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Abstract Given a rational monomial map, we consider the question of finding a toric
variety on which it is algebraically stable. We give conditions for when such variety does or
does not exist. We also obtain several precise estimates of the degree sequences of monomial
maps.

1 Introduction

Given an n × n integer matrix A = (ai, j ), there is an associated monomial map f A :
(C∗)n → (C∗)n defined by

f A(x1, . . . , xn) =
⎛
⎝∏

j

x
a1, j
j , . . . ,

∏
j

x
an, j
j

⎞
⎠ .

Monomial maps fit nicely into the framework of toric varieties and equivariant maps on
them. In this paper, we try to make extensive use of the toric method to study the dynamics
of monomial maps.

The idea of applying the theory of toric varieties to monomial maps is in fact not new. For
example, Favre [3] used the orbit-cone correspondence of the torus action to translate a crite-
rion of algebraic stability to a condition about cones in a fan, and uses it to classify monomial
maps in the case of toric surfaces. In order to generalize his result to higher dimension, one
needs a good understanding on pulling back cohomology classes under rational maps. So we
start from a formula of pulling back divisors in toric varieties (Proposition 3.1).

We then prove a criterion for algebraic stability (Theorem 4.2). Results about stability are
proven using the criterion. For example, we proved that every monomial polynomial map is
algebraically stable on (P1)n . Also, we generalize some results of [3] to higher dimension.
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294 J.-L. Lin

Theorem 4.7 Suppose that A ∈ Mn(Z) is an integer matrix.

(1) If there is a unique eigenvalue λ of A of maximal modulus, with algebraic multiplicity
one; then λ ∈ R, and there exists a simplicial toric birational model X (maybe singular)
and a k ∈ N such that f k

A is strongly algebraically stable on X.
(2) If λ, λ̄ are the only eigenvalues of A of maximal modulus, also with algebraic multi-

plicity one, and if λ = |λ| · e2πiθ , with θ �∈ Q; then there is no toric birational model
which makes f A strongly algebraically stable.

For the definition of (strongly) algebraically stable, see Sect. 4. We note that many of the
results concerning stabilization of monomial maps in this paper have been obtained indepen-
dently by Jonsson and Wulcan [6]. For more detail, see the remark after Theorem 4.7.

Next, we focus on the projective space P
n in Sect. 5. For P

n , the pull back f ∗ of a rational
map f : P

n ��� P
n on H1,1(Pn; R) is given by the degree of f . Thus we consider the degree

sequence
{
deg( f k)

}∞
k=1. Results about the degree sequence of monomial maps can be found

in [1,5].
In particular, one can define the asymptotic degree growth

δ1( f A) = lim
k→∞(deg( f k

A))
1
k .

Hasselblatt and Propp [5, Theorem 6.2] proved that δ1( f A) = ρ(A), the spectral radius of the
matrix A. We refine the above result and obtain the following description of the asymptotic
behavior of the degree sequence for a general monomial map.

Theorem 5.1 Given an n × n integer matrix A with nonzero determinant, assume that ρ(A)
is the spectral radius of A. Then there exist two positive constants C1 ≥ C0 > 0 and a unique
integer � with 0 ≤ � ≤ n − 1, such that

C0 · k� · ρ(A)k ≤ deg( f k
A) ≤ C1 · k� · ρ(A)k

for all k ∈ N.
In fact, (�+ 1) is the size of the largest Jordan block of A among the ones corresponding

to eigenvalues of maximal modulus.

If the matrix A has some better property, then we can describe the degree sequence more
precisely. This is the content of Theorems 5.5, 5.6, and the following theorem.

Theorem 5.7 Assume that the matrix A is diagonalizable, and assume for each eigenvalue
λ of A of maximum modulus, λ/λ̄ is a root of unity. Then there is a positive integer p, and p
constants C0,C1, . . . ,C p−1 ≥ 1, such that

deg( f pk+l
A ) = Cl · |λ1|pk+l + O(|λ2|pk+l),

where l = 0, 1, . . . , p − 1.

The above theorems about the degree sequences of monomial maps can be generalized to
the case of weighted projective spaces. On weighted projective spaces, we have the notion of
weighted degree of a toric map, and their growth under iterations follows the same pattern as
the degree growth of monomial maps in projective spaces. This generalization is suggested
to us by Mattias Jonsson. We introduce weighted projective space briefly, and explain the
generalization in Sect. 5.3.
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Algebraic stability and degree growth of monomial maps 295

2 Toric varieties

In this section, we give a brief survey of basic definitions and properties of toric varieties.
For more detail, we refer the readers to [2] or [4].

2.1 Cones and affine toric varieties

Let N ∼= Z
n be a lattice of rank n, and NR := N ⊗Z R ∼= R

n . A polyhedral cone in NR is of

the form σ =
{∑k

i=1 rivi | ri ∈ R≥0, vi ∈ NR

}
for some finite set of vectors v1, . . . , vk .

The dimension of σ is the dimension of the R-span of σ . A cone is strongly convex if
it does not contain any line. A cone is rational if we can choose the generators v1, . . . , vk

from the lattice N . In what follows, by a cone we always mean “a strongly convex, rational
polyhedral cone”.

From the lattice N we can form the dual lattice M := HomZ(N ,Z), with dual pairing
denoted by 〈 , 〉. The dual cone σ∨ of σ is defined by

σ∨ = {u ∈ MR | 〈u, v〉 ≥ 0 for all v ∈ σ }.

Let Sσ := σ∨ ∩ M , the variety Uσ := Spec(C[Sσ ]) is called the affine toric variety
associated to the cone σ . More concretely, a closed point in Uσ corresponds to a semigroup
morphism (Sσ ,+) → (C, ·) which sends 0 ∈ Sσ to 1 ∈ C.

For exmaple, let N = Z
n , and let σ be the cone in NR

∼= R
n generated by the standard

basis e1, . . . , en . Then the affine toric variety Uσ ∼= C
n .

We will need the following definitions. One dimensional cones are also called rays. On
a ray, the nonzero integral point of the smallest norm is called the ray generator. A cone is
simplicial if it is generated by linearly independent vectors. A cone is smooth if it is generated
by part of a basis for the lattice N . A cone σ is smooth if and only if the corresponding affine
variety Uσ is smooth.

2.2 Fans and general toric varieties

A fan	 in NR is a finite collection of cones in NR such that each face of a cone in	 is again
in 	, and the intersection of two cones in 	 is a face of each.

