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PISOT UNITS, SALEM NUMBERS AND HIGHER DIMENSIONAL

PROJECTIVE MANIFOLDS WITH PRIMITIVE AUTOMORPHISMS OF

POSITIVE ENTROPY

KEIJI OGUISO

Abstract. We show that, in any dimension greather than one, there is an abelian variety
with primitive biregular automorphisms of positive entropy. We also show that there
are smooth complex projective, hyperkähler fourfolds, Calabi-Yau fourfolds and rational
fourfolds, with primitive biregular automrphisms of positive entropy. Besides geometry,
Pisot units and Salem numbers play important roles in our proof.

1. Introduction

Thoughout this note, we work in the category of projective varieties defined over C.
The aim of this note is to give an affirmative answer (Theorems 1.7, 1.8) to the following

question asked by [Og15, Problem 1.1]:

Question 1.1. For each integer ℓ ≥ 2, is there a smooth projective variety of dimension ℓ
with primitive biregular automorphisms of positive topological entropy?

Question 1.1 is related with both birational geometry, complex dynamics. and also num-
ber theory as we shall see. We recall the complex dynamical notion of topological entropy
and closely related notions of dynamical degrees and relative dynamical degrees in Section
2 following [Bo73], [Gr03], [Yo87], [DS05], [DN11] and [Tr15]. The notion of primitivity of
automorphism, introduced by De-Qi Zhang [Zh09], is purely algebro-geometric:

Definition 1.2. LetM be a smooth projective variety of dimension ℓ ≥ 2 and f ∈ Bir (M).
f is called imprimitive if there are a dominant rational map π : M 99K B to a smooth
projective variety B with 0 < dim B < dim M and with connected fibers, and a rational
map fB : B 99K B, necessarily fB ∈ Bir (B), such that

π ◦ f = fB ◦ π .
Here smoothness assumption is harmless, as we work over C. f is primitive if it is not
imprimitive.

Note that if M is a curve, i.e., if ℓ = 1, then any automorphism of M is primitive and of
null topological entropy. So, from now, we assume that ℓ ≥ 2. A primitive birational auto-
morphism is in some sense an irreducible automorphism in birational geometry. Compare
with the following trivial:
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Remark 1.3. Let k be a field and V be a k-vector space of dim V = ℓ ≥ 1. Let f ∈ GL (V ).
Then f is not irreducible in the usual sense if and only if there are a k-vector space W
with 0 < dim W < dim V , a surjective linear map π : V → W and fW ∈ GL (W ) such
that π ◦ f = fW ◦ π. The existence of irreducible (V, f) with dim V = ℓ depends on k. For
instance ℓ = 1 if k = C, ℓ = 1, 2 if k = R, while ℓ is arbitrary if k = Q.

The existence of a primitive automorphism also depends on the classes of smooth pro-
jective varieties. Indeed, as again observed by De-Qi Zhang [Zh09] (see also [Og16, Lemma
3.2, Theorem 3.3] for the formulation here), we have the following rather strong constraint
on projective varieties admitting primitive bitaional automorphisms:

Theorem 1.4. Let M be a smooth projective variety of dimension ℓ ≥ 2. We denote the
Kodaira dimension of M by κ(M). Assume that the following two statements hold for M :

(1) If κ(M) = 0 and h1(OM ) = 0, then M is birational to a minimal Calabi-Yau variety
M ′, i.e., a normal projective varietry M ′ with only Q-factorial terminal sinularities such
that OM ′(mKM ′) ≃ OM ′ for some m > 0 and h1(OM ′) = 0; and

(2) If κ(M) = −∞, then M is uniruled.
Then, if M has a primitive birational automorphism f ∈ Bir (M), then ord f = ∞ and

M falls into one of the following three exclusive classes:
(RC) M is a rationally connected manifold, i.e., a smooth projective variety whose two

general closed points are connected by a rational curve on M ;
(CY) M is birational to a minimal Calabi-Yau variety; or
(A) M is birational to an abelian variety.

Remark 1.5. The assumptions (1) and (2) in Theorem 1.4 hold if the minimal model
problem and the abundance conjecture are affirmative in dimension ℓ, which are believed
to be true. Theorem 1.4 is unconditional if ℓ ≤ 3 by the minimal model theory and
abundance theorem for projective threefolds due to Kawamata, Miyaoka, Mori and Reid
([Mo88], [Ka92], see also [KMM87], [KM98]).

Remark 1.6. Smooth rational varieties are rationally connected. The most important
classes of smooth projective varieties in (CY) are Calabi-Yau manifolds and projective
hyperkähler manifolds. Recall that an ℓ-dimensional simply-connected smooth projective

varietyM is a Calabi-Yau manifold (resp. hyperkähler manifold) ifH0(Ωj
M ) = 0 for 0 < j <

ℓ and H0(Ωℓ
M ) = CωM for a nowhere vanishing regular ℓ-form ωM (resp. H0(Ω2

M ) = CηM
for an everywhere non-degenerate regular 2-form ηM , and therefore ℓ is even).

When ℓ = 2, 3, there are smooth projective, rational varieties, Calabi-Yau manifolds
and abelian varieties, with primitive bireguler automorphisms of positive entropy (See eg.
[Ca99], [BK09], [BK12], [Mc07], [Mc16], [Re12], [CO15], [Do16], [Og16] for surfaces in
several classes and [OT14], [OT15] for threefolds).

Our main results are the following Theorems 1.7 and 1.8.

Theorem 1.7. For each ℓ ≥ 2, there is an ℓ-dimensional abelian variety A with a primitive
biregular automorphism f ∈ Aut (A) of positive topological entropy. There is also an ℓ-
dimensional smooth projective variety M , birational to a minimal Calabi-Yau variety, with
a primitive biregular automorphism of positive topological entropy.
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We construct A as the self product of an elliptic curve E and its desired automorphism
by using Pisot units (Definition 3.1) in Theorem 3.6. M is then obtained by a standard
resolution of the quotient variety A/〈−1A〉 (Corollary 3.7). Primitivity is checked by the so
called product formula for the relative dynamical degrees ([DN11], [DNT12], [Tr15], see also
Section 2 for summary and [Tr16]). Proof of Theorem 1.7 is extremely easy once one notices
an avaiabilty of Pisot units, but I believe that it is important to guarantee the existence
in any dimension ℓ ≥ 2. We also show the existence of rationally connected manifolds of
dimension 4 and 5 with primitive biregular automorhisms of positive topological entropy
as a byproduct (Corollary 3.9).

It is much more interesting to see the existence of more specific classes of manifolds,
namely, projective hyperkähler manifolds, Calabi-Yau manifolds, smooth rational varieties,
with primitive automorphisms of positive topological entropy. In this direction, we shall
prove the following theorem in dimension 4 in a fairly explicit way:

Theorem 1.8. There are 4-dimensional projective, hyperkähler manifold, Calabi-Yau man-
ifold and smooth rational variety, with a primitive biregular automorphism of positive topo-
logical entropy.

We construct such explicit four dimensional manifolds from K3 surfaces S with special
automorphisms and their Hilbert schemes of two points S[2] (Theorems 5.2, 6.1, 7.1). Be-
sides basic facts on toplogical entropy, dynamical degrees and relative dynamical degrees,
Salem numbers (Definition 4.1) and hyperkähler geometry play crucial roles in checking
primitivity of candidate automorphisms (Theorem 4.6). However, the following question
is yet completely open, as our criterion Theorem 4.6 heavily relies on our assumption,
dimension 4:

Question 1.9. Let ℓ ≥ 3. Are there 2ℓ-dimensional projective, hyperkähler manifolds,
Calabi-Yau manifolds and smooth rational varieties, with primitive biregular (resp. bi-
rational) automorphisms of positive topological entropy (resp. of first dynamical degree
> 1)?

Acknowledgements. I would like to express my thanks to Professors C. Bisi, F.
Catanese, I, Dolgachev, H. Esnault, Y. Kawamata, T. Kohno, T.T. Truong, T. Tsuboi,
X. Yu and D.-Q. Zhang for inspiring discussions and encouragement.

2. Entropy, Dynamical degrees and relative dynamical degrees

In this section we briefly recall definitions of entropy, dynamical degrees, relative dy-
namical degrees and their basic properties, used in this paper. No new result is included.
Main references here are Dinh-Sibony [DS05], Dinh-Nguyen [DN11], Dinh-Nguyen-Troung
[DNT12] and Troung [Tr15]. We state the results for birational automorphisms of smooth
projective varieties, while all the results below are valid for any compact Kähler manifolds
(if we use Kähler forms instead of Fubini-Study forms or hyperplane classes).

2.1. Topological entropy and Gromv-Yomdin theorem. Let M = (M,d) be a com-
pact metric space and f :M →M be a continuous surjective selfmap ofM . The topological
entropy of f is the fundamental invariant that measures how fast two general points spread
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out under the action of the semi-group {fn|n ∈ Z≥0}. For the definition, we define the new
distance df,n on X, depending on f and n, by

df,n(x, y) = max0≤j≤n−1d(f
j(x), f j(y)) for x, y ∈ X.

