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JORDAN CONSTANT FOR CREMONA GROUP OF RANK 3

YURI PROKHOROV AND CONSTANTIN SHRAMOV

Abstract. We give explicit bounds for Jordan constants of groups of birational auto-
morphisms of rationally connected threefolds over fields of zero characteristic, in partic-
ular, for Cremona groups of ranks 2 and 3.
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1. Introduction

1.1. Jordan property. The Cremona group of rank n is the group Crn(k) of birational
transformations of the projective space Pn over a field k. It has been actively stud-
ied from various points of view for many years (see [Hud27], [CL13], [Dés12], [DI09a],
[Ser09a], [Can16], and references therein). One of the approaches to this huge group is to
try to understand its finite subgroups. It appeared that it is possible to obtain a complete
classification of finite subgroups of Cr2(k) over an algebraically closed field k of character-
istic 0 (see [BB00], [BB04], [Bla09], [DI09a], [Tsy11], and [Pro15c]), and to obtain partial
classification results for Cr3(k) (see [Pro12], [Pro11], [Pro14], [Pro13a], and [Pro15b]).
Some results are also known for non algebraically closed fields, see e.g. [Ser09b], [DI09b],
and [Yas15]. In general, it is partially known and partially expected that the collection of
finite subgroups of a Cremona group shares certain features with the collection of finite
subgroups of a group GLm(k).

Theorem 1.1.1 (C. Jordan, see e. g. [CR62, Theorem 36.13]). There is a con-
stant I = I(n) such that for any finite subgroup G ⊂ GLn(C) there exists a normal abelian
subgroup A ⊂ G of index at most I.

This leads to the following definition (cf. [Pop11, Definition 2.1]).

Definition 1.1.2. A group Γ is called Jordan (alternatively, we say that Γ has Jordan
property) if there is a constant J such that for any finite subgroup G ⊂ Γ there exists a
normal abelian subgroup A ⊂ G of index at most J .

Theorem 1.1.1 implies that all linear algebraic groups over an arbitrary field k of char-
acteristic 0 are Jordan. Jordan property was also studied recently for groups of birational
automorphisms of algebraic varieties. The starting point here was the following result of
J.-P. Serre.

Theorem 1.1.3 (J.-P. Serre [Ser09b, Theorem 5.3], [Ser09a, Théorème 3.1]). The Cre-
mona group Cr2(k) over a field k of characteristic 0 is Jordan.

Remark 1.1.4. Note that the assumption about characteristic is indispensable. Indeed,
the group Cr2(k) contains PGL2(k), so that if the characteristic of the field k equals p > 0
and k is algebraically closed, then Cr2(k) contains a series of simple subgroups PSL2(Fpk)
of increasing order.

It also appeared that there are surfaces with non-Jordan groups of birational selfmaps
(see [Zar14b]). V. Popov managed to give a complete classification of surfaces with Jordan
groups of birational automorphisms.
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Theorem 1.1.5 (V.Popov [Pop11, Theorem 2.32]). Let S be a surface over a field k of
characteristic 0. Then the group Bir(S) of birational automorphisms of S is Jordan if and
only if S is not birational to E × P1, where E is an elliptic curve.

In dimension 3 Jordan property is known for groups of birational automorphisms of
rationally connected varieties (see e. g. [Kol96, § IV.3] for definition and basic background).

Theorem 1.1.6 (see [PS16a, Theorem 1.8]). Fix a field k of characteristic 0. Then
there is a constant J such that for any rationally connected variety X of dimension 3
defined over k and any finite subgroup G ⊂ Bir(X) there exists a normal abelian sub-
group A ⊂ G of index at most J . In particular, for any rationally connected threefold X
the group Bir(X) is Jordan.

Actually, by [PS16a, Theorem 1.8] the assertion of Theorem 1.1.6 holds in arbitrary
dimension modulo boundedness of terminal Fano threefolds (see e. g. [Bor96] or [PS16a,
Conjecture 1.7]); the latter boundedness was recently proved in [?, Theorem 1.1]. For
other results (in particular, for birational automorphisms of non rationally connected va-
rieties, and for automorphisms of varieties of different types) see [PS14], [Pop11], [Pop14],
[Zar14a], [BZ15a], [BZ15b], [MZ15], [Zim14], [MT15], and [Mun16].

1.2. Jordan constants. Given a Jordan group Γ, one may get interested in the minimal
value of the constant involved in Definition 1.1.2, and in the values of other relevant
constants.

Definition 1.2.1. Let Γ be a Jordan group. The Jordan constant J(Γ) of the group Γ
is the minimal number J such that for any finite subgroup G ⊂ Γ there exists a normal
abelian subgroup A ⊂ G of index at most J . The weak Jordan constant J̄(Γ) of the
group Γ is the minimal number J̄ such that for any finite subgroup G ⊂ Γ there exists a
(not necessarily normal) abelian subgroup A ⊂ G of index at most J̄ .

Remark 1.2.2. It is more traditional to study Jordan constants than weak Jordan con-
stants of Jordan groups, although there is no big difference between them. Indeed, one
has J̄(Γ) 6 J(Γ) for any Jordan group Γ for obvious reasons. Moreover, if G is a finite
group and A is an abelian subgroup of G, then by [Isa08, Theorem 1.41] one can find a
normal abelian subgroup N of G such that

[G : N ] 6 [G : A]2.

Therefore, if Γ is a Jordan group, one always has J(Γ) 6 J̄(Γ)2. On the other hand, the
advantage of the weak Jordan constant is that it allows easy estimates using subgroups
of the initial group. Namely, if Γ1 is a subgroup of finite index in a group Γ2, and Γ1 is
Jordan, then Γ2 is Jordan with

J̄(Γ2) 6 [Γ2 : Γ1] · J̄(Γ1).

Also, if ∆1 and ∆2 are Jordan groups, the group ∆1 ×∆2 is Jordan with

J̄(∆1 ×∆2) = J̄(∆1)× J̄(∆2).

In particular, if Γ is a subgroup of ∆×A, where ∆ is a Jordan group and A is an abelian
group, then Γ is Jordan with J̄(Γ) 6 J̄(∆).

Jordan constants are known for example for the groups GLn(C) (see [Col07]).
In [Ser09b] J.-P. Serre gave an explicit bound for the Jordan constant of the Cremona
group Cr2(k) (see Remark 1.2.6 below). Our first result also concerns the group Cr2(k).
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Proposition 1.2.3. Suppose that the field k has characteristic 0. Then one has

J̄
(
Cr2(k)

)
6 288, J

(
Cr2(k)

)
6 82944.

The first of these bounds becomes an equality if k is algebraically closed.

The main goal of this paper is to present a bound for Jordan constants of the groups
of birational automorphisms of rationally connected threefolds, in particular, for the
group Cr3(k) = Bir(P3).

Theorem 1.2.4. Let X be a rationally connected threefold over a field k of characteris-
tic 0. Then one has

J̄
(
Bir(X)

)
6 10 368, J

(
Bir(X)

)
6 107 495 424.

If moreover X is rational and k is algebraically closed, then the first of these bounds
becomes an equality.

It is known (see [PS16a, Theorem 1.10]) that if X is a rationally connected threefold
over a field of characteristic 0, then there is a constant L such that for any prime p > L
any finite p-group G ⊂ Bir(X) is abelian. An immediate consequence of Theorem 1.2.4
is an explicit bound for the latter constant L.

Corollary 1.2.5. Let X be a rationally connected threefold over a field k of character-
istic 0, and let p > 10 368 be a prime. Let G ⊂ Bir(X) be a finite p-group. Then G is
abelian.

We believe that one can significantly improve the bound given by Corollary 1.2.5.

Remark 1.2.6. J.-P. Serre showed (see the remark made after Theorem 5.3 in [Ser09b])
that any finite subgroup G of the Cremona group Cr2(k) over a field k of characteris-
tic 0 has a normal abelian subgroup A ⊂ G such that the index [G : A] divides the
number 210 · 34 · 52 · 7. The result of Theorem 1.2.4 is not that precise: we cannot say
much about the primes that divide the index [G : A] in our case. This is explained by the
fact that to obtain the bound we have to deal with terminal singularities on threefolds as
compared to smooth surfaces. See Remark 8.2.1 for our expectations on possible improve-
ments of the bounds given by Proposition 1.2.3 and Theorem 1.2.4, and Remark 8.2.2 for
a further disclaimer in higher dimensions.

The plan of the paper is as follows. In §2 we compute weak Jordan constants for
some linear groups. In §3 we compute certain relevant constants for rational surfaces,
and in particular prove Proposition 1.2.3. In §4 we study groups of automorphisms of
three-dimensional terminal singularities and estimate their weak Jordan constants; then
we use these estimates to bound weak Jordan constants for groups of automorphisms of
non-Gorenstein terminal Fano threefolds. In §5 we estimate weak Jordan constants for
groups acting on three-dimensional G-Mori fiber spaces. In §6 and §7 we bound weak
Jordan constants for groups of automorphisms of Gorenstein terminal (and in particular
smooth) Fano threefolds. Finally, in §8 we summarize the above partial results and com-
plete the proof of Theorem 1.2.4, and also make concluding remarks. In Appendix A we
collect some information about automorphism groups of two particular classes of smooth
Fano varieties: complete intersections of quadrics, and complete intersections in weighted
projective spaces; these results are well known to experts, but we decided to include them
because we do not know proper references.
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Notation and conventions. In what follows we denote by µm a cyclic group of
order m. We denote by m.Γ a central extension of a group Γ by a group isomorphic
to µm. Starting from this point we always work over an algebraically closed field of
characteristic 0.

2. Linear groups

Now we are going to find weak Jordan constants J̄
(
GLn(k)

)
for small values of n. Note

that the values of Jordan constants J
(
GLn(k)

)
were computed in [Col07] for any n.

2.1. Preliminaries. The following remark is elementary but rather useful.

Remark 2.1.1. Suppose that Γ1 is a Jordan group, and there is a surjective ho-
momorphism Γ1 → Γ2. Then Γ2 is also Jordan. Moreover, one has J̄(Γ1) > J̄(Γ2)
and J(Γ1) > J(Γ2). In particular, for any n the group PGLn(k) is Jordan with

J̄
(
PGLn(k)

)
6 J̄

(
GLn(k)

)
, J

(
PGLn(k)

)
6 J

(
GLn(k)

)
.

We will also need the following well-known observation. Let U be an arbitrary variety
and P be a point of U . Denote by AutP (U) the stabilizer of P in Aut(U). Let TP (U) be
the Zariski tangent space to the variety U at the point P .

Lemma 2.1.2 (see e. g. [BB73, Lemma 2.4], [Pop14, Lemma 4]). Suppose that U
is an irreducible variety. For any finite group G ⊂ AutP (U) the natural representa-
tion G→ GL

(
TP (U)

)
is faithful. In particular, one has

J̄
(
AutP (U)

)
6 J̄

(
GL

(
TP (U)

))
, J

(
AutP (U)

)
6 J

(
GL

(
TP (U)

))
.

Remark 2.1.3. One does not necessarily have an embedding Γ →֒ GL
(
TP (U)

)
for a

non-reductive subgroup Γ ⊂ AutP (U). This is not the case already for U ∼= A2

and Γ = AutP (U).

2.2. Dimension 2. The following easy result will be used both to find the weak Jordan
constant of the group GL2(k), and also later in the proof of Corollary 7.2.3.

Lemma 2.2.1. Let G be a group that fits into an exact sequence

1 → Γ −→ G
φ−→ PGL2(k),

where Γ ∼= µ2. Then G is Jordan with J̄(G) 6 12.

Proof. Note that Γ is contained in the center of the group G. We may assume that G is
finite. By the well-known classification of finite subgroups in PGL2(k), we know that the
group Ḡ = φ(G) is either cyclic, or dihedral, or isomorphic to one of the groups A4, S4,
or A5.

If Ḡ is cyclic, then the group G is abelian.
If Ḡ is dihedral, then the group G contains an abelian subgroup of index 2.
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If Ḡ ∼= A4, then Ḡ contains a cyclic subgroup of order 3, so that J̄(G) 6 4; the inequality
here is due to the fact that in the case when G ∼= µ2 × A4 one has J̄(G) = 3, but for a
non-trivial central extension G ∼= 2.A4 one has J̄(G) = 4.

If Ḡ ∼= S4, then Ḡ contains a cyclic subgroup of order 4, and J̄(G) = 6.
Finally, if Ḡ ∼= A5, then Ḡ contains a cyclic subgroup of order 5, and J̄(G) = 12. �

As an easy application of Lemma 2.2.1, we can find the weak Jordan constants of the
groups GL2(k) and Aut(P1) ∼= PGL2(k).

Corollary 2.2.2. One has

J̄
(
GL2(k)

)
= J̄

(
PGL2(k)

)
= 12.

Proof. Let V be a three-dimensional vector space over k, and let G ⊂ GL(V ) be a finite
subgroup. It is enough to study the weak Jordan constant J̄(G). Moreover, for this we may
assume that G ⊂ SL(V ) ∼= SL2(k), and that G contains the scalar matrix acting by −1
on V . Therefore, the bound J̄(G) 6 12 follows from Lemma 2.2.1, so that J̄(GL2(k)) 6 12.
The inequality

J̄
(
PGL2(k)

)
6 J̄

(
GL2(k)

)

holds by Remark 2.1.1. The value J̄(PGL2(k)) = 12 is given by the group A5 ⊂ PGL2(k),
and the value J̄(GL2(k)) = 12 is given by the group 2.A5 ⊂ GL2(k). �

Remark 2.2.3. Suppose that C is an irreducible curve such that the normalization Ĉ of C
has genus g. Since the action of the group Aut(X) lifts to Ĉ, one has

J̄
(
Aut(C)

)
6 J̄

(
Aut(Ĉ)

)
.

On the other hand, it is well known that J̄
(
Aut(Ĉ)

)
6 6 if g = 1, and the Hurwitz bound

implies that
J̄
(
Aut(Ĉ)

)
6 |Aut(Ĉ)| 6 84(g − 1)

if g > 2.

We can use a classification of finite subgroups in PGL2(k) to find the weak Jordan
constant of the automorphism group of a line and a smooth two-dimensional quadric.
More precisely, we have the following result.

Lemma 2.2.4. The following assertions hold.

(i) Let G ⊂ Aut(P1) be a finite group. Then there exists an abelian subgroup A ⊂ G
of index at most 12 acting on P1 with a fixed point.

(ii) Let G ⊂ Aut
(
P1 × P1

)
be a finite group. Then there exists an abelian sub-

group A ⊂ G of index at most 288 that acts on P1 × P1 with a fixed point, and
does not interchange the rulings of P1 × P1.

(iii) One has

J̄
(
Aut

(
P1 × P1

))
= 288.

Proof. Assertion (i) follows from the classification of finite subgroups of PGL2(k). Observe
that

Aut
(
P1 × P1

) ∼=
(
PGL2(k)× PGL2(k)

)
⋊ µ2.

Therefore, assertion (i) implies assertion (ii). In particular, we get the bound

J̄
(
Aut

(
P1 × P1

))
6 288.
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The required equality is given by the group
(
A5 × A5

)
⋊ µ2 ⊂ Aut

(
P1 × P1

)
.

This proves assertion (iii). �

2.3. Dimension 3.

Lemma 2.3.1. One has

J̄
(
PGL3(k)

)
= 40, J̄

(
GL3(k)

)
= 72.

Proof. Let V be a three-dimensional vector space over k, and let G ⊂ GL(V ) be a finite
subgroup. It is enough to study the weak Jordan constant J̄(G). Moreover, for this we
may assume that G ⊂ SL(V ) ∼= SL3(k). Recall that there are the following possibilities
for the group G (see [MBD16, Chapter XII] or [Fei71, §8.5]):

(i) the G-representation V is reducible;
(ii) there is a transitive homomorphism h : G→ S3 such that V splits into a sum of

three one-dimensional representations of the subgroup H = Ker(h);
(iii) the group G is generated by some subgroup of scalar matrices in SL3(k) and a

group Ĝ that is one of the groups A5 or PSL2(F7);
(iv) one has G ∼= 3.A6;
(v) one has G ∼= H3 ⋊ Σ, where H3 is the Heisenberg group of order 27, and Σ is

some subgroup of SL2(F3).