From a fan 	, we can construct the toric variety X (	) corresponding to 	. For cones
σ, τ ∈ 	, we glue Uσ and Uτ along the open subvariety Uσ∩τ . The resulting variety is the
toric variety X (	).

We use the notion 	(k) to denote the set of all k-dimensional cones of 	. A fan 	 is
complete if |	| = NR, where |	| := ∪σ∈	σ is the support of 	.

Example 2.1 Let N = Z
n, e1, . . . , en be the standard basis of N , and e0 = −(e1 +· · ·+en).

For any proper subset I of the set n = {0, 1, . . . , n}, let σI be the cone generated by {ei |i ∈ I }.
The set 	 = {σI |I � n} forms a fan. The toric variety associated to the fan is the projective
space X (	) ∼= P

n .

Example 2.2 We will construct a fan	 that corresponds to the product of the projective line
(P1)n . The rays are generated by the standard basis vectors e1, . . . , en and their negatives
−e1, . . . ,−en . The maximal cones are generated by vectors of the form {(s1e1), . . . , (snen)},
where si ∈ {+1,−1} are the signs. All other cones in 	 are faces of some maximal cone.
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296 J.-L. Lin

2.3 The orbits of the torus action

Every toric variety X (	) is equipped with a torus action, thus X (	) can be written as the
disjoint union of the orbits. The orbits are in 1–1 correspondence with cones in the fan 	
as follows. For each cone τ ∈ 	, let xτ ∈ Uτ be the closed point corresponding to the
semigroup morphism Sσ → C.

u ∈ Sσ �−→
{

1 if u ∈ σ⊥,
0 otherwise.

We define Oτ to be the orbit of xτ under the torus action. The closure of an orbit Oτ in X (	)
is denoted by V (τ ).

2.4 Toric maps

Suppose A : N → N ′ is a homomorphism of lattices, 	 is a fan in N , and 	′ is a fan in N ′.

Definition Given a cone σ ∈ 	, we say that σ maps regularly to 	′ by A if there is a cone
σ ′ ∈ 	′ such that A(σ ) ⊆ σ ′. In this case, we call the smallest such cone in 	′ the cone
closure of the image of σ , and denote it by A(σ ).

If A : N → N ′ is a homomorphism such that every cone of 	 maps regularly to 	′,
then A induces a morphism of varieties f A : X (	) → X (	′) which is equivariant under
the torus action. Conversely, every equivariant morphism X (	) → X (	′) is induced by a
homomorphism of lattices satisfying the above property. Equivariant morphisms will map
orbits to orbits. If σ ∈ 	, then f A maps Oσ ⊂ X (	) to OA(σ ) ⊂ X (	′).

More generally, any homomorphism of lattices A : N → N ′ induces an equivariant
rational map f A : X (	) ��� X (	′). On a complete toric variety, f A is dominant if and only
if AR = (A ⊗ R) : NR → N ′

R
is surjective.

3 Divisors on toric varieties

We will recall basic definitions and properties of divisors in a toric variety, then prove a
formula about pulling back divisors.

3.1 Weil divisors and divisor class groups

In a toric variety X (	), let 	(1) = {τ1, . . . , τd} be the set of rays in 	. A T -invariant Weil
divisor, T -Weil divisor for short, is of the form

∑d
i=1 ai V (τi ) where ai ∈ Z. The group of

T -Weil divisors is denoted by WDivT (X (	)). The principal divisors in WDivT (X (	)) are
in 1-1 correspondence to elements of M . The quotient

An−1(X (	)) := WDivT (X (	))/M

is the divisor class group of X (	).

3.2 Cartier divisors and Picard groups

In a complete toric variety X (	) of dimension n, the torus invariant Cartier divisors, or
T -Cartier divisors, is given by the following data. For each cone σ ∈ 	(n), we specify an
element u(σ ) ∈ M . The datum {u(σ )|σ ∈ 	(n)} are required to satisfy the compatibility
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Algebraic stability and degree growth of monomial maps 297

condition that [u(σ )] = [u(σ ′)] in M/M(σ ∩ σ ′), where M(σ ∩ σ ′) = (σ ∩ σ ′)⊥ ∩ M . We
write D = {u(σ )} and call it the Cartier divisor defined by the data {u(σ )}. We denote the
group of all T-Cartier divisor by CDivT (X (	)).

Every T -Cartier divisor D = {u(σ )} gives rise to a unique T -Weil divisor

[D] =
∑

τi ∈	(1)
−〈u(σ ), vi 〉 · V (τi ),

with σ any maximal cone such that vi ∈ σ .
The data {u(σ )|σ ∈ 	(n)} also defines a continuous piecewise linear functionψD on NR.

The restriction of ψD to the maximal cone σ is given by u(σ ), i.e., ψD(v) = 〈u(σ ), v〉
for v ∈ σ . Conversely, a continuous piecewise linear, integral (i.e., given by an element of
M on each cone) function ψ on NR determines a unique T -Cartier divisor D, with [D] =∑−ψ(vi ) · V (τi ). The function ψ is called the support function of the Cartier divisor D.
On a complete toric variety, a T -Cartier divisor is ample if and only if its support function is
strictly convex [4, p.70].

One can identify M as a subgroup of CDivT (X (	)). Each u ∈ M is identified with the
Cartier divisor such that u(σ ) = u for all σ ∈ 	(n). The quotient CDivT (X (	))/M is the
Picard group of X (	), and is denoted by Pic(X (	)).

We conclude this section by mentioning relations between Picard groups and cohomology
groups. For a complete toric variety X , we have Pic(X) = H2(X; Z). If X is also simplicial,
then

H1,1(X) := H1(X,�X ) = H2(X; C) = Pic(X)⊗Z C.

3.3 Pulling back divisors

The main result of this section is the following.

Proposition 3.1 Let 	,	′ be complete fans, and f A : X (	) ��� X (	′) be a dominant
toric rational map induced by A : N → N ′. The pull back of a Cartier divisor D via f A is
the Weil divisor

f ∗
A D =

∑
τi ∈	(1)

−ψD(Avi ) · V (τi ). (3.1)

Here ψD is the support function of D, and vi is the ray generator of τi .

Proof We can refine the fan 	 to get a fan 	̃ such that A induces a toric morphism from
X (	̃) to X (	). In order to distinguish from f A, we call this morphism f̃ A. The morphism
π : X (	̃) → X (	) is induced by the identity map on N . It is proper and birational. So we
have the following diagram.

