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p-SUBGROUPS IN THE SPACE CREMONA GROUP

YURI PROKHOROV AND CONSTANTIN SHRAMOV

Abstract. We prove that if X is a rationally connected threefold and G

is a p-subgroup in the group of birational selfmaps of X , then G is an
abelian group generated by at most 3 elements provided that p > 17.
We also prove a similar result for p > 11 under an assumption that G

acts on a (Gorenstein) G-Fano threefold, and show that the same holds
for p > 5 under an assumption that G acts on a G-Mori fiber space.
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1. Introduction

Let k be an algebraically closed field of characteristic 0. The Cremona
group Crr(k) of rank r is the group of birational selfmaps of the projective
space Prk. Classification of finite subgroups of Cremona groups is a classical
problem which goes back to works of E. Bertini, G. Castelnuovo, S. Kantor,
and others. For Cremona group of rank 2 there is a classification of finite
subgroups, see [Bla09], [DI09a]; some results are also known for non-closed
fields [Ser09c], [DI09b], [Yas16].
For rank 3 and higher it is generally understood that no reasonable ex-

plicit classification of finite subgroups is possible. However, there are var-
ious boundedness properties of subgroups of Cremona groups (or, more
generally, subgroups of birational automorphism groups of arbitrary ratio-
nally connected varieties) that are partially proved and partially expected
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to hold, see [Ser09c], [Ser09a], [Pop14], [PS16b], [PS14], [PS16a], and ref-
erences therein. A particular case that is well studied is the case of simple
non-abelian groups; one can find a classification of such subgroups of Cr3(k)
in [Pro12].
Recall that a p-group is a finite group of order pk, where p is a prime.

Such groups are somewhat opposite to simple non-abelian groups from the
point of view of group theory. However, they have various nice properties,
and classifying p-subgroups of birational automorphism groups looks an
interesting problem (see [Bea07], [Pro11], [Pro14]).
J.-P. Serre [Ser09c, §6] asked if the following boundedness property holds

for p-subgroups of Cremona groups.

Question 1.1. Is it true that for any sufficiently large prime number p (de-
pending on r), every finite p-subgroup of Crr(k) is abelian and is generated
by at most r elements?

The positive answer to this question was obtained
in [Ser09c, Theorem 5.3], [PS16b, Theorem 1.10] in dimension at most 3,
and in arbitrary dimension modulo so-called Borisov–Alexeev–Borisov con-
jecture; the latter conjecture was recently proved in [Bir16, Theorem 1.1].
Moreover, the following result is implied by [PS16a, Theorem 1.2.4].

Theorem 1.2. Let X be a rationally connected threefold and G be a finite
p-subgroup of Bir(X). Suppose that p > 10368. Then G is an abelian group
generated by at most 3 elements.

If we restrict ourselves to the case of abelian p-groups, more precise results
are available.

Theorem 1.3 ([Bea07]). Let G be an abelian p-subgroup of Cr2(k). Then G
is generated by at most r elements, where

r 6











4 if p = 2,

3 if p = 3,

2 if p > 5.

For any p this bound is attained for some abelian p-subgroup G ⊂ Cr2(k).

Theorem 1.4 ([Pro11], [Pro14]). Let X be a rationally connected threefold
and G be an abelian p-subgroup of Bir(X). Then G is generated by at most r
elements, where

r 6



















6 if p = 2,

5 if p = 3,

4 if p = 5, 7, 11, or 13,

3 if p > 17.
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For any p > 17 and for p = 2 this bound is attained for some abelian
p-subgroup G ⊂ Cr3(k).

The goal of this paper is to prove the following refinement of Theorem 1.2.

Theorem 1.5. Let X be a rationally connected threefold and G ⊂ Bir(X)
be a p-subgroup. Suppose that p > 17. Then G is an abelian group generated
by at most three elements.

Actually, we deduce Theorem 1.5 from the following fact that looks in-
teresting on its own.

Theorem 1.6 (cf. [Ser09b, Theorem 1.2], [PS16b, Theorem 4.2]). Let X be
a projective rationally connected threefold and G ⊂ Aut(X) be a p-subgroup.
Suppose that p > 17. Then G has a fixed point on X.

