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EXTREMAL VARIETIES 3-RATIONALLY CONNECTED BY CUBICS,
QUADRO-QUADRIC CREMONA TRANSFORMATIONS

AND RANK 3 JORDAN ALGEBRAS

LUC PIRIO AND FRANCESCO RUSSO

ABSTRACT. For anyn ≥ 3, we prove that there are equivalences between

• irreduciblen-dimensional non degenerate projective varietiesX ⊂ P2n+1 different from rational normal scrolls and
3-covered by rational cubic curves, up to projective equivalence;

• quadro-quadric Cremona transformations ofPn−1, up to linear equivalence;

• n-dimensional complex Jordan algebras of rank three, up to isotopy.

We also provide some applications to the classification of particular classes of varieties in the class defined above and
of quadro-quadric Cremona transformations, proving also astructure theorem for these birational maps and for varieties
3-covered by twisted cubics by reinterpreting for these objects the solvability of the radical of a Jordan algebra.

INTRODUCTION

In this paper we continue the study began in [31] of the unexpected relations between the following three sets:
n-dimensional complex Jordan algebras of rank three modulo isotopy; irreduciblen-dimensional projective varieties
X ⊂ P2n+1 such that through three general points there passes a twisted cubic contained in it modulo projective
equivalence; quadro-quadric Cremona transformations inPn−1 modulo linear equivalence.

Jordan algebras have been introduced by physicists around 1930 in the attempt of discovering a non-associative
algebraic setting for quantum mechanics. These algebras found later applications in many different areas of mathe-
matics, spanning from Lie algebras and group theory to real and complex differential geometry, see for example [26,
Part I] for a general panorama. In algebraic geometry, complex Jordan algebras of rank three were used to construct
projective varieties with notable geometric properties either by considering some determinantal varieties associated to
the simple finite dimensional ones such as Severi varieties,see [40, IV.4.8], or by defining the so calledtwisted cubic
over a rank three Jordan algebra, see [18], [27] [31, Section 4], [22],[23] and Section 3 below. These last objects
are examples of projective varieties such that through three general points there passes a twisted cubic contained in it
and they also appear as the first exceptional examples to the classification of extremal varietiesm–covered by rational
curves of fixed degree, see [33] and [31] for definitions and examples and also Section 1 and Section 3. Moreover,
twisted cubic over rank three Jordan algebras are also examples of varieties with one apparent double point, see [27],
[31, Corollary 5.4] and [10], and the smooth ones are alsoLegendrianvarieties, see [27] and [23].

Quadro-quadric Cremona transformations can be consideredas the simplest examples of birational maps of a pro-
jective space different from linear automorphisms. In the plane these transformations are completely classified and
together with projective automorphisms generate the groupof birational maps ofP2. In low dimension they were
studied classically by the Italian school, see for example [13] and the references therein, and soon later by Semple
[35]. These results were reconsidered recently in [28], where the classification inP3 originally outlined in [13] is
completed, see also [5]. In [15] it is proved the surprising and nice result that there are only four examples of quadro-
quadric Cremona transformations with smooth irreducible base locus. These four examples are related to the so called
Severi varieties and are linked to the four simple complex Jordan algebras of hermitian3×3 matrices with coefficients
in the complexification of the four real division algebrasR,C, H andO, see [15], [40], and also [17], [9] and Corollary
5.9 here.

The main results of the paper, collected in Theorem 4.1 and inthe related diagram, assert that the three sets described
above are in bijection and that the composition of two of these bijections is the identity map. This correspondence,
which we call “XJC-correspondence”, was conjectured in the final remarks of [31] and it is based on the following
results: every quadro–quadric Cremona transformation ofPn−1 is linearly equivalent to an involution which is the
adjoint of a rank 3 Jordan algebra of dimensionn (Theorem 3.4); every irreduciblen-dimensional varietyXn ⊂ P2n+1

which is 3–covered by twisted cubics and different from a rational normal scroll is projectively equivalent to a twisted
1
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cubic over a rank three complex Jordan algebra (Theorem 3.7). Some particular versions of theXJC-correspondence
are the following: cartesian products of varieties3–covered by twisted cubics correspond to direct product Jordan
algebras of rank three and to the so called elementary quadratic transformations (Proposition 4.3); smooth varieties
3–covered by twisted cubics, modulo projective equivalence, are in bijection with semi-simple rank three Jordan
algebras, modulo isotopy, and withsemi–specialquadro-quadric Cremona transformations, modulo linear equivalence
(Theorem 4.4).

TheXJC–correspondence is extended in Section 4.3 to cover some degenerated cases: rational normal scrolls,
Jordan algebras with a cubic norm and ‘fake’ quadro-quadricCremona transformations, respectively. Moreover, the
XJC–correspondence leads us to some new constructions and definitions. The theory of the radical and the semi–
simple part of a Jordan algebra suggested the definitions of semi–simple part, semi–simple rank and semi-simple
dimension of a quadro-quadric Cremona transformation, or of an extremal variety 3–covered by twisted cubics, pro-
viding for instance a general Structure Theorem for these maps, see Theorem 5.16. As an application we prove in
Corollary 5.9 that every homaloidal polynomialf of degree 3 defining a quadro-quadric Cremona transformation
whose ramification locus scheme is cut out byf is, modulo linear equivalence, the norm of a rank 3 semi-simple
Jordan algebra, providing a new short proof of [17, Theorem 3.10] and of [9, Theorem 2, Corollary 4].

The paper is organized as follows. In Section 1 we introduce some notation which is not standard. In Section 2 we
define precisely the objects studied giving some examples: theX-world consisting of extremal varieties3–covered
by twisted cubics; theC–world consisting of quadro-quadric Cremona transformations and theJ–world consisting
of rank three complex Jordan algebras. Moreover the naturalequivalence relations: projective equivalence, linear
equivalence, respectively isotopy are introduced as well the notion of cubic Jordan pair. In Section 3 we define the
correspondences between the three sets modulo equivalences. First from theJ–world to theX andC worlds. Then
from theC–world to theX–world. We prove the equivalence between theC andJ worlds in Theorem 3.4 while
the equivalence between theX andJ worlds is proved in Theorem 3.7. TheXJC-correspondence and its particular
forms recalled above are stated in Section 4 while Section 5 is devoted to the Structure Theorem of quadro-quadric
Cremona transformation, Theorem 5.16, and to the reinterpretation of the theory of the solvability of the radical of a
Jordan algebra in theC–world and in theX–world.

1. NOTATION

If V is a complex vector space of finite dimension and ifA ⊂ V is a subset, then〈A〉 denotes the smallest linear
subspace ofV containingA, analogous notions being defined inP(V ). The projective equivalence class ofx ∈ V \{0}
is the element[x] ∈ P(V ). LetP1, P2 be two projective subspaces inPN . WhenP1 ∩ P2 = ∅, we define theirdirect
sumasP1 ⊕ P2 = 〈P1, P2〉 ⊂ PN .

We shall consider (irreducible) algebraic varieties defined over the complex field. IfX is an irreducible algebraic
variety and ifn = dim(X), we shall writeX = Xn or simplyXn. We denote by[X ] the projective equivalence class
of an irreducible projective varietyX ⊂ PN . We shall indicate by(X)m them-times cartesian productX × · · · ×X .
We denote byTxX the embedded projective tangent space toX ⊂ PN at a smooth pointx o fX whileTX,x indicates
the abstract tangent space toX atx.

The irreducible quadric hypersurface inPr+1 is denoted byQr while v3(P1) ⊂ P3 is the twisted cubic curve.

2. THE OBJECTS

2.1. The X-world: varieties Xn(3, 3). An irreducible projective varietyX = Xn ⊂ PN is said to be3-rationally
connected by cubic curves(3-RC by cubicsfor short) if for a general 3-uplet of pointsx = (xi)

3
i=1 ∈ (X)3, there

exists an irreducible rational cubic curve included inX that passes throughx1, x2 andx3.
If X ⊂ PN is 3–RC by cubics, then projectingX from a general projective tangent spaceTxX we get an irreducible

varietyY n−δ ⊂ PN−n−1, δ ≥ 0, such that through two general points there passes a line contained inY n−δ. This
immediately impliesY = Pn−δ so that:

(1) dim〈X〉 ≤ 2n+ 1− δ ≤ 2n+ 1,

see also [33, Section 1.2] for more general results and formulations.
We will say that a varietyX ⊂ PN 3–RC by cubics isextremalif N = dim〈X〉 = 2n + 1. In what follows, we

shall use the notationX = Xn(3, 3) whenX ⊂ P2n+1 is an extremal variety which is 3–RC by cubics.
Thus forX = Xn(3, 3) ⊂ P2n+1 and for two general pointsx1, x2 ∈ X , we have

P2n+1 = 〈X〉 = Tx1X ⊕ Tx2X,
2



see also [33, Lemme 1.3].

Example 2.1. (1) There exists a unique 3-RC curveX1(3, 3): the twisted cubic cubic curvev3(P1) ⊂ P3;

(2) LetQ be an irreducible hyperquadric inPn. It is well-known thatQ is 3-RC by conics and sinceP1 is 3-
covered by lines(!), it immediately follows that the Segre productSeg(P1 × Q) ⊂ P2n+1 is 3-RC by cubics
so thatSeg(P1 ×Q) = Xn(3, 3). These examples produce a family ofXn(3, 3) for everyn ≥ 2;

(3) Let (Πi)3i=1 be a 3-uple of elements of the grassmannian varietyG(2, 5) = G3(C
6) ⊂ P19, Plücker embed-

ded. If theΠi’s are general, one can find a basis(ui)
6
i=1 of C6 such thatΠ1 = u1∧u2∧u3,Π2 = u4∧u5∧u6

andΠ3 = (u1 + u4) ∧ (u2 + u5) ∧ (u3 + u6). Thens 7→ (u1 + su4) ∧ (u2 + su5) ∧ (u3 + su6) ex-
tends to a morphismϕ : P1 → G3(C

6) such thatϕ(0) = Π1, ϕ(∞) = Π2 andϕ(1) = Π3. The curve
ϕ(P1) ⊂ G(2, 5) ⊂ P19 in the Plücker embedding is a twisted cubic, showing thatG(2, 5) = X9(3, 3);

(4) Then-dimensional rational normal scrollsS1...13 ⊂ P2n+1, n ≥ 1, andS1...122 ⊂ P2n+1, n ≥ 2, are
classical examples ofXn(3, 3), which we shall calldegenerated examples, see [33] for the explanation of the
terminology and also Section 3.3 below.

We shall denote byXn(3, 3) the set of irreducible non-degenerate varietiesXn ⊂ P2n+1 which are 3-RC by
twisted cubics and which are not degenerated in the above sense,i.e. that are different fromS1...13 or S1...122. The
description of the projective equivalence classes of elements inX

n(3, 3) is a natural geometrical problem already
considered in [31], see also [33] for general classificationresults of this kind. Indeed, this problem naturally appears
when trying to solve the question on which maximal rank webs are algebraic, a central problem in web geometry, see
[34].

Remind that ifX ∈ X
n(3, 3), we shall denote by[X ] its projective equivalence class.

2.2. TheC-world: Cremona transformations of bidegree(2, 2). Let f : Pn−1
99K Pn−1 be a rational map. There

exist a unique integerd ≥ 1 andfi ∈ |OPn−1(d)|, i = 1, . . . , n, with gcd(f1, . . . , fn) = 1 such that

f(x) =
[
f1(x) : · · · : fn(x)

]

for x ∈ Pn−1 outside thebase locus schemeB = V (f1, . . . , fn) ⊂ Pn−1 of f . By definition, thedegreeof f
is deg(f) = d. We will denote byF : Cn → Cn the homogeneous affine polynomial map defined byF (x) =
(f1(x), . . . , fn(x)) for x ∈ Cn. Note that the projectivization ofF is of course the rational mapf and thatF depends
onf only up to multiplication by a nonzero constant.

A rational mapf : Pn−1
99K Pn−1 is birational (or is aCremona transformation) if it admits a rational inverse

f−1 : Pn−1
99K Pn−1. In this case, one defines thebidegreeof f asbideg(f) = (deg f, deg f−1). In this paper we

will mainly considerquadro-quadricCremona transformations, that is Cremona transformationsof bidegree(2, 2).
The set of such birational maps ofPn−1 will be indicated byBir2,2(P

n−1).

Example 2.2. (1) Thestandard involutionof Pn−1 is the birational map

[x1 : x2 : . . . : xn] 7−→
[
x2x3 . . . xn : x1x3 . . . xn : . . . : x1x2 . . . xn−1

]
.

It has bidegree(n − 1, n − 1) and it is aninvolution, that isf = f−1 or equivalentlyf ◦ f is equal to the
identity ofPn−1 as a rational map;

(2) Assume thatx 7→ (ℓ0(x), . . . , ℓn(x)) is a linear automorphism ofCn. Then for any nonzero linear form
ℓ : Cn → C, the mapx 7→ [ℓ(x)ℓ0(x) : · · · : ℓ(x)ℓn(x)] is a birational map. With the previous definitions
it is a birational map of bidegree(1, 1) but we shall consider such a map as afake quadro-quadric Cremona
transformation, see Section 4.3;

(3) LetQn−1 ⊂ Pn be an irreducible hyperquadric. Givenp ∈ Qreg, the projection fromp induces a birational
mapπp : Q 99K Pn−1. For p, p′ ∈ Qreg with p′ 6∈ TpQ, the compositionπp′ ◦ π−1

p : Pn−1
99K Pn−1 is a

birational map of bidegree(2, 2), called anelementary quadratic transformation;

(4) LetJ be a finite dimensional power-associative algebra. Theinversionx 99K x−1 induces a birational invo-
lution j : P(J) 99K P(J). If J has rankr, see 2.3 for the definitions, thenj is of bidegree(r − 1, r − 1).
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For simplicity, we denote byV the vector spaceCn in the lines below.

Let f1, . . . , fn andg1, . . . , gn be quadratic forms onV defining the affine polynomial mapsF = (f1, . . . , fn) :
V → V , respectivelyG = (g1, . . . , gn) : V → V . Let f : Pn−1

99K Pn−1, respectivelyg : Pn−1
99K Pn−1,

be the induced rational maps. Theng = f−1 as rational maps if and only if there exist homogeneous cubicforms
N,M ∈ Sym3(V ∗) such that, for everyx, y ∈ V :

(2) G
(
F (x)

)
= N(x)x and F

(
G(y)

)
=M(y) y.

In the previous case, one easily verifies that for everyx, y ∈ V , we also have

(3) M
(
F (x)

)
= N(x)2 and N

(
G(y)

)
=M(y)2.

Two Cremona transformationsf, f̃ : Pn−1
99K Pn−1 are said to belinearly equivalent(or justequivalentfor short)

if there exist projective transformationsℓ1, ℓ2 : Pn−1 → Pn−1 such thatf̃ = ℓ1 ◦f ◦ℓ2. This is an equivalence relation
onBir2,2(P

n−1) and in the sequel we shall investigate the quotient spaceBir2,2(P
n−1)

/
linear
equivalence and its various

incarnations.

If f ∈ Bir2,2(P
n−1) we will denote by[f ] its linear equivalence class.

2.3. The J-world: Jordan algebras and Jordan pairs of degree 3.

By definition, aJordan algebrais a commutative complex algebraJ with a unitye such that theJordan identity

(4) x2(xy) = x(x2y)

holds for everyx, y ∈ J (see [20, 26]). Here we shall also assume thatJ is finite dimensional. It is well known that a
Jordan algebra is power-associative. By definition, therank rk(J) of J is the complex dimension of the (associative)
subalgebra〈x〉 of J spanned by the unitye and by a general elementx ∈ J. A general elementx ∈ J is invertible,i.e.
for x in an open nonempty subset ofJ, there exists a uniquex−1 ∈ 〈x〉 such thatxx−1 = e = x−1x.