X (	̃)

π

�����
��

��
�� f̃ A

����
��

��
��

�

X (	)
f̃ A◦π−1

���������� X (	′)

To pull back the divisor D, we use f ∗
A D = π∗( f̃ ∗

A D). Once we show that f ∗
A D is given

by (3.1), it is independent of refinement.
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If ψD is the support function of D, then f̃ ∗
A D will have ψD ◦ A as its support function.

Thus, as a Weil divisor, we have

f̃ ∗
A D =

∑

τi ∈	̃(1)
−ψD(Avi ) · V (τi ).

The fan 	̃ is a subdivision of 	, and π is induced by identity. The push forward map π∗
is given by

π∗V (τ ) =
{

V (τ ) if τ ∈ 	(1),
0 if τ �∈ 	(1).

Therefore, combining the two steps, we obtain

f ∗
A D = π∗( f̃ ∗

A D) =
∑

τi ∈	(1)
−ψD(Avi ) · V (τi ).

��

Notice that, if D is a principal divisor, i.e., ψD is a linear function, then the pull back
f ∗

A D will again be principal, given by the linear function ψD ◦ A. Thus it induces a map,
also denoted by f ∗

A , from the Picard group to the divisor class group.

f ∗
A : Pic(X (	′)) → An−1(X (	)).

If the fan 	 is smooth, then Pic(X (	)) ∼= An−1(X (	)), and the pull back map induces
a map on Picard groups.

f ∗
A : Pic(X (	′)) → Pic(X (	)).

If the fan 	 is simplicial, then every Weil divisor D is Q-Cartier. Thus if we denote
GQ = G ⊗Z Q for an abelian group G, then we have maps

f ∗
A : CDivT (X (	

′))Q → CDivT (X (	))Q,

f ∗
A : Pic(X (	′))Q → Pic(X (	))Q.

We use the same symbol f ∗
A here to avoid inventing too many notations, and we will state

clearly whether we talk about divisors or divisor classes.
What we do for pulling back Q-Cartier divisors in the simplicial case is as follows. An

element D ∈ CDivT (X (	′))Q can be identified with a rational support function ψD . The
composition (ψD ◦ A) is piecewise linear on 	̃, not on 	. We make an interpolation and
obtain a piecewise linear function on	. If we denote the modifying (interpolation) function
by μ = μ	̃,	 , we can conclude the following:

Corollary For complete, simplicial toric varieties X (	), X (	′), and a dominant toric ratio-
nal map f A : X (	) ��� X (	′), we can write the procedure of pulling back divisors as
f ∗

A D = μ	̃,	(ψD ◦ A).

4 Algebraic stability

For the rest of this paper, all toric varieties are assumed to be complete and simplicial.
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4.1 Definition and a geometric criterion

Here we define algebraic stability in the case of toric maps. For a general discussion on
algebraic stable maps, see [8].

Definition A toric rational map f A : X (	) ��� X (	) is strongly algebraically stable
if ( f k

A)
∗ = ( f ∗

A)
k as maps of CDivT (X (	))Q for all k ∈ N. It is algebraically stable if

( f k
A)

∗ = ( f ∗
A)

k as maps of Pic(X (	))Q, for all k.

Notice that ( f k
A)

∗ = ( f ∗
A)

k on CDivT (X (	))Q implies ( f k
A)

∗ = ( f ∗
A)

k on Pic(X (	))Q,
so the condition for strongly algebraic stability is indeed stronger. It is not clear to us whether
the two conditions are equivalent or not in general. However, if we assume that the toric
variety X = X (	) is projective, then the two conditions are equivalent. We will prove that
later in this section.

Our next goal is to prove a geometric characterization of strongly algebraically stable
maps. We need to prove a lemma first. Given two homomorphisms of lattices A : N →
N ′ and B : N ′′ → N , they induce two toric rational maps f A : X (	) → f (	′) and
fB : X (	′′) → f (	).

Lemma 4.1 ( f A ◦ fB)
∗ = f ∗

B ◦ f ∗
A as maps

CDivT (X (	
′))Q → CDivT (X (	

′′))Q
if and only if for each ray in 	′′, the cone closure of its image maps regularly to 	′. That is,
for each τ ∈ 	′′(1), there exists a σ ′ ∈ 	′ such that A(B(τ )) ⊂ σ ′.

Proof First, suppose that the geometric condition is satisfied, we want to show ( f A ◦ fB)
∗ =

f ∗
B ◦ f ∗

A . Remember that ( f A ◦ fB)
∗ D = μ(ψD ◦ (A ◦ B)) and ( f ∗

B ◦ f ∗
A)D = f ∗

B( f ∗
A D) =

μ(μ(ψD ◦ A) ◦ B), where μ is the modifying function. So it is enough to show that, for all
τi ∈ 	(1) and vi the ray generator of τi ,

(ψD ◦ (A ◦ B))(vi ) = (μ(ψD ◦ A) ◦ B)(vi ),

that is, ψD(A(Bvi )) = μ(ψD ◦ A)(Bvi ).
Since A(B(τi )) ⊂ σ ′ for some σ ′ ∈ 	′ and ψD is linear on σ ′, hence (ψD ◦ A) is

linear on B(τi ). The interpolation μ therefore does not do anything on B(τi ), and we have
μ(ψD ◦ A)(Bvi ) = (ψD ◦ A)(Bvi ).

Conversely, if for some ray τ ∈ 	(1), B(τ ) does not map regularly by A. This means that
A(B(τ )) is not contained in any cone of	′. We will construct a divisor D ∈ CDivT (X (	′))
such that ( f A ◦ fB)

∗ D �= ( f ∗
B ◦ f ∗

A)D. Let γ1, . . . , γm be the one-dimensional faces of 	′,
and for i = 1, . . . ,m, let

ai =
{

0 if γi is a face of (A ◦ B)(τ ),
1 otherwise.

Define D = ∑m
i=1 ai · V (τ ′

i ), and let ψD be the support function of D. First, observe that
ψD(v) = 0 if and only if w ∈ (A ◦ B)(τ ). Thus for the divisor ( f A ◦ fB)

∗ D, the coefficient
of V (τ ) is 0.

On the other hand, since A(B(τ )) is not contained in (A ◦ B)(τ ), there is some one dimen-
sional face τ0 of B(τ ) such that A(τ0) �∈ (A ◦ B)(τ ). Let v0 be the ray generator of τ0, then
ψD(Av0) > 0. Thus μ(ψD ◦ A) is strictly positive in the relative interior of B(τ ), which
contains Bv. This implies that the coefficient of V (τ ) for the divisor ( f ∗

B ◦ f ∗
A)D is strictly

positive. Therefore we have ( f A ◦ fB)
∗ D �= ( f ∗

B ◦ f ∗
A)D. ��
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Theorem 4.2 A toric rational map f A : X (	) ��� X (	) is strongly algebraically stable if
and only if for all ray τ ∈ 	(1) and for all n ∈ N, An(τ ) maps regularly to 	 by A.

