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A CLASSIFICATION OF DEGREE 2 SEMI-STABLE
RATIONAL MAPS P2 → P2 WITH LARGE FINITE

DYNAMICAL AUTOMORPHISM GROUP

MICHELLE MANES AND JOSEPH H. SILVERMAN

Abstract. Let K be an algebraically closed field of characteristic
0. In this paper we classify the PGL3(K)-conjugacy classes of
semi-stable dominant degree 2 rational maps f : P2

K 99K P2
K whose

automorphism group

Aut(f) :=
{
ϕ ∈ PGL3(K) : ϕ−1 ◦ f ◦ ϕ = f

}

is finite and of order at least 3. In particular, we prove that
#Aut(f) ≤ 24 in general, that #Aut(f) ≤ 21 for morphisms,
and that #Aut(f) ≤ 6 for all but finitely many conjugacy classes
of f .

Contents

1. Introduction 2
2. Background 8
3. Scope of This Paper and Further Questions 10
4. Some Finite Subgroups of PGL3 11
5. Diagonal Stability and Maps of Finite Order 16
6. Maps with an Automorphism of Prime Order p ≥ 5 18
7. Maps with Automorphism Group Containing Cp × Cp with

p ≥ 3 24
8. Maps with Automorphism Group Containing C2 × C2 25
9. Maps with an Automorphism of Order 4 32
10. Maps with an Automorphism of Order 3 41
11. Proof of Theorems 2 and 3 and of Corollary 4 63
12. Computation of Dynamical and Topological Degrees 66
References 71
Appendix A. Maps with Infinite Automorphism Group 72
Appendix B. Semistability for Subgroups 74

Date: July 21, 2016.
2010 Mathematics Subject Classification. Primary: 37P45; Secondary: 37P05.
Key words and phrases. dynamical moduli space.
Silverman’s research supported by Simons Collaboration Grant #241309.

1

http://arxiv.org/abs/1607.05772v1


2 MICHELLE MANES AND JOSEPH H. SILVERMAN

1. Introduction

Let d ≥ 1 and N ≥ 1 be integers and let

L = L(N, d) =

(
N + d

d

)

(N + 1)− 1.

We identify PL with the space of (N + 1)-tuples of homogeneous poly-
nomials of degree d in N+1 variables such that at least one polynomial
is non-zero. Thus each f = [f0, . . . , fN ] ∈ PL defines a rational map

f : PN 99K PN .

Although map f need not be dominant, nor, if it is dominant, need it
have degree d, we adopt the notation

RatNd := PL

and call RatNd the parameter space of rational self-maps of PN of formal

degree d.
The group PGLN+1 acts on RatNd via conjugation, i.e., the action

of ϕ ∈ PGLN+1 on f ∈ RatNd is

fϕ := ϕ−1 ◦ f ◦ ϕ.
This gives a homomorphism

PGLN+1 −→ Aut(RatNd ) = Aut(PL) ∼= PGLL+1 .

Geometric invariant theory [12] tells that there are subsets (RatNd )
stab

and (RatNd )
ss of stable and semi-stable points in RatNd which admit

good quotients for the action of PGLN+1.
1 We denote these quotients

by (MN
d )

stab and (MN
d )

ss.
In this note we are interested in the locus in RatNd of maps that

admit a non-trivial automorphism.

Definition. The automorphism group of a map f ∈ RatNd is

Aut(f) = {ϕ ∈ PGLN+1 : f
ϕ = f}.

We note that Aut(fϕ) = Aut(f)ϕ. In particular, the isomorphism type
of Aut(f) is a PGLN+1-conjugation invariant.

Remark 1. It is known that (M1
2)

stab = (M1
2)

ss ∼= P2 and that
{
f ∈ (M1

2)
stab : #Aut(f) ≥ 2

}
is a cuspidal cubic curve in P2. More

precisely, for f on this curve, Aut(f) ∼= C2 for the non-cuspidal points
and Aut(f) ∼= S3 at the cuspidal point; see [18, Proposition 4.15]. We
postpone to Section 2 an overview of our current knowledge of maps
having non-trivial automorphism group.

1More precisely, they admit good SLN+1-quotients; cf. [18, § 2.1].
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Our primary goal in this paper is to describe the degree 2 maps
in (M2

2)
ss having large finite automorphism group, i.e., we want to

extend the above-mentioned classification of quadratic maps on P1 to
quadratic maps on P2. We mention that a number of new phenomena
appear, including semi-stable dominant rational quadratic maps f :
P2

99K P2 for which Aut(f) contains a copy of Gm. For reasons that
we explain later, we mostly exclude these maps from our analysis; see
Section A. We also do not study maps with Aut(f) ∼= C2, since they
are too plentiful.
Before stating our main results, we need some additional notation.

In general, for any finite subgroup G ⊆ PGLN+1, we consider

RatNd (G) :=
{
f ∈ RatNd : Aut(f) ⊇ G

}
.

If Gϕ is a conjugate subgroup, then

RatNd (G)
∼−→ RatNd (Gϕ), f

∼−→ fϕ,

so it suffices to study RatNd (G) for each conjugacy class of finite sub-
group in PGLN+1.
It is important to note that PGLN+1 generally does not act on

RatNd (G), since if f ∈ RatNd (G) and ϕ ∈ PGLN+1, then Aut(fϕ) =
Aut(f)ϕ ⊇ Gϕ. Thus in order to ensure that fϕ is in RatNd (G), we need
Gϕ = G, i.e., the map ϕ must be in the normalizer N(G) of G. We thus
define2

RatNd (G)ss :=
{
f ∈ RatNd (G) : f is N(G)-semistable

}
,

and similarly RatNd (G)stab denotes the set ofN(G)-stable maps. It turns
out that if f ∈ RatNd (G) is N(G)-semistable, then f is also PGLN+1-
semistable when viewed as a point in RatNd , and further the natural
map

RatNd (G)ss/N(G) −→ (RatNd )
ss/PGLN+1 (1)

is finite; see Proposition 26 for a general result. However, the map (1)
may fail to be injective due to the existence of f ’s that are PGLN+1-
conjugate, but are not N(G)-conjugate; see Example 7.
Our main results give a complete descriptoin of semistable dominant

rational quadratic maps f : P2
99K P2 satisfying 3 ≤ #Aut(f) <∞.

Theorem 2. Let K be an algebraically closed field of characteristic 0,
and let G ⊂ PGL3(K) be a finite subgroup with #G ≥ 3. Suppose that

there exists a map f ∈ Rat22(G)ss(K) satisfying

2Again, we are being somewhat informal in this introduction. To be rigorous,
we lift G to an isomorphic subgroup G̃ in SLN+1 and look at maps f that are N(G̃)-
semistable.
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• f : P2
99K P2 is dominant.

• deg(f) = 2.
• Aut(f) is finite

Then G is PGL3(K)-conjugate to one of the following groups, where ζn
is a primitive n’th root of unity :

G3 =
〈(

1 0 0
0 ζ3 0
0 0 ζ2

3

)〉

, G4 =
〈(

1 0 0
0 i 0
0 0 −1

)〉

, G5 =
〈(

1 0 0
0 ζ5 0
0 0 ζ3

5

)〉

,

G7 =
〈(

1 0 0
0 ζ7 0
0 0 ζ3

7

)〉

, G2,2 =
〈(

1 0 0
0 −1 0
0 0 1

)

,
(

1 0 0
0 1 0
0 0 −1

)〉

.
(2)

Theorem 3. Let K be an algebraically closed field of characteristic 0,
and let G ⊂ PGL3(K) be one of the groups (2) listed in Theorem 2.
Suppose that f : P2

99K P2 satisfies the following :

• f ∈ Rat22(G)ss(K).
• f is dominant with deg(f) = 2.
• Aut(f) is finite.

Then f is N(G)-conjugate to one of the maps listed in Table 1. (See
Table 2 for an explanation of the entries in Table 1.)

The next corollary catalogs the complete list of finite groups that
appear as automorphism groups of semi-stable degee 2 maps of P2, as
well as other information related to the maps in Table 1.

Corollary 4. Let K be an algebraically closed field of characteristic 0,
and let f ∈ Rat22(K) be a semi-stable dominant rational map of degree 2
with finite automorphism group.

(a) Aut(f) is isomorphic to one of the following nine groups :

C1, C2, C3, C4, C5, C2
2 , S3, S4, C7 ⋊ C3.

(b) For each group G in (a), there exists a group G ⊂ PGL3 with

G ∼= G and a map f ∈ Rat22(G)ss such that f is a dominant map

of degree 2 satisfying Aut(f) = G.
(c) Let G ⊂ PGL3 be a finite group that is not isomorphic to one of

the following groups :

Aut(f) ∼= C1, C2, C3, C4, C2
2 , or S3.

ThenM2
2(G)ss contains only finitely many dominant degree 2 maps.

(d) Let f : P2
99K P2 be a dominant degree 2 rational map such that

Aut(f) contains a copy of C2
2 or C5. Then f is not a morphism.

We briefly explain the strategy that we employ to classify maps with
large automorphism group:

• Assume that Aut(f) contains a subgroup isomorphic to some finite
group G satisfying #G ≥ 3.
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f Coeffs Aut dim St? #I Crit λ1 λ2

G3 : fb,d,g = [X2 + bY Z,Z2 + dXY, Y 2 + gXZ], fb,d,g ∼ fb,g,d
1.1 (2, 2ζ3, 2ζ

2
3 ) C7 ⋊ C3 0 S 0 L1·L2·L3 2 4

1.2 (−1,−1,−1) S4 0 S 3 L1·L2·L3 1 1
1.3 (0, 0, 0) S3 0 S 0 L1·L2·L3 2 4
1.4 (b, b−1,−1) S3 1 S 3 L1·L2·L3 ∗1 ∗1
1.5 (b, d, d) S3 2 S 0 Γ 2 4
1.6 bdg = −1 C3 2 S 3 L1·L2·L3 ∗2 ∗2
1.7 bdg = 8 C3 2 S 0 L1·L2·L3 2 4
1.8 other C3 3 S 0 Γ 2 4
G3 : fa,c,g = [aX2 + Y Z, cZ2 +XY, Y 2 + gXZ], f0,c,g ∼ f0,c/g,1/g

(a, c, g) 6= (0, 0, 0)
2.1 (0, 0, g) C3 1 SS 2 C·L ∗3 2
2.2 (0, c, 1) S3 1 S 1 Γ′ 2 3
2.3 (0, c, 0) C3 1 S 1 3L 2 1
2.4 (a, 0, 0) C3 1 SS 1 3L 2 1
2.5 (a, 0, g) C3 2 SS 1 Γ′ 2 3
2.6 (0, c, g) C3 2 S 1 Γ′ 2 3
G4 : fa,e = [aX2 + Z2,XY, Y 2 + eXZ]

3.1 (0, 0) C4 0 S 1 2L1·L2

√
2 2

3.2 (0, e) C4 1 S 1 C·L 2 3
3.3 (a, 0) C4 1 S 2 2L1·L2 2 2
3.4 (a, e) C4 2 S 0 Γ 2 4
G4 : fc = [Y Z,X2 + cZ2,XY ], fc ∼ f1/c
4.1 (−1) Gm ⋊ C2 0 S 3 L1·L2·L3 1 1
4.2 (1) S4 0 S 3 L1·L2·L3 1 1
4.3 (0) C4 0 S 2 2L1·L2 1 1
4.4 (c) C4 1 S 3 L1·L2·L3 1 1
G2,2 : fa,e = [aX2 + Y 2 − Z2,XY, eXZ], f0,e ∼ f0,1/e
5.1 (0, 1) Gm ⋊ C2 0 S 3 L1·L2·L3 1 1
5.2 (0,−1) S4 0 S 3 L1·L2·L3 1 1
5.3 (0, e) C2

2 1 S 3 L1·L2·L3 1 1
5.4 (a, 1) Gm ⋊ C2 1 S 2 C·L 2 2
5.5 (a, e) C2

2 2 S 2 C·L 2 2
G2,2 : f = [Y Z,XZ,XY ]
6.1 S4 0 S 3 L1·L2·L3 1 1
G5 : f = [Y Z,X2, Y 2]

7.1 C5 0 SS 1 2L1·L2

√
2 2

G7 : f = [Z2,X2, Y 2]
8.1 C7 ⋊ C3 0 S 0 L1·L2·L3 2 4

Table 1. Dominant semistable degree 2 maps P2
99K P2

with large automorphism group
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• For each family of Type N.M , Table 1 first gives a formula for the maps in the family N.∗
and indicates by the notation f ∼ f ′ the N(G)-conjugacy equivalences between maps. It then
lists subfamilies M = 1, 2, . . .. The columns in Table 1 contain the following information:

Key for Columns in Table 1

Coeffs restrictions on the coefficients of f

Aut the full automorphism group of f

dim dimension of the familiy in M2

2

St? stability, with S = stable and SS = semistable

#I number of points in the indeterminacy locus of f

Crit geometry of the critical locus of f (see below for key)

λ1 dynamical degree of f (see Remark 8)

λ2 topological degree of f

• Within each type, the maps in a given line are understood to exclude the maps in all previous
lines. So for example maps of Type 1.4 exclude the case b = −1, which is covered by
Type 1.2, while Type 1.8 excludes maps satisfying bdg 6= −1 and bdg 6= 8 Further, each line
includes the indicated PGL3-equivalences, so for example Type 1.4 includes both (b, b−1,−1)
and (b,−1, b−1).

• Table 1 includes a few cases (Types 4.1, 5.1, 5.4) with Aut(f) ⊃ Gm. These help fill in the
indicated family.

• The geometry of the critical locus is described by:

Key for Crit(f)

Γ= smooth cubic curve L1·L2·L3= 3 distinct lines

Γ′= nodal cubic curve 2L1·L2= double line ∪ line

C·L= conic ∪ line 3L= triple line

∗1 We expect that maps of Type 1.4 satisfy λ1(f) = 2 and λ2(f) = 4.
∗2 For generic values of b, d, g satisfying bdg = −1, we expect that maps of Type 1.6 satisfy

λ1(f) = 2 and λ2(f) = 4, but it seems likely that there is a countable collection of (b, d, g)
triples satisfying λ1(f) < 2 and λ2(f) < 4.

∗3 Experiments suggest that deg(fn) is the (n + 2)’nd Fibonacci number, which would imply

that λ1(f) =
1

2
(1 +

√
5).

Table 2. Notes for Table 1

• Classify the conjugacy classes G1, . . . ,Gk of finite subgroups of
PGL3(K) that are isomorphic to G and choose a (nice) repre-
sentative group Gi ⊂ PGL3(K) in Gi for each 1 ≤ i ≤ k.3

• For each Gi, decompose the set f ∈ Rat22 satisfying Gi ⊆ Aut(f)
into a disjoint union of irreducible families Fi,1,Fi,2, . . . ⊂ Rat22.
For example, in the (typical) case that Gi is a group of diagonal
matrices, the various Fi,j are characterized by the eigenvalues of
the generators of Gi acting on the monomials in the coordinates
of f .

• By inspection, determine which f ∈ Fi,j are dominant.

3The complete classification of finite subgroups of PGL3(K) is classical, but for
completeness we include the short proof of the part that we need.
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• Use the numerical criterion of Mumford–Hilbert to determine the
set of semi-stable f ∈ Fi,j.4

• It remains to determine the full automorphism group for dominant
semi-stable maps in f ∈ Fi,j, or more generally, to determine

Hom(f, f ′) :=
{
ϕ ∈ PGL3(K) : f ′ = fϕ

}
for f, f ′ ∈ Fi,j.

(Taking f ′ = f gives Aut(f).) A key tool in this endeavor is to
exploit the fact that every ϕ ∈ Hom(f, f ′) induces an isomorphism
of the associated indeterminacy and critical loci,

I(f)
ϕ−−→
∼

I(f ′) and Crit(f)
ϕ−−→
∼

Crit(f ′).

These isomorphisms impose restrictions on ϕ which can be used
as the starting point of a case-by-case determination of Hom(f, f ′)
and Aut(f).

Remark 5. We offer some further brief comments on the final step.
If I(f) = I(f ′) is a finite set of points, then ϕ ∈ Hom(f, f ′) induces
a permutation of these points, and similarly if Crit(f) = Crit(f ′) is a
union of (three) lines, or the union of a conic and a line, etc., then ϕ
induces a permutation of these geometric configurations. However,
there are three cases, Type 1.5, 1.8, and 3.4 in Table 1, for which I(f) =
∅ and Crit(f) is a smooth cubic. For Types 1.5 and 1.8 we exploit the
fact that every ϕ ∈ Aut(f) permutes the 9 flex points of the smooth
cubic curve Crit(f). This leads to several hundred cases, which we
check by computer. For Type 3.4 we take a slightly different approach
by first showing that Crit(f) is an elliptic curve with CM by Z[i], and
that if ϕ ∈ Aut(f), then ϕ : Crit(f) → Crit(f) is translation by a
3-torsion point P0. We next prove that if P0 6= 0, then Aut(f) would
contain a copy of C2

3 , contradicting an earlier calculation. This allows
us to conclude that Aut(f) ∼= Z[i]∗ ∼= C4.

Remark 6. We take a moment to record some additional interesting
properties of some of the maps in Table 1.

(a) The maps fc = [Y Z,X2 + cZ2, XY ] of Types 4.1–4.4 satisfy

deg(fnc ) = n+ 1 if c 6= ±1,
f 2k
c = [X, ckY, Z] if c = ±1.

In all cases, the second iterate satisfies Aut(f 2
c ) ⊇ Gm. This gives a

family of examples of maps with Aut(f) finite and Aut(f 2) infinite.
See Proposition 19.

4We remark that in many cases it turns out that Fi,j contains no dominant
semi-stable maps. Indeed there are conjugacy classes with G ∼= C3 and G ∼= C4 that
contain no dominant semi-stable maps.
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(b) The maps f0,e = [Y 2 − Z2, XY, eXZ] of Types 5.1–5.3 satisfy

deg(fn0,e) = n + 1 if e2 is not an odd-order root of unity,

f 4k+2
0,e = [X, Y, Z] if e4k+2 = 1.

See Proposition 16.
(c) The map f = [Y Z,X2, Y 2] of Type 7.1 with C5

∼= Aut(f) has the
property that f 8 = [X16, Y 16, Z16].

(d) The map f = [Z2, X2, Y 2] of Type 8.1 with C7 ⊂ Aut(f) has the
property that f 3 = [X8, Y 8, Z8].

(e) The maps of Type 1.2, 4.2, 5.2, and 6.1 are PGL3(K)-conjugate
to one another and have the property that f 2 = [X, Y, Z]. See
Example 7.

Example 7. Consider the following maps from Table 1:

f1.2 := [X2 − Y Z, Z2 −XY, Y 2 −XZ], Type 1.1

f4.2 := [Y Z,X2 + Z2, XY ], Type 4.2

f5.2 := [Y 2 − Z2, XY,−XZ], Type 5.2

f6.1 := [Y Z,XZ,XY ], Type 6.1.

One easily checks that

f1.2 ∈ Rat22(G3), f4.2 ∈ Rat22(G4), f5.2, f6.1 ∈ Rat22(G2,2).
Further, we find that all four maps are PGL3-conjugate. Explicitly

fα1.2 = fβ4.2 = f γ5.2 = f6.1

for

α =

(
1 1 1
ζ2
3
ζ2 1

ζ3 ζ2
3

1

)

, β =

(
0 ζ2

8
1

−2ζ8 0 0
0 1 ζ2

8

)

, γ =
(

2 0 0
0 1 −1
0 1 1

)

,

where ζn denotes a primitive n’th root of unity.
Theorem 3 says that f5.2 and f6.1 both satisfy Aut(f) = S3G2,2,

where S3 ⊂ PGL3 is the group of permutation matrices. In partic-
ular, f5.2 and f6.1 are N(S3G2,2)-conjugate, since γ normalizes S3G2,2,
but they are not N(G2,2)-conjugate, since γ does not normalize G2,2.
Thus f5.2 and f6.1 represent different points in Rat22(G2,2)ss, but they
define the same point in Rat22(S3G2,2)ss.

2. Background

We briefly summarize some of the existing literature on the study
of (MN

d )
stab and (MN

d )
ss. A fair amount is known in the case that

N = 1. For example, it is known that (M1
d)

stab and (M1
d)

ss are
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rational varieties [6]. And for N = 1 and d = 2 there are nat-
ural isomorphisms (M1

2)
stab = (M1

2)
ss ∼= P2, with the set of maps

{
f ∈ (M1

d)
stab : deg f = 2

}
corresponding to A2. See [11] for the

proof over C and [15] for the proof over SpecZ. For degree 2 mor-
phisms f : P1 → P1, the group Aut(f) ⊂ PGL2 is isomorphic to
either C1, C2, or S3. The locus of f ∈ A2 with C2 ⊂ Aut(f) is a
cuspidal cubic curve, with the cusp corresponding to the only f hav-
ing Aut(f) ∼= S3; see [18, Proposition 4.15]. For similar results onM1

3,
see [20]. More generally, for N = 1 and d ≥ 3, the singular locus
of (M1

d)
stab is exactly the set of f with Aut(f) 6= 1; see [10] for this re-

sult and for a calculation of the dimension and Picard and class groups
of

M1
d(G)stab :=

{
f ∈ (M1

d)
stab : G ⊆ Aut(f)

}
for G ⊂ PGL2.

(Note that here f represents a conjugacy class of maps, so Aut(f) is a
conjugacy class of subgroups of PGL2.)
For all N ≥ 1 it is known that

{
f ∈ MN

d : Aut(f) = 1
}
is a non-

empty Zariski open subset ofMN
d ; see [6]. Thus “most” maps f have

no automorphisms. On the other hand, those f with Aut(f) 6= 1 are
of particular arithmetic interest, since they tend to have non-trivial
K̄/K-twists, i.e., families of maps that are PGLN+1(K̄)-conjugate, but
not PGLN+1(K)-conjugate. There has been a considerable amount of
work studying dynamical twist families and related problems having to
do with fields of definition and fields of moduli; see for example [7, 9,
14, 19], [15, Chapter 7], [16, Sections 4.7–4.10].
For N ≥ 2, there has been some progress. It is known that if

f : PN → PN is a morphism of degree at least 2, then Aut(f) is finite;
see [13]. For N = 1 and 2, there are explicit bounds. For example, a
morphism f : P2 → P2 satisfies #Aut(f) ≤ 6d6; see [1, Theorem 6.2].
It is also known that for every finite subgroup G ⊂ PGLN+1(K̄), there
are infinitely many morphisms f : PN

K̄
→ PN

K̄
of degree ≥ 2 such

that Aut(f) ⊇ G; see [1, Theorem 4.7]. However, the situation is
more delicate if one or more of the following natural conditions is im-
posed:

• Aut(f) is exactly equal G.
• The degree of f is specified.
• The map f is defined over a non-algebraically closed field K.

For example, every subgroup of PGL2 except the tetrahedral group can
be realized by a map f : P1 → P1 defined over Q; see [1, Theorem 4.9].
And [1, Section 8.1] gives examples of morphisms f : P2 → P2 defined
over Q with very large automorphism groups. We also mention that
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[1, Section 5] contains a nice summary, in modern notation and with
explicit generators, of the classical classification of finite subgroups of
PGL3(C).

Remark 8. Two important invariants associated to dominant rational
maps f : P2

99K P2 are the dynamical degree

λ1(f) := lim
k→∞

(deg f ◦k)1/k

and the topological degree

λ2(f) := #f−1(P ) for a generic point P ∈ Pn(K).