Example 2.3. (1) LetA be a non-necessarily commutative associative algebra witha unity. Denote byA+ the
vector spaceA with the symmetrized producta · a′ = 1

2 (aa
′ + a′a). ThenA+ is a Jordan algebra. Note that

A+ = A if A is commutative.

(2) Let q : W → C be a quadratic form on the vector spaceW . For (λ,w), (λ′, w′) ∈ C ⊕ W , the product
(λ,w) ∗ (λ′, w′) = (λλ′ − q(w,w′), λw′ + λ′w) induces a structure of rank 2 Jordan algebra onC⊕W with
unity e = (1, 0).

(3) LetA be the complexification of one of the four Hurwitz’s algebrasR,C,H or O and denote byHerm3(A)
the algebra of Hermitian3× 3 matrices with coefficients inA:

Herm3(A) =

{(
r1 x3 x2
x3 r2 x1
x2 x1 r3

) ∣∣∣ x1, x2, x3 ∈ A
r1, r2, r3 ∈ C

}
.

Then the symmetrized productM •N = 1
2 (MN +NM) induces onHerm3(A) a structure of rank 3 Jordan

algebra.

A Jordan algebra of rank 1 is isomorphic toC (with the standard multiplicative product). It is a classical result that
any rank 2 Jordan algebra is isomorphic to an algebra as in Example 2.3.(2). In this paper, we will mainly consider
Jordan algebras of rank 3. These are the simplest Jordan algebras which have not been yet classified in arbitrary
dimension.

Let J be a rank 3 Jordan algebra. The general theory specializes inthis case and ensures the existence of a linear
form T : J → C (thegeneric trace), of a quadratic formS ∈ Sym2(J∗) and of a cubic formN ∈ Sym3(J∗) (the
generic norm) such that

(5) x3 − T (x)x2 + S(x)x−N(x)e = 0

for everyx ∈ J. Moreover,x is invertible inJ if and only ifN(x) 6= 0 and in this casex−1 = N(x)
−1
x#, wherex#

stands for theadjointof x defined byx# = x2 − T (x)x+ S(x)e. The adjoint satisfies the identity:
(
x#

)#
= N(x)x.

Example 2.4. (1) The algebraM3(C) of 3 × 3 matrices with complex entries is associative. ThenM3(C)
+ is a

rank 3 Jordan algebra. IfM ∈ M3(C), the generic trace ofM is the usual trace, the norm is the determinant
of M and the adjoint is the classical one, that is the transpose ofthe cofactor matrix ofM .
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(2) LetC ⊕W be a rank 2 Jordan algebra as defined in Example 2.3.(2). Forx = (λ,w) ∈ C ⊕W , one has a
traceT (x) = 3λ and a quadric normN(x) = λ2 + q(w) such thatx2 − T (x)x + N(x)e = 0. Then one
defines the adjoint byx# = (λ,−w). In the rank 2 case, one has(x#)# = x.

(3) LetA be as in Example 2.3.(3). SinceA is the complexification of a Hurwitz’s algebra, it comes witha non-
degenerate quadratic form‖ · ‖2 : A → C that is multiplicative. If〈·, ·〉 stands for its polarization, then the
generic norm onHerm3(A) can be computed obtaining:

(6) N

(
r1 x3 x2
x3 r2 x1
x2 x1 r3

)
= r1r2r3 + 2〈x1x2, x3〉 − r1 ‖x1‖

2 − r2 ‖x2‖
2 − r3 ‖x3‖

2

for everyx1, x2, x3 ∈ A, r1, r2, r3 ∈ C.

(4) Let J be a power-associative algebra. Also in this case one can define the notions of rank, adjointx#,
normN(x) and trace and the theory is completely analogous to the previous one. Letr = rk(J) ≥ 2. The

adjoint satisfies the identity(x#
)#

= N(x)r−2x thus its projectivization is a birational involution of bidegree
(r − 1, r − 1) of P(J), see also Example 2.2, 4.

The inverse mapx 7→ x−1 = N(x)
−1
x# onJ naturally induces a birational involutioñ : P(J × C) 99K

P(J×C) of bidegree(r, r), defined bỹ([x, r]) = [rx#, N(x)]. Such maps were classically investigated by N.
Spampinato and C. Carbonaro Marletta, see [37, 7, 8], producing examples of interesting Cremona involutions
in higher dimensional projective spaces. It is easy to see that lettingJ̃ = J × C, then for(x, r) ∈ J̃ one has
(x, r)# = (rx#, N(x)) so that the map̃ is the adjoint map of the algebrãJ . A Cremona transformation of
bidegree(r, r) will be calledof Spampinato typeif it is linearly equivalent to the adjoint of a direct product
J × C whereJ is a power-associative algebra of rankr.

The previous construction will be used in [32] to produce some interesting Cremona involutions and to
describe differently some known examples. In Section 3.1 and in Section 3.3.1 maps of this type will naturally
appear in relation to tangential projections of twisted cubics over rank three Jordan algebras, respectively
extremal varieties3–covered by twisted cubics.

The set of complex Jordan algebras of dimensionn will be denoted byJordan
n while Jordan

n
3 will indicate

the subset formed by the elements having rank equal to 3. Herewe will focus on the description ofJordan
n
3 up to a

certain equivalence relation that we now introduce.

2.3.1. Isotopy. Let J be a Jordan algebra. By definition, thequadratic operatorassociated to an elementx ∈ J is the
endomorphismUx = 2Lx ◦Lx−Lx2 of J whereLx stands for the multiplication byx in J. If u ∈ J is invertible, one
defines theu-isotopeJ(u) of J as the algebra structure onJ induced by the product•(u) defined by

x •(u) y =
1

2
Ux,y(u),

where as usualUx,y = Ux+y − Ux − Uy is the linearization of thequadratic representationP : V → End(V ), x 7→
P (x) = Ux of J (the name is justified by the fact thatP is a homogenous polynomial map of degree 2). Thenu−1 is
a unity for the new product•(u) and moreoverJ(u) is a Jordan algebra, theu-isotopeof J. Let us recall thatx ∈ J is
invertible if and only ifUx is invertible; moreoverx−1 = U−1

x (x) andUx−1 = U−1
x in this case.

Two Jordan algebrasJ andJ′ are calledisotopicif J′ is isomorphic to an isotopeJ(u) of J. One immediately proves
that the rank is invariant by isotopy. The normN (u)(x) and the adjointx#(u) of an elementx ∈ J(u) are expressed in
terms of the normN(x) and the adjointx# in the algebraJ in the following way, see [26, II.7.4]:

(7) N (u)(x) = N(u)N(x) and x#(u) = N(u)−1Uu#(x#).

If J is a Jordan algebra, then we shall denote by[J] its isotopy class.

Of course,isotopydefines a equivalence relation onJordan
n and hence onJordan

n
3 since the rank is isotopy-

invariant. In this paper, we are interested in the description of the quotient spaceJordan
n
3/isotopy.

The concept of ‘Jordan pair’ is a useful notion to deal with Jordan algebras up to isotopy. We introduce it in the
next section. This notion will be used later in section 3.3.2.
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2.3.2. Jordan pairs. By definition (see [24]), aJordan pair is a pairV = (V +, V −) of complex vector spaces
together with quadratic maps (forσ = ±)

Qσ : V σ → Hom(V −σ, V σ) ,

satisfying the following relations for every(x, y) ∈ V σ × V −σ:

Dσ
x,yQ

σ
x = QσxD

−σ
y,x , Dσ

Qσ
x(y),y

= Dσ
x,Q−σ

x (y)
and QσQσ

x(y)
= QσxQ

−σ
y Qσx,

whereDσ
x,y ∈ End(V σ) is defined byDσ

x,y(z) = Qσx+z(y)−Qσx(y)−Qσz (y) for everyz ∈ V σ.

Example 2.5. (1) Let J be a Jordan algebra. ThenV = (J, J) with quadratic operatorsQ±
x = Ux for every

x ∈ J, is a Jordan pair. By definition, it is theJordan pair associated toJ;

(2) Given integersp, q > 0, the pairV = (Mp,q(C),Mq,p(C)) together with the quadratic operators defined by
Qσx(y) = x · y · x (where· designates the usual matrix product) is a Jordan pair.

By definition, amorphismbetween two Jordan pairs(V +, V −) and(V
+
, V

−
) with respective associated quadratic

operatorsQσ andQ
σ
, is a pairh = (h+, h−) of linear mapshσ : V σ → V

σ
such that, for allσ = ± and every

(x, y) ∈ V σ × V −σ, one has
hσ

(
Qσx(y)

)
= Q

σ

hσ(x)

(
h−σ(y)

)
.

Isomorphismsandautomorphismsof Jordan pairs are defined in the obvious way.
An elementu ∈ V −σ is said to beinvertible if Q−σ

u is invertible (as a linear map fromV σ into V −σ). In this case,
one verifies that the product

x • x′ :=
1

2
Qσx,x′(u) =

1

2

(
Qσx+x′(u)−Qσx(u)−Qσx′(u)

)

induces onV σ a Jordan algebra structure with unit(Q−σ
u )−1(u) ∈ V σ. This Jordan algebra is noted byV σu . Then

it can be proved thatV is isomorphic to the Jordan pair associated toV σu . This gives an equivalence between Jordan
algebras up to isotopies and Jordan pairs admitting invertible elements up to isomorphisms, see [24].

3. EQUIVALENCES

In this section, we establish some equivalences between thethree mathematical worlds introduced above.

3.1. Starting from the J-world. Let J be a Jordan algebra of dimensionn and of rank 3. Following Freudenthal in
[18], one defines thetwisted cubicoverJ as the Zariski closureXJ of the image of the affine embedding

µJ : J −→ P
(
C⊕ J⊕ J⊕ C

)

x 7−→
[
1 : x : x# : N(x)

]
.

It is known thatXJ ⊂ P2n+1 belongs to the classXn(3, 3), see for example [31, Section 4.3]. We shall provide below
other proofs of this fact, see Proposition 3.3.

Let J(u) be theu-isotope ofJ relatively to an invertible elementu ∈ J. Let ℓu be the linear automorphism of
P(C⊕ J⊕ J⊕ C) = P2n+1 defined by

ℓu
(
[s : X : Y : t]

)
=

[
s : X : N(u)−1Uu#(Y ) : N(u)t

]
.

It follows from (7) that, as affine maps fromJ = J(u) toP2n+1, one hasµJ(u) = ℓu ◦µJ. Hence the projective varieties
XJ andXJ(u) are projectively equivalent. Therefore the associationJ → XJ factorizes and induces a well defined
application

Jordan
n
3
/
isotopy

−→ X
n(3, 3)/projective

equivalence[
J
]

7−→
[
XJ

]
.

Similarly, sincex#(u) = N(u)−1Uu#(x#), the linear equivalence class of the birational map#J : [x] 99K [x#] of
Pn−1 does not depend on the isotopy class ofJ. Hence we also get a well-defined map

Jordan
n
3
/
isotopy

−→ Bir2,2(P
n−1)/ linear

equivalence[
J
]

7−→
[
#J

]
.
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Remark 3.1. The tools used above to construct the ‘twisted cubics over Jordan algebras of rank three’ are the adjoint
x# and the normN(x). These notions has been introduced for every unital power-associative algebra so that one can
ask if it were possible to define ‘twisted cubics over commutative power-associative algebras of rank three with unity.’
Since a commutative power-associative algebra of rank three with unity is necessarily a Jordan algebra of the same
rank, according to [16, Corollary 13], this generalizationwould not produce new examples.

In the same vein, one could define a map associating to a rank three power-associative algebra with unity the
quadro-quadro Cremona transformation given by the linear equivalence class of its adjoint. As we shall in Theorem
3.4 below this generalization is useless since the restriction of this map to Jordan algebras of rank three will be
surjective. Moreover, by applying Theorem 3.4 to the adjoint of a commutative power-associative algebra of rank
three with unity one could deduce a new proof of [16, Corollary 13] mentioned above.

One verifies easily that∞J = [0 : 0 : 0 : 1] is a smooth point ofXJ and that the homogeneization ofµJ is the
inverse of the birational mapπ∞J

: XJ 99K Pn given by the restriction toX of the projection fromT∞J
XJ, see for

example [31, Section 4]. It is immediate to verify that0J = µJ(0) = [1 : 0 : 0 : 0] ∈ XJ is also a smooth point
and thatT0JXJ is the closure of the locus of points of the form[1 : x : 0 : 0] with x ∈ J. Thus the birational
mapψ : P(J × C) 99K P(J × C) given byψ([x0 : x]) = [x0x

# : N(x)] is a birational involution of type(3, 3)
of Spampinato type (see Example 2.3.(4)) and it is clearly the composition of the homogenization ofµJ with the
(restriction toXJ of the) linear projectionπ0J from T0JXJ, that isψ = π∞J

◦ π−1
0J

as rational maps. We shall return
on this in Section 3.3.2.

3.2. Starting from the C-world. Let f ∈ Bir2,2(P
n−1), let g ∈ Bir2,2(P

n−1) be its inverse, letF,G : Cn → Cn

be associated quadratic lifts and letN,M be the associated cubic forms, see Section 2.2.

3.2.1. From the C-world to the X-world. Let us consider the following affine embedding

µf : Cn −→ P
(
C⊕ Cn ⊕ Cn ⊕ C

)
= P2n+1(8)

x 7−→
[
1 : x : F (x) : N(x)

]
.

The Zariski-closureXf of its image is a non-degenerate irreduciblen-dimensional subvariety ofP2n+1 containing
0f = µf (0) = [1 : 0 : 0 : 0].

In order to prove thatXf is 3-covered by twisted cubics, we shall use in different ways the following crucial result
whose incarnations in the three worlds we defined till now will be the starting points of the bridges connecting these
apparently different universes.

Lemma 3.2. Let notation be as above. There exists a bilinear formBF : Cn × Cn → C such that

dNx = BF (F (x), dx),

for everyx ∈ Cn.

Proof. In coordinates, the relationG(F (x)) = N(x)x translates into

(9) gi
(
f1(x), . . . , fn(x)

)
= xiN(x) , i = 1, . . . , n.

Let I = 〈f1, . . . , fn〉 ⊂ C[x1, . . . , xn] = S = ⊕d≥0Sd and letI = ⊕d≥0Id. Let us recall that the biggest
homogeneous ideal ofS defining the schemeB = V (I) is the saturated ideal

Isat = ⊕d≥0I
sat
d = ⊕d≥0H

0
(
IB(d)

)
.

It follows from (9) that

(10) xiN(x) ∈ (I2)
2 ⊆ I4 for everyi = 1, . . . , n.

By derivation of (9) with respect toxj for j distinct fromi, we deduce thatxi(∂N/∂xj) ∈ I3 yielding

(11) x2i
∂N

∂xj
∈ I4 for everyi, j = 1, . . . , n, i 6= j.

7



By derivation of (9) with respect toxi we obtainN(x)+ xi(∂N/∂xi) ∈ I3 for everyi = 1, . . . , n. Multiplying by
xi and using (10) we deducex2i (∂N/∂xi) ∈ I4 for everyi. Combined with (11), this shows thatx2i (∂N/∂xj) ∈ I4
for everyi, j = 1, . . . , n. Then by definition

(12)
∂N

∂xi
∈ Isat2

for everyi = 1, . . . , n. SinceIsat2 = H0(IB(2)) = span{f1, . . . , fn}, the last equality being an immediate conse-
quence of the birationality off , there exist constantsbij ∈ C such that∂N/∂xi =

∑n
j=1 bijfj for everyi. Then

lettingBF (x, y) =
∑n

i,j=1 bijxiyj , we havedNx = BF (F (x), dx) for everyx ∈ Cn. �

We now provide below two different proofs thatXf ∈ X
n(3, 3). Both are interesting in our opinion: the first one

is more elementary but computational; the second one is algebro-geometric and the computations are hidden in some
elementary well known facts.

