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EXTREMAL VARIETIES 3-RATIONALLY CONNECTED BY CUBICS,
QUADRO-QUADRIC CREMONA TRANSFORMATIONS
AND RANK 3 JORDAN ALGEBRAS

LUC PIRIO AND FRANCESCO RUSSO

ABSTRACT. For anyn > 3, we prove that there are equivalences between

o irreduciblen-dimensional non degenerate projective variefies— P2+ different from rational normal scrolls and
3-covered by rational cubic curves, up to projective edaivee;

e quadro-quadric Cremona transformationg8f1, up to linear equivalence;
e n-dimensional complex Jordan algebras of rank three, uptopy.
We also provide some applications to the classification ofiqudar classes of varieties in the class defined above and

of quadro-quadric Cremona transformations, proving alstriacture theorem for these birational maps and for vaseti
3-covered by twisted cubics by reinterpreting for thesectsj the solvability of the radical of a Jordan algebra.

INTRODUCTION

In this paper we continue the study beganlin| [31] of the unetqukrelations between the following three sets:
n-dimensional complex Jordan algebras of rank three modolopy; irreducible:-dimensional projective varieties
X c P?"*! such that through three general points there passes advastic contained in it modulo projective
equivalence; quadro-quadric Cremona transformatiof®8 it modulo linear equivalence.

Jordan algebras have been introduced by physicists ard@8@lifh the attempt of discovering a non-associative
algebraic setting for quantum mechanics. These algebraslflater applications in many different areas of mathe-
matics, spanning from Lie algebras and group theory to mreéicamplex differential geometry, see for example [26,
Part I] for a general panorama. In algebraic geometry, cermpdrdan algebras of rank three were used to construct
projective varieties with notable geometric properti¢ksesi by considering some determinantal varieties assuttat
the simple finite dimensional ones such as Severi varietes[40, IV.4.8], or by defining the so calleglisted cubic
over a rank three Jordan algebyaee [18], [27][[31, Section 4], [22],[23] and Section 3 belorhese last objects
are examples of projective varieties such that througtethemeral points there passes a twisted cubic contained in it
and they also appear as the first exceptional examples tdetbsfication of extremal varieties—covered by rational
curves of fixed degree, see [33] and|[31] for definitions armh@xes and also Section 1 and Section 3. Moreover,
twisted cubic over rank three Jordan algebras are also drarofvarieties with one apparent double point, seé [27],
[31, Corollary 5.4] and [10], and the smooth ones are heggendrianvarieties, see [27] and [23].

Quadro-quadric Cremona transformations can be considerédte simplest examples of birational maps of a pro-
jective space different from linear automorphisms. In theng these transformations are completely classified and
together with projective automorphisms generate the gafugrational maps of?2. In low dimension they were
studied classically by the Italian school, see for exanb8} pnd the references therein, and soon later by Semple
[35]. These results were reconsidered recently in [28], revtiee classification i3 originally outlined in [13] is
completed, see alsol[5]. In[15] it is proved the surprisingd aice result that there are only four examples of quadro-
guadric Cremona transformations with smooth irreducilleeiocus. These four examples are related to the so called
Severi varieties and are linked to the four simple complegdo algebras of hermitighx 3 matrices with coefficients
in the complexification of the four real division algebi&asC, H andQ, seel[15],[[40], and also [17].][9] and Corollary
here.

The main results of the paper, collected in Thedrem 4.1 atiekirelated diagram, assert that the three sets described
above are in bijection and that the composition of two of ¢hieections is the identity map. This correspondence,
which we call “X JC-correspondencewas conjectured in the final remarks 0f [31] and it is basedte following
results: every quadro—quadric Cremona transformatidof' is linearly equivalent to an involution which is the
adjoint of a rank 3 Jordan algebra of dimensiofTheoreni.3.4); every irreducibledimensional varietX » ¢ P2n+1
which is 3—covered by twisted cubics and different from &ratl normal scroll is projectively equivalent to a twisted
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cubic over a rank three complex Jordan algebra (ThebrémSorhe particular versions of tié.JC-correspondence
are the following: cartesian products of varietiescovered by twisted cubics correspond to direct produalalor
algebras of rank three and to the so called elementary qiathensformations (Propositidn 4.3); smooth varieties
3—covered by twisted cubics, modulo projective equivaderare in bijection with semi-simple rank three Jordan
algebras, modulo isotopy, and wikmi—speciajuadro-quadric Cremona transformations, modulo lineaivedence

(Theoreni 4.4).

The X JC—correspondence is extended in Seclion 4.3 to cover somendegjed cases: rational normal scrolls,
Jordan algebras with a cubic norm and ‘fake’ quadro-quadr@nona transformations, respectively. Moreover, the
X JC-correspondence leads us to some new constructions andide$in The theory of the radical and the semi—
simple part of a Jordan algebra suggested the definitionsraf-simple part, semi—simple rank and semi-simple
dimension of a quadro-quadric Cremona transformationf anextremal variety 3—covered by twisted cubics, pro-
viding for instance a general Structure Theorem for thespsmsee Theorefn 5116. As an application we prove in
Corollary[5.9 that every homaloidal polynomiflof degree 3 defining a quadro-quadric Cremona transformatio
whose ramification locus scheme is cut out pys, modulo linear equivalence, the norm of a rank 3 semi-EBmp
Jordan algebra, providing a new short proof of [17, Theorelf]3and of [9, Theorem 2, Corollary 4].

The paper is organized as follows. In Section 1 we introdocgesnotation which is not standard. In Section 2 we
define precisely the objects studied giving some examplesXtworld consisting of extremal varieties-covered
by twisted cubics; th&€®—world consisting of quadro-quadric Cremona transforametiand the/—world consisting
of rank three complex Jordan algebras. Moreover the natupaivalence relations: projective equivalence, linear
equivalence, respectively isotopy are introduced as Wwellnotion of cubic Jordan pair. In Section 3 we define the
correspondences between the three sets modulo equivsldficgt from the/—world to theX andC worlds. Then
from the C—world to the X—world. We prove the equivalence between éi@nd J worlds in Theorenl 314 while
the equivalence between ti& and.J worlds is proved in Theorem 3.7. THéJC-correspondence and its particular
forms recalled above are stated in Section 4 while Sectiandgvoted to the Structure Theorem of quadro-quadric
Cremona transformation, Theorém 3.16, and to the reirg&aon of the theory of the solvability of the radical of a
Jordan algebra in the—world and in theX—world.

1. NOTATION

If V' is a complex vector space of finite dimension and ifZ V is a subset, thefA) denotes the smallest linear
subspace of containingA4, analogous notions being definedfi(l’). The projective equivalence classio€ V'\ {0}
is the elemenfx] € P(V). Let P, P, be two projective subspacesi’. WhenP; N P, = (), we define theidirect
sumasP, & P, = (P, P,) C PV,

We shall consider (irreducible) algebraic varieties defineer the complex field. I is an irreducible algebraic
variety and ifn = dim(X), we shall writeX = X™ or simply X™. We denote byX] the projective equivalence class
of an irreducible projective varietyY c P". We shall indicate by X )™ them-times cartesian produgf x - -- x X.
We denote by, X the embedded projective tangent spac&ta PV ata smooth point o f X while Tx .. indicates
the abstract tangent spaceXoat x.

The irreducible quadric hypersurfacelifit! is denoted by)” while v3(P*) C P? is the twisted cubic curve.

2. THE OBJECTS

2.1. The X-world: varieties X"(3,3). An irreducible projective varietk = X" C PV is said to be3-rationally
connected by cubic curvg8-RC by cubicgor short) if for a general 3-uplet of points = (z;)?_, € (X)3, there
exists an irreducible rational cubic curve includediirthat passes through , x> andzs.

If X ¢ PV is 3—-RC by cubics, then projecting from a general projective tangent spdgeX we get an irreducible
variety Y% c PN="~1 § > 0, such that through two general points there passes a lineioed inY”—?. This
immediately implies” = P9 so that:

1) dim(X) <2n+1-0<2n+1,
see also[33, Section 1.2] for more general results and fiations.

We will say that a variety ¢ P¥ 3-RC by cubics igxtremalif N = dim(X) = 2n + 1. In what follows, we
shall use the notatioX = X" (3,3) whenX C P?"*! is an extremal variety which is 3—-RC by cubics.

Thus forX = X"(3,3) c P21 and for two general points;, z2 € X, we have

Pl — (X)) =T, X & Ty, X,
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see alsa[33, Lemme 1.3].

Example 2.1. (1) There exists a unique 3-RC cur¥é (3, 3): the twisted cubic cubic curve;(P*) C P3;

(2) Let @ be an irreducible hyperquadric . It is well-known thatQ is 3-RC by conics and sind@' is 3-
covered by lines(!), it immediately follows that the SegredquctSeg(P! x Q) C P?"*! is 3-RC by cubics
so thatSeg (P! x Q) = X" (3, 3). These examples produce a familyXf (3, 3) for everyn > 2;

(3) Let(I;)3_, be a 3-uple of elements of the grassmannian vafigt, 5) = G3(C°®) c P'?, Pliicker embed-
ded. If thell;’s are general, one can find a ba@is)$_; of C° such thall; = uj Aug Aus, Hz = ug Aus Aug
andIl; = (u1 + uqg) A (u2 + us) A (us + ug). Thens — (uy + sug) A (ug + sus) A (ug + sug) €x-
tends to a morphismp : P! — G3(C°) such thatp(0) = II;, p(c0) = Iz andp(1) = II3. The curve
o(PY) C G(2,5) c P! in the Plicker embedding is a twisted cubic, showing th@t, 5) = X?(3, 3);

(4) Then-dimensional rational normal scroll$; 15 C P2**!, n > 1, andS;._ 100 C P2*+1, n > 2, are
classical examples of (3, 3), which we shall caldegenerated examplesee[[33] for the explanation of the
terminology and also Sectign 8.3 below.

We shall denote byX"(3,3) the set of irreducible non-degenerate varietl€s ¢ P2"+! which are 3-RC by
twisted cubics and which are not degenerated in the abowedan that are different fronb;._ 13 or Sy, .122. The
description of the projective equivalence classes of eteésim X" (3, 3) is a natural geometrical problem already
considered in[31], see also [33] for general classificatésults of this kind. Indeed, this problem naturally appear
when trying to solve the question on which maximal rank weaksatégebraic, a central problem in web geometry, see
[34].

Remind that ifX € X™(3, 3), we shall denote b}X] its projective equivalence class.

2.2. The C-world: Cremona transformations of bidegree (2,2). Let f : P*~! --» P"~! be a rational map. There
exist a unique integet > 1 andf; € |Opn-1(d)|, i = 1,...,n, with ged(f1,..., fn) = 1 such that

fl@)=[fi@) - ful@)]

for x € P! outside thebase locus schem8 = V(fi,...,f,) C P*! of f. By definition, thedegreeof f
is deg(f) = d. We will denote byF' : C* — C™ the homogeneous affine polynomial map definedrify:) =
(f1(z),..., fo(x)) for x € C™. Note that the projectivization df is of course the rational mapand thatF’ depends
on f only up to multiplication by a nonzero constant.

A rational mapf : P"~! --» P! is birational (or is aCremona transformationif it admits a rational inverse
f~t:Pn=! ——5 P*~1 Inthis case, one defines thalegreeof f asbideg(f) = (deg f,deg f~1). In this paper we
will mainly considerquadro-quadricCremona transformations, that is Cremona transformatbibédegree(2, 2).
The set of such birational mapsBf—* will be indicated byBirs o(P"1).

Example 2.2. (1) Thestandard involutiorof P*~! is the birational map
[X1 i @2 . xy] — [CCQIg...CCn CTIT3 .. Ty ...:xlxg...:cn,ﬂ.

It has bidegreén — 1,n — 1) and it is aninvolution, that isf = f~! or equivalentlyf o f is equal to the
identity of P"~! as a rational map;

(2) Assume that: — (£o(z),...,4,(x)) is a linear automorphism dE”. Then for any nonzero linear form
£:C" — C, the mapr — [l(x)lo(x) : --- : £(x)ly(x)] is a birational map. With the previous definitions
it is a birational map of bidegre@, 1) but we shall consider such a map afske quadro-quadric Cremona
transformation see Sectioh 41 3;

(3) LetQ™~! c P" be an irreducible hyperquadric. Givere Q,.., the projection fronp induces a birational
mapm, : Q --» P*~1. Forp,p’ € Queg With p’ ¢ T,,Q, the compositionr,, o ;! - P*~1 --» P*"!is a
birational map of bidegreg, 2), called arelementary quadratic transformatipn

(4) LetJ be a finite dimensional power-associative algebra. ifiliersionz --+ z~! induces a birational invo-
lution 5 : P(J) --» P(J). If J has rankr, sed 2.B for the definitions, theris of bidegredr — 1,7 — 1).
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For simplicity, we denote by the vector spac€™ in the lines below.

Let f1,..., f, andgs,..., g, be quadratic forms oY defining the affine polynomial mapgs = (f1,..., fx) :
V — V, respectivelyG = (g1,...,9,) : V — V. Let f : PP~1 -5 P"~! respectivelyg : P»~1 --» Pn—1,
be the induced rational maps. Then= f~! as rational maps if and only if there exist homogeneous ciasins
N, M € Sym®(V*) such that, for every,y € V:

(2) G(F(I)) =N(z)x and F(G(y)) =M(y)y.
In the previous case, one easily verifies that for ewery € V', we also have
3) M (F(z)) = N(z)? and  N(G(y)) = M(y)*.

Two Cremona transformatiorfs f : P*~! --» P*~! are said to béinearly equivalen{or justequivalenfor short)
if there exist projective transformationg ¢ : P"~* — P"~! such thatf = ¢, o f o /5. This is an equivalence relation
on Bir, »(P"~!) and in the sequel we shall investigate the quotient sjieg »(IP"~*)/lincar and its various
incarnations.