Proof First assume that f = f A is strongly algebraically stable. Thus for all n ∈ N, we have
( f n)∗ = ( f ∗)n and ( f n+1)∗ = ( f ∗)n+1. This gives us

( f ◦ f n)∗ = ( f n+1)∗ = ( f ∗)n+1 = ( f ∗)n ◦ f ∗ = ( f n)∗ ◦ f ∗.

By the above lemma, the equality ( f ◦ f n)∗ = ( f n)∗ ◦ f ∗ implies that An(τ ) is mapped
regularly to 	 by f .

Conversely, assume that An(τ ) is mapped regularly to 	 by f for all n ∈ N. This tells us
that ( f ◦ f n)∗ = ( f n)∗ ◦ f ∗ for all n ∈ N . Thus we have ( f n)∗ = ( f ∗)n for all n ∈ N by
an induction argument. ��

In fact, let σn = An(τ ), the next lemma implies that, not only σn maps to 	 regularly,
also the cone closure A(σn) is equal to σn+1 = An(τ ).

Lemma 4.3 Assume further that AR is surjective, and B(τ ) maps regularly to 	′, then for

all τ ∈ 	′′, we have A(B(τ )) = (A ◦ B)(τ ).

That is, if σ is the smallest cone in 	 that contains B(τ ), and σ ′ is the smallest cone in
	′ that contains A(σ ), then σ ′ will be the smallest cone in 	′ that contains A(B(τ )).

Proof Obviously, (A ◦ B)(τ ) is a face of A(B(τ )). Thus there is a supporting hyperplane

H ′ of A(B(τ )) in N ′
R

such that

A(B(τ )) ∩ H ′ = (A ◦ B)(τ ).

The preimage H = A−1(H ′) will then be a supporting hyperplane of B(τ ) in NR, so
B(τ ) ∩ H is a face of B(τ ) that contains B(τ ). By the minimality of B(τ ), we must have

B(τ )∩ H = B(τ ), i.e., B(τ ) ⊂ H . Thus, A(B(τ )) ⊂ H ′, and by the minimality of A(B(τ )),

we know A(B(τ )) ⊂ H ′. Therefore,

A(B(τ )) = A(B(τ )) ∩ H ′ = (A ◦ B)(τ ).

��
With Theorem 4.2 and Lemma 4.3, we can describe the behavior, under iterations, of

an strongly algebraically stable toric rational map f A very concretely, as follows. For each
ray τ ∈ 	(1), let σ1 = A(τ ) be the smallest cone containing A(τ ), then σ1 will map reg-
ularly to some cone in N , Assume σ2 = A(σ1) = A2(τ ) is the smallest such cone. Here
the second equality is due to the lemma. Then σ2 will map regularly again to some smallest
σ3 = A(σ2) = A2(σ1) = A3(τ ), and so on.

4.2 Algebraic stable versus strongly algebraic stable

Now we can prove the equivalence of algebraic stable and strongly algebraic stable in the
projective case. The equivalence of the two conditions, and a proof in the general case is
mentioned to us by Charles Favre. We adapted his proof to a proof for toric varieties.

Given two integer matrices A, B ∈ Mn(Z) with nonzero determinants, which induce two
dominant toric rational maps f A, fB : X ��� X .
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Lemma 4.4 Let D be an ample, T -invariant divisor on X, then the difference ( f ∗
B ◦ f ∗

A)

D − ( f A ◦ fB)
∗ D is an effective Q-Cartier divisor.

Proof Write

( f ∗
B ◦ f ∗

A)D =
∑
τ∈	(1)

aτV (τ ), ( f A ◦ fB)
∗ D =

∑
τ∈	(1)

bτV (τ ).

We will show that aτ ≥ bτ for every τ ∈ 	(1), which is equivalent to the lemma.
Let ψ = ψD be the support function of D. For some τ ∈ 	(1), let v ∈ τ be the ray

generator. Let σ = Bτ be the smallest cone which contains Bτ , and assume that u1, . . . , ud

are the generators of the cone σ . Then there are positive numbers r1, . . . , rd such that B(v) =
r1u1 + · · · + rdud .

By the formula for pulling back divisors, to compute aτ , we need to apply the interpolation
process, and obtain

aτ = −[r1ψ(Au1)+ · · · + rdψ(Aud)].
We can also see that

bτ = −ψ((A ◦ B)(v)) = −ψ(r1 Au1 + · · · + rd Aud).

Now the fact aτ ≥ bτ comes from the fact that ψ is (strictly) convex since D is ample. ��
Proposition 4.5 For a projective, complete, simplicial toric variety X = X (	), a toric
rational map f A is strongly algebraically stable if and only if it is algebraically stable.

Proof Since strongly AS implies AS, it suffices to show the other direction. Assume that
f A is not strongly AS, then there is a ray τ and a positive integer k such that Ak(Aτ) is not
contained in any cone of 	.

Let D be any ample divisor, using the same notation as in the proof of the above lemma,
with B = Ak , we can see that aτ > bτ , since the A(ui )’s are not in a same cone, and ψ is
strictly convex.

Thus the difference between the support functions of ( f k+1
A )∗ D and that of ( f ∗)k+1 D is

a nonnegative function which is strictly positive on τ , hence cannot be linear. This means
( f k+1)∗ D �= ( f ∗)k+1 D in Pic(X). ��
4.3 Applications of the criterion

We will apply the above criterion (Theorem 4.2) to give some results about stabilization in
certain cases.

First, suppose all entries of A are non-negative, i.e., f A is a polynomial monomial map.
There is a nice nonsingular toric model on which f A is algebraically stable, namely (P1)n .

Proposition 4.6 Every monomial polynomial map is strongly algebraically stable on (P1)n,
hence algebraically stable.

Proof Let 	 be the fan such that X (	) = (P1)n . The rays of 	 are given by τi = R≥0 · ei

and −τi , for i = 1, . . . , n. The morphism A maps each of τi into the cone σ+ generated by
e1, . . . , en , and maps each of −τi into the cone σ− generated by −e1, . . . ,−en .