The map f is said to be algebraically stable if λ1(f) = deg(f). There is a
large literature studying dynamical degrees, algebraic stability, and the
existence of invariant measures, of which we mention two articles. The
first [3] gives a precise formula for the dynamical degree of a monomial
map. The second [2] classifies degree two polynomial maps f : A2

C →
A2

C and shows that, up to affine conjugacy, there are 13 families of such
maps, all of which extend to an algebraically stable map on either P2

or P1 × P1.

3. Scope of This Paper and Further Questions

The original goal of this paper was to completely describe the moduli
spaces M2

2(G)ss and M2
2(G)stab over an arbitrary field K, and more

generally over SpecR for an appropriately chosen ring R. This analysis
would have included giving normal forms for N(G)-conjugacy classes of
maps, and it would have included classifying semi-stable maps that are
not dominant or have degree 1. This turned out to be overambitious, as
we realized when the analysis of the case G ∼= C2

2 approached 50 pages
and it became clear that the cases G ∼= C4 and G ∼= C3 were going to
be even more complicated. Further, if K has positive characteristic,
then one must also deal with finite cyclic subgroups of PGL3(K) that
are not diagonalizable, adding another level of complication.
We thus decided to restrict attention to algebraically closed fields of

characteristic 0 and to restrict attention to maps that are dominant and
have degree 2, since these are the maps whose iterates potentially have
interesting dynamics. This curtailed goal ended up being sufficiently
challenging, as the length of the present paper attests. However, we
hope to address some of the following questions in future papers and/or
a monograph.

(1) Describe the geometry of the moduli spacesM2
2(G)ss andM2

2(G)stab,
and the geometry of the natural map M2

2(G)ss → M2
2(G ′)ss for

subgroups G ′ ⊂ G.
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(2) Determine the field of moduli and minimal fields of definition for
points inM2

2(G)ss, where G ⊂ PGL3(K) is a finite subgroup andK
is minimal for the conjugacy class of G.

(3) Let f : P2
99K P2 be defined over K. We recall that the set

of K̄/K-twists of f is the set of maps f ′ defined over K that
are PGL3(K̄)-conjugate to f , modulo f ′ and f being considered
equivalent if they are PGL3(K)-conjugate. The set of twists is
classified by the kernel of the inflation map

H1
(
Gal(K̄/K),Aut(ϕ)

)
−→ H1

(
Gal(K̄/K),PGL3(K̄)

)
;

see [18, Section 7.1]. Find normal forms for the twists of the maps
in Table 1.

Example 9. We illustrate twisting with an example. Consider the
map f = [Y Z,X2, Y 2] of Type 7.1. Up to PGL3(Q̄)-conjugacy, this
is the only map in (M2

2)
ss whose automorphism group is finite and

contains an element of order 5. The isomorphism

µ5 −→ Aut(f), ζ 7−→ ϕζ = [X, ζY, ζ3Z],

is Gal(Q̄/Q)-invariant, and it turns out that every element of

H1
(
Gal(Q̄/Q),µ5)

∼= Q∗/(Q∗)5

gives a twist of f . Precisely, let b ∈ Q∗, let β = b1/5 ∈ Q̄, and let
ψ = [X, βY, β3Z]. Then the twist of f associated to b is

fb := fψ(X, Y, Z) = ψ−1 ◦ f ◦ ψ(X, Y, Z) = ψ−1 ◦ f(X, βY, β3Z)

= ψ−1(β4Y Z,X2, β2Y 2) = [β4Y Z, β−1X2, β−1Y 2] = [bY Z,X2, Y 2].

Note that fb is defined over Q, but that the map ψ conjugating f to fb
is only defined over Q(b1/5).
Similarly, the µ7-twist of the map f = [Z2, X2, Y 2] associated to

b ∈ Q∗/(Q∗)7 ∼= H1
(
Gal(Q̄/Q),µ7) is [bZ2, X2, Y 2]. We leave the

details of the computation to the reader.

4. Some Finite Subgroups of PGL3

In this section we prove some elementary results concerning finite
subgroups of PGL3. This information may be gleaned from classical
dsecriptions of all finite subgroups of PGL3, but for completeness we
shall prove what we need.

Lemma 10. Let K be an algebraically closed field of characteristic 0,
and let G ⊂ PGL3(K) be a finite subgroup.
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(a) Suppose that G ∼= Cq with q a prime poewr. Then there is a ϕ ∈
PGL3(K), a primitive q’th root of unity ζ ∈ K, and an integer m
such that

Gϕ =
〈(

1 0 0
0 ζ 0
0 0 ζm

)〉

. (3)

(b) Suppose that G ∼= Cq with q ∈ {4, 5, 7}. Then there is a ϕ ∈
PGL3(K) and a primitive q’th root of unity ζ such that

G ∼= C4 =⇒ Gϕ =
〈(

1 0 0
0 ζ 0
0 0 1

)〉

or
〈(

1 0 0
0 ζ 0
0 0 −1

)〉

,

G ∼= C5 =⇒ Gϕ =
〈(

1 0 0
0 ζ 0
0 0 1

)〉

or
〈( 1 0 0

0 ζ 0
0 0 ζ3

)〉

,

G ∼= C7 =⇒ Gϕ =
〈(

1 0 0
0 ζ 0
0 0 1

)〉

or
〈( 1 0 0

0 ζ 0
0 0 ζ2

)〉

or
〈( 1 0 0

0 ζ 0
0 0 ζ3

)〉

.

(c) Suppose that G ∼= Cp × Cp with p prime, and let ζ be a primitive

p’th root of unity. Then there is a ϕ ∈ PGL3(K) such that

Gϕ =
〈(

1 0 0
0 ζ 0
0 0 1

)

,
(

1 0 0
0 1 0
0 0 ζ

)〉

.

Proof. We remark that if α ∈ PGL3(K) has finite order n, then we can
lift it to an element A ∈ GL3(K) having the same order. To see this,
we start with an arbitrary lift A. Then An = cI for some c ∈ K∗, so
we can take c1/nA as our lift of α. We also remark that since we have
assumed that char(K) = 0, every element in GL3(K) of finite order is
diagonalizable.
(a) Let G = 〈α〉 with α ∈ PGL3(K) having order q. We lift α to
an A ∈ GL3(K) of order q. Conjugating A to put it into Jordan
normal form, the fact that Aq = 1 implies that A is diagonal and
its diagonal entries are q’th roots of unity. Replacing A by a scalar
multiple, which we may do since we are really only interested in the
image of A in PGL3(K), we may assume that the upper left entry
of A is 1. (Note that we still have Aq = I.) The fact that α has
exact order q, where q is a prime power, implies that one of the other
diagonal entries is a primitive q’th root of unity, which we denote ζ .
Possibly after reversing the Y and Z coordinates, α is diagonal with
entries 1, ζ, η, where η, being a q’th root of unity, is a power of ζ .
(b) From (a), we can find ϕ so that Gϕ is given by (3) with 0 ≤ m < q.
For notational convenience, we let

τ(m) :=
(

1 0 0
0 ζ 0
0 0 ζm

)

.

We note that conjugation by a permutation matrix in PGL3 has the
effect of permuting the entries of a diagonal matrix. Writing ∼ to
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denote PGL3-conjugation equivalence and using the fact that we are
working in PGL3, we have

τ(m) ∼
〈(

ζ 0 0
0 1 0
0 0 ζm

)〉

=
〈(

1 0 0
0 ζ−1 0
0 0 ζm−1

)〉

= τ(1−m mod q),

τ(m) ∼
〈(

1 0 0
0 ζm 0
0 0 ζ

)〉

= τ(m−1 mod q) if gcd(m, q) = 1.

(We remark that the other three permutations do not give results that
are useful for our purposes.) Hence after a further conjugation by a
permutation matrix, we may take Gϕ to be generated by any one of
the following three matrices,

τ(m), τ(1−m mod q), τ(m−1 mod q),

subject to gcd(m, q) = 1 for the last one.
Suppose first that q = 4. Taking m = 0 and m = 2, we find that

〈
τ(0)

〉
∼
〈
τ(1)

〉
and

〈
τ(2)

〉
∼
〈
τ(3)

〉
.

Hence we can find a ϕ so that Gϕ is generated by either τ(0) or τ(2).
Next let q = 5. Then

〈
τ(0)

〉
∼
〈
τ(1)

〉
and

〈
τ(2)

〉
∼
〈
τ(4)

〉
∼
〈
τ(3)

〉
.

Hence we can find a ϕ so that Gϕ is generated by either τ(0) or τ(3).
Finally let q = 7. Then

〈
τ(0)

〉
∼
〈
τ(1)

〉
,
〈
τ(2)

〉
∼
〈
τ(6)

〉
∼
〈
τ(4)

〉
and

〈
τ(3)

〉
∼
〈
τ(5)

〉
.

Hence we can find a ϕ so that Gϕ is generated by either τ(0) or τ(2)
or τ(3).
(c) Let α ∈ G be an element of order p. Applying (a) to 〈α〉, we

can conjugate so that α lifts to a matrix of the form A =
(

1 0 0
0 ζ 0
0 0 ζm

)

∈
GL3(K), where ζ is a primitive p’th root of unity and m ∈ Z/pZ.
Let β ∈ G be another element so that G = 〈α, β〉. We lift β to
a matrix B ∈ GL3(K) satisfying Bp = I. Then, since αβ = βα
in PGL3(K), we know that there is an ǫ ∈ K∗ such that AB = ǫBA
in GL3(K).
Taking a generic matrix for B, the relation AB = ǫBA becomes

(
a b c
d e f
g h i

)

= B = ǫA−1BA = ǫ

(
a ζb ζmc

ζ−1d e ζm−1f
ζ−mg ζ1−mh i

)

.

Comparing entries, we see that if ǫ 6= 1, then

a = e = i = 0 and







m 6= 0 =⇒ c = g = 0 =⇒ B =
(

0 b 0
d 0 f
0 h 0

)

,

m 6= 1 =⇒ f = h = 0 =⇒ B =
(

0 b c
d 0 0
g 0 0

)

.



14 MICHELLE MANES AND JOSEPH H. SILVERMAN

Thus ǫ 6= 1 leads, in both cases, to a matrix B that is not invertible.
Hence ǫ = 1 and AB = BA.
We now have diagonalizable matrices A,B ∈ GL3(K) satisfying

AB = BA. Standard linear algebra says that they can be simulta-
neously diagonalized, so possibly after a further conjugation, we may
assume that A and B are both diagonal. And since Ap = Bp = I and
the image of 〈A,B〉 in PGL3(K) is of type C2

p , we see that the set

〈ζI, A,B〉 = {ζ iAjBk : 0 ≤ i, j, k ≤ p− 1}
contains p3 distinct elements of GL3(K) that are diagonal and of order
dividing p. But GL3(K) contains exactly p3 diagonal matrices of order
dividing p, namely the diagonal matrices with entries that are arbitrary
p’th roots of unity. It follows that G = 〈α, β〉, which is the image
of 〈ζI, A,B〉 in PGL3(K), is generated by the two matrices indicated
in (c). �

Lemma 11. Let K be an algebraically closed field of characteristic 0,
and let G ⊂ PGL3(K) be one of the groups (2) listed in Theorem 2.
Then the identity component of the normalizer G is the group of diag-

onal matrices,

N(G)◦ = D :=
{(

α 0 0
0 β 0
0 0 γ

)

∈ PGL3(K)
}

.

More precisely, we have

N(G3) = N(G2,2) = S3D, N(G4) =
〈(

0 0 1
0 1 0
1 0 0

)〉

D,

N(G5) =
〈(

0 1 0
1 0 0
0 0 1

)〉

D, N(G7) =
〈(

0 1 0
0 0 1
1 0 0

)〉

D,

where S3 ⊂ PGL3(K) is the group of permutation matrices.

Proof. We recall that for any group G and subgroup H ⊆ G, the kernel
of the standard homomorphism

NG(H) −→ Aut(H), g 7−→ (h 7→ g−1hg)

is the centralizer CG(H). We use this to simplify our calculations.
Let ζ be a primitive n’th root of unity with n ≥ 3, let 2 ≤ m < n,

and let T = Tn,m :=
(

1 0 0
0 ζ 0
0 0 ζm

)

. Then A =
(
a b c
d e f
g h i

)

∈ C(T ) if and only

if A = T−1AT , so if and only if
(
a b c
d e f
g h i

)

=
(

1 0 0
0 ζ 0
0 0 ζm

)−1 ( a b c
d e f
g h i

)(
1 0 0
0 ζ 0
0 0 ζm

)

=

(
a ζb ζmc

ζ−1d e ζm−1f
ζ−mg ζ1−mh i

)

.

Keeping in mind that we are working in PGL3, we first note that if any
of a, e, i is non-zero, then A is diagonal. Suppose that a = e = i = 0.
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If b 6= 0, then the fact that ζ, ζm, ζ−1, ζ1−m are distinct gives c =
d = h = 0, and then the nonsingularity of A tells us that fg 6= 0,
and ζ = ζm−1 = ζ−m. Hence b 6= 0 is allowed only if n = 3 and m = 2,

in which case C(T ) contains the scaled cyclic permutation
(

0 b 0
0 0 f
g 0 0

)

. A

similar analysis for c 6= 0 yields the inverse scaled permutation for n = 3
and a contradiction for n ≥ 4. This completes the proof that

C(Tn,m) =

{

〈π〉D if n = 3 and 2 ≤ m ≤ n− 1,

D if n ≥ 4 and 2 ≤ m ≤ n− 1,

where π ∈ PGL3 is a cyclic permutation.
Suppose now that (n,m) = (3, 2). Then the transposition α =

(
1 0 0
0 0 1
0 1 0

)

satisfies α−1T3,2α = T 2
3,2, so α ∈ N(G3) r C(G3). Using the

inclusion

N(G3)/C(G3) →֒ Aut(G3) ∼= (Z/3Z)∗ ∼= Z/2Z,

we conclude that N(G3) = 〈α〉C(G3) = 〈α〉〈π〉D = S3D.
Next let (n,m) = (4, 2). Then the transposition β =

(
0 0 1
0 1 0
1 0 0

)

satisfies

β−1T4,2β = T 3
4,2, so β ∈ N(G4)r C(G4). Using the inclusion

N(G4)/C(G4) →֒ Aut(G4) ∼= (Z/4Z)∗ ∼= Z/2Z,

we conclude that N(G4) = 〈β〉C(G4) = 〈β〉D.
Next we consider Tm,n with m = 3 and n ≥ 5 prime. An element

A ∈ N(T )r C(T ) needs to satisfy

(
a b c
d e f
g h i

)

=
(

1 0 0
0 ζ 0
0 0 ζ3

)−1 ( a b c
d e f
g h i

)(
1 0 0
0 ζ 0
0 0 ζ3

)j

=

(
a ζjb ζ3jc

ζ−1d ζj−1e ζ3j−1f
ζ−3g ζj−3h ζ3j−3i

)

for some 2 ≤ j < n with gcd(j, n) = 1. We have

a 6= 0 =⇒ b = d = e = g = 0 =⇒ fh 6= 0

=⇒ j ≡ 3 (mod n) and 3j ≡ 1 (mod n) =⇒ n | 8. →←
e 6= 0 =⇒ a = b = d = h = 0 =⇒ cg 6= 0

=⇒ 3j ≡ j − 1 (mod n) and − 3 ≡ j − 1 (mod n)

=⇒ n | 3. →←
i 6= 0 =⇒ c = e = f = g = h =⇒ bd 6= 0

=⇒ j ≡ 3j − 3 (mod n) and − 1 ≡ 3j − 3 (mod n)

=⇒ n | 5.

So we find that the normalizer of G5 contains
(

0 1 0
1 0 0
0 0 1

)

.
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We next look for maps with a = e = i = 0, so
(

0 b c
d 0 f
g h 0

)

=
(

1 0 0
0 ζ 0
0 0 ζ3

)−1 ( 0 b c
d 0 f
g h 0

)(
1 0 0
0 ζ 0
0 0 ζ3

)j

=

(
0 ζjb ζ3jc

ζ−1d 0 ζ3j−1f

ζ−3g ζj−3h 0

)

This gives

b 6= 0 =⇒ c = h = 0 =⇒ g 6= 0

=⇒ j ≡ −3 (mod n) =⇒ d = 0 =⇒ f 6= 0

=⇒ j ≡ −3 ≡ 3j − 1 (mod n) =⇒ n | 7.
c 6= 0 =⇒ b = f = 0 =⇒ d 6= 0

=⇒ −1 ≡ 3j (mod n) =⇒ g = 0 =⇒ h 6= 0

=⇒ −1 ≡ 3j ≡ j − 3 (mod n) =⇒ n | 7.

So we find that the normalizer of G7 contains
(

0 1 0
0 0 1
1 0 0

)

and
(

0 0 1
1 0 0
0 1 0

)

.

This completes the computation of N(Gn) with n = 3, 4, 5, 7.
Finally, consider an element A ∈ C(G2,2) of the centralizer of G2,2. It

satisfies the two equations
(
a b c
d e f
g h i

)

=
(

1 0 0
0 −1 0
0 0 1

)−1 ( a b c
d e f
g h i

)(
1 0 0
0 −1 0
0 0 1

)

=
( a −b c

−d e −f
g −h i

)

(
a b c
d e f
g h i

)

=
(

1 0 0
0 1 0
0 0 −1

)−1 ( a b c
d e f
g h i

)(
1 0 0
0 1 0
0 0 −1

)( a b −c
d e −f
−g −h i

)

If any of a, e, i is non-zero, then these two equations combine to tell
us that A is diagonal. On the other hand, if a = e = i = 0, then
b 6= 0 forces g = h = 0, contradicting the non-singularlity of A, and
similarly c 6= 0 forces b = h = 0, giving the same contradiction.
Hence C(G2,2) = D. Next we observe that every permutation in S3
is in N(G2,2), so

S3 −→ N(G2,2)/C(G2,2) −֒→ Aut(G2,2) ∼= GL2(F2) ∼= S3.
A quick calculation shows that the map S3 → Aut(G2,2) is an isomor-
phism, and hence N(G2,2) = S3C(G2,2). �

5. Diagonal Stability and Maps of Finite Order

In this section we set notation that is used throughout the rest of
this paper, we remind the reader of the Hilbert–Mumford criterion for
GIT stability, and we create two tables that we will use to determine
the stability of elements of Rat22.
For a fixed root of unity ζ and integer m, we define

τm = τζ,m ∈ GL3(K), τm(X, Y, Z) = (X, ζY, ζmZ).
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Further, for each pair of integers (k, ℓ) we define a 1-parameter sub-
group of SL3 by

Lk,ℓ : Gm → SL3, Lk,ℓ(t) =

(
tk 0 0
0 tℓ 0
0 0 t−k−ℓ

)

.

We now compute the effect of applying τm and Lk,ℓ to each of the
quadratic monomials in a degree 2 map of A3.
Table 3 gives the effect of applying the map τm = (X, ζY, ζmZ) to

each quadratic monomial, where an integer entry ǫ in Table 3 means
that the monomial is multiplied by ζǫ. Similarly, Table 4 gives the
effect of applying Lk,ℓ(t) to each quadratic monomial, where an integer
entry δ in Table 4 means that the monomial is multiplied by tδ.

X2 Y 2 Z2 XY XZ Y Z

X-coord 0 2 2m 1 m m+ 1
Y -coord −1 1 2m− 1 0 m− 1 m
Z-coord −m 2−m m 1−m 0 1

Table 3. Effect of τm = (X, ζY, ζmZ) on monomials

X2 Y 2 Z2 XY XZ Y Z

X-coord k −k + 2ℓ −3k − 2ℓ ℓ −k − ℓ −2k
Y -coord 2k − ℓ ℓ −2k − 3ℓ k −2ℓ −k − ℓ
Z-coord 3k + ℓ k + 3ℓ −k − ℓ 2k + 2ℓ k ℓ

Table 4. Effect of Lk,ℓ(t) = (tkX, tℓY, t−k−ℓZ) on monomials

We are going to use the numerical criterion of Hilbert–Mumford [12,
Chapter 2, Theorem 2.1] to determine the stability of maps. We recall
the general setup. (See [18, Section 2.2] or [6] for similar calculations.)
Let G ⊆ SLn+1 be an algebraic subgroup of SLn+1 and let a ∈ Pn. For
any given one-parameter subgroup L : Gm → G, choose coordinates
on Pn+1 so that the image of L is contained in the group of diagonal
matrices. Write a = [a1, . . . , an] ∈ Pn in these coordinates, let â =
(â1, . . . , ân) be a lift of a to An, and write the action of L on the lift â
as

L(t) · â = (tr1 â1, t
r2 â2, . . . , t

rn ân),

where r1, . . . , rn ∈ Z. The numerical factor associated to L at a is the
quantity

µO(1)(a, L) = max{−ri : i satisfies âi 6= 0}.
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Then the Hilbert–Mumford numerical criterion says that

a is G-unstable ⇐⇒ µO(1)(L,a) < 0 for some L,

a is G-not stable ⇐⇒ µO(1)(L,a) ≤ 0 for some L.

Equivalently, a is G-stable if µO(1)(L,a) > 0 for all L, and it is G-
semistable if µO(1)(L,a) ≥ 0 for all L.
We write fm,ǫ to denote a generic element of Rat22 whose affine

lift f̂m,ǫ : A
3 → A3 satisfies

f̂ τmm,ǫ = ζǫf̂m,ǫ.

Since the one-parameter subgroup Lk,ℓ is already diagonalized, the fol-
lowing two-step procedure computes µO(1)(fm,ǫ, Lk,ℓ).

• Look at Table 3 and check off all of the boxes whose entry is
congruent to ǫ mod p.

• Then µO(1)(fm,ǫ, Lk,ℓ) is equal to the maximum of the negatives of
the corresponding entries in Table 4.

We note that every diagonalized one-parameter subgroup of SL3 is
conjugate to Lk,ℓ for some (k, ℓ) 6= (0, 0). We set the notation

D =
{(

α 0 0
0 β 0
0 0 γ

)

∈ SL3(K)
}

for the group of diagonal matrices. By abuse of notation, we may
sometimes also write D for the diagonal subgroup of PGL3. Similarly,
we set the notation

S3 :=
〈(

1 0 0
0 1 0
0 0 1

)

,
(

0 0 1
1 0 0
0 1 0

)

,
(

0 1 0
0 0 1
1 0 0

)

,
(

0 1 0
1 0 0
0 0 1

)

,
(

0 0 1
0 1 0
1 0 0

)

,
(

1 0 0
0 0 1
0 1 0

)〉

for the group of permutation matrices in PGL3 or SL3.
Numerical Criterion for D-Stability. Let G ⊂ PGL3 be a finite
subgroup such that N(G)◦ = D, and let f ∈ Rat22(G).

f is N(G)-unstable ⇐⇒ µO(1)(f, Lk,ℓ) < 0 for some (k, ℓ).

f is N(G)-semistable ⇐⇒ µO(1)(f, Lk,ℓ) ≥ 0 for all (k, ℓ).

f is N(G)-stable ⇐⇒ µO(1)(f, Lk,ℓ) > 0 for all (k, ℓ) 6= (0, 0).

6. Maps with an Automorphism of Prime Order p ≥ 5

In this section we analyze maps having an automorphism of prime
order p ≥ 5.

Proposition 12. Let K be an algebraically closed field of character-

istic 0, let p ≥ 5 be prime, let ζ be a primitive p’th root of unity,

let m ∈ Z/pZ, and let f ∈ Rat22 be a dominant rational map such that



DEGREE 2 MAPS f : P2
→ P2 WITH LARGE Aut(f) 19

τm ∈ Aut(f). Choose 0 ≤ ǫ < p so that the lifts f̂ : A3 → A3 of f

satisfy f̂ τm = ζǫf̂ . Then one of the following is true:

(a) f is D-unstable.
(b) f is D-semistable, but not D-stable, and is PGL3(K)-conjugate to

a rational map of the form [aX2 + Y Z, bXY, cXZ] with bc 6= 0.
Further (m, ǫ) = (−1, 0).