Let ǫ > 0 be a positive real number. We call two points x, y ∈ M (n, ǫ)-separated if
df,n(y, x) ≥ ǫ, and a subset F ⊂ M (n, ǫ)-separated if any two distinct points of F are
(n, ǫ)-separated. Let

Nd(f, n, ǫ) := Max {|F | | F ⊂M is (n, ǫ)− separated } .
Note that Nd(f, n, ǫ) is a well-defined positive integer, as M is compact. The following
definition was introduced by Bowen [Bo73]:

Definition 2.1. The topological entropy of f is defined by:

htop(f) := limǫ→+0limsupn→∞
logNd(f, n, ǫ)

n
.

Note that htop(f) does not depend on the choice of the metric d of the topological space
M .

Let M be a smooth projective variety and f :M →M be a surjective morphism. Then
f is in particular continuous in the classical metric topology given by the Fubini-Study
metric d(∗, ∗∗) under some embedding M ⊂ PN . So, one can speak of the topological
entropy of f . One of the most fundamental properties of the topological entropy is the
following cohomological characterization due to Gromov and Yomdin ([Gr03], [Yo87]):

Theorem 2.2. Let M be a smooth projective variety of dimension ℓ and f :M →M be a
surjective morphism. Then, dp(f) = rp(f) and

htop(f) = logmax0≤p≤ℓ dp(f) = logmax0≤p≤k rp (f) = log r (f) .

Here rp (f) and r (f) are the spectral radii of f
∗|Hp,p(X) and f∗|⊕2k

p=0H
k(M,Z) respec-

tively. The p-th dynamical degree λp(f) is defined (and well-defined) by:

dp(f) = lim
n→∞

(

∫

X
(fn)∗(ωp) ∧ ωk−p)

1

n = lim
n→∞

((fn)∗(Hp).Hℓ−p)
1

n

M ≥ 1 .

Here H is the hyperplane class of M (under any embedding M ⊂ PN) and ω is the Fubini-
Study form, i.e., the positive closed (1, 1)-form induced by the Fubini-Study form of PN .
Note that the equality dp(f) = rp(f) shows that one can replace Hp,p(M) by Np(M),
provided thatM is projective (see eg. [Tr15], [Tr16]). Here Np(M) is the finitely generated
free Z-module consisting of the numerical equivalence classes of algebraic p-cocycles.

2.2. Dynamical degrees. One can define rp(f), r(f) and dp(f) also for birational self
map f : M 99K M , i.e., for f ∈ Bir (M). Precisely, for each n ≥ 1, we define the pull back
(fn)∗ by

(fn)∗(a) := (p1,n)∗((p2,n)
∗(a)) .

and dp(f) by the same formula above. Here p1,n : M̃n → M and p2,n : M̃n → M be any

birationalmorphisms from a smooth projective variety M̃n, depending on f and n, such that
fn = p2,n ◦ (p1,n)−1. Note that rp(f) and r(f) (we may just take n = 1) are not birational
invarinat in general, as the standard Cremona involution of P2 shows. On the other hand,
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the dynamical degrees dp(f) are well-defined birational invariants, as Dinh-Sibony ([DS05])
proved:

Theorem 2.3. Let M and M ′ be smooth projective varieties and µ : M 99K M ′ be a
birational map. Let f ∈ Bir (M) and f ′ = µ ◦ f ◦ µ−1 the birational automorphism of M ′

induced by f and µ. Then, dp(f) is well defined, dp(f
m) = dp(f)

m and dp(f) = dp(f
′) for

all p.

2.3. Relative dynamical degrees.

Set-up 2.4. LetM and B be smooth projective varieties of dimension ℓ and b respectively,
f ∈ Bir (M) and π : M → B be an f -equivariant surjective morphism so that there is
fB ∈ Bir (B) with π ◦ f = fB ◦ π. Here we do not require that π has connected fibers.
Let HM and HB be the hyperplane class of M and B (under any embedding to projective
spaces) and ωM and ωB be the Fubini-Study forms induced by the embeddings.

Remark 2.5. If f ∈ Bir (M) is imprimitive and π : M 99K B be f -equivariant, then by

replacing M by M̃ , a resolution µ : M̃ → M of indeterminacy of π, f by f̃ = µ−1 ◦ f ◦ µ
and π by the induced morphism µ ◦π, we always obtain f̃ -equivariant surjective morphism
π ◦ µ : M̃ → B as in Set-up 2.4. In this modification, we may loose biregularity of f̃ in
general even if f ∈ Aut (M) but the values dp(f) remain the same, i.e., dp(f̃) = dp(f) by
Theorem 2.3. So, when we compute the dynamical degree dp(f), we may assume π is a
surjective morphism.

The notion of the relative dynamical degrees dp(f |π) is defined by Dinh-Nguyen [DN11]
as follows:

Definition 2.6. Under Set-up 2.4, the relative p-th dynamical degree dp(f |π) is defined as

lim
n→∞

(

∫

M
(fn)∗(ωp

M ) ∧ ωℓ−b−p
M ∧ π∗(ωb

B))
1

n = lim
n→∞

((fn)∗(Hp
M ).Hℓ−b−p

M .π∗(Hb
B))

1

n

M ≥ 1 .

dp(f |π) is well-defined by [DN11]. We may regard π∗(Hb
B) as a general fiber class of π,

up to positive constant multiple. So, the relative dynamical degree can be considered as
the dynamical degree of f restricted to a general fiber F . However, to make the meaning
of restriction to F rigorous, we need good fixed points of fnB on B (Compare with the
argument in Theorem 4.6 in Section 4).

The following important result, called the product formula, was first proved by Dinh-
Nguyen [DN11] (See also [Tr15] for purely algebro-geometric new proof):

Theorem 2.7. Under Set-up 2.4, dp(f) = maxmax{0,p−ℓ+b}≤j≤min{p,b} dj(g)dp−j(f |π).
The following corollary was observed again by [DN11]:

Corollary 2.8. Let M and M ′ be smooth projective varieties, f ∈ Bir (M) be a birational
automorphism of M , g :M 99K M ′ be an f -equivariant generically finite dominant rational
map and f ′ be the induced birational automorphism of M ′. Then dp(f) = dp(f

′) for every
p.

Proof. As dp(f) are birational invariant by Theorem 2.3, we may assume that g is a gener-
icaly finite surjective morphism (cf. Remark 2.5). Then, by the product formula (Theorem
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2.7), we have dp(f) = dp(f
′)d0(f |g) for all p. By definition of the relative dynamical degree,

we have d0(f |g) = 1. Hence dp(f) = dp(f
′). �

See also for [OT15] for other algebro-geometric applications of the product formula.

3. Pisot units and Proof of Theorem 1.7.

Main results of this section are Theorems 3.3, 3.4 and thie corollaries Corollaries 3.7, 3.9.
First, we recall the definition of Pisot unit:

Definition 3.1. Let Z ⊂ C be the ring of algebraic integers. A real algebraic integer
α ∈ Z ∩ R is called a Pisot number if |α| > 1 and |α′| < 1 for all Galois conjugates α′ 6= α
of α over Q. Here, for a complex number a, we denote the real part of a, the imaginary
part of a and the complex conjugate of a by Re a, Im a and a respectively. We define the
absolute value |a| of a by

|a| :=
√
aa =

√

(Re a)2 + (Im a)2 ∈ R≥0 .

The degree of the Pisot number is the degree of the minimal polynomial of α over Z or
equivalently over Q. A Pisot number α of degree d is called a Pisot unit if α is invertible in

Z, i.e.
∏d

j=1 αj = ±1, where αi (1 ≤ j ≤ d) are the Galois conjugates of α. We note that
if α is a Pisot number or a Pisot unit of degree d then so is −α. So, from now on, we may
and will assume that Pisot numbers are greater than 1.

Example 3.2. (1) Let a be an integer such that a ≥ 3. Then, by definition, the largest
root of X2 − aX + 1 = 0 is a Pisot unit of degree 2. Similarly, for a positive integer b, the
largest root of X2 − bX − 1 = 0 is also a Pisot unit of degree 2.

(2) The largest real roots

α3 = 1.324 . . . , α4 = 1.380 . . . , α5 = 1.443 . . .

of the equations

X3 −X − 1 = 0 , X4 −X3 − 1 = 0 , X5 −X4 −X3 +X2 − 1 = 0

are Pisot units of degree 3, 4, 5 respectively. These three Pisot units α3 < α4 < α5 are the
smallest three positive Pisot numbers ([BDGPS92, Theorem 7.2.1]).

There are plenty of Pisot units as the following theorem ([BDGPS92, Theorem 5.2.2])
shows:

Theorem 3.3. Let d ≥ 1 be any positive integer and K be any real field extension of Q of
degree d = [K : Q] (for instance K = Q( d

√
2)). Then there is a Pisot unit α ∈ K of degree

d = [K : Q].