Let us denote by Ḡ the image of G in the group PGL3(k). One always has J̄(Ḡ) 6 J̄(G).
In case (i) there is an embedding G →֒ A× Γ, where A is a finite abelian group and Γ

is a finite subgroup of GL2(k). Thus

J̄(Ḡ) 6 J̄(G) = J̄(Γ) 6 J̄
(
GL2(k)

)
= J̄

(
PGL2(k)

)
= 12

by Corollary 2.2.2.
In case (ii) the group H is an abelian subgroup of G, so that

J̄(Ḡ) 6 J̄(G) 6 [G : H ] 6 |S3| = 6.

In case (iii) it is easy to check that J̄(Ḡ) 6 J̄(G) = J̄(Ĝ) 6 24.
In case (iv) one has G ∼= 3.A6 and Ḡ ∼= A6. The abelian subgroup of maximal order

in Ḡ is a Sylow 3-subgroup, so that J̄(Ḡ) = 40. The abelian subgroup of maximal order
in G is µ15 that is a preimage of a subgroup is a Sylow 5-subgroup with respect to the
natural projection G→ Ḡ. This gives J̄(G) = 72.

In case (v) one has

J̄(Ḡ) 6 J̄(G) 6 J̄
(
H3 ⋊ SL2(F3)

)
= 24.

Therefore, we see that J̄(PGL3(k)) = 40 and J̄
(
GL3(k)

)
= 72. �

Lemma 2.3.2. Let Ḡ ⊂ PGL3(k) be a finite subgroup of order |Ḡ| > 360.
Then J̄(Ḡ) 6 12.

Proof. Let G ⊂ SL3(k) be a preimage of Ḡ with respect to the natural projection

SL3(k) → PGL3(k).

Then one has |Ḡ| = |G|/3, and J̄(Ḡ) 6 J̄(G).
7



Let us use the notation introduced in the proof of Lemma 2.3.1. If G is a group of
type (i) or (ii), then J̄(G) 6 12. If G is a group of type (iii) or (iv), then

|G| 6 |3.A6| = 1080,

and |Ḡ| 6 360. Finally, if G is a group of type (v), then

|G| 6 |H3 ⋊ SL2(F3)| = 648,

and |Ḡ| 6 216. �

Lemma 2.3.3. Let B be a (non-trivial) finite abelian subgroup of PGL3(k). Then B is
generated by at most three elements.

Proof. Recall that a finite abelian subgroup of GLn(k) is generated by at most n el-
ements. Let B̃ ⊂ SL3(k) be the preimage of B with respect to the natural projec-

tion SL3(k) → PGL3(k). Let Ã ⊂ B̃ be a maximal abelian subgroup and let A ⊂ B be
its image. Then A has an isolated fixed point on P2, and the number of its isolated fixed
points is at most 3. Therefore, the group B has an orbit of length at most 3 on P2. Let P
be a point of such orbit, and let B′ ⊂ B be the stabilizer of P . By Lemma 2.1.2 there is a
faithful representation of the group B′ in the Zariski tangent space TP (P

2) ∼= k2, so that B′

is generated by at most two elements. The group B is generated by its subgroup B′ and
an arbitrary element from B \B′, if any. �

The following fact is a refinement of [PS14, Lemma 2.8] (cf. [PS14, Remark 2.4]).

Lemma 2.3.4. Let G be a group that fits into an exact sequence

1 → Γ −→ G
φ−→ PGL3(k),

where Γ ∼= µ
m
2 with m 6 2. Then G is Jordan with

J̄(G) 6 2304.

Proof. We may assume that G is finite. If the order of the group φ(G) ⊂ PGL3(k) is at
most 360, then one has

J̄(G) 6 [G : Γ] = |φ(G)| 6 360.

Therefore, we may assume that |φ(G)| > 360. By Lemma 2.3.2 we can find an abelian
subgroup B in φ(G) of index [φ(G) : B] 6 12. Put G̃ = φ−1(B). Then

[G : G̃] = [φ(G) : B] 6 12,

so that by Remark 1.2.2 we are left with the task to bound J̄(G̃).
We have an exact sequence of groups

1 → Γ → G̃→ B → 1.

For an element g ∈ G̃ denote by Z(g) the centralizer of g in G̃. Since B is an abelian
quotient of G̃, we see that the commutator subgroup of G̃ has order at most |Γ|, so that

for any g ∈ G̃ one has [G : Z(g)] 6 |Γ|.
Since B is an abelian subgroup of PGL3(k), it is generated by at most three elements

by Lemma 2.3.3. Choose three generators of B, and let g1, g2 and g3 be elements of G̃
that project to these three generators. Put

I = Z(g1) ∩ Z(g2) ∩ Z(g3).
8



Then the index

[G̃ : I] 6 |Γ|3 6 64.

Let C be the centralizer of Γ in G̃. Since Γ is a normal subgroup of G̃, we see that C is
a normal subgroup of G̃ as well. Moreover, since Γ ⊂ C, we have an inclusion G̃/C ⊂ B,
so that G̃/C is an abelian group generated by three elements. Also, one has an inclusion

G̃/C ⊂ Aut(Γ) ⊂ GL2(F2) ∼= S3.

Therefore, we conclude that |G̃/C| 6 3.
Let Z be the center of G̃. Then Z contains the intersection C ∩ I, so that

J̄(G̃) 6 J(G̃) 6 [G̃ : Z] 6 [G̃ : C ∩ I] 6 [G̃ : C] · [G̃ : I] 6 3 · 64 = 192,

and thus

J̄(G) 6 [G : G̃] · J̄(G̃) 6 2304. �

2.4. Dimension 4.

Lemma 2.4.1. One has

J̄
(
PGL4(k)

)
= J̄

(
GL4(k)

)
= 960.

Proof. Let V be a four-dimensional vector space over k, and let G ⊂ GL(V ) be a finite
subgroup. It is enough to study the weak Jordan constant J̄(G). Moreover, for this we
may assume that G ⊂ SL(V ) ∼= SL4(k). Then there are the following possibilities for the
group G (see [Bli17, Chapter VII] or [Fei71, §8.5]):

(i) the G-representation V is reducible;
(ii) there is a transitive homomorphism h : G→ Sk such that V splits into a sum of k

representations of the subgroup H = Ker(h) of dimension 4/k for some k ∈ {2, 4};
(iii) the group G contains a subgroup H of index at most 2, such that H is a quotient

by a certain central subgroup of a group Γ1 × Γ2, where Γ1 and Γ2 are finite
subgroups of GL2(k);

(iv) the group G is generated by some subgroup of scalar matrices in SL4(k) and a

group Ĝ that is one of the groups A5, S5, 2.A5, 2.S5, or SL2(F7);
(v) the group G is generated by some subgroup of scalar matrices in SL4(k) and a

group Ĝ that is one of the groups 2.A6, 2.S6, 2.A7, or Sp4(F3);
(vi) the group G contains an extra-special group H4 of order 32 and is contained in

the normalizer of H4 in SL(V ).

In case (i) there is an embedding G →֒ Γ1×Γ2, where Γi is a finite subgroup of GLni
(k)

for i ∈ {1, 2}, and n1 6 n2 are positive integers such that n1 + n2 = 4. One has

J̄(G) 6 J̄(Γ1 × Γ2) 6 J̄
(
GLn1

(k)
)
· J̄

(
GLn1

(k)
)
.

If (n1, n2) = (1, 3), this gives J̄(G) 6 72 by Lemma 2.3.1. If (n1, n2) = (2, 2), this gives

J̄(G) 6 12 · 12 = 144

by Corollary 2.2.2.
In case (ii) the group H is a subgroup of G of index

[G : H ] 6 |Sk| = k!
9



Moreover, there is an embedding H →֒ Γ1 × . . . × Γk, where Γi are finite subgroups
of GL4/k(k). Thus

J̄(G) 6 [G : H ] · J̄(H) 6 k! · J̄(Γ1) · . . . · J̄(Γk) 6 k! · J̄
(
GL4/k(k)

)k
.

If k = 2, this gives J̄(G) 6 288 by Corollary 2.2.2. If k = 4, this gives J̄(G) 6 24.
In case (iii) we obtain the bound J̄(G) 6 288 in a similar way.
In case (iv) one has

J̄(G) = J̄
(
Ĝ
)
6 |Ĝ| 6 336.

In case (v) one has

J̄(G) = J̄
(
Ĝ
)
6 J̄

(
Sp4(F3)

)
= 960.

In case (vi) one has J̄(G) 6 J̄(N), where N is the normalizer of H4 in SL(V ). The
group N fits into the exact sequence

1 → H̃4 → N → S6 → 1,

where H̃4 is a group generated by H4 and a scalar matrix
√
−1 · Id ∈ SL(V ).

Recall that
H4

∼= Q8 ×Q8/µ2,

where Q8 is a quaternion group of order 8. Being viewed as a subgroup of SL2(k), the
group Q8 is normalized by a binary octahedral group 2.S4. Thus the group N contains a
subgroup

R ∼= 2.S4 × 2.S4/µ2,

and also a subgroup R̃ generated by R and
√
−1 · Id. One has

J̄
(
R̃
)
= J̄(R) = J̄(2.S4 × 2.S4) = J̄(2.S4)

2 = 36.

On the other hand, we compute the index [N : R̃] = 20. This gives

J̄(N) 6 [N : R̃] · J̄
(
R̃
)
= 20 · 36 = 720.

Therefore, we see that J̄(G) 6 960, and thus J̄
(
GL4(k)

)
6 960. The inequality

J̄
(
PGL4(k)

)
6 J̄

(
GL4(k)

)

holds by Remark 2.1.1. The value J̄(PGL4(k)) = 960 is given by the
group PSp4(F3) ⊂ PGL4(k) whose abelian subgroup of maximal order is µ

3
3

(cf. [Vdo01, Table 2]). The value J̄(GL4(k)) = 960 is given by the
group Sp4(F3) ⊂ GL4(k) whose abelian subgroup of maximal order is µ2 × µ

3
3

that is a preimage of a subgroup µ
3
3 ⊂ PSp4(F3) with respect to the natural projec-

tion Sp4(F3) → PSp4(F3). �

Remark 2.4.2. The group 2.S5 listed in case (iv) of Lemma 2.4.1 is omitted in the list
given in [Fei71, §8.5]. It is still listed by some other classical surveys, see e.g. [Bli17, §119].

Recall that for a given group G with a representation in a vector space V a semi-
invariant of G of degree n is an eigen-vector of G in Sym nV ∨.

Lemma 2.4.3. Let V be a four-dimensional vector space over k, and let G ⊂ GL(V ) be
a finite subgroup. If G has a semi-invariant of degree 2, then J̄(G) 6 288.

10



Proof. Let q be a semi-invariant of G of degree 2. We consider the possibilities for the
rank of the quadratic form q case by case.

Suppose that V has a one-dimensional subrepresentation of G. Then G ⊂ k∗ ×GL3(k),
so that J̄(G) 6 72 by Lemma 2.3.1. Therefore we may assume that the rank of q is not
equal to 1 or 3.

Suppose that the rank of q is 2, so that q is a product of two linear forms. Then there is
a subgroup G1 ⊂ G of index at most 2 such that these linear forms are semi-invariant with
respect to G1. Hence V splits as a sum of a two-dimensional and two one-dimensional
representations of G1. This implies that G1 ⊂ k∗ × k∗ ×GL2(k), so that

J̄(G) 6 2 · J̄(G1) 6 2 · J̄
(
GL2(k)

)
= 24

by Corollary 2.2.2.
Finally, suppose that the rank of q is 4, so that the quadric Q ⊂ P(V ) ∼= P3 given by the

equation q = 0 is smooth, i.e. Q ∼= P1 × P1. By Lemma 2.2.4 there is a subgroup H ⊂ G
of index [G : H ] 6 288 that acts on Q with a fixed point P and does not interchange the
lines L1 and L2 passing through P on Q. As the representation of H , the vector space V
splits as a sum of the one-dimensional representation corresponding to the point P , two
one-dimensional representations arising from the lines L1 and L2, and one more one-
dimensional representation. Therefore, H is an abelian group (note that Lemma 2.2.4
asserts only that the image of H in PGL4(k) is abelian). This shows that J̄(G) 6 288
and completes the proof of the lemma. �

2.5. Dimension 5.

Lemma 2.5.1. One has

J̄
(
PGL5(k)

)
= J̄

(
GL5(k)

)
= 960.

Proof. Let V be a five-dimensional vector space over k, and let G ⊂ GL(V ) be a finite
subgroup. It is enough to study the weak Jordan constant J̄(G). Moreover, for this we
may assume that G ⊂ SL(V ) ∼= SL5(k). Recall that there are the following possibilities
for the group G (see [Bra67] or [Fei71, §8.5]):

(i) the G-representation V is reducible;
(ii) there is a transitive homomorphism h : G→ S5 such that V splits into a sum of

five one-dimensional representations of the subgroup H = Ker(h);
(iii) the group G is generated by some subgroup of scalar matrices in SL5(k) and a

group Ĝ that is one of the groups A5, S5, A6, S6, PSL2(F11), or PSp4(F3);
(iv) one has G ∼= H5 ⋊ Σ, where H5 is the Heisenberg group of order 125, and Σ is

some subgroup of SL2(F5).

In case (i) there is an embedding G →֒ Γ1×Γ2, where Γi is a finite subgroup of GLni
(k)

for i ∈ {1, 2}, and n1 6 n2 are positive integers such that n1 + n2 = 5. One has

J̄(G) 6 J̄(Γ1 × Γ2) 6 J̄
(
GLn1

(k)
)
· J̄

(
GLn1

(k)
)
.

If (n1, n2) = (1, 4), this gives J̄(G) 6 960 by Lemma 2.4.1. If (n1, n2) = (2, 3), this gives

J̄(G) 6 12 · 72 = 864

by Corollary 2.2.2 and Lemma 2.3.1.
In case (ii) the group H is an abelian subgroup of G, so that

J̄(G) 6 [G : H ] 6 |S5| = 120.
11



In case (iii) it is easy to check that J̄(G) = J̄(Ĝ) 6 960, cf. the proof of Lemma 2.4.1.
In case (iv) one has

J̄(G) 6 J̄
(
H5 ⋊ SL2(F5)

)
= 120.

Therefore, we see that J̄(G) 6 960, and thus J̄
(
GL5(k)

)
6 960. The inequality

J̄
(
PGL5(k)

)
6 J̄

(
GL5(k)

)

holds by Remark 2.1.1. The value J̄(PGL5(k)) = 960 is given by the
group PSp4(F3) ⊂ PGL5(k), cf. the proof of Lemma 2.4.1. Similarly, the
value J̄(GL5(k)) = 960 is given by the group PSp4(F3) ⊂ GL5(k). �

2.6. Dimension 7. We start with a general observation concerning finite groups with
relatively large abelian subgroups.

Lemma 2.6.1. Let G be a group, and Γ̃ ⊂ G be a normal finite abelian subgroup. Suppose
that Γ̃ cannot be generated by less than m elements. Let V be an N-dimensional vector
space over k. Suppose that V is a faithful representation of G. Then there exist positive
integers t, m1, . . . , mt, d1, . . . , dt such that

• m1d1 + . . .+mtdt = N ;
• m1 + . . .+mt > m;
• the group G is Jordan with

J̄(G) 6
( t∏

i=1

mi!
)
·
( t∏

i=1

J̄
(
GLdi(k)

)mi

)
.

Proof. Let

(2.6.2) V = V1 ⊕ . . .⊕ Vs

be the splitting of V into isotypical components with respect to Γ̃. Since V is a faith-
ful representation of Γ̃, and Γ̃ is an abelian group, we have an injective homomor-
phism Γ̃ →֒ (k∗)s. By assumption one has s > m. Suppose that the splitting (2.6.2)
contains m1 summands of dimension d1, m2 summands of dimension d2, . . . , and mt sum-
mands of dimension dt. Then one has m1d1+ . . .+mtdt = N . Moreover, the total number
of summands in (2.6.2) equals m1 + . . .+mt = s > m.

Since Γ̃ ⊂ G is a normal subgroup, the group G interchanges the summands in (2.6.2).
Moreover, G can interchange only those subspaces Vi and Vj that have the same dimension.
Therefore, we get a homomorphism

ψ : G→
t∏

i=1

Smi
.