Observe that the compositions of polynomial maps are still polynomial maps. So Ak are
all polynomial monomial maps for k ≥ 1. Also notice that Ak(τi ) ⊂ σ+, so Ak(τi ) is a face
of σ+. Hence there is a subset of indexes I ⊂ {1, . . . , n} such that Ak(τi ) is generated by
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{ei |i ∈ I }. Since each Ak(ei ) ∈ σ+, we have that A(Ak(τi )) ⊂ σ+. This means Ak(τi )maps
regularly for all k. By symmetry, we also know that A(Ak(−τi )) ⊂ σ−. Therefore, the map
f A is strongly algebraically stable on X (	) = (P1)n . ��

The above property is about maps on a fixed toric variety (P1)n . Next, we will fix some
map, and ask whether there exists a toric variety on which the map is strongly algebraically
stable. We give partial answers for maps satisfying some conditions.

Theorem 4.7 Suppose that A ∈ Mn(Z) is an integer matrix.

(1) If there is a unique eigenvalue λ of A of maximal modulus, with algebraic multiplicity
one; then λ ∈ R, and there exists a simplicial toric birational model X (maybe singular)
and a k ∈ N such that f k

A is strongly algebraically stable on X.
(2) If λ, λ̄ are the only eigenvalues of A of maximal modulus, also with algebraic multi-

plicity one, and if λ = |λ| · e2πiθ , with θ �∈ Q; then there is no toric birational model
which makes f A strongly algebraically stable.

Proof For (1), let v ∈ R
n be the eigenvector corresponding to the largest real eigenvalue λ,

then the subspace Rv is attracting. We can find integral vectors v1, . . . , vn , linearly indepen-
dent over R, such that

• v is in the interior of the cone generated by v1, . . . , vn .
• An(Rvi ) → Rv for all i = 1, . . . , n, as elements of RP

n .

The rays
{
R≥0 · vi ,R≥0 · (−vi ) | i = 1, . . . , n

}
generates a fan	 similar to the way we form

P
1 × · · · × P

1. That is, the maximal cones of 	 are generated by the sets {s1v1, . . . , snvn}
where si ∈ {+1,−1}. All other cones are faces of some maximal cone. It is easy to see that
for some k, f k

A is strongly algebraically stable on X (	).
To prove (2), let λ, λ̄ be the largest eigenvalue pair, and � ⊂ R

n be the two dimensional
invariant subspace corresponding to them. Since the fan 	 is complete, there is at least one
ray τ ∈ 	(1) such that under iterations, Akτ will approach �. Moreover, since A|� is an
irrational rotation on rays, we know that for all v ∈ �, there is a sequence ki such that
Aki τ → R≥0 · v.

Consider the set	∩� = {σ ∩� | σ ∈ 	}, it is a fan in�. Each cone in it is strictly convex,
but not necessarily rational. Pick v0 ∈ � which lies in the interior of some two dimensional
cone of 	 ∩ �, and pick a sequence ki such that Aki τ → τ0 = R≥0 · v0.

Since Aki τ → τ0 and 	 consists of only finitely many cones, there must be some k such
that τ0 ∈ Akτ . But τ0 is in the interior of some two dimensional cone of 	 ∩�, so we know
that Akτ ∩ � is a two dimensional cone in �. Finally, we know that Akτ ∩ � cannot map
regularly under all Ak , so Akτ cannot either. Thus A can never be made strongly algebraically
stable. ��

We do not know what the correct statement would be for the missing case λ = |λ| · e2πiθ ,
with θ ∈ Q.

Remark Some of our results were obtained independently by Jonsson and Wulcan [6]. One
of the main theorems in their paper [6, Theorem A’] deal with smooth stabilization of a
monomial map by refining a given fan. This aspect of the stabilization is more delicate and
is not discussed in our paper. Part (1) of Theorem 4.7 in the current paper coincides with
Theorem B’ in [6]. They also discuss the special case of monomial maps on toric surfaces
(two dimensional toric varieties), which is not dealt in this paper.
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5 Monomial maps on projective spaces

The motivation for studying toric rational maps comes from the study of monomial maps on
projective spaces. So let us come back to monomial maps and try to understand more about
them with the help of techniques from toric varieties.

5.1 Pulling back divisors and divisor classes

Given an n × n integer matrix A = (ai, j )1≤i, j≤n , the associated monomial map C
n → C

n is
given by

(X1, . . . , Xn) �−→
⎛
⎝

n∏
j=1

X
a1, j
j , . . . ,

n∏
j=1

Xan, j

⎞
⎠ .

We then use the embedding C
n ↪→ P

n defined by (X1, . . . , Xn) �→ [1; X1; . . . ; Xn] to
identify C

n with the open subset U0 = {x0 �= 0} ⊂ P
n . After homogenizing, there is another

integer matrix, with size (n + 1)× (n + 1), denoted by h(A) = (bi, j )0≤i, j≤n , such that

f A([x0; . . . ; xn]) =
⎡
⎣

n∏
j=0

x
b0, j
j ; . . . ;

n∏
j=0

x
bn, j
j

⎤
⎦ .

Recall the structure of the fan associated to the projective space. The one dimensional
cones are generated by the standard basis e1, . . . , en and e0 = −(e1 +· · ·+en). Denote them
by τi = R≥0 · ei for i = 0, . . . , n. Consider the divisors Di = V (τi ) = {xi = 0}. Pulling

back the defining equation xi = 0 gives us the equation
∏n

j=0 x
bi, j
j = 0, which means

f ∗
A(Di ) = bi,0 · D0 + bi,1 · D1 + · · · + bi,n · Dn .

On the other hand, by Proposition 3.1, if ψi is the support function of the divisor Di , then

f ∗
A(Di ) = −ψi (Ae0) · D0 − ψi (Ae0) · D1 − · · · − ψi (Aen) · Dn .

Thus we obtain the equality bi, j = −ψi (Ae j ). The formulae of ψi are as follows.

{
ψ0(a1, . . . , an) = min{0, a1, . . . , an},
ψi (a1, . . . , an) = min{0,−ai , a j − ai ; j �= i} for i = 1, . . . , n.