If f € Biryo(P"~!) we will denote by{f] its linear equivalence class.

2.3. The J-world: Jordan algebras and Jordan pairs of degree 3.

By definition, aJordan algebrds a commutative complex algehFavith a unitye such that th&ordan identity

(4) ?(zy) = 2(2°y)

holds for everye, y € J (seel[20. 26]). Here we shall also assume fhiatfinite dimensional. It is well known that a

Jordan algebra is power-associative. By definitionrérk rk(J) of J is the complex dimension of the (associative)

subalgebrdz) of J spanned by the unity and by a general elemente J. A general element € J is invertible,i.e.

for 2 in an open nonempty subsethfthere exists a unique ! € (z) such thatrz ™! = e = 27 1.

Example 2.3. (1) Let A be a non-necessarily commutative associative algebraanithity. Denote byA™ the
vector spaced with the symmetrized produet: o’ = %(aa’ + d’a). ThenA™ is a Jordan algebra. Note that
AT = Aif Ais commutative.

(2) Letq : W — C be a quadratic form on the vector spdée For (A, w), (N ,w') € C @ W, the product
(A w) « (N, w') = (AN —g(w,w"), \w' + Nw) induces a structure of rank 2 Jordan algebr&an W with
unity e = (1,0).

(3) LetA be the complexification of one of the four Hurwitz's algebfasC, H or O and denote byerms(A)
the algebra of Hermitia x 3 matrices with coefficients ia:

— Sl x1,T2, 23 € A
Hermg(4) = { (:zz ) ri,r2,73 € C }
Then the symmetrized produtf e N = 2(M N + N M) induces orHerms(A) a structure of rank 3 Jordan
algebra.

A Jordan algebra of rank 1 is isomorphic@a(with the standard multiplicative product). It is a clasgiesult that
any rank 2 Jordan algebra is isomorphic to an algebra as impbed2.3[(2). In this paper, we will mainly consider
Jordan algebras of rank 3. These are the simplest Jordabragyehich have not been yet classified in arbitrary
dimension.

LetJ be a rank 3 Jordan algebra. The general theory specializbisinase and ensures the existence of a linear
formT : J — C (the generic tracg, of a quadratic formS € Sym?(J*) and of a cubic formV € Sym?®(J*) (the
generic norm such that

(5) 23— T(2)2* + S(x)x — N(z)e =0

for everyz € J. Moreover, is invertible inJ if and only if N (z) # 0 and in this case ! = N(z) ™ 'z#, wherez#
stands for thedjointof = defined byr# = 22 — T'(x)x + S(z)e. The adjoint satisfies the identity:

(:v#) # = N(z)x.

Example 2.4. (1) The algebra/;(C) of 3 x 3 matrices with complex entries is associative. TAég(C)™ is a
rank 3 Jordan algebra. N € M3(C), the generic trace ot/ is the usual trace, the norm is the determinant
of M and the adjoint is the classical one, that is the transpoeeafofactor matrix of\/.
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(2) LetC @ W be arank 2 Jordan algebra as defined in Exaipld®.3.(2)z Fo\,w) € C @ W, one has a
traceT' (z) = 3X and a quadric nornV (z) = A? + ¢(w) such thatr> — T'(z)z + N(x)e = 0. Then one
defines the adjoint by# = (\, —w). In the rank 2 case, one hag”)# = .

(3) LetA be as in Example2.81(3). Sindeis the complexification of a Hurwitz's algebra, it comes wétnon-
degenerate quadratic forjin ||? : A — C that is multiplicative. If(-,-) stands for its polarization, then the
generic norm orerms(A) can be computed obtaining:

T2 T T3

L ®3 Tz
(6) N(ﬁs T2 H) :T17’2T3+2<ZC1ZC2,ZC3> — T ||I1||2—7’2H£C2H2—T3 ||Q?3||2

foreveryxy,xo, 23 € A, r1,1r9,13 € C.

(4) Let J be a power-associative algebra. Also in this case one canedtife notions of rank, adjoint”,
norm N (z) and trace and the theory is completely analogous to thequswne. Let = rk(J) > 2. The

adjoint satisfies the identit(yc#)# = N(x)" 2z thus its projectivization is a birational involution of leigree
(r—1,r — 1) of P(J), see also Example 22, 4.

The inverse map — 2! = N(z)”'## on J naturally induces a birational involutignt P(J x C) --»
P(Jx C) of bidegredr, r), defined byj([z,7]) = [rz*, N(z)]. Such maps were classically investigated by N.
Spampinato and C. Carbonaro Marletta, se€[R7, 7, 8], pindexamples of interesting Cremona involutions
in higher dimensional projective spaces. It is easy to saelelttingf: J x C, then for(x,r) € J one has
(z,7)# = (ra#, N(z)) so that the magis the adjoint map of the algebra A Cremona transformation of
bidegree(r, ) will be calledof Spampinato typ# it is linearly equivalent to the adjoint of a direct produc
J x C whereJ is a power-associative algebra of rank

The previous construction will be used In [32] to produce sdnieresting Cremona involutions and to
describe differently some known examples. In Sedfioh 3dlim$ectio 3.3]1 maps of this type will naturally
appear in relation to tangential projections of twistedicsitover rank three Jordan algebras, respectively
extremal varietie§—covered by twisted cubics.

The set of complex Jordan algebras of dimensionill be denoted byJordan™ while Jordanj will indicate
the subset formed by the elements having rank equal to 3. Wil focus on the description Qfordan; up to a
certain equivalence relation that we now introduce.

2.3.1. Isotopy. Let]J be a Jordan algebra. By definition, theadratic operatorlssociated to an elemente J is the
endomorphisn/, = 2 L, o L, — L,» of J whereL, stands for the multiplication by in J. If v € J is invertible, one
defines the:-isotope] () of J as the algebra structure drinduced by the produet® defined by
(w) =

zo™y = §Uz_,y(u),
where as usudl, , = U+, — U, — Uy is the linearization of thguadratic representatio® : V' — End(V), z —
P(z) = U, of J (the name is justified by the fact th&tis a homogenous polynomial map of degree 2). Thehis
a unity for the new produat™ and moreovef(* is a Jordan algebra, theisotopeof J. Let us recall that: € J is
invertible if and only ifU,, is invertible; moreover—! = U !(z) andU,-1 = U ! in this case.

x

Two Jordan algebrakand]’ are calledsotopicif J’ is isomorphic to an isotopE™ of J. One immediately proves
that the rank is invariant by isotopy. The noi#i®) (z) and the adjoint#(*) of an element: € J(*) are expressed in
terms of the norniV () and the adjoint# in the algebrd in the following way, se€ [26, 11.7.4]:

(7) N®(z) = N@w)N(z) and 2% = N(u) " U, (27).

If Jis a Jordan algebra, then we shall denotélbyts isotopy class.

Of coursejsotopydefines a equivalence relation glordan™ and hence o@fordans since the rank is isotopy-
invariant. In this paper, we are interested in the desoniptif the quotient spacgordans /isotopy -

The concept of ‘Jordan pair’ is a useful notion to deal withddm algebras up to isotopy. We introduce it in the
next section. This notion will be used later in secfion 3.3.2
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2.3.2. Jordan pairs. By definition (see[[24]), alordan pairis a pairVV = (V*+,V~) of complex vector spaces
together with quadratic maps (fer= +)

Q° :V? - Hom(V~°,V7),
satisfying the following relations for evefy, y) € V7 x V7
DiyQz=@eDyz, Doy = D7 oy 8N Qg = Q2@ 7Q1,
whereD7 € End(V7) is defined byD7  (z) = Q5 .(y) — Q5 (y) — Q7(y) for everyz € V.

Example 2.5. (1) LetJ be a Jordan algebra. Thén = (J,J) with quadratic operator* = U, for every
x € J, is a Jordan pair. By definition, it is thivrdan pair associated t@;

(2) Given integerp,q > 0, the pairV = (M, ,(C), M, ,(C)) together with the quadratic operators defined by
Q% (y) = z -y - x (Where- designates the usual matrix product) is a Jordan pair.

By definition, amorphismbetween two Jordan pait¥+, vV ) and(VJr, V) with respective associated quadratic
operators)” andQ’, is a pairh = (h™,h™) of linear mapsh® : Vo — V7 such that, for alb = + and every
(x,y) € VZ x V=7, 0ne has

h(Q(Y)) = Qpoay (M7 (v))-
Isomorphism&indautomorphismsf Jordan pairs are defined in the obvious way.

An elementy € V7 is said to benvertibleif Q7 is invertible (as a linear map frofi“ into V7). In this case,
one verifies that the product
1 g g [og
5 (@ (w) = Q2 (w) - Q5. ()
induces onV/° a Jordan algebra structure with ufi@,;°)~*(u) € V°. This Jordan algebra is noted bj. Then
it can be proved thal” is isomorphic to the Jordan pair associatedfa This gives an equivalence between Jordan
algebras up to isotopies and Jordan pairs admitting ifolerélements up to isomorphisms, se€ [24].

1
r_Z0° _
rez : ) awv(u)

3. EQUIVALENCES
In this section, we establish some equivalences betweghihe mathematical worlds introduced above.

3.1. Starting from the J-world. LetJ be a Jordan algebra of dimensiorand of rank 3. Following Freudenthal in
[18], one defines thewisted cubiover] as the Zariski closur&’; of the image of the affine embedding

p:J—PCaJolaC)
T — [1::6::6#:N(:v)].

It is known thatXy C P?"*! belongs to the clasX " (3, 3), see for examplé [31, Section 4.3]. We shall provide below
other proofs of this fact, see Propositfon]3.3.

Let J(*) be theu-isotope of] relatively to an invertible element € J. Let ¢, be the linear automorphism of
P(C®J & J® C) =P+ defined by

Co([s: XY 2 t]) =[s: X : N(u) 'Upus (Y) : N(u)t].

It follows from (7) that, as affine maps frofn= J(* to P?"*!, one hagiy.) = ¢, o uy. Hence the projective varieties

Xy and Xy, are projectively equivalent. Therefore the associafior X factorizes and induces a well defined
application

Jordang/isotopy — X"(3,3) /projective

equivalence

Pl = X

Similarly, sincex# () = N (u)~'U,«(x#), the linear equivalence class of the birational ap: [z] --» [2#] of
P"~! does not depend on the isotopy clasg.ofience we also get a well-defined map
— BiFQ,Q(Pn_l) linear

equivalence

Jordany /Z

sotopy

g = [l
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Remark 3.1. The tools used above to construct the ‘twisted cubics ovwelaloalgebras of rank three’ are the adjoint
x# and the normV (z). These notions has been introduced for every unital possoaative algebra so that one can
ask if it were possible to define ‘twisted cubics over comrtivegpower-associative algebras of rank three with unity.’
Since a commutative power-associative algebra of ranlethwith unity is necessarily a Jordan algebra of the same
rank, according td [16, Corollary 13], this generalizatioould not produce new examples.

In the same vein, one could define a map associating to a rae& gower-associative algebra with unity the
guadro-quadro Cremona transformation given by the lingaivalence class of its adjoint. As we shall in Theorem
[34 below this generalization is useless since the resmicif this map to Jordan algebras of rank three will be
surjective. Moreover, by applying Theorém13.4 to the adjofna commutative power-associative algebra of rank
three with unity one could deduce a new proofiof/[16, CorglE3] mentioned above.

One verifies easily thato; = [0 : 0 : 0 : 1] is a smooth point ofX; and that the homogeneization of is the
inverse of the birational map.., : Xy --+ P™ given by the restriction to{ of the projection fronil,, X}, see for
example[[31, Section 4]. It is immediate to verify titat= py(0) = [1 : 0 : 0 : 0] € X} is also a smooth point
and that7y, X is the closure of the locus of points of the fofin: « : 0 : 0] with € J. Thus the birational
mapw : P(J x C) --» P(J x C) given by ([zo : z]) = [zox™ : N(x)] is a birational involution of typé&3, 3)
of Spampinato type (see ExamplelZ.B.(4)) and it is cleadydbmposition of the homogenization pf with the
(restriction toX of the) linear projectionrg, from Ty, X7, that isy) = 7o, o 7r0‘Jl as rational maps. We shall return
on this in Section 3.3]12.

3.2. Starting from the C-world. Let f € Biry(P" 1), letg € Biry 2(P"~1) be its inverse, lef, G : C* — C"
be associated quadratic lifts and lét M be the associated cubic forms, see Se¢fioh 2.2.
3.2.1. From the C-world to the X-world. Let us consider the following affine embedding
(8) uf:(C"—ﬂP’(C@(C"EB(C"EB(C):PQ"*l
z— [1:2: F(z): N(z)].

The Zariski-closureX ; of its image is a non-degenerate irreducibidimensional subvariety &2 ! containing
O =ps(0)=[1:0:0:0].

In order to prove thak ; is 3-covered by twisted cubics, we shall use in differentsvide following crucial result
whose incarnations in the three worlds we defined till now Il the starting points of the bridges connecting these
apparently different universes.

Lemma 3.2. Let notation be as above. There exists a bilinear f@m: C* x C* — C such that
dN, = Bp(F(z),dx),
for everyx € C™.

Proof. In coordinates, the relatiof(F(z)) = N(z)x translates into

(9) gl(fl(x)vafn(x)) =z;N(x), i1=1,...,n.