(c) p = 5, and f is D-stable and PGL3(K)-conjugate to the rational

map [Y Z,X2, Y 2] with (m, ǫ) = (3, 4).
(d) p = 7, and f is PGL3-stable and PGL3(K)-conjugate to the mor-

phism [Z2, X2, Y 2] with (m, ǫ) = (3, 6).

Proof. We write f = fm,ǫ to help keep track of the dependence on m
and ǫ. The assumption that f is dominant implies that its coordinate
functions are non-zero, so it necessarily includes at least three monomi-
als. Looking at Table 3, we see that each of the quantities 0, 1, and m
appears three times, while each of the quantities

−m, 1−m, 2−m, −1, 3, m− 1, m+ 1, 2m− 1, 2m (4)

appears exactly once.
We suppose first that ǫ /∈ {0, 1, m}. Then the only way for fm,ǫ to

have at least three monomials is for at least three of the quantities in
the list (4) to be equal. Our assumption that p ≥ 5 means that the
elements in each of the subsets

{−m, 1−m, 2−m}, {−1, 2}, {m− 1, m+ 1}, {2m− 1, 2m},

remain distinct when reduced modulo p, so in order to obtain three
equal values modulo p, we first choose three of these four sets, then
choose an element from each set, then equate the three quantities and
solve for m modulo p. This gives a total of 44 possibilities, although
many of them give no value form, since each choice yields two equations
for the one quantity m. Further, some choices give ǫ ∈ {0, 1, m}, which
we are not presently considering. We do not know a clever way to do
this computation, but working through the complete set of possibilities,
we find that exactly 10 choices yield values of m, and all but two of
these require either p = 5 or p = 7. The data and resulting maps are
listed in Table 5.
In Table 5, we require abc 6= 0, since we need at least three mono-

mials. We start by noting that the maps f0,−1 and f1,2, which work
for all p, are clearly non-dominant (indeed, they are constant maps),
so they may be discarded. (It is also easy to check that they are D-
unstable.)
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Values from Table 3 m ǫ p fm,ǫ

−1 m− 1 2m− 1 0 −1 all p [0, aX2 + bZ2 + cXZ, 0]

2 m+ 1 2m 1 2 all p [aY 2 + bZ2 + cY Z, 0, 0]

−1 m+ 1 −m+ 2 3 −1 5 [aY Z, bX2, cY 2]

−1 −m+ 1 2m 2 −1 5 [aZ2, bX2, cXY ]

2 m− 1 −m 3 2 5 [aY 2, bXZ, cX2]

2 −m+ 1 2m− 1 4 2 5 [aY 2, bZ2, cXY ]

m + 1 −m 2m− 1 2 3 5 [aY Z, bZ2, cX2]

m − 1 −m+ 2 2m 4 3 5 [aZ2, bXZ, cY 2]

−1 −m+ 2 2m 3 −1 7 [aZ2, bX2, cY 2]

2 −m 2m− 1 5 2 7 [aY 2, bZ2, cX2]

Table 5. Values ofm mod p and ǫ /∈ {0, 1, m} such that
fm,ǫ has at least 3 monomials

We next note that the six families of maps for p = 5 are S3-conju-
gates, i.e., they may be obtained from one another by permuting the
variables. It thus suffices to consider f3,−1 = [aY Z, bX2, cY 2], which is
a dominant rational map having a single point [0, 0, 1] of indeterminacy.
Using Table 4, we find that

µO(1)(f3,−1, Lk,ℓ) = max{2k,−2k + ℓ,−k − 3ℓ}.
The identity

7 · (2k) + 6(−2k + ℓ) + 2(−k − 3ℓ) = 0

shows that at least one of the quantities in parentheses is non-negative,
and indeed unless k = ℓ = 0, one of them is positive. Hence

inf
(k,ℓ)6=(0,0)

µO(1)(f3,−1, Lk,ℓ) = inf
(k,ℓ)6=(0,0)

max{2k,−2k + ℓ,−k − 3ℓ} > 0,

which proves that f3,−1 is D-stable.
In order to obtain the map in (c), we observe that the a, b, c coef-

ficients of f3,−1 are twist parameters. To see this, let σ(X, Y, Z) =
[uX, vY, wZ]. Then

fσ3,−1 = [v2w2aY Z, u3wbX2, uv3cY 2],

so setting u20 = a3b−6c−2, v20 = a−1b2c−6, and w20 = a−9b−2c6 (with
an appropriate choice of 20’th roots) yields fσ3,−1 = [Y Z, Z2, X2]. Thus
the family f3,−1 for p = 5 is a single D-orbit.
Similarly, the two families of maps for p = 7 are conjugate via a

cyclic permutation of the variables. It is also clear that they are mor-
phisms, so in particular they are stable [6]. Further, just as in (c), the
coefficients are twist parameters. Thus for p = 7 and σ(X, Y, Z) =
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[uX, vY, wZ] we have

fσ3,−1 = [vw3aZ2, u3wbX2, uv3cY 2],

so setting u28 = a3b−9c−1, v28 = a−1b3c−9, and w28 = a−9b−1c3 (with
an appropriate choice of 28’th roots) yields fσ3,−1 = [Z2, X2, Y 2]. Thus
the family f3,−1 for p = 7 is also a single D-orbit.
This completes the classification of dominant semistable maps fm,ǫ

with ǫ /∈ {0, 1, m}. We next observe that if ǫ ∈ {0, 1, m} and fm,ǫ has
exactly three monomials, then Tables 3 and 4 give the following three
maps and their numerical invariants:

ǫ fm,ǫ µO(1)(fm,0, Lk,ℓ)

0 [aX2, bXY, cXZ] −k
1 [aXY, bY 2, cY Z] −ℓ
m [aXZ, bY Z, cZ2] k + ℓ

Thus in all cases fm,ǫ induces the linear map [aX, bY, cZ], and we can
find a (k, ℓ) 6= (0, 0) making µO(1)(fm,0, Lk,ℓ) < 0, so all of these maps
are D-unstable.
We now assume that ǫ ∈ {0, 1, m} and that fm,ǫ has at least four

monomials.
ǫ = 0. Since fm,0 has four or more monomials, Table 3 tells us that p
must divide one of the quantities in the set

{m− 2, m− 1, m,m+ 1, 2m− 1}.
Since τm depends only on m modulo p, this gives five possibilities:

m mod p fm,0(X, Y, Z)

2 [aX2, bXY, cY 2 + dXZ]
1 [aX2, bXY + cXZ, dXY + eXZ]
0 [aX2 + bZ2 + cXZ, dXY + eY Z, fX2 + gZ2 + hXZ]
−1 [aX2 + bY Z, cXY, dXZ]
2−1 [aX2, bZ2 + cXY, dXZ]

For each of these families we use Table 4 to compute

µO(1)(f2,0, Lk,ℓ) ≤ max{−k,−k − 3ℓ} (k,ℓ)=(1,0)−−−−−−→ −1,

µO(1)(f1,0, Lk,ℓ) ≤ max{−k, 2ℓ,−2k − ℓ} (k,ℓ)=(1,−1)−−−−−−−→ −1,

µO(1)(f0,0, Lk,ℓ) ≤ max{−k, 3k + 2ℓ, k + ℓ,−3k − ℓ} (k,ℓ)=(1,−2)−−−−−−−→ −1,
µO(1)(f−1,0, Lk,ℓ) = max{−k, 2k} ≥ 0 for all (k, ℓ) 6= (0, 0),

µO(1)(f1/2,0, Lk,ℓ) ≤ max{−k, 2k + 3ℓ} (k,ℓ)=(1,−1)−−−−−−−→ −1.
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Thus f−1,0 is D-semi-stable provided b 6= 0 and a, c, d are not all 0, while
the maps in the other four families are D-unstable. Making a change of
variables [X, Y, Z] → [X, b−1Y, Z], we can make the coefficient of Y Z
in f−1,0 equal to 1. It is also clear that if c or d is 0, then f−1,0 is not
dominant. This gives the family of maps in (b).
ǫ = 1. The straightforward approach is to use the assumption that
fm,1 has four or more monomials and Table 3 to deduce that m ∈
{2−1, 1, 0, 2,−1} mod p, which leads to the five families of maps

m mod p fm,1(X, Y, Z)

2 [aXY, bY 2 + cXZ, dY Z]
1 [aXY + bXZ, cY 2 + dZ2 + eY Z, eY 2 + fZ2 + gY Z]
0 [aXY + bY Z, cY 2, dXY + eY Z]
−1 [aXY, bY 2, cX2 + dY Z]
2−1 [aZ2 + bXY, cY 2, cY Z]

Up to S3-conjugation, these are exactly the five families that we found
for ǫ = 0, so we obtain nothing new.
An alternative is to let σ(X, Y, Z) = (Y,X, Z) and to observe that

(f̂σm,1)
τ1−m = f̂σm,1.

Thus the map fσm,1 is in the family of maps f1−m,0, and since fσm,1
and fm,1 have the same number of non-zero monomials, the set of maps
with ǫ = 1 is equal to the set of σ-conjugates of the maps with ǫ = 0.
(It’s also amusing to note that the set of m values that we obtained
for ǫ = 0 is invariant under m→ 1−m.)
ǫ = m. Again using the assumption that fm,1 has four or more mono-
mials, Table 3 tells us that

m ∈ {2−1, 1, 0, 2,−1} mod p.

We are currently dealing with the case ǫ = m, and we have already
analyzed the cases ǫ = 0 and ǫ = 1, so it remains to consider m ∈
{2−1, 2,−1}. This gives three families of maps:

m mod p fm,1(X, Y, Z)

2 [aY 2 + bXZ, cY Z, dZ2]
−1 [aXZ, bX2 + cY Z, dZ2]
2−1 [aXZ, bY Z, cZ2 + dXY ]

These three families are S3-conjugate to three of the families that we
found for ǫ = 0. Hence up to PGL3 equivalence, we again obtain
nothing new. �

The next step is to compute the full automorphism groups of the
maps appearing in Proposiiton 12.
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Proposition 13. (a) Let f = [Y Z,X2, Y 2], and let ζ be a primitive

5’th root of unity. Then

Aut(f) =
〈(

1 0 0
0 ζ 0
0 0 ζ3

)〉
∼= C5.

(b) Let f = [Z2, X2, Y 2], and let ζ be a primitive 7’th root of unity.

Then

Aut(f) =
〈(

1 0 0
0 ζ 0
0 0 ζ3

)

,
(

0 1 0
0 0 1
1 0 0

)〉
∼= C7 ⋊ C3.

(c) Let (a, b, c) ∈ K3 with bc 6= 0, and let f = [aX2+Y Z, bXY, cXZ].
Then

Aut(f) ⊃
{(

1 0 0
0 t 0
0 0 t−1

)

: t ∈ Gm

}
∼= Gm.

Proof. (a) We see by inspection that Aut(f) ⊇ 〈τ3〉 ∼= C5. We claim
that this is the full automorphism group. The indeterminacy and crit-
ical loci of f are

I(f) =
{
[0, 0, 1]

}
and Crit(f) = {4XY 2 = 0}.

Since any ϕ ∈ Aut(f) preserves both of these sets, with their multiplic-
ities, we see that ϕ leaves both of the lines X = 0 and Y = 0 invariant.

Hence ϕ necessarily has the form ϕ =
(
α 0 0
0 β 0
γ δ ǫ

)

. Comparing the first

coordinates of f ◦ ϕ and ϕ ◦ f (note αβ 6= 0),

f ◦ ϕ(X, Y, Z) = [βY (γX + δY + ǫZ), . . .],

ϕ ◦ f(X, Y, Z) = [αY Z, . . .],

we see that γ = δ = 0, i.e., the map ϕ is diagonal. Without loss of
generality, we write ϕ ∈ PGL3 as ϕ(X, Y, Z) = [X, vY, wZ], and then

fϕ = [v2w2Y Z,wX2, v3Z2].

Hence fϕ = f if and only if v2w2 = w = v3. Substituting w = v3 into
v2w2 = v3 gives v8 = v3, so v5 = 1. Therefore v is a 5’th root of unity
and w = v3, so ϕ ∈ 〈τ3〉.
(b) We see by inspection that Aut(f) ⊇ 〈τ3〉 ∼= C7, but it turns out
that Aut(f) is strictly larger than this. Precisely, if we let π(X, Y, Z) =
[Z,X, Y ], then it is easy to check that fπ = f , so π ∈ Aut(f). Also,
we compute π−1τ3π = τ 23 , so Aut(f) contains the semi-direct product
〈τ3〉 ⋊ 〈π〉 ∼= C7 ⋊ C3. We claim that this is the full automorphism
group of f .
The critical locus of f is

Crit(f) = {8XY Z = 0},
so Crit(f) consists of the three lines XY Z = 0. Any σ ∈ Aut(f)
must permute these lines and their intersection points. The map π is
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a cyclic permutation of the intersection points, so replacing σ by π±1σ
if necessary, we may assume that σ fixes [1, 0, 0] and either fixes or
swaps [0, 1, 0] and [0, 0, 1]. If σ fixes all three points, then σ is a diagonal
map, say σ(X, Y, Z) = [X, vY, wZ], and we have

fσ = [vw3Z2, wX2, v3Y 2].

Hence fσ = f if and only if vw3 = w = v3. Substituing w = v3 into
vw3 = v3 gives v10 = v3, so v ∈ µ7 and w = v3. Hence σ ∈ 〈τ3〉.
It remains to deal with the case that σ fixes [1, 0, 0] and permutes

[0, 1, 0] and [0, 0, 1]. But then we would have fσ(1, 0, 0) = [0, 0, 1], while
f(1, 0, 0) = [0, 1, 0], so fσ cannot equal f . (More precisely, the maps f
and fσ are inverses in their action on the three points.) This completes
the proof that Aut(f) is generated by τ3 and π.
(c) It is trivial to check that the indicated copy of Gm is contained
in Aut(f). A more detailed analysis, which we leave to the interested
reader, can be used to show that Aut(f) ∼= Gm. �

7. Maps with Automorphism Group Containing Cp × Cp
with p ≥ 3

Our goal in this section is essentially a non-existence result. Some-
what surprisingly, the case p = 3 will be crucial to our analysis of maps
whose automorphism group contains a copy of C4. We also note that
the proposition is wildly incorrect for p = 2, and indeed we devote a
long section (Section 8) to classifying maps whose automorphism group
contains a copy of C2

2 .

Proposition 14. Let K be an algebraically closed field of characteris-

tic 0. Let p ≥ 3 be prime, and let f ∈ Rat22(K) have the property that

Aut(f) contains a copy of C2
p . Then either f is a linear map or else it

is not dominant.

Proof. Let G ⊂ PGL3(K) be a subgroup of type C2
p that is contained

in Aut(f). Lemma 10 tells us that after an appropriate conjugation,
we may assume that

G = 〈α, β〉 with α =
(

1 0 0
0 ζ 0
0 0 1

)

and β =
(

1 0 0
0 1 0
0 0 ζ

)

,

where ζ is a primitive p’th root of unity. The following table describes
the action of α and β on quadratic monomials that might appear in f .
An entry (i, j) in the table means that α multiplies the monomial by ζ i
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and that β multiplies the monomial by ζj.

X2 Y 2 Z2 XY XZ Y Z

X-coordinate (0, 0) (2, 0) (0, 2) (1, 0) (0, 1) (1, 1)
Y -coordinate (−1, 0) (1, 0) (−1, 2) (0, 0) (−1, 1) (0, 1)
Z-coordinate (0,−1) (2,−1) (0, 1) (1,−1) (0, 0) (1, 0)

There are a number of possible families of maps invariant for G, indexed
by the pairs (i, j) modulo p. The most interesting case is p = 3,
so −1 ≡ 2, in which case there are 9 families of maps as given in the
following table:

(i, j) 0 1 2

0 [aX2, bXY, cXZ] [aXY, bY 2, cY Z] [aY 2, bX2, 0]
1 [aXZ, bY Z, cZ2] [aY Z, 0, 0] [0, aXZ, 0]
2 [aZ2, 0, bX2] [0, 0, aXY ] [0, aZ2, bY 2]

Three of these families coincide with the linear map [aX, bY, cZ], while
the other six families clearly give non-dominant maps. And if p ≥ 5,
then we obtain the same three linear maps, plus nine additional maps
defined by a single monomial. �

8. Maps with Automorphism Group Containing C2 × C2

In this section we classify maps with G2,2 ⊆ Aut(f).

Proposition 15. Let K be an algebraically closed field of character-

istic 0, let G2,2 be the group described in Theorem 2, and let f ∈
Rat22(G2,2)ss be a dominant map of degree 2. Then f is N(G2,2)-stable
and one of the following holds :

(a) f is N(G2,2)-conjugate to a map of the form

[X2 + Y 2 − Z2, dXY, eXZ] with d, e ∈ K∗.

The N(G2,2)-conjugacy class of the map f is uniquely determined

by the unordered pair {d, e}. The automorphism group of f is

Aut(f) =

{

G2,2 if d 6= e,

Gm ⋊ C2 if d = e.

Further, deg(fn) = 2n.
(b) f is N(G2,2)-conjugate to a map of the form

[Y 2 − Z2, XY, eXZ] with e ∈ K∗.
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The N(G2,2)-conjugacy class of the map f is uniquely determined

by the unordered pair {e, e−1}. The automorphism group of f is

Aut(f) =







G2,2 if e 6= ±1,
S3G2,2 if e = −1,
Gm ⋊ C2 if e = 1.

Further, if e2 is not an odd-order root of unity, then deg fn = n+1,
while if e4k+2 = 1, then f 4k+2 = [X, Y, Z].

(c) f is N(G2,2)-conjugate to the map [Y Z,XZ,XY ]. The automor-

phism group of f is Aut(f) = S3G2,2 ∼= S4. Further, f 2 = [X, Y, Z].

Proof. Let

α =
(

1 0 0
0 −1 0
0 0 1

)

and β =
(

1 0 0
0 1 0
0 0 −1

)

,

so G2,2 = 〈α, β〉 ∼= C2
2 is the group that we assume is contained

in Aut(f). The following table describes the action of α and β on
quadratic monomials that might appear in f . An entry (i, j) in the
table means that α multiplies the monomial by (−1)i and that β mul-
tiplies the monomial by (−1)j.

X2 Y 2 Z2 XY XZ Y Z

X-coordinate (0, 0) (0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
Y -coordinate (1, 0) (1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
Z-coordinate (0, 1) (0, 1) (0, 1) (1, 1) (0, 0) (1, 0)

There are thus four families of G2,2-invariant maps, indexed by pairs
(i, j) modulo 2 (or equivalently, by characters G2,2 → C∗),

f0,0 = [aX2 + bY 2 + cZ2, dXY, eXZ],

f1,0 = [aXY, bX2 + cY 2 + dZ2, eY Z],

f0,1 = [aXZ, bY Z, cX2 + dY 2 + eZ2],

f1,1 = [aY Z, bXZ, cXY ].

Lemma 11(b) tells us that the normalizer N(G2,2) of G2,2 contains all of
the permutation matrices. In particular, the permutation π(X, Y, Z) =
[Y, Z,X ] is in N(G2,2), and applying π and π2 to f0,0 yields

fπ0,0 = [eXY, cX2 + aY 2 + bZ2, dY Z],

fπ
2

0,0 = [dXZ, eY Z, bX2 + cY 2 + aZ2].

Hence the families f1,0 and f1,1 are N(G2,2)-conjugate to the family f0,0.
We next observe that a map in the f1,1 family is dominant if and only

if abc 6= 0. And under this assumption, conjugation by [uX, vY, wZ] ∈
D ⊂ N(G2,2) with u4 = a−1bc, v4 = ab−1c, and w4 = abc−1 trans-
forms f1,1 into the map [Y Z,XZ,XY ], i.e., the family f1,1 with abc 6= 0
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consists of a single N(G2,2)-conjugacy class. This gives the map in (c),
which by abuse of notation we continue to denote by f1,1. The critical
locus of f1,1 is the union of the coordinate axes,

Crit(f1,1) = {X = 0} ∪ {Y = 0} ∪ {Z = 0}.
Any ϕ ∈ Aut(f1,1) thus leaves the union of the coordinate axes invari-
ant, from which we conclude that ϕ has the form

ϕ = π ◦ σ for some π ∈ S3 and some σ =
(

1 0 0
0 β 0
0 0 γ

)

∈ D.

But one easily checks that S3 ⊂ Aut(f1,1), so it suffices to deter-
mine which diagonal matrices σ ∈ D are in Aut(f1,1). Letting σ =
[X, βY, γZ], we find that

fσ1,1 = [βγY Z, β−1γXZ, βγ−1XY ],

so

σ ∈ Aut(g)⇐⇒ βγ = β−1γ = βγ−1 ⇐⇒ β2 = γ2 = 1⇐⇒ σ ∈ G2,2.
This completes the proof that

Aut(f1,1) = S3G2,2 ∼= S4,

which also completes the proof of (c).
We now concentrate on maps in the family f0,0, and to ease notation,

we drop the subscript and simply write

f = [aX2 + bY 2 + cZ2, dXY, eXZ].

It is clear that f is dominant if and only if de 6= 0 and at least one
of a, b, c is non-zero. Further, if b = c = 0, then f = [aX, dY, eZ] has
degree 1, so we may assume that one of b and c is non-zero. And since
the involution σ(X, Y, Z) = [X,Z, Y ] ∈ S3 ⊂ N(G2,2) has the effect

fσ = [aX2 + cY 2 + bZ2, eXY, dXZ]

of switching the roles of b and c, after another N(G2,2) conjugacy we
may assume that cde 6= 0. Using this assumption and Table 4, the
action of the one-parameter subgroup Lk,ℓ(t) on f is

µO(1)(f, Lk,ℓ) =

{

max{−k, k − 2ℓ, 3k + 2ℓ} if b 6= 0,

max{−k, 3k + 2ℓ} if b = 0.

Thus if b = 0, then µO(1)(f, L1,−2) = −1, so f is D-unstable.
On the other hand, if b 6= 0, then the identity

4(−k) + (k − 2ℓ) + (3k + 2ℓ) = 0

shows that µO(1)(f, Lk,ℓ) > 0 for all (k, ℓ) 6= (0, 0), so f is D-stable.
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We are reduced to studying f with bcde 6= 0. We conjugate by a
diagonal map δ = [uX, vY, wZ] ∈ D ⊂ N(G2,2) to obtain

f δ = [u2aX2 + v2bY 2 + w2cZ2, u2dXY, u2eXZ].

Thus taking v2 = b−1 and w2 = −c−1, we may assume that b = 1 and
c = 1. Further, if a 6= 0, then we may take u2 = a−1 to reduce to
maps with a = 1, while if a = 0, then we may take u2 = d−1 to reduce
to maps satisfying d = 1. It thus suffices to anaylze the maps in the
following two families:

f = [X2 + Y 2 − Z2, dXY, eXZ] with d, e ∈ K∗,

f = [Y 2 − Z2, XY, eXZ] with e ∈ K∗.

f = [X2 + Y 2 − Z2, dXY, eXZ], de 6= 0
The indeterminacy and critical loci of f are

I(f) =
{
[0, 1,±1]

}
and Crit(f) = {X = 0} ∪ {X2 − Y 2 + Z2 = 0}.

We consider two maps f = [X2 + Y 2−Z2, dXY, eXZ] and f ′ = [X2 +
Y 2 − Z2, d′XY, e′XZ] and compute

Hom(f, f ′) :=
{
ϕ ∈ PGL3(K) : fϕ = f ′}.

