subgroup of Aut(S2) with respect

to the torus ϕ(T1) = T2 with some character χ2. Hence the kernel of χ is mapped under ϕ to the kernel

of χ2. We consider now the kernel of the characters of two root subgroups with different distinguished

rays and look at their intersection. More precisely, let χα1 be a character with distinguished ray ρ1 and

χα2 a character with distinguished ray ρ2. By Lemma 4.13 we have

α1 = −β2 + l · β1 and α2 = (aβ1 + e′β2) + k · (eβ1 + dβ2) .

Recall that e′ and a are the only integers with 0 ≤ e′ < d such that ee′ = 1 + ad. Define

Kl,k := kerχα1 ∩ kerχα2 .
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From χα1 = 1 we obtain χβ2 = (χβ1)l and replacing this into χα2 = 1 we obtain (χβ1)a+l·e′+k·e+lk·d =
1. This yields that the order of Kl,k is

|Kl,k| = |a+ l · e′ + k · e+ lk · d| .

We fix a character χα1 of Aut(S1) with distinguished ray ρ1. Now we consider all the characters χα2

with distinguished ray ρ2. These are exactly the characters corresponding to the root subgroups that

do not commute with the root subgroup corresponding to χα1 . By considering the intersections of the

kernels, we obtain a sequence of integers {|Kl,k|}, where l is fixed and k varies. We observe that this

sequence, after possibly some finite number of terms, forms an arithmetic progression. By varying l, we

obtain a set of such sequences. The smallest common difference of these arithmetic progressions is d
and the second smallest common difference is d+ e.

Analogously, for every fixed k ∈ Z≥0 the sequence of integers |Kl,k|, for all l ∈ Z≥0, after possibly

some finite number of terms, forms an arithmetic progressions. The smallest common difference of these

arithmetic progressions is d and the second smallest common difference is d+ e′.
Since ϕ(Kl,k) is again the intersection of the kernels of two non-commuting characters, the sequences

of integers |Kl,k| for l or k fixed are the same for Aut(S1) and Aut(S2).

This yields that the isomorphism ϕ : Aut(S1)
∼
−→ Aut(S2) can only exist if S1 = Xd,e and S1 = Xd̃,ẽ

with d̃ = d, and ẽ = e or ẽ = e′. This is, S1 is isomorphic to S2 by Lemma 4.12.

�

4.4. Higher dimensional toric varieties. The following lemma is needed for the proof of Theorem 1.2.

Lemma 4.17. Let Xσ be an affine toric variety of dimension n and let T ⊂ Aut(Xσ) be a maximal

subtorus. Then there exists an (n−1)-dimensional torus H ⊂ T such that all root subgroups of Aut(X)
with respect to H have different weights.

Proof. Take any (n − 1)-dimensional subtorus H ⊂ T such that NH ∩ σ = {0}, where NH is the

sublattice of N of 1-parameter subgroups of T that are contained in H and recall that σ ⊂ NR. It is

clear that every T -root subgroup is also a H-root subgroup. Now, [Ko14, Proposition 1] shows that

every H-root subgroup is also T -root subgroup and so Corollary 4.7 implies that the weights of H-root

subgroups are also different. �

We now show that affine toric varieties are determined by their set of roots.

Lemma 4.18. Let σ and σ′ be strongly convex rational polyhedral cones in NR. If R(σ) = R(σ′) then

σ = σ′. In particular, a toric variety Xσ is completely determined by the set of its roots with respect to

any fixed maximal torus in Aut(Xσ).

Proof. To prove the lemma, it is enough to show that the cone σ of a toric variety Xσ can be recovered

from the set of roots R(σ). Since any strongly convex rational polyhedral cone is the convex hull of its

rays, it is enough to show that every ray ρ ∈ σ(1) can be recovered from the set of roots. By [Li10,

Remark 2.5] the set Rρ(σ) of roots with ρ ∈ σ(1) as distinguished ray is not empty. Hence, to recover σ
from R(σ) it is enough to recover for every e ∈ R(σ) its distinguished ray.