LetI = (f1,...,fn) C Clz1,...,2s] = S = @g>05q and let] = &4>0l4. Let us recall that the biggest
homogeneous ideal of defining the schemB = V() is the saturated ideal

I = ©a>oI7" = ®axoH" (Zs(d)).
It follows from (9) that
(10) ;N (z) € (I5)* C Iy foreveryi =1,...,n.
By derivation of [9) with respect to; for j distinct froms, we deduce that,;(ON/dz;) € I3 yielding

ON
(11) xf% el, foreveryi,j=1,...,n,i#j.
j
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By derivation of [9) with respect to; we obtainN (z) + z;(ON /0x;) € I; for everyi = 1, ... n. Multiplying by
x; and using[(I0) we deduc€ (ON /dz;) € I, for everyi. Combined with[(Ill), this shows thaf (0N /dz;) € 14
for everyi,j = 1,...,n. Then by definition

aN sat
(12) e € l;
for everyi = 1,...,n. Sincel3** = H°(Zz(2)) = spad fi,.-., f»}, the last equality being an immediate conse-
guence of the birationality of, there exist constants; € C such thato N /0z; = Z;‘:l bi; f; for everyi. Then
letting Br(z,y) = 3.7, bijriy;, we havedN, = Br(F(z), dz) for everyx € C". O

We now provide below two different proofs that, ¢ X" (3, 3). Both are interesting in our opinion: the first one
is more elementary but computational; the second one i®adlggeometric and the computations are hidden in some
elementary well known facts.

Proposition 3.3. Let notation be as above. The variek; belongs to the clasx; € X"(3,3): Xy in non—
degenerate i?2"*1, is 3—RC by twisted cubics and is different from a rationaimal scroll.

First proof. Fora,b € C™ with M (b) # 0, vep : t —> ]Gw((‘;ft?) is a well-defined rational map and it follows from
(2) and [[B) that for generic, one has
~Gla+tb) F(G(a+1tb)) N(G(a+tb))
"M(a+1tb)  M(a+tb)2 = M(a+tb)3
Thusput o va,(P') is a twisted cubic curve passing through = 1 (’}/a7b(00)) and moreovelX ¢ is 2-covered by
twisted cubics passing through: for (p,p’) € (Xf)? general, there exists a twisted cubic includedXip and
containing the pointg, p’ and0;.

Now letz, € C" be such thafV(x,) # 0, let7,, be the translation by, in C™ and consider the linear automor-
phism ofP2"+! defined by

by, (W) =[s: 24 sa.:y+dF,, (x) + sF(z.) : t + Bp(y,z.) + dN,, (z) + sN(z.)]

forw=[s:z:y:t e P(CHC" @ C"dC)=P"", whereBp stands for the bilinear form given by Leminal3.2.
One verifies immediately that

g (Vas(t)) = = [M(a+1tb): Gla+1tb):a+1tb:1].

by, O pf = fif © Ty,

This shows that the paitX s, 17 (x4)) is projectively equivalent t0X ;, 0 ;) henceX s is also 2-covered by twisted
cubics passing throughy(z,). Since this holds for any, € C™ such thatN(z,) # 0, this implies thatX; =
X"(3,3). The varietyX; is not a rational normal scroll since the linear system ofdyieca defining the so called
second fundamental form at a general point has no fixed coem@ince it is naturally identified with the linear
system defining’, see([31, Section 5] for definitions and details. O

Second proof of Propositidn 3.3.et notation be as above. Consideét as the hyperplan&™ \ V(z() so that[x :
x1...: xy,) are projective coordinates @ anduy : P" --» X[ is a rational map defined o@i”. Sincef is not
fake we can suppose > 3. Consider three general points= (p1,p2,p3) € (P")® and letll, C P" be their
linear span. We claim that the lin, = I, N V(zo) determines a pland, cutting the base locus scheme fofn
length three subschenfe spanningll;,. IndeedD, = f(L,) C P"~! is a conic cutting the base locus scheme of
g in length three subschenf® spanning a planél, becausey(D,) = L,. Then takingll), = g(I1,) the claim is
proved. The length six schem@y, p2, p3, P} spans the 3-dimensional spadg,, IT;,) so that it determines a unique
twisted cubicC, C P"~! containing it. By Lemm&=3]2 the birational mag : P" --» X/ is given by a linear
system of cubic hypersurfaces having points of multiplieitleast 2 along its base locus schéif(e,, N(z)) C P".
Thenu;(C,) C X is a twisted cubic passing through the three general ppipts;), i = 1,2, 3. This shows that
Xy = X"(3,3) while to verify thatX; is not a rational normal scroll one can argue as in the endepthvious
proof. O

One immediately verifies that the projective equivaleneslofX ; does not depend ofi but only on its linear
equivalence class. Hence there exists a well-defined map

BiFQ,Q(Pn_l) linear — Xn(3a3) projective

equivalence equivalence

f] —  [Xy].



3.2.2. From the C-world to the J-world. Let us now explain how to associate in a direct and algebraicawrank
3 Jordan algebra t € Birs o(P"~1). Assume thaP"~! = P(V) for an-dimensional vector spadé. On the open
set defined byV (z) # 0 we define
: F(x)

(@) = N@)
Thenjs : V --» V is a birational map which is homogeneous of degrée Following [25], we say that the map
j¢ 'V --» Vis aninversionand that the elements € V' with N (x) # 0 areinvertible Forxz € V invertible, one
sets

Py(x) = —d(jg); "
We defined in this way a rational mdfy : V' --» End(V') which is homogeneous of degree 2. Similarly one defines
Jjg:V -—»VandP, :V --» End(V).

Theorem 3.4. Let notation be as above. For every linear equivalence clksf € Birao(P"~1), there exists a
Jordan algebral; of rank 3 such thal#;, ] = [f].

In particular every quadro-quadric Cremona transformatis linearly equivalent to an involution which is the
adjoint of a rank 3 Jordan algebra.

Proof. ReplacingF' by Py (e) o F' if necessary, we can assume that there exists an invertésteeate € V' such that
P;(e) = Idy. Euler's Formula and the homogeneity gf imply Py (x)(js(x)) = « for every invertiblex so that,
without loss of generality, we can also assujpée) = e. Similarly, one setg,(y) = M (y)~*G(y) for y such that
M (y) # 0. Taking the exterior derivative of the relatigp o j;(v) = z, we deduceP;(z) = —d(j,);, () for any
invertiblex. The differentialsiG, anddM, are homogeneous of degree 1, respectively of degreey2, tence the
substitutiony = j;(z) = N(z)"'F(z)in

d(jg)y = M(y)~'dG, — M(y)"*G(y)dM
yields

e
5
S~—
|

= —dGp@) +oN(x dMF(m) (by @) and(@))

)
= —dGp() +xN(z)"'B ( (F(z)),dx) (by Lemmd3R

Thus the rational mag’y : V --» End(V') extends to a polynomial quadratic affine morphiBm: V' — End(V).
Therefore

Py(x,y) = Pr(z +y) — Pr(z) — Pr(y) € End(V)
is bilinear inz andy and the results of [25] (in particular Theorem 4.4 and Remdskherein) assure that the product
o, onV defined by

1
zory =5 Pr(x,y)e)
satisfies the Jordan identifyl (4), admitas a unital element and induces @ra structure of Jordan algebra noted by

J¢. Foraz € V invertible element, the inverse for this product is givenaby = j(x) hence the adjoint of is
x# = F(x), yieldingrk(J ;) = 3, see Example2 2X4). O

It can be verified that the isotopy equivalence clas$ oflepends only on the linear equivalence clasg bence
one obtains a well-defined map
Bir272(]P’"*1) linear — jordang/

Remark 3.5. In the previous proof we choose a poérguch thatPy (e) = Idy, which is not natural from an intrinsic
point of view. More generally one can consider the sourceespad the target space pfas distinctn-dimensional
projective spaces associated to two vector sp&geandV of dimensionn. We can considef as a birational map
f:P(Vp) --» P(Vg) with inverseg : P(Vi) --+ P(VF). Reasoning as in the proof of Theorém|3.4, one proves
that —d(jr); " (resp. —d(j,), ') depends quadratically an € Vr (resp. ony € V), defining a quadratic map
P; : Vg — End(Vg, Vi) (resp P, : Vg — End(Vr,Vg)). Then(Vg, V) together with the pair of quadratic
operatorg Py, P,) is a Jordan pair.

isotopy



3.3. Starting from the X -world. In this section, we describe how to associate t§ & X" (3,3) an equivalence
class of quadro-quadric Cremona transformation®of! and also how to produce directly (and not through the
previous construction!) a rank 3 Jordan algebd dimensiom, defined modulo isotopy, such thatis projectively
equivalent taXj.

Let X c P2"*! be an element oX"(3,3). Letz € X, be a general point such that is 2-RC by a family
¥, C Hilb***(X, z) of twisted cubics included it and passing through. Denote byr, : X --» P" the
restriction toX of the tangential projection with cent&, X c P?"*+!, Itis known thatr, is birational, see [33, 31].
Lets, : X — X bethe blow-up ofX atx and letE, = 3, () be the associated exceptional divisor. Lt be

the restriction taiZ,, of the lift of 7, to X:
(13) Oxz = (mg o0 ﬂm)‘Em By --» P,
In [31, Section 5], we proved that:
(a) ¢x 4 is birational onto its image that is a hyperplatig C P";
(b) ¢x . is induced by the second fundamental fdiix .| C |Og, (2)[;
(c) as ascheme, the base locus schemexof coincides with the Hilbert scheme of lines passing througimd
contained inX;
(d) (¢x.z)~t: H, --» E, is also induced by a linear system of hyperquadricHin
(e) px.. is a fake quadro-quadric transformation if an onlyifc P>"*! is a rational normal scroll.

From (c) and (d) one could deduce another proof of Leinna 8e2ps. cit., or equivalently one can say that (d) is
the incarnation in théC-world of the result proved in Lemnia 3.2, séel[31, Theorerhfbraietails.

Remark 3.6. The mapv — o considered in the proof of Theordm 8.7 below is an altereag@ometrical definition
of (a quadratic lift ofxp x ., which is more intrinsic than the preceding one since it dagsiapend on the embedding
of X in the projective spacg?"+1,

3.3.1. From the X-world to the C-world. From now on we shall assume th&t € X" (3,3) so thatX is not a
rational normal scroll. The results listed above imply tladter identifyingE,, and H,, with P"~1, the mappx .. is a
Cremona transformation of bidegrée 2) of P»~L. Moreover, in[31, Theorem 5.2] it is proved thsitis projectively
equivalent to the variet)X , , . associated tgx . via the construction in secti¢n 3.2. We leave to the readeetiy
that the linear equivalence class @f , does not depend on but only on the projective equivalence classXof
Therefore we have a well-defined application
Xn(?’a 3) projective — BirQ,Q(Pn_l) linear
/equivalence equivalence

[X} — [‘pX,m} .

The results of the previous sections show that this map igathin.

3.3.2. Fromthe X-world to the J-world. The results of [31, Section 5] recalled above and Thearelim8nkdiately
imply that anyX € X™(3,3) is of Jordan type that is there exists a rank three Jordan algdbsach thatX is
projectively equivalent to\j.

There is also a direct way to recover geometrically the ugitey structure of Jordan algebra frok. Since there
is no real difficulty here, we will leave to the interesteddess to fill up some details of the proof of the next result,
which was conjectured firstly in [81, Section 5].

Theorem 3.7.1f X = X™(3,3) c P?"*! is not a rational normal scroll, then there exists a rank gndordan algebra
Jx such thatX is projectively equivalent t&y, .

Proof. Let 2+, 2~ denote two general points of,., such thatX is 1-RC by the family%,+,- of twisted cubics
included inX passing through* andz~. One ha®?"*! = T,. X @ T,- X and foroc = =+, let® = 7, be the
restriction toX of the tangential projection with centél.- X onto the projective tangent spaég-- X at the other
point. This map is defined at? and by definitiont =7 = 77 (z~7).

DefineV? as the complex tangent spafg ... Forv € V7 generic, there exists a unique twisted cubic curve
C, included inX, joining 2z to 2~? and havingv] as tangent direction at’. More precisely, there exists a unique
isomorphism, : P — C,, such thaty, (0 : 1) = 27, a,,(1 : 0) = 277 andda, (s : 1)/ds|s=o = v. The map

v exp(v) := a,(l:1)
10



can be extended to the whdl& since, after some natural identifications, it is nothingthetaffine embedding,,,
defined in [(8), where), is the inverse of the quadro-quadratic birational mgap,.-- associated ter—? through
formula [I3) above. We thus defined geometricalleaponential map

exp: V7 — X
whose image is denoted by?. Being an affine embedding, its differential
dexpv : TVG'_’U — TX,exp(v)

is an isomorphism for every € V7. Using the linear structure f“, one can (canonically) identifyy . ,, with V7
itself obtaining a linear isomorphist : V7 — T'x oxp(v)- FOrv generalexp(v) € X ~7 so that there exists a unique
© € V~7 such thatxp(v) = exp(0) (moreover = da, (1 : t)/dt|i—¢). Thus we can define a linear isomorphism by
setting

Q1 =—(67) " obyT VT V.

v v

The linear mapl¢ depends quadratically om € V¢ and this association extends to the whblé yielding a
guadratic polynomial map

Q° : V7 = Hom(V~7,V7).

The quadratic map@* thus defined induce a structure of Jordan paitBri, v —) admitting invertible elements.
Foru € V~ invertible, the Jordan algebrid" has rank 3 and the initially considered varieXyis projectively
equivalent taX, . O

Remark 3.8. Let X € X" (3,3). The previous proof shows that the Jordan avatar of the geimaledata formed
by X together with two general points™, 2~ on it is the Jordan paifV’*, V). Similarly, the geometrical object
corresponding precisely to a rank three Jordan algélisanot really X but rather the geometrical data formed by
Xj together with three points on it. These two remarks leadedalowing heuristic question: what are the Jordan-
theoretic counterparts of the dataX¥falone, or of a pai(X, z) wherez is a general point oiX ? Some of the notions
introduced in[[2] seem to be relevant to study this question.