Proposition 3.3. Let notation be as above. The varietyXf belongs to the classXf ∈ X
n(3, 3): Xf in non–

degenerate inP2n+1, is 3–RC by twisted cubics and is different from a rational normal scroll.

First proof. For a, b ∈ Cn with M(b) 6= 0, γa,b : t 7−→ G(a+tb)
M(a+tb) is a well-defined rational map and it follows from

(2) and (3) that fort generic, one has

µf
(
γa,b(t)

)
=

[
1 :

G(a+ t b)

M(a+ t b)
:
F (G(a+ t b))

M(a+ t b)2
:
N(G(a+ t b))

M(a+ t b)3

]
=

[
M(a+ t b) : G(a+ t b) : a+ t b : 1

]
.

Thusµf ◦ γa,b(P1) is a twisted cubic curve passing through0f = µf
(
γa,b(∞)

)
and moreoverXf is 2-covered by

twisted cubics passing through0f : for (p, p′) ∈ (Xf )
2 general, there exists a twisted cubic included inXf and

containing the pointsp, p′ and0f .
Now letx⋆ ∈ Cn be such thatN(x⋆) 6= 0, let τx⋆

be the translation byx⋆ in Cn and consider the linear automor-
phism ofP2n+1 defined by

ℓx⋆
(ω) =

[
s : x+ s x⋆ : y + dFx⋆

(x) + sF (x⋆) : t+BF (y, x⋆) + dNx⋆
(x) + sN(x⋆)

]

for ω = [s : x : y : t] ∈ P(C⊕Cn ⊕ Cn ⊕C) = P2n+1, whereBF stands for the bilinear form given by Lemma 3.2.
One verifies immediately that

ℓx⋆
◦ µf = µf ◦ τx⋆

.

This shows that the pair(Xf , µf (x⋆)) is projectively equivalent to(Xf , 0f ) henceXf is also 2-covered by twisted
cubics passing throughµf (x⋆). Since this holds for anyx⋆ ∈ Cn such thatN(x⋆) 6= 0, this implies thatXf =
Xn(3, 3). The varietyXf is not a rational normal scroll since the linear system of quadrics defining the so called
second fundamental form at a general point has no fixed component since it is naturally identified with the linear
system definingf , see [31, Section 5] for definitions and details. �

Second proof of Proposition 3.3.Let notation be as above. ConsiderCn as the hyperplanePn \ V (x0) so that[x0 :
x1 . . . : xn] are projective coordinates onPn andµf : Pn 99K Xf is a rational map defined onCn. Sincef is not
fake we can supposen ≥ 3. Consider three general pointsp = (p1, p2, p3) ∈ (Pn)3 and letΠp ⊂ Pn be their
linear span. We claim that the lineLp = Πp ∩ V (x0) determines a planeΠ′

p cutting the base locus scheme off in
length three subschemeP spanningΠ′

p. IndeedDp = f(Lp) ⊂ Pn−1 is a conic cutting the base locus scheme of
g in length three subschemeP ′ spanning a planeΠp becauseg(Dp) = Lp. Then takingΠ′

p = g(Πp) the claim is
proved. The length six scheme{p1, p2, p3,P} spans the 3-dimensional space〈Πp,Π′

p〉 so that it determines a unique
twisted cubicCp ⊂ Pn−1 containing it. By Lemma 3.2 the birational mapµf : Pn 99K Xf is given by a linear
system of cubic hypersurfaces having points of multiplicity at least 2 along its base locus schemeV (x0, N(x)) ⊂ Pn.
Thenµf (Cp) ⊂ Xf is a twisted cubic passing through the three general pointsµf (pi), i = 1, 2, 3. This shows that
Xf = Xn(3, 3) while to verify thatXf is not a rational normal scroll one can argue as in the end of the previous
proof. �

One immediately verifies that the projective equivalence class ofXf does not depend onf but only on its linear
equivalence class. Hence there exists a well-defined map

Bir2,2(P
n−1)/ linear

equivalence

−→ X
n(3, 3)/projective

equivalence[
f
]

7−→
[
Xf

]
.
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3.2.2. From the C-world to the J-world. Let us now explain how to associate in a direct and algebraic way a rank
3 Jordan algebra tof ∈ Bir2,2(P

n−1). Assume thatPn−1 = P(V ) for an-dimensional vector spaceV . On the open
set defined byN(x) 6= 0 we define

jf (x) =
F (x)

N(x)
.

Thenjf : V 99K V is a birational map which is homogeneous of degree−1. Following [25], we say that the map
jf : V 99K V is aninversionand that the elementsx ∈ V with N(x) 6= 0 areinvertible. Forx ∈ V invertible, one
sets

Pf (x) = −d(jf )
−1
x .

We defined in this way a rational mapPf : V 99K End(V ) which is homogeneous of degree 2. Similarly one defines
jg : V 99K V andPg : V 99K End(V ).

Theorem 3.4. Let notation be as above. For every linear equivalence class[f ], f ∈ Bir2,2(P
n−1), there exists a

Jordan algebraJf of rank 3 such that[#Jf ] = [f ].
In particular every quadro-quadric Cremona transformation is linearly equivalent to an involution which is the

adjoint of a rank 3 Jordan algebra.

Proof. ReplacingF by Pf (e) ◦ F if necessary, we can assume that there exists an invertible elemente ∈ V such that
Pf (e) = IdV . Euler’s Formula and the homogeneity ofjf imply Pf (x)(jf (x)) = x for every invertiblex so that,
without loss of generality, we can also assumejf (e) = e. Similarly, one setsjg(y) = M(y)−1G(y) for y such that
M(y) 6= 0. Taking the exterior derivative of the relationjg ◦ jf (x) = x, we deducePf (x) = −d(jg)jf (x) for any
invertiblex. The differentialsdGy anddMy are homogeneous of degree 1, respectively of degree 2, iny. Hence the
substitutiony = jf (x) = N(x)−1F (x) in

d(jg)y =M(y)−1dGy −M(y)−2G(y)dMy

yields

Pf (x) = − dGF (x) + xN(x)
−1
dMF (x) (by (2) and(3))

= − dGF (x) + xN(x)
−1
BG

(
G(F (x)), dx

)
(by Lemma 3.2)

= − dGF (x) + xBG
(
x, dx).

Thus the rational mapPf : V 99K End(V ) extends to a polynomial quadratic affine morphismPf : V → End(V ).
Therefore

Pf (x, y) = Pf (x+ y)− Pf (x)− Pf (y) ∈ End(V )

is bilinear inx andy and the results of [25] (in particular Theorem 4.4 and Remark4.5 therein) assure that the product
•f onV defined by

x •f y =
1

2
Pf (x, y)(e)

satisfies the Jordan identity (4), admitse as a unital element and induces onV a structure of Jordan algebra noted by
Jf . For ax ∈ V invertible element, the inverse for this product is given byx−1 = jf (x) hence the adjoint ofx is
x# = F (x), yieldingrk(Jf) = 3, see Example 2.2.(4). �

It can be verified that the isotopy equivalence class ofJf depends only on the linear equivalence class off hence
one obtains a well-defined map

Bir2,2(P
n−1)/ linear

equivalence

−→ Jordan
n
3
/
isotopy

[
f
]

7−→
[
Jf

]
.

Remark 3.5. In the previous proof we choose a pointe such thatPf (e) = IdV , which is not natural from an intrinsic
point of view. More generally one can consider the source space and the target space off as distinctn-dimensional
projective spaces associated to two vector spacesVF andVG of dimensionn. We can considerf as a birational map
f : P(VF ) 99K P(VG) with inverseg : P(VG) 99K P(VF ). Reasoning as in the proof of Theorem 3.4, one proves
that−d(jf )−1

x (resp. −d(jg)−1
y ) depends quadratically onx ∈ VF (resp. ony ∈ VG), defining a quadratic map

Pf : VF → End(VG, VF ) (resp. Pg : VG → End(VF , VG)). Then(VF , VG) together with the pair of quadratic
operators(Pf , Pg) is a Jordan pair.
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3.3. Starting from the X-world. In this section, we describe how to associate to aX ∈ X
n(3, 3) an equivalence

class of quadro-quadric Cremona transformations ofPn−1 and also how to produce directly (and not through the
previous construction!) a rank 3 Jordan algebraJ of dimensionn, defined modulo isotopy, such thatX is projectively
equivalent toXJ.

Let X ⊂ P2n+1 be an element ofXn(3, 3). Let x ∈ Xreg be a general point such thatX is 2-RC by a family
Σx ⊂ Hilb3t+1(X, x) of twisted cubics included inX and passing throughx. Denote byπx : X 99K Pn the
restriction toX of the tangential projection with centerTxX ⊂ P2n+1. It is known thatπx is birational, see [33, 31].
Let βx : X̃ → X be the blow-up ofX atx and letEx = β−1

x (x) be the associated exceptional divisor. LetϕX,x be
the restriction toEx of the lift of πx to X̃:

(13) ϕX,x = (πx ◦ βx)
∣∣
Ex

: Ex 99K Pn.

In [31, Section 5], we proved that:

(a) ϕX,x is birational onto its image that is a hyperplaneHx ⊂ Pn;
(b) ϕX,x is induced by the second fundamental form|IIX,x| ⊂ |OEx

(2)|;
(c) as a scheme, the base locus scheme ofϕX,x coincides with the Hilbert scheme of lines passing throughx and

contained inX ;
(d) (ϕX,x)

−1 : Hx 99K Ex is also induced by a linear system of hyperquadrics inHx.
(e) ϕX,x is a fake quadro-quadric transformation if an only ifX ⊂ P2n+1 is a rational normal scroll.

From (c) and (d) one could deduce another proof of Lemma 3.2, seeloc. cit., or equivalently one can say that (d) is
the incarnation in theX-world of the result proved in Lemma 3.2, see [31, Theorem 5.2] for details.

Remark 3.6. The mapv 7→ ṽ considered in the proof of Theorem 3.7 below is an alternative geometrical definition
of (a quadratic lift of)ϕX,x which is more intrinsic than the preceding one since it does not depend on the embedding
of X in the projective spaceP2n+1.

3.3.1. From the X-world to the C-world. From now on we shall assume thatX ∈ X
n(3, 3) so thatX is not a

rational normal scroll. The results listed above imply that, after identifyingEx andHx with Pn−1, the mapϕX,x is a
Cremona transformation of bidegree(2, 2) of Pn−1. Moreover, in [31, Theorem 5.2] it is proved thatX is projectively
equivalent to the varietyXϕX,x

associated toϕX,x via the construction in section 3.2. We leave to the reader toverify
that the linear equivalence class ofϕX,x does not depend onx but only on the projective equivalence class ofX .
Therefore we have a well-defined application

X
n(3, 3)/projective

equivalence

−→ Bir2,2(P
n−1)/ linear

equivalence[
X
]

7−→
[
ϕX,x

]
.

The results of the previous sections show that this map is a bijection.

3.3.2. From theX-world to the J-world. The results of [31, Section 5] recalled above and Theorem 3.4immediately
imply that anyX ∈ X

n(3, 3) is of Jordan type, that is there exists a rank three Jordan algebraJ such thatX is
projectively equivalent toXJ.

There is also a direct way to recover geometrically the underlying structure of Jordan algebra fromX . Since there
is no real difficulty here, we will leave to the interested readers to fill up some details of the proof of the next result,
which was conjectured firstly in [31, Section 5].

Theorem 3.7. If X = Xn(3, 3) ⊂ P2n+1 is not a rational normal scroll, then there exists a rank three Jordan algebra
JX such thatX is projectively equivalent toXJX .

Proof. Let x+, x− denote two general points ofXreg such thatX is 1-RC by the familyΣx+x− of twisted cubics
included inX passing throughx+ andx−. One hasP2n+1 = Tx+X ⊕ Tx−X and forσ = ±, let πσ = πxσ be the
restriction toX of the tangential projection with centerTxσX onto the projective tangent spaceTx−σX at the other
point. This map is defined atx−σ and by definitionx−σ = πσ(x−σ).

DefineV σ as the complex tangent spaceTX,xσ . For v ∈ V σ generic, there exists a unique twisted cubic curve
Cv included inX , joining xσ to x−σ and having[v] as tangent direction atxσ. More precisely, there exists a unique
isomorphismαv : P1 → Cv such thatαv(0 : 1) = xσ, αv(1 : 0) = x−σ anddαv(s : 1)/ds|s=0 = v. The map

v 7→ exp(v) := αv(1 : 1)
10



can be extended to the wholeV σ since, after some natural identifications, it is nothing butthe affine embeddingµψσ

defined in (8), whereψσ is the inverse of the quadro-quadratic birational mapϕX,x−σ associated toπ−σ through
formula (13) above. We thus defined geometrically anexponential map

exp : V σ −→ X

whose image is denoted byXσ. Being an affine embedding, its differential

d expv : TV σ ,v → TX,exp(v)

is an isomorphism for everyv ∈ V σ. Using the linear structure ofV σ, one can (canonically) identifyTV σ ,v with V σ

itself obtaining a linear isomorphismδσv : V σ → TX,exp(v). Forv general,exp(v) ∈ X−σ so that there exists a unique
ṽ ∈ V −σ such thatexp(v) = exp(ṽ) (moreover̃v = dαv(1 : t)/dt|t=0). Thus we can define a linear isomorphism by
setting

Qσv = −
(
δσv

)−1
◦ δ−σṽ : V −σ −→ V σ.

The linear mapQσv depends quadratically onv ∈ V σ and this association extends to the wholeV σ yielding a
quadratic polynomial map

Qσ : V σ → Hom(V −σ, V σ).

The quadratic mapsQ± thus defined induce a structure of Jordan pair on(V +, V −) admitting invertible elements.
For u ∈ V − invertible, the Jordan algebraV +

u has rank 3 and the initially considered varietyX is projectively
equivalent toXV +

u
. �

Remark 3.8. Let X ∈ X
n(3, 3). The previous proof shows that the Jordan avatar of the geometrical data formed

by X together with two general pointsx+, x− on it is the Jordan pair(V +, V −). Similarly, the geometrical object
corresponding precisely to a rank three Jordan algebraJ is not reallyXJ but rather the geometrical data formed by
XJ together with three points on it. These two remarks lead to the following heuristic question: what are the Jordan-
theoretic counterparts of the data ofX alone, or of a pair(X, x) wherex is a general point onX? Some of the notions
introduced in [2] seem to be relevant to study this question.

We shall now briefly outline another geometrical way of recovering the algebraJX naturally associated toX ∈
X
n(3, 3). Let notation be as in Section 3.3, letx1, x2 ∈ X be general points and letψ : Pn 99K Pn be the birational

mapπx1 ◦ π
−1
x2

, see also end of Section 3.1. From the results in [31, Section5] recalled above, it is not difficult to see
that the birational mapψ, which is clearly of bidegree(3, 3), is of Spampinato type. Indeed, arguing as in the proof of
Theorem 3.4 and based on that analysis, one proves thatψ is linearly equivalent to the involution of a rank 4 Jordan
algebraJ̃X , which is clearly isomorphic toJX × C. We leave to the reader the details of the proof of this claim.In
conclusion from a geometrical point of view the passage fromtheX-world to theC and theJ worlds is completely
determined by the general tangential projections.
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4. STATEMENT OF THE MAIN THEOREM AND OF A GENERAL PRINCIPLE

The constructions of the previous sections are all represented in the diagram below, which we will call the ‘XJC-
diagram’:

X
n(3, 3)/projective

equivalence

[X] 7−→ [V +
X,u

]
[X] 7−→ [V +

X,u

]
[X] 7−→ [V +

X,u

]
[X] 7−→ [V +

X,u

]
[X] 7−→ [V +

X,u

]
[X] 7−→ [V +

X,u

]

[X
] 7−→

[ϕ
X
,x ]

[X
] 7−→

[ϕ
X
,x ]

[X
] 7−→

[ϕ
X
,x ]

[X
] 7−→

[ϕ
X
,x ]

[X
] 7−→

[ϕ
X
,x ]

[X
] 7−→

[ϕ
X
,x ]

[X
f ]

7−→

[f ]

[X
f ]

7−→

[f ]

[X
f ]

7−→

[f ]

[X
f ]

7−→

[f ]

[X
f ]

7−→

[f ]

[X
f ]

7−→

[f ]

Jordan
n
3
/
isotopy[XJ]

7−→

[J][XJ]

7−→

[J][XJ]

7−→

[J][XJ]

7−→

[J][XJ]

7−→

[J][XJ]

7−→

[J]

Bir2,2(P
n−1)/ linear

equivalence

[f
] 7−
→

[J
f
]

[f
] 7−
→

[J
f
]

[f
] 7−
→

[J
f
]

[f
] 7−
→

[J
f
]

[f
] 7−
→

[J
f
]

[f
] 7−
→

[J
f
][#
J
]

7−→ [J
]

[#
J
]

7−→ [J
]

[#
J
]

7−→ [J
]

[#
J
]

7−→ [J
]

[#
J
]

7−→ [J
]

[#
J
]

7−→ [J
]

Then the main results of this paper can be formulated in concise terms by making reference to this diagram:

Theorem 4.1. The above diagram is commutative, all maps appearing in it are bijections and the composition of two
of these maps, when possible, is the identity.