By [Li10, Remark 2.5], the lattice vectorm+e ∈ Rρ(σ) for every e ∈ Rρ(σ) and everym ∈ ρ⊥∩σ∨M .

Let us fix now a root e ∈ R(σ). By the preceding consideration, there exists a hyperplane H ⊂ MR

such that the linear span of H ∩ (R(σ) − e) equals H . Take now L = H⊥ ⊂ NR the line orthogonal to

H . The line L is composed of two rays and has only two primitive vectors ±p ∈ L. The distinguished

ray of e is given by ρe = −〈e, p〉 · p since this way 〈e, ρe〉 = −〈e, p〉2 = −1. �

Proposition 4.19. Let X and Y be affine varieties of dimension n. Assume that both varieties X and Y
admit a structure of toric variety. If Aut(X) and Aut(Y ) are isomorphic as ind-groups, then X and Y
are isomorphic.

Proof. Fix an isomorphism ϕ : Aut(X) → Aut(Y ) of ind-groups. Let T ⊂ Aut(X) be a maximal

subtorus of dimension n. Since the groups Aut(X) and Aut(Y ) are isomorphic, the root subgroups
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of Aut(X) with respect to T are sent to root subgroups of Aut(Y ) with respect to ϕ(T ). Moreover,

weights are preserved under this isomorphism. Now, Lemma 4.18 implies that X ∼= Y as a toric variety.

In particular, X ∼= Y as a variety. �

We now proceed to prove the last two remaining main results of this paper.

Proof of Theorem 1.2. Let ϕ : Aut(X) → Aut(Y ) be an isomorphism of ind-groups and let n be the

dimension of X. By Lemma 4.17 there is a subtorus H ⊂ Aut(X) of dimension n − 1 such that all

the root subgroups of Aut(X) have different weights with respect to H . Since ϕ is an isomorphism of

ind-groups, all the root subgroups of Aut(Y ) have different weights with respect to the algebraic torus

ϕ(H) ⊂ Aut(Y ). Hence, by Lemma 4.3 we have dimY ≤ n. SinceX admits an n-dimensional faithful

torus action, the same holds for Y and we conclude that Y is also a toric variety of dimension n. Now

the theorem follows from Proposition 4.19. �

Proof of Theorem 1.3. Let ϕ : C × T → C × T be an automorphism of C × T . For every z ∈ C , we

define ϕz : T → C to be the map given by ϕz(t) = pr1 ◦ϕ(z, t) for all t ∈ T , where pr1 : C×T → C is

the first projection. The map ϕz is constant. Indeed, if ϕz is not constant then it is dominant and since T
is a rational variety, this implies that C is unirational, which in dimension one implies that C is rational.

But the only affine rational curve without invertible functions is A
1, whereas, by assumption, C has a

trivial automorphism group.

This yields that the first projection pr1 is preserved by ϕ and so ϕ descends to an automorphism

ϕ̃ : C → C . But C has no nontrivial automorphism, so ϕ̃ = idC is the identity. Hence, we obtain that

ϕ(z, t) = (z, ψ(z, t)) for all z ∈ C , t ∈ T .

For every t ∈ T we let ψt : C → T be the map given by ψt(z) = ψ(z, t). The map ϕt is also constant.

Indeed, the comorphism ψ∗
t (z) : C[M ] → O(C) sends invertible elements to invertible elements, but

C[M ] is generated by invertible elements while C admits no invertible global function other than the

constants so the image of ψ∗
t is the base field. We obtain that ψ(z, t) = ψ̃(t) for some automorphism

ψ̃ : T → T of the torus T and for all z ∈ C , t ∈ T . This yields that the automorphism ϕ is a product

ϕ = idC ×ψ̃, which proves the theorem. �
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