We shall now briefly outline another geometrical way of remiivg the algebrd x naturally associated t& €
X"(3,3). Let notation be as in Sectidn 8.3, let, zo € X be general points and lét: P™ --» P" be the birational
mapm,, o w;zl, see also end of Sectibn B.1. From the results’in [31, Seblicecalled above, it is not difficult to see
that the birational mag, which is clearly of bidegreg3, 3), is of Spampinato type. Indeed, arguing as in the proof of
Theoreni3 4 and based on that analysis, one provesgtislinearly equivalent to the involution of a rank 4 Jordan
algebrafx, which is clearly isomorphic tdx x C. We leave to the reader the details of the proof of this cldim.
conclusion from a geometrical point of view the passage fileenX -world to theC' and theJ worlds is completely
determined by the general tangential projections.
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4. STATEMENT OF THE MAIN THEOREM AND OF A GENERAL PRINCIPLE

The constructions of the previous sections are all reptedén the diagram below, which we will call th&"JC-
diagrami:

[X] — V¥,

.X projective [X7] <— [ jo'f’dang/

equivalence

&
K \ a
§2

i1sotopy

N
¥ 3
N N
4, 4
&
Blr2 2 - linear

equivalence

Then the main results of this paper can be formulated in serterms by making reference to this diagram:

Theorem 4.1. The above diagram is commutative, all maps appearing ingtdjections and the composition of two
of these maps, when possible, is the identity.

Once the maps in th& JC-diagram have been introduced, the proof of the precediegrém reduces to straight-
forward verifications left to the reader.

Theoreni 411 says in some sense that (up to certain well-studelequivalence relations) there are correspondences
between the objects of these three distinct worlds. Xheorld is a world of particular projective algebraic varést
sharing deep geometrical properties and it can be consideya ‘geometrical world’. Thd-world is a world of
particular algebras so that it is an ‘algebraic world’ while consider th&’-world of another nature, which we will
call ‘cremonian’.

A consequence of the preceding main theorem is the follogargeral principle:

X JC-Principle. Any notion, construction or result concerning one of fieJ or C-world admits a counterpart in
the other two worlds.

Remark 4.2. The X JC-Principle is not a mathematical result in the classicateeand it has to be considered as a
kind of meta-theorem. Theordm #.1 and tkig C-Principle are manifestations of a deeper phenomena thid be
formulated in terms of equivalences of categories. We mawine back to this point of view in the near future and we
will not deal with this here, although it is very interestiagd natural. In the sequel we prefer to present some differen
applications regarding classification results for patticalasses of objects in the different worlds. Other agpitns

will be obtained in[[32].

Maybe the better way to realize that such a principle holasists in presenting some archetypal examples.
4.1. Afirst occurence of the X JC-principle. Assume thatX, J and f are corresponding objects.

Proposition 4.3. The following assertions are equivalent:
(i) the varietyX is a cartesian product;
(i) the algebra] is a direct product;
12



(i) the Cremona majp is an elementary quadratic transformation, see Exariple 2.2

Moreover, the objects satisfying these properties aregetipely: the Segre embeddings: (P! x Q" 1), the direct
productsC x J’ where]’ is a Jordan algebra of rank 2, the elementary quadratic tfansations.

Proof. Clearly (iii) implies (i) and (i). If (i) holds and ifX = X; x X, C P2"*!, then we can suppose that through
three general points of; C P2"*! there passes a line and that through three general points af P2"*! there
passes a conic. Thexj, is a line andXs, is a quadric hypersurface in its linear span. TRUs projectively equivalent
to the Segre embedding Bf x Q™. The other implications/conclusions easily follows. O

4.2. A second occurrence of theX JC-principle. In this subsection, we relate the smoothness property ifthe
world to an algebraic one in the-world and to another one in th&-world. We introduce these properties.

By definition, theradical R of a Jordan algebrd indicated byRad(J), is defined as the biggest solvable ideal of
(see also Properky 8.3 below for a characterization of tHEahwhen] has rank 3). Thef is said to besemi-simple
if Rad(J) = 0. In this case, a classical result of the theory assertsltimisomorphic to a finite direct product
J1 x -+ x J,, where thell,'s aresimpleJordan algebras, that is Jordan algebras without any mnoaltdeal.

Following [36] and [15], a Cremona transformatign P"~! --» P"~! is calledsemi-speciaif the base locus
scheme off is smooth. A Cremona transformation is said todpecialif the base locus scheme is smooth and
irreducible. Thus special Cremona transformatignsP™—! --» P*~! can be solved, as rational maps, by a single
blow-up along an irreducible smooth variety while semi-esgleCremona transformations can be solved by blowing—
up smooth irreducible subvarieties®Bf !, that is there are no “infinitely near base points”. In cosixin the semi—
special Cremona transformations are the simplest objemts the point of view of Hironaka'’s resolutions of rational
maps.

Assume thaf{, J and f are corresponding objects.

Theorem 4.4. The following assertions are equivalent:
(i) the varietyX is smooth;
(i) the algebra] is semi-simple;
(i) the Cremona transformatiofiis semi-special.

Moreover, the classification of the objects satisfying ¢h@®perties is given in the table below afids semi—special
but not special if and only if it is an elementary quadratiartsformation associated to a smooth quadric.

Semi-simple rank 3 Smooth variety X” c P?"+! 3-RC Special Cremona
Jordan algebra by cubics, not of Castelnuovo type transformation
direct productC x J with Segre embeddingeg(P! x Q" 1) elementary
J rank 2 Jordan algebra with Q™! smooth hyperquadric quadratic

6-dimensional Lagrangian

Herms(Re) o Syms(C) grassmanniafG3(C°%) c P13 [2] --» [27]
9-dimensional Grassmannian
Herms(Cc) = Mj(C) manifold G3 (CF) C P19 [] - [27]
15-dimensional orthogonal
Herms(He) ~ Altq(C) Grassmanniaﬂ)GG((Clg?) c p3t [] - [2#]
Hermj3(Oc) 27-dimensionaE;-variety inP°® [x] --» [27]

Proof. Semi—special Cremona transformations are classified aydcitrrespond to semi-simple Jordan algebras of
rank 3, see for examplé [31, Proposition 5.6], showing theivadence between (ii) and (iii). It is known that the
twisted cubics associated to semi—simple Jordan algebeasm@ooth and they are described in the table above. We
proved the remaining implications in [31, Theorem 5.7]. O

4.3. A generalization of the X JC-equivalence covering some degenerate casds.order to formulate our main
result we did not consider some extremal varieties 3-RC byosias well as quadro-quadric Cremona transformations
equivalent (as rational maps) to linear projective autggh@ms. In fact, theX JC-equivalence can be extended in
order to cover these “degenerated objects” as we shall g&fytin this subsection.
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4.3.1. LetY"(3, 3) be the set of projective equivalence classes of extrenttinensional irreducible varieties C
P2n+1 that are3-RC by twisted cubics. It is just the union &f™ (3, 3) with the projective equivalence classes of the
scrollssSs .. 1.3 (withn > 1) andSy,.. 12,2 (Withn > 1).

.....

4.3.2. By definition, aaormon a Jordan algebrhis a homogeneous form € Sym(J*) verifying n(e) = 1 and
which decomposes as a product of powers of the irreducibtgpoments of the generic norii of J, seel[3]. Then

one definesfordan, as the set ofordan algebras with a cubic normwhich by definition is the set of paifg, n)
wheren is a cubic norm on the Jordan algelireéSince a rank 3 Jordan algebra admits a single cubic norngéheric
one),Jordan; can be considered as a subsetfﬁ%n;. A Jordan algebra with a cubic norm is necessarily of
rank less than or equal ®and if the rank is less than 3, then it is isomorphic to one effthlowing Jordan algebras:

e the rank 1 Jordan algebt denoted byl};

¢ the rank 2 Jordan algebra of Examiplel Z13 (2) witk 0, denoted byJ;

¢ the rank 2 Jordan algebra of Examiple 213 (2) withf rank 1, denoted by?.

The notationJ§ is consistent since the ‘Jordan algebfatan be described as in Examplel 23 (2) by takitigof
dimension 0.

For anyn > 1, the algebrd? admits a unique cubic norm, namejg\, w) = A3. For anyn > 1, the algebrd?
admits a 1-dimensional family of cubic norms. Indeed, theegie norm onJ? is given by N (A, w) = A% + q(w).
Sinceq has rank 1, there exits a linear fohe W* such thaty = ¢? so thatV = ¢, £_ with {4 (\,w) = X + il(w)
for (\,w) € J7. Then for every nonzer@, b) € C?, 9, = (aly + bl_)¢(_ is a cubic norm od?.

n

One verifies that modulo isomorphis@fprdan, \ Jordan? consists of the two pair§l§, A*) and (J7, 74.p)
whenn > 1, and reduces t@J}, \3) whenn = 1. Let us definejordan; as the set of pairél, n) verifying the
compatibility relation in LemmB_3]2, that is the partial idatives ofy belong to the ideal generated by the quadratic
forms defining the adjoint map. Thus when> 1, jordan: is the union ofJordan;" with the isomorphism
classes ofJ%, \*) and of (J7, 11.). We shall indicate by the Jordan algebtg with cubic normy, .

4.3.3. Finally, let us return to the corresponding Cremoaasformations to be considered in order to complete the
picture. Consider the set abrmed quadro-quadratic Cremona transformatmfiP™ 1, that is of pairg f, []) where
f=1[fi: - fa]isabirational map oP"~! defined by quadratic formg and[n] = C*n is the class of a non-trivial
cubic formn such that there exists a quadratic n@satisfyingG(f1(z), ..., fa(z)) = n(z)x for everyz. Clearly,
given f € Biry »(P" 1), there exists a unique] as above such th&f, []) is a normed quadro-quadratic Cremona
transformation and such théf, [1]) satisfies the condition of LemrhaB.2. Theref@ir, »(P"~!) can be considered
as a subset dBir, > (P~ 1), which by definition it is the set of pairsf, [1]) satisfying the compatibility relation in
Lemmal3:2. One verifies easily that(if, [#]) € Birso(P"~1) but with f not of bidegreg2,2), then(f,[n]) is
linearly equivalent to one of the following:

o (Idp»-1,[¢?]) wherel is a nonzero linear forrm > 1;

o (Idpn-1, [(2¢']) wherel and/’ are linearly independent linear forms > 1.

Then theX JC-correspondence extends: there are bijection extendengribs in theX JC-diagram such that one
has a commutative triangle of equivalences between thémteiduced above:

Y" (31 3) projective Jordan;/

equivalence

\ /

BirQ,Q(Pnil) linear .

equivalence

isotopy

For instance, let us explain how to associate an extremitye8-RC by cubics iP2"*! to a degenerate element
(f,[n]) of Biry2(P"~'). Let F be a quadratic affine lift of. Then as in section3.2.1, one defings,; as the

Zariski closure of the image of the affine map— [1 : 2 : F(z) : n(x)]. This variety belongs t& " (3, 3): we let
the reader verify that the proofs of section 3/2.1 apply i ¢akes forG the unique affine quadratic map such that
G(F(x)) = n(x)x for everyz.
By the way let us remark that fdiv, 3) € C? such thatn3 # 0, settingl, s = ol + B3¢_, one associates a
non-degenerate-dimensional variety ifP*" ! to the pair(J7, n.,5) by defining it as the closure of the image of the
14



affine map(\, w) — [1: A1 w : £y (A, WA 1 =Ly (N, w)w @ €g p(N, w) (A2 + g(w))]. However, this variety is not
3-covered by twisted cubics since the compatibility relain Lemmad 3. is not satisfied by, 5.

In fact, this generalization of th& JC-correspondence does not present a very deep interestistmesrs only
two new cases whem > 1, namely the ones described in the following two tryptics:

[S1,...,1,3] [J5] [S1,...1,2,2]

\/

[(1d, [£*])] [(1d, [2¢))]

In dimensiom = 1, one has
X (3,3)/proj. = [v3(P1)], TJordans /isot. = [C] and Biry»(P%)/lin. = [(Id,2°)]

hence the generalizeXi.JC-equivalence reduces in this case to the following trivigbtic

(14) [vs(P1)]
\ /

Id]PO CC

Despite the very small number of new cases covered by therglezeel X' .JC-correspondence, we inserted this
extension into the discussion in order to show that the ehtang case[(14) can be included in the whole picture.
Moreover, the notion ofiormed quadro-quadric birational maptroduced i 4.313 will be used also to describe the
general structure of Cremona transformations of bide@e® in the next section.

5. FURTHER APPLICATIONS

The theory of Jordan algebras is now well established. Wallreesme general results on the structure of Jordan
algebras, focusing especially on rank 3 algebras.

5.1. Some results on the structure of Jordan algebrasLet J be a fixed Jordan algebra of arbitrary rank> 1.
For any subsefl C J, one defines inductively the subset§”) c J for any integem > 0 by settingA(") = A4 and
AFHD — (A(R)2 for everyk > 0. If A is a subalgebra af, the A™ form a decreasing sequence of subalgebras
A=AM 5 AR 5 AG) 5 ... By definition, A is solvableif A®*) = 0 for a positive integet.

If I, I, are two solvable ideals df, it can be verified thaf; + I, is solvable too. Sincé is finite dimensional,
the union of all the solvable ideals $fis a solvable ideal af, which is maximal for inclusion and which is called the
radical of J and denoted bRRad(J), or just byR if there is no risk of confusion.

The notion of solvability introduced above is not the mostfuswhen working with Jordan algebras. Indeed, it
can occur that for an idedl c J, the subset$(®) are not ideals for somee > 2. Hence it is not possible to construct
inductively a solvable ideal from its derived serieg = 1)) 5 1® 5 ... 5 1=1 5 (") = (. To bypass this
technical difficulty, Penico introduced ifi [29] the nowadaalledPenico’s serieof an ideall as the familyl*,

k > 0 defined inductively by

=g, =71 and %Y= (1" 4 (1) for k > 1.

The interest of this notion is twofold. First of all, it can beoved thatl is solvable if and only if it isPenico-
solvable that is if I'*! = 0 for a positive integes. Moreover,I!*! is an ideal for any: > 1, see[[29].