Pisot numbers naturally appear as the first dynamical degrees of birational automor-
phisms of rational surfaces, which are not conjugate to biregular automorphisms ([DF01],
[BC13]). They are not necessarily Pisot units. Pisot numbers, or more precisely Pisot units,
also play important roles in primitive automorphisms of abelian varieties:

Theorem 3.4. Let d be an integer such that d ≥ 2. Let A be a d-dimensional abelian
variety and f ∈ Aut (A). Assume that f∗|H0(A,Ω1

A) has a Pisot number α > 1 of degree
d as its eigenvalue. Then α is a Pisot unit and f is a primitive automorphism of A of
positive topological entropy. More precisely htop(f) = 2 log α > 0.
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Proof. By the Hodge decomposition theorem, it follows that

H1(A,Z)⊗Z C = H1(A,C) = H0(A,Ω1
A)⊕H0(A,Ω1

A)

and the decomposition is compatible with the action of f∗. Thus the eigenvalues of
f∗|H0(A,C) are αj , αj (1 ≤ j ≤ d), counted with multiplicities. Here α1 := α and
αj (1 ≤ j ≤ d) are the Galois conjugates of α. As f is an automorphism, f∗|H0(A,Z) is
invertible over Z. Thus the determinant of f∗|H0(A,Z), which is ±∏

j |αj|2, is ±1. Hence
∏

j αj is ±1 as
∏

j αj ∈ Z. This shows that α is a Pisot unit. As α = α1 is a positive Pisot
number, we may rename αj so that

|α1| = α > 1 > |α2| ≥ . . . ≥ |αd| .
As A is an abelian variety, we have

Hp,p(A) = ∧pH1(A,Ω1
A)⊗C ∧pH0(A,Ω1

A) .

It follows that

dk(f) =

k
∏

j=1

|αj |2 .

In particular,

d1(f) = |α1|2 , d2(f) = |α1|2|α2|2 ,
and

htop(f) = 2 log α > 0 ,

by α = |α1| > 1 and |αj | < 1 for j ≥ 2 and Theorem 2.2.

Lemma 3.5. f is primitive.

Proof. Assuming to the contrary that f is not primitive, we derive a contradiction.
Let π : A 99K B be an f -equivariant dominant rational map such that 0 < dim B <

dim A. We denote by dBj the j-th dynamical degree of fB ∈ Bir (B) induced by f and dFj
be the j-th relative dynamical degree of f with respect to π, or more precisely, the j-th
relative dynamical degree of a resolution of indeterminacy of π (cf. Remark 2.5). Then, by
the product formula (Theorem 2.7), we have

|α1|2 = d1(f) = Max (dB0 d
F
1 , d

B
1 d

F
0 ) = Max(dF1 , d

F
2 ) ,

|α1|2|α2|2 = d2(f) = Maxi+j=2(d
B
i d

F
j ) ≥ dB1 d

F
1 .

As dB1 ≥ 1 and dF1 ≥ 1, it follows that dB1 d
F
1 ≥ dB1 , d

F
1 . Thus d2(f) ≥ d1(f), i.e.,

|α1|2|α2|2 ≥ |α1|2 ,
a contradiction to the fact that |α2| < 1 (and |α1| 6= 0). Hence f has to be primitive. �

This completes the proof of Theorem 3.4. �

Theorem 3.6. Let d be an integer such that d ≥ 2. Let α > 1 be any Pisot unit of degree
d, whose existence is guaranteed by Theorem 3.3. Let E be any elliptic curve. Then the
d-dimensional abelian variety Ed admits a primitive automorphism f with

htop(f) = 2 log α > 0 .



8 KEIJI OGUISO

Proof. Let

Sd(X) = Xd + adX
d−1 + . . . + a2X + a1 ∈ Z[X]

be the minimal polynomial of α. Note that a1 = ±1 as α is a Pisot unit. Consider the
matrix Md = (mij) ∈Md(Z) whose entries mij are 0 except

mdj = −aj , mi,i+1 = 1 (1 ≤ j ≤ d , 1 ≤ i ≤ d− 1) ,

associated to the polynomial Sd(X). For instance

M2 =

(

0 1
−a1 −a2

)

, M3 =





0 1 0
0 0 1

−a1 −a2 −a3



 , M4 =









0 1 0 0
0 0 1 0
0 0 0 1

−a1 −a2 −a3 −a4









.

By definition of Md, the characteristic polynomial ofMd is Sd(X) and, as a1 = ±1, we have
Md ∈ GLd(Z). Let (z1, z2, . . . , zd) be the standard complex coordinates of the universal
cover Cd of Ed. Then, as Md ∈ GLd(Z), we can uniquely define the group automorphism
f ∈ Autgroup(E

d) by

f∗(z1, z2, . . . , zd)
t =Md(z1, z2, . . . , zd)

t .

Here (z1, z2, . . . , zd)
t is the transpose of (z1, z2, . . . , zd). Then

f∗|H0(Ed,Ω1
Ed) =Md

under the basis 〈dzi〉di=1. Hence the characteristic polynomial of f∗|H0(Ed,Ω1
Ed) is Sd(X),

the minimal polynomial of Pisot unit α of degree d. The result then follows from Theorem
3.4. �

The first part of Theorem 1.7 follows from Theorem 3.6.

Corollary 3.7. Let d be an integer such that d ≥ 3. Let α > 1 be any Pisot unit of degree
d, whose existence is guaranteed by Theorem 3.3. Then there is a d-dimensional smooth
projective variety M , birational to a minimal Calabi-Yau variety, such that M admits a
primitive automorphism f with htop(f) = 2 log α > 0.

Proof. Let M be the blow up at the maximal ideals of the singular points of the quotient
variety M := Ed/〈−1Ed〉. Then M is a minimal Calabi-Yau variety as d ≥ 3, and M is a
smooth projective variety birational to M . Moreover, the automorphism f ∈ Aut (Ed) in
Theorem 3.4 descends to an automorphism fM ∈ Aut (M) of M as f ◦ (−1Ed) = (−1Ed)◦f
and by the universality of the blow up. By Corollary 2.8, dp(fM) = dp(f) for all p. Thus,
by Theorem 2.2, htop(fM ) = htop(f), which is 2 log α by Theorem 3.6. fM is also primitive
by Lemma 3.8 below. �

Lemma 3.8. Let U and V be smooth projective varieties of the same dimension d and
µ : U 99K V be a dominant rational map (necessarily generically finite). Let fU ∈ Bir (U)
and fV ∈ Bir (V ). Then, fV is primitive if fU is primitive and µ ◦ fU = fV ◦ µ.
Proof. If π : V 99K B is an fV -equivariant rational dominant map of connected fibers, then
the Stein factorization of π ◦ µ : U 99K B is an fU -equivariant rational dominant map of
connected fibers. As fU is primitive and dim V = dim U = d, it follows dim B = 0 or
dim B = d. This means that fV is primitive as well. �
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Corollary 3.7 shows the second half part of Theorem 1.7.

Corollary 3.9. Let αd (d = 3, 4, 5) be the first three smallest positive Pisot units of
degree d respectively (Example 3.2). Then the logarithm 2 log αd (d = 3, 4, 5) is realized
as the topological entropy of a primitive automorphism of an abelian varieties of dimension
d = 3, 4, 5 respectively. Moreover, 2 log α3 is also realized as the topological entropy of
a primitive automorphism of a 3-dimensional Calabi-Yau manifold and a 3-dimensional
smooth rational variety, and 2 log αd (d = 4, 5) is also realized as the topological entropy of
a primitive automorphism of a d-dimensional smooth rationally connected variety Rd.

Proof. In Theorem 3.4, we choose E to be Eω = C/Z + ωZ (ω = (−1 +
√
−3)/2). Then

fd := f ∈ Aut (Ed
ω) in Theorem 3.4, associated to αd (d = 3, 4, 5), satisfies the first

requirement.
Let µ : Rd → Rd be the blow up at the maximal ideals of the singular points of the

quotient variety Rd := Ed
ω/〈−ωId〉. Then Rd is a smooth projective variety. Moreover,

the automorphism fd ∈ Aut (Ed) descends to an automorphism fRd
∈ Aut (Rd) of Md and

fRd
is primitive of positive topological entropy 2 log αd, exactly for the same reason as in

Corollary 3.7.
Let V3 be the blow up at the maximal ideals of the singular points of the quotient variety

E3
ω/〈ωI3〉. Then V3 is a smooth Calabi-Yau threefold and the automorphism fV3

of V3
induced by f3 satisfies all the required properties.
R3 is rational by [OT15], R4 is unirational by [COV15] and R5 is rationally connected

by [KL09].
Here, we shall give an alternative uniform proof of rational connectedness of Rd (d = 3,

4, 5), using the fact that fRd
∈ Aut (Rd) is primitive.