(5.1)

Next, we turn our attention to the pull back of divisor classes, i.e., elements of Pic(Pn).
We know that Pic(Pn) ∼= Z, and we have the map deg : CDivT (P

n) → Pic(Pn) given by
deg(

∑
ai V (τi )) = ∑

ai . For a monomial map f A on the projective space, the degree of
the map is given by deg( f ∗

A D) for any divisor D of degree one. We also denote this number
by deg( f A). If ψ is the support function for D, then the degree of the monomial map f A is
given by

deg( f A) =
n∑

i=0

−ψ(Aei ). (5.2)
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For instance, let ψ be any one of the ψi listed in (5.1), then we can get a concrete formula
for deg( f A). In particular, let ψ = ψ0, we have

−ψ(a1, . . . , an) = −ψ0(a1, . . . , an)

= − min{0, a1, . . . , an}
= max{0,−a1, . . . ,−an}.

Then we rediscover the formula in [5, Proposition 2.14].

deg( f A) =
n∑

j=1

max
1≤i≤n

{0,−ai j } + max
1≤i≤n

⎧⎨
⎩0,

n∑
j=1

ai j

⎫⎬
⎭ .

The definition of algebraic stability for rational maps on P
n states that f A is algebraically

stable if and only if deg( f k
A) = deg( f A)

k for all k. Another property of the degree sequence

is that it is submultiplicative, i.e., deg( f k+k′
A ) ≤ deg( f k

A) ·deg( f k′
A ). We will use this property

in the next section.

5.2 Estimates of the degree sequence

In this section, we are going to study the degree sequence
{
deg( f k

A)
}∞

k=1. We are particu-
larly interested in the asymptotic behavior of the degree sequence. An important numerical
invariant is the asymptotic degree growth

δ1( f A) = lim
k→∞(deg( f k

A))
1
k .

It is known that for a monomial map f A, δ1( f A) = ρ(A), the spectral radius of the matrix
A [5, Theorem 6.2]. We will refine this result and give more precise estimates on the degree
growth of a monomial map.

For two sequences {αk}∞k=1 and {βk}∞k=1 of positive real numbers, we say that they
are asymptotically equivalent, denoted by αk ∼ βk , if there exists two positive constants
c1 ≥ c0 > 0, independent of k, such that c0 · βk ≤ αk ≤ c1 · βk for all k.

The main result for general monomial maps is the following theorem.

Theorem 5.1 Given an n × n integer matrix A with nonzero determinant, assume that ρ(A)
is the spectral radius of A. Then there exist two positive constants C1 ≥ C0 > 0 and a unique
integer � with 0 ≤ � ≤ n − 1, such that

C0 · k� · ρ(A)k ≤ deg( f k
A) ≤ C1 · k� · ρ(A)k (5.3)

for all k ∈ N. Or, equivalently, deg( f k
A) ∼ k� · ρ(A)k .

In fact, (�+ 1) is the size of the largest Jordan block of A among the ones corresponding
to eigenvalues of maximal modulus.

In formula (5.2), notice that the right hand side can be defined over the real numbers
because. Thus, we define a function ν : Mn(R) → R by

ν(M) =
n∑

i=0

−ψ(Mei ). (5.4)
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Proposition 5.2 The following properties hold for the function ν.

(i) Any support function ψ of a T -divisor of degree one on P
n will give the same ν, i.e.,

ν is independent of the choice of ψ .
(ii) ν is a continuous function when we equip Mn(R) ∼= R

n2
and R with the usual topology

of the Euclidean spaces.
(iii) ν(M) ≥ 0, and ν(M) = 0 if and only if M = 0. Thus, in fact, we have

ν : Mn(R)→ R≥0.
(iv) ν(r M) = r · ν(M) for r ≥ 0.
(v) ν(M + M ′) ≤ ν(M)+ ν(M ′).

Proof First, notice that (ii) is true becauseψ is continuous, and (iv) is true becauseψ is linear
on each ray. Then (i) follows by (ii), (iv), and the fact that ν(A) = deg( f A) for A ∈ Mn(Z),
which is independent of ψ .

Once we know that ν is independent of the choice ofψ , one can pick anyψ , e.g.ψ = ψ0,
and prove (iii) and (v) directly. However, we would like to offer a more intrinsic explanation
for (iii) and (v).

Since ψ is the support function for a degree one divisor D on P
n , we know that D is very

ample, and hence ψ is strictly convex (see [4, p.70]). The first part of (iii), and (v), can be
easily deduced from convexity. Strict convexity is needed to show that ν(M) = 0 implies
M = 0.

Suppose M �= 0, then Me0,Me1, . . . ,Men cannot be all zero. But since Me0 + · · · +
Men = 0, and the cones in the fan for P

n are strongly convex (they do not contain any line
through the origin), Me0, . . . ,Men cannot all lie in the same cone. Thus by strict convexity,
we know

ν(M) = −
n∑

i=0

ψ(Mei ) > −ψ
(

n∑
i=0

Mei

)
= ψ(0) = 0.

��

By properties (iii)–(v), we know that the only reason to prevent ν from being a norm is that
we may have ν(M) �= ν(−M). Indeed, for the n × n identity matrix In , we have ν(In) = 1,
but ν(−In) = n. So ν is not a norm. However, if we define ν̄(M) = ν(M)+ ν(−M), then ν̄
is a norm.

Before we prove Theorem 5.1, we recall the following elementary lemma from linear
algebra.

Lemma 5.3 For an n × n matrix A ∈ Mn(C) and any norm ‖·‖ defined on Mn(C), there
exists two positive constants c1 ≥ c0 > 0 and a unique integer � with 0 ≤ � ≤ n − 1, such
that

c0 · k� · ρ(A)k ≤ ‖Ak‖ ≤ c1 · k� · ρ(A)k (5.5)

for all k ∈ N. Here ρ(A) is the spectral radius of A, and (� + 1) is the size of the largest
Jordan block among those blocks corresponding to eigenvalues of maximal modulus ρ(A).

Proof of Theorem 5.1 For the matrix A ∈ Mn(Z), consider the set
{

Ak

k�ρ(A)k
| k ∈ N

}
⊂ Mn(R).
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By Lemma 5.3, it is a subset of a compact set S = {M ∈ Mn(R) | c0 ≤ ‖M‖ ≤ c1} for some
c1 ≥ c0 > 0. Since ν is continuous, we have ν(S) ⊂ [C0,C1] for some reals C1 ≥ C0 ≥ 0.
Moreover, 0 �∈ S, thus C0 > 0. This gives us

C0 ≤ ν

(
Ak

k� · ρ(A)k
)

≤ C1.

for all k ∈ N, with C1 ≥ C0 > 0.
Finally, since k� · ρ(A)k > 0, and ν(Ak) = deg( f k

A), we have

C0 · k� · ρ(A)k ≤ deg( f k
A) ≤ C1 · k� · ρ(A)k

This concludes the proof. ��

Corollary 5.4 If A is diagonalizable, then we have

C0 · ρ(A)k ≤ deg( f k
A) ≤ C1 · ρ(A)k (5.6)

for some constants C1 ≥ C0 ≥ 1.