The notions introduced by Penico are more relevant than [Hesical ones to describe the structure of Jordan
algebras. Sinc& is solvable, there exists a positive integer 1 such thatRlY) = 0 and R~ #£ 0. Since theR!*’s
are ideals inJ, the quotientg®l = J/RI*] are Jordan algebras for every> 1, yielding, for¢ = 2, ... t, the exact
sequences:

(15) 0 — RE-U/RE 5 gl gle=11 5 0,

Remark that the left hand side in these exact sequencesdgahwith trivial product becaugel‘~1!/RI4)2 = 0
for every/. In the terminology of Jordan algebras, one says JHats anull extensiorof JI- . We can now recall
the following important result:
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Theorem 5.1(Albert [1], Penicol[29])
(1) The quotienfly, = J'! = J/R is semi-simple, that i®ad(Js) = 0 or equivalentlyJ,, is isomorphic to a
direct product of simple Jordan algebras.

(2) The exact sequence of (non-unital) Jordan algebras R — J — Jss — 0 splits: there exists an embedding
of Jordan algebragr : Jss — J such that] = o(Js) x R. Moreover the embedding is unique up to
composition to the left by an automorphisnyjof

(3) The Jordan algebrd is obtained from its semi-simple paii; by the series of successive null radical exten-

sions [(15).

Simple Jordan algebras are completely classified so thdirt¢art of the previous result ensures that the semi-
simple parts of an arbitrary Jordan algebra can be compldedcribed. The second part says that the structure of a
general Jordan algebfias given by its radicaR and by the structure Qf;;-module on it. Finally, it comes from (3)
that the Jordan product dR as well as its structure gf;-module can be constructed inductively starting friym by
successive extensions of a very simple kind.

Example 5.2. Being associative and commutative, the algefra C[s]/(¢?) can also be viewed as a 3-dimensional
Jordan algebra. One hay = Rad(A) = (c,e?), RE = (¢2) and RE) = 0. Thus the semi-simple part,, =
A/ Rad(A) has rank 1 and is isomorphic &

In the next section, using th& JC-correspondence, we shall state a version of The@rem 5.duiadro-quadric
Cremona transformations and for twisted cubics over Joadigebras. We will use the following facts showing that
the radical can be determined from the generic norm.

Proposition 5.3. ([38, 0.15 and 9.10]jor any Jordan algebrd, one has
Rad(J) = {z € J|N(z+]) = N() }.

We finish these reminders on Jordan algebras by stating senmarks on the rank 3 case. Assume in what follows
thatJ has rank 3 and far, y € J, set

T(xz,y) = T(xy) and oy = (z + y)# _a# y#'
By Proposition 5.8 (see also [30]), for a rank 3 Jordan algee has

(16) Rad(]) = {z € J|N(z) = T(2,]) = T(2#,]) = 0} = {z € I | &°N, = 0}.
Moreover, it can be verified that far € J, the quadratic operatéf, = 2 L2 — L, is given by
(17) Usly) = T(x,y)x — 2™ #y.

It follows from (18) thatT'(r,J) = 0 for everyr € R. Furthermore, one has#ty = d#,(y) = d#,(x) for every
z,y € J. SinceI?! = U;(J) for any ideall, the Penico series can also be defined inductively by

R = 4t (RM) = J#RM = (e, (R) [z € T).

Finally, if w € J is invertible, then the quadratic opera[aif‘) in the isotopel ™) is given byUm(“) = U, U, for
every element. Using this, one verifies easily that the Penico series dipenly on the isotopy class §f

5.2. The general structure of quadro-quadric Cremona transformations. A consequence of the equivalence be-
tweenBiry o (P 1) /tin. and Jordan, /isot. is a general structure theorem for quadro-quadric Cremama

formations, obtained by translating in theworld the structure results for Jordan algebras preseatiede.

The assertions below can be verified without difficulty aneirtproofs are left to the reader.

5.2.1. The radical. Let f be a quadro-quadric Cremona transformatioPtf! = P(V) with baselocus scheme
By Cc P"~1. The secant schentec(By) of By is the cubic hypersurfadé(N (z)) c P*~!, whereN (z) is the cubic
form appearing in[{2). This scheme can be also considerdteaarification scheme of, the name being justified

by the fact that the locus of points where the differentiatta birational mapf is not of maximal rank is exactly
V(N(z)), see also[10, Section 1.3]. Thadical of f is the setR; of points of multiplicity 3 ofSec(B¢) and it has

a natural scheme structure given By = V(d?N,) C P"~1. The support ofRZ;, if not empty, is clearly a linear
subspace oP"~!, contained irSec(By), and it is thevertex of the con8ec(By) = V(N (z)) C P"~1. We remark
that Ry can have any dimension between andrn — 2 (with the usual convention that the empty set is a subspace
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of dimension—1). The case whefi; is empty corresponds to the semi-simple case and, at thesidpste R is a
hyperplane if and only itV (z) = L(z)? with L(x) linear form.

5.2.2. The JC-correspondence in action.Let g be the quadratic inverse ¢f Let I, G be some quadratic lifts of,
respectively and letR» andR¢ be the affine cones ovély andR, respectively. According to th& JC-equivalence
(Theoreni41), there exist two linear mapsg, Ly € GL(V) such thatF' = Ll‘1 o #j o Lo where#; denotes the
adjoint map of a rank 3 Jordan algeldraThenG = L, ' o #; 0 L; andRad(J) = La(Rr) = Li(Rg). Itis well
known that(z +r)# — 2% € Rad(J) for everyx € J and every € Rad(J), seel[38] for instance. In this setting, this
gives us the following result.

Lemmab5.4.Ifz € Vandifr € Rp, thenF(z +r) — F(z) € Rg.

From the previous Lemma, it follows th&t and G pass to the quotient bR, respectively byR«, inducing
quadratic affine morphisms : V/Rr — V/Rg, respectivelG : V/Rg — V/Ryr. To understand what these maps
are, letlss = J/ Rad(J) be the semi-simple part §f considerZ; andL, as isomorphisms betweé&handJ inducing
quotient mapd.; : V/Rg ~ Js andL, : V/Rr ~ Js. The following diagram, in which all the vertical arrows are
the natural quotient maps, is commutative:

F
(18) v Ly “[ #s “[ Lyt Y
_1 ss L;I
ViRp — o T g V/Rg

5.2.3. The semi-simple part. Of course,FF andG are quadratic maps, each one being the inverse of the other in
the sense used till now. Indeed,f is the cubic form such thafl(2) holds, it passes to the qubéad induces a
well-defined cubic formV on V/ Ry defined byN (Z) = N(z) for 2 € V (wherez stands for the class af modulo

Rr). Moreover,G(F(Z)) = N(z)7 for everyz € V so that the paifF, [N]) is an element oBirs »(P(V/RF))

(the pair(F, [N]) satisfies the statement of Lemmal3.2). By definition, it issé@i-simple parof £ and it is denoted

by F. In practice, one identifie8,, with F', which is not a big deal since the cubic forwis always (essentially)
determined.

Example 5.5(continuation of Example[5.2). The adjoint and the generic norm i = Cle]/(¢?®) are given by
(a,b,c)* = (a%,—ab,b® — ac) andN (a, b, c) = a? if (a, b, c) stands for the coordinates of an elementiaklatively
to the basig1,¢,£2?). The semi-simple part oft 4 is the quadratic map — a2, which is a lift of the normed
quadro-quadratic maf:?, [IV]) whereN is the cubic norm oy, induced by the generic norm of, i.e. N(a) =
N(a,0,0) = a for everya € Ay ~ C.

We define thesemi-simple rankss(J) of a Jordan algebrias the rank of its semi-simple pdtt = J/ Rad(J) and
thesemi-simple dimensiatim(J) = dim(Jss). These notions are invariant up to isotopies so that we ciimedihe
semi-simple rankss (f) = rs(F) of f € Birs 2(P(V)), respectively thsemi—simple dimensiatimg(f) (or of any
affine lift F € Sym?(V*) ® V of f), as the semi-simple rank of the associated isotopy ¢la$of Jordan algebras,
respectively as the semi-simple dimensiorilf]. In this way two new invariants (relatively to linear equaace)
of quadro-quadric Cremona transformations naturally appeet us see how these definitions work in the simplest
cases.

Example 5.6. Modulo linear equivalence there are exactly three equideclasses of quadro-quadric Cremona
transformations o2, corresponding to the three isotopy classes of cubic Jaaligbra of dimension three. Let us
summarize the/C-correspondence and the semisimple parts of these thrgseslan the following table:
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Semi-simple | Algebra | Cremona transformation | Semi-simple Semi-simple Norm
rank e T f:P?2 -5 P? part of J¢ part of f N
1 % (22, —21 29, 23 — 2173) C x? 3
2 C x % (23, 7122, —2173) CxC (23, 2122) T173
3 CxCxC (I2$3,.§C1I3,.§C1I2) CxCxC (I2$3,I1.§C3,.§C1.§C2) T1T2X3

5.2.4. Classification of the semi-simple part.Since a semisimple Jordan algebra is a direct product ofleiones
and since the classification of all simple Jordan algebrasaltained by Jacobson, sgel[20], thé-correspondence
provides the complete classification of the semisimplespafrjuadro-quadric Cremona transformations, yielding the
following result.

Proposition 5.7. Let F' : V' — V be a lift of a normed quadro-quadric Cremona transformatfonP(V') --» P(V).
Then
(1) Fis semi-simple (ieF' = F) if and only if f is semispecial;
(2) if Fis semi-simple, thefiis linearly equivalent to one of the quadro-quadric Cremtnaasformations listed
in the third column of the table below.

Semi-simple| Semi-simple Ambient Semi-simple part

rank rss dim. dimsgs spaceV F N
1 1 C A — A2 A3
2 1+ dim(W) CeoW (A w) — (A%, —dw) AN+ g(w))
2 2 CxC (p, N) — (A2, p)) pA?
3 2+dim(W) | Cx (CaW) | (p, A w) — (A2 + q(w), pA, —pw) | p(\? + q(w))
3 6 Sym;(C) M — Adj(M) det(M)
3 9 M;(C) M — Adj(M) det(M)
3 15 Altg(C) M — M7 PI(M)
3 27 Herm3(0 @ C) M — M7 cf. (6)

TaBLE 1. Explicit classification of semi-simple parts of Cremomansformations of bidegree
(2,2). In this table,¢ stands for a nondegenerate quadratic form on a non-trieietiov spacéV’,
Adj(M) is the usual adjoint matrix whild/# is the adjoint in the corresponding algebdat (1)

is the usual determinant whilef(1/) is the Pfaffian of an antisymmetric matrix; the last line is ex
pressed using the general formalism of the theory of Jorttpbeas (see section 2.3 and also Table

a2).
As an application of the previous Proposition, we deducediassification results. Let us recall that a homogeneous
polynomialP € C|x1,...,x,] is calledhomaloidalif the associated polar map
oP oP
P =|—: ... —|:p!_spr!
|:8I1 8In:| ?

is birational. Let notation be as in Section 512.1, and&et= Bp: = V(g—fl, ey gm—’z) c P*~1. Assuming that”’
has bidegre€2, 2), we know that there exists a cubic forivi such that’ (N) c P"~! is the secant scheme 5fs.
Let us remark that sincg” is birational, the partial derivates &f are linearly independent so thi&( P) c P*! is
not a cone. In particular iP has degree three, then it is necessarily a reduced polyhdiefirst classify reducible
homaloidal polynomials of degree three defining quadradgua&remona transformations.

Corollary 5.8. Let P be a cubic homaloidal polynomial im > 3 variables such thaP”’ is a quadro-quadric Cremona
transformation. IfP is reducible, then one of the following holds:
e V(P) = Sec(Bp) andP is linearly equivalent to the norm of the semi—simple (bisimople) rank 3 complex
Jordan algebra of the fourth line in Table 1 above;
e V(P) # Sec(Bp) andV (P) is the union of a smooth hyperquadriclitt —* with a tangent hyperplane; in
some coordinates, one h&z) = z1(z3 + - +22_, — z12,) and N (z) = 3.
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Proof. If P is the product of three distinct linear forms, then necélysar= 3 and we are in the first case, see also
the third case in Example5.6.

Suppose thaP is the product of a linear forrhwith a quadratic forng. Without loss of generality we can assume
¢ =z;.LetQ = V(q) C P"~L. Thereis an inclusion of schem&$z1) N Q C Bp from which it follows thatV/ (z;)
is contained in the secant locus schem@gpfso that it is contracted bf’ andz; is an irreducible factor o (z).

If the hyperquadric) is also contracted b#”’, then it is necessarily a cone with vertex a point and we cppase,
modulo constantsy (z) = z1¢(z) = P(x). SinceV(N) = V(P) c P*~!is not a cone, the rank 3 Jordan algebra
Jp+ has trivial radical by Propositidn 5.3 hence is semi-simBliaceN = P is reducible Jp: is not simple hence we
are in the case corresponding to the fourth line of Table 2.

Finaly, if Q is not contracted by, then it is a smooth hyperquadric. In this case the hypeediai;) c P*—!
is necessarily tangent 1@ at a point (otherwis@ would be a degenerated smooth quadit 3 c P"~2, which
is impossible) and we are in the second case. In the isot@ss(dlp/] we can choose a representative such that
o = (22, —xz129, ..., —11 2y, 25+ -+ 22| —12,) @NdN (2) = 23, O

Following [14], we will say that a homogeneous polynonffaE Clz1, . .., z,] such thatlet(Hess(In P)) # 0 is
EKP-homaloidalf its multiplicative Legendre transforr®, is again polynomial. In this cask, is a homogeneous
polynomial function too andeg(P) = deg(P.), see alsd [17] where this condition was investigated ardiestu By
the preliminary results of [17], & K P—homaloidal polynomial is homaloidal and, after havingntifeed C™ with its
bidual, we have

P P
(19) PP Idcn.