Once the maps in theXJC-diagram have been introduced, the proof of the preceding theorem reduces to straight-
forward verifications left to the reader.

Theorem 4.1 says in some sense that (up to certain well-understood equivalence relations) there are correspondences
between the objects of these three distinct worlds. TheX-world is a world of particular projective algebraic varieties
sharing deep geometrical properties and it can be considered as a ‘geometrical world’. TheJ-world is a world of
particular algebras so that it is an ‘algebraic world’ whilewe consider theC-world of another nature, which we will
call ‘cremonian’.

A consequence of the preceding main theorem is the followinggeneral principle:

XJC-Principle. Any notion, construction or result concerning one of theX , J or C-world admits a counterpart in
the other two worlds.

Remark 4.2. TheXJC–Principle is not a mathematical result in the classical sense and it has to be considered as a
kind of meta-theorem. Theorem 4.1 and theXJC-Principle are manifestations of a deeper phenomena that could be
formulated in terms of equivalences of categories. We plan to come back to this point of view in the near future and we
will not deal with this here, although it is very interestingand natural. In the sequel we prefer to present some different
applications regarding classification results for particular classes of objects in the different worlds. Other applications
will be obtained in [32].

Maybe the better way to realize that such a principle holds consists in presenting some archetypal examples.

4.1. A first occurence of theXJC-principle. Assume thatX, J andf are corresponding objects.

Proposition 4.3. The following assertions are equivalent:

(i) the varietyX is a cartesian product;
(ii) the algebraJ is a direct product;
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(iii) the Cremona mapf is an elementary quadratic transformation, see Example 2.2.

Moreover, the objects satisfying these properties are respectively: the Segre embeddingsSeg(P1 ×Qn−1), the direct
productsC× J′ whereJ′ is a Jordan algebra of rank 2, the elementary quadratic transformations.

Proof. Clearly (iii) implies (ii) and (i). If (i) holds and ifX = X1 ×X2 ⊂ P2n+1, then we can suppose that through
three general points ofX1 ⊂ P2n+1 there passes a line and that through three general points ofX2 ⊂ P2n+1 there
passes a conic. ThenX1 is a line andX2 is a quadric hypersurface in its linear span. ThusX is projectively equivalent
to the Segre embedding ofP1 ×Qn−1. The other implications/conclusions easily follows. �

4.2. A second occurrence of theXJC-principle. In this subsection, we relate the smoothness property in theX-
world to an algebraic one in theJ-world and to another one in theC-world. We introduce these properties.

By definition, theradicalR of a Jordan algebraJ, indicated byRad(J), is defined as the biggest solvable ideal ofJ
(see also Property 5.3 below for a characterization of the radical whenJ has rank 3). ThenJ is said to besemi-simple
if Rad(J) = 0. In this case, a classical result of the theory asserts thatJ is isomorphic to a finite direct product
J1 × · · · × Jm where theJk’s aresimpleJordan algebras, that is Jordan algebras without any non-trivial ideal.

Following [36] and [15], a Cremona transformationf : Pn−1
99K Pn−1 is calledsemi–specialif the base locus

scheme off is smooth. A Cremona transformation is said to bespecial if the base locus scheme is smooth and
irreducible. Thus special Cremona transformationsf : Pn−1

99K Pn−1 can be solved, as rational maps, by a single
blow-up along an irreducible smooth variety while semi–special Cremona transformations can be solved by blowing–
up smooth irreducible subvarieties ofPn−1, that is there are no “infinitely near base points”. In conclusion the semi–
special Cremona transformations are the simplest objects from the point of view of Hironaka’s resolutions of rational
maps.

Assume thatX, J andf are corresponding objects.

Theorem 4.4. The following assertions are equivalent:

(i) the varietyX is smooth;
(ii) the algebraJ is semi-simple;
(iii) the Cremona transformationf is semi-special.

Moreover, the classification of the objects satisfying these properties is given in the table below andf is semi–special
but not special if and only if it is an elementary quadratic transformation associated to a smooth quadric.

Semi-simple rank 3
Jordan algebra

Smooth varietyXn ⊂ P2n+1, 3-RC
by cubics, not of Castelnuovo type

Special Cremona
transformation

direct productC× J with
J rank 2 Jordan algebra

Segre embeddingSeg(P1 ×Qn−1)
with Qn−1 smooth hyperquadric

elementary
quadratic

Herm3(RC) ≃ Sym3(C)
6-dimensional Lagrangian
grassmannianLG3(C

6) ⊂ P13 [x] 99K [x#]

Herm3(CC) ≃M3(C)
9-dimensional Grassmannian
manifoldG3(C

6) ⊂ P19 [x] 99K [x#]

Herm3(HC) ≃ Alt6(C)
15-dimensional orthogonal
GrassmannianOG6(C

12) ⊂ P31 [x] 99K [x#]

Herm3(OC) 27-dimensionalE7-variety inP55 [x] 99K [x#]

Proof. Semi–special Cremona transformations are classified and they correspond to semi–simple Jordan algebras of
rank 3, see for example [31, Proposition 5.6], showing the equivalence between (ii) and (iii). It is known that the
twisted cubics associated to semi–simple Jordan algebras are smooth and they are described in the table above. We
proved the remaining implications in [31, Theorem 5.7]. �

4.3. A generalization of theXJC-equivalence covering some degenerate cases.In order to formulate our main
result we did not consider some extremal varieties 3-RC by cubics as well as quadro-quadric Cremona transformations
equivalent (as rational maps) to linear projective automorphisms. In fact, theXJC-equivalence can be extended in
order to cover these “degenerated objects” as we shall see briefly in this subsection.
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4.3.1. LetX
n
(3, 3) be the set of projective equivalence classes of extremaln-dimensional irreducible varietiesX ⊂

P2n+1 that are3-RC by twisted cubics. It is just the union ofXn(3, 3) with the projective equivalence classes of the
scrollsS1,...,1,3 (with n ≥ 1) andS1,...,1,2,2 (with n > 1).

4.3.2. By definition, anormon a Jordan algebraJ is a homogeneous formη ∈ Sym(J∗) verifying η(e) = 1 and
which decomposes as a product of powers of the irreducible components of the generic normN of J, see [3]. Then

one defines ˜Jordan

n

3 as the set ofJordan algebras with a cubic norm, which by definition is the set of pairs(J, η)
whereη is a cubic norm on the Jordan algebraJ. Since a rank 3 Jordan algebra admits a single cubic norm (thegeneric

one),Jordan
n
3 can be considered as a subset of̃Jordan

n

3 . A Jordan algebra with a cubic norm is necessarily of
rank less than or equal to3 and if the rank is less than 3, then it is isomorphic to one of the following Jordan algebras:

• the rank 1 Jordan algebraC, denoted byJ10;

• the rank 2 Jordan algebra of Example 2.3 (2) withq = 0, denoted byJn0 ;

• the rank 2 Jordan algebra of Example 2.3 (2) withq of rank 1, denoted byJn1 .

The notationJn0 is consistent since the ‘Jordan algebra’C can be described as in Example 2.3 (2) by takingW of
dimension 0.

For anyn ≥ 1, the algebraJn0 admits a unique cubic norm, namelyη(λ,w) = λ3. For anyn > 1, the algebraJn1
admits a 1-dimensional family of cubic norms. Indeed, the generic norm onJn1 is given byN(λ,w) = λ2 + q(w).
Sinceq has rank 1, there exits a linear formℓ ∈ W ∗ such thatq = ℓ2 so thatN = ℓ+ ℓ− with ℓ±(λ,w) = λ ± iℓ(w)
for (λ,w) ∈ Jn1 . Then for every nonzero(a, b) ∈ C2, ηa,b = (aℓ+ + bℓ−)ℓ+ℓ− is a cubic norm onJn1 .

One verifies that modulo isomorphism,̃Jordan

n

3 \ Jordan
n
3 consists of the two pairs(Jn0 , λ

3) and(Jn1 , ηa,b)
whenn > 1, and reduces to(J10, λ

3) whenn = 1. Let us defineJordan
n

3 as the set of pairs(J, η) verifying the
compatibility relation in Lemma 3.2, that is the partial derivatives ofη belong to the ideal generated by the quadratic
forms defining the adjoint map. Thus whenn > 1, Jordan

n

3 is the union ofJordan
n
3 with the isomorphism

classes of(Jn0 , λ
3) and of(Jn1 , η1,0). We shall indicate bỹJn1 the Jordan algebraJn1 with cubic normη1,0.

4.3.3. Finally, let us return to the corresponding Cremona transformations to be considered in order to complete the
picture. Consider the set ofnormed quadro-quadratic Cremona transformationof Pn−1, that is of pairs(f, [η]) where
f = [f1 : · · · : fn] is a birational map ofPn−1 defined by quadratic formsfi and[η] = C∗η is the class of a non-trivial
cubic formη such that there exists a quadratic mapG satisfyingG

(
f1(x), . . . , fn(x)

)
= η(x)x for everyx. Clearly,

givenf ∈ Bir2,2(P
n−1), there exists a unique[η] as above such that(f, [η]) is a normed quadro-quadratic Cremona

transformation and such that(f, [η]) satisfies the condition of Lemma 3.2. ThereforeBir2,2(P
n−1) can be considered

as a subset ofBir2,2(P
n−1), which by definition it is the set of pairs(f, [η]) satisfying the compatibility relation in

Lemma 3.2. One verifies easily that if(f, [η]) ∈ Bir2,2(P
n−1) but with f not of bidegree(2, 2), then(f, [η]) is

linearly equivalent to one of the following:

• (IdPn−1, [ℓ3]) whereℓ is a nonzero linear form,n ≥ 1;

• (IdPn−1, [ℓ2ℓ′]) whereℓ andℓ′ are linearly independent linear forms,n > 1.

Then theXJC-correspondence extends: there are bijection extending the ones in theXJC-diagram such that one
has a commutative triangle of equivalences between the setsintroduced above:

X
n
(3, 3)/projective

equivalence

Jordan
n

3
/
isotopy

Bir2,2(P
n−1)/ linear

equivalence

.

For instance, let us explain how to associate an extremal variety 3-RC by cubics inP2n+1 to a degenerate element
(f, [η]) of Bir2,2(P

n−1). Let F be a quadratic affine lift off . Then as in section 3.2.1, one definesXf,[η] as the
Zariski closure of the image of the affine mapx 7→ [1 : x : F (x) : η(x)]. This variety belongs toX

n
(3, 3): we let

the reader verify that the proofs of section 3.2.1 apply if one takes forG the unique affine quadratic map such that
G(F (x)) = η(x)x for everyx.

By the way let us remark that for(α, β) ∈ C2 such thatαβ 6= 0, settingℓα,β = αℓ+ + βℓ−, one associates a
non-degeneraten-dimensional variety inP2n+1 to the pair(Jn1 , ηα,β) by defining it as the closure of the image of the
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affine map(λ,w) 7→ [1 : λ : w : ℓα,β(λ,w)λ : −ℓα,β(λ,w)w : ℓa,b(λ,w)(λ
2 + q(w))]. However, this variety is not

3-covered by twisted cubics since the compatibility relation in Lemma 3.2 is not satisfied byηα,β .

In fact, this generalization of theXJC-correspondence does not present a very deep interest sinceit covers only
two new cases whenn > 1, namely the ones described in the following two tryptics:

[
S1,...,1,3

] [
Jn0

]

[
(Id, [ℓ3])

]

[
S1,...,1,2,2

] [
J̃n1

]

[(
Id, [ℓ2ℓ′]

)]
.

In dimensionn = 1, one has

X
1
(3, 3)/proj. =

[
v3(P

1)
]
, Jordan

1

3/isot. =
[
C
]

and Bir2,2(P
0)/lin. =

[
(Id, x3)

]

hence the generalizedXJC-equivalence reduces in this case to the following trivial tryptic

(14)
[
v3(P

1)
] [

C
]

[
(IdP0 , x3)

]
.

Despite the very small number of new cases covered by the generalizedXJC-correspondence, we inserted this
extension into the discussion in order to show that the elementary case (14) can be included in the whole picture.
Moreover, the notion ofnormed quadro-quadric birational mapintroduced in 4.3.3 will be used also to describe the
general structure of Cremona transformations of bidegree(2, 2) in the next section.

5. FURTHER APPLICATIONS

The theory of Jordan algebras is now well established. We recall some general results on the structure of Jordan
algebras, focusing especially on rank 3 algebras.

5.1. Some results on the structure of Jordan algebras.Let J be a fixed Jordan algebra of arbitrary rankr ≥ 1.
For any subsetA ⊂ J, one defines inductively the subsetsA(n) ⊂ J for any integern > 0 by settingA(1) = A and
A(k+1) = (A(k))2 for everyk > 0. If A is a subalgebra ofJ, theA(n) form a decreasing sequence of subalgebras
A = A(1) ⊃ A(2) ⊃ A(3) ⊃ · · · . By definition,A is solvableif A(t) = 0 for a positive integert.

If I1, I2 are two solvable ideals ofJ, it can be verified thatI1 + I2 is solvable too. SinceJ is finite dimensional,
the union of all the solvable ideals ofJ is a solvable ideal ofJ, which is maximal for inclusion and which is called the
radical of J and denoted byRad(J), or just byR if there is no risk of confusion.

The notion of solvability introduced above is not the most useful when working with Jordan algebras. Indeed, it
can occur that for an idealI ⊂ J, the subsetsI(k) are not ideals for somek > 2. Hence it is not possible to construct
inductively a solvable idealI from its derived seriesI = I(1) ⊃ I(2) ⊃ · · · ⊃ I(r−1) ⊃ I(r) = 0. To bypass this
technical difficulty, Penico introduced in [29] the nowadays calledPenico’s seriesof an idealI as the familyI [k],
k ≥ 0 defined inductively by

I [0] = J, I [1] = I and I [k+1] =
(
I [k]

)2
+
(
I [k]

)2
J for k ≥ 1.

The interest of this notion is twofold. First of all, it can beproved thatI is solvable if and only if it isPenico-
solvable, that is ifI [s] = 0 for a positive integers. Moreover,I [k] is an ideal for anyk ≥ 1, see [29].

The notions introduced by Penico are more relevant than the classical ones to describe the structure of Jordan
algebras. SinceR is solvable, there exists a positive integert ≥ 1 such thatR[t] = 0 andR[t−1] 6= 0. Since theR[k]’s
are ideals inJ, the quotientsJ[k] = J/R[k] are Jordan algebras for everyk ≥ 1, yielding, forℓ = 2, . . . , t, the exact
sequences:

(15) 0 → R[ℓ−1]/R[ℓ] −→ J[ℓ] −→ J[ℓ−1] → 0.