Note that by taking f ′ = f , we will obtain Aut(f).
Every ϕ ∈ Hom(f, f ′) stabilizes the line {X = 0} and either fixes or

permutes the two point [0, 1,±1]. Thus ϕ has the form

ϕ =
(

1 0 0
γ α β
δ ±β ±α

)

with α2 6= β2,

where choosing the plus sign fixes [0, 1,±1] and choosing the minus
sign swaps them.
We compare the second and third coordinates of f ◦ ϕ and ϕ ◦ f ′,

f ◦ ϕ = [∗, γdX2 + αdXY + βdXZ, δeX2 ± βeXY ± αeXZ],
ϕ ◦ f ′ = [∗, γX2 + γY 2 − γZ2 + αd′XY + βe′XZ,

δX2 + δY 2 − δZ2 ± βd′XY ± αe′XZ]
Since the second and third coordinates of f ◦ ϕ have no Y 2 term, we
conclude that γ = δ = 0. Under this assumption, we find that

f ◦ ϕ = [X2 + (α2 − β2)(Y 2 − Z2), X(αdY + βdZ),±X(βeY + αeZ)],

ϕ ◦ f ′ = [X2 + Y 2 − Z2, X(αd′Y + βe′Z),±X(βd′Y + αe′Z)].

Hence ϕ ∈ Hom(f, f ′) if and only if

α2 − β2 = 1 and α(d− d′) = β(d− e′) = β(e− d′) = α(e− e′) = 0.

This leads to three cases.
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αβ 6= 0
Then we must have d = e = d′ = e′, i.e., f ′ = f and d = e. The

automorphism group of these maps is the set of all matrices of the form
(

1 0 0
0 α β
0 ±β ±α

)

satisfying α2−β2 = 1, which is easily seen to be isomorphic

to Gm ⋊ C2.
β = 0, α = ±1
Then d′ = d and e′ = e, i.e., f ′ = f , and we obtain exactly four

possible maps ϕ, namely the four maps in G2,2 that we already know
are in Aut(f).
α = 0, β = ±1
Then d′ = e and e′ = d, so the maps [X2 + Y 2−Z2, dXY, eXZ] and

[X2 + Y 2 − Z2, eXY, dXZ] are N(G2,2)-conjugate via the permutation
[X, Y, Z]→ [X,Z, Y ].
It remains to prove that deg(fn) = 2n, a task that we postpone to

Section 12, where we study the degree sequences of all of the maps
in this paper. This completes our analysis for maps of the form f =
[X2 + Y 2 − Z2, dXY, eXZ].
f = [Y 2 − Z2, XY, eXZ], e 6= 0
The iterates of f are explicitly described later in Proposition 16,

which in particular gives the stated results for deg(fn). To make our
computation of Aut(f) easier, we instead work with a PGL3-conjugate
of f . Thus we let

λ(X, Y, Z) = [2X, Y − Z, Y + Z]

and define

g(X, Y, Z) := fλ(X, Y, Z) =
[
Y Z,X(AY +BZ), X(BY + AZ)

]

with

A =
1 + e

2
and B =

1− e
2

.

We note that A2 −B2 = e. The advantage of g over f is the fact that
the critical locus of g is the union of the coordinate axes,

Crit(g) = {X = 0} ∪ {Y = 0} ∪ {Z = 0}.
As usual, we let g′ be another map of this form, with e′ in place of e,
and we let ϕ ∈ Hom(g, g′). Then ϕ leaves the union of the coordinate
axes invariant, from which we conclude that ϕ has the form

ϕ = π ◦ σ for some π ∈ S3 and some σ =
(

1 0 0
0 β 0
0 0 γ

)

∈ D.
For each of the six elements of S3 we need to compute the effect of π◦σ
on g. We let

S(X, Y, Z) = [X,Z, Y ] and T (X, Y, Z) = [Y, Z,X ]



30 MICHELLE MANES AND JOSEPH H. SILVERMAN

be generators for S3. Our task is simplified by the observation that S ∈
Aut(g) and S ∈ Aut(g′), so it suffices to take π ∈ {I, T, T 2}. For each
of these choices we compute the action on g,

gσ =

[

Y Z,X

(
1

βγ
AY +

1

β2
BZ

)

, X

(
1

γ2
BY +

1

βγ
AZ

)]

,

gTσ = [AXY + γBY Z, ∗, ∗],
gT

2σ = [AXZ + βBY Z, ∗, ∗].
We consider three cases:

e 6= ±1, AB 6= 0 In this case the fact that g′ has no XY or XZ in
its first coordinate rules out π = T or π = T 2.
On the other hand, for π = I we have

σ ∈ Hom(g, g′) ⇐⇒ βγ = A/A′ and β2 = γ2 = B/B′.

In particular, this can occur only if

0 = (βγ)2 − β2γ2 =

(
A

A′

)2

−
(
B

B′

)2

=
(AB′)2 − (A′B)2

(A′B′)2

=
1

(A′B′)2

((
1 + e

2
· 1− e

′

2

)2

−
(
1 + e′

2
· 1− e

2

)2
)

=
(e− e′)(1− ee′)

(A′B′)2
.

If e′ = e, i.e., if g′ = g, then we find that σ ∈ Aut(g) if and only
if βγ = β2 = γ2 = 1, so if and only if β = γ = ±1. This gives
two elements of Aut(g), and composing with S gives two additional
elements. These elements form the copy of C2

2 that we already know
exists in Aut(g). Further, if e′ = e−1, then A = eA′ and B = −eB′, so
we find that σ ∈ Hom(g, g′) if we take β =

√−e and γ = −β.
To recapitulate, we have shown that if e 6= ±1, then

Aut(g) =
〈(

1 0 0
0 −1 0
0 0 −1

)

,
(

1 0 0
0 0 −1
0 −1 0

)〉
∼= C2

2 ,

and that g′ is PGL3(K)-conjugate to g if and only if e′ ∈ {e, e−1}.
Undoing the conjugation by λ, we find that if e 6= ±1, then Aut(f) =
G2,2, and that f is N(G2,2)-conjugate to f ′ if and only if e′ ∈ {e, e−1}.
e = 1, A = 1, B = 0 In this case the map g is simply

g = [Y Z,XY,XZ].

It satisfies g2 = [X, Y, Z], and Aut(g) contains a copy of Gm in the
form of all maps [X, tY, t−1Z], and it contains S, so Gm⋊C2 ⊆ Aut(g).
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Since it is not needed for the proof of our main theorem, we leave for
the reader the proof that this inclusion is an equality.
e = −1, A = 0, B = 1 In this case the map g has the simple form

g = [Y Z,XZ,XY ],

and we observe that g is the map that we already analyzed in (c).
In particular, Aut(g) = S3G2,2 ∼= S4. This proves that Aut(f) ∼= S4,
in fact one can easily check that λ normalizes the group S3G2,2, so
Aut(f) = S3G2,2. �

We next give an explicit formula for the iterates of the family of
maps in Proposition 15(b).

Proposition 16. Let e ∈ K∗, and for k ≥ 0, let

Uk(Y, Z) = Y 2 − e2kZ2.

Then the iterates of the map f = [Y 2 −Z2, XY, eXZ] are given by the

formulas

fn(X, Y, Z)

=







[XU1U3 · · ·Un−1, Y U0U2 · · ·Un−2, e
nZU0U2 · · ·Un−2]

if n is even,

[U0U2 · · ·Un−1, XY U1U3 · · ·Un−2, e
nXZU1U3 · · ·Un−2]

if n is odd.

(a) If e2k 6= 1 for all odd integers k, then

deg(fn) = n + 1 for all n ≥ 0.

(b) If e2k = 1 for some odd integer k, then

f 2k(X, Y, Z) = [X, Y, Z].

Proof. We note that f =
[
U0(Y, Z), XY, eXZ]. The proof of the for-

mulas for fn is an easy induction on n, using the identity

Uk(WY, eWZ) = W 2Uk+1(Y, Z). (5)

This allows us to compute

f 2k+2(X, Y, Z) = f 2k+1
(
U0(Y, Z), XY, eXZ

)
definition of f ,

=
[
(U0U2 · · ·U2k)(XY, eXZ),

U0(Y, Z) ·XY · (U1U3 · · ·U2k−1)(XY, eXZ),

e2k+1 · U0(Y, Z) · eXZ · (U1U3 · · ·U2k−1)(XY, eXZ)
]

induction hypothesis,
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=
[
X2k+2(U1U3 · · ·U2k+1)(Y, Z),

U0(Y, Z) ·X2k+1 · Y (U2U4 · · ·U2k)(Y, Z),

e2k+2 · U0(Y, Z) ·X2k+1 · Z(U2U4 · · ·U2k)(Y, Z)
]

using (5).

Canceling X2k+1 gives the desired formula. The computation of f 2k+1

using the formula for f 2k is similar. This completes the proof of the
formulas for fn.
Since degUk(Y, Z) = 2, we see immediately from the formulas for fn

that deg(fn) ≤ n+ 1, with equality if and only if the coordinate func-
tions have no common factor. Since e 6= 0, we see that a common
factor occurs if and only if some odd index U2ℓ+1(Y, Z) has a factor in
common with some even index U2m(Y, Z). But

Res
(
U2ℓ+1(Y, Z), U2m(Y, Z)

)
= Res(Y 2 − e4ℓ+2Z2, Y 2 − e4mZ2)

= e8m(e2(2ℓ−2m+1) − 1)2.

Hence if e2 is not an odd-order root of unity, then there is no cancelation
and deg(fn) = n + 1. Finally, if e2 is an odd order root of unity, say
e4ℓ+2 = 1, then for all k ≥ 0 we have

Uk+2ℓ+1(Y, Z) = Y 2 − e2(k+2ℓ+1)Z2 = Y 2 − e2kZ2 = Uk(Y, Z).

This allows us to switch even index Uk’s with odd index Uk’s. In
particular, using this identity in the formula for f 4ℓ+2, we find that all
of the Uk factors cancel, leaving f 4ℓ+2 = [X, Y, Z]. �

9. Maps with an Automorphism of Order 4

In this section we classify maps in Rat22 that admit an automorphism
of order 4.

Proposition 17. Let K be an algebraically closed field of characteris-

tic 0, let G4 be the group described in Theorem 2, and let f ∈ Rat22(G4)ss
be a dominant map of degree 2 with finite automorphism group. Then f
is N(G4)-stable and one of the following holds :

(a) f is N(G4)-conjugate to a map of the form

fa,e := [aX2 + Z2, XY, Y 2 + eXZ] with a, e ∈ K.

The automorphism group of fa,e is given by

Aut(fa,e) = G4.
Two maps fa,e and fa′,e′ are N(G4)-conjugate if and only (a, e) =
(a′, e′).
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(b) f is N(G4)-conjugate to a map of the form5

fc := [Y Z,X2 + cZ2, XY ] with c ∈ K r {−1}.
The automorphism group of fc is given by6

Aut(fc) = G4 if c 6= ±1,
Aut(fc) ∼= S4 if c = 1.

Two maps fc and fc′ are N(G4)-conjugate if and only if cc′ = 1.

Proposition 18. Let K be an algebraically closed field of characteris-

tic 0, and let f ∈ Rat22 satisfy

Aut(f) ⊇
〈(

1 0 0
0 i 0
0 0 1

)〉

.

Then f is D-unstable.
Proof of Proposition 17. Let ζ = i to be a primitive 4’th root of unity,
so the map [X, iY,−Z] corresponds to the matrix τ2 defined in Sec-
tion 5. Table 3 with m = 2 and entries reduced modulo 4 is

X2 Y 2 Z2 XY XZ Y Z

X-coord 0 2 0 1 2 3
Y -coord 3 1 3 0 1 2
Z-coord 2 0 2 3 0 1

Hence the assumption that τ2 ∈ Aut(f) leads to the following four
families of maps:

f2,0 := [aX2 + bZ2, cXY, dY 2 + eXZ],

f2,1 := [aXY, bY 2 + cXZ, dY Z],

f2,2 := [aY 2 + bXZ, cY Z, dX2 + eZ2],

f2,3 := [aY Z, bX2 + cZ2, dXY ].

Conjugation by the permutation π(X, Y, Z) = [Z, Y,X ] ∈ N(G4) gives
fπ2,0 = [aX2+ bZ2, cXY, dY 2+ eXZ]π = [dY 2+ eXZ, cY Z, bX2+aZ2],

so π identifies the families f2,0 and f2,2. (One also easily checks that π
stabilizes each of the families f2,1 and f2,3.) Further, the family f2,1 has
infinite automorphism group,

Aut(f2,1) ⊇
{(

1 0 0
0 t 0
0 0 t2

)

: t ∈ Gm

}
∼= Gm.

It remains to consider the families f2,0 and f2,3.

5See Proposition 19 for explicit formulas for the iterates of fc and a detailed
description of its geometry. In particular, although Aut(f) is finite for c 6= −1, it
turns out that Aut(f2

c ) always contains a copy of Gm.
6In the excluded case c = −1, we have Aut(f

−1) ⊇ Gm ⋊ C2.
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In order for f2,0 to be dominant, we need c 6= 0. Table 4 tells us that

µO(1)(f2,0, Lk,ℓ) ≤ max{−k, 3k + 2ℓ,−k − 3ℓ}, (6)

with equality if bd 6= 0. Since

b = 0 =⇒ µO(1)(f2,0, Lk,ℓ) ≤ max{−k,−k − 3ℓ} (k,ℓ)=(1,0)−−−−−−→ −1,

d = 0 =⇒ µO(1)(f2,0, Lk,ℓ) ≤ max{−k, 3k + 2ℓ} (k,ℓ)=(1,−2)−−−−−−−→ −1,
our assumption that f is N(G4)-semistable tells us that we also have
bd 6= 0. We may thus conjugate f2,0 by

σ = [uX, vY, wZ] with (u6, v12, w3) = (bc−3, b−1c3d−6, b−1),

which with appropriate choice of roots puts f2,0 into the form f2,0 =
[aX2 + Z2, XY, Y 2 + eXZ]. And since (6) is an equality, the identity

14 · (−k) + 6 · (3k + 2ℓ) + 4 · (−k − 3ℓ) = 0

shows that µO(1)(f2,0, Lk,ℓ) > 0 for all (k, ℓ) 6= (0, 0). This completes
the proof that f2,0 of this form are N(G4)-stable.
In order for f2,3 to be dominant, we need ad 6= 0 and at least one

of b, c non-zero. Since fπ2,3 = [dY Z, cX2 + bY 2, aXY ] has the effect
of switching b and c (as well as switching a and d), we may assume
without loss of generality that b 6= 0. Then conjugation by [uX, vY, wZ]
with (u8, v8, w8) = (ab−2c−1, a−1b2d−3, a−3b−2d3) puts f2,3 in the form
f2,3 = [Y Z,X2 + cZ2, XY ]. Table 4 tells us that

µO(1)(f2,3, Lk,ℓ) =

{

max{2k,−2k + ℓ, 2k + 3ℓ,−2k − 2ℓ} if c 6= 0,

max{2k,−2k + ℓ,−2k − 2ℓ} if c = 0.

In both cases the identity

3 · (2k) + 2(−2k + ℓ) + (−2k − 2ℓ) = 0

shows that µO(1)(f2,3, Lk,ℓ) > 0 for all (k, ℓ) 6= (0, 0). This completes
the proof that f2,3 of this form are N(G4)-stable.

Computation of Aut(f2,0) for f2,0 = [aX2 + Z2, XY, Y 2 + eXZ]
To ease notation, we are going to drop the subscript on f . We

consider two maps

f = [aX2+Z2, XY, Y 2+eXZ] and f ′ = [a′X2+Z2, XY, Y 2+e′XZ]

and compute

Hom(f, f ′) :=
{
ϕ ∈ PGL3(K) : fϕ = f ′}.

The critical locus of f is

Crit(f) = {aeX3 − eXZ2 + 2Y 2Z = 0},
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and the indeterminacy locus of f is

I(f) =







∅ if ae 6= 0,
{
[1, 0, 0]

}
if a = 0,

{
[1, 0,±√−a]

}
if e = 0 and a 6= 0.

In particular, if ae 6= 0, then f is a morphism.
We assume that Hom(f, f ′) 6= ∅, and we let ϕ ∈ Hom(f, f ′).
We begin by computing Hom(f, f ′) in the generic case ae 6= 0.

Since ϕ sends I(f) to I(f ′), it follows that also a′e′ 6= 0. The criti-
cal locus of f is an irreducible cubic curve. Indeed, setting

E : aeX3 − eXZ2 + 2Y 2Z = 0 and O = [0, 1, 0],

we see that O is a flex point of the cubic, so (E,O) is an elliptic curve
with group law specified by the usual rule that distinct points P,Q,R ∈
E sum to O if and only if P,Q,R are colinear. Further, the elliptic
curve (E,O) has CM by Z[i], so Aut(E,O) ∼= Z[i]∗ = {±1,±i}, and
since the four maps in G4 induce automorphisms of (E,O), we see that

Aut(E,O) = G4.
And similarly for the elliptic curve (E ′,O′) associated to f ′.
We next observe that there are exactly four isomorphisms from (E,O)

to (E ′,O′), since if ψ1 and ψ2 are any two such isomorphisms, then
ψ−1
2 ◦ψ1 ∈ Aut(E,O) = G4. Explicitly, if we fix u, v ∈ K satisfying u4 =
a′/a and v2 = e/e′, then the four elements of Isom

(
(E,O), (E ′,O′)

)
are

ψ0(X, Y, Z) = [u2X, uvY, Z], ψ1(X, Y, Z) = [u2X, iuvY,−Z],
ψ2(X, Y, Z) = [u2X,−uvY, Z], ψ3(X, Y, Z) = [u2X,−iuvY,−Z].

Since these are diagonal maps in PGL3, we also note that

ψ ◦ α = α ◦ ψ for all α ∈ G4 and all ψ ∈ Isom
(
(E,O), (E ′,O′)

)
. (7)

The map ϕ ∈ Hom(f, f ′) sends Crit(f) to Crit(f ′), so ϕ(E) = E ′.
In other words, ϕ|E induces an isomorphism of genus 1 curves E → E ′.
(There is, however, no a priori reason that ϕ needs to send O to O′.)
Standard properties of elliptic curves [17, III.4.7] tell us that there is
an isogeny ψ : (E,O)→ (E ′,O′) and a point P0 ∈ E so that

ϕ(P ) = ψ(P + P0) = ψ ◦ TP0
(P ) for all P ∈ E,

where TP0
: E → E denotes the translation-by-P0 map. Further,

since ϕ is invertible on all of P2 and since translation by P0 is invertible
on E, we see that ψ is bijective, hence ψ ∈ Isom

(
(E,O), (E ′,O′)

)
is

one of the fours maps listed earlier.
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We next exploit the fact that ϕ ∈ PGL3(K) maps lines to lines.
Thus if P,Q,R ∈ E are distinct points satisfying P + Q + R = O,
then ϕ(P ), ϕ(Q), ϕ(R) are also colinear, so ϕ(P ) + ϕ(Q) + ϕ(R) = O′.
Using the fact that ψ is a group isomorphism, we compute

O′ = ϕ(P ) + ϕ(Q) + ϕ(R) = ψ(P + P0) + ψ(Q+ P0) + ψ(R + P0)

= ψ(P +Q +R) + 3ψ(P0) = ψ(O) + 3ψ(P0) = 3ψ(P0).

Hence ψ(P0) is a 3-torsion point of E ′, and since ψ is a group isomor-
phism, we conclude that P0 is a 3-torsion point of E.
We claim that P0 = O. To prove this claim, we assume that P0 6= O

and derive a contradiction. For an arbitrary α ∈ G4 ⊆ Aut(f), we note
that the composition α◦ϕ−1 ◦α−1 ◦ϕ is in Aut(f). On the other hand,
we can write this composition explicitly as

α ◦ ϕ−1 ◦ α−1 ◦ ϕ = α ◦ (ψ ◦ TP0
)−1 ◦ α−1 ◦ (ψ ◦ TP0

)

= α ◦ T−P0
◦ ψ−1 ◦ α−1 ◦ ψ ◦ TP0

= α ◦ T−P0
◦ α−1 ◦ ψ−1 ◦ ψ ◦ TP0

from (7),

= T−α(P0) ◦ TP0

= TP0−α(P0).

Our assumption that P0 is a non-trivial 3-torsion point implies that
P0 6= α(P0) for all α ∈ G4 r {1}, since for such α, the kernel of α − 1
consists of 2-torsion points. Hence the set

{
P0 − α(P0) : α ∈ G4

}

contains four distinct elements of E[3]; in particular, it contains gen-
erators of E[3]. We saw above that all of the translations TP0−α(P0) are
in Aut(f), so using the fact that Aut(f) is a group, we have proven
that

Aut(f) ⊃
{
TQ : Q ∈ E[3]

}
.

Thus Aut(f) contains a subgroup of type C3 × C3. This and the fact
that f is a degree 2 morphism contradicts Proposition 14, which con-
cludes the proof that P0 = O.
We now know that every ϕ ∈ Hom(f, f ′) has the form ϕ = ψ for

some ψ ∈ Isom
(
(E,O), (E ′,O′)

)
, i.e., Hom(f, f ′) consists of the four

maps listed earlier, so there is an integer m such that

ϕ(X, Y, Z) = [u2X, imuvY, (−1)mZ],
where we recall that u and v satisfy u4 = a′/a and v2 = e/e′. We
compute

fϕ = ϕ−1f ◦ ϕ(X, Y, Z) = [u2aX2 + u−2Z2, u2XY, u2v2Y 2 + u2eXZ]
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=

[

a′X2 + Z2,
a′

a
XY,

a′e

ae′
(Y 2 + e′XZ)

]

.

Comparing this to f ′ = [a′X2+Z2, XY, Y 2+e′XZ], we see that fϕ = f ′

if and only if a = a′ and e = e′, i.e., if and only if f ′ = f . This completes
the proof that

Hom(f, f ′) =

{

∅ if f 6= f ′,

G4 if f = f ′,

which completes proof of (a) in the case that ae 6= 0.
We next consider the case of maps with a = 0, i.e., maps of the form

f = [Z2, XY, Y 2 + eXZ].

These maps satisfy

I(f) =
{
[1, 0, 0]

}
and Crit(f) = {Z = 0} ∪ {eXZ = 2Y 2}.

Letting f ′ = [Z2, XY, Y 2 + e′XZ] be another such map, we conclude
that any ϕ ∈ Hom(f, f ′) fixes the point [1, 0, 0] and stabilizes the
line Z = 0. (This is true regardless of whether e = 0 and/or e′ = 0,
since ϕ preserves the multiplicities of components of Crit(f).) Thus ϕ

has the form ϕ =
(

1 α β
0 γ δ
0 0 ǫ

)

. Equating

f ◦ ϕ = [ǫ2Z2, γXY + δXZ + αγY 2 + (αδ + βγ)Y Z + βδZ2, ∗],
ϕ ◦ f ′ = [Z2 + αXY + βY 2 + βe′XZ, γXY + δY 2 + δe′XZ, ∗],

we see from the XY and Y 2 terms in the first coordinate that α = β =
0, and then the Y 2 term in the second coordinate gives δ = 0. Hence ϕ
is a diagonal matrix, and we have

[Z2, XY, Y 2 + e′XZ] = f ′ = fϕ = [ǫ2Z2, XY, γ2ǫ−1Y 2 + eXZ].

Therefore ϕ ∈ Hom(f, f ′) if and only if e = e′ and ǫ2 = 1 and γ2 = ǫ.
So if f = f ′, then we get the four maps in G4, and if f 6= f ′, then f
and f ′ are not conjugate.
It remains to consider the case of maps with a 6= 0 and e = 0, i.e.,

maps of the form

f = [aX2 + Z2, XY, Y 2] with a 6= 0.