By construction, Rd (d = 3, 4, 5) has numerically trivial canonical divisor and only
isolated singular points which are the image of the fixed points of 〈−ωI3〉. Let P ∈ Rd be
the image of the origin of Ed

ω. As d ≤ 5, Rd is klt but not canonical at P . Let E ⊂ Rd be
the exceptional divisor lying over P . Then we have

KRd
≡ −aE + E′ , a > 0 ,

where E′ is a divisor whose support lies over the singular points of Rd other than P .
Let y ∈ Rd be a general point of Rd and set x = µ(y). As y is general, x is a smooth

point of Rd. Choose an ample divisor H of Rd. Then, there is a positive integer m (may
depends on y) and a complete intersection curves

C = H1 ∩H2 ∩ . . . ∩Hd−1 , Hi ∈ |mH|
such that C is irreducible, C ∋ x, C ∋ P and C contains no other singular points of Rd.
This is possible, as Rd has only finitely many singular points. Let C ⊂ Rd be the strict
transform of C. Then

(KRd
.C) = −a(E.C) + (E′.C) = −a(E.C) < 0 .

Note that y ∈ C as x ∈ C and x is a smooth point. Therefore, for a general point y ∈ Rd,
there is an irreducible curve C ⊂ Rd such that y ∈ C and (KRd

.C) < 0. Hence Rd is
uniruled by the numerical criterion of the uniruledness due to Miyaoka-Mori ([MM86], see
also [Ko96, Chap. IV, Theorem 1. 13]).
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Now consider the maximal rationally connected fibration π : Rd 99K B of Rd. It is unique
up to bitational equivalence ([KMM92], [Ko96, Chap. IV, Theorem 5.5]). In particular,
π is fRd

-equivariant. Here B is not uniruled by [GHS03]. Thus dim B < dimRd as
Rd is uniruled. As fRd

is primitive, it follows that dim B = 0. Hence Rd is rationally
connected. �

The following question is yet open and is of its own interest (see [COV15] for some
attempt):

Question 3.10. Are R4 and R5 constructed in our proof of Corollary 3.9 rational?

Note that R1 and R2 are obviously rational and R3 is also rational ([OT15]) but if d ≥ 6,
then κ(Rd) = 0, hence Rd is never rational (even never uniruled), as Ed

ω/〈−ωId〉 (d ≥ 6)
has only canonical singularities with numerically trivial canonical divisor.

4. Salem numbers and a criterion of the primitivity of automorphisms of a

projective hyprkähler fourfold.

Our main result of this section is Theorem 4.6.
First, we recall the definition of Salem number (including quadratic units):

Definition 4.1. A polynomial P (X) ∈ Z[X] is called a Salem polynomial if it is irreducible
over Z, monic, of even degree 2d ≥ 2 and the complex zeroes of P (x) are of the form
(1 ≤ i ≤ d− 1):

a > 1 , 0 < a < 1 , αi , αi+d−1 := αi ∈ S1 := {z ∈ C | |z| = 1} \ {±1} .
A Salem number is the largest real root a > 1 of a Salem polynomial P (X) and we call

the degree of P (X) the degree of a. By definition, Salem numbers are always in Z
×
and of

even degree.

Example 4.2. Unlike Pisot numbers, it is unknown which is the smallest Salem number.
The smallest known Salem number is the Lehmer number

λLehmer = 1.17628 . . .

Lehmer number is the real root > 1 of the following Salem polynomial of degree 10:

X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1 .

It is conjectured that the Lehmer number is the smallest Salem number and in fact it
is the smallest one in degree ≤ 40 (see eg. the webpage [Mo03]). Recall that the first
dynamical degree d1(f) of a smooth surface automorphism f is Salem number if d1(f) > 1
(cf. Proposition 4.4). McMullen [Mc07, Theorem A.1] shows that the Lehmer number is
the smallest Salem number among the first dynamical degrees d1(f) 6= 1 of smooth surface
automorohisms f ([Mc07, Theorem A.1]). He also shows that the Lehmer number is realized
as d1(f) of a rational surface automorphism f and a projective K3 surface automorphism
f ([Mc07], [Mc16]).

In this note, we frequently use the following elementary:

Lemma 4.3. Let n be a positive integer and a is a Salem number of degree 2d. Then so is
an.
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Proof. Under the notation of the Galois conjugate of a in Definition 4.1, it is clear that
an, 1/an, αn

i (1 ≤ i ≤ 2d − 2) are Galois conjugate of an. As the elementary symmetric
polynomials of Xi (1 ≤ i ≤ m) generate Z[X1, . . . , Zm]Sm over Z as Z-algebra, we have

Pn(X) := (X − an)(X − 1/an)(X − αn
1 ) . . . (X − αn

2d−2) ∈ Z[X] .

As the roots of Pn(X) are all Galois conjugate, the irredicible decomposition of Pn(X) over
Z, or equivalently over Q by Gauss’ lemma, is of the form Pn(X) = Qn(X)k for some k ≥ 1.
As an is a unique simple root of Pn(X) geater than 1, it follows that k = 1, i.e., Pn(X) is
irreducible over Z. Thus an > 1 is also a Salem number of the same degree as a. �

Salem numbers naturally appear in the topological entropy of surface automorphisms:

Proposition 4.4. Let S be a smooth projective surface and f ∈ Aut (S). Then, the char-
acteristic polynomial of f∗|H2(S,Z) is the product of cyclotomic polynomials and at most
one Salem polynomial of degree ≤ ρ(S) counted with multiplicities. Here ρ(S) is the Picard
number of S. In particular, by Theorem 2.2, the first dynamical degree d1(f) is either a
Salem number or 1 and the entropy htop(f) is the logarithm of a Salem number if it is
positive.

Proof. This is well-known. See eg. [Og10] for a self-contained proof. �

Salem numbers also naturally appear as the dynamical degrees of automorphisms of
projective hyperkähler manifolds:

Proposition 4.5. Let M be a (not necessarily projective) hyperkähler manifold of dimen-
sion 2m and f ∈ Aut (M). Then, the p-th dynamical degree dp(f) is either 1 or a Salem
number of degree ≤ b2(M). Moreover, dp(f) = d2m−p(f) = d1(f)

p , 0 ≤ p ≤ m, and
htop(f) = m log d1(f).

Proof. See [Og09]. �

The main result of this section is the following:

Theorem 4.6. Let M be a projective hyperkähler manifold of dimension 4 and f ∈
Aut (M). Assume that d1(f) is a Salem number of degree ≥ 6. Then f is primitive of
positive topological entropy.

Proof. By Theorem 2.2, htop(f) > 0 if d1(f) is a Salem number. So, it suffices to show that
d1(f) = 1 or d1(f) is of degree ≤ 4 if f is imprimitive.

Let π :M 99K B be an f -equivariant dominant rational map to a smooth projective vari-
ety, of connected fibers such that 0 < dim B < dim M = 4. We denote by fB the birational
automorphism of B induced by f . Let µ : M̃ → M be a resolution of indeterminacy of π
and π̃ := π ◦µ : M̃ → B be the induced surjective morphism and f̃ := µ−1 ◦f ◦µ ∈ Bir (M̃)

be the birational automorphism of M̃ induced by f . Then π̃ is f̃ -equivariant fibrations.

Lemma 4.7. (1) If dim B = 1 or 3, then d1(f) = 1.

(2) If dim B = 2, then d1(f) = d1(fB) = d1(f̃ |π̃).

Proof. Put d = d1(f) ≥ 1. Note that dp(f) = dp(f̃) by Theorem 2.3.
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Assume that dim B = 1. Then, by Proposition 4.5 and the product formula (Theorem
2.7), we have

1 = d4(f) = d4(f̃) = d1(fB)d3(f̃ |π̃) .
Thus d1(fB) = d3(f̃ |π̃) = 1 as both are greater than or equal to 1. Then, again, by

Proposition 4.5, the product formula and dp(f) = dp(f̃), we have

d = d3(f) = Max (d0(fB)d3(f̃ |π̃), d1(fB)d2(f̃ |π̃)) = Max (1, d2(f̃ |π̃)) = d2(f̃ |π̃) ,
d = d1(f) = Max (d0(fB)d1(f̃ |π̃), d1(fB)d0(f̃ |π̃)) = Max (1, d1(f̃ |π̃)) = d1(f̃ |π̃) .

Thus d = d2(f̃ |π̃) = d1(f̃ |π̃). Then, again, by Proposition 4.5, the product formula and

d2(f) = d2(f̃), we have

d2 = d2(f) = Max (d0(fB)d2(f̃ |π̃), d1(fB)d1(f̃ |π̃)) = Max (d2(f̃ |π̃), d1(f̃ |π̃)) = d .