Remark that the left hand side in these exact sequences is an ideal with trivial product because(R[ℓ−1]/R[ℓ])2 = 0
for everyℓ. In the terminology of Jordan algebras, one says thatJ[ℓ] is anull extensionof J[ℓ−1]. We can now recall
the following important result:
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Theorem 5.1(Albert [1], Penico [29]).

(1) The quotientJss = J[1] = J/R is semi-simple, that isRad(Jss) = 0 or equivalentlyJss is isomorphic to a
direct product of simple Jordan algebras.

(2) The exact sequence of (non-unital) Jordan algebras0 → R→ J → Jss → 0 splits: there exists an embedding
of Jordan algebrasσ : Jss →֒ J such thatJ = σ(Jss) ⋊ R. Moreover the embeddingσ is unique up to
composition to the left by an automorphism ofJ.

(3) The Jordan algebraJ is obtained from its semi-simple partJss by the series of successive null radical exten-
sions (15).

Simple Jordan algebras are completely classified so that thefirst part of the previous result ensures that the semi-
simple parts of an arbitrary Jordan algebra can be completely described. The second part says that the structure of a
general Jordan algebraJ is given by its radicalR and by the structure ofJss-module on it. Finally, it comes from (3)
that the Jordan product onR as well as its structure ofJss-module can be constructed inductively starting fromJss, by
successive extensions of a very simple kind.

Example 5.2. Being associative and commutative, the algebraA = C[ε]/(ε3) can also be viewed as a 3-dimensional

Jordan algebra. One hasRA = Rad(A) = 〈ǫ, ǫ2〉, R[2]
A = 〈ǫ2〉 andR[3]

A = 0. Thus the semi-simple partAss =
A/Rad(A) has rank 1 and is isomorphic toC.

In the next section, using theXJC-correspondence, we shall state a version of Theorem 5.1 forquadro-quadric
Cremona transformations and for twisted cubics over Jordanalgebras. We will use the following facts showing that
the radical can be determined from the generic norm.

Proposition 5.3. ( [38, 0.15 and 9.10])For any Jordan algebraJ, one has

Rad(J) =
{
x ∈ J |N(x+ J) = N(x)

}
.

We finish these reminders on Jordan algebras by stating some remarks on the rank 3 case. Assume in what follows
thatJ has rank 3 and forx, y ∈ J, set

T (x, y) = T (xy) and x#y = (x+ y)# − x# − y#.

By Proposition 5.3 (see also [30]), for a rank 3 Jordan algebra one has

(16) Rad(J) =
{
x ∈ J |N(x) = T (x, J) = T (x#, J) = 0

}
=

{
x ∈ J | d2Nx = 0

}
.

Moreover, it can be verified that forx ∈ J, the quadratic operatorUx = 2L2
x − Lx2 is given by

(17) Ux(y) = T (x, y)x− x##y.

It follows from (16) thatT (r, J) = 0 for everyr ∈ R. Furthermore, one hasx#y = d#x(y) = d#y(x) for every
x, y ∈ J. SinceI [2] = UI(J) for any idealI, the Penico series can also be defined inductively by

R[k+1] = d#
(
R[k]

)
= J#R[k] =

〈
d#x(R

[k])
∣∣x ∈ J

〉
.

Finally, if u ∈ J is invertible, then the quadratic operatorU (u)
x in the isotopeJ(u) is given byU (u)

x = UxUu for
every elementx. Using this, one verifies easily that the Penico series depends only on the isotopy class ofJ.

5.2. The general structure of quadro-quadric Cremona transformations. A consequence of the equivalence be-
tweenBir2,2(P

n−1)/lin.
equiv.

andJordan
n

3 /isot. is a general structure theorem for quadro-quadric Cremona trans-
formations, obtained by translating in theC-world the structure results for Jordan algebras presentedabove.

The assertions below can be verified without difficulty and their proofs are left to the reader.

5.2.1. The radical. Let f be a quadro-quadric Cremona transformation ofPn−1 = P(V ) with baselocus scheme
Bf ⊂ Pn−1. The secant schemeSec(Bf ) of Bf is the cubic hypersurfaceV (N(x)) ⊂ Pn−1, whereN(x) is the cubic
form appearing in (2). This scheme can be also considered as the ramification scheme off , the name being justified
by the fact that the locus of points where the differential ofthe birational mapf is not of maximal rank is exactly
V (N(x)), see also [10, Section 1.3]. Theradical of f is the setRf of points of multiplicity 3 ofSec(Bf ) and it has
a natural scheme structure given byRf = V (d2Nx) ⊂ Pn−1. The support ofRf , if not empty, is clearly a linear
subspace ofPn−1, contained inSec(Bf ), and it is thevertex of the coneSec(Bf ) = V (N(x)) ⊂ Pn−1. We remark
thatRf can have any dimension between−1 andn − 2 (with the usual convention that the empty set is a subspace
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of dimension−1). The case whenRf is empty corresponds to the semi-simple case and, at the opposite side,Rf is a
hyperplane if and only ifN(x) = L(x)3 with L(x) linear form.

5.2.2. The JC-correspondence in action.Let g be the quadratic inverse off . LetF,G be some quadratic lifts off ,
respectivelyg and letRF andRG be the affine cones overRf andRg respectively. According to theXJC-equivalence
(Theorem 4.1), there exist two linear mapsL1, L2 ∈ GL(V ) such thatF = L−1

1 ◦ #J ◦ L2 where#J denotes the
adjoint map of a rank 3 Jordan algebraJ. ThenG = L−1

2 ◦ #J ◦ L1 andRad(J) = L2(RF ) = L1(RG). It is well
known that(x+ r)# − x# ∈ Rad(J) for everyx ∈ J and everyr ∈ Rad(J), see [38] for instance. In this setting, this
gives us the following result.

Lemma 5.4. If x ∈ V and if r ∈ RF , thenF (x+ r)− F (x) ∈ RG.

From the previous Lemma, it follows thatF andG pass to the quotient byRF , respectively byRG, inducing
quadratic affine morphismsF : V/RF → V/RG, respectivelyG : V/RG → V/RF . To understand what these maps
are, letJss = J/Rad(J) be the semi-simple part ofJ, considerL1 andL2 as isomorphisms betweenV andJ inducing
quotient mapsL1 : V/RG ≃ Jss andL2 : V/RF ≃ Jss. The following diagram, in which all the vertical arrows are
the natural quotient maps, is commutative:

(18) V
L1

F

J
#J

J
L−1

2

V

V/RF
L1

F

Jss
#Jss

Jss
L

−1
2

V/RG.

5.2.3. The semi-simple part. Of course,F andG are quadratic maps, each one being the inverse of the other in
the sense used till now. Indeed, ifN is the cubic form such that (2) holds, it passes to the quotient and induces a
well-defined cubic formN onV/RF defined byN(x) = N(x) for x ∈ V (wherex stands for the class ofx modulo
RF ). Moreover,G(F (x)) = N(x)x for everyx ∈ V so that the pair(F , [N ]) is an element ofBir2,2(P(V/RF ))

(the pair(F , [N ]) satisfies the statement of Lemma 3.2). By definition, it is thesemi-simple partof F and it is denoted
by Fss. In practice, one identifiesFss with F , which is not a big deal since the cubic formN is always (essentially)
determined.

Example 5.5 (continuation of Example 5.2). The adjoint and the generic norm inA = C[ε]/(ε3) are given by
(a, b, c)# = (a2,−ab, b2 − ac) andN(a, b, c) = a3 if (a, b, c) stands for the coordinates of an element ofA relatively
to the basis(1, ε, ε2). The semi-simple part of#A is the quadratic mapa 7→ a2, which is a lift of the normed
quadro-quadratic map(a2, [N ]) whereN is the cubic norm onAss induced by the generic norm ofA, i.e. N(a) =
N(a, 0, 0) = a3 for everya ∈ Ass ≃ C.

We define thesemi-simple rankrss(J) of a Jordan algebraJ as the rank of its semi-simple partJss = J/Rad(J) and
thesemi–simple dimensiondimss(J) = dim(Jss). These notions are invariant up to isotopies so that we can define the
semi-simple rankrss(f) = rss(F ) of f ∈ Bir2,2(P(V )), respectively thesemi–simple dimensiondimss(f) (or of any
affine lift F ∈ Sym2(V ∗) ⊗ V of f ), as the semi-simple rank of the associated isotopy class[Jf ] of Jordan algebras,
respectively as the semi-simple dimension of[Jf ]. In this way two new invariants (relatively to linear equivalence)
of quadro-quadric Cremona transformations naturally appear. Let us see how these definitions work in the simplest
cases.

Example 5.6. Modulo linear equivalence there are exactly three equivalence classes of quadro-quadric Cremona
transformations onP2, corresponding to the three isotopy classes of cubic Jordanalgebra of dimension three. Let us
summarize theJC-correspondence and the semisimple parts of these three classes in the following table:
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Semi-simple Algebra Cremona transformation Semi-simple Semi-simple Norm
rank rss Jf f : P2

99K P2 part of Jf part of f N

1 C[ε]
(ε3) (x21,−x1x2, x

2
2 − x1x3) C x21 x31

2 C× C[ε]
(ε2) (x22, x1x2,−x1x3) C× C (x22, x1x2) x1x

2
2

3 C× C× C (x2x3, x1x3, x1x2) C× C× C (x2x3, x1x3, x1x2) x1x2x3

5.2.4. Classification of the semi-simple part.Since a semisimple Jordan algebra is a direct product of simple ones
and since the classification of all simple Jordan algebras was obtained by Jacobson, see [20], theJC-correspondence
provides the complete classification of the semisimple parts of quadro-quadric Cremona transformations, yielding the
following result.

Proposition 5.7. LetF : V → V be a lift of a normed quadro-quadric Cremona transformationf : P(V ) 99K P(V ).
Then

(1) F is semi-simple (ie.F = Fss) if and only iff is semispecial;
(2) if F is semi-simple, thenf is linearly equivalent to one of the quadro-quadric Cremonatransformations listed

in the third column of the table below.

Semi-simple Semi-simple Ambient Semi-simple part
rank rss dim. dimss spaceV F N

1 1 C λ 7−→ λ2 λ3

2 1 + dim(W ) C⊕W (λ,w) 7−→ (λ2,−λw) λ(λ2 + q(w))
2 2 C× C (ρ, λ) 7−→ (λ2, ρλ) ρλ2

3 2 + dim(W ) C× (C⊕W ) (ρ, λ, w) 7−→
(
λ2 + q(w), ρλ,−ρw

)
ρ(λ2 + q(w))

3 6 Sym3(C) M 7−→ Adj(M) det(M)
3 9 M3(C) M 7−→ Adj(M) det(M)
3 15 Alt6(C) M 7−→M# Pf(M)

3 27 Herm3(O ⊗ C) M 7−→M# cf. (6)

TABLE 1. Explicit classification of semi-simple parts of Cremona transformations of bidegree
(2, 2). In this table,q stands for a nondegenerate quadratic form on a non-trivial vector spaceW ,
Adj(M) is the usual adjoint matrix whileM# is the adjoint in the corresponding algebra;det(M)
is the usual determinant whilePf(M) is the Pfaffian of an antisymmetric matrix; the last line is ex-
pressed using the general formalism of the theory of Jordan algebras (see section 2.3 and also Table
4.2).

As an application of the previous Proposition, we deduce twoclassification results. Let us recall that a homogeneous
polynomialP ∈ C[x1, . . . , xn] is calledhomaloidalif the associated polar map

P ′ =

[
∂P

∂x1
: · · · :

∂P

∂xn

]
: Pn−1

99K Pn−1

is birational. Let notation be as in Section 5.2.1, and setBP = BP ′ = V ( ∂P∂x1
, . . . , ∂P∂xn

) ⊂ Pn−1. Assuming thatP ′

has bidegree(2, 2), we know that there exists a cubic formN such thatV (N) ⊂ Pn−1 is the secant scheme ofBP .
Let us remark that sinceP ′ is birational, the partial derivates ofP are linearly independent so thatV (P ) ⊂ Pn−1 is
not a cone. In particular ifP has degree three, then it is necessarily a reduced polynomial. We first classify reducible
homaloidal polynomials of degree three defining quadro-quadric Cremona transformations.

Corollary 5.8. LetP be a cubic homaloidal polynomial inn ≥ 3 variables such thatP ′ is a quadro-quadric Cremona
transformation. IfP is reducible, then one of the following holds:

• V (P ) = Sec(BP ) andP is linearly equivalent to the norm of the semi–simple (but not simple) rank 3 complex
Jordan algebra of the fourth line in Table 1 above;

• V (P ) 6= Sec(BP ) andV (P ) is the union of a smooth hyperquadric inPn−1 with a tangent hyperplane; in
some coordinates, one hasP (x) = x1(x

2
2 + · · ·+ x2n−1 − x1xn) andN(x) = x31.
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Proof. If P is the product of three distinct linear forms, then necessarily n = 3 and we are in the first case, see also
the third case in Example 5.6.

Suppose thatP is the product of a linear formℓ with a quadratic formq. Without loss of generality we can assume
ℓ = x1. LetQ = V (q) ⊂ Pn−1. There is an inclusion of schemesV (x1)∩Q ⊂ BP from which it follows thatV (x1)
is contained in the secant locus scheme ofBP so that it is contracted byP ′ andx1 is an irreducible factor ofN(x).

If the hyperquadricQ is also contracted byP ′, then it is necessarily a cone with vertex a point and we can suppose,
modulo constants,N(x) = x1q(x) = P (x). SinceV (N) = V (P ) ⊂ Pn−1 is not a cone, the rank 3 Jordan algebra
JP ′ has trivial radical by Proposition 5.3 hence is semi-simple. SinceN = P is reducible,JP ′ is not simple hence we
are in the case corresponding to the fourth line of Table 2.

Finaly, if Q is not contracted byP ′, then it is a smooth hyperquadric. In this case the hyperplaneV (x1) ⊂ Pn−1

is necessarily tangent toQ at a point (otherwiseBP would be a degenerated smooth quadricQn−3 ⊂ Pn−2, which
is impossible) and we are in the second case. In the isotopy class[JP ′ ] we can choose a representative such that
x# = (x21,−x1x2, . . . ,−x1xn−1, x

2
2 + · · ·+ x2n−1 − x1xn) andN(x) = x31. �

Following [14], we will say that a homogeneous polynomialP ∈ C[x1, . . . , xn] such thatdet(Hess(lnP )) 6= 0 is
EKP–homaloidalif its multiplicative Legendre transformP∗ is again polynomial. In this caseP∗ is a homogeneous
polynomial function too anddeg(P ) = deg(P∗), see also [17] where this condition was investigated and studied. By
the preliminary results of [17], aEKP–homaloidal polynomial is homaloidal and, after having identifiedCn with its
bidual, we have

(19)
P ′
∗

P∗

◦
P ′

P
= IdCn .

Therefore such aEKP–homaloidal polynomial of degreed defines a Cremona transformation of type(d, d). If
moreoverd = 3, it follows from (19) (combined with (3)) that we haveV (N) = V (P ), that isV (P ) is the ramification
locus scheme ofP ′. On the contrary as we shall see in the proof of Corollary 5.9 below, if P is a homaloidal cubic
polynomial such thatV (N) = V (P ), then it isEKP–homaloidal. Note that theEKP condition defined above is not
satisfied by the reducible polynomials of the type describedin the first case of Corollary 5.8 whereV (N) is a cubic
hypersurface supported on the tangent hyperplane.

Corollary 5.9. LetP be a homogeneous polynomial inn ≥ 3 variables. The following assertions are equivalent:

(1) P is a cubicEKP–homaloidal polynomial;

(2) P is homaloidal,P ′ has bidegree(2, 2) andV (P ) = V (N);

(3) P is the norm of a semi–simple rank 3 complex Jordan algebra.