Let ∆ ⊂ G be the kernel of the homomorphism ψ. Then each summand of (2.6.2) is
invariant with respect to ∆. Since V is a faithful representation of ∆, one has an inclusion

∆ →֒
s∏

j=1

GL(Vj) ∼=
t∏

i=1

(
GLdi(k)

)mi .

Note that

[G : ∆] 6 |
t∏

i=1

Smi
| =

t∏

i=1

mi!.

12



Recall that the groups GLdi(k) are Jordan by Theorem 1.1.1. Thus the group G is Jordan
with

J̄(G) 6 [G : ∆] · J̄(∆) 6
( t∏

i=1

mi!
)
·
( t∏

i=1

J̄
(
GLdi(k)

)mi

)

by Remark 1.2.2. �

Lemma 2.6.1 allows us to provide a bound for Jordan constants of some subgroups
of GL7(k). This bound will be used in the proof of Lemma 7.1.2.

Lemma 2.6.3. Let G be a group, and Γ̃ ⊂ G be a normal finite abelian subgroup such
that Γ̃ ∼= µ

m
2 with m > 4. Suppose that G has a faithful seven-dimensional representation.

Then G is Jordan with
J̄(G) 6 10368.

Proof. Since Γ̃ ∼= µ
m
2 has a faithful seven-dimensional representation, we have m 6 7. By

Lemma 2.6.1 there exist positive integers t, m1, . . . , mt, d1, . . . , dt, such that

m1d1 + . . .+mtdt = 7,

while m1 + . . .+mt > m and

(2.6.4) J̄(G) 6
( t∏

i=1

mi!
)
·
( t∏

i=1

J̄
(
GLdi(k)

)mi

)
.

In particular, one has 4 6 m1 + . . . +mt 6 7. Also, we may assume that d1 < . . . < dt.
We consider several possibilities for m1 + . . .+mt case by case.

If m1 + . . .+mt = 7, then t = 1, d1 = 1 and m1 = 7, so that (2.6.4) gives

J̄(G) 6 7! = 5040.

If m1 + . . .+mt = 6, then t = 2, d1 = 1, m1 = 5, d2 = 2, m2 = 1, so that (2.6.4) gives

J̄(G) 6 5! · J̄
(
GL2(k)

)
= 120 · 12 = 1440

by Corollary 2.2.2.
If m1+ . . .+mt = 5, then t = 2, d1 = 1, and either m1 = 4, d2 = 3, m2 = 1, or m1 = 3,

d2 = 2, m2 = 2. In the former case (2.6.4) gives

J̄(G) 6 4! · J̄
(
GL3(k)

)
= 24 · 72 = 1728

by Lemma 2.3.1. In the latter case (2.6.4) gives

J̄(G) 6 3! · 2! · J̄
(
GL2(k)

)2
= 6 · 2 · 122 = 1728

by Corollary 2.2.2.
Finally, if m1 + . . .+mt = 4, then either

t = 2, d1 = 1, m1 = 3, d2 = 4, m2 = 1,

or
t = 2, d1 = 1, m1 = 1, d2 = 2, m2 = 3,

or
t = 3, d1 = 1, m1 = 2, d2 = 2, m2 = 1, d3 = 3, m3 = 1.

In the first case (2.6.4) gives

J̄(G) 6 3! · J̄
(
GL4(k)

)
= 6 · 960 = 5760
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by Lemma 2.4.1. In the second case (2.6.4) gives

J̄(G) 6 3! · J̄
(
GL2(k)

)3
= 6 · 123 = 10368

by Corollary 2.2.2. In the third case (2.6.4) gives

J̄(G) 6 2! · J̄
(
GL2(k)

)
· J̄

(
GL3(k)

)
= 2 · 12 · 72 = 1728

by Corollary 2.2.2 and Lemma 2.3.1. �

3. Surfaces

The goal of this section is to estimate weak Jordan constants for automorphism groups
of rational surfaces, as well as some other constants of similar nature. In the sequel for
any variety X we will denote by Φ(X) the minimal positive integer m such that for any
finite group G ⊂ Aut(X) there is a subgroup F ⊂ G with [G : F ] 6 m acting on X
with a fixed point. If there does not exist an integer m with the above property, we
put Φ(X) = +∞. Note that Φ(X) is bounded by some universal constant for rationally
connected varieties X of dimension at most 3 by [PS16a, Theorem 4.2].

3.1. Preliminaries. We start with the one-dimensional case.

Lemma 3.1.1. One has Φ(P1) = 12. Moreover, if T is a finite union of rational curves
such that its dual graph T∨ is a tree, then Φ(T ) 6 12.

Proof. The inequality Φ(P1) 6 12 is given by Lemma 2.2.4(i). The equality is given by
the icosahedral group A5 ⊂ Aut(P1). Since for any rational curve C one has

Aut(C) ⊂ Bir(C) ∼= Bir(P1) = Aut(P1),

we see that Φ(P1) = 12.
Let T be a finite union of rational curves such that its dual graph T∨ is a tree. Then

there is a natural homomorphism of Aut(T ) to the finite group Aut(T∨). It is easy to
show by induction on the number of vertices that either there is an edge of T∨ that is
invariant under Aut(T∨), or there is a vertex of T∨ that is invariant under Aut(T∨). In
the former case there is a point P ∈ T fixed by Aut(T ), so that Φ(T ) = 1. In the latter
case there is a rational curve C ⊂ T that is invariant under Aut(T ), so that

Φ(T ) 6 Φ(C) 6 12. �

Now we proceed with the two-dimensional case. In a sense, we are going to do in a more
systematic way the same things that were done in Lemma 2.2.4. For a variety X with
an action of a finite group G, we will denote by Φa(X,G) the minimal positive integer m
such that there is an abelian subgroup A ⊂ G with [G : A] 6 m acting on X with a fixed
point. The main advantage of this definition is the following property.

Lemma 3.1.2. Let X and Y be smooth surfaces acted on by a finite group G. Suppose
that there is a G-equivariant birational morphism π : Y → X. Then Φa(Y,G) = Φa(X,G).

Proof. The assertion is implied by the results of [KS00] in arbitrary dimension. We give
the proof for dimension 2 for the readers convenience.

The inequality Φa(Y,G) > Φa(X,G) is obvious. To prove the opposite inequality choose
an abelian subgroup A ⊂ G such that there is a point P ∈ X fixed by A. We are going
to produce a point Q ∈ Y fixed by A such that π(Q) = P .

14



The birational morphism π is a composition of blow ups of smooth points. Since π is G-
equivariant and thus A-equivariant, we may replace X by a neighborhood of the point P
and thus suppose that π is a sequence of blow ups of points lying over the point P . If π is
an isomorphism, then there is nothing to prove. Otherwise, by induction in the number
of blow ups, we see that it is enough to consider the case when π is a single blow up
of the point P . In this case the exceptional divisor E = π−1(P ) is identified with the
projectivization of the Zariski tangent space TP (X), and the action of A on E comes from
a linear action of A on TP (X). Since the group A is abelian, it has a one-dimensional
invariant subspace in TP (X), which gives an A-invariant point Q ∈ E ⊂ Y . �

3.2. Del Pezzo surfaces.

Lemma 3.2.1. Let G ⊂ Aut(P2) be a finite group. Then one has Φa(P
2, G) 6 72.

Proof. One has Aut(X) ∼= PGL3(k). By the holomorphic Lefschetz fixed-point formula
any cyclic group acting on a rational variety has a fixed point. Now the required bound is
obtained from the classification of finite subgroups of GL3(k) (see [MBD16, Chapter XII]
or [Fei71, §8.5], and also the proof of Lemma 2.3.1). �

Remark 3.2.2. Note that the bound given by Lemma 3.2.1 is actually attained for the
group A6 ⊂ PGL3(k) whose abelian subgroup of maximal order acting on P2 with a fixed
point is µ5.

Lemma 3.2.3. Let X be a smooth del Pezzo surface. Let G ⊂ Aut(X) be a finite group.
Then one has

Φa(X,G) 6 288.

Moreover, if X is not isomorphic to P1 × P1, then Φa(X,G) 6 144.

Proof. If X ∼= P2, then Φa(X,G) 6 72 by Lemma 3.2.1.
Suppose that X ∼= P1 × P1. Then one has Φa(X,G) 6 288 by Lemma 2.2.4(ii). Note

that this value is attained for the group

G ∼=
(
A5 × A5

)
⋊ µ2 ⊂ Aut(P1 × P1).

Suppose that X is a blow up π : X → P2 at one or two points. Then π is an Aut(X)-
equivariant birational morphism, so that Φa(X,G) 6 72 by Lemmas 3.2.1 and 3.1.2.

Put d = K2
X . We may assume that d 6 6.

Suppose that d = 6. Then

Aut(X) ∼=
(
k∗ × k∗)⋊ D6,

where D6 is the dihedral group of order 12 (see [Dol12, Theorem 8.4.2]). The
subgroup k∗ × k∗ ⊂ Aut(X) acts on X with a fixed point by Borel’s theorem (see
e. g. [Hum75, VIII.21]). From this one can easily deduce that Φa(X,G) 6 12 for any
finite subgroup G ⊂ Aut(X).

If d 6 5, then the group Aut(X) is finite, and it is enough to show
that Φa

(
X,Aut(X)

)
6 144.

Suppose that d = 5. Then Aut(X) ∼= S5 (see [Dol12, Theorem 8.5.6]). Hence for any
subgroup G ⊂ Aut(X) one has

Φa

(
X,Aut(X)

)
6 |Aut(X)| = 120.

Suppose that d = 4. Then
Aut(X) ∼= µ

4
2 ⋊ Γ,
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where |Γ| 6 10 (see [Dol12, Theorem 8.6.6]). Representing X as an intersection
of two quadrics with equations in diagonal form, one can see that there is a sub-
group µ

2
2 ⊂ Aut(X) acting on X with a fixed point. Therefore, one has

Φa

(
X,Aut(X)

)
6

|Aut(X)|
|µ2

2|
6

160

4
= 40.

Suppose that d = 3. Then either Aut(X) ∼= µ
3
3 ⋊ S4 and X is the Fermat cubic,

or |Aut(X)| 6 120 (see [Dol12, Theorem 9.5.6]). In the former case it is easy to see that
there is a subgroup µ

2
3 ⊂ Aut(X) acting on X with a fixed point, so that

Φa

(
X,Aut(X)

)
6

|Aut(X)|
|µ2

3|
=

648

9
= 72.

In the latter case one has

Φa

(
X,Aut(X)

)
6 |Aut(X)| 6 120.

Suppose that d = 2. Then either |Aut(X)| 6 96, or Aut(X) ∼= µ2 × (µ2
4 ⋊ S3),

or Aut(X) ∼= µ2 × PSL2(F7) (see [Dol12, Table 8.9]). In the latter case one has

Φa

(
X,Aut(X)

)
6 |Aut(X)| 6 120.

To estimate Φa

(
X,Aut(X)

)
in the former two cases, recall that the anticanonical linear

system | −KX | defines a double cover

ϕ|−KX | : X → P2

branched over a smooth quartic curve C ⊂ P2. The subgroup µ2 acts by the Galois
involution of the corresponding double cover. In particular, the curve ϕ−1

|−KX |(C) consists

of µ2-fixed points. If Aut(X) ∼= µ2 × (µ2
4 ⋊S3), this gives

Φa

(
X,Aut(X)

)
6

|Aut(X)|
|µ2|

=
192

2
= 96.

If Aut(X) ∼= µ2×PSL2(F7), then the group PSL2(F7) ⊂ Aut(X) contains a subgroup µ7,
and µ7 acts on the curve ϕ−1

|−KX |(C)
∼= C with a fixed point (this can be easily seen, for

example, from the Riemann–Hurwitz formula since C is a smooth curve of genus 3). Thus

Φa

(
X,Aut(X)

)
6

|Aut(X)|
|µ2 × µ7|

=
336

14
= 24.

Finally, suppose that d = 1. Then

Φa

(
X,Aut(X)

)
6 |Aut(X)| 6 144

(see [Dol12, Table 8.14]). �

Remark 3.2.4. In several cases (say, for a del Pezzo surface of degree d = 5) one can
produce better upper bounds for Φa(X,G) than those given in the proof of Lemma 3.2.3,
but we do not pursue this goal.

Lemma 3.2.3 immediately implies the following.

Corollary 3.2.5 (cf. Lemma 2.2.4(iii)). Let X be a smooth del Pezzo surface.
Then one has J̄

(
Aut(X)

)
6 288. Moreover, if X is not isomorphic to P1 × P1,

then J̄
(
Aut(X)

)
6 144.
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3.3. Rational surfaces. Now we pass to the case of arbitrary rational surfaces.

Lemma 3.3.1. Let X be a smooth rational surface, and G ⊂ Aut(X) be a finite subgroup.
Then there exists an abelian subgroup H ⊂ G of index [G : H ] 6 288 that acts on X with
a fixed point.

Proof. Let Y be a smooth projective rational surface, and G ⊂ Aut(Y ) be a finite group.
Let π : Y → X be a result of a G-Minimal Model Program ran on Y . One has

Φa(Y,G) = Φa(X,G)

by Lemma 3.1.2. Moreover, X is either a del Pezzo surface, or there is a G-equivariant
conic bundle structure on X (see [Isk80b, Theorem 1G]). If X is a del Pezzo surface,
then Φa(X,G) 6 288 by Lemma 3.2.3, so that Φa(Y,G) 6 288.

Therefore, we assume that there is a G-equivariant conic bundle structure

φ : X → B ∼= P1.

There is an exact sequence of groups

1 → Gφ −→ G
u−→ GB → 1,

where Gφ acts by fiberwise automorphisms with respect to φ, and GB ⊂ Aut(P1). By
Lemma 3.1.1 we find a subgroup G′

B ⊂ GB of index [GB : G′
B] 6 12 acting on P1 with a

fixed point P ∈ P1. The group

G′ = u−1(G′
B) ⊂ G

acts by automorphisms of the fiber C = φ−1(P ). Note that C is a reduced conic, i.e. it is
either isomorphic to P1, or is a union of two copies of P1 meeting at one point.

Suppose that C ∼= P1. Then there is a pointQ ∈ C that is invariant with respect to some
subgroup G′′ ⊂ G′ of index [G′ : G′′] 6 12 by Lemma 3.1.1. The morphism φ : X → B
is smooth at Q. Hence the map dφ : TQ(X) → TP (B) is surjective. By Lemma 2.1.2
the group G′′ acts faithfully on the Zariski tangent space TQ(X), and the group G′

B acts
faithfully on the Zariski tangent space TP (B). The map dφ is G′′-equivariant and so G′′

has one-dimensional invariant subspace Ker(dφ) ⊂ TQ(X) ∼= k2. In this case G′′ must be
abelian with [G : G′′] 6 12 · 12 = 144.

Now consider the case when C is a reducible conic, i.e. it is a union of two copies of P1

meeting at one point, say Q. Then Q is G′-invariant. There exists a subgroup G′′ ⊂ G′ of
index [G′ : G′′] 6 2 such that both irreducible components C1, C2 ⊂ C are invariant with
respect to G′′. In this case subspaces TQ(Ci) ⊂ TQ(X) are G′′-invariant and as above G′′

is abelian with [G : G′′] 6 12 · 2 = 24.
Therefore, one has

Φa(Y,G) = Φa(X,G) 6 [G : G′′] 6 144. �

Corollary 3.3.2. Let X be a smooth rational surface. Then one has J̄
(
Aut(X)

)
6 288.

Corollary 3.3.3. One has J̄
(
Cr2(k)

)
= 288.

Proof. Let G ⊂ Cr2(k) be a finite group. It is enough to study the weak Jordan con-
stant J̄(G). Regularizing the action of G and taking an equivariant desingularization
(see e. g. [PS14, Lemma-Definition 3.1]), we may assume that G ⊂ Aut(X) for a smooth
rational surface X . Now the bound J̄

(
Cr2(k)

)
6 288 follows from Corollary 3.3.2. The

equality is due to Lemma 2.2.4(iii). �
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A direct consequence of Corollary 3.3.3 is that the weak Jordan constant of the Cremona
group of rank 2 is bounded by 288 for an arbitrary (not necessarily algebraically closed)
base field. Together with Remark 1.2.2 this gives a proof of Proposition 1.2.3.