Hence d2 = d and therefore d = 1 by d > 0, as claimed.
Assume that dim B = 3. Then, by the same computaions as in the case dim B = 1, we

have d3(fB) = d1(f̃ |π̃) = 1 and

d = d3(f) = Max (d3(fB)d0(f̃ |π̃), d2(fB)d1(f̃ |π̃)) = Max (1, d2(fB)) = d2(fB) ,

d = d1(f) = Max (d0(fB)d1(f̃ |π̃), d1(fB)d0(f̃ |π̃)) = Max (1, d1(fB)) = d1(fB) ,

and therefore

d2 = d2(f) = Max (d2(fB)d0(f̃ |π̃), d1(fB)d1(f̃ |π̃)) = Max (d2(fB), d1(fB)) = d .

Thus d = 1, as claimed.
Assume that dim B = 2. Then, by Proposition 4.5, the product formula and dp(f) =

dp(f̃), we have

1 = d4(f) = d2(fB)d2(f̃ |π̃) .
Thus d2(fB) = d2(f̃ |π̃) = 1. We also have

d = d1(f) = Max (d0(fB)d1(f̃ |π̃), d1(fB)d0(f̃ |π̃)) = Max (d1(f̃ |π̃), d1(fB)) ,
d2 = d2(f) = Max (d0(fB)d2(f̃ |π̃), d1(fB)d1(f̃ |π̃), d2(fB)d0(f̃ |π̃))

= Max (1, d1(fB)d1(f̃ |π̃), 1) = d1(fB)d1(f̃ |π̃) .
As d1(f̃ |π̃) ≥ 1 and d1(fB) ≥ 1, it follows that d = d1(fB) = d1(f̃ |π̃) as claimed. �

From now on, we may and will assume that

dim B = 2 , 1 < d := d1(f) = d1(fB) = d1(f̃ |π̃) .
The first essential point is to relate d1(f |π) with the first dynamical defree of a birational

automorphism of good fibers of π. For this purpose, the following theorem due to Xie [Xi15,
Theorem 1.4] is crucial:

Theorem 4.8. Let B be a smooth projective surface and g ∈ Bir (B). We denote by the
set of preperiodic point of g by S. More precisely, S is the set of closed points P of S such
that there is a positve integer m such that gm

′

is defined at P for all integers 0 ≤ m′ ≤ m
and gm(P ) = P . Then S is Zariski dense in B if d1(f) > 1.
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We denote by M̃P the fiber of π̃ : M̃ → B over P ∈ B.
Let I(f̃±1) ⊂ M̃ be the unioin of the indeterminacy sets of f̃ , f̃−1 ∈ Bir (M̃ ). As M̃ is

smooth (hence normal), I(f̃±1) is of codimension ≥ 2.

Let Γ be the graph of f̃ and pi : Γ → M̃ (i = 1, 2) be the natural projections. We define

f̃(I(f̃±1)) := p2 ◦ p−1
1 (I(f̃±1)) , f̃−1(I(f̃±1)) := p1 ◦ p−1

2 (I(f̃±1)) .

Finally, we denote by Exc(µ) = µ−1(I(π)) ⊂ M̃ the exceptional set of µ : M̃ → M . Here
I(π) ⊂ M is the indeterminacy set of π and it is of codimension ≥ 2. These three subsets

I(f̃±1), f̃±1(I(f̃±1)) and Exc(µ) are proper closed Zariski subsets of M̃ .
We can apply Theorem 4.8 to our (B, fB) as we are now assuming d1(fB) = d1(f) > 1,

and find a preperiodic point P ∈ S of fB such that M̃P is a smooth projective surface and

M̃P 6⊂ I(f̃±1) ∪ f̃±1(I(f̃±1)) ∪ Exc(µ) ,

as π̃ is proper and S is Zariski dense in B. We choose a positive integer m such that
fmB (P ) = P and all fm

′

B (0 ≤ m′ ≤ m) are defined at P as morphisms. As P is a preperiodic
point, such m exists. By preperiodicity, we may replace m by its any positive multiples km
(k ∈ Z>0).

As M̃P is of codimension 2 in M̃ and m depends on the choice of P , it is not a priori
clear if one can choose such a P so that M̃P 6⊂ I(f̃±m). However, we can show the following
slightly weaker:

Lemma 4.9. There is a positive integer k such that f̃mk|M̃P : M̃P 99K M̃P is a well-defined
birational map.

Proof. The essential point is that f itself is an automorphism.
Let MP := µ(M̃P ). Then MP is an irreducible surface on M and µ|M̃P : M̃P → MP is

a birational morphism, as M̃P 6⊂ µ−1(I(π)) = Exc (µ). Consider

Ak := fkm(MP ) ⊂M

for each positive integer k. As f ∈ Aut (M), we have Ak ≃ MP by fkm. Note that both
Ak and MP are closed and irreducible.

If Ak =MP , i.e., f
km(MP ) =MP for some positive integer k, then we are done. Indeed,

the generic point η of the scheme MP then maps to η by fkm. As µ|M̃P : M̃P → MP is
birational by our choice of P , we have µ(η̃) = η and µ−1(η) = η̃. Here η̃ is the generic

point of the scheme M̃P . As f̃km = µ−1 ◦ fkm ◦ µ, it follows that f̃km is defined at η̃ and
f̃km(η̃) = η̃. Hence fkm|M̃P is a well-defined birational automorphism of M̃P , provided
that Ak =MP .

Assume that A1 6⊂ I(π). Then for any general point Q ∈ MP , we have Q 6∈ I(π) and
fm(Q) 6∈ I(π). Then π is defined at Q so that π(Q) = P and

π(fm(Q)) = fmB (π(Q)) = fmB (P ) = P ,

by the choice of P and m. As both A1 and MP are irreducible, Zariski closed, and of the
same dimension, it follows that A1 =MP and we are done.

If A1 ⊂ I(π), we consider A2. If A2 6⊂ I(π), then the same argument above implies that
A2 =MP and we are done. If A2 ⊂ I(π), then we consider A3 and continue. If this process
stops at some k, i.e., if Ak 6⊂ I(π), then Ak =MP and we are done.
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Now assume that this process never stops, that is, that Ak ⊂ I(π) for all positive integers
k. Then, as dim I(π) ≤ 4 − 2 = 2 and dim Ak = 2, all Ak are irreducible components of
the Zariski closed subset I(π). As I(π) has only finitely many components, it follows that
there are positive integers k1 < k2 such that

Ak1 = Ak2 , i.e. , f
k1m(MP ) = fk2m(MP ) .

As f is an automorphism, it follows that fkm(MP ) =MP , that is, Ak =MP , for k = k2−k1
and we are done. This completes the proof. �

By replacing f by fkm in Lemma 4.9, we may and will assume that f̃ |M̃P ∈ Bir (M̃P ).

Remark here that 1 < d1(f
km) = d1(f̃

km|π̃) = d1(f
km
B ) by Lemma 4.7 (2), applied for fkm,

and d1(f
km) = d1(f)

km by Theorem 2.3.

Lemma 4.10. 1 < d1(f̃ |π̃) = d1(f̃ |M̃P ).

Proof. The first inequality follows from our assumption above and the remark after that.
Let H and HB be very ample divisors on M̃ and B respectively. As (H2

B)M̃P ≡ π̃∗(H2
B),

we have

((f̃n)∗(H).H.π̃∗(H2
B))

1

n = (((f̃n)∗H)|M̃P ).(H|M̃P ))
1

n · (H2
B)

1

n .

As H is very ample, we may choose Dn ∈ |H|, depending on n, such that Dn properly
meets the bad loci

∪0≤q≤n(I(f̃
±q) ∪ I(f̃ q|M̃P )

±1)) .

Then

((f̃n)∗Dn)|M̃P = (f̃n|M̃P )
∗(Dn|M̃P ) = (f̃ |M̃P )

n)∗(Dn|M̃P ) .

Hence

((f̃n)∗(H).H.π̃∗(H2
B))

1

n = (((f̃ |M̃P )
n)∗(H|M̃P )).(H|M̃P ))

1

n · (H2
B)

1

n .

By taking the limit under n→ ∞, we obtain d1(f̃ |π̃) = d1(f̃ |M̃P ), as claimed. �

Lemma 4.11. κ(F ) = 0 for general fibers F of π̃.

Proof. As d1(f̃ |M̃P ) > 1 by Lemma 4.10, κ(M̃P ) = 0 or κ(M̃P ) = −∞ by Theorem 1.4 and

Remark 1.5. As M̃P is a smooth fiber of the surjective morphism π̃ of relative dimension
2, we have κ(F ) = κ(M̃P ) for any smooth fiber F of π̃. As κ(M̃ ) = κ(M) = 0, M̃ is not
covered by a rational curves, hence is not covered by surfaces of Kodaira dimension −∞.
Hence κ(F ) = 0. �

To conclude the proof, we use the following theorem due to Amerik-Campana ([AC13,
Théorème 3.6] in dimension 4) and Matushita-Zhang ([MZ13, Theorem 1.3] in any dimen-
sion):

Theorem 4.12. Let X be a projective hyperkähler manifold having a domonant rational
map p : X 99K Y with connected fibers such that dim X/2 ≤ dim Y < dim X and general
fibers of p are not of general type. Then p : X 99K Y is birational to p′ : X ′ → Y ′, where
X ′ is a projective hyperkähler manifold and p′ : X ′ → Y ′ is a holomorphic Lagrangian
fibration. In particular, general fibers of p′ are abelian varieties of dimension (dim X)/2.
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By Lemma 4.11, we can apply Theorem 4.12 to our π :M 99K B. Then general fibers of π,
and hence general fibers of π̃, are birational to abelian surfaces. As both Kodaira dimension
and irregularity are constant for smooth fibers of relative dimension two, the smooth fiber
M̃P is also birational to an abelian surface. Indeed, a smooth projective variety X is
birational to an abelian variety if κ(X) = 0 and q(X) = dim X by a fundamental result
due to Kawamata ([Ka81]).