When these assertions are verified,P is linearly equivalent to one of the norms in the last five lines of Table 5.2.4.

Proof. We have seen before that(1) implies (2). Assume that the latter is satisfied byP . SinceP ′ has bidegree
(2, 2), the JC-correspondence ensures that (modulo composition by linear automorphisms), one can assume that
P ′ is nothing but the adjoint map of a rank three complex Jordan algebra noted byJP . SinceP is homaloidal,
V (N) = V (P ) ⊂ Pn−1 is not a cone. By Proposition 5.3, this implies that the radical of JP is trivial. ThusJP is
semi–simple and the conclusion follows from the classification recalled in Table 2. �

Remark 5.10. For n = 3 the two examples described in Corollary 5.8, modulo linear equivalence, are the unique
homaloidal polynomials by a result of Dolgachev without anyassumption ondeg(P ) and/or onP ′, see [14, Theorem
4]. Forn = 4 there exists irreducible homaloidal polynomials of degree3 whose associated Cremona transformation
is of type(2, 3). One such example is given by the equation of a special projection of the cubic scroll inP4 from a point
lying in a plane generated by the directrix line and one of thelines of the ruling, see [11] for details and generalizations
of this construction. Forn ≥ 4 there exist irreducible homaloidal polynomials of any degreed ≥ 2n− 5, see [11].

More related to the above results is a very interesting series of irreducible cubic homaloidal polynomials commu-
nicated to us by A. Verra. The associated polar map is an involution and hence of type(2, 2) but the ramification locus
of these maps is different from the associated cubic hypersurface. The construction of these polynomials is described
in [4] but the details about the geometry of their polar maps will be probably treated elsewhere.

5.2.5. The general structure of quadro-quadric Cremona transformations. In this section, we translate Theorem
5.1 into theC-world as explicitely as possible. We continue to use the notation introduced in 5.2.2.

It will be useful to denote byVF (respectivelyVG) the spaceV considered as the source space of the mapF
(respectivelyG). If Af is a subset ofP(VF ), we will denote byAF the affine cone overAf in VF and we shall use the
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analogue notation for subsets inP(VG) and inVG. One denotes byVF , respectivelyVG, the quotient spaceVF /RF ,
respectivelyVG/RG, and byπf : P(VF ) 99K P(VF ), respectivelyπg : P(VG) 99K P(VG), the rational map induced
by the canonical linear projection.

The interpretation of part (1) in Theorem 5.1 has been explained in Section 5.2.2, see also part (1) in Theorem 5.14
below for a precise statement. In order to reinterpret part (2) and (3) of Theorem 5.1 it is necessary to introduce some
notions and to recall some definitions.

Let Str(f) be thestructure groupof f (or rather ofF ) defined as in [38, Section 1.1]: by definition,Str(f) is the
set of linear automorphismsθ ∈ GL(VF ) such thatF ◦ θ = θ# ◦ F for a certainθ# ∈ GL(VF ). Of course,Str(f)
depends only onf and one verifies that it is an algebraic subgroup ofGL(VF ). Moreover, sincef is invertible,θ# is
uniquely determined byθ and one verifies easily that the mapθ 7→ θ# is an isomorphism of algebraic groups from
Str(f) ontoStr(g).

Example 5.11(continuation of Example 5.2). The structure group ofF : (a, b, c) → (a2,−ab, b2 − ac) is the
subgroup of invertible triangular inferior complex matrices (mij)

3
i,j=1, whose diagonal entries satisfym11m33 =

(m22)
2. SinceF ◦ F (a, b, c) = a3(a, b, c), the mapθ 7→ θ# is an automorphism ofStr(F ). It is given by



m22

2

m33
0 0

m21 m22 0
m31 m32 m33


 7−→




m22
4

m33
2 0 0

−m22
2m21

m33

m22
3

m33
0

−m22
2m31+m21

2m33

m33
−m22(−m22m32+2m21m33)

m33
m22

2


 .

Inspired by [38, Section 9], we define anideal of f as a pair(If , Ig) of projective subspacesIf ⊂ P(VF ) and
Ig ⊂ P(VG) (necessarily of the same dimension) such that

(20) jf (x+ IF )− jf (x) ⊂ IG and jg(y + IG)− jg(y) ⊂ IF

for x ∈ VF andy ∈ VG generic, wherejf : VF 99K VG andjg : VG 99K VF are the rational maps considered
in Section 3.2.2. In this case,jf andjg factor throughIF andIG and their associated projectivizatioñf and g̃ are
(normed) quadro-quadric Cremona transformations such that the following diagram commutes:

(21) P(VF )

f

P(VG)
g

P
(
VF /IF

)
f̃

P
(
VG/IG

)
.

g̃

If (If , Ig) is an ideal thenf
(
〈x, If 〉

)
= 〈f(x), Ig〉 for genericx in P(Vf ). This implies thatIg is completely

determined byIf and vice-versa. Thus we can say thatIf ⊂ P(VF ) is an ideal off and thatIg ⊂ P(VG) is an ideal
of g. We will say thatIf andIg arecorrespondingideals.

An ideal If ⊂ P(VF ) is radical if If ⊂ Rf . It is equivalent to the fact thatIg ⊂ Rg. Although the definition
of ideal of af as above was formulated in the affine setting, there is a projective characterization of radical ideals.
If Ef andEg are two projective subspaces ofP(VF ) andP(VG) respectively, one definesdf(Ef ) ⊂ P(VG) as the
projectivization ofdFVF

(EF ) = F (VF , EF ) ⊂ VG
1 and in the analogue way one definesdg(Eg) ⊂ P(VF ).

Proposition 5.12. Assume thatEf ⊂ Rf andEg ⊂ Rg. Then the following assertions are equivalent:

(1) Ef andEg are corresponding radical ideals forf andg respectively;

(2) one hasdf(Ef ) ⊂ Eg anddg(Eg) ⊂ Ef .

Proof. Let Pf : VF → End(VG, VF ) andPg : VG → End(VF , VG) be the quadratic maps considered in Remark
3.5. For any subsetAG ⊂ VG, one definesPf (AG) ⊂ VF as the span of the images ofAG by the mapsPf (x) for x
varying inVF . We use the corresponding notation forPg(AF ) with AF ⊂ VF .

Adapting (17) to our setting and using (16), we deduce thatPf (EF ) ⊂ EG (resp.Pg(EG) ⊂ EF ) if and only if
dF (EF ) ⊂ EG (resp.dG(EG) ⊂ EF ). Proposition 9.6 of [38], translated in our setting, ensures thatEf andEg are

1WhendFVF
(EF ) = 0, one setsdf(Ef ) = ∅.
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corresponding ideals if and only ifPf (EF ) ⊂ EG andPg(EG) ⊂ EF , proving the equivalence of conditions(1) and
(2). �

Given a (normed) quadro-quadric Cremona transformationf̃ , any quadro-quadric Cremona mapf inducingf̃ on
the quotient by the corresponding radical idealIf ⊂ Rf andIg ⊂ Rg will be called aradical extensionof f̃ by If
(or by (If , Ig)). This (radical) extension isnull if the restriction off to a generic fiber of the canonical projection
P(VF ) 99K P(VF /IF ) is equivalent (as a rational map) to a linear map.

Example 5.13(continuation of Example 5.2). Let f be the projectivization of the mapF : C3 → C3 defined by
F (a, b, c) = (a2,−ab, b2 − ac), that is nothing but the adjoint map of the algebraC[ε]/(ε3) expressed in the basis
(1, ε, ε2). Thenf is a null radical extension of the normed quadro-quadric Cremona transformatioñf : P1

99K P1

defined as the projectivization of the quadratic mapF̃ : (a, b) 7→ (a2,−ab) with associated cubic norm̃N(a, b) = a3.

Let us define inductively a family of projective subspaces ofP(VF ) andP(VG) by settingR[1]
f = Rf , R[1]

g = Rg
and

R
[k+1]
f = dg

(
R[k]
g

)
⊂ P

(
VF

)
, R[k+1]

g = df
(
R

[k]
f

)
⊂ P

(
VG

)
for k ≥ 1.

By definition,(R[k]
f )k≥0 is the‘Penico series’of f . It follows from Proposition 5.12 that this is a decreasing

series of radical ideals ofP(Vf ). Moreover,R[k]
f andR[k]

g are corresponding ideals for everyk ≥ 1. Then, passing to
the quotients, the mapf induces a normed quadro-quadric Cremona transformation

f [k] : P
(
V

[k]

F

)
P
(
V

[k]

G

)

for everyk ≥ 1, whereV
[k]

F andV
[k]

G stand for the quotients spacesVF /R
[k]
F andVG/R

[k]
G respectively.

We can now state the ‘C-version’ of Theorem 5.1:

Theorem 5.14.

(1) The Cremona transformationsf andg factor throughRf andRg: there are semi-simple (normed) quadro-
quadric Cremona transformationsf andg such that the following diagram commutes

P(VF )

πf

f

P(VG)
g

πg

P
(
VF

)
f

P
(
VG

)
.

g

(2) There exist linear embeddingsσf : P(VF ) →֒ P(VF ) andσg : P(VG) →֒ P(VG) whose images are linear
spaces supplementary toRf andRg respectively, such that the diagram below commutes:

P(VF )

πf

f

P(VG)
g

πg

P
(
VF

)
f

σf

P
(
VG

)
.

σg

g

Moreover, the pair(σf , σg) is unique modulo the action of the structure group given by

γ · (σf , σg) = (γ ◦ σf , γ
# ◦ σg) for γ ∈ Str(f).
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(3) The radicalRf of f is solvable: there existst > 0 such thatR[t]
f is empty. Moreover,f [ℓ] is a radical

null extension off [ℓ−1] for ℓ = 2, . . . , t so thatf can be obtained from its semi-simple partf by the successive
series of non-trivial null radical extensions representedby the commutative diagram

P
(
VF

)

f=f [t]

· · · P
(
V

[ℓ]

F

)

f [ℓ]

P
(
V

[ℓ−1]

F

)

f [ℓ−1]

· · · P
(
VF

)

f [1]=f

P
(
VG

)
· · · P(V

[ℓ]

G ) P
(
V

[ℓ−1]

G

)
· · · P

(
VG

)
,

where all the horizontal maps are the ones induced by the canonical linear projectionsV
[ℓ]

F → V
[ℓ−1]

F .

Example 5.15(continuation of Example 5.2). We apply the third part of the previous result to the projectivization
f of the adjoint mapF (a, b, c) = (a2,−ab, b2 − ac) of A = C[ǫ]/(ǫ3). The associated Penico series is∅ = R

[3]
f ⊂

R
[2]
f = P〈ε2〉 ⊂ R

[1]
f = PRA = P〈ǫ, ǫ2〉. Hence one hasf [3] = f , f [1] = f (see Example 5.5) andf [2] : P1

99K P1 is

nothing but the normed quadro-quadric Cremona transformation f̃ of Example 5.13.

We also point out an immediate consequence of the previous result in the affine setting.

Corollary 5.16. LetF be an affine lift of a quadro-quadric Cremona transformationf . SetR = RF andV = V/R.
ThenF is linearly equivalent to a quadratic map of the form

V ⊕R −→ V ⊕R

(x, r) 7−→
(
F (x),F(x, r) + F (r)

)

where

– F is the semi-simple part ofF (so is equivalent to one of the quadratic maps in Table 5.2.4);

– F : V ×R → R is a bilinear map;

– F : R → R is a quadratic map such thatG ◦ F ≡ 0 for another nontrivial quadratic mapG : R → R.

Moreover,f is a null extension of its semi-simple part if and only if the quadratic mapF vanishes identically.

Example 5.17(continuation of Example 5.2). Let us consider again the quadratic mapF (a, b, c) = (a2,−ab, b2 −
ac). With the notation of the previous corollary, one hasV = A = C[ǫ]/(ǫ3), V = C 1, R = ǫA ≃ C2, F (a) = a2,
F(a, (b, c)) = (−ab,−ac) andF (b, c) = (0, b2) for every(a, b, c) ∈ V = C3.

5.3. The general structure of twisted cubics over Jordan algebras. In this section,X ⊂ P2n+1 stands for a fixed
element ofXn(3, 3) with n ≥ 3. According to the ‘XJ-correspondence’, one can assume that there exists a rank
3 Jordan algebraJ of dimensionn such thatX = XJ. In what follows, we will writeZ2(J) = C ⊕ J ⊕ J ⊕ C for
simplicity and(α, x, y, β) will stand for linear coordinates onZ2(J) corresponding to the decomposition in direct sum
of the complex vector spaceZ2(J). According to our hypothesis,X is the closure of the image of the affine embedding
µ = µJ : J →֒ PZ2(J) : x 7→ [1 : x : x# : N(x)] considered in Section 3.1. Moreover, there exists a familyΣX of
twisted cubics included inX , which is 3-covering and unique.

In order to state the ‘X-version’ of Theorem 5.1 we shall introduce some terminology and recall some preliminary
results.

5.3.1. The conformal group. Thestructure groupStr(J) of J is the algebraic subgroupStr(#J) ofGL(J) associated
to the adjoint map ofJ defined in Section 5.2.5 above. It can be verified that there exists a non-trivial characterγ 7→ ηγ
onStr(J) such thatN(γ(x)) = ηγN(x) for everyJ and everyγ ∈ Str(J). Then one defines theconformal groupof
J, denoted byConf(J), as the subgroup of the group of affine birational transformations ofJ generated byStr(#J),
by the inversionj : x 99K x−1 and by the translationstw : x 7→ x+ w (with w ∈ J).

The projective representationρ : Conf(J) → PGL(Z2(J)) is defined in the following way:

ρ(j) · θ = [β : y : x : α]

ρ(γ) · θ = [α : γ(x) : γ#(y) : ηγβ]

and ρ(tw) · θ = [α : x+ αw : y + x#w + αw# : β + T (y, w) + T (x,w#) + αN(w)]
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for everyθ = [α : x : y : β] ∈ PZ2(J), γ ∈ Str(J) andw ∈ J. It can be verified thatρ(j) · µ = µ ◦ j, ρ(γ) · µ = µ ◦ γ
andρ(tw) · µ = µ ◦ tw for every structural transformationγ and every translationtw. This implies that the image ofρ
in PGL(Z2(J)) is contained in the groupAut(X) of projective automorphisms ofX .

Proposition 5.18. The representationρ : Conf(J) → PGL(Z2(J)) is faithful andρ(Conf(J)) = Aut(X).

Proof. Let ϕ ∈ Aut(X). Being projective, it induces an automorphism ofΣX , again denoted byϕ. The twisted
cubicC0 = {[s3 : s2te : st2 e : t2] ∈ PZ2(J)

∣∣ [s : t] ∈ P1} is included inX and passes through the three points
0X = µ(0) = [1 : 0 : 0 : 0], eX = µ(e) = [1 : e : e : 1] and∞X = µ(∞) = [0 : 0 : 0 : 1] of X . Since
Conf(J) acts transitively on generic 3-uples of points inX (see [31, Proposition 4.7] for instance), it comes that the
orbit Γ = Conf(J) · C0 of C0 is dense in the 3-covering familyΣX of cubics included inX . Thus there exists
C ∈ Γ such thatϕ(C) ∈ Γ and, modulo compositions on the left and on the right by conformal automorphisms of
X , we can assumeϕ(C0) = C0. Moreover, since the subgroup of conformal transformations ofX fixing C0 acts as
Aut(C0) ≃ PGL2(C) onC0 ≃ P1, we can also suppose thatϕ fixes the points0X and∞X of C0. It follows thatϕ
induces an automorphism of the subfamilyΣ∗

X of ΣX formed by the twisted cubics included inX and passing through
0X and∞X .