3.4. Non-rational surfaces. We conclude this section by three easy observations con-
cerning automorphism groups of certain non-rational surfaces.

Lemma 3.4.1. Let C be a smooth curve of genus g > 2, and let S be a ruled surface
over C. Then the group Aut(S) is Jordan with J̄

(
Aut(S)

)
6 1008(g − 1).

Proof. Let G ⊂ Aut(S) be a finite group. It is enough to prove the corresponding bound
for J̄(G). There is an exact sequence of groups

1 → Gφ −→ G −→ GC → 1,

where Gφ acts by fiberwise automorphisms with respect to φ, and GC ⊂ Aut(C). One
has

|GC| 6 84(g − 1)

by the Hurwitz bound. On the other hand, the group Gφ is a subgroup
of Aut(P1) ∼= PGL2(k), so that Gφ contains an abelian subgroup H of index

[Gφ : H ] 6 12

by Corollary 2.2.2. Thus one has

J̄(G) 6 [G : H ] = [G : Gφ] · [Gφ : H ] = [G : Gφ] · |GC| 6 12 · 84 · (g−1) = 1008(g−1). �

Lemma 3.4.2 (cf. [PS14, Corollary 2.15]). Let S be an abelian surface. Then the
group Aut(S) is Jordan with J̄

(
Aut(S)

)
6 5760.

Proof. One has Aut(S) ∼= A⋊ Γ, where A is an abelian group (that is identified with the
group of points on S), and Γ is a subgroup of GL4(Z). Thus Aut(S) is Jordan with

J̄
(
Aut(S)

)
6 [Aut(S) : A] = |Γ| 6 5760

by the Minkowski bound for GL4(Z) (see e. g. [Ser07, §1.1]). �

To obtain a bound for a weak Jordan constant in the last case we will need the following
easy group-theoretic fact.

Lemma 3.4.3. Let G be a finite group with |G| 6 79380. Then

J̄(G) 6 9922.

Proof. Suppose that |G| is divisible by a prime number p. Then G contains a cyclic
subgroup of order p, so that

J̄(G) 6
|G|
p
.

In particular, if |G| is divisible by a prime p > 11, then

J̄(G) 6
|G|
11

< 7217.

Similarly, suppose that p is a prime such that |G| is divisible by p2. Let Gp ⊂ G be a
Sylow p-subgroup. Then |Gp| > p2. If |Gp| = p2, then Gp is abelian, so that

J̄(G) 6 [G : Gp] =
|G|
p2
.
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If |Gp| > p3, then Gp contains an abelian subgroup A of order |A| > p2 (see Corollary 2
of Theorem 1.17 in Chapter 2 of [Suz82]), and we again have

J̄(G) 6 [G : A] 6
|G|
p2
.

In particular, if there is a prime p > 3 such that |G| is divisible by p2, then

J̄(G) 6
|G|
p2

6
|G|
9

6 8820.

Now suppose that |G| is not divisible by any prime greater than 7, and |G| is not
divisible by a square of any prime greater than 2. This means that

|G| = 2α · 3β · 5γ · 7δ,

where β, γ, δ ∈ {0, 1}. If α 6 3, then

J̄(G) 6 |G| 6 23 · 3 · 5 · 7 = 840.

Thus we assume that α > 4. Let G2 ⊂ G be a Sylow 2-subgroup. Applying Corollary 2
of Theorem 1.17 in Chapter 2 of [Suz82] once again, we see that G2 contains an abelian
subgroup A of order |A| > 8. Hence one has

J̄(G) 6 [G : A] 6
|G|
8

< 9923. �

Now we are ready to bound a weak Jordan constant for automorphism groups of surfaces
of general type of low degree.

Lemma 3.4.4. Let S be a smooth minimal surface of general type of degree K2
S 6 45.

Then the group Aut(S) is Jordan with J̄
(
Aut(S)

)
6 9922.

Proof. By [Xia95] one has

|Aut(S)| 6 422 ·K2
S 6 79380.

Thus the group Aut(S) is Jordan with

J̄
(
Aut(S)

)
6 9922

by Lemma 3.4.3. �

4. Terminal singularities

In this section we study Jordan property for automorphism groups of germs of three-
dimensional terminal singularities, and derive some conclusions about automorphism
groups of non-Gorenstein terminal Fano threefolds.

4.1. Local case. Recall from §2.1 that for an arbitrary variety U and a point P ∈ U
we denote by AutP (U) the stabilizer of P in Aut(U). Now we are going to estimate a
weak Jordan constant of a group AutP (U), where P ∈ U is a three-dimensional terminal
singularity.
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Lemma 4.1.1. Let U be a threefold, and P ∈ U be a terminal singular point of U .
Let G ⊂ AutP (U) be a finite subgroup. Then for some positive integer r there is an
extension

(4.1.2) 1 −→ µr −→ G̃ −→ G −→ 1

such that the following assertions hold.

(i) There is an embedding G̃ ⊂ GL4(k), and the group G̃ has a semi-invariant of
degree 2.

(ii) If (U, P ) is a cyclic quotient singularity, then there is an embedding G̃ ⊂ GL3(k).
(iii) Let D be a G-invariant boundary on X such that the log pair (U,D) is log canon-

ical and such that a minimal center of log canonical singularities is a G-invariant
curve containing P (see [Kaw97, Proposition 1.5]). Then G̃ ⊂ k∗ ×GL3(k).

Proof. Let r > 1 be the index of U ∋ P , i. e. r equals the minimal positive integer t such
that tKU is Cartier at P . Replacing U by a smaller G-invariant neighborhood of P if
necessary, we may assume that rKU ∼ 0. Consider the index-one cover

π : (U ♯, P ♯) → (U, P )

(see [Rei87, Proposition 3.6]). Then U ♯ ∋ P ♯ is a terminal singularity of index 1,
and U ∼= U ♯/µr. Note that U ♯ ∋ P ♯ is a hypersurface singularity, i. e. dimTP ♯(U ♯) 6 4
(see [Rei87, Corollary 3.12(i)]). Moreover, U ♯ is smooth at P ♯ if (U, P ) is a cyclic quotient
singularity.

By construction of the index one cover every element of AutP (U) admits r lifts
to Aut(U ♯, P ♯). Thus we have a natural exact sequence (4.1.2), where G̃ is some sub-

group of AutP ♯(U ♯). Furthermore, by Lemma 2.1.2 we know that G̃ ⊂ GL3(k) if U ♯ is
smooth at P ♯. This gives assertion (ii).

Now suppose that dimTP ♯(U ♯) = 4. By Lemma 2.1.2 one has an embed-

ding G̃ ⊂ GL4(k). Moreover, U ♯ ∋ P ♯ is a hypersurface singularity of multiplicity 2
by [KM98, Corollary 5.38]. This means that the kernel of the natural map

Sym 2
(
mP ♯,U♯/m2

P ♯,U♯

)
−→ m

2
P ♯,U♯/m

3
P ♯,U♯

is generated by an element of degree 2. Therefore, the group G̃ has a semi-invariant
polynomial of degree 2. This completes the proof of assertion (i).

Finally, let C, D, and G be as in assertion (iii). Put D♯ = π∗D and C♯ = π−1(C). One
can show that C♯ is again a minimal center of log canonical singularities of (U ♯, D♯) (cf.
[KM98, Proposition 5.20]). In particular, C♯ is smooth (see [Kaw97, Theorem 1.6]). As
above, one has an embedding G̃ ⊂ GL

(
TP ♯(U ♯)

)
. Moreover, since C♯ is G̃-invariant, we

have a decomposition of G̃-representations

TP ♯(U ♯) = T1 ⊕ T3,

where T1 = TP ♯(C♯) ∼= k and dimT3 = 3. Hence, one has

G̃ ⊂ GL(T1)×GL(T3) ∼= k∗ ×GL3(k),

which proves assertion (iii). �

Corollary 4.1.3. Let U be a threefold, and P ∈ U be a terminal singularity. Then the
following assertions hold.
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(i) The group AutP (U) is Jordan with

J̄(AutP (U)) 6 288.

(ii) If (U, P ) is a cyclic quotient singularity, then AutP (U) is Jordan with

J̄(AutP (U)) 6 72.

(iii) Let C ∋ P be a curve contained in U and Γ ⊂ AutP (U) be a subgroup such that C
is Γ-invariant. Assume that C is a minimal center of log canonical singularities
of the log pair (U,D) for some Γ-invariant boundary D. Then Γ is Jordan with

J̄(Γ) 6 72.

Proof. Suppose that G ⊂ AutP (U) is a finite subgroup. It is enough to prove the corre-
sponding bounds for the constant J̄(G). One has J̄(G) 6 J̄(G̃), where G̃ is the exten-
sion of G given by Lemma 4.1.1. Thus, assertion (i) follows from Lemma 4.1.1(i) and
Lemma 2.4.3, while assertion (ii) follows from Lemma 4.1.1(ii) and Lemma 2.3.1.

Suppose that Γ is as in assertion (iii), and G ⊂ Γ. Then

J̄(G) 6 J̄(G̃) 6 J̄
(
k∗ ×GL3(k)

)
= J̄

(
GL3(k)

)

by Lemma 4.1.1(iii). Therefore, assertion (iii) follows from Lemma 2.3.1. �

4.2. Non-Gorenstein Fano threefolds. Now we will use Corollary 4.1.3 to study au-
tomorphism groups of non-Gorenstein terminal Fano threefolds.

Lemma 4.2.1. Let X be a Fano threefold with terminal singularities. Suppose that X
has a non-Gorenstein singular point. Then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 4608.

Proof. We use the methods of [Pro12, §6]. Let P1 be a non-Gorenstein point
and P1, . . . , PN ∈ X be its Aut(X)-orbit. Let r be the index of points P1, . . . , PN ∈ X .
By the orbifold Riemann–Roch theorem and Bogomolov–Miyaoka inequality we have

3

2
N 6

(
r − 1

r

)
N 6 24

(see [Kaw92], [KMMT00]). This immediately implies that N 6 16.
The subgroup AutP1

(X) ⊂ Aut(X) stabilizing the point P1 has index

[Aut(X) : AutP1
(X)] 6 N.

Thus we have

J̄
(
Aut(X)

)
6 [Aut(X) : AutP1

(X)] · J̄
(
AutP1

(X)
)
6 N · J̄

(
AutP1

(X)
)
6 16 · 288 = 4608

by Corollary 4.1.3(i). �

Remark 4.2.2. It is known that terminal non-Gorenstein Fano threefolds are bounded,
i.e. they belong to an algebraic family (see [Kaw92], [KMMT00]). However it is expected
that the class of these varieties is huge [B+]. There are only few results related to some
special types of these Fanos (see e.g. [BS07], [Pro16]).
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5. Mori fiber spaces

Recall that a G-equivariant morphism φ : X → S of normal varieties acted on by a
finite group G is a G-Mori fiber space, if X has terminal GQ-factorial singularities, one
has dim(S) < dim(X), the fibers of φ are connected, the anticanonical divisor −KX is
φ-ample, and the relative G-invariant Picard number ρG(X/S) equals 1. If the dimension
of X equals 3, there are three cases:

• S is a point, −KX is ample; in this case X is said to be a GQ-Fano threefold,
and X is a G-Fano threefold provided that the singularities of X are Gorenstein;

• S is a curve, a general fiber of φ is a del Pezzo surface; in this case X is said to
be a GQ-del Pezzo fibration;

• S is a surface, a general fiber of φ is a rational curve; in this case X is said to be
a GQ-conic bundle.

The goal of this section is to estimate weak Jordan constants for the automorphism groups
of varieties of GQ-conic bundles and GQ-del Pezzo fibrations.

5.1. Conic bundles. We start with automorphism groups of GQ-conic bundles.

Lemma 5.1.1. Let G be a finite group, and φ : X → S be a three-dimensional G-
equivariant fibration into rational curves over a rational surface S. Then J̄(G) 6 3456.

Proof. By [Avi14] we may assume that X is smooth, and any fiber of φ is a (possibly
reducible or non-reduced) conic. There is an exact sequence of groups

1 → Gφ −→ G
γ−→ GS → 1,

where Gφ acts by fiberwise automorphisms with respect to φ, and GS ⊂ Aut(S). By
Lemma 3.3.1 there is an abelian subgroup G′

S ⊂ GS of index

[GS : G′
S] 6 288

such that G′
S acts on P1 with a fixed point. Let P ∈ S be one of the fixed points of G′

S,
and let

C = φ−1(P ) ⊂ X

be the fiber of φ over the point P . Put G′ = γ−1(G′
S). Then G′ is a subgroup of G of

index

[G : G′] = [GS : G′
S] 6 288,

and the fiber C is G′-invariant.
The fiber C is a reduced conic, so that it is either isomorphic to P1, or is a union of

two copies of P1 meeting at one point.
In the former case there is a point Q ∈ C that is invariant with respect to some

subgroup G′′ ⊂ G′ of index

[G′ : G′′] 6 12

by Lemma 3.1.1. In the latter case the intersection point Q of the irreducible com-
ponents C1 and C2 of C is invariant with respect to the group G′, and there exists a
subgroup G′′ ⊂ G′ of index [G′ : G′′] 6 2 such that C1 and C2 are invariant with respect
to G′′.
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By Lemma 2.1.2 the group G′′ acts faithfully on the Zariski tangent space TQ(X), and
the group G′

S acts faithfully on the Zariski tangent space TP (S). As we have seen, the
group G′′ preserves the point Q and a tangent direction

v ∈ TQ(X) ∼= k3

that lies in the kernel of the natural projection TQ(X) → TP (S). Moreover, there is an
embedding

G′′ →֒ Γ1 × Γ2,

where Γ1 ⊂ k∗, and Γ2 ⊂ G′
S. Since G′

S and k∗ are abelian groups, we conclude that so
is G′′. Therefore, one has

J̄(G) 6 [G : G′′] = [G : G′] · [G′ : G′′] 6 288 · 12 = 3456. �

5.2. Del Pezzo fibrations. Before we pass to the case of GQ-del Pezzo fibrations we will
establish some auxiliary results. Recall [KSB88, Definition 3.7] that a surface singularity is
said to be of type T if it is a quotient singularity and admits a Q-Gorenstein one-parameter
smoothing.

Lemma 5.2.1. Let X be a normal threefold with at worst isolated singularities and
let S ⊂ X be an effective Cartier divisor such that the log pair (X,S) is purely log terminal
(see [KM98, §2.3]). Then S has only singularities of type T .

Proof. Regard X as the total space of a deformation of S. By our assumptions divi-
sors KX + S and S are Q-Cartier. Hence X is Q-Gorenstein. By the inversion of ad-
junction (see [KM98, Theorem 5.20]) the surface S has only Kawamata log terminal (i. e.
quotient) singularities (see [KM98, Theorem 5.50]). Hence the singularities of S are of
type T . �

Lemma 5.2.2. Let S be a singular del Pezzo surface with T -singularities. Assume that S
has at least one non-Gorenstein point. Then Aut(S) has an orbit of length at most 2
on S.

Proof. Assume that Aut(S) has no orbits of length at most 2 on S. By [HP10, Proposi-
tion 2.6] one has

dim | −KS| = K2
S > 1.

Write | −KS| = F + |M |, where |M | is a linear system without fixed components and F
is the fixed part of | −KS|, so that

dim |M | = dim | −KS| = K2
S.

By [Pro15a, Theorem 4.2] the log pair (S,M + F ) is log canonical for a general mem-
ber M ∈ |M |. In particular, F is reduced. Let Sing ′(S) be the set of non-Du Val points
of S. By our assumptions Sing ′(S) 6= ∅. Clearly, any member of |−KS| contains Sing ′(S);
otherwise −KS is Cartier at some point of Sing ′(S), so that this point is Du Val on S.
Since the log pair (S, F+M) is log canonical andKS+F+M is Cartier, by the classification
of two-dimensional log canonical singularities ([KM98, Theorem 4.15]) the divisor F +M
has two analytic branches at each point of Sing (X) ∩ Supp (F +M). In particular, we
have

Sing ′(S) ⊂ Sing (F +M).