Therefore such & K P-homaloidal polynomial of degreédefines a Cremona transformation of tyjged). If
moreoverl = 3, it follows from (I9) (combined witH(3)) that we ha¥g V') = V' (P), thatisV (P) is the ramification
locus scheme of”’. On the contrary as we shall see in the proof of Corollary &@w, if P is a homaloidal cubic
polynomial such that’ (N) = V(P), then itisE K P-homaloidal. Note that thE K P condition defined above is not
satisfied by the reducible polynomials of the type describetie first case of Corollafy 5.8 whe#&(N) is a cubic
hypersurface supported on the tangent hyperplane.

Corollary 5.9. Let P be a homogeneous polynomiakire> 3 variables. The following assertions are equivalent:
(1) Pis acubicEK P-homaloidal polynomial;
(2) P is homaloidal,P’ has bidegre€2,2) andV (P) = V(N);
(3) P isthe norm of a semi—simple rank 3 complex Jordan algebra.

When these assertions are verifiétlis linearly equivalent to one of the norms in the last fivedioé Tabld 5.2 4.

Proof. We have seen before thét) implies (2). Assume that the latter is satisfied By Since P’ has bidegree
(2,2), the JC-correspondence ensures that (modulo composition byrliaegmorphisms), one can assume that
P’ is nothing but the adjoint map of a rank three complex Jordgabsa noted bylp. Since P is homaloidal,
V(N) = V(P) c P"!is not a cone. By Propositidn 5.3, this implies that the raldt J  is trivial. ThusJp is
semi—simple and the conclusion follows from the classificatecalled in Table 2. O

Remark 5.10. Forn = 3 the two examples described in Corollary]l5.8, modulo lineparivalence, are the unique
homaloidal polynomials by a result of Dolgachev without asgumption orleg(P) and/or onP’, seel[14, Theorem
4]. Forn = 4 there exists irreducible homaloidal polynomials of de@@aehose associated Cremona transformation
is of type(2, 3). One such example is given by the equation of a special gioieaf the cubic scroll ifP* from a point
lying in a plane generated by the directrix line and one ofities of the ruling, see [11] for details and generalizagion
of this construction. For > 4 there exist irreducible homaloidal polynomials of any aegl > 2n — 5, seel[11].

More related to the above results is a very interesting sefiérreducible cubic homaloidal polynomials commu-
nicated to us by A. Verra. The associated polar map is anutiesl and hence of type, 2) but the ramification locus
of these maps is different from the associated cubic hypisel The construction of these polynomials is described
in [4] but the details about the geometry of their polar mapkhe probably treated elsewhere.

5.2.5. The general structure of quadro-quadric Cremona transformations. In this section, we translate Theorem
into theC-world as explicitely as possible. We continue to use thatim introduced i 5.2]2.

It will be useful to denote by (respectivelyV) the spacd/ considered as the source space of the mhap
(respectivel\G). If Ay is a subset oP(Vr), we will denote byA ¢ the affine cone oved s in Vi and we shall use the
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analogue notation for subsetshiV) and inVg. One denotes by, respectively/, the quotient spacer/Rr,
respectively /Re, and byr : P(Vr) --» P(VR), respectivelyr, : P(Vg) --+ P(V), the rational map induced
by the canonical linear projection.

The interpretation of part (1) in Theorédmb.1 has been empthin Sectioh 5.212, see also part (1) in Thedrem|5.14
below for a precise statement. In order to reinterpret [@rand (3) of Theorefn 5.1 it is necessary to introduce some
notions and to recall some definitions.

Let Str(f) be thestructure groupof f (or rather ofF’) defined as in[38, Section 1.1]: by definitidstr(f) is the
set of linear automorphisntsc G L(Vx) such thatF’ o § = 6% o F for a certaid” € GL(Vr). Of courseStr(f)
depends only orf and one verifies that it is an algebraic subgroug/@f( V). Moreover, sincef is invertible,07 is
uniquely determined by and one verifies easily that the map— 6# is an isomorphism of algebraic groups from
Str(f) ontoStr(g).

Example 5.11(continuation of Example[5.2). The structure group of : (a,b,¢) — (a?,—ab,b* — ac) is the

subgroup of invertible triangular inferior complex mah&imij)i’_j:l, whose diagonal entries satisfy;1mss =
(ma2)?. SinceF o F(a,b,c) = a®(a, b, c), the map — 67 is an automorphism dtr(F). Itis given by
4
ma2
map® 0 0 m33? 0 0
ma3 _ m222m21 m223 0
mo1 mo2 0 |/ prrg pro
™m31 32 1MM33 —mas®mai+moi®mas _ maa(—maamso+2 marmss) Moo
m33 m33 22

Inspired by [38, Section 9], we define &eal of f as a pair({¢, ;) of projective subspaces C P(Vr) and
I, C P(V) (necessarily of the same dimension) such that
(20) jfe+1Ip) —js(x) Cle  and  ju(y+Ig) = jy(y) C Ir
forx € Vg andy € Vi generic, whergy : Vp --» Vi andj, : Vg --» Vp are the rational maps considered

in Sectio3.22. In this casg; and, factor throughl- and I; and their associated projectivizatignand g are
(normed) quadro-quadric Cremona transformations sudhtibdollowing diagram commutes:

!
@y PG) TPOk)
T
I I I
\i — = T T T \i
P(Vr/Ir) , P/l

If (I;,1,) is an ideal thery ((z,If)) = (f(x),I,) for genericz in P(V}). This implies thatl, is completely
determined byl and vice-versa. Thus we can say tiatC P(Vx) is an ideal off and that/, C P(V¢) is an ideal
of g. We will say that/; andl, arecorrespondingdeals.

AnidealI; c P(VF) isradical if I; C Ry. Itis equivalent to the fact thal, C R,. Although the definition
of ideal of af as above was formulated in the affine setting, there is a giegecharacterization of radical ideals.
If E; and E, are two projective subspaces BfVr) andP (V) respectively, one define¥(E;) C P(Vg) as the

projectivization ofdFy,. (Er) = F(Vr, Er) C Vdl and in the analogue way one definkgE,) C P(Vp).

Proposition 5.12. Assume that’y C Ry andE, C R,. Then the following assertions are equivalent:
(1) £y andE, are corresponding radical ideals fof and g respectively;
(2) one hasif(Ey) C E, anddg(E,) C Ey.

Proof. Let P; : Vg — End(Vg,Vr) and P, : Vo — End(Vr, Viz) be the quadratic maps considered in Remark
[3.5. For any subset; C Vi, one definess(Ag) C Vr as the span of the images 4f; by the mapsP;(x) for =
varying inVx. We use the corresponding notation #y(Ar) with Ap C Vp.

Adapting [17) to our setting and usirlg {16), we deduce BjdEr) C E¢ (resp. Py(Eg) C Er) if and only if
dF(EFr) C E¢ (resp.dG(Eg) C Er). Proposition 9.6 0f[38], translated in our setting, elesuhatE; andE, are

1WhendFVF (Er) =0, one setsif (Ey) = 0.
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corresponding ideals if and only #; (Er) C Eg andP,(Eq) C Er, proving the equivalence of conditio) and
). O

Given a (normed) quadro-quadric Cremona transformaficany quadro-quadric Cremona m#pnducing f on
the quotient by the corresponding radical idéalc Ry andl, C R, will be called aradical extensiorof f by Iy
(or by (I7,1,)). This (radical) extension isull if the restriction off to a generic fiber of the canonical projection
P(Vr) --» P(Vr/IF) is equivalent (as a rational map) to a linear map.

Example 5.13(continuation of Example[5.2). Let f be the projectivization of the map : C*> — C3 defined by
F(a,b,c) = (a®,—ab,b® — ac), that is nothing but the adjoint map of the algefalfa] /(¢®) expressed in the basis
(1,e,€%). Thenf is a null radical extension of the normed quadro-quadricv@rea transformatiorf : P! --» P!
defined as the projectivization of the quadratic n#ap(a, b) — (a2, —ab) with associated cubic noriV (a, b) = a®.

Let us define inductively a family of projective subspace®@fr) andP (V) by settingR[f” = Ry, R_E,l] =R,
and

RI = dg(RMY c P(vp), RIH =df(RY) cP(Ve)  fork>1.

By definition, (R&“)kzo is the‘Penico seriesof f. It follows from Propositio 5.12 that this is a decreasing
series of radical ideals d&(Vy). Moreover,REf] andef] are corresponding ideals for every> 1. Then, passing to
the quotients, the mapinduces a normed quadro-quadric Cremona transformation

fE Py - - - - - ~P(V5)
for everyk > 1, WhereV}Lk] andVG[k] stand for the quotients spackEs /Rgf] andVg /R[C’j] respectively.

We can now state th&’-version’ of Theoremh 5]1:

Theorem 5.14.

(1) The Cremona transformatiorfsand g factor throughRs and R,: there are semi-simple (normed) quadro-
quadric Cremona transformationsandg such that the following diagram commutes

i
BVe) ,  P(Ve)
I S~ 2 -7 I
I I
| ¥ "
YT
P(Vr) _ P(Va)
<~ _ g _

(2) There exist linear embeddings : P(Vr) — P(Vr) ando, : P(Viz) — P(Vs) whose images are linear
spaces supplementary ity and R, respectively, such that the diagram below commutes:

P
N
P(VF) P(Va)
I
\ \
oy | T Ty | Og
\ i \
Vo Tes Y
P(Vr) i P(Va).
- g

Moreover, the pai(oy, o4) is uniqgue modulo the action of the structure group given by

v (of,04) = (WOUfﬁ# oa,) for v e Str(f).
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(3) The radicalRy of f is solvable: there exists> 0 such thatr! is empty. Moreoverfl¥! is a radical

null extension of *~ ! for ¢ = 2, ..., ¢ so thatf can be obtained from its semi-simple p#tby the successive
series of non-trivial null radical extensions represenbgtthe commutative diagram
P(Vp) — = — >]p(vyl) - - >]p(vly*”) — == P(Vr)
| ‘ ‘ |
fepl] : oy | fle-1 :fm:y
¥ \ v ¥
P(Ve) = =~ —=PV) = =B(Vp )= == =PB(W),

where all the horizontal maps are the ones induced by theraablinear projectionsi_/y] — V}Z_l].

Example 5.15(continuation of Example[5.2). We apply the third part of the previous result to the projezétion
f of the adjoint mapF'(a, b, ¢) = (a?, —ab,b* — ac) of A = Cle]/(¢®). The associated Penico serie)is- RE?] C
R[fg] =P C R[f” =PR4 = P(e, €?). Hence one hagl®! = f, fIl = 7 (see Example&l5) anff? : P! --» P! is

nbthing but the normed quadro-quadric Cremona transféomgtof Exampld5.18.

We also point out an immediate consequence of the previgudt ia the affine setting.

Corollary 5.16. Let I be an affine lift of a quadro-quadric Cremona transformatjorSetk = Rr andV = V/R.
ThenF is linearly equivalent to a quadratic map of the form

VeR — VoR
(z,7) — (F(a:),]:(a?,r) + f(r))
where
— F is the semi-simple part df (so is equivalent to one of the quadratic maps in Table b,2.4)
— F:V x R — Ris abilinear map;
- % : R — Ris aquadratic map such th& o .# = 0 for another nontrivial quadratic mag’ : R — R.

Moreover,f is a null extension of its semi-simple part if and only if theadratic map% vanishes identically.

Example 5.17(continuation of Example[5.2). Let us consider again the quadratic mag, b, c) = (a2, —ab, b* —
ac). With the notation of the previous corollary, one Ras= A = Cle]/(¢®),V = C1, R = ¢ A ~ C?, F(a) = d?,
Fl(a, (b,c)) = (—ab, —ac) and.Z (b, c) = (0,b*) for every(a,b,c) € V = C3.

5.3. The general structure of twisted cubics over Jordan algebra. In this section X c P?"*! stands for a fixed
element ofX" (3, 3) with n > 3. According to the X .J-correspondence’, one can assume that there exists a rank
3 Jordan algebrd of dimensionn such thatX = Xj. In what follows, we will writeZy(J) = Ce J o J @ C for
simplicity and(a, x, y, 8) will stand for linear coordinates ot (J) corresponding to the decomposition in direct sum
of the complex vector spad&, (J). According to our hypothesis is the closure of the image of the affine embedding
pw=py:J = PZy(J): x> [l:z:2% : N(x)] considered in Sectidn 3.1. Moreover, there exists a famjlyof
twisted cubics included X', which is 3-covering and unique.

In order to state theX-version’ of Theorerh 5]1 we shall introduce some terminglagd recall some preliminary
results.

5.3.1. The conformal group. Thestructure groustr(J) of J is the algebraic subgrousr (#;) of GL(J) associated
to the adjoint map af defined in Section5.2.5 above. It can be verified that thestsea non-trivial character — 7,
on Str(J) such thatV (y(z)) = n,N(z) for every] and everyy € Str(J). Then one defines theonformal groupof
J, denoted byConf(J), as the subgroup of the group of affine birational transfdéiona of J generated bgtr(#;),
by the inversiory : 2 --+ z~! and by the translations, :  — = 4+ w (with w € J).

The projective representation Conf(J) — PGL(Z»(J)) is defined in the following way:
p(j)-0=[B:y:z:q
p(y) -0 =l y(x) 1 v (y) : 0, 0]
and p(ty) -0 =[a:x + aw : y + 2#w + aw® : B+ T(y,w) + T(z, w") + aN(w)]
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foreveryd = [o: z : y : 8] € PZy(J), v € Str(J) andw € J. It can be verified that(j) - 1 = poj, p(y) - pp = po~y
andp(t,) - 1 = p ot for every structural transformationand every translatioty,. This implies that the image @f
in PGL(Z5(J)) is contained in the grouput (X ) of projective automorphisms of .

Proposition 5.18. The representatiop : Conf(J) — PGL(Z2())) is faithful andp(Conf(J)) = Aut(X).