Let ν : M̃P → A be the minimal model of M̃P . Then A is an abelian surface and the
birational automorphism f̃ |M̃P ∈ Bir (M̃P ) induces a ν-equivariant automorphism fA ∈
Aut (A) of A. We have d1(f̃ |M̃P ) = d1(fA) by Theorem 2.3. By Theorem 2.2 (see also a
remark after that), d1(fA) is the spectral radius of f∗A|N1(A). As rankN1(A) = ρ(A) ≤ 4
for a complex abelian surface, it follows that d1(fA) is of degree ≤ 4.

As already observed, we have d1(f) = d1(f̃ |π̃) = d1(f̃ |MP ) = d1(fA). Hence d1(f) is of
degree ≤ 4 and we are almost done.

Very precisely saying, as we replaced f by fkm, what we have shown here is that if f
is imprimitive and of positive topological entropy, then d1(f

km) is of degree ≤ 4 for some
positive integers m, k.

However, d1(f
km) = d1(f)

km by Theorem 2.3. As f is an automorphism and d1(f) > 1,
we know that d1(f) is a Salem number by Proposition 4.5. Thus, by Lemma 4.3, d1(f

km) =
d1(f)

km is also a Salem number of the same degree as d1(f). As d1(f
km) = d1(f)

km is of
degree ≤ 4, then so is d1(f). This completes the proof. �

5. Hilbert schemes of points and hyperkähler fourfolds with primitive

automorphisms of positive topological entropy.

Let S[n] = Hilbn(S) be the Hilbert scheme of the 0-dimensional closed subsechemes of

lenghts n of a smooth projective surface S. Then S[n] is a smooth projective variety of
dimension 2n by Fogarty [Fo68]. Let f ∈ Aut (S). Then f naturally induces an automor-

phism, denoted by f [n] ∈ Aut (S[n]), of S[n].

It is well known that S[n] is a projective hyperkähler manifold of dimension 2n if S is a

projective K3 surface ([Fu83] for n = 2, [Be83] for arbitrary n). The universal cover ˜S[n] of
S[n], which is of covering degree 2, is a (projective) Calabi-Yau manifold of dimension 2n if

S is an Enriques surface ([OS11]). If S is a smooth rational surface, then S[n] is a smooth

projective rational variety of dimension 2n, as S[n] is birational to the symmetric product
Symn (P2), the later of which is rational by classical invariant theory (see eg. [GKZ94,
Chap. 4, Theorem 2.2] for details).

Proposition 5.1. Let S be a projective K3 surface with an automorphism f ∈ Aut (S)

such that d1(f) is a Salem number of degree ≥ 6. Then the automorphism f [2] of S[2] is
primitive and of positive topological entropy.

Proof. Let E be the exceptional divisor of the Hilbert-Chow morphism S[2] → Sym2 S. By
[Be83], we have an isomorphism

H2(S[2],Z) ≃ H2(S)⊕ Z(E/2)
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compatible with Hodge decomposition and the actions of f [2] and f ⊕ idZ(E/2). Thus, by
Theorem 2.2,

d1(f
[2]) = r1(f

[2]) = r1(f) = d1(f) .

Thus f [2] is of positive topological entropy and it is primitive by Theorem 4.6. �

The following consequence may be of its own interest:

Theorem 5.2. (1) Let M be a (not necessarily projective) hyperkähler fourfold and
f ∈ Aut (M). Then

htop(f) ≥ 2 log λLehmer ,

unless htop(f) = 0. Here λLehmer is the Lehmer number (See Example 4.2).
(2) There is a projective hyperkähler fourfold M with a primitive automorphism f ∈

Aut (M) of the smallest possible positive topological entropy

htop(f) = 2 log λLehmer .

Proof. By Proposition 4.5, d1(f) = 1 or d1(f) is a Salem number. Guan [Gu01] shows that
3 ≤ b2(M) ≤ 8 or b2(M) = 23. As d1(f) = r1(f) by Theorem 2.2, d1(f) is then of degree
≤ 23. Thus, as remarked in Example 4.2, it follows from [Mo03] that

d1(f) ≥ λLehmer , unless d1(f) = 1 .

Thus, again by Proposition 4.5, htop(f) ≥ 2 log λLehmer unless htop(f) = 0. This proves (1).
As remarked in Example 4.2, McMullen [Mc16] shows that there is a projective K3 surface

S with automorphism f ∈ Aut (S) such that d1(f) is Lehmer number. By Proposition 5.1,
(S[2], f [2]) gives then a desired example in (2). �

In the view of Proposition 4.5 and Theorem 5.2, it is interesting to ask the following:

Question 5.3. Let M be a (not necessarily projective) hyperkähler manifold of dimension
2m ≥ 6 and f ∈ Aut (M). Is then

htop(f) ≥ m log λLehmer ,

unless htop(f) = 0?

6. Smooth rational fourfolds with primitive automorphisms of positive

topological entropy.

In this section, we show the following theorem fairly in an explicit way by reducing to
certain projective hyperkähler fourfolds:

Theorem 6.1. There is a 4-dimensional smooth projective rational variety with a primitive
automorphism of positive topological entropy.

Proof. Let E and F be mutually non-isogenous elliptic curves and S := Km(E×F ) be the
Kummer K3 surface associated with the product abelain surface E × F . We denote by ωS

a nowhere vanishing holomorphic 2-form on S. Let ι ∈ Aut (S) be the automorphism of S
of order 2, induced by (−1E , 1F ) ∈ Aut (E × F ).

We call a surjective morphism ϕ : S → P1 a Jacobian fibration if general fibers of ϕ are
elliptic curves and ϕ admits at least one global section. We denote by r(ϕ) the rank of the
Mordell-Weil group MW (ϕ) of a Jacobian fibration ϕ : S → P1. Note that MW(ϕ) is an
abelian subgroup of Aut (S) of finite rank. We use the following properites of S:
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Proposition 6.2. (1) The involution ι is in the center of Aut (S).
(2) S admits two different Jacobian fibration ϕi : S → P1 with r(ϕi) = 4 (i = 1, 2).

Proof. See [Og89]. �

We consider the quotient surface T = S/〈ι〉.
Corollary 6.3. The surface T is a smooth rational surface.

Proof. Notice that ι is an involution with ι∗ωS = −ωS. Then, by the local linearlization
of ι at any fixed point shows that T is smooth. The fixed locus of ι consists of 8 smooth
disjoint rational curves. Thus, κ(T ) = −∞ by the ramification formula. The iregularity
of T is zero, as so is S. Hence T is rational by Castelnouvo’s criterion of rationality of
surfaces. �

Corollary 6.4. S damits an automorphism fS ∈ Aut (S) such that d1(fS) is a Salem
number of degree ≥ 6.

Proof. This follows from Proposition 6.2 (2) and Theorem 6.5 below. Note that the degree
of a Salem number is even so that if it is greater than 4, then greater than or equal to 6.
Theorem 6.5 is stronger than [EOY14, Theorem 1.2] but the idea of proof is the same as
[EOY14, Theorem 1.2]. We will give a proof of Theorem 6.5 in Section 8. �

Theorem 6.5. Let V be a projective K3 surface. Assume that V admits a Jacobian fibration
ϕ : V → P1 with r(ϕ) ≥ r > 0 and a different Jacobian fibration ψ : V → P1 with r(ψ) > 0.
Then V admits an automorphism g ∈ Aut (V ) such that d1(g) is a Salem number of degree
> r, strictly larger than r.

Choose an automorphism fS ∈ Aut (S) in Corollary 6.4. Then fS induces an automor-
phism of fT ∈ Aut (T ) which is equivariant under the quotient morphism.

Now consider the Hilbert scheme T [2] and the automorphism f
[2]
T ∈ Aut (T [2]) induced

by fT .

Proposition 6.6. (1) T [2] is a smooth projective rational fourfold.

(2) f
[2]
T ∈ Aut (T [2]) is primitive and of positive topological entropy.

Proof. The first assertion (1) follows from Corollary 6.3 (See also Section 5).