Thus by our assumption Sing (F +M) contains at least three points. Furthermore, since
the support of F +M is connected, by adjunction one has pa(F +M) = 1, all irreducible

23



components of F +M are smooth rational curves and the corresponding dual graph is a
combinatorial cycle. Moreover, the number of these irreducible components is at least 3.

First assume that F 6= 0. By Shokurov’s connectedness theorem (see e.g [KM98, Theo-
rem 5.48]) we know that F is connected. Hence F is a connected chain of rational curves.
In this situation Aut(S) acts on F so that there exists either a fixed point P ∈ Sing (F )
or an invariant irreducible component F1 ⊂ F (cf. the proof of Lemma 3.1.1). In the
first case we have a contradiction with our assumption and in the second case Aut(S)
permutes two points of intersection of F1 with Supp (F − F1), again a contradiction.

Thus F = 0 and so Sing ′(S) ⊂ Bs |M | and Sing ′(S) ⊂ Sing (M). Since Sing ′(S)
contains at least three points and pa(M) = 1, the divisor M is reducible. By Bertini’s
theorem the linear system |M | is composed of a pencil, which means that there is a
pencil |L| such that |M | = n|L| for some n > 2, and Sing ′(S) ⊂ Bs |L|. Since the log
pair (S,M) is log canonical, there are exactly two irreducible components of M passing
through any point P ∈ Sing ′(S), see [KM98, Theorem 4.15]. Since Sing ′(S) contains at
least three points, the dual graph of M cannot be a combinatorial cycle, a contradiction.

�

Lemma 5.2.3. Let X be a threefold, and G ⊂ Aut(X) be a finite subgroup. Suppose that
there is a G-invariant smooth del Pezzo surface S contained in the smooth locus of X.
Then J̄(G) 6 288.

Proof. There is an exact sequence of groups

1 → K −→ G
β−→ H → 1,

where K acts on S trivially, and H ⊂ Aut(S). By Lemma 3.2.3 there is a point Q ∈ S
fixed by an abelian subgroup HQ ⊂ H of index [H : HQ] 6 288. Put GQ = β−1(HQ).
Then GQ ⊂ G is a subgroup that fixes the point Q, such that the index

[G : GQ] = [H : HQ] 6 288.

By Lemma 2.1.2 the group GQ acts faithfully on the Zariski tangent space TQ(X) ∼= k3.
The two-dimensional Zariski tangent space TQ(S) ⊂ TQ(X) is GQ-invariant, and thus GQ

is contained in a subgroup

k∗ ×GL
(
TQ(S)

) ∼= k∗ ×GL2(k) ⊂ GL3(k) ∼= GL
(
TQ(X)

)
.

Hence GQ ⊂ A × HQ, where A ⊂ k∗ is some cyclic group. Therefore, the group GQ is
abelian, so that one has

J̄(G) 6 [G : GQ] 6 288. �

Remark 5.2.4. Let G ⊂ Aut(X) be a finite subgroup, and Σ ⊂ X be a non-empty finite
subset. Then a stabilizer GP ⊂ G of a point P ∈ Σ has index [G : GP ] 6 |Σ|, so that by
Remark 1.2.2 one has

J̄(G) 6 |Σ| · J̄(GP ) 6 |Σ| · J̄
(
AutP (X)

)
.

Now we are ready to finish with weak Jordan constants of rationally connected three-
dimensional GQ-del Pezzo fibrations.

Lemma 5.2.5. Let G be a finite group, and φ : X → B ∼= P1 be a three-dimensional
GQ-del Pezzo fibration. Then J̄(G) 6 10368.
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Proof. There is an exact sequence of groups

1 → Gφ −→ G
α−→ GB → 1,

where Gφ acts by fiberwise automorphisms with respect to φ, and

GB ⊂ Aut(B) ∼= PGL2(k).

By Lemma 3.1.1 there is a subgroup G′
B ⊂ GB of index [GB : G′

B] 6 12 such that G′
B

acts on B with a fixed point.
Let P ∈ B be one of the fixed points of G′

B, let F = φ∗(P ) be the scheme fiber over P ,
and let S = Fred. Put G

′ = α−1(G′
B). Then G

′ is a subgroup of G of index

[G : G′] = [GB : G′
B] 6 12,

and the fiber S is G′-invariant. In particular, one has

J̄(G) 6 [G : G′] · J̄(G′).

Suppose that F is a multiple fiber of φ, i.e. S 6= F . Then by [MP09] there is a
G-invariant set Σ ⊂ S of singular points of X such that either |Σ| 6 3, or |Σ| = 4
and Σ consists of cyclic quotient singularities. In the former case Remark 5.2.4 and
Corollary 4.1.3(i) imply that

J̄(G) 6 12 · 3 · 288 = 10368.

In the latter case Remark 5.2.4 and Corollary 4.1.3(ii) imply that

J̄(G) 6 12 · 4 · 72 = 3456.

Therefore, we can assume that S is not a multiple fiber of φ. In particular, S = F is a
Cartier divisor on X .

Suppose that the log pair (X,S) is not purely log terminal (see [KM98, §2.3]). Let c be
the log canonical threshold of the log pair (X,S) (cf. the proof of [PS16a, Lemma 3.4]).
Let Z1 ⊂ S be a minimal center of log canonical singularities of the log pair (X, cS), see
[Kaw97, Proposition 1.5]. Since (X,S) is not purely log terminal, we conclude that c < 1,
so that dim(Z) 6 1. It follows from [PS16a, Lemma 2.5] that Z is G′-invariant. If Z is a
point, then

J̄(G) 6 [G : G′] · J̄(G′) 6 12 · 288 = 3456

by Corollary 4.1.3(i). Thus we assume that Z is a curve. Using [PS16a, Lemma 2.5] once
again, we see that Z is smooth and rational. By Lemma 3.1.1 there is a subgroup G′′ ⊂ G′

of index [G′ : G′′] 6 12 such that G′′ has a fixed point on Z. Hence

J̄(G) 6 [G : G′′] · J̄(G′′) 6 144 · 72 = 10368

by Corollary 4.1.3(iii).
Therefore, we may assume that the log pair (X,S) is purely log terminal. Then

by [KM98, Theorem 5.50] the surface S is a del Pezzo surface with only Kawamata log
terminal singularities. Moreover, the singularities of S are of type T (see Lemma 5.2.1).
If KS is not Cartier, Lemma 5.2.2 implies that there is a G′-orbit of length at most 2
contained in S. In this case we have

J̄(G) 6 [G : G′] · J̄(G′) 6 12 · 2 · 288 = 6912

by Remark 5.2.4 and Corollary 4.1.3(i).
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Therefore, we may assume that KS is Cartier and so S has at worst Du Val singularities.
Denote their number bym(S). Then by Noether formula applied to the minimal resolution
we have

m(S) 6 9−K2
S 6 8.

Thus by Remark 5.2.4 and Corollary 4.1.3(i) we have

J̄(G) 6 [G : G′] · J̄(G′) 6 2 · 9 · 288 = 5184.

Therefore, we are left with the case when S is smooth. Now Lemma 5.2.3 implies that

J̄(G) 6 [G : G′] · J̄(G′) 6 12 · 288 = 3456

and completes the proof. �

6. Gorenstein Fano threefolds

Let X be a Fano threefold with at worst terminal Gorenstein singularities. In this case,
the number

g(X) =
1

2
(−KX)

3 + 1

is called the genus of X . By Reimann–Roch theorem and Kawamata–Viehweg vanishing
one has

dim | −KX | = g(X) + 1

(see e. g. [IP99, 2.1.14]). In particular, g(X) is an integer, and g(X) > 2. The maximal
number ι = ι(X) such that −KX is divisible by ι in Pic (X) is called the Fano index, or
sometimes just index, of X . Recall that Pic (X) is a finitely generated torsion free abelian
group, see e.g. [IP99, Proposition 2.1.2]. The rank ρ(X) of the free abelian group Pic (X)
is called the Picard rank of X . Let H be a divisor class such that −KX ∼ ι(X)H . The
class H is unique since Pic (X) is torsion free. Define the degree of X as d(X) = H3.
The goal of this section is to bound weak Jordan constants for automorphism groups of
singular terminal Gorenstein Fano threefolds.

6.1. Low degree. We start with the case of small anticanonical degree. We will use
notation and results of §A.2.
Proposition 6.1.1 (cf. [KPS16, Lemma 4.4.1]). Let X be a Fano threefold with terminal
Gorenstein singularities such that ρ(X) = 1. Suppose that H is not very ample, i. e. one
of the following possibilities holds (see [Shi89, Theorem 0.6], [Shi89, Corollary 0.8], [JR06,
Theorem 1.1], [PCS05, Theorem 1.4]):

(i) ι(X) = 2 and d(X) = 1;
(ii) ι(X) = 2 and d(X) = 2;
(iii) ι(X) = 1 and g(X) = 2;
(iv) ι(X) = 1, g(X) = 3, and X is a double cover of a three-dimensional quadric.

Suppose that G ⊂ Aut(X) is a finite group. Then for some positive integer r there is a
central extension

1 → µr → G̃→ G→ 1

such that one has an embedding G̃ ⊂ GL3(k)× k∗ in case (i), an embedding G̃ ⊂ GL4(k)

in cases (ii) and (iii), and an embedding G̃ ⊂ GL5(k) in case (iv).
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Proof. According to [Shi89, Corollary 0.8] and [PCS05, Theorem 1.5], in cases (i), (ii)
and (iii) our Fano variety X is naturally embedded as a weighted hypersurface in the
weighted projective space P = P(a0, . . . , a4), where

(a0, . . . , a4) = (13, 2, 3), (14, 2), (14, 3),

respectively. In case (iv) our X is naturally embedded as a weighted complete intersection
of multidegree (2, 4) in P = P(15, 2). Let OX(1) be the restriction of the (non-invertible)
divisorial sheaf OP(1) to X (see [Dol82, 1.4.1]). Since X is Gorenstein, in all cases it is
contained in the smooth locus of P, and thus OX(1) is an invertible divisorial sheaf on X .
Moreover, under the above embeddings we have

OX(1) = OX(−KX)

in cases (iii) and (iv), while
OX(1) = OX(−1

2
KX)

in cases (i) and (ii). Since the group Pic (X) has no torsion, in all cases the class of OX(1)
in Pic (X) is invariant with respect to the whole automorphism group Aut(X). Also,
the line bundle OX(1) is ample, so that the algebra R(X,OX(1)) is finitely generated.
Therefore, by Lemma A.2.13 for any finite subgroup Γ ⊂ Aut(X) the action of Γ on X is
induced by its action on

P ∼= ProjR
(
X,OX(1)

)
.

Thus the assertion follows from Lemma A.2.8. �

Remark 6.1.2. Assume the setup of Proposition 6.1.1. Then using the notation of the
proof of Lemma A.2.13 one can argue that a central extension of the group G acts on the
vector space

V =

N⊕

m=1

Vm,

which immediately gives its embedding into GLk1+...+kN (k). This would allow to avoid
using Lemma A.2.8, but would give a slightly weaker result.

Using a more explicit geometric approach, one can strengthen the assertion of Propo-
sition 6.1.1(i).

Corollary 6.1.3. In the assumptions of Proposition 6.1.1(i) one has G ⊂ GL3(k).

Proof. The base locus of the linear system |H| is a single point P which is contained in
the smooth part of X (see e.g. [Shi89, Theorem 0.6]). Clearly, the point P is Aut(X)-
invariant. Therefore, Lemma 2.1.2 implies that G ⊂ GL3(k). �

Lemma 6.1.4. Let X be a Fano threefold with Gorenstein terminal singularities. Suppose
that ρ(X) = 1, and one of the following possibilities holds:

(i) ι(X) = 2 and d(X) = 1;
(ii) ι(X) = 2 and d(X) = 2;
(iii) ι(X) = 1 and g(X) = 2;
(iv) ι(X) = 1, g(X) = 3, and X is a double cover of a three-dimensional quadric.

Then the group Aut(X) is Jordan with J̄
(
Aut(X)

)
6 960.

Proof. Apply Proposition 6.1.1 together with Lemma 2.5.1. �
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Lemma 6.1.5. Let X ⊂ P4 be a hypersurface of degree at least 2. Then the group Aut(X)
is Jordan with J̄

(
Aut(X)

)
6 960.

Proof. There is an embedding Aut(X) ⊂ PGL5(k), see e.g. [KPS16, Corollary 3.1.4].
Thus the assertion follows from Lemma 2.5.1. �

6.2. Complete intersection of a quadric and a cubic. Now we will describe some
properties of finite subgroups of automorphisms of a complete intersection of a quadric
and a cubic in P5.

Lemma 6.2.1. Let X ⊂ P5 be a Fano threefold with terminal Gorenstein singularities
such that ρ(X) = 1, ι(X) = 1, and g(X) = 4, i. e. X is a complete intersection of
a quadric and a cubic in P5 (see [Isk80a, Proposition IV.1.4], [PCS05, Theorem 1.6 or
Remark 4.2]). Let Q ⊂ P5 be the (unique) quadric passing through X. Then one of the
following possibilities occurs:

(i) the quadric Q is smooth; in this case there is a subgroup Aut′(X) ⊂ Aut(X) of
index at most 2 such that Aut′(X) ⊂ PGL4(k);

(ii) the quadric Q is a cone with an isolated singularity; in this case for any finite
subgroup G ⊂ Aut(X) there is an embedding

G ⊂ SO5(k)× k∗ ⊂ GL5(k);

(iii) the quadric Q is a cone whose singular locus is a line; in this case for any finite
subgroup G ⊂ Aut(X) there is a subgroup F ⊂ G of index [G : F ] 6 3 such that
there is an embedding

F ⊂ k∗ × (SO4(k)× k∗/µ2) ⊂ k∗ ×GL4(k).

Proof. The embedding X →֒ P5 is given by the anticanonical linear system on X . Hence
there is an action of the group Aut(X) on P5 that agrees with the action of Aut(X)
on X , see e.g. [KPS16, Lemma 3.1.2]. The quadric Q is Aut(X)-invariant, and the action
of Aut(X) on Q is faithful. Since the singularities of X are terminal and thus isolated,
we see that the singular locus of Q is at most one-dimensional.

Suppose that Q is non-singular. Then Q is isomorphic to the Grassmannian Gr(2, 4),
so that

Aut(Q) ∼= PGL4(k)⋊ µ2,

which gives case (i).
Therefore, we may assume that Q is singular. Then Sing (Q) is a linear subspace of P5

of dimension δ 6 1.
Suppose that δ = 0, so that Sing (Q) is a single point P . Then the point P is Aut(Q)-

invariant, and thus also Aut(X)-invariant. Let G ⊂ Aut(X) be a finite subgroup. By
Lemma 2.1.2 there is an embedding

G ⊂ GL
(
TP (Q)

)
= GL

(
TP (P

5)
) ∼= GL5(k).

Moreover, the group G acts by a character on a quadratic polynomial on TP (P
5) that

corresponds to the quadric Q. Hence G is contained in the subgroup

π−1 (PSO5(k)) ⊂ GL5(k),

where π : GL5(k) → PGL5(k) is the natural projection. This gives case (ii).
Finally, suppose that δ = 1. Let L ∼= P1 be the vertex of Q. Then L is Aut(Q)-invariant,

and thus also Aut(X)-invariant. Let G ⊂ Aut(X) be a finite subgroup. Note that X ∩L
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is non-empty and consists of at most three points. Hence there is a subgroup F ⊂ G of
index [G : F ] 6 3 such that F has a fixed point on L. Denote this point by P . By
Lemma 2.1.2 there is an embedding

F →֒ GL
(
TP (P

5)
) ∼= GL5(k).

Moreover, the representation of F in TP (P
5) splits as a sum of a one-dimensional and a

four-dimensional representations since F preserves the tangent direction TP (L) to L. Put

V = TP (P
5)/TP (L).