These maps satisfy

Crit(f) = {Z = 0} ∪ {Y 2 = 0},
i.e., the critical locus of f consists of two lines, one with multiplicity 1
and one with multiplicity 2. Letting f ′ = [a′X2 + Z2, XY, Y 2] be
another such map, we conclude that any ϕ ∈ Hom(f, f ′) stabilizes the
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lines {Z = 0} and {Y = 0}, so ϕ has the form ϕ =
(
α β γ
0 δ 0
0 0 1

)

. Equating

the middle coordinates of

f ◦ ϕ = [∗ , αδXY + βδY 2 + γδY Z, ∗],
ϕ ◦ f ′ = [∗ , δXY, ∗],

and using the fact that δ 6= 0 (since ϕ is invertible), we see that β =
γ = 0. Hence ϕ is a diagonal matrix, and we have

[a′X2 + Z2, XY, Y 2] = f ′ = fϕ = [α2aX2 + Z2, α2XY, αδ2Y 2].

Therefore ϕ ∈ Hom(f, f ′) if and only if a = a′ and α2 = 1 and δ2 = α−1.
So if f = f ′, then we get the four maps in G4, and if f 6= f ′, then f
and f ′ are not conjugate.

Computation of Aut(f2,3) for f2,3 = [Y Z,X2 + cZ2, XY ]
To ease notation, we again drop the subscript on f . We consider two

such maps

f = [Y Z,X2 + cZ2, XY ] and f ′ = [Y Z,X2 + c′Z2, XY ],

and we compute Hom(f, f ′), where we suppose that Hom(f, f ′) 6= ∅.
Let ϕ ∈ Hom(f, f ′), and let γ =

√−c and γ′ =
√
−c′.

The indeterminacy locus of f consists of three points and the critical
locus of f consists of three lines (with multiplicity if c = 0),

I(f) =
{
[0, 1, 0], [±γ, 0, 1]

}
,

Crit(f) = {Y = 0} ∪ {X = γZ} ∪ {X = −γZ}.
The orbit portrait of Crit(f) is

{X = ±γZ} f−→ [1, 0,±γ] ∈ {Y = 0} f−→ [0, 1, 0] ∈ I(f),
and similarly for f ′. Suppose first that c 6= ±1. Then [1, 0,±γ] /∈
I(f), so the fact that the map ϕ ∈ Hom(f, f ′) sends the orbit portrait
of Crit(f) to the orbit portrait of Crit(f ′) implies that ϕ fixes the
line {Y = 0} and the point [0, 1, 0]. This means that ϕ has the form

ϕ =
(
s 0 t
0 1 0
u 0 v

)

∈ PGL3(K).

We are assuming that fϕ = f ′. We start by comparing the first and
third coordinates of f ◦ ϕ and ϕ ◦ f ′,

f ◦ ϕ = [uXY + vY Z, ∗ , sXY + tY Z],

ϕ ◦ f ′ = [tXY + sY Z, ∗ , vXY + uY Z].

Thus there is an ǫ ∈ K∗ such that (u, v, s, t) = (ǫt, ǫs, ǫv, ǫu), and this
in turn implies that u = ǫt = ǫ2u and v = ǫs = ǫ2v. The invertibility
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of ϕ implies that u and v are not both 0, so ǫ = ±1. Further, setting
u = ǫt and v = ǫs, the middle coordinates of f ◦ ϕ and ϕ ◦ f ′ look like

f ◦ ϕ = [∗, (s2 + ct2)X2 + 2st(1 + c)XZ + (t2 + cs2)Z2, ∗],
ϕ ◦ f ′ = [∗, X2 + c′Y 2, ∗].

Hence we must have

s2 + ct2 = ǫ, st(1 + c) = 0, t2 + cs2 = ǫc′.

This leads to two cases (since we are assuming for the present that
c 6= −1):

s = 0 =⇒ ǫc−1 = t2 = ǫc′ =⇒ cc′ = 1,

t = 0 =⇒ s2 = ǫ =⇒ c = c′.

We see that if f ′ 6= f , i.e., c′ 6= c, then we must have c′ = c−1 and
s = v = 0, and in this case we find that the permutation [Z, Y, Z] ∈
N(G4) is in Hom(f, f ′).
If c′ = c, i.e., we are computing Aut(f), then our assumption that

c2 6= 1 means that we must have t = u = 0 and s2 = ǫ = ±1. This
proves that

Aut(f) =
{(

s 0 0
0 1 0
0 0 ǫs

)

∈ PGL3(K) : ǫ = ±1 and s = ±
√
ǫ
}

= G4.

Next we consider the case that c = 1. This gives the map that
is labeled f4.2 in Example 7. It is shown in that example that f4.2
is PGL3-conjugate to the map f6.1 := [Y Z,XZ,XY ]. We proved in
Proposition 15(c) that Aut(f6.1) = S3G2,2 ∼= S4, and hence we find that
Aut(f4.2) ∼= S4. Explicitly, Aut(f4.2) is the subgroup of PGL3 given by
conjugating S3G2,2 by the inverse of the map β given in Example 7.
Finally, if c = −1, then a similar calculation shows that s and t need

only satisfy the single relation s2 − t2 = ǫ, so

Aut(f) ⊇
{(

s 0 t
0 1 0
ǫt 0 ǫs

)

∈ PGL3(K) :
ǫ = ±1 and
s2 − t2 = ǫ

}

∼= Gm ⋊ C2.

�

Proof of Proposition 18. Taking ζ = i to be a primitive 4’th root of
unity, we see that the map [X, iY, Z] is τ0. Then Table 3 with m = 0
and entries reduced modulo 4 is

X2 Y 2 Z2 XY XZ Y Z

X-coord 0 2 0 1 0 1
Y -coord 3 1 3 0 3 0
Z-coord 0 2 0 1 0 1
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Hence τ2 ∈ Aut(f) leads to the following four families of maps:

f0,0 := [aX2 + bZ2 + cXZ, dXY + eY Z, fX2 + gZ2 + hXZ],

f0,1 := [aXY + bY Z, cY 2, dXY + eY Z],

f0,2 := [aY ,0, bY 2],

f0,3 := [0, aX2 + bZ2 + cXZ].

For each family we use Table 4 to compute

µO(1)(f0,0, Lk,ℓ) ≤ max{−k, 3k + 2ℓ, k + ℓ,−3k − ℓ}
(k,ℓ)=(1,−2)−−−−−−−→ −1,

µO(1)(f0,1, Lk,ℓ) ≤ max{−ℓ, 2k,−ℓ,−2k − 2ℓ,−k} (k,ℓ)=(0,1)−−−−−−→ −1,

µO(1)(f0,2, Lk,ℓ) ≤ max{k − 2ℓ,−k − 3ℓ} (k,ℓ)=(0,1)−−−−−−→ −3,

µO(1)(f0,3, Lk,ℓ) ≤ max{−3k − ℓ, k + ℓ,−k} (k,ℓ)=(1,−2)−−−−−−−→ −1.
This shows that all of these maps are D-unstable. �

We now investigate more closely one of the families of maps appear-
ing in Proposition 17.

Proposition 19. Let f = [Y Z,X2+cZ2, XY ] be the map from Propo-

sition 17(b). Let R(X,Z) = X2+ cZ2 and S(X,Z) = cX2+Z2. Then

the iterates of f are given by the explicit formulas

f 2k(X, Y, Z) =
[
R(X, Y )kX,S(X, Y )kY,R(X, Y )kZ

]
,

f 2k+1(X, Y, Z) =
[
S(X, Y )kY Z,R(X, Y )k+1, S(X, Y )kXY

]
.

In particular, if c 6= ±1, then deg(fn) = 2n+ 1, while if c = ±1, then
f 2k = [X, (−1)kY, Z].
Let p(X, Y, Z) = [X,Z]. Then there is a commutative diagram

P2 f−−−→ P2



yp



yp

P1 [U,V ]→[V,U ]−−−−−−−→ P1

The second iterate f 2 = [X3 + cXZ2, cX2Y + Y Z2, X2Z + cZ3] has
infinte automorphism group,

Aut(f 2) ⊃
{(

1 0 0
0 t 0
0 0 1

)

: t ∈ Gm

}

.

Proof. We need to prove that

f 2k(X, Y, Z) =
[
RkX,SkY,RkZ

]
,
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f 2k+1(X, Y, Z) =
[
SkY Z,Rk+1, SkXY

]
.

The proof is by induction on k. The formulas are visibly correct for
k = 0. Assuming that the formula for f 2k is correct, we compute

f 2k+1(X, Y, Z) = f
(
f 2k(X, Y, Z)

)

= f(RkX,SkY,RkZ)

= [RkSkY Z,R2kX2 + cR2kZ2, RkSkXY ]

= [SkY Z,Rk+1, SkXY ],

which shows that the formula for f 2k+1 is correct. Similarly, assuming
that the formula for f 2k+1 is correct, we compute

f 2k+2(X, Y, Z) = f
(
f 2k+1(X, Y, Z)

)

= f(SkY Z,Rk+1, SkXY )

= [Rk+1SkXY, S2kY 2Z2 + cS2kX2Y 2, Rk+1SkY Z]

= [Rk+1X,Sk+1Y,Rk+1Z],

which shows that the formula for f 2k+2 is correct. This completes the
proof of the formulas for the iterates of f .
We now ask when the coordinates of fn have a common factor. It is

clear that neither X nor Y nor Z is a common factor, so any non-trivial
common factor must be a common factor of R and S. Since

Res(R, S) = Res(X2 + cZ2, cX2 + Z2) = (c2 − 1)2,

there is no common factor if c 6= ±1. Hence if c 6= ±1, then deg(fn) =
n + 1. On the other hand, if c = ±1, then S = ±R, so f 2k =
[X, (−1)kY, Z].
Finally, the commutativity of the diagram and verification that the

indicated matrices are in Aut(f 2) are trivial calculations. This com-
pletes the proof of Proposition 19. �

10. Maps with an Automorphism of Order 3

In this section we classify maps in Rat22 that admit an automorphism
of order 3. The classification that we give in Table 6 arises naturally
during the proof, but we note that later in Section 11 we will use
somewhat different normal forms in order to create the families as
described in Table 1.

Proposition 20. Let K be an algebraically closed field of characteris-

tic 0, let G3 be the group described in Theorem 2, and let f ∈ Rat22(G3)ss



42 MICHELLE MANES AND JOSEPH H. SILVERMAN

be a dominant map of degree 2 with finite automorphism group. Further

define a subgroup G3,2 ⊂ PGL3(K) by

G3,2 :=
〈(

1 0 0
0 ζ 0
0 0 ζ2

)

,
(

1 0 0
0 0 1
0 1 0

)〉
∼= S3.

Then f is N(G3)-conjugate to one of the maps in Table 6, where the

penultimate column indicates if the given maps are morphisms and the

last column describes when two maps of the given form are N(G3)-
conjugate to one another.7 Further, maps of Type C3(n) and C3(n

′)
for n 6= n′ are not N(G3)-conjugate.
Proposition 21. Let K be an algebraically closed field of character-

istic 0, let ζ be a primitive cube root of unity, and let f ∈ Rat22 be a

dominant rational map satisfying

Aut(f) ⊇
〈(

1 0 0
0 ζ 0
0 0 1

)〉

.

Then f is D-unstable.

Proof of Proposition 20. During the proof we will frequently use the
fact that N(G3) = S3D; see Lemma 11. The map [X, ζY, ζ2Z] generat-
ing G3 is the defined by the matrix τ2 in Section 5. Using Table 3 with
m = 2 and entries reduced modulo 3, we find that

X2 Y 2 Z2 XY XZ Y Z

X-coord 0 2 1 1 2 0
Y -coord 2 1 0 0 1 2
Z-coord 1 0 2 2 0 1

Hence assuming that τ2 ∈ Aut(f) leads to the following three families
of maps:

f := [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ],

f ′ := [aZ2 + bXY, cY 2 + dXZ, eX2 + gY Z],

f ′′ := [aY 2 + bXZ, cX2 + dXZ, eZ2 + gXY ].

Conjugating by the cyclic permutation π(X, Y, Z) = [Y, Z,X ] ∈
N(G3) gives

fπ = [eZ2 + gXY, aY 2 + bXZ, cX2 + dY Z],

fπ
2

= [cY 2 + dXZ, eX2 + gY Z, aZ2 + bXY ],

7In some cases we have given only the isomorphism class of Aut(f). But during
the proof of the proposition, we give an explicit description of Aut(f) as a subgroup
of PGL3(K).
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f Coeffs Aut(f) Mor? f ′ ∼ f

C3(1) : fb = [X2 + bY Z,Z2, Y 2], b ∈ K
G3,2 Yes b′ = b

C3(2) : fa,b = [aX2 + Y Z,XY, Y 2 + gXZ], a, g ∈ K not both 0
G3 No −

C3(3) : fb = [bY Z,Z2 +XY, Y 2], b ∈ K∗

G3 No −
C3(4) : fb,g = [bY Z,Z2 +XY, Y 2 + gXZ], b, g ∈ K∗

g 6= 1 G3 No (b′, g′) = (bg, g−1)
g = 1 G3,2 No −

C3(5) : fa,b = [aX2 − aY Z,Z2 −XY, bY 2 − bXZ], a, b ∈ K∗

a 6= 1 and b 6= 1 ∼= C3 No (a′, b′) = (b, a)
exactly one of a, b = 1 ∼= C3 ⋊ C2 No (a′, b′) = (b, a)

a = b = 1 ∼= S4 No −
C3(6) : fa,b := [aX2 + bY Z,Z2 +XY, Y 2], a, b ∈ K∗

G3 Yes −
C3(7) : fb,d,g = [X2 + bY Z,Z2 + dXY, Y 2 + gXZ],

b, d, g ∈ K∗, bdg 6= −1, 8
g 6= d G3 Yes −
g = d G3,2 Yes −

C3(8) : fc,e = [X2 + 2Y Z, cZ2 + 2cXY, eY 2 + 2eXZ], c, e ∈ K∗

(c, e) 6= (ζ3, ζ
2
3 ) and (ζ23 , ζ3) G3 Yes (c′, e′) = (e, c)

(c, e) = (ζ3, ζ
2
3 ) or (ζ

2
3 , ζ3)

∼= C7 ⋊ C3 Yes (c′, e′) = (e, c)

Table 6. Dominant degree 2 maps f ∈ Rat22(G3)ss

which shows that our three families are N(G3)-conjugates. It thus
suffices to analyze one of them, so we concentrate on

f(X, Y, Z) = [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ]. (8)

Using Table 4, we see that

µO(1)(f, Lk,ℓ) = max
{
a,d,g 6=0
︷︸︸︷

−k ,

b6=0
︷︸︸︷

2k ,

c 6=0
︷ ︸︸ ︷

2k + 3ℓ,

e 6=0
︷ ︸︸ ︷

−k − 3ℓ
}
,

where −k appears in the max if one or more of a, d, g is non-zero.
In Table 7, maps marked as being semi-stable are not stable. Also,

in the column marked a, d, g, the symbol 6= 0 means that at least one
of a, d, g is non-zero, while 0 means that all three values are 0.
To justify our assertion that the maps in Case 1 are stable, we use

the identity

(−k) + (2k + 3ℓ) + (−k − 3ℓ) = 0,
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Case a, d, g b c e stability

1 6= 0 ∗ 6= 0 6= 0 stable
2 6= 0 6= 0 6= 0 0 semi-stable
3 6= 0 6= 0 0 6= 0 semi-stable
4 6= 0 6= 0 0 0 semi-stable
5 0 ∗ ∗ ∗ unstable

Table 7. Semi-stability and stability conditions

which shows that

µO(1)(f, Lk,ℓ) = max{−k, 2k + 3ℓ,−k − 3ℓ} > 0 for all (k, ℓ) 6= (0, 0).

For Cases 2, 3 and 4 it is clear that µO(1) ≥ 0 due to the −k and 2k
terms in the max, but taking k = 0 and ℓ = ±1 gives a non-zero (k, ℓ)
pair with µO(1)(f, Lk,ℓ) = 0. Hence these cases give maps that are
semi-stable, but not stable. Finally, in Case 5 we have

µO(1)(f, Lk,ℓ) ≤ max{2k, 2k + 3ℓ,−k − 3ℓ} (k,ℓ)=(−2,1)−−−−−−−→ −1,
which shows that these maps are unstable. (We also remark that the
Case 5 map f = [bY Z, cZ2, eY 2] is not dominant, since its image is
contained in the conic b2Y Z = ceX2.)
Conjugating (8) by σ = [uX, vY, wZ] ∈ N(G3) yields the twist

fσ =

[

uaX2 +
vw

u
bY Z,

w2

uv
cZ2 + udXY,

v2

uw
eY 2 + ugXZ

]

. (9)

If e = 0 and c 6= 0, we can use the permutation [X,Z, Y ] ∈ N(G3)
that swaps c and e. The remainder of the proof is a case-by-case
analysis that depends on properties of the coefficients.
c = e = 0
The map

f(X, Y, Z) = [aX2 + bY Z, dXY, gXZ]

has the property that [X, tY, t−1Z] ∈ Aut(f) for every t, so Aut(f)
contains a copy of Gm.
c = 0 and e 6= 0
We have

f(X, Y, Z) = [aX2 + bY Z, dXY, eY 2 + gXZ].

The dominance of f implies that d 6= 0, and the semi-stability of f
implies that b 6= 0. Using the fact that bde 6= 0, we see from the twisting
formula (9) that an appropriate twist lets us take b = d = e = 1. So

f(X, Y, Z) = [aX2 + Y Z,XY, Y 2 + gXZ].
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The indeterminacy locus is

I(f) =

{{
[0, 0, 1]

}
if a 6= 0,

{
[0, 0, 1], [1, 0, 0]

}
if a = 0.

Suppose that ϕ ∈ Hom(f, f ′) fixes [0, 0, 1], which is forced if a 6= 0,

and is one of two possibilities if a = 0. Thus ϕ =

(
α β 0
γ δ 0
λ µ 1

)

. Comparing

ϕ ◦ f ′ = [∗, γ(a′X2 + Y Z) + δXY, ∗],
f ◦ ϕ = [∗, (αX + βY )(γX + δY ), ∗],

we see that γ = 0 because f ◦ ϕ has no Y Z term, and that βδ =
0 because ϕ ◦ f ′ has no Y 2 term. But γ = δ = 0 contradicts the

invertibility of ϕ, so β = 0. Hence ϕ =
(
α 0 0
0 δ 0
λ µ 1

)

. Next we look at the

first coordinates,

ϕ ◦ f ′ = [α(a′X2 + Y Z), ∗, ∗],
f ◦ ϕ = [a(αX)2 + (δY )(λX + µY + Z), ∗, ∗].

Since δ 6= 0, the lack of an XY term gives λ = 0 and the lack of a Y 2

term gives µ = 0. Hence ϕ is diagonal. Then

f ′ = fϕ = [α2aX2 + δY Z, α2XY, αδ2Y 2 + α2gXZ].

Normalizing on the XY term, this formula holds if and only if

(a, α−2δ, α−1δ2, g) = (a′, 1, 1, g′).

So if and only if f ′ = f and δ = α2 and δ2 = α. Hence α is a cube root
of unity and δ = α2, which gives the copy of G3 that we already know
is in Aut(f).
Next suppose that a = 0 and that ϕ ∈ Hom(f, f ′) swaps [0, 0, 1] and

[1, 0, 0]. Then f = [Y Z,XY, Y 2+ gXZ] and ϕ =
(

0 α β
0 1 0
γ δ 0

)

, and we have

ϕ ◦ f ′ = [∗, XY, ∗], f ◦ ϕ = [∗, (αY + βZ)Y, ∗].
This gives a contradiction, so even in the case that a = 0, we obtain
no new elements.
ce 6= 0
We see from the twisting formula (9) that an appropriate twist lets

us take c = e = 1, so

f(X, Y, Z) = [aX2 + bY Z, Z2 + dXY, Y 2 + gXZ].

Further, the semi-stablity of f tells us that at least one of a, d, g is non-
zero. Further, the permutation π = [X,Z, Y ] ∈ N(G3) conjugates f
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to

fπ = [aX2 + bY Z, Z2 + gXY, Y 2 + dXZ],

i.e., it swaps d and g. This gives two subcases: (1) d 6= 0; (2) d = g = 0.
ce 6= 0 and d = g = 0
Semi-stablity of f tells us that a 6= 0, and then a twist (9) lets us

set a = 1, so

f(X, Y, Z) = [X2 + bY Z, Z2, Y 2].

We observe that f is a morphism with critical set

Crit(f) = {XY Z = 0}.
We also observe that the permutation π = [X,Z, Y ] ∈ Aut(f). Let
ϕ ∈ Hom(f, f ′), so ϕ permutes the three lines in Crit(f). If ϕ swaps
the lines Y = 0 and Z = 0, then πϕ fixes them, so it suffices to analyze
the maps ϕ that fix the lines Y = 0 and Z = 0 and the maps ϕ that
satisfy {X = 0} → {Y = 0} → {Z = 0} → {X = 0}.
The maps fixing the lines Y = 0 and Z = 0 have the form ϕ =(
α β γ
0 δ 0
0 0 1

)

. Then

ϕ ◦ f ′ = [α(X2 + b′Y Z) + βZ2 + Y 2, δZ2, Y 2],

f ◦ ϕ = [(αX + βY + γZ)2 + bδY Z, Z2, δ2Y 2].

Looking at the XY and XZ terms in the first coordinate tells us that
αβ = αγ = 0. The invertibility of ϕ implies that α 6= 0, so β = γ = 0,
i.e., ϕ is diagonal. Then

f ′ = fϕ = [αδX2 + α−1δ2bY Z, Z2, δ3Y 2],

so we need δ3 = αδ = 1 and b′ = α−1δ2b. But the first conditions imply
that α−1δ2 = δ3 = 1, so b′ = b, and we recover the three maps in G3
that we already knew were in Aut(f). Composing with π gives a copy
of G3,2 ∼= S3 sitting in Aut(f).
Next suppose that ϕ cyclically permutes the lines XY Z = 0 as

described earlier. Then ϕ =
(

0 0 α
β 0 0
0 γ 0

)

, and

fϕ = [γ3Y 2, β3X2, ∗].
This cannot possibly equal f ′ = [X2 + bY Z, ∗, ∗].
dce 6= 0
In this case we can twist using (9) to make d = 1, so

f(X, Y, Z) = [aX2 + bY Z, Z2 +XY, Y 2 + gXZ],

and the assumed dominance of f tells us that a and b are not both 0.
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We first determinate when f is a morphism. Suppose that [x, y, z] ∈
I(f). Then

ax2 = −byz, z2 = −xy, y2 = −gxz, (10)

and multiplying these three equations yields a(xyz)2 = −bg(xyz)2. So
either xyz = 0 or a = −bg. We start with the former and observe:

x = 0 =⇒ z = 0 =⇒ y = 0 →←,
y = 0 =⇒ z = 0 =⇒ ax2 = 0 =⇒ a = 0,

z = 0 =⇒ y = ax2 = 0 =⇒ a = 0.

Hence I(f) ∩ {XY Z = 0} is empty if a 6= 0, and it contains the point
{
[1, 0, 0]

}
if a = 0.

Next suppose that xyz 6= 0 and a = −bg. If a = 0, then necessarily
g = 0 (since we cannot have a and b both 0). But then y = 0, which
contradicts the case that we are studying. On the other hand, if g 6= 0,
then the solutions to (10) with xyz 6= 0 are the points of the form
[1,−γ2, γ] with γ3 = −g. This completes the proof that

I(f) =







∅ if a 6= 0 and a 6= −bg,
{
[1, 0, 0]

}
if a = 0,

{
[1,−γ2, γ] : γ3 = −g

}
if a = −bg 6= 0.