We reduce the proof of (2) to the hyperkähler fourfold S[2]. We denote by f
[2]
S ∈ Aut (S[2])

the automorphism of S[2] induced by fS.
The quotient morphism S → T induces a dominant rational map ν : S[2]

99K T [2]. The

map ν is equivariant under the automorphisms f
[2]
S and f

[2]
T . As d1(fS) is Salem number of

degree ≥ 6, the automorphism f
[2]
S is primitive and of positive entropy by Proposition 5.1.

Thus so is f
[2]
T by Lemma 3.5 and Corollary 2.8. �

Theorem 6.1 now follows from Proposition 6.6. �

7. Calabi-Yau fourfolds with primitive automorphisms of positive

topological entropy.

In this section, we show the following theorem fairly in an explicit way, again by reducing
to certain projective hyperkähler fourfolds:
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Theorem 7.1. There is a 4-dimensional Calabi-Yau manifold with a primitive automor-
phism of positive topological entropy.

Proof. We construct a desired Calabi-Yau fourfold from an Enriques surface W in the
following:

Proposition 7.2. There is an Enriques surface W with an sutomorphism fW ∈ Aut (W )
such that d1(fW ) is a Salem number of degree 10.

Proof. Let W be a smooth Enriques surface. Then, the lattice (N1(W ), (∗, ∗∗)W ) is iso-
morphic to the even unimodular root lattice E10 of signature (1, 9). We identify

(N1(W ), (∗, ∗∗)W ) = E10

under some fixed isomorphism. We have then the natural group homomorphism

ρ : Aut (W ) → O+(N1(W )) = O+(E10) , f 7→ (f−1)∗ .

Here O+(E10) is the group of isometries of E10 preserving the positive cone, corresponding to
the positive cone of N1(W ), i.e., the connected component of {x ∈ N1(W )⊗R |(x2)W > 0}
containing the ample classes.

Let W be a generic Enriques surface in the sense of Barth-Peters [BP83]. The period
points of generic W form a dense subset of 10-dimensional period domain of Enriques
surfaces (so there are plenty of generic W ) and, under ρ, we have an isomorphism

Aut (W ) ≃ O+(E10)[2] .

Here O+(E10)[2] is the 2-congruence subgroup of O+(E10), i.e.,

O+(E10)[2] = Ker (O+(E10) → GL (E10 ⊗Z F2) ; f 7→ f mod2) .

We show that any generic Enriques surface has a desired automorphism.
Let κ is the (conjugate class of) Coexter element of O(E10), i.e., the product of the

reflections Rei (1 ≤ i ≤ 10), corresponding to (−2)-elements ei (1 ≤ i ≤ 10) forming the
root basis of E10. Then the spectral radius r1(κ) of κ on E10 is the Lehmer number, a
Salem number of degree 10 (See eg. [Mc07]). As [O(E10) : O+(E10)[2]] < ∞, there is a
positive integer such that

κn ∈ O+(E10)[2] .

We fix such an n. Then there is f ∈ Aut (W ) such that f∗ = κn on N1(W ) = E10, as W is
generic. As r1(κ) is a Salem number of degree 10, so is d1(f) = r1(f) = r1(κ)

n by Lemma
4.3. This completes the proof. �

In what follows, we choose and fix W and fW ∈ Aut (W ) in Proposition 7.2.

Let us consider the Hilbert schemeW [2] and the induced automorphism f
[2]
W ∈ Aut (W [2])

by fW . Let u :M →W [2] be the universal cover of W [2], of covering degree 2. Then:

Proposition 7.3. (1) M is a smooth projective Calabi-Yau fourfold.
(2) M adimits a primitive automorphism of positive entropy.

Proof. The first assertion (1) follows from [OS11], as remarked in Section 5.
Let τ : S → W be the universal cover of W . Then S is a projective K3 surface and τ

is an étale covering of degree 2. As in Proposition 6.6, we reduce the proof of (2) to the

hyperkähler fourfold S[2].
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We denote by ι ∈ Aut (S) the covering involution of τ . Let fS ∈ Aut (S) be any one of

the two lifts of fW ∈ Aut (W ). We denote by f
[2]
S ∈ Aut (S[2]) the automorphism of S[2]

induced by fS .

Lemma 7.4. f
[2]
S ∈ Aut (S[2]) is a primitive automorphism of positive topological entropy.

Proof. As τ is equivariant under fS and fW , we have d1(fS) = d1(fW ) by Corollary 2.8.

Thus d1(fS) is a Salem number of degree 10. Hence d1(f
[2]
S ) is primitive and of positive

topological entropy by Proposition 5.1. �

Let Sym2 (S) be the symmetric product of S. We denote by

∆S ⊂ Sym2 (S) , ΓS ⊂ Sym2 (S)

the image of the digonal ∆S ⊂ S × S and the image of the graph ΓS ⊂ S × S of ι under
the quotient morphism S × S → Sym2 (S) respectively. Note that

∆S ∩ ΓS = ∅ ,
as ι is a fixed point free involution. We denote by

a1 , a2 ∈ Aut (Sym2 (S))

the automorphisms of Sym2 (S) induced by (ι, idS) ∈ Aut (S × S) and (ι, ι) ∈ Aut (S × S)
respectively. We define ∆W ⊂ Sym2 (W ) in the same way as ∆S .

Then the natural morphism

τ : Sym2 (S) → Sym2 (W )

is a finite Galois cover with Galois group 〈a1, a2〉 ≃ Z/2× Z/2. From the construction, we
have

τ−1(∆W ) = ∆S ∪ ΓS .

The following four morphisms

a1|∆S : ∆S → ΓS , a1|ΓS : ΓS → ∆S , a2|∆S : ∆S → ∆S , a2|ΓS : ΓS → ΓS

are isomorphisms, the morphism

τ |∆S : ∆S → ∆W = ∆S/〈a2〉
is étale of degree 2, the morphism

τ |ΓS : ΓS → ∆W

is an isomorphism and

τ |Sym2 (S) \ (∆S ∪ ΓS) : Sym
2 (S) \ (∆S ∪ ΓS) → Sym2 (W ) \∆W

is an étale Galois cover with Galois group 〈a1, a2〉.
Recall that the Hilbert-Chow morphism νS : S[2] → Sym2 (S) is the blow up along ∆S

and similarly for W [2]. Then, the morphism τ induces a rational dominant map

τ [2] : S[2]
99KW [2] .

The indterminacy locus of τ [2] is precisely ν−1
S (ΓS) ≃ ΓS .



20 KEIJI OGUISO

Let M̃ → S[2] be the blow up of S[2] along ν−1
S (ΓS). As ∆S ∪ΓS is stable under 〈a1, a2〉,

by the universal properity of the blow up, the automorphisms a1 and a2 of Sym2 (S) lift to

automorphisms ã1 and ã2 of M̃ respectively.
The rational map τ̃ : M̃ → W [2] induced by τ [2] is then a morphism. Moreover, τ̃ is

a finite Galois cover with Galois group 〈ã1, ã2〉 ≃ Z/2 × Z/2, and the induced morphism

M̃/〈ã2〉 → W [2] is étale of degree 2, by the description of the action of a1 and a2 above.

Hence M̃/〈ã2〉 is also the universal cover of W [2] and we may and will identify

M = M̃/〈ã2〉 .
As fS is a lift of fW to S, we have fS ◦ ι = ι ◦ fS, and therefore f

[2]
S ◦ ã2 = ã2 ◦ f [2]S . Thus

f
[2]
S decends to an automorphism fM ∈ Aut (M) so that the quotient morphism M̃ → M

is equivariant under f
[2]
S and fM . By Corollary 2.8 and Lemma 3.8, fM is primitive and

of positive topological entropy, as so is f
[2]
S by Lemma 7.4. This completes the proof of

Proposition 7.3. �

Theorem 7.1 now follows from Proposition 7.3. �

Remark 7.5. The universal covering Calabi-Yau 2n-folds of the Hilbert scheme W [n] of
an Enriques surface W may have rich geometric structures. See [Ha15] for some recent
interesting progress.

8. Appendix. Proof of Theorem 6.5.

Before entering the proof, we make a few words needed in the proof clear.

Definition 8.1. (1) We denote by Pm ⊂ R[X] the set of real monic polynomials of
degree m. Pm is then isomorphic to the real affine algebraic set Rm.

(2) A real cyclotomic polynomial (resp. a real Salem polynomial) is a monic polynomial,
irreducible over R, which divides a cyclotomic polynomial C(X) ∈ Z[X] (resp. a
Salem polynomial S(X) ∈ Z[X]) in R[X]. Note that if a polynomial P (X) ∈ Z[X]
is divided by a real cyclotomic polynomial (resp. a real Salem polynomial) in R[X],
then P (X) is divided by the corresponding cyclotomic polynomial C(X) (resp. the
corresponding Salem polynomial S(X)) in Z[X].

Let

Gr := SO(N1(V )⊗Z R) ∩Aut (V )∗ .