Let us denote byV + andV − the abstract tangent spaces ofX at 0X and∞X respectively. The differential
ϕ0 = dϕ0X (resp.ϕ∞ = dϕ∞X

) of ϕ at 0X (resp. at∞X ) is a linear automorphism ofV + (resp. ofV −). Then
reasoning as in the proof of Theorem 3.7 we deduce that(ϕ0, ϕ∞) is an automorphism of the Jordan pair(V +, V −)
constructed there. Takingu = exp−1(eX) ∈ V − as invertible element (see the notation at the end of the proof of
Theorem 3.7), one obtains thatV +

u = J as Jordan algebras. It follows then from [24, Proposition 1.8] thatϕ0 ∈ Str(J)

andϕ∞ = (ϕ#
0 )

−1.

Let us now prove that the action ofψ0 = ρ(ϕ0) onX coincides with that ofϕ. Let x ∈ X be a general point. By
hypothesis, there exists a twisted cubicCx ∈ Σ∗

X passing throughx that is unique according to [33] or [31, Theorem
2.4 (1)]. This implies that the tangent mapΣ∗

X → P(V +) that associates toCx its projective tangent line at0X is 1-1
onto its image. In particular, this gives us thatϕ(Cx) = ψ0(Cx). Sinceϕx = ϕ|Cx

: Cx → ϕ(Cx) is a projective
isomorphism that lets0X and∞X fixed, it is completely determined by its differential at onepoint, for instance at
0X . Sinced(ϕ)0X = d(ψ0)0X = ϕ0, this shows thatϕx andψ0|Cx

coincides so thatψ0(x) = ϕx(x) = ϕ(x).
From the generality ofx ∈ X , we deduce thatϕ = ψ0. Sinceψ0 = ρ(ϕ0) with ϕ0 ∈ Str(J), this gives us that
ρ(Conf(J)) = Aut(X).

Finally, let ν ∈ Conf(J) such thatρ(ν) = IdX . Fromµ = ρ(ν) · µ = µ ◦ ν one gets thatx = ν(x) for x ∈ J
generic, that isν = IdJ. Thusρ is faithful and the result is proved. �

A different proof of the previous result is given in [18] for the case whenJ = Herm3(OC). The proof therein
clearly applies to all twisted cubics over semi-simple rank3 Jordan algebras but it is not clear wheter it can be applied
to the general case. We have included the proof above becausewe were unaware of any proof of Proposition 5.18 in
the literature, despite this result is certainly well-known to the experts of this field.

Remark 5.19. The proof of Proposition 5.18 also shows that the subgroup ofprojective automorphisms ofX fixing
two (resp. three) general points ofX is isomorphic to the structure group (resp. to the automorphism group) of the
Jordan algebraJ. This is related to the considerations in Remark 3.3.2.

5.3.2. The radical and the semi-simple part. We use again here some notation and construction introducedin the
proof of Theorem 3.7:x+ andx− are two general points onX such thatX is 1-RC by the familyΣx+x− of twisted
cubics included inX passing throughx+ andx−. For σ = ±, one defines a rational mapF σ : V σ 99K V −σ by
setting

F σ(v) = dασv (1 : t)/dt
∣∣
t=0

for v ∈ V σ, whereασv : P1 → X is the projective parametrization of a twisted cubic belonging toΣx+x− such that
ασv (0 : 1) = xσ, ασv (1 : 0) = x−σ anddασv (s : 1)/ds|s=0= v. The mapF σ is homogeneous of degree -1 and
F σ ◦ F−σ = IdV σ for everyσ = ±. Thus the associated projectivizationfσ : P(V σ) 99K P(V −σ) of F σ is a
Cremona transformation with inversef−σ : P(V −σ) 99K P(V σ). It can be verified thatfσ has bidegree(2, 2) and
that it is nothing but the mapϕX,xσ defined in Section 3.3 (up to linear equivalence).

Let Rfσ ⊂ P(V σ) be the radical offσ as defined in Section 5.2.1. SinceP(V σ) identifies canonically with the
projective quotientTxσX/〈xσ〉, one can define the coneRxσ ⊂ TxσX overRfσ with vertexxσ (alternatively,Rxσ
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can be defined as the closure of the radicalRFσ ⊂ V σ of F σ in the natural affine embeddingV σ ⊂ TxσX). By
definition, the radicalRx+x− of X relatively to the pair(x+, x−) is the direct sum ofRx+ andRx− in P2n+1:

Rx+x− = Rx+ ⊕Rx− ⊂ Tx+X ⊕ Tx−X = 〈X〉 = P2n+1 .

A straightforward verification proves the following result.

Lemma 5.20. The radicalRx+x− does not depend on the pair(x+, x−) but only onX .

We can thus define theradical of X as the projective subspaceRX = Rx+x− ⊂ P2n+1 for any generic pair
(x+, x−) of elements ofX . If r is the dimension of the radical ofJ thenRX is a projective subspace of dimension
2r − 1 in P2n+1 that is projectively attached toX , that is one hasϕ(RX) = RX for everyϕ ∈ Aut(X).

The preceding definition of the radical ofX makes quite explicit the link with the corresponding notionin the
C-world (hence in theJ-world). Notwithstanding we think it is interesting to provide a purely projective definition of
RX . To this end, we first remark that since two generic projective tangent spaces ofX are in direct sum,X ⊂ P2n+1

has the secant varietyσ(X) filling the whole space by Terracini Lemma,i.e. σ(X) = P2n+1. MoreoverX is also
tangentially non-degenerate,i.e. the tangent varietyτ(X) ⊂ P2n+1 of X , defined as the closure of the union of the
lines tangent to the smooth locus ofX , is a hypersurface inP2n+1.

Lemma 5.21. The tangent varietyτ(X) is the hypersurface inP2n+1 cut out by the irreducible quartic form

Q
(
α, x, y, β

)
= T (x#, y#)− βN(x) − αN(y)−

1

4

(
T (x, y)− αβ

)2
.

Proof. Sinceτ(X) is irreducible and singular alongX and sinceσ(X) = P2n+1, we havedeg(τ(X)) ≥ 4. Indeed, if
deg(τ(X)) = 2, thenX ⊂ P2n+1 would be degenerated being contained inSing(τ(X)). If deg(τ(X)) = 3, then the
secant variety ofX would be contained inτ(X) becauseτ(X) is singular alongX . SinceV (Q) ⊂ P2n+1 is a quartic
hypersurface to prove thatQ is irreducible and thatτ(X) = V (Q) it will be sufficient to show thatτ(X) ⊂ V (Q).

The quartic formQ is invariant for the action of the conformal group ofX onP2n+1 (the proofs given in [18] or
in [12, Section 7] concern a priori only the semi-simple cases but can be applied in full generality). Since the orbit of
0X ∈ X under the action ofAut(X) is Zariski-open inX , it is enough to prove that a line inP2n+1 tangent toX at
0X is included inV (Q). A point of such a line has homogeneous coordinatespv = (1, e+ v, e+ e#v, 1+T (v))with
v ∈ J. A straightforward (but a bit lenght) computation implies thatQ(pv) = 0 for everyv, proving the result. �

Proposition 5.22. The tangent hypersurfaceτ(X) is a quartic cone of vertexRX .

Proof. It follows from (16) that for anyrx, ry ∈ R = Rad(J), one hasQ(α, x + rx, y + ry, β) = Q(ω) for every
ω = (α, x, y, β) ∈ Z2(J). This proves thatRX is included in the vertexV (d3Q) of V (Q) = τ(X).

Conversely, let(∂x1 , . . . , ∂xn
) (resp. (∂y1 , . . . , ∂yn)) be the system of partial derivatives naturally associatedto

a system of linear coordinates on the first (resp. on the second) J-summand ofZ2(J). The relations∂2α∂βQ(ω) =
∂α∂

2
βQ(ω) = 0 imply thatα = β = 0. The set of relations∂α∂2xixj

Q(ω) = −∂xi
∂xj

N(x) = 0, i, j = 1, . . . , n, can
be summarized byd2Nx = 0, that isx ∈ R = Rad(J) according to (16). Arguing similarly fory, one obtains that
d3Qω = 0 implies thatω = (0, x, y, 0) with x, y ∈ R. This proves that the vertexV (d3Q) of τ(X) is included inRX
and finishes the proof. �

In what follows, letJ = Jss ⊕ R be the decomposition given in point(2) of Theorem 5.1, where the embedding of
Jss = J/R →֒ J has been fixed once for all (hence is not indicated to simplify). A straightforward verification gives
thatRX is nothing but the projectivizationP(0 ⊕R ⊕R ⊕ 0) ⊂ PZ2(J). Hence settingµss = µJss andXss = XJss ,
we obtain the commutative diagram

J
µ=µJ

πR

X

πRX

⊂ PZ2(J)

Jss
µss

Xss ⊂ PZ2(Jss),

whereπR stands for the canonical linear projectionJ → Jss = J/R and whereπRX
denotes the restriction toX

of the linear projectionPZ2(J) 99K PZ2(Jss) from the radicalRX of X . SinceπR is surjective, this shows that
πRX

(X) = Xss. By definition,Xss is thesemi-simple partof X .

We have the following result, based on the classification of smooth varietiesX ∈ X(3, 3).
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Proposition 5.23. The semi-simple partXss ofX belongs toX(3, 3) and is smooth. Moreover

- rss(J) = 3 if and only ifXss ∈ X(3, 3) hence is one of the varieties of the table of Theorem 4.4;

- rss(J) = 2 if and only ifXss is a scrollS1...122 of S1...13 (in particular,dim(X) > 1);

- rss(J) = 1 if and only ifXss is the twisted cubicv3(P1) ⊂ P3.

Example 5.24(continuation of Example 5.2). The radical of the cubic curveXA ⊂ PZ2(A) = P7 overA =
C[ǫ]/(ǫ3) is the 3-dimensional linear subspaceRXA

= {[0 : r : r′ : 0] | r, r′ ∈ RA} ⊂ P7. The projection fromRXA

induces a dominant rational map fromXA onto the twisted cubic curvev3(P1) ⊂ P3 which is thus the semi-simple
part ofXA.

Example 5.25. Let HC be the complexification of the (real) algebraH of quaternions. ThenHC can (and will) be
identified with the complex algebraM2(C) of 2 × 2 complex matrices. ForM ∈ HC, letM stands for the adjoint
M − T (M)Id. By definition, the algebra of (complex)sextonionsis the vector spaceSC = HC ⊕M2×1(C) together
with the product defined by(M,u) · (N, v) = (MN,Mv +Nu) for M,N ∈ HC andu, v ∈M2×1(C), see [22, 39].
This algebra can be embedded in the complexificationOC of the octonions so that it is alternative and it has an
involution given by(M,u) = (M,−u) for (M,u) ∈ SC. One then defines the algebraHerm3(SC) (see Example
2.3.(3)), which is a rank 3 Jordan algebra of dimension 21.

The cubic curveX = XHerm3(SC) ⊂ P43 overHerm3(SC) is singular along a smooth 10-dimensional quadric
hypersurface, which spans the radicalRX of X . Thusdim(RX) = 11 (see [22, Corollary 8.14]). The semi-simple
part ofXHerm3(S) is the orthogonal grassmannian varietyXHerm3(HC) = OG6(C

12) ⊂ P31.

5.3.3. Radical ideals and extensions.Let I be a proper projective subspace ofP2n+1 and denote byπI : P2n+1
99K

Pm the linear projection fromI. By definition,I is aradical idealfor (or of)X if I is included in the radicalRX of
X and if the restriction ofπI toX , again denoted byπI , is such thatπI(X) = X̃ is still 3-RC by twisted cubics and
extremal. SinceXss ∈ X(3, 3),RX itself is a radical ideal forX .

Let I ⊂ J be a radical ideal of the Jordan algebraJ. ThenJ = J/I is a cubic Jordan algebra hence one can define
the associated twisted cubicX

J
⊂ PZ2(J) ∈ X(3, 3). ThenII = P(0⊕ I ⊕ I ⊕ 0) ⊂ PZ2(J) is a radical ideal ofX

J
.

More generally, the image of such aII by any element ofConf(X) is again a radical ideal forX .

Proposition 5.26. Any radical ideal ofX comes from a radical ideal ofJ by the construction presented above.

Proof. We continue to use the notation introduced above forX and the tilded versions of these will stand for the
corresponding notation for̃X.

Let II ⊂ P2n+1 be a non-trivial radical ideal forX . Let x+ andx− be two general points onX . For σ = ±,
one denotes byπσ the differential ofπII at xσ: sincexσ is general, it is a well-defined surjective linear map from
V σ onto Ṽ σ whose kernelIσ has dimensioni. We want to prove thatI = (I+, I−) is an ideal of the Jordan pair
V = (V +, V −) such thatV/I = (V +/I+, V −/I−) is isomorphic toṼ = (Ṽ +, Ṽ −) (as Jordan pairs).

Let Σ (resp.Σ̃) be the 3-covering family of twisted cubics onX (resp. onX̃). Then forC ∈ Σ general, its image
πII(C) by the linear projectionπII is an irreducible rational curve of degree≤ 3 included inX̃. Since the family
πII(Σ) = {πII(C)}C∈Σ is also 3-covering, it comes from [33, Lemme 2.1] thatπII(Σ) = Σ̃. Sincex+ andx− are
general points ofX , we deduceπII(Σx+x−) = {πII(C) |C ∈ Σx+x−} = Σ̃x̃+x̃− . Letv ∈ V σ be such thatF σ andF̃ σ

are defined atv andṽ = πσ(v) respectively. Letαv : P1 → X be the projective parametrization of the twisted cubic
element ofΣx+x− such thatdαv(s : 1)/ds|s=0= v (see Section 5.3.2). Theñαv = πII ◦ αv : P1 → X̃ is a projective
parametrization of a twisted cubic iñX such that̃αv(0) = x̃σ, α̃v(∞) = x̃−σ anddα̃v(s : 1)/ds|s=0= πσ(v) = ṽ:
with the notation of Section 5.3.2, one hasα̃v = αṽ. This implies thatF̃ σ ◦ πσ = π−σ ◦ F σ for σ = ±. Taking
total derivatives, one obtainsd(F̃ σ)πσ(·) ◦ π

σ = π−σ ◦ dF σ. Combined with the fact thatF−σ ◦ F σ = IdV σ and
F̃−σ ◦ F̃ σ = IdṼ σ , this gives that forv ∈ V σ general:

(
d(F̃ σ)πσ(v)

)−1
◦ π−σ = d(F̃−σ)F̃σ◦πσ(v) ◦ π

−σ

= d(F̃−σ)π−σ◦Fσ(v) ◦ π
−σ

= d(F̃−σ ◦ π−σ)Fσ(v) = d(πσ ◦ F−σ)Fσ(v) = πσ ◦
(
d(F σ)v

)−1
.

By density, this series of equalities implies that forσ = ±, one has

P̃ σπσ(v) ◦ π
−σ = πσ ◦ P σv
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for everyv ∈ V σ, whereP σ andP̃ σ stand for the quadratic operators of the Jordan pairsV andṼ respectively (see
Remark 3.5). According to Definition 1.3 in [24], this means thatπ = (π+, π−) : V → Ṽ is a surjective morphism of
Jordan pairs. Consequently,ker(π) = (I+, I−) is an ideal ofV andV/I ≃ Ṽ . Forσ = ±, let Iσ be the closure ofIσ

in V σ ⊂ TxσX ⊂ P2n+1. We let the reader verify that the radical idealII from the beginning is nothing but the direct
sumI

+ ⊕ I
− ⊂ Tx+X ⊕ Tx−X = P2n+1, concluding the proof. �

If II ⊂ P2n+1 is a radical ideal forX , we will say thatX is a (radical) extensionof X̃ = πII(X) ∈ X(3, 3) by
II. This extension isnull if the generic fiber ofπII : X 99K X̃ is a linear subspace inP2n+1. It is split if there exists
a linear embeddingι : 〈X̃〉 = P2ñ+1 →֒ P2n+1 the image of which is supplementary toII and is such thatπII ◦ σ
induces the identity when restricted tõX.