Then there is an embedding F →֒ F1 × F2, where F1 is a finite cyclic group, and F2

is a finite subgroup of GL(V ) ∼= GL4(k). The last thing we need to observe is that F2

preserves a quadric cone in P(V ) corresponding to an intersection of the tangent cone
to Q at P with the subspace V →֒ TP (P

5). Therefore, F2 is contained in the subgroup

π−1 (PSO4(k)) ⊂ GL4(k),

where π : GL4(k) → PGL4(k) is the natural projection. Since

π−1 (PSO4(k)) ∼= SO4(k)× k∗/µ2,

this gives case (iii) and completes the proof of the lemma. �

Corollary 6.2.2. Let X be a Fano threefold with Gorenstein terminal singularities. Sup-
pose that ρ(X) = 1, ι(X) = 1, and g(X) = 4. Then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 1920.

Proof. By Lemma 6.2.1 one of the following possibilities holds:

(i) there is a subgroup Aut′(X) ⊂ Aut(X) of index at most 2 such
that Aut′(X) ⊂ PGL4(k);

(ii) for any finite subgroup G ⊂ Aut(X) there is an embedding G ⊂ GL5(k);
(iii) for any finite subgroup G ⊂ Aut(X) there is a subgroup F ⊂ G of in-

dex [G : F ] 6 3 such that there is an embedding

F ⊂ k∗ × (SO4(k)× k∗/µ2) .

In particular, the group Aut(X) is Jordan. In case (i) one has

J̄
(
Aut(X)

)
6 2 · J̄

(
Aut′(X)

)
6 2 · J̄

(
PGL4(k)

)
= 2 · 960 = 1920

by Lemma 2.4.1. In case (ii) one has

J̄
(
Aut(X)

)
6 J̄

(
PGL5(k)

)
= 960

by Lemma 2.5.1. In case (iii) one has

J̄
(
Aut(X)

)
6 3 · J̄ (k∗ × (SO4(k)× k∗/µ2)) = 3 · J̄

(
SO4(k)

)
6 3 · 288 = 864

by Lemma 2.4.3. �
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6.3. General case. The results of §6.1 and §6.2 imply the following

Corollary 6.3.1. Let X be a Fano threefold with Gorenstein terminal singularities. Sup-
pose that ρ(X) = 1, ι(X) = 1, and g(X) 6 4. Then Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 1920.

Proof. Recall that g(X) > 2. If g(X) = 2, then Aut(X) is Jordan with J̄
(
Aut(X)

)
6 960

by Lemma 6.1.4. If g(X) = 3 and −KX is not very ample, then Aut(X) is also Jordan
with J̄

(
Aut(X)

)
6 960 by Lemma 6.1.4. If g(X) = 3 and −KX is very ample, then X is a

smooth quartic in P4 (because dim | −KX | = 4 and −K3
X = 4), so that Aut(X) is Jordan

with J̄
(
Aut(X)

)
6 960 by Lemma 6.1.5. Finally, if g(X) = 4, then the group Aut(X) is

Jordan with J̄
(
Aut(X)

)
6 1920 by Corollary 6.2.2. �

Now we are ready to study automorphism groups of arbitrary singular Gorenstein G-
Fano threefolds.

Lemma 6.3.2. Let G be a finite group, and let X be a singular Gorenstein G-Fano
threefold. Then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 9504.

Proof. Let P1, . . . , PN ∈ X be all singular points of X . The group Aut(X) acts on the
set {P1, . . . , PN}. The subgroup AutP1

(X) ⊂ Aut(X) stabilizing the point P1 has index

[Aut(X) : AutP1
(X)] 6 N.

We have

J̄
(
Aut(X)

)
6 N · J̄

(
AutP1

(X)
)
.

According to [Nam97] there exists a smoothing of X , that is a one-parameter deformation

X → B ∋ 0

such that a general fiber Xb is smooth and the central fiber X0 is isomorphic to X . One
has

(6.3.3) N 6 21− 1

2
χtop(Xb) = 20− ρ(Xb) + h1,2(Xb)

by [Nam97, Theorem 13]. Moreover, there is an identification Pic (Xb) ∼= Pic (X),
see [JR11, Theorem 1.4].

Suppose that ρ(X) > 2. Smooth Fano threefolds V whose Picard group admits an
action of a finite group G such that ρ(V )G = 1 and ρ(V ) > 1 are classified in [Pro13b].
Applying this classification to V = Xb we obtain h1,2(Xb) 6 9.

Suppose that ρ(X) = 1. If ι(X) = 2 and d(X) 6 2, then the group Aut(X) is Jordan
with J̄

(
Aut(X)

)
6 960 by Lemma 6.1.4. If ι(X) = 1 and g(X) 6 4, then Aut(X) is

Jordan with J̄
(
Aut(X)

)
6 1920 by Corollary 6.3.1. In all other cases by the classification

of smooth Fano threefolds (see [IP99, §12.2]) we have h1,2(Xb) 6 14.
Therefore, we are left with several possibilities with h1,2(Xb) 6 14. In this case (6.3.3)

implies that N 6 33. Now Corollary 4.1.3(i) implies that Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 33 · 288 = 9504. �
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7. Smooth Fano threefolds

In this section we bound weak Jordan constants for automorphism groups of smooth
Fano threefolds.

7.1. Complete intersections of quadrics. It appears that we can get a reasonable
bound for a weak Jordan constant of an automorphism group of a smooth complete
intersection of two quadrics of arbitrary dimension. Here we will use the results of §A.1.
Lemma 7.1.1. Let X ⊂ Pn, n > 4, be a smooth complete intersection of 2 quadrics.
Then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 (n + 1)!

Proof. By Proposition A.1.3 there is an exact sequence

1 −→ Γ −→ Aut(X) −→ GP −→ 1

where Γ ∼= µ
n
2 and GP ⊂ Sn+1. Therefore, the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 [Aut(X) : Γ] 6 |Sn+1| = (n+ 1)! �

In dimension 3 we can also bound weak Jordan constants for automorphism groups of
smooth complete intersections of three quadrics.

Lemma 7.1.2. Let X ⊂ P6 be a smooth complete intersection of 3 quadrics. Then the
group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 10368.

Proof. There is an exact sequence

1 → Γ → Aut(X) → PGL3(k),

where Γ ∼= µ
m
2 with m 6 6, see (A.1.2) and Corollary A.1.7. If m 6 2,

then J̄
(
Aut(X)

)
6 2304 by Lemma 2.3.4. Therefore, we assume that m > 3.

Put
V = H0

(
P6,OP6(H)

)∨
,

so that P6 is identified with P(V ). Since the anticanonical class of X is linearly equiva-
lent to a hyperplane section of X in P6, the group Aut(X) acts on V , see e.g. [KPS16,
Corollary 3.1.3]. Thus we may assume that Aut(X) ⊂ GL(V ).

Let − Id ∈ GL(V ) be the scalar matrix diag(−1, . . . ,−1). Let Γ̃ ⊂ GL(V ) be a group
generated by Γ and − Id, and let G ⊂ GL(V ) be a group generated by Aut(X) and − Id.
Since Aut(X) ⊂ GL(V ) acts faithfully on P(V ) and thus does not contain scalar matrices,
we see that

Γ̃ ∼= µ2 × Γ ∼= µ
m′

2

with m′ = m+ 1 > 4. We conclude that Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 J̄(G) 6 10368

by Lemma 2.6.3. �

Remark 7.1.3. Let X ⊂ P6 be a smooth complete intersection of 3 quadrics. Then X is
non-rational, see [Bea77a, Theorem 5.6]. Therefore, automorphism groups of varieties of
this type cannot provide examples of subgroups in Cr3(k) whose Jordan constants attain
the bounds given by Theorem 1.2.4, cf. Remark 8.2.1 below.
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7.2. Fano threefolds of genus 6. Recall that a smooth Fano threefoldX with ρ(X) = 1,
ι(X) = 1, and g(X) = 6 may be either an intersection of the Grassmannian Gr(2, 5) ⊂ P9

with a quadric and two hyperplanes, or a double cover of a smooth Fano threefold

Y = Gr(2, 5) ∩ P6 ⊂ P9

with the branch divisor B ∈ |−KY | (see [Gus82]). We will refer to the former varieties as
Fano threefolds of genus 6 of the first type, and to the latter varieties as Fano threefolds
of genus 6 of the second type.

Remark 7.2.1. In [DK15] these were called ordinary and special varieties, respectively.

Lemma 7.2.2 (cf. [DIM12, Corollary 4.2], [DK15, Proposition 3.12]). Let X be a smooth
Fano threefold with ρ(X) = 1, ι(X) = 1, and g(X) = 6. If X is of the first type, then
there is an embedding

Aut(X) →֒ Aut
(
Gr(2, 5)

) ∼= PGL5(k).

If X is of the second type, then there is a normal subgroup Γ ⊂ Aut(X) such that Γ ∼= µ2

and there is an exact sequence

1 → Γ → Aut(X) → PGL2(k).

Proof. By definition, we have a natural morphism γ : X → Gr(2, 5). By [DK15, Theo-
rem 2.9] the morphism γ is functorial. Note that γ is completely determined by what is
called GM data in [DK15], in particular it is equivariant with respect to the action of the
group Aut(X). Consider the corresponding map

θ : Aut(X) → Aut(Gr(2, 5)) ∼= PGL5(k).

Suppose that X is a Fano threefold of genus 6 of the first type. Then functoriality of γ
implies that θ is an embedding. This proves the first assertion of the lemma.

Now suppose that X is a Fano threefold of genus 6 of the second type. Then the
morphism γ is a double cover, and its image is a Fano threefold Y with ρ(Y ) = 1,
ι(Y ) = 2, and d(Y ) = 5, see [DK15, Proposition 2.20]. Let Γ ⊂ Aut(X) be the subgroup
generated by the Galois involution of the double cover γ : X → Y . Then Γ ∼= µ2 is a
normal subgroup of Aut(X), and Aut(X)/Γ embeds into Aut(Y ). On the other hand, one
has Aut(Y ) ∼= PGL2(k), see e.g. [Muk88, Proposition 4.4] or [CS16, Proposition 7.1.10].
This gives the second assertion of the lemma. �

Corollary 7.2.3. Let X be a smooth Fano threefold with ρ(X) = 1, ι(X) = 1
and g(X) = 6. Then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 960.

Proof. Suppose that X is a Fano threefold of genus 6 of the first type. Then there
is an embedding Aut(X) ⊂ PGL5(k) by Lemma 7.2.2, so that Aut(X) is Jordan
with J̄(Aut(X)) 6 960 by Lemma 2.5.1.

Now suppose that X is a Fano threefold of genus 6 of the second type. Then there is
an exact sequence

1 → Γ → Aut(X) → PGL2(k)

by Lemma 7.2.2. Therefore, Aut(X) is Jordan with J̄(G) 6 12 by Lemma 2.2.1. �
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7.3. Large degree and index. Now we consider the cases with large anticanonical
degree and large index.

Lemma 7.3.1. Let X be a smooth Fano threefold with ι(X) = 1 and g(X) > 7. Then
the group Aut(X) is Jordan with

(i) J̄
(
Aut(X)

)
6 504 if g(X) = 7;

(ii) J̄
(
Aut(X)

)
6 9922 if g(X) = 8;

(iii) J̄
(
Aut(X)

)
6 2016 if g(X) = 9;

(iv) J̄
(
Aut(X)

)
6 5760 if g(X) = 10;

(v) J̄
(
Aut(X)

)
6 40 if g(X) = 12.

Proof. Assertion (i) follows from [KPS16, Corollary 4.3.5(i)] and Remark 2.2.3. Asser-
tion (ii) follows from [KPS16, Corollary 4.3.5(ii)] and Lemma 3.4.4. Assertion (iii) follows
from [KPS16, Corollary 4.3.5(iii)] and Lemma 3.4.1. Assertion (iv) follows from [KPS16,
Corollary 4.3.5(iv)] and Lemma 3.4.2. Finally, assertion (v) follows from [KPS16, Corol-
lary 4.3.5(v)] and Lemma 2.3.1. �

Lemma 7.3.2. Let G be a finite group, and X be a smooth Fano threefold. Suppose
that ρ(X) = 1 and ι(X) > 1. Then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 960.

Proof. It is known that ι(X) 6 4. Moreover, ι(X) = 4 if and only ifX ∼= P3, and ι(X) = 3
if and only if X is a quadric in P4 (see e. g. [IP99, 3.1.15]). In the former case one
has Aut(X) ∼= PGL4(k), so that the group Aut(X) is Jordan with J̄

(
Aut(X)

)
= 960 by

Lemma 2.4.1. In the latter case the group Aut(X) is Jordan with J̄
(
Aut(X)

)
6 960 by

Lemma 6.1.5.
Thus we may assume that ι(X) = 2. Recall that 1 6 d(X) 6 5 (see e. g. [IP99, §12.2]).
If d(X) = 5, then X is isomorphic to a linear section of the Grassmannian Gr(2, 5) ⊂ P9

by a subspace P6 ⊂ P9, see [IP99, §12.2]. In this case one has

Aut(X) ∼= PGL2(k),

see [Muk88, Proposition 4.4] or [CS16, Proposition 7.1.10]. So, the group Aut(X) is
Jordan with J̄

(
Aut(X)

)
= 12 by Corollary 2.2.2.

If d(X) = 4, then X is a complete intersection of two quadrics in P5 (see [IP99, §12.2]).
Thus Aut(X) is Jordan with J̄

(
Aut(X)

)
6 720 by Lemma 7.1.1.

If d(X) = 3, then X ∼= X3 ⊂ P4 is a cubic threefold (see [IP99, §12.2]). Thus Aut(X)
is Jordan with J̄

(
Aut(X)

)
6 960 by Lemma 6.1.5.

Finally, if d(X) = 2 or d(X) = 1, then Aut(X) is Jordan with J̄
(
Aut(X)

)
6 960 by

Lemma 6.1.4. �

7.4. Large Picard rank. Finally, we deal with smooth G-Fano threefolds with Picard
rank greater than 1. We denote by W6 a smooth divisor of bidegree (1, 1) in P2 × P2.
Clearly, W6 is a Fano threefold with ι(W6) = 2 and ρ(W6) = 2.

Lemma 7.4.1. Let G be a finite group, and X be a smooth G-Fano threefold. Suppose
that ρ(X) > 1. Then Aut(X) is Jordan with J̄

(
Aut(X)

)
6 10368.

Proof. By [Pro13b] we have the following possibilities.