Proof. Let ¢ € Aut(X). Being projective, it induces an automorphism§, again denoted by. The twisted
cubicCy = {[s* : s?te : st?e : t?] € PZ>(J) | [s : t] € P'} is included inX and passes through the three points
Ox = u(0)=[1:0:0:0,ex =pule) =[1:e:e:1]andoox = p(oc) = [0:0: 0 : 1] of X. Since
Conf(J) acts transitively on generic 3-uples of pointsin(see [31, Proposition 4.7] for instance), it comes that the
orbit ' = Conf(J) - Cy of Cj is dense in the 3-covering familyx of cubics included inX. Thus there exists
C € T such thatp(C) € T and, modulo compositions on the left and on the right by conéb automorphisms of
X, we can assumg(Cy) = Cy. Moreover, since the subgroup of conformal transformatioinX fixing Cy acts as
Aut(Cy) ~ PGLy(C) onCy ~ P, we can also suppose thafixes the point$) x andcox of Cy. It follows thaty
induces an automorphism of the subfamily of ¥ x formed by the twisted cubics included .} and passing through
Ox andOOX.

Let us denote by and V'~ the abstract tangent spacesXfat 0x andocox respectively. The differential
w0 = dpoy (resp. poo = dpeoy) Of p at0x (resp. atoy) is a linear automorphism df + (resp. ofVV~). Then
reasoning as in the proof of Theoréml3.7 we deduce(thaty, ) is an automorphism of the Jordan pgif+, V)
constructed there. Taking = exp~!(ex) € V~ as invertible element (see the notation at the end of thefmfoo
Theoreni 317), one obtains tHdf™ = J as Jordan algebras. It follows then frdml[24, Propositi@j thaty, € Str(J)
andg, = (pf) 1.

Let us now prove that the action 6f = p(¢o) on X coincides with that ob. Letxz € X be a general point. By
hypothesis, there exists a twisted cublg € ¥% passing through that is unique according to [33] dr [B1, Theorem
2.4 (1)]. This implies that the tangent ma&y, — P(V ) that associates 10, its projective tangent line &y is 1-1
onto its image. In particular, this gives us thatC,) = ¢(C;). Sincep, = ¢|c,: Cx — ¢(Cy) is a projective
isomorphism that let8 x andocox fixed, it is completely determined by its differential at gp&nt, for instance at
Ox. Sinced(y)oy = d(o)ox = @o, this shows thatp, andiy|c, coincides so thaty(z) = p.(z) = ¢(z).
From the generality ok € X, we deduce thap = . Sinceyy = p(po) wWith ¢y € Str(J), this gives us that
p(Conf(J)) = Aut(X).

Finally, letrv € Conf(J) such thatp(v) = Idx. Fromy = p(v) - ¢ = po v one gets that = v(z) forz € J
generic, that iy = Idy. Thusp is faithful and the result is proved. O

A different proof of the previous result is given in [18] fdret case whedd = Herms(O¢). The proof therein
clearly applies to all twisted cubics over semi-simple r8rlordan algebras but it is not clear wheter it can be applied
to the general case. We have included the proof above bewvausere unaware of any proof of Proposition 5.18 in
the literature, despite this result is certainly well-kmote the experts of this field.

Remark 5.19. The proof of Propositioh 5.18 also shows that the subgroypajéctive automorphisms of fixing
two (resp. three) general points &f is isomorphic to the structure group (resp. to the automermplgroup) of the
Jordan algebrd. This is related to the considerations in Renfark 3.3.2.

5.3.2. The radical and the semi-simple part. We use again here some notation and construction introdadbe
proof of Theoreni 3172+ andxz~ are two general points o such thatX is 1-RC by the family,+, - of twisted
cubics included inX passing through™ andz~. Foro = +, one defines a rational ma@” : V° --» V=7 by
setting

F7(v) = dag(1:t)/dt|,_,

forv € V7, wheread : P! — X is the projective parametrization of a twisted cubic belogdo X+, such that
a0 : 1) =27, a9(1 : 0) = 277 anddaf (s : 1)/ds|s—o= v. The mapF? is homogeneous of degree -1 and
F? o F~9 = Idy- for everyo = +. Thus the associated projectivizatigf : P(V?) --» P(V~7) of F7 is a
Cremona transformation with inverge® : P(V=7) --» P(V?). It can be verified thaf? has bidegre¢2, 2) and
that it is nothing but the mapx .- defined in Section 3|3 (up to linear equivalence).

Let Ry C P(V7) be the radical off” as defined in Sectidn 5.2.1. SinBéV?) identifies canonically with the
projective quotien,- X/(x”), one can define the corfe,. C T,-X overR;. with vertexz? (alternatively,R -
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can be defined as the closure of the radigal: C V7 of F? in the natural affine embeddinig® c T,-X). By
definition, the radicaR,+,- of X relatively to the paifz*, x~) is the direct sum of?,+ andR,- in P?"+1:

Ryt~ =Ryr ® Ry- CTu X @ T,- X = (X) =P
A straightforward verification proves the following result
Lemma 5.20. The radicalR,+,- does not depend on the pdir™, ™) but only onX .

We can thus define theadical of X as the projective subspadex = R,+,- C P2"*! for any generic pair
(z*,27) of elements ofX. If r is the dimension of the radical dfthen Rx is a projective subspace of dimension
2r — 1in P?"*1 that is projectively attached t&, that is one hag(Rx) = Rx for everyp € Aut(X).

The preceding definition of the radical 6f makes quite explicit the link with the corresponding notiarthe
C-world (hence in the/-world). Notwithstanding we think it is interesting to pide a purely projective definition of
Ry . To this end, we first remark that since two generic projediangent spaces of are in direct sumX c P27 +!
has the secant variety(X) filling the whole space by Terracini Lemmizg. o(X) = P?"*1. MoreoverX is also
tangentially non-degeneraieg. the tangent variety (X) c P?"*! of X, defined as the closure of the union of the
lines tangent to the smooth locus X is a hypersurface iB2"+1,

Lemma 5.21. The tangent variety (X) is the hypersurface if#?"*! cut out by the irreducible quartic form
1
Q(avxvyaﬂ) = T(I#ay#) - ﬂN(SC) - O[N(y) - Z(T(Iay) - aﬂ)z'

Proof. Sincer(X) is irreducible and singular alon§j and sincer(X) = P?"*!, we haveleg(7(X)) > 4. Indeed, if
deg(7(X)) = 2, thenX C P?"*! would be degenerated being containe8ing(7(X)). If deg(7(X)) = 3, then the
secant variety o would be contained im(X) because (X) is singular alongX . SinceV (Q) c P?"*+! is a quartic
hypersurface to prove thét is irreducible and that(X) = V(Q) it will be sufficient to show that(X) C V(Q).

The quartic formQ is invariant for the action of the conformal group &fonP?"+! (the proofs given in[[18] or
in [12, Section 7] concern a priori only the semi-simple caset can be applied in full generality). Since the orbit of
0x € X under the action ofAut(X) is Zariski-open inX, it is enough to prove that a line i *! tangent toX at
Ox isincluded inV(Q). A point of such a line has homogeneous coordingges (1, e+ v, e + e#v, 1 +T'(v)) with
v € J. A straightforward (but a bit lenght) computation impliésitQ(p,,) = 0 for everywv, proving the result. [

Proposition 5.22. The tangent hypersurfaed X) is a quartic cone of verteR x .

Proof. It follows from (18) that for anyr,,r, € R = Rad(J), one ha®Q(«, z + 74,y + 1y, ) = Q(w) for every
w = (o, z,y, B) € Z2(J). This proves thaf?y is included in the verte¥ (*Q) of V(Q) = 7(X).

Conversely, le(0,,,...,0,,) (resp. (Oy,,...,0,,)) be the system of partial derivatives naturally associtted
a system of linear coordinates on the first (resp. on the sBdeaummand ofZ,(J). The relation$295Q(w) =
9a03Q(w) = 0imply thata = § = 0. The set of relation8, 9, Q(w) = —0;,0;,N(z) = 0,4,j = 1,...,n, can
be summarized by? N, = 0, thatisx € R = Rad(J) according to[(Z6). Arguing similarly fog, one obtains that
d*Q,, = 0 implies thatw = (0, z,y,0) with =, y € R. This proves that the vertéx(d*Q) of 7(X) is included inR x
and finishes the proof. O

In what follows, let] = Js & R be the decomposition given in poif®) of Theoreni5.11, where the embedding of
Jss = J/R — I has been fixed once for all (hence is not indicated to simplifystraightforward verification gives
that Rx is nothing but the projectivizatioB(0 @ R ® R © 0) C PZ»(J). Hence settingus = py.. and Xy = X,
we obtain the commutative diagram

I L x cP2()
|

TR | TR
A
JSSCL Xss C ]P)Z2(Jss)7

wheren i stands for the canonical linear projectidn— Jss = J/R and whererg, denotes the restriction t&
of the linear projectio®Z5(J) --+ PZ2(Js) from the radicalRx of X. Sincerg is surjective, this shows that
Try (X) = X . By definition, X is thesemi-simple parbf X.
We have the following result, based on the classificatiomudath varietiesY € X (3, 3).
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Proposition 5.23. The semi-simple parX,; of X belongs taX (3, 3) and is smooth. Moreover
- rs(J) = 3 ifand only if Xis € X (3, 3) hence is one of the varieties of the table of Thedreifn 4.4;
- r(J) = 2 ifand only if X is a scroll Sy 122 0fS7 15 (in particular, dim(X) > 1);
- 14 (J) = 1if and only if X is the twisted cubies(P*) C P3.

Example 5.24(continuation of Example[5.2). The radical of the cubic curv& s C PZy(A) = P7 over A =
Cle]/(€?) is the 3-dimensional linear subspake , = {[0: 7 : ' : 0] |r,7" € Ra} C P”. The projection fromRyx ,
induces a dominant rational map frak onto the twisted cubic curve;(P*) C P? which is thus the semi-simple
part of X 4.

Example 5.25. Let H¢ be the complexification of the (real) algelifaof quaternions. Thefilc can (and will) be
identified with the complex algebr@l»(C) of 2 x 2 complex matrices. Fol! € Hc, let M stands for the adjoint
M — T(M)Id. By definition, the algebra of (compleggxtonionss the vector spacgc = H¢ & Myx1(C) together
with the product defined by, u) - (N,v) = (M N, Mv + Nu) for M, N € Hc andu,v € May1(C), seel[22/39].
This algebra can be embedded in the complexificafignof the octonions so that it is alternative and it has an
involution given by(M,u) = (M, —u) for (M,u) € Sc. One then defines the algebiarm;(Sc) (see Example
2.3.[3)), which is a rank 3 Jordan algebra of dimension 21.

The cubic curveX = Xyerm,(se) C P*? over Herms(Sc) is singular along a smooth 10-dimensional quadric
hypersurface, which spans the radiéat of X. Thusdim(Ryx) = 11 (seel[22, Corollary 8.14]). The semi-simple
part of Xje.m, (s) is the orthogonal grassmannian variéfye,m, ) = OGs(C'?) C P,

5.3.3. Radical ideals and extensionsLet I be a proper projective subspacdfdf+! and denote byt; : P2"+1 ——»
P™ the linear projection frond. By definition, I is aradical idealfor (or of) X if I is included in the radicakx of
X and if the restriction ofry to X, again denoted by, is such thatr; (X) = X is still 3-RC by twisted cubics and
extremal. SinceX, € X (3,3), Ry itself is a radical ideal foiX .

LetI C J be aradical ideal of the Jordan algefirarhen] = J/I is a cubic Jordan algebra hence one can define
the associated twisted cuble- C PZ5(J) € X (3,3). ThenI =P(0& 1 & 16 0) C PZy(]) is a radical ideal ofX.
More generally, the image of suchllaby any element o€onf(X) is again a radical ideal foX .

Proposition 5.26. Any radical ideal ofX comes from a radical ideal df by the construction presented above.

Proof. We continue to use the notation introduced aboveXoand the tilded versions of these will stand for the
corresponding notation foX .

Let I c P?"*! be a non-trivial radical ideal foX . Let 2" andz~ be two general points oX. Foro = =+,
one denotes by’ the differential ofry at z?: sincez? is general, it is a well-defined surjective linear map from
V7 onto V? whose kernel” has dimensiori. We want to prove thaf = (I,I7)is an ideal of the Jordan pair
V = (V*t,V-)suchthat//I = (V*+/IT,V~/I~)is isomorphic to/ = (V+, V™) (as Jordan pairs).

Let X (resp.X) be the 3-covering family of twisted cubics df (resp. onX). Then forC € ¥ general, its image
7 (C) by the linear projectionry is an irreducible rational curve of degree 3 included inX. Since the family
71 (X) = {m1(C)}ces is also 3-covering, it comes from [33, Lemme 2.1] tha(X) = . Sincez™ andz~ are
general points ok, we deducery (S,+,-) = {77(C) |C € Xpip- } = X315 . Letv € V7 be such thaF” andF”
are defined at and = 77 (v) respectively. Lety, : P! — X be the projective parametrization of the twisted cubic
element of2,+,— such thatla, (s : 1)/ds|,—o= v (see Section5.3.2). Theén, = 7y o a, : P! — X is a projective
parametrization of a twisted cubic i such thati, (0) = &%, &, (co0) = =7 anddé, (s : 1)/ds|s—o= 7° (v) = ©:
with the notation of Section 5.3.2, one has = a;. This implies thatF® o 7° = 779 0 F? foro = +. Taking
total derivatives, one obtainé(ﬁ"),rg(,) on? = 7~ % o dF?. Combined with the fact that =7 o F* = Idy. and
F~o0F7 = Idy., this gives that fov € V7 general:

(d(F)nn)) ™ 0T =d(E ™) ooy 07
(F_U)W*UOFU(U) om 7
(F 70 W_U)Fa(v) =d(n% o F_U)Fo(v) =7%0 (d(FU)U)

By density, this series of equalities implies that fo&= +, one has

d
d

-1

Do —0 _ o o
Pﬂa(v) on” % =n% 0P}
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for everyv € V7, whereP? and P stand for the quadratic operators of the Jordan paiendV respectively (see
RemarK3.5). According to Definition 1.3 in[24], this meahattr = (7#+,7~) : V — V is a surjective morphism of
Jordan pairs. Consequenthyr(7) = (I, 1) is anideal of andV/I ~ V. Foro = +, let I” be the closure of”
inVe C T,» X C P2"*1, We let the reader verify that the radical iddlafrom the beginning is nothing but the direct
sumI™ @I~ C T,+ X & T,- X = P?"*+1 concluding the proof. O

If I c P>**1is a radical ideal forX, we will say thatX is a(radical) extensiorof X = 7;(X) € X(3,3) by
I. This extension iswull if the generic fiber ofr; : X --» X is a linear subspace i?" 1. It is split if there exists
a linear embedding : (X) = P?"t!1 « P27+1 the image of which is supplementary foand is such thaty o o
induces the identity when restricted 2

Proposition 5.27. The X J-correspondence induces correspondences between ngpledvely split) extensions in
the J-world and in theX -world.