In course of the proof of Theorem 1.5, we also establish the following
result in dimension 2 (this can be deduced from the classification of finite
subgroups of Cr2(k) obtained by I. Dolgachev and V. Iskovskikh in [DI09a],
but our proof is short and self-contained).

Proposition 1.7. Let S be a rational surface, and G ⊂ Cr2(k) be a p-
subgroup. Suppose that p > 5. Then G is an abelian group generated by at
most two elements.

Similarly to the case of Theorem 1.5, we derive Proposition 1.7 from the
following fact.

Proposition 1.8. Let S be a projective rational surface, and G ⊂ Aut(S)
be a p-group. Suppose that p > 5. Then G has a fixed point on S.

According to [PS16b, Theorem 4.2] and [Bir16, Theorem 1.1], a general-
ization of Proposition 1.8 and Theorem 1.6 holds in any dimension; however,
obtaining an explicit bound here seems to be out of reach for our techniques.
At the moment we are not aware of any examples of p-groups violating the

assertion of Theorem 1.5 for p > 5. This makes us suspect that the bound
provided by Theorem 1.5 may be improved. Also, the following question
looks interesting.

Question 1.9. Let X be a projective rational variety of dimension r, and
G ⊂ Aut(X) be a p-subgroup that cannot be generated by less than r ele-
ments. Suppose that p is sufficiently large. Is it true that X is rational? Is
it true that G is contained in a r-dimensional torus acting on X?

The plan of the paper is as follows. In §2 we consider several easy ex-
amples of “large” 2- and 3-groups acting on rational surfaces and rationally
connected threefolds. In §3 we collect auxiliary facts about linear represen-
tations of p-groups. In §4 we discuss lifting properties for fixed points of
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p-groups along extremal contractions following [PS16b, §3]. In §5 we study
fixed points of p-groups on rational surfaces, and prove Propositions 1.8
and 1.7; as a consequence, we prove Corollary 5.4, that is a more precise
analog of Theorem 1.5 in this case. In §6 we describe invariant anticanonical
divisors for p-groups acting on Fano threefolds, and prove Corollary 7.12,
that is a more precise analog of Theorem 1.5 in this case. In §7 we study
fixed points of p-groups on Gorenstein Fano threefolds. In §8 we prove
Theorems 1.6 and 1.5 and make concluding remarks.
Throughout the paper we work over an algebraically closed field k of

characteristic 0. All varieties are assumed to be projective. By µn we denote
the cyclic group of order n. We will always denote by p some prime number.
For a finite p-group G we denote the minimal number of its generators
by r(G).
We are grateful to A. Kuznetsov and L. Rybnikov for useful discussions.

2. Examples

For an arbitrary integer n, the group GLr(k) ⊂ Crr(k) contains a sub-
group isomorphic to µ

r
n. In this section we give several examples of more

complicated p-subgroups of Cremona groups for p = 2 and p = 3.
Recall that an elementary abelian p-group is a group isomorphic to µ

r
p

for some r.

Remark 2.1. Let G be a finite p-group and let Φ(G) be its Frattini sub-
group, that is, the intersection of all maximal proper subgroups of G.
Then G/Φ(G) is an elementary abelian p-group. By Burnside’s basis theo-
rem [Hal76, Theorem 12.2.1] we have r(G) = r(G/Φ(G)).

Example 2.2. Let Q ∼= µ2 × µ2 be the subgroup of Aut(P1) ∼= PGL2(k)
generated by the matrices

(√
−1 0
0 −

√
−1

)

,

(

0
√
−1√

−1 0

)

.

Then Aut(P1 × P1 × P1) contains a non-abelian subgroup

G = (Q×Q×Q)⋊ µ2,

where µ2 acts on P1 × P1 × P1 by permutation of the first two factors.
Using Remark 2.1, one can compute that r(G) = 5. Note that for the
group G′ = Q×Q×Q we have G′ ∼= µ

6
2, so that r(G′) > r(G). The

groups G and G′ have no fixed points on P1 × P1 × P1.