We also compute the critical locus

Crit(f) = {agX3 + bY 3 + bgZ3 − (4a+ bg)XY Z = 0}.
dce 6= 0 and a = 0
We note that since a = 0, we must have b 6= 0. The map f has the

form

f(X, Y, Z) = [bY Z, Z2 +XY, Y 2 + gXZ],

and its indeterminacy locus is a single point, I(f) =
{
[1, 0, 0]

}
. Fur-

ther, the critical locus of f is the cubic curve

Crit(f) = {Y 3 + gZ3 − gXY Z = 0}.
If g 6= 0, then Crit(f) is a nodal cubic with node [1, 0, 0], while if g =
0, then Crit(f) is the triple line Y 3 = 0. We consider these cases
separately.
dce 6= 0 and a = g = 0
We are now in the case that f(X, Y, Z) = [bY Z, Z2+XY, Y 2], I(f) =

{
[1, 0, 0]

}
, and Crit(f) = {Y = 0}. Any ϕ ∈ Hom(f, f ′) maps I(f)

and Crit(f) to I(f ′) and Crit(f ′), so must have the form ϕ =
(

1 µ λ
0 α 0
0 γ δ

)

.
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Comparing the first coordinates of

ϕ ◦ f ′ =
[
b′Y Z + µ(Z2 +XY ) + λY 2, ∗, ∗

]
,

f ◦ ϕ =
[
b(αY )(γY + δZ), ∗, ∗

]
,

the lack of a Z2 term in the latter forces µ = 0. We also see that
b′ = αδb and λ = bδ. Setting µ = 0 gives

ϕ ◦ f ′ =
[
∗, α(Z2 +XY ), ∗

]
,

f ◦ ϕ =
[
∗, (γY + δZ)2 + (X + λZ)(αY ), ∗

]
.

The lack of a Y 2 term in the former forces γ = 0, and thus

ϕ ◦ f ′ =
[
b′Y Z + λY 2, αZ2 + αXY, δY 2

]
,

f ◦ ϕ =
[
αδbY Z, δ2Z2 + αXY + αλY Z, α2Y 2

]
.

The lack of a Y 2 term in the first coordinate forces λ = 0, so ϕ is
diagonal, and then comparing the remaining terms, we see that

ϕ ◦ f ′ = f ◦ ϕ ⇐⇒ [b′, α, α, δ] = [αδb, δ2, α, α2].

Hence ϕ ◦ f ′ = f ◦ ϕ if and only if α3 = δ3 = 1 and δ = α2 and b′ = b,
which completes the proof (in this case) that b is a N(G3) invariant and
that Aut(f) ∼= C3.
dceg 6= 0 and a = 0
We are working with maps of the form f(X, Y, Z) = [bY Z, Z2 +

XY, Y 2 + gXZ]. As in the previous case, we have I(f) =
{
[1, 0, 0]

}
,

but now the critical locus is a nodal cubic curve,

C : Y 3 + gZ3 − gXY Z = 0,

with node at [1, 0, 0]. Let ϕ ∈ Hom(f, f ′). Then ϕ fixes [1, 0, 0], and
also induces an isomorphism of C → C ′. In particular, the two tangent
lines at the nodes form a ϕ-invariant set, so ϕ either leaves each of the
lines Y Z = 0 invariant, or it swaps them.
Suppose first that it leaves them invariant. Then ϕ has the form

ϕ =
(
α β γ
0 δ 0
0 0 1

)

and we find that

ϕ ◦ f ′ = [∗, ∗, Y 2 + g′XZ],

f ◦ ϕ =
[
∗, ∗, δ2Y 2 + g(αX + βY + γZ)Z

]
.

The lack of Y Z and Z2 monomials and the assumption that g 6= 0
gives β = γ = 0. Hence ϕ is diagonal, which yields

fϕ = [α−1δbY Z, δ−1Z2 + αXY, δ2Y 2 + αgXZ].

Therefore

f ′ = fϕ ⇐⇒ [α−1δb, δ−1, α, δ2, αg] = [b′, 1, 1, 1, g′].
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The middle three coordinates give δ−1 = α = δ2, which is equivalent to
α3 = δ3 = 1 and δ = α2. Then the other coordinates force b′ = b and
g′ = g, so we obtain only the three maps in Aut(f) that we already
knew.
Next we consider the case that ϕ swaps the nodal tangent lines,

which means that ϕ has the form ϕ =
(
α β γ
0 0 δ
0 1 0

)

. Then

ϕ ◦ f ′ = [∗, ∗, Z2 +XY ],

f ◦ ϕ =
[
∗, ∗, (δZ)2 + g(αX + βY + γZ)Y

]
.

The lack of Y 2 and Y Z monomials (and the fact that g 6= 0) tells us
that β = γ = 0. Then

fϕ = [α−1δbY Z, δ2Z2 + αgXY, δ−1Y 2 + αXZ],

so f ′ = fϕ if and only if

[α−1δb, δ2, αg, δ−1, α] = [b′, 1, 1, 1, g′].

A bit of algebra shows that this last equality is equivalent to the fol-
lowing four conditions:

g′ = g−1, b′ = bg, δ3 = 1, α = (δg)−1.

So first we find that f ′ 6= f is N(G3)-conjugate to f if and only if
(b′, g′) = (bg, g−1). And second, we find that Aut(f) has elements of
this form if and only if g = 1, in which case taking δ3 = 1 and α = gδ2

gives three additional elements, making Aut(f) isomorphic to C3⋊C2.
adce 6= 0 and a = −bg

In this case our maps look like

f(X, Y, Z) = [−bgX2 + bY Z, Z2 +XY, Y 2 + gXZ].

To make our computation notationally less cumbersome, we twist by
[uX, vY, wZ] with w = g−1/3, v = 1, and u = −w2. Then f has the
form

f(X, Y, Z) = [bgX2 − bgY Z, Z2 −XY, gY 2 − gXZ].
The indeterminacy locus consists of three points,

I(f) =
{
[1, ρ, ρ2] : ρ ∈ µ3

}
.

We make another change of variables to move the points in I(f) to
the standard basis vectors. Thus we let ζ be a primitive cube root of

unity and U =

(
1 1 1
1 ζ ζ2

1 ζ2 ζ

)

. Then fU has indeterminacy locus

I(fU) =
{
[1, 0, 0], [0, 1, 0], [0, 0, 1]

}
.
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To ease notation, we let F = fU . Letting π = ζ−1, a short calculation
shows that F has the form

F (X, Y, Z) = [AXY +BXZ + CY Z,BXY + CXZ + AY Z,

CXY + AXZ +BY Z],

where

A = πbg − (2π + 3)g + (π + 3),

B = πbg + (π + 3)g − (2π + 3),

C = πbg + πg + π.

This system of linear equations relating (A,B,C) to (bg, g, 1) has de-
terminant 27, so A,B,C are not all 0. Further, some linear algebra
yields

A = B ⇐⇒ g = 1,

A = B = 0 ⇐⇒ b = g = 1.

Momentarily writing F = FA,B,C to indicate the dependence on the
coefficients, we observe that conjugation by the permutations

σ(X, Y, Z) := [Z,X, Y ] and τ(X, Y, Z) := [Y,X, Z]

has the effect

F σ
A,B,C = FA,B,C and F τ

A,B,C = FB,A,C .

Thus σ ∈ Aut(FA,B,C) and τ ∈ Hom(FA,B,C , FB,A,C). In particular,
if A = B, then τ ∈ Aut(FA,B,C).
Let ϕ ∈ Hom(F, F ′). Then ϕ permutes the points in I(F ) = I(F ′).

Suppose first that ϕ fixes the three points in I(F ), so ϕ =
(

1 0 0
0 β 0
0 0 γ

)

is a

diagonal matrix. Then

F ϕ = [βAXY + γBXZ + βγCY Z,BXY + β−1γCXZ + γAY Z,

βγ−1CXY + AXZ + βBY Z],

so F ′ = F ϕ if and only if

[A′, A′, A′, B′, B′, B′, C ′, C ′, C ′]

= [A, βA, γA,B, βB, γB, βγC, β−1γC, βγ−1C].

We first observe that

A 6= 0 =⇒ [A′, A′, A′] = [A, βA, γA] =⇒ β = γ = 1,

B 6= 0 =⇒ [B′, B′, B′] = [B, βB, γB] =⇒ β = γ = 1.
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Hence if either A or B is non-zero, then β = γ = 1 and ϕ is the identity
matrix and F = F ′.
On the other hand, if A = B = 0, then we have the single map

[Y Z,XZ,XY ], and we already computed in Proposition 15(c) that

Aut([Y Z,XZ,XY ]) = S3G2,2 ∼= S4.

Using the fact that σ ∈ Aut(FA,B,C) together with the fact that
τ ∈ Aut(FA,B,C) if and only if A = B, we have proven that

{
ϕ ∈ Aut(FA,B,C) : ϕ leaves I(FA,B,C) invariant

}

⊇







〈σ〉 ∼= C3 if A 6= B,

〈σ, τ〉 = S3 if A = B 6= 0,

S3G2,2 ∼= S4. if A = B = 0.

(11)

And further, if FA′,B′,C′ 6= FA,B,C , then
{
ϕ ∈ Hom(FA,B,C ,FA′,B′,C′) : ϕ leaves I(FA,B,C) invariant

}

⊇
{

∅ if (A′, B′) 6= (B,A),

{τ, τσ, τσ2} if (A′, B′) = (B,A).
(12)

Next suppose that ϕ ∈ Hom(F, F ′) induces a cyclic permutation of
the three points in I(F ). Then σiϕ fixes I(F ) for some i ∈ {1, 2},
and we also know that σ ∈ Aut(F ), so σiϕ ∈ Hom(F, F ′). It follows
that we get no new elements of Aut(F ) beyond those already described
in (11), and we get no new possibilities for Hom(F, F ′).
Finally, suppose that ϕ induces a transposition on the set I(F ). Then

for an appropriate choice of i ∈ {0, 1, 2}, the map τσiϕ fixes I(F ).
Hence τσiϕ is one of the maps described by (11) (if F ′ = F ) or by (12)
(if F ′ = F ), and in all cases we see that ϕ is already included in the
list of maps in (11) or (12).
adce 6= 0 and a 6= −bg

Our map looks like

f(X, Y, Z) = [aX2 + bY Z, Z2 +XY, Y 2 + gXZ].

It is a morphism, and its critical locus is the cubic curve

gX3 + bY 3 + bgZ3 − (4a+ bg)XY Z = 0.

We consider various subcases depending on whether b and/or g van-
ishes.
adce 6= 0 and b = 0
Our map looks like

f(X, Y, Z) = [aX2, Z2 +XY, Y 2 + gXZ].
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It is a morphism, and its critical locus is the reducible cubic curve

gX3 − 4aXY Z = 0.

If g 6= 0, then Crit(f) is the union of the line X = 0 and a conic, while
if g = 0, then Crit(f) is the union of the three lines XY Z = 0.
Suppose first that ϕ ∈ Hom(f, f ′) fixes the line X = 0 (which is

necessary if g 6= 0). Then ϕ has the form ϕ =
(

1 0 0
λ α β
µ γ δ

)

. We note that

ϕ ◦ f ′ has no Y Z monomials, while

f ◦ ϕ = [· · · , 2γδY Z + · · · , 2αβY Z + · · · ].
Hence αβ = γδ = 0. The non-singularity of ϕ precludes some possibil-
ities, so either α = δ = 0 or β = γ = 0.
Suppose first that β = γ = 0. Then

ϕ ◦ f ′ = [· · · , no XZ monomial, no XY monomial],

f ◦ ϕ = [· · · , 2µδXZ + · · · , 2λαXY + · · · ].
The non-singularity of ϕ forces αδ 6= 0, so we find that µ = λ = 0, i.e.,
the matrix ϕ is diagonal. Then

fϕ = [aX2, α−1δ2Z2 +XY, α2δ−1 + gXZ],

so f ′ = fϕ if and only if

[a′, 1, 1, 1, g′] = [a, α−1δ2, 1, α2δ−1, g].

This occurs if and only if (a′, g′) = (a, g) and α3 = δ3 = 1 and δ = α2.
So we find only the three elements of Aut(f) that we already had.
Next suppose that α = δ = 0. Then

ϕ ◦ f ′ = [· · · , no XY monomial, no XZ monomial],

f ◦ ϕ = [· · · , 2µγXY + · · · , 2λβXZ + · · · ].
The non-singularity of ϕ tells us that βγ 6= 0, so λ = µ = 0. Then

fϕ = [aX2, γ−1β2Z2 + gXY, β−1γ2Y 2 +XZ].

Hence f ′ = fϕ if and only if

[a′, 1, 1, 1, g′] = [a, γ−1β2, g, β−1γ2, 1].

This forces g′ = g and a = a′g and a′ = ag′, which combine to give g =
g′ = ±1. Further β3 = γ3 and γ2 = gβ. Hence β6 = γ6 = (gβ)3 = gβ3,
so β3 = g.
Thus if g = 1, then f ′ = f and Aut(f) contains three additional

elements corresponding to taking β ∈ µ3 and γ = β2, while if g = −1,
then we find that the maps fa,−1 and f−a,−1 are PGL3(K)-conjugate.
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To recapitulate, if g 6= 0, then

Aut(f) =







〈( 1 0 0
0 ζ 0
0 0 ζ2

)〉

= G3 if g 6= 1,
〈( 1 0 0

0 ζ 0
0 0 ζ2

)

,
( 1 0 0

0 0 ζ
0 ζ2 0

)〉
∼= C3 ⋊ C2 if g = 1,

Further, distinct maps fa,g and fa′,g′ are N(G3)-conjugate if and only
if g = g′ = −1 and a′ = −a.
If g = 0, then Aut(f) contains the above maps, but we must also

consider the possibility that ϕ ∈ Aut(f) non-trivially permutes the
three lines XY Z = 0 in Crit(f), which is the following case.
adce 6= 0 and b = g = 0
Our map looks like

f(X, Y, Z) = [aX2, Z2 +XY, Y 2],

and we are looking for maps ϕ ∈ Hom(f, f ′) that induce a non-trivial
permutation of the lines XY Z = 0. Such a ϕ has the form ϕ = ψπ
with π ∈ S3 and ψ diagonal. The map fψ has the form FA,B,C :=
[AX2, BZ2+CXY,DY 2] for some non-zero A,B,C,D. We claim that
a non-trivial permutation π ∈ S3 cannot take a map of the form FA,B,C
to another map of the same form. Lacking a clever argument, we simply
compute the effect of each permutation:

π = [Y,X, Z] F π
A,B,C = [BZ2 + CXY,AY 2, DX2],

π = [Z, Y,X ] F π
A,B,C = [DY 2, BX2 + CZY,AZ2],

π = [X,Z, Y ] F π
A,B,C = [AX2, DZ2, BY 2 + CXZ],

π = [Y, Z,X ] F π
A,B,C = [DZ2, AY 2, BX2 + CY Z],

π = [Z,X, Y ] F π
A,B,C = [BY 2 + CXZ,DX2, AZ2].

This completes the proof that we obtain no new maps if b = g = 0.
abdce 6= 0 and g = 0
Our map looks like

f(X, Y, Z) = [aX2 + bY Z, Z2 +XY, Y 2].

Its critical locus is the singular irreducible cubic curve

bY 3 + bgZ3 − 4aXY Z = 0

having a node at [1, 0, 0], and the two tangent lines at the node are
Y Z = 0. Hence any ϕ ∈ Hom(f, f ′) must either fix or swap the
two lines Y Z = 0 (which will also force it to fix their intersection
point [1, 0, 0]).
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Suppose first that it fixes the nodal tangent lines. Then ϕ has the

form ϕ =
(

1 λ ν
0 β 0
0 0 γ

)

, and we find that

ϕ ◦ f ′ = [· · · , βZ2 + βXY, · · · ],
f ◦ ϕ = [· · · , γ2Z2 + βXY + βλY 2 + βνY Z, · · · ].

The absence of Y 2 and Y Z terms, together with the invertibility of ϕ
(which implies that β 6= 0) forces λ = ν = 0, i.e., ϕ is diagonal. Then

fϕ = [aX2 + βγbY Z, β−1γ2Z2 +XY, β2γ−1Y 2],

so f ′ = fϕ if and only if

[a′, b′, 1, 1, 1] = [a, βγb, β−1γ2, 1, β2γ−1],

so if and only if a′ = a and b′ = βγb and β−1γ2 = β2γ−1 = 1. The last
condition is equivalent to β3 = 1 and γ = β2, so in particular βγ = 1.
Hence f ′ = fϕ if and only if f ′ = f and ϕ is one of the three maps that
we already knew was in Aut(f).
Next suppose that ϕ swaps the nodal tangent lines. Then ϕ has the

form ϕ =
(

1 λ ν
0 0 β
0 γ 0

)

, and we find that

ϕ ◦ f ′ = [· · · , · · · , γZ2 + γXY ],

f ◦ ϕ = [· · · , · · · , β2Z2].

The lack of an XY monomial forces γ = 0, contradicting the in-
vertibility of ϕ. Hence there are no ϕ ∈ Hom(f, f ′) that swap the
lines XY = 0.
abcdeg 6= 0 and ace 6= −bdg

We have resumed using the general form

f(X, Y, Z) = [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ],

so the earlier dehomogenized condition a 6= −bg for f to be a morphism
becomes ace 6= −bdg.
It is clear that every diagonal map ϕ ∈ PGL3 preserves the form

of f , as does the transposition [X,Z, Y ]. We are going to prove that
the full set of elements of PGL3 that preserves this general form is the
the group generated by diagonal maps and this transposition, except
for one exceptional case
The map f is a morphism, and its critical locus is the cubic curve

Crit(f) : adgX3 + bdeY 3 + bcgZ3 − (bdg + 4ace)XY Z = 0. (13)

Conjugating by ψ := [uX, vY, wZ] gives

fψ = [uaX2 + u−1vwbY Z, v−1w2cZ2 + udXY, v2w−1eY 2 + ugXZ]
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with critical locus

Crit(fψ) : u3adgX3+ v3bdeY 3+w3bcgZ3−uvw(bdg+4ace)XY Z = 0.

So taking u3 = (adg)−1, v3 = (bde)−1, and w3 = (bcg)−1, the critical
locus becomes

Crit(fψ) = {X3 + Y 3 + Z3 −∆XY Z = 0},

where ∆ = (ace)−1/3(bdg)−2/3(bdg+4ace). A short computation shows
that the cubic curve Crit(fψ) is non-singular if and only if ∆3 6= 27.
(As we will see later, if ∆3 = 27, then Crit(fψ) is a union of three
lines.) Using the formula for ∆, we observe that

∆3 − 27 = (bdg + 4ace)3 − 27(ace)(bdg)2

= (bdg + ace)(bdg − 8ace)2.

We have ruled out bdg = −ace, so we are reduced to two cases, which
we consider in turn.
abcdeg 6= 0 and bdg 6= −ace and bdg 6= 8ace
The Hessian of X3 + Y 3 + Z3 −∆XY Z is

det
(

6X −∆Z −∆Y
−∆Z 6Y −∆X
−∆Y −∆X 6Z

)

= −6∆2(X3 + Y 3 + Z3) + 2(108−∆3)XY Z.

The flex points of the smooth cubic curve Crit(fψ) are thus the roots
of (27 − ∆3)XY Z = 0. Our assumptions imply that ∆3 6= 27, so the
flex points are the nine points with XY Z = 0, i.e., the points

Pi :=







[1,−ζ i, 0], for i = 0, 1, 2,

[0, 1,−ζ i], for i = 3, 4, 5,

[−ζ i, 0, 1], for i = 6, 7, 8,

where we recall that ζ is a primitive cube root of unity.
To ease notation, we let F = fψ, and we write F as

F (X, Y, Z) = [AX2 +BY Z,CZ2 +DXY,EY 2 +GXZ], (14)

where A, . . . , G are monomials in fractional powers of a, . . . , g. More
precisely, tracking through their dependence on a, . . . , g, they satisfy
the multiplicative relations

AD = BC, AG = BE, BCG = 1,
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and if a, . . . , g are generic, these are the only such relations that they
satisfy.8 We also let

Γ = {flex points of Crit(F )} = {P0, P1, . . . , P8}.
Suppose that ϕ ∈ Hom(F, F ′). Then ϕ permutes the nine points

in Γ, but not entirely independently. The line through any two points
in Γ contains a unique third point of Γ, so the ϕ-images of two points
in Γ determines the ϕ-image of a third point. So if we choose three
non-colinear points, for example P0, P1, P3, then the map ϕ is uniquely
determined by the images of these three points, where those images
must be chosen from among the non-colinear triples in Γ. Unfortu-
nately, there are a large number of possibilities.
For each triple of indices (i, j, k) such that Pi, Pj, Pk are not co-linear,

we let ϕ ∈ PGL3 be a general map satisfying

ϕ(P0) = Pi, ϕ(P1) = Pj , ϕ(P3) = Pk.

Thus ϕ has the form

ϕ =
( ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

)(
1 0 0
0 β 0
0 0 γ

)(
1 1 0
−1 −ζ 1
0 0 −1

)−1

,

where the matrix with ∗ entries is the matrix whose columns are the
point Pi, Pj, Pk, and where β, γ ∈ K∗ are arbitrary. (If necessary,
we may write ϕi,j,k,β,γ to indicate the dependence of ϕ on the various
parameters.)
We compute F ϕ and pick out the coefficients of the 12 monomials

that do not appear in F ′. Each of those coefficients is a linear combi-
nation of A, . . . , G, with coefficients that are polynomials in β and γ.
We accumulate this data in the form












coeff of Y 2 in X-coord of Fϕ

coeff of Z2 in X-coord of Fϕ

coeff of XY in X-coord of Fϕ

coeff of XZ in X-coord of Fϕ

coeff of X2 in Y -coord of Fϕ

coeff of Y 2 in Y -coord of Fϕ

coeff of XZ in Y -coord of Fϕ

coeff of Y Z in Y -coord of Fϕ

coeff of X2 in Z-coord of Fϕ

coeff of Z2 in Z-coord of Fϕ

coeff of XY in Z-coord of Fϕ

coeff of Y Z in Z-coord of Fϕ












=Mi,j,k





A
B
C
D
E
G



 , (15)

where Mi,j,k is a 12-by-6 matrix whose entries are polynomials in the
ring Q(ζ)[β, γ]. (At times we may write Mi,j,k(β, γ) to indicate the
dependence of Mi,j,k on β and γ.) The fact that F ϕ is not allowed
to have any of the indicated monomials implies that (15) is the zero

8These formulas will explain why, when we compute the maps ϕ ∈ PGL3 that
preserve the form (14), we don’t get all diagonal matrices. More precisely, the effect
of the diagonal matrix with entries α, β, γ is to multiply AB−1C−1D by (α/γ)3 and
to multiply BCG by γ3, so α and γ must be cube roots of 1.
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vector, and then our assumption that A, . . . , G are all non-zero implies
that the matrix Mi,j,k has rank at most 5. (Indeed, it implies the
far stronger statement that the column null space of Mi,j,k contains a
vector whose coordinates are all non-zero.)
Unfortunately, there are 432 valid i, j, k triples, and even exploiting

various symmetries, there are too many cases to check by hand. So we
give a computer assisted proof via the following algorithm.