(i) ρ(X) = 2, ι(X) = 2, and X ∼= W6;
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(ii) ρ(X) = 3, ι(X) = 2, and X ∼= P1 × P1 × P1;
(iii) ρ(X) = 2, ι(X) = 1, and X ⊂ P2 × P2 is a divisor of bidegree (2, 2);
(iv) ρ(X) = 2, ι(X) = 1, and X is a double cover of W6 whose branch divisor S ⊂W6

is a member of the linear system | −KW6
|;

(v) ρ(X) = 2, ι(X) = 1, and X is the blow up of P3 along a curve C ⊂ P3 of degree 6
and genus 3;

(vi) ρ(X) = 2, ι(X) = 1, and X is the blow up of a smooth quadric Q ⊂ P4 along a
rational twisted quartic curve C ⊂ Q;

(vii) ρ(X) = 3, ι(X) = 1, and X is a double cover of P1 × P1 × P1 whose branch
divisor S is a member of the linear system | −KP1×P1×P1 |;

(viii) ρ(X) = 3, ι(X) = 1, and X is the blow up of W6 along a rational curve C ⊂W6

of bidegree (2, 2);
(ix) ρ(X) = 4, ι(X) = 1, and X ⊂ P1 × P1 × P1 × P1 is a divisor of multi-

degree (1, 1, 1, 1); in this case each of four projections πi : X → P1 × P1 × P1

is the blow up along an elliptic curve C which is an intersection of two members
of the linear system | − 1

2
KP1×P1×P1 |.

In case (i) one has

Aut(X) ∼= PGL3(k)⋊ µ2,

so that Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 |µ2| · J̄

(
PGL3(k)

)
= 2 · 40 = 80

by Lemma 2.3.1.
In case (ii) one has

Aut(X) ∼=
(
PGL2(k)× PGL2(k)× PGL2(k)

)
⋊S3,

so that Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 |S3| · J̄

(
PGL2(k)

)
= 6 · 123 = 10368

by Corollary 2.2.2.
In case (iii) one has ρ(X) = 2, so that the projections

pi : X →֒ P2 × P2 → P2, i = 1, 2,

are all possible Mori contractions from X . Hence the action of Aut(X) on X lifts to the
action on P2 × P2 and the embedding

p1 × p2 : X →֒ P2 × P2

is Aut(X)-equivariant. Thus

Aut(X) ⊂ Aut(P2 × P2) ∼=
(
PGL3(k)× PGL3(k)

)
⋊ µ2,

so that Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 2 · J̄

(
PGL3(k)

)2
= 2 · 402 = 3200

by Lemma 2.3.1.
In case (iv) one has ρ(X) = 2, so that two conic bundles

πi : X → W6 → P2, i = 1, 2,
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are all possible Mori contractions from X . Thus there is a subgroup Aut′(X) ⊂ Aut(X)
of index at most 2 such that the conic bundle π1 : X → P2 is Aut′(X)-equivariant.
Let G ⊂ Aut′(X) be a finite subgroup. Then one has

ρ(X/P2)G = ρ(X/P2) = 1,

so that π1 : X → P2 is a G-equivariant conic bundle. Thus Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 [Aut(X) : Aut′(X)] · J̄

(
Aut′(X)

)
6 2 · 3456 = 6912

by Lemma 5.1.1.
In case (v) one has ρ(X) = 2, so that the contraction π : X → P3 is one of the two

possible Mori contractions from X . Hence there is a subgroup Aut′(X) of index at most 2
such that π is Aut′(X)-equivariant. In particular, Aut′(X) acts on P3 faithfully, and since
the curve C ⊂ P3 is not contained in any plane, Aut′(X) acts faithfully on C as well.
Therefore, Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 [Aut(X) : Aut′(X)] · J̄

(
Aut′(X)

)
6 2 · J̄

(
Aut(C)

)
6 2 · 168 = 336

by Remark 2.2.3.
In case (vi) one has ρ(X) = 2, so that the contraction π : X → Q is one of the two

possible Mori contractions from X . Hence there is a subgroup Aut′(X) of index at most 2
such that π is Aut′(X)-equivariant. In particular, Aut′(X) acts on Q faithfully. Since
all automorphisms of Q are linear, and the curve C ⊂ Q ⊂ P4 is not contained in any
hyperplane, Aut′(X) acts faithfully on C as well. Therefore, Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 [Aut(X) : Aut′(X)] · J̄

(
Aut′(X)

)
6 2 · J̄

(
PGL2(k)

)
= 24

by Corollary 2.2.2.
In case (vii) one has ρ(X) = 3, and the map X → P1 × P1 × P1 →֒ P8 is given by the

anticanonical linear system. Three projections P1×P1×P1 → P1×P1 give us three conic
bundle structures

πi : X → P1 × P1 × P1 → P1 × P1, i = 1, 2, 3,

on X and these projections are permuted by the automorphism group Aut(X), be-
cause the morphism X → P1 × P1 × P1 is Aut(X)-equivariant. Thus there is a sub-
group Aut′(X) ⊂ Aut(X) of index at most 3 such that the conic bundle π1 : X → P1 × P1

is Aut′(X)-equivariant. Let G ⊂ Aut′(X) be a finite subgroup. Then one has

ρ(X/P1 × P1)G = ρ(X/P1 × P1) = 1,

so that π1 : X → P1 × P1 is a G-equivariant conic bundle. Thus Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 [Aut(X) : Aut′(X)] · J̄

(
Aut′(X)

)
6 3 · 3456 = 10368

by Lemma 5.1.1.
In case (viii) one has ρ(X) = 3, and three divisorial contractions

πi : X →W6, i = 1, 2, 3,

are all possible birational Mori contractions from X (see [MM82, Table 3, no. 13]). Thus
there is a subgroup Aut′(X) of index at most 3 such that π1 is Aut′(X)-equivariant. In
particular, Aut′(X) acts on W6 faithfully. The morphism π1 is a blow up of a rational
curve C1 ⊂W6 of bi-degree (2, 2). Since the images of C1 under both projections

C1 →֒ W6 → P2

35



span P2, we see that Aut′(X) acts on C1 faithfully as well. Therefore, Aut(X) is Jordan
with

J̄
(
Aut(X)

)
6 [Aut(X) : Aut′(X)] · J̄

(
Aut′(X)

)
6 3 · J̄

(
PGL2(k)

)
= 36

by Corollary 2.2.2.
In case (ix) one has ρ(X) = 4, and four projections

πi : X →֒ P1 × P1 × P1 × P1 → P1 × P1 × P1, i = 1, 2, 3, 4,

are all possible birational Mori contractions from X (see [MM82, Table 4, no. 1]). Thus
there is a subgroup Aut′(X) ⊂ Aut(X) of index at most 4 such that the divisorial con-
traction

π1 : X → P1 × P1 × P1

is Aut′(X)-equivariant. The morphism π1 is a blow up of an elliptic curve

C1 ⊂ P1 × P1 × P1

of tri-degree (1, 1, 1). Since all three projections

C1 →֒ P1 × P1 × P1 → P1

are dominant, one can see that Aut′(X) acts on C1 faithfully as well. Therefore, Aut(X)
is Jordan with

J̄
(
Aut(X)

)
6 [Aut(X) : Aut′(X)] · J̄

(
Aut′(X)

)
6 4 · J̄

(
Aut(C)

)
6 24

by Remark 2.2.3. �

Remark 7.4.2 (cf. Remark 7.1.3). Let X be a smooth G-Fano threefold with ρ(X) > 1,
and assume the notation of the proof of Lemma 7.4.1. Then one has J̄

(
Aut(X)

)
< 10368

with an exception of case (ii), and with a possible exception of case (vii). However, if X
is like in case (vii), then it is non-rational, see [AB92]. Therefore, automorphism groups
of varieties of this type cannot provide examples of subgroups in Cr3(k) whose Jordan
constants attain the bounds given by Theorem 1.2.4, cf. Remark 8.2.1 below.

Remark 7.4.3. In general, studying Fano varieties with large automorphism groups is an
interesting problem on its own. In many cases such varieties exhibit intriguing birational
properties, see e.g. [CS11], [CS16], [PS16b].

8. Proof of the main theorem

In this section we complete the proof of Theorem 1.2.4.

8.1. Summary for Fano threefolds. We summarize the results of §6 and §7 as follows.

Proposition 8.1.1. Let X be a Fano threefold with terminal Gorenstein singularities.
Suppose that ρ(X) = 1. Then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 10368.

Proof. If X is singular, the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 9504

by Lemma 6.3.2. Therefore, we assume that X is smooth. If ι(X) > 1, then the
group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 960
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by Lemma 7.3.2.
It remains to consider the case when X is a smooth Fano threefold

with Pic (X) = Z ·KX . According to the classification (see e. g. [IP99, §12.2]), one has
either 2 6 g(X) 6 10, or g(X) = 12. If g(X) 6 4, then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 1920

by Corollary 6.3.1. If g(X) = 5, then the variety X is an intersection of three quadrics
in P6 (see [IP99, §12.2]), so that the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 10368

by Lemma 7.1.2. If g(X) = 6, then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 960

by Corollary 7.2.3. Finally, if g(X) > 7, then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 9922

by Lemma 7.3.1. �

Corollary 8.1.2. Let G be a finite group, and X be a (Gorenstein) G-Fano threefold.
Then the group Aut(X) is Jordan with

J̄
(
G
)
6 10368.

Proof. If X is singular, the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 9504

by Lemma 6.3.2. If X is smooth and ρ(X) > 1, then the group Aut(X) is Jordan with

J̄
(
Aut(X)

)
6 10368

by Lemma 7.4.1. Therefore, we may assume that ρ(X) = 1, so that the group Aut(X) is
Jordan with

J̄
(
Aut(X)

)
6 10368

by Proposition 8.1.1. �

Remark 8.1.3 (cf. Remark 3.2.4). In several cases one can produce better bounds for
weak Jordan constants of certain Fano threefolds applying a bit more effort. We did not
pursue this goal since the current estimates are already enough to prove our main results.

8.2. Proof and concluding remarks. Now we are ready to prove Theorem 1.2.4.

Proof of Theorem 1.2.4. Let X be a rationally connected threefold over an arbitrary
field k of characteristic 0, and let G ⊂ Bir(X) be a finite group. It is enough to es-
tablish the upper bounds for J̄(G) and J(G). Moreover, to prove the bounds we may
assume that k is algebraically closed.

Regularizing the action of G and taking an equivariant desingularization (see
e. g. [PS14, Lemma-Definition 3.1]), we may assume that X is smooth and G ⊂ Aut(X).
Applying G-equivariant Minimal Model Program to X (which is possible due to an equi-
variant version of [BCHM10, Corollary 1.3.3] and [MM86, Theorem 1], since rational
connectedness implies uniruledness), we may assume that either there is a GQ-conic
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bundle structure φ : X → S for some rational surface S, or there is a GQ-del Pezzo fibra-
tion φ : X → P1, or X is a GQ-Fano threefold. Therefore, we have

J̄(G) 6 10368

by Lemmas 5.1.1 and 5.2.5 and Corollary 8.1.2. Applying Remark 1.2.2, we obtain the
inequality

J(G) 6 103682 = 107495424.

If k is algebraically closed, then the group Cr3(k) contains a group

Aut
(
P1 × P1 × P1

)
⊃

(
A5 × A5 × A5

)
⋊S3,

and the largest abelian subgroup of the latter finite group has order 125. Therefore, one
has

J̄
(
Cr3(k)

)
= 10368.

�

Remark 8.2.1. We do not know whether the bound for the (usual) Jordan constant for
the group Cr3(k) over an algebraically closed field k of characteristic 0 provided by Theo-
rem 1.2.4 is sharp or not. The Jordan constant of the group Aut(P1 × P1 × P1) is smaller
than that, but there may be other automorphism groups of rational varieties providing
this value, cf. Lemma 5.2.5. We also do not know the actual value of J

(
Cr2(k)

)
, but

we believe that it can be found by a thorough (and maybe a little bit boring) analysis of
automorphism groups of del Pezzo surfaces and two-dimensional conic bundles, since in
dimension 2 much more precise classification results are available.

Remark 8.2.2. In dimension 4 and higher we cannot hope (at least on our current level
of understanding the problem) to obtain results similar to Theorem 1.2.4. Indeed, in
dimension 3 we use the classification of terminal singularities to obtain bounds for Jordan
constants of automorphism groups of terminal Fano varieties and Mori fiber spaces. The
result of [Kol11, Theorem 1] shows that a “nice” classification of higher dimensional
terminal singularities is impossible, at least in the setup we used in Lemma 4.1.1 and
Corollary 4.1.3, due to unboundedness of the dimensions of Zariski tangent spaces of
their index one covers.

Appendix A. Automorphisms of some complete intersections

In this section we collect some (well-known) results about automorphisms of complete
intersections of quadrics, and complete intersections in weighted projective spaces.

A.1. Complete intersections of quadrics. Let X ⊂ Pn = P(V ) be a smooth complete
intersection of r quadrics. Let IX be the ideal sheaf of X , so that

W = H0(P(V ), IX(2))

is the r-dimensional vector space of quadrics passing through X . Let

q : W →֒ Sym 2V ∨

be the natural embedding.

Lemma A.1.1. Suppose that n > 2r. Then any automorphism of X is induced by an
automorphism of P(V ) and induces an automorphism of P(W ).
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Proof. By adjunction formula one has −KX ∼ (n + 1 − 2r)H , where H is the class of
a hyperplane section of X . Thus X is Fano, and in particular there is no torsion in the
Picard group of X . Therefore, the class of H in Pic (X) is Aut(X)-invariant, and there
is a natural embedding

Aut(X) →֒ PGL(V ).

Furthermore, the twisted ideal sheaf IX(2) is invariant, hence the subspace

P(W ) ⊂ P(Sym 2V ∨)

is invariant under the action of Aut(X), and so we also have a map

Aut(X) → PGL(W ). �

In the remaining part of this section we denote by AutW (X) the image of the morphism
Aut(X) → PGL(W ) constructed in Lemma A.1.1, and by Γ(X) its kernel. Thus we have
an exact sequence

(A.1.2) 1 → Γ(X) → Aut(X) → AutW (X) → 1.

Note that the group Γ(X) is the subgroup of Aut(X) which preserves every quadric in
the linear system of quadrics passing through X . In what follows we discuss what one
can say about the groups Γ(X) and AutW (X) in some special cases.

First, if r = 1 then W = k, so AutW (X) = 1 and

Γ(X) = Aut(X) ∼= PSOn+1(k).

Now assume that r = 2.

Proposition A.1.3. Let X ⊂ Pn, n > 4, be a smooth complete intersection of two
quadrics. Then Γ(X) ∼= µ

n
2 and

AutW (X) ⊂ PGL2(k).

Moreover, there is also an embedding

AutW (X) ⊂ Sn+1.

Proof. In some homogeneous coordinates x0, . . . , xn on Pn the variety X is given by equa-
tions f1 = f2 = 0, where

(A.1.4) f1 = x20 + . . .+ x2n, f2 = λ0x
2
0 + . . .+ λnx

2
n

for some pairwise distinct numbers λi (see e. g. [Rei72, Proposition 2.1]). It is easy to see
that the singular quadrics in the pencil generated by f1 and f2 are given by equations

f2 − λif1 = 0,

and their singular loci are the points (1 : 0 : . . . : 0), . . . , (0 : . . . : 0 : 1).
Since the subgroup Γ(X) ⊂ Aut(X) preserves every quadric in the pencil, it also

preserves the singular loci of the singular quadrics. Therefore, it is a subgroup in the
standard torus (formed by the diagonal matrices) in PGL(V ). Since it also fixes the
quadric f1 = 0, it follows that all diagonal entries of the matrix that represents an
element of Γ(X) have the same square. So, rescaling the matrices if necessary, we may
assume that all diagonal entries are ±1. Therefore, one has

(A.1.5) Γ(X) ∼= µ
n+1
2 /µ2

∼= µ
n
2 ,

because we have to quotient out by the transformation ± IdV acting trivially on P(W ).
39



Since dim(W ) = 2, we have AutW (X) ⊂ PGL(W ) ∼= PGL2(k). On the other hand, the
group AutW (X) permutes the points of P(W ) corresponding to singular quadrics, hence
there is a homomorphism AutW (X) → Sn+1. It is an embedding since any automorphism
of the projective line P(W ) ∼= P1 that preserves n+ 1 > 5 points is trivial. �

Remark A.1.6. Assume the notation of Proposition A.1.3. Then the group Γ(X) is gen-
erated by the n+ 1 reflections γi : xi 7→ −xi which satisfy the obvious relation

γ1 ◦ · · · ◦ γn+1 = 1,

see (A.1.5).
Now consider the case n = 5, i.e. X ⊂ P5 is a smooth three-dimensional intersection

of two quadrics. Let B be the corresponding hyperelliptic curve, see [Rei72, Proposi-
tion 2.1], and also [KPS16, Remark 2.2.11]. Let Σ(X) be the Hilbert scheme of lines on
X (see [KPS16, §2.1]). Then Σ(X) is an abelian surface isomorphic to the Jacobian of
B, and also isomorphic to the intermediate Jacobian of X (see [GH78, §6]). The group
Γ(X) consists of elements γ of the types listed in Table 1. Here by Fix(γ, Z) we denote
the locus of fixed points of an automorphism γ of a variety Z.

Table 1. Elements of Γ(X)

γ # Fix(γ,X) Fix(γ,Σ(X))

1 1 X Σ(X)

γi 6 del Pezzo surface of degree 4 16 points

γi ◦ γj, i 6= j 15 elliptic curve ∅

γi ◦ γj ◦ γk, i 6= j 6= k 6= i 10 8 points 16 points

Put
Γ0(X) = {1, γi ◦ γj | i 6= j}.

Then Γ0(X) is a subgroup of index 2 in Γ(X). Let σ be the homomorphism

σ : Γ(X) → Γ(X)/Γ0(X) ∼= {±1} ∼= µ2.