Example 2.3. Let Γ′ ⊂ PGL4(k) be the group that is generated
by multiplications of the homogeneous coordinates by cubic roots of 1,
and Γ ⊂ PGL4(k) be the group generated by Γ′ and a cyclic permutation
of the first three homogeneous coordinates. Then Γ′ ∼= µ

3
3, while Γ is a
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non-abelian group with r(Γ) = 2. Let X ⊂ P3 be the Fermat cubic surface.
Then X is invariant with respect to the group Γ. The groups Γ and Γ′ have
no fixed points on X . A rational variety X×P1 is acted on by a non-abelian
3-group Γ×µ3 with r(Γ×µ3) = 3, and also by its subgroup Γ′ ×µ3

∼= µ
4
3.

The groups Γ× µ3 and Γ′ × µ3 have no fixed points on X × P1.

Example 2.4. Similarly to Example 2.3, consider a Fermat cubic three-
fold Y in P4. Then Y is a smooth non-rational rationally connected three-
fold, and there is an action of the group Γ × µ3 on Y . The group Γ× µ3

has no fixed points on Y .

3. Representations

In this section we collect auxiliary assertions about linear and projective
representations of p-groups. The following facts are easy and well-known.

Lemma 3.1. Let G be a p-group. Then the following assertions hold.

(i) For any k such that pk divides |G| the group G contains a subgroup
of order pk.

(ii) Any non-trivial normal subgroup of G has a non-trivial intersection
with the center of G.

(iii) Let V be a non-trivial representation (of any dimension) of a G
defined over Q. Then dimV > p− 1.

(iv) Suppose that G is non-abelian. Let V be a G-representation such
that the center of G acts faithfully on V . Then V contains an
irreducible G-subrepresentationW such that dimW is divisible by p.

(v) Suppose that G is non-abelian, and p > 3. Let V be a faithful rep-
resentation of a G defined over Q. Then dimV > 2p.

Remark 3.2. Let G ⊂ GLn(k) be a finite abelian group. Then its elements
are simultaneously diagonalizable, so that G is generated by at most n
elements.

Lemma 3.3. Let G ⊂ GLn(k) be a p-group. Suppose that p > n. Then G
is abelian and r(G) 6 n.

Proof. Suppose that the group G is not abelian. By Lemma 3.1(iv) the
natural n-dimensional G-representation V has a subrepresentation whose
dimension is divisible by p > n, which is a contradiction. Therefore, G is
an abelian group, so that r(G) 6 n by Remark 3.2. �

Denote by TP (U) the Zariski tangent space to a variety U at a
point P ∈ U .

Remark 3.4. Let U be an irreducible variety acted on by a finite group G.
Suppose that G has a fixed point P ∈ U . Then there is an embedding

G →֒ GL
(

TP (U)
)

,
5



see e. g. [BB73, Lemma 2.4], [Pop14, Lemma 4].

Lemma 3.5. Let G ⊂ Aut(Pn−1) ∼= PGLn(k) be a p-group. Suppose
that p > n. Then G has a fixed point on Pn−1.

Proof. Consider the natural projection θ : SLn(k) → PGLn(k), and let G̃
be the preimage of G with respect to θ. Let Ḡ be a Sylow p-subgroup
of G̃. We have θ(Ḡ) = G. On the other hand, Ḡ is an abelian group by
Lemma 3.3. Thus Ḡ has a one-dimensional subrepresentation in its natural
n-dimensional representation, which means that G has a fixed point in Pn−1.
By Remark 3.4 this implies that G is a subgroup of GLn−1(k), so that the
remaining assertions follow from Lemma 3.3. �

Corollary 3.6. Let G be a p-group acting faithfully on a rational curve C.
Suppose that p > 3. Then G has a fixed point on C.

Proof. The action of G lifts to the normalization C̃ of C, and G has a fixed
point on C̃ by Lemma 3.5. �

Corollary 3.7. Let G be a p-group acting faithfully on a (possibly reducible)
conic C. Suppose that p > 3. Then G has a fixed point on C.