Step 1: For each valid choice of i, j, k, we computed the determinants
of various of the 6-by-6 minors of Mi,j,k and set them equal to 0. This
gave many simultaneous equations for the two unknowns β and γ. We
used resultants on pairs of equations to eliminate γ, and then took the
gcd of pairs of equations with respect to β. Taking the square-free part,
we obtained a separable polynomial Πi,j,k(β) satisfying:

rankMi,j,k(β, γ) ≤ 5 for some β, γ ∈ K∗ =⇒ Πi,j,k(β) = 0.

The output from our program showed that

Πi,j,k(β)
∣
∣
∣ (β6 − 1)

(

β +
1

2

)

.

Indeed, the roots of Πi,j,k(β) are 6’th roots of unity except in the six
cases M6,8,0, M7,8,0,M6,8,1, M7,8,1, M6,8,2, M7,8,2, for which Πi,j,k(β) also
had β = −1

2
as a root.

Step 2: Loop through all valid i, j, k and all β0 ∈ µ6 ∪ {−1
2
}. We let

r = ri,j,k(β0, γ) := rankMi,j,k(β0, γ)

denote the rank ofMi,j,k(β0, γ) over the function field K(γ), i.e., where
γ is an indeterminate. We also write ri,j,k(β0, γ0) for the rank of the
matrix when we set γ = γ0.

Step 2.1: If ri,j,k(β0, γ) ≤ 5, compute the null space of Mi,j,k(β0, γ)
over the function field C(γ). We found that there are 144 choices
of (i, j, k, β0) for which ri,j,k(β0, γ) ≤ 5, and in every case, every vector
in Null

(
Mi,j,k(β0, γ)

)
has at least one coordinate equal to 0.

Example 22. We illustrate with an example. Let k ∈ {3, 4, 5}. Then
r0,1,k(1, γ) = 3, i.e., the matrixM0,1,k(1, γ) has rank 3 over the function
field C(γ). One then checks that every vector

[A, . . . , G] ∈ NullC(γ)
(
M0,1,k(1, γ)

)

has B = E = 0. However, if we further specialize by setting γ = 1,
then M0,1,k(1, 1) is the 0-matrix. The associated elements of PGL3 are
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the diagonal matrices

ϕ0,1,3,1,1 =
(

1 0 0
0 1 0
0 0 1

)

, ϕ0,1,4,1,1 =
(

1 0 0
0 1 0
0 0 ζ

)

, ϕ0,1,5,1,1 =
(

1 0 0
0 1 0
0 0 ζ2

)

.

Step 2.2: LetM ′
i,j,k(β0, γ) be a 12-by-r matrix whose column span over

the function field C(γ) is the same as the column span of Mi,j,k(β0, γ).
(In most cases we have r = 6 and M ′ = M , but as noted in Step 2.1,
there are 144 cases with r ≤ 5.)
We computed the determinants of various r-by-rminors ofM ′

i,j,k(β0, γ)
and then computed their gcd. We found exactly 72 values of (i, j, k, β0)
such that there exists some γ0 with

ri,j,k(β0, γ0) < ri,j,k(β0, γ),

i.e., such that the generic rank over C(γ) is strictly larger than the
specialized rank over C for some γ = γ0 ∈ C. More precisely, there
are 36 cases with generic rank ri,j,k(β0, γ) = 6 and 18 cases each
with ri,j,k(β0, γ) = 5 and 3. Further, and most importantly, we found
in all 72 cases that β3

0 = 1 and γ60 = 1. The complete set of (i, j, k, β0)
is given in Table 8.

Step 3: It remains to compute the null space of Mi,j,k(β0, γ0) as β0
and γ0 range over β0 ∈ µ3 and γ0 ∈ µ6. For each (i, j, k, β0, γ0) such
that ϕi,j,k is invertible, we check whether the null space ofMi,j,k(β0, γ0)
contains a vector (A,B,C,D,E,G) whose coordinates are all non-zero.
It turns out that in every such case the matrix Mi,j,k(β0, γ0) is iden-
tically 0. Table 9 lists the values of (i, j, k, β0, γ0), together with the
associated map ϕ ∈ PGL3. We observe that the ϕ in Table 9 consist of
the 9 diagonal maps satisfying ϕ3 = 1, together with the conjugation
of these 9 maps by the transposition [X,Z, Y ].
This long calculation completes the proof that under our assumptions

that abcdeg 6= 0 and ace 6= −bdg, maps of the form

f(X, Y, Z) = [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ] (16)

satisfy

Hom(f, f ′) ⊆ D ∪ πD,
where D ⊂ PGL3 is the group of diagonal matrices and π is the trans-
position π = [X,Z, Y ]. We normalize maps of the form (16) by conju-
gating by [uX, vY, wZ] with u = a−1, v3 = c−1e−2, and w3 = c−2e−1.
This puts f into the normalized form

fb,d,g(X, Y, Z) = [X2 + bY Z, Z2 + dXY, Y 2 + gXZ]

that depends on three non-zero parameters b, d, g satisfying bdg 6= −1.
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M r β0

M0,1,3 3 1
M0,1,4 3 1
M0,1,5 3 1
M2,0,3 3 1
M2,0,4 3 1
M2,0,5 3 1
M1,2,3 3 1
M1,2,4 3 1
M1,2,5 3 1
M7,6,3 3 ζ2

M6,8,3 3 ζ2

M8,7,3 3 ζ2

M7,6,4 3 ζ2

M6,8,4 3 ζ2

M8,7,4 3 ζ2

M7,6,5 3 ζ2

M6,8,5 3 ζ2

M8,7,5 3 ζ2

M r β0

M1,0,3 5 ζ
M1,0,4 5 ζ
M1,0,5 5 ζ
M0,2,3 5 ζ
M0,2,4 5 ζ
M0,2,5 5 ζ
M2,1,3 5 ζ
M2,1,4 5 ζ
M2,1,5 5 ζ
M6,7,3 5 ζ2

M8,6,3 5 ζ2

M7,8,3 5 ζ2

M6,7,4 5 ζ2

M8,6,4 5 ζ2

M7,8,4 5 ζ2

M6,7,5 5 ζ2

M8,6,5 5 ζ2

M7,8,5 5 ζ2

M r β0

M0,1,6 6 ζ
M0,1,7 6 ζ
M0,1,8 6 ζ
M2,0,6 6 ζ
M2,0,7 6 ζ
M2,0,8 6 ζ
M1,2,6 6 ζ
M1,2,7 6 ζ
M1,2,8 6 ζ
M1,0,6 6 ζ2

M1,0,7 6 ζ2

M1,0,8 6 ζ2

M0,2,6 6 ζ2

M0,2,7 6 ζ2

M0,2,8 6 ζ2

M2,1,6 6 ζ2

M2,1,7 6 ζ2

M2,1,8 6 ζ2

M r β0

M8,7,1 6 1
M7,8,1 6 1
M9,7,1 6 1
M7,9,1 6 1
M9,8,1 6 1
M8,9,1 6 1
M8,7,2 6 1
M7,8,2 6 1
M9,7,2 6 1
M7,9,2 6 1
M9,8,2 6 1
M8,9,2 6 1
M8,7,2 6 1
M7,8,2 6 1
M9,7,2 6 1
M7,9,2 6 1
M9,8,2 6 1
M8,9,2 6 1

Table 8. MatricesMi,j,k(β0, γ) with generic rank r such
that there exists a γ0 such that Mi,j,k(β0, γ0) has rank
strictly smaller than r

We consider first conjugation by a diagonal map ϕ = [X, βY, γZ].
Then

fϕb,d,g(X, Y, Z) = [X2 + βγbY Z, β−1γ2Z2 + dXY, β2γ−1Y 2 + gXZ].

The map fϕb,d,g is thus in normalized form if and only if

[βγ, β−1γ2, β2γ−1, 1, d, g] = [1, 1, 1, 1, d, g].

This is true if and only if β ∈ µ3 and γ = β2, i.e., if the map ϕ is in
the subgroup of order 3 that we already know is contained in Aut(f).
Next we conjugate by the composition of a diagonal map and the

transposition [X,Z, Y ], i.e., by a map of the form ϕ = [X, βZ, γY ].
Then

fϕb,d,g(X, Y, Z) = [X2 + βγbY Z, β2γ−1Z2 + gXY, β−1γ2Y 2 + dXZ].

The map fϕb,d,g is thus in normalized form if and only if

[βγ, β2γ−1, β−1γ2, 1, g, d] = [1, 1, 1, 1, d, g].
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M β0 γ0 φ

M1,2,4 = 0 1 1
(

1 0 0
0 1 0
0 0 1

)

M1,2,5 = 0 1 1
(

1 0 0
0 1 0
0 0 ζ2

)

M1,2,6 = 0 1 1
(

1 0 0
0 1 0
0 0 ζ

)

M3,1,4 = 0 1 ζ

(
1 0 0
0 ζ 0
0 0 ζ

)

M3,1,5 = 0 1 ζ
(

1 0 0
0 ζ 0
0 0 1

)

M3,1,6 = 0 1 ζ

(
1 0 0
0 ζ 0
0 0 ζ2

)

M2,3,4 = 0 1 ζ2
( 1 0 0

0 ζ2 0
0 0 ζ2

)

M2,3,5 = 0 1 ζ2
(

1 0 0
0 ζ2 0
0 0 ζ

)

M2,3,6 = 0 1 ζ2
(

1 0 0
0 ζ2 0
0 0 1

)

M β0 γ0 φ

M8,7,4 = 0 ζ2 1

(
1 0 0
0 0 ζ
0 ζ 0

)

M7,9,4 = 0 ζ2 1
(

1 0 0
0 0 1
0 1 0

)

M9,8,4 = 0 ζ2 1
( 1 0 0

0 0 ζ2

0 ζ2 0

)

M8,7,5 = 0 ζ2 ζ

(
1 0 0
0 0 ζ2

0 ζ 0

)

M7,9,5 = 0 ζ2 ζ
(

1 0 0
0 0 ζ
0 1 0

)

M9,8,5 = 0 ζ2 ζ
(

1 0 0
0 0 1
0 ζ2 0

)

M8,7,6 = 0 ζ2 ζ2
(

1 0 0
0 0 1
0 ζ 0

)

M7,9,6 = 0 ζ2 ζ2
(

1 0 0
0 0 ζ2

0 1 0

)

M9,8,6 = 0 ζ2 ζ2
(

1 0 0
0 0 ζ
0 ζ2 0

)

Table 9. Matrices Mi,j,k(β0, γ0) with β0, γ0 ∈ C∗ such
that Null

(
Mi,j,k(β0, γ0) contains a vector with all non-

zero coordinates, with the associated ϕ ∈ PGL3

The first four coordinates force β ∈ µ3 and γ = β2, as expected. The
last three coordinates force d = g, so we find that fb,d,g and fb,g,d are
PGL3-conjugates, and if d = g, then Aut(fb,d,g) contains the transpo-
sition [X,Z, Y ], so is isomorphic to C3 ⋊ C2.
abcdeg 6= 0 and bdg = 8ace
We want to make a change of variables so that b = 2a, d = 2c and

g = 2e. Conjugating by [uX, vY, wZ] with

u = (adg)−1/3, v = (bde)−1/3, w = (bcg)−1/3

puts f into this form, i.e.,

f(X, Y, Z) =
[
a(X2 + 2Y Z), c(Z2 + 2XY ), e(Y 2 + 2XZ)

]
. (17)

N.B. This only works because of our assumption that bdg = 8ace. So
we are reduced to studying f = fa,c,e in this normalized form. The
critical locus is

Crit(fa,c,e) = {X3 + Y 2 + Z3 − 3XY Z = 0}.
The critical locus decomposes as a union of three lines via the factor-
ization

X3+Y 2+Z3−3XY Z = (X +Y +Z)(X + ζY + ζ2Z)(X+ ζ2Y + ζZ).
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The pairwise intersections of these three lines in Crit(fa,c,e) gives the
following set of three points,

{
[1, 1, 1], [1, ζ, ζ2], [1, ζ2, ζ ]

}
.

Every ϕ ∈ Hom(f, f ′) stabilizes this set, so has the form

ϕ =

(
1 1 1
1 ζ ζ2

1 ζ2 ζ

)(
1 0 0
0 β 0
0 0 γ

)

π

(
1 1 1
1 ζ2 ζ
1 ζ ζ2

)

∈ PGL3

for some β, γ ∈ K∗ and some permutation π ∈ S3.
Just as in the previous case, for each π ∈ S3 we compute fϕ and pick

out the coefficients of the 12 monomials that do not appear in f ′. Each
of those coefficients is a linear combination of a, c, e, with coefficients
that are polynomials in β and γ. Just as in (15), we accumulate this
data in the form






coeff of Y 2 in X-coord of fϕ

coeff of Z2 in X-coord of fϕ

...
coeff of XY in Z-coord of fϕ

coeff of Y Z in Z-coord of fϕ




 =Mπ

(
a
c
e

)

, (18)

whereMπ is a 12-by-3 matrix whose entries are polynomials in the ring
Q(ζ)[β, γ]. (At times we may writeMπ(β, γ) to indicate the dependence
of Mπ on β and γ.) The fact that fϕ is not allowed to have any of the
indicated monomials implies that (18) is the zero vector, and then our
assumption that a, c, e do not vanish implies that the matrix Mπ has
rank at most 2. (Indeed, it implies the far stronger statement that the
column null space of Mπ contains a vector whose coordinates are all
non-zero.)
There are only 6 choices for π ∈ S, which we compute in turn. For

each π we computed the determinants of the 3-by-3 minors of Mπ. Of
these 220 minors, exactly 160 have non-zero determinant, and aside
from factors of the form cβiγj with c ∈ Z, these 160 non-zero deter-
minants yield exactly 8 distinct polynomials in Q(ζ3)[β, γ]. Taking
pairwise resultants to eliminate β (respectively γ) and then pairwise
gcds, we find that a necessary condition for rankMπ(β, γ) ≤ 2 is that β
and γ satisfy

β7 = γ7 = 1.

For each such pair (β, γ), we compute the null space of Mπ(β, γ) and
use it to find all maps f of the form (17) and all ϕ such that fϕ has
the same form.
For example, taking β = γ = 1 gives Mπ(1, 1) = 0, so we obtain

maps ϕ that are allowed for every f . More precisely, the elements π ∈
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S3 of order dividing 3 give the three maps

[X, Y, Z], [X, ζY, ζ2Z], [X, ζ2Y, ζZ] ∈ Aut(f)

that we already know are in Aut(f), while the three elements π ∈ S3
of order 2 give maps ϕ satisfying fϕa,c,e = fa,e,c.
More interesting are the cases for which β = ζ7 is a primitive 7’th

root of unity. Writing ζ3 instead of ζ for our chosen primitive cube
root of unity, we find that β = ζ7 is possible in exactly the following
situations:

γ = ζ37 and [a, c, e] = [1, ζ3, ζ
2
3 ],

γ = ζ57 and [a, c, e] = [1, ζ23 , ζ3].

Since we know how to swap c and e, it suffices to consider the first
case, for which we find that Aut(f) contains the following element of
order 7:

(
ζ3
7
+ζ

7
+1 ζ

3
ζ3
7
−ζ2

3
ζ
7
+1 ζ2

3
ζ3
7
+ζ

3
ζ
7
+1

ζ2
3
ζ3
7
+ζ

3
ζ
7
+1 ζ3

7
+ζ

7
+1 ζ

3
ζ3
7
−ζ2

3
ζ
7
+1

ζ
3
ζ3
7
−ζ2

3
ζ
7
+1 ζ2

3
ζ3
7
+ζ

3
ζ
7
+1 ζ3

7
+ζ

7
+1

)

∈ Aut
(
f1,ζ

3
,ζ2

3

)
.

Of course, Aut(f) also contains the powers of this map, and composing
with one of the transpositions in S3 gives a map in Hom

(
f1,ζ

3
,ζ2

3
, f1,ζ2

3
,ζ

3

)
.

We note that these two maps f for which Aut(f) contains an element
of order 7 are both conjugate to the map [Z2, X2, Y 2] that we studied

in Propositions 12 and 13. Indeed, one finds that ϕ =

(
1 ζ2

3
ζ3

1 ζ3 ζ2
3

1 1 1

)

gives

[Z2, X2, Y 2]ϕ = [X2 + 2Y Z, ζ3(Z
2 + 2XY ), ζ23(Y

2 + 2XZ)].

So we can refer to Proposition 13 for the fact that these maps have
automorphism group exactly equal to C7 ⋊ C3.
It remains to check that maps of Types C3(n) and C3(n

′) are not
N(G3)-conjugate for n 6= n′, nor indeed are they PGL3-conjugate. To
do this, we note that the only case in which the indeterminacy and
critical loci for C3(n) and C3(n

′) have the same geometry is

C3(2)
?
= C3(3), I(f) = 1 point, Crit(f) = triple line.

Any ϕ ∈ Hom(f, f ′) preserves the geometry of these loci, so we ask if
the map

f = [aX2 + Y Z,XY, Y 2] and f ′ = [bY Z, Z2 +XY, Y 2]

can be conjugate to one another. Since Crit(f) = Crit(f ′) is the line
Y = 0 (with multiplicity 3), we must have ϕ

(
{Y = 0}

)
= {Y = 0}.

But we observe that

f
(
Crit(f)

)
= f

(
{Y = 0}

)
=
{
[1, 0, 0]

}
∈ Crit(f),
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f ′(Crit(f ′)
)
= f ′({Y = 0}

)
=
{
[0, 1, 0]

}
/∈ Crit(f ′).

Hence if there were a map ϕ ∈ Hom(f, f ′), then we would find that

f ′(Crit(f ′)
)
= fϕ

(
Crit(fϕ)

)
= fϕ

(
Crit(f)ϕ

)

=
(

f
(
Crit(f)

))ϕ

∈ Crit(f)ϕ = Crit(fϕ) = Crit(f ′).

This contradiction shows that f and f ′ are not PGL3(K)-conjugate.
�

Proof of Proposition 18. The map [X, ζY, Z] is the map τ0 defined in
Section 5. Setting m = 0 in Table 3 and reducing the entries modulo 3
yields

X2 Y 2 Z2 XY XZ Y Z

X-coord 0 2 0 1 0 1
Y -coord 2 1 2 0 2 0
Z-coord 0 2 0 1 0 1

Hence assuming that τ0 ∈ Aut(f) leads to the following three families
of maps:

f0,0 := [aX2 + bZ2 + cXZ, dXY + eY Z, gZ2 + hXZ],

f0,1 := [aXY + bY Z, cY 2, dXY + eY Z],

f0,2 := [aY 2, bX2 + cZ2 + dXZ, eY 2].

For the first two maps we use Table 4 to compute

µO(1)(f0,0, Lk,ℓ) ≤
{
−k, 3k + 2ℓ, k + ℓ} (k,ℓ)=(1,−2)−−−−−−−→ −1,

µO(1)(f0,1, Lk,ℓ) ≤
{
−ℓ,−2k,−2k − 2ℓ} (k,ℓ)=(1,1)−−−−−−→ −1.

Hence f0,0 and f0,1 are D-unstable. (The latter also has degree 1, of
course.) And finally, we see that the map f0,2 is not dominant, since
its image is contained in the line {eX = aZ}. (Or, if a = e = 0, then
f0,2(P

2) = [0, 1, 0].) �

11. Proof of Theorems 2 and 3 and of Corollary 4

In this and the next section, we use our accumulated results to prove
Theorems 2 and 3 and Corollary 4. We recall that the assumptions for
both the theorem and corollary are that f : P2

99K P2 is a dominant
rational map of degree 2 lying in the semi-stable locus of Rat22 and such
that ∞ > #Aut(f) ≥ 3.
We remark that the computation of the indeterminacy and critical

loci of maps in the various families as described in Table 1 is an ele-
mentary, albeit tedious, calculation, so in some cases we have omitted
the details.
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We start with the assumption that Aut(f) is finite and of order at
least 3. Let G be a finite group of order at least 3. Then either p | #G
for some odd prime p, or else G is a 2-group of order at least 4. In
the former case, Cauchy’s theorem says that G contains an element
of order p, while in the latter case, the strong form of the first Sylow
theorem [4, Theroem 2.12.1] says that G contains a subgroup of order 4,
hence contains a copy of either C2

2 or C4.
Suppose that there is an odd prime p with p | Aut(f), and let

G ⊂ Aut(f) be a subgroup of order p. Lemma 10(a) tells us that
after PGL3(K)-conjugation, we may assume that

G =
〈(

1 0 0
0 ζ 0
0 0 ζm

)〉

for some primitive p’th root of unity ζ and some integer m. For future
reference, we also remark that when m = 1, we may instead use the

map
(

1 0 0
0 ζ 0
0 0 1

)

, which is PGL3-conjugate to
(

1 0 0
0 ζ 0
0 0 ζ

)

.

We consider the case that p ≥ 5. Then Proposition 12 and the
semi-stability assumption tell us that f has one of the following three
forms:

[aX2 + Y Z, bXY, cXZ], [Y Z,X2, Y 2], [Z2, X2, Y 2].

Proposition 13 says that maps f in the first family have a copy of Gm

in Aut(f), while the second map satisfies Aut(f) ∼= C5, and the third
map satisfies Aut(f) ∼= C7 ⋊ C3. (A conjugate of this last case also
appears in the compendium of maps for which Aut(f) contains an
element of order 3.) This completes the proof of the automorphism
parts of Theorems 2 and 3 and of Corollary 4 in the case that #Aut(f)
is divisible by a prime p ≥ 5.
Similarly, if p = 3, i.e., if 3 | #Aut(f), then the automorphism

parts of Theorems 2 and 3 and of Corollary 4 can be deduced from
Proposition 20, although we need to do some work to put the maps into
the indicated forms. (Using the above remark and Proposition 20(b),
we need only consider the case m = 2.)
Thus let f = [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ]. If ace 6= 0, then

the transformation

ψ(X, Y, Z) =
[
(ce)2/3X, ac1/3Y, ae1/3Z

]

yields

fψ(X, Y, Z) = [X2 + ab(ce)−1Y Z, Z2 + a−1dXY, Y 2 + a−1gXZ].

In other words, if ace 6= 0, we can find a normal form for f with a =
c = e = 1. We apply this transformation to the maps of Type C3(1),
C3(5), C3(6), C3(7), and C3(8) in Table 6, which serves to give them



DEGREE 2 MAPS f : P2
→ P2 WITH LARGE Aut(f) 65

a more uniform description. Types C3(1) and C3(7) already have this
form.
For C3(5) we find that

fψ(X, Y, Z) = [X2 − a2b−1Y Z, Z2 − a−1XY, Y 2 − a−1bXZ].

Thus

fψ(X, Y, Z) = [X2+BY Z, Z2+DXY, Y 2+GXZ] with BDG = −1.
Further, the conditions that a and/or b equal 1 become

a = b = 1⇐⇒ D = G = −1, a = 1, b 6= 1⇐⇒ D = −1 6= G,

a 6= 1, b = 1⇐⇒ D = G 6= −1, a 6= 1, b 6= 1⇐⇒ D 6= −1, D 6= G

For C3(6) we find that

fψ(X, Y, Z) = [X2 + abY Z, Z2 + a−1XY, Y 2].

So with a slight relabeling, Type C3(6) becomes simply

fψ(X, Y, Z) = [X2 + bY Z, Z2 + dXY, Y 2],

i.e., it’s C3(7) with g = 0.
And for C3(8), we find that

fψ(X, Y, Z) = [X2 + 2(ce)−1Y Z, Z2 + 2cXY, Y 2 + 2eXZ].