Proposition 5.27. TheXJ-correspondence induces correspondences between null (respectively split) extensions in
theJ-world and in theX-world.

Proof. LetπII : X 99K X̃ be a (radical) extension in theX-world corresponding to a radical extension0 → I → J →
J̃ = J/I → 0 in theJ-world (we use here Proposition 5.26). One can assume thatX = XJ andX̃ = X

J̃
and that

the projection fromII is induced by the linear mapZ2(J) → Z2(J̃) coming from the canonical projectionJ → J/I.
Let us denote bỹx the class iñJ of an elementx ∈ J. SinceI is assumed to be a radical ideal,x#i andi# belong to
I for everyx ∈ J andi ∈ I. In particular the class ofx# in J/I is x̃#. From this it follows thatπII : XJ 99K XJ/I

is given by[1 : x : x# : N(x)] 7−→ [1 : x̃ : x̃# : N(x)] hence for anyx ∈ J, the fiber ofπII : X 99K X̃ over
p̃x = [1 : x̃ : x̃# : N(x)] ∈ X̃ is

π−1
II (p̃x) =

{
[1 : x+ i : x# + x#i+ i# : N(x)]

∣∣ i ∈ I
}
⊂ PZ2(J).

This fiber is a linear subspace inPZ2(J) if and only if i# = 0 for everyi ∈ I. SinceI is radical,i# = i2 for every
i ∈ I so thati# = 0 for everyi ∈ I if and only if I2 = 0 (remember that any product inI can be expressed as a linear
combination of squares). This proves the proposition for the case of null extensions.

We now consider the case of split extensions. Clearly a splitextension in theJ-world yields a split extension in the
X-world. On the contrary, assume thatι : 〈X̃〉 →֒ P2n+1 is a splitting of an extensionπII : X 99K X̃ . If x̃+ andx̃−

are two general points of̃X, thenx+ = ι(x̃+) andx− = ι(x̃−) are two points ofX for which the construction of the
Jordan pair(V +, V −) described in the proof of Proposition 5.26 can be performed.Forσ = ±, let ισ : Ṽ σ →֒ V σ be
the differential at̃xσ of the restriction ofι to X̃. Sinceι is a linear embedding, it sends any twisted cubic included in
X̃ onto a twisted cubic inX . From this, one deduces thatι = (ι+, ι−) : Ṽ → V is an injective morphism of Jordan
pairs. Finally, from the fact thatIm(ι) andII are supplementary inPZ2(J), one deduces thatι : Ṽ → V gives a

splitting of the extension of Jordan pairsI →֒ V
π
։ Ṽ , concluding the proof of all the assertions. �

Example 5.28(continuation of Example 5.25). The decompositionSC = HC ⊕ UC (with UC =M2×1(C)) induces
a decomposition in direct sumHerm3(SC) = Herm3(HC)⊕Alt3(UC) whereAlt3(UC) is the space of antisymmetric
3 × 3 matrices with coefficients inUC. One hasRad(Herm3(SC)) = Alt3(UC) andHerm3(SC) is a split and null
extension ofHerm3(HC) byAlt3(UC). The geometrical interpretation of this is thatX = XHerm3(SC) ⊂ P43 is a split
and null extension ofXHerm3(HC) = OG6(C

12). In this particular case, the linear projectionπRX
: X 99K XHerm3(HC)

is surjective and any of its fibers is a linear subspace of dimension6 in P43.

5.3.4. The Penico series ofX . We use in this subsection the notation introduced in the proof of Proposition 5.26:x+

andx− are two general points onX , etc. LetII ⊂ RX be a radical ideal associated to the radical ideal(I+, I−) of the
Jordan pairV = (V +, V −). Forσ = ±, defineP(Iσ) asP σIσ (V

−σ) ⊂ V σ. ThenP(II) = P(P(I+) ⊕ P(I−)) ⊂
P2n+1 is a radical ideal ofX .

We can now define thePenico seriesofX as the decreasing family of projective subspacesP2n+1 ⊃ R
[1]
X ⊃ R

[2]
X ⊃

· · · ⊃ R
[ℓ−1]
X ⊃ R

[ℓ]
X ⊃ · · · defined inductively by

R
[1]
X = RX and R

[k+1]
X = P

(
R

[k]
X

)
for k ≥ 1.

One verifies that theR[k]
X ’s do not depend on the base pointsx+ andx− but only onX and that they are projectively

attached toX . It would be interesting to give a purely geometrical characterization of the Penico series ofX , in the
same spirit of the characterization of the radical ofX given in Proposition 5.22.
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Example 5.29(continuation of Example 5.2). We have seen in Example 5.24 that the radicalRXA
of the cubic curve

XA ⊂ PZ2(A) = P7 overA = C[ǫ]/(ǫ3) is a 3-dimensional projective subspace inP7. One verifies easilyR[2]
XA

is
the projective line{[0 : λ ǫ2 : λ′ ǫ2 : 0] | [λ, λ′] ∈ P1} ⊂ RXA

, whereasR[ℓ] is empty for everyℓ ≥ 3.

For anyℓ ≥ 1, let p[ℓ] be the restriction toX of the linear projection fromR[ℓ]
X and denote byX [ℓ] its image (note

thatX [ℓ] = X andp[ℓ] = IdX if R[ℓ]
X is empty). SinceR[ℓ]

X is a radical ideal,X [ℓ] belongs toX(3, 3). Moreover, it is

not difficult to verify that fork < ℓ, the linear subspacep[ℓ](R[k]
X ) is a radical ideal forX [ℓ] that is nothing butR[k−ℓ]

X[ℓ] .

If one denotes byπ[ℓ] the restriction toX [ℓ] of the linear projection fromp[ℓ](R[ℓ−1]
X ), there is a commutative diagram

X
p[ℓ]

p[ℓ−1]

X [ℓ]

π[ℓ]

X [ℓ−1] ,

where the maps in it are (restrictions of) dominant linear projections sending isomorphically a general twisted cubic
curve in a source space onto a general twisted cubic curve in the target space.

A good reason to consider the projectionsπ[ℓ] is certainly given by the following result, whose proof is left to the
reader.

Proposition 5.30. For anyℓ ≥ 1, the generic fiber of the rational mapπ[ℓ] : X [ℓ]
99K X [ℓ−1] is a linear subspace.

5.3.5. The general structure of twisted cubics over Jordan algebras. We are now in position of stating the trans-
lation in theX-world of Theorem 5.1.

Theorem 5.31. Assume thatX ∈ X(3, 3) is not semi-simple (or equivalently thatX is not smooth). Then

(1) the restriction toX of the linear projection from its radicalRX induces a dominant rational map

πRX
: X 99K Xss

over a semi-simple 3-RC varietyXss ∈ X(3, 3), the restriction of which to a general twisted cubicC ⊂ X is
an isomorphism onto its imageπRX

(C), which is then a twisted cubic curve inXss;

(2) there exists a linear embeddingσ : PZ2(Jss) →֒ PZ2(J) whose image is supplementary toRX such that

σ
(
Xss

)
⊂ X and πRX

◦ σ ∈ Aut
(
Xss

)
.

Moreover,σ is unique, up to composition to the left by a projective automorphism ofX ;

(3) the radicalRX is solvable: there exists a positive integert such thatR[t]
X is empty. Moreover,X [ℓ] is a

radical null extension ofX [ℓ−1] for ℓ = 2, . . . , t so thatX = X [t] can be obtained from its semi-simple part
Xss = X [1] by the successive series of null radical extensions represented below

X
π[t]

X [t−1]
π[t−1]

· · ·
π[ℓ+1]

X [ℓ]
π[ℓ]

X [ℓ−1]
π[ℓ−1]

· · ·
π[3]

X [2]
π[2]

Xss.

5.3.6. Null extension and Verra construction. It follows from part(3) of Theorem 5.31 that the notion of radical
null extension is particularly relevant when dealing with varieties in the classX(3, 3). Notwithstanding the consid-
erations and results of the preceding sections are not fullysatisfying from the intrinsic point of view. For instance
the construction of all radical null extensions of a givenX ∈ X(3, 3) shows immediately that it is desirable to have
an intrinsic geometric characterization of such objects, the term ‘intrinsic’ meaning here ‘in term ofX alone’. This
section is dedicated to this purpose.

Let us recall that ifX ∈ X(3, 3), thenX ⊂ P2n+1 is avariety with one apparent double point, briefly anOADP–
variety, meaning that through a general point ofP2n+1 there passes a unique secant line toX , see for example [31,
Corollary 5.4] for a proof2. If π : X ′

99K X is a radical null extension in theX-world then the general fiber ofπ is a
linear subspace. This shows thatX ′ is an OADP-variety obtained fromX by the so calledVerra constructionof new
OADP-varieties from a given one. We recall brievely this geometric construction below, referring to [10, Section 3]
for more details and proofs.

2The name ‘OADP–variety’ comes from the fact that the projection of X from a general point acquires only one double point as (further)
singularities (see also [10] for relations between twistedcubics over Jordan algebras and OADP-varieties).
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Let Y ⊂ P2(n+r)+1 be a degenerate OADP–variety of dimensionn, which spans a linear spaceV of dimension
2n+ 1. LetCW (Y ) be the cone overY with vertex a linear spaceW ⊂ P2(n+r)+1 of dimension2r − 1 in direct sum
with V . Assume thatY ′ ⊂ CW (Y ) is an irreducible non–degenerate variety of dimensionn + r, that is not secant
defective and which intersects the general rulingΠ ≃ P2r of CW (Y ) along a linear subspace of dimensionr. Then
the linear projection ofP2(n+r)+1 fromW ontoV restricts toY ′ to a dominant mapπ : Y ′

99K Y having linear fibers
of dimensionr that are generically disjoint. We shall say thatY ′ is obtained fromY via Verra’s constructionor also
thatY ′ is aVerra variety. It is not difficult to prove that Verra varieties are OADP–varieties.

Let Y ′ be a Verra variety as above. Thenπ−1(y) is a linear subspace of dimensionr − 1 of W for y ∈ Y general.
Thereforey 7→ π−1(y) defines a rational mapγY ′ : Y 99K G(r− 1,W ) = Gr(C

2r). Moreover,γY ′(y1) andγY ′(y2)
are skew subspaces ofW wheny1 andy2 are two general points ofY . Conversely, letVrY be the set of rational maps
γ : Y 99K G(r− 1,P2r−1) satisfying the condition thatγ(y1) andγ(y2) are skew ify1 andy2 are general inY . It can
be verified that for anyγ ∈ VrY , if Y0 stands for the open subset ofY on whichγ is defined, then

Yγ =
⋃

y∈Y0

〈
y, γ(y)

〉
⊂ P2(n+r)+1

is an OADP–variety that is obtained fromY by Verra’s construction. This gives an identification between the set of
(n+ r)-dimensional Verra varieties constructed fromY up to projective equivalence and the quotient of the setVrY by
a certain relation of equivalence that the interested reader could make explicit without difficulty.

Since a radical null extensionπ : X ′
99K X is obtained by Verra’s construction fromX , there existsγX′ ∈ VrX

such thatX ′ = XγX′
. Nevertheless one verifies easily that not everyγ ∈ VrX is such thatXγ is a radical null extension

of X , see also Example 5.33 below. A necessary and sufficient assuring thatX ′ ∈ X(3, 3) is given by the following
result:

Theorem 5.32. LetX ∈ X(3, 3) and letγ ∈ VrX . The following conditions are equivalent:

(1) the Verra varietyXγ belongs toX(3, 3) so that in particular is a radical null extension ofX

(2) the restriction ofγ to a general cubic curveC ⊂ X is an embedding andγ(C) is a line inGr(C2r).

Proof. Clearly (1) implies (2) and we now prove the converse. LetX ′ = Xγ whereγ ∈ VrX is such that(2) holds
and denote byπ : X ′

99K X the (restriction of the) linear projection definingX ′ as a Verra variety overX . If x′1, x
′
2

andx′3 are three general points onX ′ then thexi = π(x′i)’s are three general points onX . LetC be the twisted cubic
included inX passing trough thexi’s. Clearly,π−1(C) is nothing but the Verra varietyCγC overC, whereγC stands
for the restriction ofγ toC. SinceC is a general cubic inX , it follows from (2) thatCγC is the(r + 1)-dimensional
rational normal scrollS1...13 in P2r+3. The later being an element of the classX(3, 3), there exists a twisted cubic
C′ ⊂ CγC passing troughx′1, x

′
2 andx′3 and suchπ(C′) = C. This shows thatX ′ = Xγ is 3-RC by cubic curves.

ThenXγ is a radical extension ofX . Since the general fiber ofπ : Xγ 99K X is linear, this radical extension is null
by the definition, concluding the proof. �

The following examples show that there existγ ∈ VrX such thatXγ 6∈ X(3, 3).

Example 5.33.Let J be a rank 3 Jordan algebra of dimensionn ≥ 1 with generic normN(x). LetJ′ be a split radical
extension ofJ by a Jordan bimoduleR of dimension 1.

First of all, sinceR2 ⊂ R andr3 = 0 for everyr ∈ R (and sinceR ⊂ Rad(J′)), it follows thatR2 = 0. Because
the extensionR →֒ J′ ։ J is split, one can assume thatJ′ = J⊕R with product given by

(x1, r1) ∗ (x2, r2) = (x1 ∗ x2, r1ϕ(x2) + r2ϕ(x1)) for x1, x2 ∈ J, r1, r2 ∈ R,

whereϕ : J → C is a certain (fixed) linear form. The unity ofJ′ is e′ = (e, 0), yieldingϕ(e) = 1.
Reasoning as in the proof of Theorem 5.16 and recalling thatr2 = 0 for everyr ∈ R′, we deduce that there exists

also a linear formf : J → C such that(x, r)# = (x#, rf(x)) for every(x, r) ∈ J′. By definition of radical we have
N(x′) = N(x, r) = N(x) for x′ = (x, r) ∈ J′ so that the identityN(x′)x′ = (x′

#
)# is equivalent to

(22) N(x) = f(x)f(x#)

for everyx ∈ J.
Now if XJ ⊂ P2n+1 is a twisted cubic over a simple rank three Jordan algebraJ (so withn ∈ {6, 9, 15, 27}) and

if Zn+1 ⊂ P2n+3 is obtained fromXJ via Verra construction, thenZ 6∈ X
n+1

(3, 3). Indeed, otherwiseZ would be
projectively equivalent toXJ′ for a certain 1-dimensional null radical extensionJ′ of J, that is necessarily split (this
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follows from the fact thatJ is simple). Then (22) would imply that the normN(x) of J is a reducible polynomial of
degree 3, which is not the case.

Part (3) of Theorem 5.31 points out that among radical null extensions the split ones are the most interesting.
Accordingly to the general principle of the XJC-correspondence, givenX ∈ X(3, 3), it would be interesting to get
a characterization in geometric terms of the rational mapsγ ∈ VrX satisfying condition(2) of the preceding theorem
and such that the radical extensionXγ 99K X is not only null but also split. We intend to return on this andon other
related questions in the future.
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95125 CATANIA , ITALY

E-mail address: frusso@dmi.unict.it

30


	Introduction
	1. Notation
	2. The objects
	2.1. The X-world: varieties Xn(3,3) 
	2.2. The C-world: Cremona transformations of bidegree (2,2)
	2.3. The J-world: Jordan algebras and Jordan pairs of degree 3

	3. Equivalences
	3.1. Starting from the J-world
	3.2. Starting from the C-world
	3.3. Starting from the X-world

	4. Statement of the main theorem and of a general principle
	4.1. A first occurence of the XJC-principle 
	4.2. A second occurrence of the XJC-principle 
	4.3. A generalization of the XJC-equivalence covering some degenerate cases

	5. Further applications
	5.1. Some results on the structure of Jordan algebras
	5.2. The general structure of quadro-quadric Cremona transformations
	5.3. The general structure of twisted cubics over Jordan algebras

	References