Proof. The conic C is either isomorphic to P1, or is a union of two irreducible
components meeting in a single point. In the former case the group G has
a fixed point on C by Lemma 3.5, and in the latter case the intersection
point of the irreducible components is G-invariant. �

Corollary 3.8. Let G ⊂ Aut(P1 × P1) be a p-group. Suppose that p > 3.
Then G has a fixed point on P1 × P1.

Proof. One has

Aut
(

P1 × P1
) ∼=

(

PGL2(k)× PGL2(k)
)

⋊ µ2.

Hence G ⊂ PGL2(k) × PGL2(k), so that the assertion follows from
Lemma 3.5. �

Corollary 3.9. Let G ⊂ PGL4(k) be a p-group. Suppose that there is a
G-invariant surface S of degree at most 2 in P4. Suppose also that p > 3.
Then G has a fixed point on S.

Proof. If deg(S) = 1, then G has a fixed point on S by Lemma 3.5. Thus
we may assume that deg(S) = 2. If S is reducible, then both its irreducible
components are G-invariant, so that there is again a fixed point on S. If S
is a cone with an irreducible cone, then its unique singular point is fixed
by G. Finally, if S is a singular quadric, then G has a fixed point on S by
Corollary 3.8. �

Recall that for a given group G with a representation in a vector space V
a homogeneous semi-invariant of G of degree n is a non-zero homogeneous
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polynomial f ∈ k[V ] of degree n such that G acts on f by a character. In
other words, f is an eigen-vector of G in the vector space SymnV ∨.

Lemma 3.10. Let V be a p-dimensional vector space, and G ⊂ GL(V ) be a
non-abelian p-group. Then G has no semi-invariants of degree less than p.

Proof. By Lemma 3.1(iv) the representation V is irreducible. Therefore,
by Schur’s lemma the center Z of G acts on V by scalar matrices whose
entries are roots of 1 of degree pk for some k. In particular, Z acts faithfully
on SymrV ∨ for every r coprime to p.
Now suppose that G has a homogeneous semi-invariant of positive

degree d < p. This means that SymdV ∨ contains a one-dimensional
G-subrepresentation W . Since Z acts (faithfully) by scalar matrices
on SymdV ∨, it acts faithfully on W as well. The latter contradicts
Lemma 3.1(iv). �

Lemma 3.11. Let V be a vector space, and G ⊂ GL(V ) be an abelian p-
group. Suppose that G preserves a hypersurface R in P(V ) of degree less
than p. Then G has a fixed point on R.

Proof. Since G is abelian, V splits into a sum of one-dimensional subrep-
resentations. Choose some two-dimensional G-invariant subspace W ⊂ V ,
and let L = P(W ) be the corresponding line in P(V ). If L is not contained
in R, then the intersection L∩R is a non-empty G-invariant set that consists
of less than p points, so that all these points must be G-invariant. Thus we
may assume that L ⊂ R. It remains to notice that L contains a point fixed
by G since W contains a one-dimensional subrepresentation. �

Lemma 3.12. Let V be a vector space of dimension at most p, and
let G ⊂ PGL(V ) be a p-group. Suppose that G preserves a hypersurface R
in P(V ) of degree less than p. Then G has a fixed point on R.

Proof. Let θ : SL(V ) → PGL(V ) be the natural homomorphism.

Put G̃ = θ−1(G), and let Ḡ be a Sylow p-subgroup of G̃. Then Ḡ is a
p-group. If dimV < p, then Ḡ is abelian by Lemma 3.3. If dim V = p,
then Ḡ is abelian by Lemma 3.10. Thus G = θ(Ḡ) is abelian as well, and
there is a Ḡ-fixed (that is, G-fixed) point on R by Lemma 3.11. �

Lemma 3.13. Let V be a vector space of dimension n > 3, and
let C ⊂ P(V ) be an irreducible curve of degree n+1 and geometric genus 1.
Let G ⊂ PGL(V ) be a p-group such that C is G-invariant. Then p 6 n+1.