In other words, we obtain the C3(7) form with bdg = 8. Further, the
only cases with Aut(f) 6= C3 are c a primitive cube root of unity and
e = c2, with these two cases being conjugate. In particular, ce = 1.
We next consider Types C3(2), C3(3), and C3(4). We claim that they

may all be put into the form fa,c,g := [aX2+Y Z, cZ2+XY, Y 2+gXZ]
with (a, b, g) 6= (0, 0, 0) and one or more of a, c, g equal to 0. For
Type C3(2), we already have f = fa,0,g. For Types C3(3) and C3(4),
which have the form f = [bY Z, Z2 + XY, Y 2 + gXZ] with b 6= 0,
the transformation ψ = [b2/3X, b1/3Y, Z] yields fψ = [Y Z, b−1Z2 +
XY, Y 2 + gXZ], so we get maps f0,c,g with c 6= 0. We also ob-
serve that the PGL3-conjugacies for Type C3(4) become the maps
ϕ = [c1/3X, c2/3g1/3Y, g2/3Z] which have the effect fϕ0,c,g = f0,c/g,1/g.
We next consider the maps such that Aut(f) contains an element of

order 4. The description of these maps in Proposition 17 is already in
the form that we want.
Finally we consider the maps such that Aut(f) contains a subgroup

of type C2
2 . To fit these maps, which are described in Proposition 15,

into a single family, we apply the transformation ψ = [X/
√
d, Y, Z] to

the map f = [X2 + Y 2 − Z2, dXY, eXZ]. This gives fψ = [d−1X2 +
Y 2−Z2, XY, ed−1XZ], so these maps have the form fa,e = [aX2+Y 2−
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Z2, XY, eXZ]. Then one family in Proposition 15 is fa,e with a 6= 0
and the other family is f0,e.
We conclude this section with the one part of Corollary 4 that is

not immediate from the main theorems. Corollary 4(b) asserts that
each group listed in (a) occurs as the full automorphism group of a
semistable map of degree 2. Theorems 2 and 3, together with appro-
priately chosen maps from Table 1, take care of G ∈ {C3, C4, C5, C

2
2}.

That same table gives us maps with Aut(f) ∈ {S3, S4, C7 ⋊ C3}. For
these groups it suffices to point out that the identity component of the
normalizers of the associated subgroups of PGL3 is in all cases is equal
to the group of diagonal matrices, and hence semistability for (say) G3
or G7 gives semistability for the larger group. It remains to deal with
the cases G = C1 and G = C2.
Consider the family of maps

fu,v = [Y Z,X2, uXY + vY 2].

Then Aut(f1,0) ∼= C4 and Aut(f0,1) ∼= C5. Hence the generic member
of this family has Aut(fu,v) = C1.
Similarly, consider the family of maps

fu,v,w = [uY 2 + vZ2, XY, wY 2 + 2XZ].

Then Aut(f0,1,1) ∼= C4 and Aut(f1,−1,0) ∼= C2
2 , so generically Aut(fu,v,w)

is either C1 or C2. Since ϕ = [X,−Y, Z] ∈ Aut(fu,v,w), we conclude
that a generic map in the family satisfies Aut(fu,v,w) ∼= C2.

12. Computation of Dynamical and Topological Degrees

In this section we compute the dynamical and topological degrees of
the various maps in Table 1. The following elementary result will be
useful, especially in establishing that a map is algebraically stable, i.e.,
satisfies λ1(f) = deg(f).

Lemma 23. Let f : P2
99K P2 be a dominant rational map.

(a) If f is a morphism, then

λ1(f) = deg(f) and λ2(f) = deg(f)2.

(b) λ1(f) < deg(f) if and only if there is a curve Γ ⊂ P2 and an

integer n ≥ 1 such that fn(Γ) ⊆ I(f).
(c) Let Γ ⊂ Pn be a curve such that f(Γ) consists of a single point.

Then Γ ⊆ Crit(f).

Proof. (a) This is standard and elementary.
(b) Let

f(X, Y, Z) = [F1(X, Y, Z), G1(X, Y, Z), H1(X, Y, Z)],
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and define inductively

[Fn+1, Gn+1, Hn+1] = [Fn(F1, G1, H1), Gn(F1, G1, H1), Hn(F1, G1, H1)].

Then

fn(X, Y, Z) = [Fn(X, Y, Z), Gn(X, Y, Z), Hn(X, Y, Z)],

so λ1(f) < deg(f) if and only if there exists an n such that Fn, Gn, Hn

have a non-trivial common factor in K[X, Y, Z]. Taking the smallest
such n, if R(X, Y, Z) is the common factor, then the curve Γ = {R = 0}
satisfies fn−1(Γ) ⊂ I(f).
(c) This is just the chain rule. We view Γ as an abstract curve with
an embedding j : Γ →֒ P2. Differentiating the constant function f ◦ j
gives (Df ◦ j) · ∇j = 0. The fact that j is non-constant, i.e., Γ is a
curve, tells us that ∇j(t) 6= 0 for all but finitely many t ∈ Γ, and hence
that detDf

(
j(t)
)
(t) = 0 for all but finitely many t ∈ Γ. Taking Zariski

closures gives Γ = Image(j) ⊂ {detDf = 0} = Crit(f). �

The remainder of this section is devoted to computing the dynamical
and topological degrees of the maps in Table 1.
Types 1.1, 1.3, 1.5, 1.7.1.8, 3.4, 8.1.
These maps are morphisms, so Lemma 23 gives λ1(f) = 2 and λ2(f) =
4.
Types 1.2 (C3) : f = [X2 − Y Z, Z2 −XY, Y 2 −XZ].
A short calculation shows that f 2(X, Y, Z) = [X, Y, Z], so deg(fn)
alternates between 2 and 1. In particular, λ1(f) = λ2(f) = 1.
Types 1.4, 1.6 (G3) : f = [X2 + bY Z, Z2 + dXY, Y 2 + gXZ], bdg =
−1.
The critical locus has the equation dgX3 + bdY 3 + bgZ3− 3XY Z = 0.
Using the assumption that bdg = −1, we find that the critical locus is
the union of the three lines

Lk = {(dg)1/3X + ζk3 (bd)
1/3Y + ζ2k3 (bg)1/3Z = 0}, k = 0, 1, 2,

where ζ3 is a primitive cube root of unity. We compute

f(Lk) =
{
[b2/3, ζk3d

2/3, ζ2k3 g
2/3]
}

for k = 0, 1, 2.

In particular, f
(
Crit(f)

)
consists of three points. The indeterminacy

locus of f is

I(f) =
{
[b1/3, g1/3, d1/3], [b1/3, ζ3g

1/3, ζ23d
1/3], [b1/3, ζ23g

1/3, ζ3d
1/3]
}
,

where b1/3 and d1/3 are arbitrary fixed cube roots of b and d, and
then g1/3 is set equal to −1/b1/3d1/3. Thus for generic values of b, d, g
(satisfying bdg = −1), the orbits of the three points f(L1), f(L2), f(L3)
will not hit I(f), so generically we have λ1(f) = 2. However, we expect
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that there is a countable set of values of b, d, g such that λ1(f) < 2. To
see why, we observe that for each n ≥ 1, the equation

fn(L0) = fn−1(b2/3, d2/3, g2/3) = [b1/3, g1/3, d1/3] ∈ I(f)
yields two homogeneous polynomial equations for the point [b1/3, g1/3, d1/3].
Substituting the inhomogeneous value g1/3 = 1/b1/3d1/3 yields two in-
homogeneous polynomials equations for (b1/3, d1/3), and hence a finite
number of values for (b, d, g). Varying n should then yield a count-
able number of exceptional values of (b, d, g) with fn(L0) ∈ I(f), and
thus with λ1(f) < 2. This applies to Type 1.6, for which b, d, g
satisfy the single relation bdg = −1. For maps of Type 1.4 with
(b, d, g) = (b, b−1,−1), there is only one degree of freedom, so it seems
plausible that for these maps we have λ1(f) = 2.
In order to compute the topological degree, we set f(X, Y, Z) =

[α, β, 1] for generic α, β and solve for [X, Y, Z]. This gives two equations

X2 + bY Z = α(Y 2 + gXZ), Z2 + dXY = β(Y 2 + gXZ).

We dehomogenize x = X/Z and y = Y/Z. Then we can solve the
second equation for x and substitute into the first equation to find

(β2− d2α)b2d2y4 + (d2b2 − βα)bd2y3 + (β2 − d2α)by + (d2b2 − αβ) = 0.

The discriminant of this quartic equation is a mess, but part of it looks
like

Disc(f) = −27b8d4(β6 − b4d8)2 + α ·
(
polynomial in Z[b, d, α, β]

)
.

In particular, since bdg = −1, we see that for generic α, β, the quartic
has distinct roots. If those roots lead to points not in I(f), which we
expect to be true for most (b, d, g) triples, then λ2(f) = #f−1(α, β) =
4. On the other hand, the general inequality λ2 ≤ λ21 shows that we
should expect λ2 < 4 for countably many (b, d, g).
We illustrate with the extreme case b = d = g = −1, which is

the map of Type 1.2. In that case, the discriminant quartic factors
(essentially) as

(y3 − 1)

(

y − 1− αβ
β2 − α

)

.

The three roots with y ∈ µ3 lead to points in I(f), so we find that
#f−1(α, β) = 1, which confirms our earlier computation.
Type 2.1 (G3) : f = [Y Z,XY, Y 2 + gXZ], g 6= 0.
Here Crit(f) is a line and a conic and #I(f) = 2,

Crit(f) = {Y = 0} ∪ {Y 2 = gXZ}, I(f) =
{
[0, 0, 1], [1, 0, 0]

}
.
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We have f
(
{Y = 0}

)
= [0, 0, 1] ∈ I(f), so λ1(f) < 2. The degree

sequence of f is 2, 3, 5, 8, 13, . . ., which suggests that deg(fn) is the
(n+ 2)’nd Fibonacci number.
We dehomogenize Y = 1, so f(x, z) =

(
z/x, (1 + gxz)/x

)
. Setting

f(x, z) = (α, β) with generic α, β, we find that z = αx and αgx2 −
βx+ 1 = 0. Since g 6= 0, we have λ2(f) = #f−1(α, β) = 2.
Types 2.2, 2.6 (G3) : f = [Y Z, cZ2 +XY, Y 2 + gXZ], cg 6= 0.
The critical locus is a nodal cubic that never gets mapped to a point,
so λ1(f) = 2. Dehomogenizing with respect to X and setting

(
(cz2 +

y)/yz, (y2+gz)/yz
)
= (α, β) with generic α, β leads to y = cz2/(αz−1)

and c(c − αβ)z3 + (cβ − gα2)z2 + 2αgz − g = 0. (Note that z = 0 is
not a valid value.) Hence λ2(f) = 3.
Types 2.3 (G3) : f = [Y Z, cZ2 +XY, Y 2], c 6= 0.
Here I(f) =

{
[1, 0, 0]

}
and Crit(f) = 3 · {Y = 0}. We have

{Y = 0} f−→ [0, 1, 0]
f−→ [0, 0, 1]

f−→ [0, 1, 0],

so although the critical locus maps to a point, that point is part of a 2-
cycle, so it never hits I(f). Hence λ1(f) = 2. Further, f−1(X, Y, Z) =
]b2Y Z −X2, b2Z2, bXZ], so f is birational and λ2(f) = 1.
Type 2.4 (G3) : f = [aX2 + Y Z,XY, Y 2], a 6= 0.
The critical locus is a triple line, Crit(f) = 3 · {Y = 0}, and we
have f

(
{Y = 0}

)
= [1, 0, 0] ∈ Fix(f). Hence by the usual argu-

ment via Lemma 23, we find that λ1(f) = 2. Further, f−1(X, Y, Z) =
[Y Z, Z2, XZ − aY 2] shows that f is birational, so λ2(f) = 1.
Type 3.1 (G4) : f = [Z2, XY, Y 2], a = e = 0.
The dynamical degree of a monomial map may be computed using the
formula in [3]. In affine coordinates the map is f(x, y) = (y−2, xy−1)
with exponent matrix

(
0 −2
1 −1

)
. Then [3] says that λ1(f) is the spectral

radius of the exponent matrix, so λ1(f) =
∣
∣
∣
−1+

√
−7

2

∣
∣
∣ =
√
2. And setting

f(x, y) = (α, β) with generic α, β, we see that f−1(α, β) consists of the
two points (βγ, γ) with γ2 = α−1. Hence λ2(f) = 2.
Type 3.2 (G4) : f = [Z2, XY, Y 2 + eXZ], e 6= 0.
We have

I(f) =
{
[1, 0, 0]

}
and Crit(f) = {Z = 0} ∪ {eXZ = 2Y 2}.

Both f
(
{Z = 0}

)
and f

(
{eXZ = 2Y 2}

)
are curves, so λ1(f) = 2. Next

we dehomogenize with Z = 1. Then f(x, y) =
(
(y2 + ex)−1, xy(y2 +

ex)−1
)
. Setting f(x, y) = (α, β) with generic α, β leads to x = α−1βy−1

and αy3 − y + βe = 0, so λ2(f) = #f−1(α, β) = 3.
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Type 3.3 (G4) : f = [aX2 + Z2, XY, Y 2], a 6= 0.
We have

I(f) =
{
[1, 0,±

√
−a]
}

and Crit(f) = {Z = 0} ∪ 2 · {Y = 0}.
The orbit of the line Y = 0 is

{Y = 0} f−→
{
[1, 0, 0]

} f−→
{
[1, 0, 0]

}
,

so the orbit of Y = 0 never lands in I(f). The image the line Z = 0 is
a curve,

{Z = 0} f−→ {XZ = aY 2}.
Hence λ1(f) = 2. Next we dehomogenize with Z = 1. Then f(x, y) =
(
(ax2 + 1)/y2, x/y

)
. Setting f(x, y) = (α, β) with generic α, β leads to

x = βy and (aβ2 − a)y2 + 1 = 0. Thus λ2(f) = #f−1(α, β) = 2.
Types 4.1, 4.2, 4.3, 4.4(G4) : f = [Y Z,X2 + cZ2, XY ].
Proposition 19 says that f satisfies deg(fn) ≤ 2n + 1, so λ1(f) = 1.
Since λ2 ≤ λ21 in general, it follows that λ2(f) = 1. (Alternatvely, it is
not hard to write down the inverse map.)
Types 5.1, 5.2, 5.3 (G2,2) : f = [Y 2 − Z2, XY, eXZ], e 6= 0.
Proposition 16 tells us that deg(fn) ≤ n+1, so just as in the previous
case, we have λ1(f) = λ2(f) = 1.
Types 5.4, 5.5(G2,2) : f = [aX2 + Y 2 − Z2, XY, eXZ], ae 6= 0.
We have

I(f) =
{
[0, 1, 1], [0, 1,−1]

}

and
Crit(f) = {X = 0} ∪ {aX2 − Y 2 + Z2 = 0}.

The line X = 0 is sent to a fixed point of f ,

f
(
{X = 0}

)
= [1, 0, 0] ∈ Fix(f),

while the conic aX2 − Y 2 + Z2 = 0 is sent to another conic,

f
(
{aX2 − Y 2 + Z2 = 0}

)

=
{
[aX2 + Y 2 − Z2, XY, eXZ] : aX2 − Y 2 + Z2 = 0

}

=
{
[2aX2, XY, eXZ] : aX2 − Y 2 + Z2 = 0

}

=
{
[2aX, Y, eZ] : aX2 − Y 2 + Z2 = 0

}

=
{
[u, v, w] : a(u/2a)2 − v2 + (w/e)2 = 0

}

=
{
[X, Y, Z] : X2/4a− Y 2 + Z2/e2 = 0

}
.

Lemma 23(c) tells us that the only curve in P2 that f maps to a point
is the line {X = 0}. Now suppose that λ1(f) < 2. Then Lemma 23(b)
says that there is a curve Γ ⊂ P2 and an n ≥ 1 such that fn(Γ) ⊂ I(f).
In particular, fn(Γ) is a point, so there is some 0 ≤ m < n such that
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fm(Γ) is a curve and fm+1(Γ) is a point. But we have just shown
that this forces fm(Γ) to be the line X = 0 and forces fm+1(Γ) to be
the point [1, 0, 0], which is not in I(f). This completes the proof that
λ1(f) = 2.
To compute the topological degree λ2(f), we compute the inverse

image of a generic point. To simplify the calculation, we compute
[x, y, z] ∈ f−1(α, β, eγ) with α, β, γ generic. From the last two co-
ordinates we have eγxy = βexz, so x = 0 or γy = βz. We can-
not have x = 0, since f(0, Y, Z) = [1, 0, 0]. Hence our point has
the form [x, y, z] = [βx, βy, βz] = [βx, βy, γy], so the homogeneous
point [x, y] ∈ P1 determines [x, y, z]. We next use the first two coordi-
nates to deduce that β(ax2 + y2 − z2) = αdxy. Multiplying this by β
and using βz = γy yields (β2ax2+β2y2−γ2y2) = αβdxy. Since α, β, γ
are generic, this equation has two solutions in P1. This shows that
#f−1(α, dβ, eγ) = 2, so λ2(f) = 2.
Types 2.5 (G3) : f = [aX2 + Y Z,XY, Y 2 + gXZ], ag 6= 0.
Here Crit(f) is a nodal cubic curve and the image of Crit(f) is also a
curve. It follows from Lemma 23 that λ1(f) = 2, since no iterate of f
maps a curve to a point, much less to a point in I(f). To compute the
topological degree, we dehomogenize by setting x = X/Y and z = Z/Y
and solving

(
(ax2 + z)/x, (1 + gxz)/x

)
= (α, β) for generic α, β. The

first coordinate gives z = αx − ax2, and substituting into the second
coordinate gives 1 + gx(αx− ax2) = βx. Hence λ2(f) = 3.
Type 7.1 (G5) : f = [Y Z,X2, Y 2].
The map f of Type 7.1 is also monomial, but there’s an easier way to
calculate λ1(f). We note that f 8 = [X16, Y 16, Z16], so in particular f 8

is a morphism. Hence

λ1(f) = λ1(f
8)1/8 = deg(f 8)1/8 = 161/8 =

√
2.

Similarly λ2(f) = λ2(f
8)1/8 = 2561/8 = 2.
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Appendix A. Maps with Infinite Automorphism Group

As indicated earlier, we have restricted attention in this paper to
maps whose automorphism group is finite. The reason is because maps
with infinite automorphism group decompose as fiber product maps,
as described by the following general construction.

Definition. Let X and Y be varieties, and let f : X → X be a
dominant rational map. We say that f descends to Y if there are
dominant rational maps π : X → Y and g : Y → Y such we have a
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commutative diagram

X
f−−−→ X



yπ



yπ

Y
g−−−→ Y

We note that if f : X → X descends to Y , then analyzing the dy-
namics of f may be reduced, in some sense, to analyzing the dynamics
of g : Y → Y and the “twisted” dynamics on the fibers. In particular,
if 1 ≤ dim(Y ) < dim(X), then one is reduced to lower dimensional
problems.
We let

Aut(X, f) := {ϕ ∈ Aut(X) : ϕ ◦ f = f ◦ ϕ}

and note that if the quotient ofX by a subgroup G ⊆ Aut(X, f) is well-
defined, then f descends to the quotient X/G. We give two examples.

Example 24. Let

f = [Y Z,X2 − Z2, XY ]

be the map of Type 4.1 with c = −1 in Table 1. Then Aut(f) contains
a copy of Gm,

{(
s 0 t
0 1 0
t 0 s

)

: s2 − t2 = 1
}

⊂ Aut(f).

The quotient of f by this subgroup yields the commutative diagram

P2 [Y Z,X2−Z2,XY ]−−−−−−−−−−→ P2



y[X2−Z2,Y 2]



y[X2−Z2,Y 2]

P1 [U,V ]→[−V,U ]−−−−−−−−→ P1

Of course, the map f is not very interesting dynamically, since f 2 =
[X,−Y, Z].

Example 25. Here is a more interesting example. The automorphism
group of the map

f : P2 → P2, f(X, Y, Z) = [X2 + Y Z,XY,XZ]

contains a copy of Gm via
{(

1 0 0
0 t 0
0 0 t−1

)

: t 6= 0
}

⊂ Aut(f).
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The quotient of f gives the diagram

P2 [X2+Y Z,XY,XZ]−−−−−−−−−−→ P2



y[X2,Y Z]



y[X2,Y Z]

P1 [U,V ]→[(U+V )2,UV ]−−−−−−−−−−−−→ P1

Appendix B. Semistability for Subgroups

In this section we give a general result for GIT semistability rela-
tive to subgroups. We thank Friedrich Knop for explaining how the
following result is a consequence of a general theorem of Luna [8].

Proposition 26. We work over an algebraically closed field K of char-

acteristic 0. Let

X = a smooth projective variety,

G = a reductive group acting linearly on X,

H = a subgroup of G that is also reductive,

N(H) = the normalizer of H in G.

For x ∈ X, let

Stab(x) = {g ∈ G : g · x = x},
XH = {x ∈ X : Stab(x) contains H}.

(a) Let x ∈ XH . Then

x is N(H)-semistable ⇐⇒ x is G-semistable.

(b) The map

(XH)ss/N(H) −→ Xss/G

is a finite map.

(c) Let X̃ be the affine cone over X, and for x ∈ XH , let x̃ ∈ X̃ be a

lift. Thus each x ∈ XH determines a character χx on H via

χx : H −→ Gm, h · x̃ = χx(h)x̃.

For each character χ ∈ Ĥ := Hom(H,Gm), let X
H
χ := {x ∈ XH :

χx = χ}. Then (XH)ss decomposes as a disjoint union

(XH)ss =
⋃

χ∈Ĥ

(XH
χ )ss.
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(d) For χ ∈ Ĥ and π ∈ N(H), define χπ ∈ Ĥ by χπ(h) = χ(π−1hπ).
Then there is an isomorphism

XH
χ −→ XH

χπ , x 7−→ π · x.

Proof. (a) (Knop [5]) Let X̃ be the affine cone over X , and for x ∈ XH ,
let x̃ ∈ X̃ be a lift. By definition [12], the point x is G-semistable if
the closure of the orbit Gx̃ does not contain the vertex 0, and similarly
for N := N(H). From this it is obvious that if x is G-semistable, then
it is also N -semistable.
Conversely, suppose that x is N -semistable. After possibly replac-

ing x̃ by a point in the (unique) closed N -orbit Nx̃, we may assume
that Nx̃ is closed and not equal to {0}.
The group H acts on the line Kx̃ by a character χ, and the as-

sumption that x is N -semistable implies that χ has finite order. In
particular, χ(H) is a finite subgroup of Gm. Let

G̃ := G× χ(H) and H̃ :=
{
(h, χ(h)−1) : h ∈ H

}
.

Then G̃ acts on X̃ and x̃ is fixed by H̃ . Also note that the normalizer Ñ
of H̃ in G̃ is of finite index in N × χ(H). In particular, the orbit Ñ x̃
is closed and not equal to {0}. Now apply [8, Corollary 1], which says
that

Ñx̃ closed =⇒ G̃x̃ closed.

Hence 0 is not in the closure of G̃x̃, and therefore x is G-semistable.
This proves (a)
(b) This is an immediate consequence of the main result of [8], which

in our terminology says that X̃H̃/Ñ → X̃/G̃ is finite.
(c) The character χx is well-defined, since if we choose some other
lift x̃′ of x, then x̃′ = cx̃ for some c 6= 0. It remains to show that
the union is disjoint. So suppose that x ∈ XH

χ ∩ XH
χ′ . It follows

that χ(h)x̃ = χ′(h)x̃ for all h ∈ H , and since x̃ 6= 0, we find that
χ(h) = χ′(h). Hence χ = χ′.
(d) This follows from the calculation

h · π · x̃ = π · (π−1 · h · π) · x̃ = π · χx(π−1 · h · π)x̃ = χx(π
−1 · h · π)π · x̃,

which shows that χπ·x = χπx. �
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