Proof. Letry : X --» X be a (radical) extension in thé-world corresponding to a radical extensions I — J —
J =1J/I — 0inthe J-world (we use here Proposition 5126). One can assumeXhat X; andX = X; and that

the projection fromZ is induced by the linear maf,(J) — Z>(J) coming from the canonical projectidn— J/I.
Let us denote by: the class inJ of an element: € J. Sincel is assumed to be a radical idea}t: andi# belong to
I for everyx € J andi € I. In particular the class of* in J/I is ##. From this it follows thatty : Xy --» X1
is given by[1 : = : 2# : N(z)] — [1 : & : 2# : N(z)] hence for any: € J, the fiber ofry : X --» X over
Pe=[1:Z:3% :N(z) e Xis

7 (Be) = {[l:x+i:a# +a#ti+i# : N(2)]|i€l} CPZy(]).

This fiber is a linear subspacetZ,(J) if and only if i# = 0 for everyi € I. Sincel is radical,i* = i for every
i € I sothati# = 0 for everyi € I if and only if I? = 0 (remember that any product incan be expressed as a linear
combination of squares). This proves the proposition ferdhse of null extensions.

We now consider the case of split extensions. Clearly asgi@nsion in the/-world yields a split extension in the
X-world. On the contrary, assume that (X) — P?"t! is a splitting of an extension; : X --» X. If 2+ andi~
are two general points of, thenzt = (z*) andz~ = +(Z~) are two points of{ for which the construction of the
Jordan paifV+, V) described in the proof of Propositibn 5126 can be perforieds = +, let.” : V7 < V7 be
the differential ati” of the restriction of to X. Since is a linear embedding, it sends any twisted cubic included in
X onto a twisted cubic ifX. From this, one deduces that= (.*,.~) : V — V is an injective morphism of Jordan
pairs. Finally, from the fact thdim(c) and I are supplementary iZ>(J), one deduces that: V — V gives a

splitting of the extension of Jordan paifs— V' SV, concluding the proof of all the assertions. O

Example 5.28(continuation of Example[5.25). The decompositioB¢c = H¢ ¢ Uc (with Uc = May;(C)) induces
a decomposition in direct sufiierms(S¢) = Herms(He) @ Alts3(Uc) whereAlts(Ue) is the space of antisymmetric
3 x 3 matrices with coefficients ifi/c. One haRad(Herms(Sc)) = Alt3(Uc) andHerms(Sc) is a split and null
extension oterms(Hc) by Alt;(Uc). The geometrical interpretation of this is thét= Xerm,(s.) C P43 is a split
and null extension oK yerm, (1) = OGg(C'2). Inthis particular case, the linear projectiop,, : X --+ XHerms (He)

is surjective and any of its fibers is a linear subspace of dgio@m6 in P*3.

5.3.4. The Penico series of{. We use in this subsection the notation introduced in thef@bBroposition 5.26x+
andz~ are two general points oii, etc. Letl C Ry be aradical ideal associated to the radical i¢éal /) of the
Jordan pai’ = (V*,V ™). Foro = =+, defineP(I?) asPy, (V~7) C V7. ThenP(I) = P(P(IT)® P(I7)) C
P27+ js a radical ideal ofX.

2]

We can now define théenico seriesf X as the decreasing family of projective subsp&®&s o R[;(] DRy D

D R[)t;_l] > R[;;] D ... defined inductively by

RY =Ry and RY™ =PRY) fork>1.

One verifies that thﬁ[;? 's do not depend on the base pointsandz~ but only onX and that they are projectively
attached taX. It would be interesting to give a purely geometrical chagdzation of the Penico series 4f, in the
same spirit of the characterization of the radicalkofjiven in Proposition 5.22.
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Example 5.29(continuation of Example[5.2). We have seen in Example 5124 that the radiRal, of the cubic curve
X4 C PZy(A) = P overA = C[e]/(€?) is a 3-dimensional projective subspacePih One verifies easiI)R[)?]A is
the projective ling([0 : Ae? : N €2 : 0] | [\, N'] € P'} C Rx,, whereaskl’] is empty for every > 3.

For any/ > 1, let pl“) be the restriction to\ of the linear projection fronkJ and denote byx ‘! its image (note
that XY = X andpl¥ = Idx if RYY is empty). Since?!d is a radical ideal X! belongs taX (3, 3). Moreover, it is
not difficult to verify that fork < ¢, the linear subspagé’(Ry)) is a radical ideal for ) that is nothing bur't .

If one denotes byt (‘! the restriction tax ! of the linear projection from!?(R™"), there is a commutative diagram

where the maps in it are (restrictions of) dominant lineaijgtions sending isomorphically a general twisted cubic
curve in a source space onto a general twisted cubic curteitatget space.

A good reason to consider the projectiori§ is certainly given by the following result, whose proof if e the
reader.

Proposition 5.30. For any? > 1, the generic fiber of the rational mag? : X! --» X~ is a linear subspace.

5.3.5. The general structure of twisted cubics over Jordan algebra. We are now in position of stating the trans-
lation in the X -world of Theoreni G1.

Theorem 5.31. Assume thak € X (3, 3) is not semi-simple (or equivalently that is not smooth). Then
(1) the restriction taX of the linear projection from its radicaRk x induces a dominant rational map

TRy ' X -2 Xes

over a semi-simple 3-RC variel§,; € X (3, 3), the restriction of which to a general twisted culdicc X is
an isomorphism onto its image; , (C), which is then a twisted cubic curve Ks;

(2) there exists a linear embeddiag PZ5(Jss) — PZ2(J) whose image is supplementaryRg; such that
o(Xs) C X and 7, oo € Aut(Xy).
Moreover,o is unique, up to composition to the left by a projective awgghism ofX;;

(3) the radical Rx is solvable: there exists a positive integesuch thatR[;(] is empty. MoreoverX!’ is a

radical null extension of ‘1 for ¢ = 2,..., ¢ so thatX = X" can be obtained from its semi-simple part
Xy = XU by the successive series of null radical extensions reptedebelow

[e-1) e

12
— == = -> xR - - -> X.

[t—1] o]

e ... - > xl - s = xle-1]

™

wlt] T
X-—-- >X[t—l] —

5.3.6. Null extension and Verra construction. It follows from part(3) of Theoren{ 531 that the notion of radical
null extension is particularly relevant when dealing witirieties in the clasX (3, 3). Notwithstanding the consid-
erations and results of the preceding sections are not $alligfying from the intrinsic point of view. For instance
the construction of all radical null extensions of a givEne X (3, 3) shows immediately that it is desirable to have
an intrinsic geometric characterization of such objects,term ‘intrinsic’ meaning here ‘in term of alone’. This
section is dedicated to this purpose.

Let us recall that ifX € X (3, 3), thenX c P?"*! is avariety with one apparent double pojtiriefly anOADP—
variety, meaning that through a general pointR3f**! there passes a unique secant linétpsee for examplé [31,
Corollary 5.4] for a prorﬁ If #: X’ --» X is a radical null extension in th& -world then the general fiber afis a
linear subspace. This shows thét is an OADP-variety obtained frot¥ by the so called/erra constructiorof new
OADP-varieties from a given one. We recall brievely this metric construction below, referring to [10, Section 3]
for more details and proofs.

2The name ‘OADP-variety’ comes from the fact that the progecof X from a general point acquires only one double point as (&uyth
singularities (see alsb [10] for relations between twistebics over Jordan algebras and OADP-varieties).
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LetY c P2(»*+")+1 pe a degenerate OADP-variety of dimensigrwhich spans a linear spa&é of dimension
2n + 1. LetCy (Y') be the cone over with vertex a linear spacd” ¢ P2("+7)+1 of dimensior2r — 1 in direct sum
with V. Assume that”” c Cw (Y') is an irreducible non—degenerate variety of dimensicn r, that is not secant
defective and which intersects the general rulihgz P2 of Cyy/(Y') along a linear subspace of dimensianThen
the linear projection aP2("+t7)+1 from W ontoV restricts toY”’ to a dominant map : Y’ --» Y having linear fibers
of dimensionr that are generically disjoint. We shall say thétis obtained froml” via Verra’s constructioror also
thatY” is aVerra variety It is not difficult to prove that Verra varieties are OADPriedies.

LetY’ be a Verra variety as above. Then!(y) is a linear subspace of dimensien- 1 of W for y € Y general.
Thereforey — 7~ '(y) defines a rational mapy+ : Y --» G(r — 1, W) = G,.(C?"). Moreover,yy (y1) andyy (y2)
are skew subspaces Bf wheny; andy, are two general points &f. Conversely, leVy. be the set of rational maps
v:Y --» G(r — 1,P?7—1) satisfying the condition that(y; ) and~(y2) are skew ify; andy, are generaliry". It can
be verified that for any € Vy,, if Y, stands for the open subset¥sfon which~ is defined, then

Yy _ U <y,’y(y)> c ]P>2(n+r)+1
yE€Yo

is an OADP-variety that is obtained from by Verra’s construction. This gives an identification betwehe set of
(n+ r)-dimensional Verra varieties constructed fréfup to projective equivalence and the quotient of thé%§eby
a certain relation of equivalence that the interested meaalédd make explicit without difficulty.

Since a radical null extension: X’ --» X is obtained by Verra’s construction frof, there existgyx: € V%
suchthatX’ = X, ,. Nevertheless one verifies easily that not every VY is such thatX , is a radical null extension
of X, see also Example 583 below. A necessary and sufficientiagghat X’ € X (3, 3) is given by the following
result:

Theorem 5.32.Let X € X (3, 3) and lety € V%. The following conditions are equivalent:
(1) the Verra varietyX, belongs taX (3, 3) so that in particular is a radical null extension &f
(2) the restriction ofy to a general cubic curv€’ C X is an embedding angl(C) is a line inG,.(C?").

Proof. Clearly (1) implies (2) and we now prove the converse. L¥t = X, wherey € V% is such tha{2) holds
and denote byr : X’ --» X the (restriction of the) linear projection definidg as a Verra variety ovek . If x|,
andz4 are three general points &Y then thex; = 7 (z})’s are three general points on. Let C be the twisted cubic
included inX passing trough the;’s. Clearly,=—!(C) is nothing but the Verra variety., . overC, whereyc stands
for the restriction ofy to C. SinceC is a general cubic ik, it follows from (2) thatC.,,, is the(r 4 1)-dimensional
rational normal scrolb; 13 in P?"+3, The later being an element of the claXg3, 3), there exists a twisted cubic
¢’ c C,, passing trouglr}, =, andzy and suchr(C’) = C. This shows thaX’ = X, is 3-RC by cubic curves.
ThenX,, is a radical extension ok'. Since the general fiber af : X, --» X is linear, this radical extension is null
by the definition, concluding the proof. O

The following examples show that there exjst Vi such thatX., ¢ X (3,3).

Example 5.33.LetJ be arank 3 Jordan algebra of dimensiok 1 with generic normV (z). LetJ’ be a split radical
extension of] by a Jordan bimodul& of dimension 1.

First of all, sinceR? C R andr® = 0 for everyr € R (and sincelz C Rad(J")), it follows that R? = 0. Because
the extensio? — J' — J is split, one can assume thiit= J ¢ R with product given by

(x1,71) * (2, 72) = (21 * T2, 710(22) + T200(21)) for 1,20 € J, 1,72 € R,

wherey : J — Cis a certain (fixed) linear form. The unity @fise’ = (e, 0), yieldingp(e) = 1.
Reasoning as in the proof of TheorBm 5.16 and recallingithat 0 for everyr € R’, we deduce that there exists
also a linear forny : J — C such thatz,7)* = («#,rf(x)) for every(z,r) € J'. By definition of radical we have

N(z') = N(z,r) = N(z) for 2’ = (z,r) € J' so that the identityV ()2’ = (z'*)# is equivalent to
(22) N(z) = f(z)f(«¥)

for everyx € J.

Now if Xj C P?"*! is a twisted cubic over a simple rank three Jordan algélsa withn € {6,9,15,27}) and

if Z"+t1 c P23 s obtained fromX via Verra construction, thef ¢ 7”“(3, 3). Indeed, otherwis¢/ would be

projectively equivalent to{, for a certain 1-dimensional null radical extensiBrof J, that is necessarily split (this
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follows from the fact thaf is simple). Then[(22) would imply that the norWi(z) of J is a reducible polynomial of
degree 3, which is not the case.

Part(3) of Theoren{ 5.3 points out that among radical null exterssiwe split ones are the most interesting.
Accordingly to the general principle of the XJC-correspemnck, givenX € X (3, 3), it would be interesting to get
a characterization in geometric terms of the rational mapgs)V% satisfying conditior(2) of the preceding theorem
and such that the radical extensi&y --+ X is not only null but also split. We intend to return on this amdother
related questions in the future.
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