Proof In the diagonalizable case, � = 0, hence we have (5.6). Recall that the degree sequence

is submultiplicative. Thus, if we have
deg( f k

A)

ρ(A)k
= r < 1 for some k, then

deg( f k j
A )

ρ(A)k j
≤ deg( f k

A)
j

ρ(A)k j
= r j → 0 as j → +∞.

This contradicts the existence of C0 > 0. Therefore,
deg( f k

A)

ρ(A)k
≥ 1 for all k, and we can choose

C0 ≥ 1. ��

If we impose more conditions on the matrix A, we can obtain more precise estimates on
the degree sequence.

Theorem 5.5 Assuming that the matrix A is diagonalizable, and there is a unique eigenvalue
λ1 of maximal modulus, which is real and positive. Also, assume that the eigenvalues of A
are arranged as λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λm | for some m. Then there is a constant C ≥ 1
such that

deg( f k
A) = C · λk

1 + O(|λ2|k).

Proof First, given a vector v ∈ R
n , since A is diagonalizable, we can represent v uniquely as

v = v1 + v2 + · · · + vm,

where each v j ∈ C
n is an eigenvector corresponding to λ j . We have v1 ∈ R

n since λ1 is real.
Thus

Akv = λk
1v1 + λk

2v2 + · · · + λk
mvm .

Let ψ be the support function of some degree one divisor D in P
n . For each k, there is some

maximal cone σk such that Akv ∈ σk . Let Lk be the linear function such that Lk |σk = ψ |σk .
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Notice that Lk can be defined on C
n as a linear map, and we have

ψ(Akv) = Lk(A
kv) = Lk

⎛
⎝

m∑
j=1

λk
jv j

⎞
⎠

= λk
1 · Lk(v1)+

m∑
j=2

λk
j · Lk(v j )

= Lk(v1) · λk
1 + O(|λ2|k).

There are two cases here: v1 �= 0, or v1 = 0.
First, if v1 �= 0, then for the rays τ = R≥0 ·v, we know Akτ → R≥0 ·v1. Thus for large k,

we can choose σk so that both Akv ∈ σk and v1 ∈ σk . Since Lk |σk = ψ |σk for the cone σk ,
we know that for large k, the value Lk(v1) = ψ(v1) is independent of k, and ψ(Akv) =
ψ(v1) · λk

1 + O(|λ2|k). Second, if v1 = 0, then it is obvious that ψ(Akv) = O(|λ2|k).
Now let’s look at the fan structure of projective spaces. For the ray generators e0, e1, . . . , en

of P
n , if ei is decomposed as

ei = vi,1 + vi,2 + · · · + vi,m (5.7)

for i = 0, 1, . . . , n, where each vi, j is an eigenvector corresponding to the eigenvalue λ j .
Then

ψ(Akei ) = ψ(vi,1) · λk
1 + O(|λ2|k).

If we set

C =
n∑

i=0

−ψ(vi,1), (5.8)

then we can compute the degree sequence deg( f k
A) as

deg( f k
A) = deg(( f k

A)
∗ D)

=
n∑

i=1

−ψ(Akei )

= C · λk
1 + O(|λ2|k).

The fact that C ≥ 1 is a consequence of Corollary 5.4. ��

Notice that, on our way to prove the theorem, we also derive a concrete formula for the
constant C in (5.8).

Theorem 5.6 Assuming that the matrix A is diagonalizable, and there is a unique eigenvalue
λ1 of maximal modulus, which is real and negative. Also assume that the eigenvalues of A
are arranged as (−λ1) > |λ2| ≥ |λ3| ≥ · · · ≥ |λm | for some m. Then there are two positive
constants C0,C1, not necessarily distinct, and satisfying 1 ≤ C0 ≤ C2

1 , such that

deg
(

f 2k+l
A

)
= Cl · |λ1|2k+l + O(|λ2|2k+l),

where l = 0, 1.
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Proof We consider the subsequences {deg( f 2k
A )} and {deg( f 2k+1

A )}. Since A2 satisfies the
condition in Theorem 5.5, with the unique eigenvalue |λ1|2 with maximal modulus, thus

deg( f 2k
A ) = C0 · |λ1|2k + O(|λ2|2k)

for some C0 ≥ 1. For the subsequence {deg( f 2k+1
A )}, we consider Aei instead of ei in (5.7)

in the proof of Theorem 5.5, and apply the map f 2
A on these vectors. We then get

deg( f 2k+1
A ) = C1 · |λ1|2k+1 + O(|λ2|2k+1)

for some C1 ≥ 1.
Finally, for any k, we have,

deg
(

f 4k+2
A

)
/|λ1|4k+2 ≤

(
deg

(
f 2k+1

A

)
/|λ1|2k+1

)2
.

As k → ∞, the left side converges to C0, while the right side converges to C2
1 . So the relation

C0 ≤ C2
1 follows. This completes the proof. ��

The idea in the proof of Theorem 5.6 of considering subsequences can be pushed further
to prove the following more general result.

Theorem 5.7 Assume that the matrix A is diagonalizable, and assume for each eigenvalue
λ of A of maximum modulus, λ/λ̄ is a root of unity. Then there is a positive integer p, and p
constants C0,C1, . . . ,C p−1 ≥ 1, such that

deg
(

f pk+l
A

)
= Cl · |λ1|pk+l + O

(
|λ2|pk+l

)
,

where l = 0, 1, . . . , p − 1.

Proof Notice that there is an integer p such that the eigenvalue of Ap of maximum modulus
is unique and positive, so we can use the same argument as Theorem 5.6 to the subsequences

{
deg

(
f pk

A

)}
,
{

deg
(

f pk+1
A

)}
, . . . ,

{
deg( f pk+p−1

A )
}
.

The theorem then follows. ��
Under the assumption of Theorem 5.7, the sequence {deg( f k

A)/|λ1|k}∞k=1 has finitely many
limit points, namely, C0, . . . ,C p−1. The following proposition shows a different behavior of
the sequence {deg( f k

A)/|λ1|k}∞k=1 when we have a maximal eigenvalue λ such that λ/λ̄ is not
a root of unity. Therefore, we cannot expect Theorem 5.7 holds for general diagonalizable
matrices.