Since Σ(X) is an abelian surface, one has H2(Σ(X),Z) ∼= Λ2H1(Σ(X),Z). We see from
the topological Lefschetz fixed point formula and Table 1 that Γ(X) acts on H3(X,Z)
and H1(Σ(X),Z) via

γ(x) = σ(γ) · x.
Thus we have the following commutative diagram

Aut(X) �
�

//

ν1

��

ν

&&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

Aut(Σ(X))

ν2

��

Aut(B)
∼=

// Aut(Jac(B))
∼=

))❘
❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

Aut(J(X))
∼=

// Aut(Alb(Σ(X)))

where J(X) is the intermediate Jacobian of X . The elements of the kernel of

ν : Aut(X) → Aut(B)
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act trivially on our pencil of quadrics, and each γi switches two families of planes on
smooth quadrics. Therefore, one has Ker ν = Γ0(X), and ν(γi) is the hyperelliptic invo-
lution of the curve B. Furthermore, Ker ν2 is the subgroup of translations and

Aut(X) ∩ Ker ν2 = Ker ν = Γ0(X).

This shows that the kernel of the homomorphism

ν1 : Aut(X) → Aut(J(X))

coincides with Γ0(X). See also [Pan15], [CPZ15].

An easy consequence of Proposition A.1.3 is the following result.

Corollary A.1.7. For any 2 6 r 6 n/2 we have Γ(X) ∼= µ
m
2 for some m 6 n.

Proof. Let Q and Q′ be two general quadrics passing through X . Then Y = Q ∩ Q′ is a
complete intersection of Q and Q′. Moreover, Y is non-singular outside X by Bertini’s
theorem, and Y is non-singular at the points of X since X is a complete intersection
of Q, Q′, and several other quadrics.

Since Γ(X) preserves every quadric passing through X , it also preserves the quadrics
in the pencil generated by Q and Q′, hence Γ(X) ⊂ Γ(Y ). So, the claim follows from
Proposition A.1.3. �

We can describe the cases when Γ(X) 6= 1. This, in fact, is equivalent to “strict
semistability” of q, i.e. to the situation when

V = V0 ⊕ V1 ⊕ . . .⊕ Vm

and q = q0 + q1 + . . .+ qm, where

qi :W → Sym 2V ∨
i .

In the example below all Vi are one-dimensional.

Example A.1.8. Let X ⊂ Pn be given by r 6 n equations

λ10x
2
0 + λ11x

2
1 + . . .+ λ1nx

2
n = 0, . . . , λr0x

2
0 + λr1x

2
1 + . . .+ λrnx

2
n = 0,

where λij ∈ k are sufficiently general. Then X is a smooth complete intersection of r
quadrics, and clearly all diagonal matrices with entries ±1 preserve each of the quadrics.
Therefore, in this case one has Γ(X) ∼= µ

n
2 . This shows that the group Γ(X) may be

nontrivial for any r.

Now we will consider intersections of three quadrics. Let ∆ be a reduced con-
nected curve. Recall that ∆ is said to be stable if its singularities are nodes, and ∆
has no infinitesimal automorphisms. The automorphism group of a stable curve is fi-
nite [DM69, Theorem 1.11]. Note also that any nodal plane curve of degree at least 4 is
stable (see e.g. [Has99, Proposition 2.1]).

Lemma A.1.9. Let X ⊂ Pn, n > 6, be a smooth complete intersection of three quadrics.
Then AutW (X) acts faithfully on a stable curve. In particular, the group Aut(X) is finite.

Proof. Let ∆ ⊂ P2 = P(W ) be the curve that parameterizes degenerate quadrics passing
through X . This curve is usually called the Hesse curve of X (see [Tyu75, §2.2]). One
has

deg∆ = n + 1 > 7.
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The curve ∆ is Aut(X)-invariant. Since it is not a line, we conclude that AutW (X) acts
faithfully on ∆. It is well known that the curve ∆ is nodal; this follows, for example,
from [Bea77b, Proposition 1.2(iii)] applied to the quadric bundle over P2 that is obtained
by blowing up Pn along X . Thus, the curve ∆ is stable.

As we noticed above, stability of ∆ implies finiteness of AutW (X). On the other
hand, Γ(X) is finite by Corollary A.1.7. So, finiteness of Aut(X) follows from exact
sequence (A.1.2). �

A.2. Complete intersections in weighted projective spaces. In this section we
discuss the automorphism groups of complete intersections in weighted projective spaces.
Recall that a weighted projective space P(a0, . . . , an), n > 1, is defined as

P(a0, . . . , an) = Proj k [x0, . . . , xn] ,

where the variables x0, . . . , xn have (positive integer) weights a0, . . . , an, respectively (see
[Dol82]). Also, it can be constructed as a quotient

P(a0, . . . , an) =
(
An \ {0}

)
/k∗, λ : (x0, . . . , xn) 7→ (λa0x0, . . . , λ

anxn).

In a standard way, a weighted projective space P = P(a0, . . . , an) is equipped with rank
1 coherent sheaves OP(m), m ∈ Z. These sheaves are divisorial but non-invertible in
general (see [Dol82, §1]).

Any weighted projective space is isomorphic to a well-formed weighted projective space,
i.e. a weighted projective space P(a0, . . . , an) such that the greatest common divisor of
any n among the n + 1 weights a0, . . . , an equals 1 (see [Dol82, 1.3.1] for details).

Let Cox(P) be the Cox ring of P, see [CLS11, §5.1 and §5.2] or [ADHL15, § I.4.1] for a
definition.

Lemma A.2.1. Suppose that the weighted projective space P = P(a0, . . . , an) is well-
formed. Then the following assertions hold.

(i) The group Cl (P) ∼= Z is generated by the class of OP(1).
(ii) One has a canonical isomorphism of Z-graded rings

Cox(P) ∼=
⊕

m>0

H0(P,OP(m)) ∼= k[x0, . . . , xn],

where the weight of the variable xi is defined to be ai.

Proof. We have the standard exact sequence

(A.2.2) 0 −→ Z ·Di −→ Cl (P) −→ Cl (U0) −→ 0,

where

U0 = P \D0
∼= An/µa0

and the action of µa0 on An is diagonal with weights (a1, . . . , an). By our well-formedness
assumption gcd(a1, . . . , an) = 1, i.e. the action of µa0 on An is free in codimension 1.
Therefore, Cl (U0) ∼= Z/a0Z and Cl (P) ∼= Z ⊕ T , where T is a finite cyclic group whose
order divides a0. By symmetry the order of T divides ai for all i and again by our
well-formedness assumption T = 0. Thus Cl (P) ∼= Z. Let D be the positive generator
of Cl (P) and let Di be the effective Weil divisor given by xi = 0. Since Cl (U0) ∼= Z/a0Z,
the sequence (A.2.2) shows D0 ∼ a0D and similarly Di ∼ aiD for all i. By definition of
sheaves OP(m) we have OP(ai) ∼= OP(Di). This proves assertion (i).
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Now one can show that the Serre homomorphism

k[x0, . . . , xn]m −→ H0(P,OP(m))

is an isomorphism (see e.g. [Dol82, 1.4.1]). Keeping in mind the definition of the grading
on Cox(P), see [CLS11, §5.2], we get the required isomorphism of Z-graded rings, which
proves assertion (ii). �

Remark A.2.3. Lemma A.2.1(ii) is given as [CLS11, Exercise 5.2.2]; the proof is based
on [CLS11, Example 5.1.14] and [CLS11, Exercises 4.1.5 and 4.2.11]. Lemma A.2.1(i)
is [CLS11, Exercise 4.1.5]. In both cases one can find some details clarified in [CLS]. The
proof relies on the description of P as a toric variety given in [CLS11, Example 3.1.17],
which uses a well-formedness assumption. All the rest is a standard techniques of working
with the divisor class group of a toric variety based on [CLS11, Theorem 4.1.3].

Consider the polynomial ring R = k[x0, . . . , xn] as a graded k-algebra R =
⊕

i>0Ri

with grading given by deg xi = ai > 0. In particular, one has R0 = k. Denote by R6m

the graded vector subspace
⊕

i6mRi ⊂ R.

Lemma A.2.4. Let Um ⊂ Rm be the intersection of Rm with the subalgebra of R generated
by R6m−1, and put

km = dimRm − dimUm.

Suppose that R is finitely generated, so that there is a positive N such that km = 0
for m > N . Put

Γ = GLk1(k)× . . .×GLkN .

Then Aut(R), regarded as the automorphism group of the graded algebra R, contains the
group Γ, and any reductive subgroup of Aut(R) is isomorphic to a subgroup of Γ.

Proof. The group Aut(R) acts on every vector space Rm so that the subspace Um is
Aut(R)-invariant. Choose Vm ⊂ Rm to be a vector subspace such that

Um ⊕ Vm = Rm.

One has km = dim Vm. This gives an obvious action of Γ on R.
Now let G ⊂ Aut(R) be a reductive subgroup. Then one can choose a G-invariant

vector subspace V ′
m ⊂ Rm such that

Um ⊕ V ′
m = Rm.

Moreover, the action of G on R is recovered from its action on
⊕

V ′
m. Since V ′

m
∼= Vm,

this gives the second assertion of the lemma. �

We will use the abbreviation

(ak11 , . . . , a
kN
N ) = (a1, . . . , a1︸ ︷︷ ︸

k1 times

, . . . , aN , . . . , aN︸ ︷︷ ︸
kN times

),

where k1, . . . , kN are allowed to be any non-negative integers.

Proposition A.2.5. Suppose that the weighted projective space P = P(ak11 , . . . , a
kN
N ) is

well-formed. Let RU be the unipotent radical of the group Aut(P), so that the quotient

Autred(P) = Aut(P)/RU

is reductive. Then

Autred
(
P
) ∼=

(
GLk1(k)× . . .×GLkN (k)

)
/k∗,
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where k∗ embeds into the above product by

(A.2.6) t 7→ (ta1Idk1 , . . . , t
aN IdkN ).

Here Idk denotes the identity k × k-matrix.

Proof. Since P is well-formed, by Lemma A.2.1(ii) one has an isomorphism of Z-graded
rings

Cox(P) ∼= k

[
x
(1)
1 , . . . , x

(k1)
1 , . . . , x

(1)
N , . . . , x

(kN )
N

]
,

where the weight of the variable x
(j)
i is defined to be ai. The action of k∗ on Cox(P)

defined by (A.2.6) agrees with this grading. One has

SpecCox(P) ∼= Ak1+...+kN .

Let Ãut(P) be the normalizer of k∗ in the group

Γ = Aut
(
Ak1+...+kN \ {0}

) ∼= Aut0
(
Ak1+...+kN

)
.

Then Γ naturally acts on Cox(P), that is identified with the ring of regular functions

on Ak1+...+kN \ {0}. Moreover, Ãut(P) is actually a centralizer of k∗ in Γ, since all
weights of the action of k∗ on Cox(P) are positive (and Cox(P) splits into a sum of

eigen-spaces of k∗). Thus Ãut(P) is isomorphic to the group of graded automorphisms of
the ring Cox(P) by [Cox95, Theorem 4.2(iii)].

According to the Levi decomposition there exists a reductive subgroup L̃ ⊂ Ãut(P) such

that L̃ ∼= Ãut(P)/R̃U , where R̃U is the unipotent radical of Ãut(P). By Lemma A.2.4 one
has

Ãut(P)/R̃U
∼= L̃ ∼= GLk1(k)× . . .×GLkN (k).

On the other hand, by [Cox95, Theorem 4.2(ii)] one has

1 → k∗ → Ãut(P) → Aut(P) → 1,

and the assertion follows. �

Remark A.2.7. The assertion of Proposition A.2.5 fails without the assumption that the
weighted projective space P is well-formed. One can take the weighted projective line

P(1, 2) ∼= P1

as a counterexample.

Lemma A.2.8. Let P = P(ak11 , . . . , a
kN
N ) be a well-formed weighted projective space such

that a1 < . . . < aN−1 < aN . Let G ⊂ Aut(P) be a finite subgroup. Assume that kN = 1.
Then for some positive integer r there is a central extension

(A.2.9) 1 → µr → G̃→ G→ 1

with

G̃ ⊂ GLk1(k)× . . .×GLkN−1
(k).

Proof. Let RU ⊂ Aut(P) be the unipotent radical of Aut(P). Since any nontrivial element
of a unipotent group has infinite order, the intersection G∩RU is trivial, hence G embeds
into the reductive quotient

Autred(P) = Aut(P)/RU .
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Consider the embedding

k∗ →֒ GLk1(k)× . . .×GLkN (k)

given by formula (A.2.6). By Proposition A.2.5 one has

Autred
(
P
) ∼=

(
GLk1(k)× . . .×GLkN (k)

)
/k∗,

Consider the subgroup

SLk1,...,kN (k) =
{
(g1, . . . , gN) ∈ GLk1(k)× . . .×GLkN (k)

∣∣
N∏

i=1

det(gi) = 1
}
.

in GLk1(k) × . . . × GLkN (k). This group intersects with the above k∗ along µr ⊂ k∗,

where r =
∑N

i=1 aiki. Moreover, we have

Autred(P) ∼= SLk1,...,kN (k)/µr

Denote the preimage of G in SLk1,...,kN (k) by G̃. Then there is a central extension (A.2.9).
So, it remains to notice that as kN = 1, we have

SLk1,...,kN−1,kN (k)
∼= GLk1(k)× . . .×GLkN−1

(k). �

Let Y be a normal projective variety and let A be a Weil divisor on Y . Put

Rm(Y,A) = H0
(
Y,OY (mA)

)
.

Then

R(Y,A) =
∞⊕

m=0

Rm(Y,A)

has a natural structure of a graded k-algebra.

Remark A.2.10. If the divisor A is ample, then the algebra R(Y,A) is finitely generated,
and Y ∼= Proj(R(Y,A)).

As before, define a (graded) vector subspace

R6N(Y,A) =
⊕

m6N

Rm(Y,A) ⊂ R(Y,A).

Lemma A.2.11. Let Y be a normal projective variety with an action of a group Γ, and A
be an ample Weil divisor on Y . Suppose that the class of A in Cl (Y ) is Γ-invariant. Then
for some positive integer r there is a central extension

(A.2.12) 1 → µr → Γ̃ → Γ → 1

such that Γ̃ acts on the algebra R(Y,A), and this action induces the initial action of Γ
on Y .

Proof. One has
Y ∼= Proj

(
R(Y,A)

)
.

The algebra R(Y,A) is generated by its vector subspace R6N(Y,A) for some N . Now it
suffices to define an action of an appropriate central extension (A.2.12) on Rm(Y,A) for
each 1 6 m 6 N (see e.g. [KPS16, §3.1]). Taking r to be sufficiently divisible, we may

assume that Γ̃ acts on the whole vector space R6N(Y,A), which gives the desired action
on the algebra R(Y,A). �

45



Lemma A.2.13 (cf. Lemma A.2.4). Let Y be a normal projective variety with an action
of a finite group Γ, and A be an ample Weil divisor on Y . Suppose that the class of A
in Cl (Y ) is Γ-invariant and R(Y,A) is generated by R6N(Y,A). For 1 6 m 6 N let
Um ⊂ Rm(Y,A) be the intersection of Rm(Y,A) with the subalgebra of R(Y,A) generated
by R6m−1(Y,A), and put

km = dimRm(Y,A)− dimUm.

Then there is a natural embedding

Y →֒ P = P
(
1k1, . . . , NkN

)

and an action of Γ on P that induces the initial action of Γ on Y .

Proof. By Lemma A.2.11 there is an action of a finite central extension Γ̃ of Γ on R(Y,A)

that induces the initial action of Γ on Y . In particular, the group Γ̃ acts on every vector
space Rm(Y,A). Obviously, the subspace Um is Γ̃-invariant. Choose Vm ⊂ Rm(Y,A) to
be a Γ̃-invariant vector subspace such that

Um ⊕ Vm = Rm(Y,A).

One has km = dimVm. Let x
(1)
m , . . . , x

(km)
m be a basis in Vm. Then there is a natural

surjection

k

[
x
(1)
1 , . . . , x

(k1)
1 , . . . , x

(1)
N , . . . , x

(kN )
N

]
→ R(Y,A)

that induces an embedding

Y ∼= Proj
(
R(Y,A)

)
→֒ Proj

(
k

[
x
(1)
1 , . . . , x

(k1)
1 , . . . , x

(1)
N , . . . , x

(kN )
N

])
= P.

Note that the action of Γ̃ on P factors through the action of Γ on P, and this action clearly
induces the initial action of Γ on Y . �
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