Here Aut (V )∗ = {f∗|N1(V ) | f ∈ Aut (V )}. Note that Gr is a finite index subgroup of
Aut∗(V ) and therfore of infinite order. We define A∗ similarly for a subgroup A ⊂ Aut (V ).

The essential new point in our proof is the replacement of the pair S ⊂ N1(V ) = NS (V )
in [EOY14] to the following more refined pair Sr ⊂ L and work over R rather than Z.

Here Sr is the subset of N1(V ) consisting of the smooth fiber classes e ∈ N1(V ) of
Jacobian fibrations of Mordell-Weil rank ≥ r on V , and L is the primitive hull of the
Z-submodule of N1(V ) generated by Sr. We set d := rankL.

The lattice L is Gr-stable and LR := L⊗ZR is hyperbolic with respect to the intersection
form (∗, ∗∗)V . Indeed, as LR contains the fiber class f of the Jacobian fibration ϕ : V → P1

and the fiber classes fn of the Jacobian fibrations r−n ◦ϕ ◦ rn : V → P1, where r ∈ MW(ψ)
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is of infinite order and n is an integer. Then f, fn ∈ L are not proprtional for some n, as r
is of infinite order.

There is a real hyperbolic vector subspace M of rank ≥ 2, of LR, such that M is irre-
ducible under the action of

Gr ∩ SO+ (M) .

That is, M is Gr ∩ SO+ (M)-stable and has no real Gr ∩ SO+ (M)-stable vector subspace
other than {0} andM . Here SO+ (M) is the subgroup of SO(M) of finite index, preserving
the postive cone of MR.

Lemma 8.2. Such M actually exists.

Proof. Choose an irreducible M . If M is of positive definite, then it is of rank 1 and
M⊥

LR
is of negative definite and it is Gr-stable possibly after replacing Gr by a finite index

subgroup. However, then Gr would be of finite order, a contradiction. If M is of negative
definite, then consider M⊥

LR
. This is hyperbolic, as it is not of positive definite observed

above. Then we find a new irreducible hyperbolic M in M⊥
LR

by induction of the rank. If
M is parabolic, then there is a unique

{0} 6= R · x ⊂M

such that (x2) = 0. As R · x is then Aut (V )∗-stable, it follows that M = R · x. Choose
f ∈ Sr such that x and f are linearly independent. This is possible as |Sr| = ∞ by our
assumption. Then for any g ∈ MW(ϕf ), we have g∗f = f and therefore g∗x = x, as
(x, f) 6= 0. Thus MW(ϕf )

∗ = id on R〈x, f〉. As the orthogonal coplement is of negative
definite and it is also MW(ϕf )

∗-stable, it follows that |MW(ϕf )| < ∞, a contradiction to
the fact that it is of rank r > 0. �

We choose and fix such an M . Note that in general M is not defined over Z, i.e., there
are no sublattice M ′ ⊂ L such that M =M ′ ⊗Z R.

Lemma 8.3. There is e ∈ Sr such that M 6⊂ e⊥LR
:= {x ∈ LR | (x, e)V = 0}.

Proof. As LR = R〈S〉 and LR is hyperbolic, inparticular, the intersection form (∗, ∗∗) on
LR is non-degenerate, we have ∩e∈Sr

e⊥LR
= {0} and the result follows. �

We also choose and fix e ∈ Sr in Lemma 8.3. As e ∈ Sr, we have

s := rankMW(ϕe) ≥ r .

Here ϕe : V → P1 is the Jacobian fibration ϕe : V → P1 whose fiber class is e.

Lemma 8.4. There are an integral basis

〈e, v1, · · · , vd−2〉
of e⊥ := {x ∈ L | (x, e)V = 0} ⊂ L, a Q-basis

〈e, v1, · · · , vd−2, u〉
of LQ, with (e, u) = 1, and a finite index subgroup

H := 〈h1, · · · , hs〉 ≃ Zs
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of (MW (ϕe)
∗ ∩ SO(L)), such that, under the Q-basis of LQ above,

hi =





1 ati ci
0 Id−2 qiei
0 0t 1



 ,

such that qi 6= 0 for all i with 1 ≤ i ≤ s. Here ei is the i-th unit vector and Id−2 is the
(d− 2)× (d− 2) identity matrix.

Moreover, there are 1 ≤ i, j ≤ s such that atj · ei 6= 0, and hi|M ∈ SO+(M) for all i with
1 ≤ i ≤ s.

Proof. Proof of [EOY14, Lemma 4.7, Lemma 4.8] works under obvious modifications. �

Lemma 8.5. dim M ≥ s+ 2.

Proof. As M 6⊂ e⊥LR
, there is v ∈ M such that v 6∈ e⊥LR

. As v ∈ M ⊂ LR and v 6∈ e⊥LR
,

replacing v by non-zero real multiple if necessary, we can write

v = xe+

d−2
∑

k=1

ykvk + u ,

under the basis in Lemma 8.4. Here x and yk are real numbers. Then operaing hi (1 ≤ i ≤ s)
in Lemma 8.4, we obtain

hi(v) = v + (ati · y+ ci)e+ qivi .

Here y = (y1, . . . , yd−2)
t. As M is Gr ∩ SO+(M)-stable, hi|M ∈ Gr ∩ SO+(M) and v ∈M ,

it follows that hi(v)− v ∈M , i.e.,

ki := (ati · y + ci)e+ qivi ∈M .

Hence hj(ki)− ki ∈M , that is,

qi(a
t
j · ei)e ∈M ,

for all integers i, j such that 1 ≤ i, j ≤ s. As qi 6= 0 for all 1 ≤ i ≤ s and atj · ei 6= 0 for
some 1 ≤ i, j ≤ s by Lemma 8.4, it follows that e ∈M . Then, by ki ∈M , e ∈M and again
by qi 6= 0, we have vi ∈M for all 1 ≤ i ≤ s as well. Thus

e, v1, v2 . . . , vs, v ∈M .

These s+ 2 vectors are linearly independent, as v 6∈ e⊥LR
. This implies the result. �

Let g ∈ Gr ∩SO+(M). We denote by Φg(X) ∈ R[X] the characteristic polynomial of the
action of g on M . By definition of Gr, there is g̃ ∈ Aut (V ) such that g = g̃∗|M . We call
such g̃ a lift of g. We denote by Φg̃∗(X) ∈ Z[X] the characteristic polynomial of the action
of g̃ on N1(V ). By Proposition 4.4, the irreducible factors of Φg̃∗(X) over Z are cyclotomic
polynomials of degree ≤ 20 and at most one Salem polynomial. Note that there are only
finitely many cyclotomic polynomials of degree ≤ 20, say,

C1(X), . . . , Cn(X)

and therefore only finitely many real cyclotomic polynomials which divide some Ci(X)
(1 ≤ i ≤ n), say,

R1(X), . . . , RN (X) .
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As Φg(X)|Φg̃∗(X) in R[X] for any lift g̃ of g, the polynomial Φg(X) is the product of
Ri(X) (1 ≤ i ≤ N) of multiplicity ≥ 1 and some real factors of a Salem polynomial S(X),
of multiplicity 1.

Now assume that dim M = 2m is even. Then, thanks to [EOY14, Proposition 4.3], the
same proof as [EOY14, Theorem 4.1] applied for the real algebraic morphism

SO(M) ∋ g 7→ Φg(X) ∈ P2m

with irreducibility of M shows that there is g ∈ Gr ∩ SO+(M) such that Φg(X) has no real
cyclotomic factor. Then we have a decomposition

Φg(X) =

k
∏

i=1

Si(X) ,

where Si(X) (1 ≤ i ≤ k) are mutually different real Salem polynomials. Let g̃ ∈ Aut (V )
be any lift of this g. Then Φg̃∗(X) has a Salem polynomial factor S(X) ∈ Z[X] such that

k
∏

i=1

Si(X)|S(X)

in R[X]. Thus, S(X) is of degree ≥ 2m, whence, d1(g̃) is a Salem number of degree > r,
as 2m ≥ s+ 2 ≥ r + 2.

Assume that dim M = 2m + 1 is odd. Then for each g ∈ SO(M), the characteristic
polynomial Φg(X) is always divisible by (X − 1). Then we can consider the modified real
algebraic morphism

SO(M) ∋ g 7→ Φg(X)/(X − 1) ∈ P2m .

Then, again thanks to [EOY14, Proposition 4.3], in the same way as in the case dim M =
2m above, we finds g ∈ Gr ∩ SO+(M) such that Φg(X)/(X − 1) is the product of real
Salem polynomials of multiplicity 1. Let g̃ ∈ Aut (V ) be any lift of this g. Then for the
same reason as above, the characteristic polynomial Φg̃∗(X) has a Salem polynomial factor
S(X) ∈ Z[X] of degree ≥ 2m, and therefore, d1(g̃) is a Salem number of degree > r, as
2m ≥ s+ 1 ≥ r + 1.

This completes the proof of Theorem 6.5.
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