Proposition 5.8 For a 2 × 2 integer matrix A, suppose it has a conjugate pair λ, λ̄ of eigen-
values such that λ/λ̄ is not a root of unity. Then the sequence {deg( f k

A)/|λ|k}∞k=1 is dense in
some closed interval contained in [1,∞).

Proof First, notice that

deg( f k
A)

|λ|k = ν(Ak)

|λ|k = ν

(
Ak

|λ|k
)

= ν((A/|λ|)k). (5.9)

Since λ/λ̄ is not a root of unity, we can conjugate A/|λ| to some irrational rotation matrix,
i.e., we can write

A/|λ| = P ·
(

cos θ − sin θ
sin θ cos θ

)
· P−1,
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for some θ �∈ 2πQ. Thus the closure of the set S = {(A/|λ|)k |k ∈ N} is

S =
{

P ·
(

cos t − sin t
sin t cos t

)
· P−1

∣∣∣∣ t ∈ [0, 2π]
}
.

S is, topologically, a circle inside M2(R). Since ν is continuous, ν(S̄) = ν(S) is connected
and compact. Thus it is either a point or a closed interval.

We claim that ν(S) cannot be a point. If ν(S) = {C}, then we will have deg( f k
A) = C · |λ|k

for all k ∈ N. In this case, the degree sequence dk = deg( f k
A) satisfies a linear recurrence

dk+1 = |λ| · dk . This contradicts a theorem of Bedford and Kim [1, Theorem 1.1], which
asserts that if the matrix A has a complex eigenvalue λ of maximal modulus, and λ/λ̄ is not
a root of unity, then the degree sequence for f A cannot satisfy any linear recurrence relation.

Hence, ν(S̄) = ν(S) is a closed interval. By (5.9), ν(S) is exactly the set {deg( f k
A)/|λ|k;

k ∈ N}. Finally, by Corollary 5.4, we further know that the interval ν(S) is contained in
[1,+∞). This concludes the proof. ��
5.3 Degree growth on weighted projective spaces

Weighted projective spaces are generalizations of the usual projective spaces. The results
we obtained in the last subsection about the degree growth of monomial maps on projective
spaces can be generalized to weighted projective spaces.

For arbitrary positive integers d0, . . . , dn , the associated weighted projective space,
denoted by P(d0, . . . , dn), is defined as

P(d0, . . . , dn) = (Cn+1 − {0})/ ∼
where the equivalent relation is given by (x0, . . . , xn) ∼ (ζ d0 x0, . . . , ζ

dn xn) for ζ ∈ C
∗.

A weighted projective space P(d0, . . . , dn) such that no n of the d0, d1, . . . , dn have a
common factor is called well formed. A standard fact (see [7, Proposition 3.6]) shows that
it is sufficient to only consider well formed weighted projective spaces. We will make that
assumption from now on. Also, for simplicity of notation, we will denote P(d0, . . . , dn)

simply by P when there is no confusion. The usual projective space will still be denoted
by P

n .
To construct P(d0, . . . , dn) as a toric variety, one uses the same fan as in the construction of

the projective spaces. That is, the cones are generated by proper subsets of {e0, . . . , en}. The
lattice N ′ is taken to be generated by the vectors e′

i := ei/di , i = 0, . . . , n. Let τi = R≥0 · ei

be the rays for the fan of P, the well formed-ness of P implies that e′
i is the ray generator for

τi for i = 0, . . . , n.
If we define the map θ : Z

n+1 → N ′ by θ(a0, . . . , an) = a0e′
0 + · · · + ane′

n , then θ
is a surjective homomorphism, and ker(θ) is the subgroup Z · (d0, . . . , dn). Hence N ′ ∼=
Z

n+1/Z · (d0, . . . , dn), and its dual lattice is

M ′ = (N ′)∨ ∼= {(a0, . . . , an) ∈ Z
n+1 | a0d0 + · · · + andn = 0}.

We have WDivT (P) ∼= ⊕n
i=0Z ·V (τi ). Define the weighted degree deg′ : WDivT (P) → Z

by deg′(ai · V (τi )) = ∑n
i=0 ai di . It is a surjective homomorphism with kernel canonically

isomorphic to M ′. Therefore, we have An−1(P) ∼= Z, and the isomorphism is induced by the
weighted degree.

Let m = lcm(d0, . . . , dn), one can show that a TN -invariant Weil divisor D is Cartier if and
only if m| deg′(D). As a consequence, the image of the Picard group Pic(P) ⊂ An−1(P) ∼= Z

under the isomorphism is the subgroup mZ. Therefore, we will look at Q-Weil divisors and
rational support function in this subsection.

123



310 J.-L. Lin

Letψ be a rational support function, thenψ induces a Q-Cartier divisor on P, whose asso-
ciated Q-Weil divisor is D′ = ∑n

i=0 −ψ(e′
i ) · V (τi ). Also, ψ induces a Q-Cartier divisor on

P
n , with associated Q-Weil divisor D = ∑n

i=0 −ψ(ei ) · V (τi ). A basic fact is the following.

Lemma 5.9 Assume the above notations, then the weighted degree of D′ is the same as the
degree of D, i.e., deg′(D′) = deg(D).

Proof This can be verified as follows:

deg′(D′) =
n∑

i=0

−di · ψ(e′
i ) =

n∑
i=0

−di · ψ(ei/di ) =
n∑

i=0

−ψ(ei ) = deg(D).

��
Let A ∈ End(N ′), then A induces a toric rational map f A : P → P. Using the standard

basis e1, . . . , en of N ′
R

∼= NR, we can represent A as an n × n matrix with rational entries.
The following proposition tells us how to compute the weighted degree of f A.

Proposition 5.10 Assume the above notations, then the weighted degree of f A is given by

deg′( f A) = ν(A),

where ν : Mn(R) → R is the function defined in (5.4).

Proof The weighted degree can be computed as deg′( f A) = deg( f ∗
A D′) for any Q-divisor

D′ on P of degree one. Thus, if D′ is a Q-divisor on P of degree one, and ψ = ψD′ is the
Q-support function of D′, then

deg′( f A) =
n∑

i=0

−di · ψ(Ae′
i ) =

n∑
i=0

−ψ(Aei ) = ν(A).

The last equality holds because the degree of the Q-divisor on P
n associated to ψ also has

degree one by Lemma 5.9. ��
Since the weighted degree function is the same as the function ν, this tells us that the

weighted degree growth of iterations of toric rational maps on P follows the same results as
the degree growth on P

n .
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