Proof. Suppose that p > n + 1. Replacing V by its G-invariant linear
subspace, we may assume that C is not contained in a hyperplane in P(V ),
so that the action of G on C is faithful.
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Let ν : C̃ → C be the normalization of C, and put L = ν∗|OP(V )(1)|C |.
Then C̃ is an elliptic curve with an action of G, and L is an n-dimensional G-
invariant linear system on C̃. By Lemma 3.5 there is a G-invariant divisor L
in L.
Since p > 3, we see that G acts on C̃ by translations. Therefore, the

degree of L is divisible by p. This is impossible by the Riemann–Roch
theorem. �

Corollary 3.14. Let C ⊂ P2 be a curve of degree at most 3, and
let G ⊂ PGL3(k) be a p-group such that C is G-invariant. Suppose
that p > 5. Then G has a fixed point on C.

Proof. Replacing C by one of its irreducible components if necessary, we
may assume that C is irreducible. If C is a line, then G has a fixed point
on C by Lemma 3.5. If C is a conic, then G has a fixed point on C by
Corollary 3.7. Finally, if C is an (irreducible) cubic, then it is singular
by Lemma 3.13; so C has a unique singular point, which must be fixed
by G. �

Corollary 3.15. Let C ⊂ P3 be a curve of degree at most 4. Suppose
that for a general point P of (every irreducible component of) C there is a
neighbourhood UP such that C∩UP is cut out by quadrics. Let G ⊂ PGL4(k)
be a p-group such that C is G-invariant. Suppose that p > 5. Then G has
a fixed point on C.

Proof. Replacing C by one of its irreducible components if necessary, we
may assume that C is irreducible. If C is a line, then G has a fixed point
on C by Lemma 3.5. If C is a conic, then G has a fixed point on C by
Corollary 3.7. Therefore, we may assume that C is not contained in a
hyperplane in P3. If C is a twisted cubic, then G has a fixed point on C
by Lemma 3.5. If C is a rational quartic, then G has a fixed point on C by
Corollary 3.6. Finally, if C is a normal elliptic curve of degree 4, then G
has a fixed point on C by Lemma 3.13. �

Lemma 3.16. Let V be a (p + r)-dimensional vector space,
where 1 6 r 6 p− 1. Let G ⊂ GL(V ) be a non-abelian p-group. Suppose
that G has a homogeneous semi-invariant f of degree 1 6 d 6 p − 1, and
let R ⊂ P(V ) be the subscheme defined by equation f = 0. The following
assertions hold:

(i) if r = 1, then f is a d-th power of a linear form;
(ii) if r > 2 and d > 2, then the singular locus of R has dimension at

least p− 1.

Proof. By Lemma 3.1(iv) the representation V splits into a sum of an irre-
ducible p-dimensional representation U and r one-dimensional representa-
tions T1, . . . , Tr.
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The semi-invariant f gives a one-dimensional G-subrepresentation W
in SymdV ∨. One has a splitting

(3.17) SymdV ∨ =
⊕

Wk0,...,kr , k0 + . . .+ kr = d, ki > 0,

where
Wk0,...,kr = Symk0U∨ ⊗ Symk1T∨

1 ⊗ . . .⊗ SymkrT∨
r .

This splitting agrees with the action of G, so that there are G-equivariant
projectors on each of the summands in (3.17).
Assume that a projection ofW to at least one subspaceWk0,...,kr with k0 >

1 is non-trivial. This gives a one-dimensional subrepresentation in Wk0,...,kr ,
and thus in Symk0U∨. The latter is impossible by Lemma 3.10.
Therefore, we see that W is contained in the subspace

⊕

k1+...+kr=d

W0,k1,...,kr ⊂ SymdV ∨.

If r = 1, this means that f is a d-th power of a linear form, which is
assertion (i). If r > 1, this means that R is a cone over a subscheme in the
linear subspace P(T1⊕. . .⊕Tr) ⊂ P(V ) with the vertex P(U) ⊂ P(V ); under
an additional assumption that d > 2 we see that R is singular along P(U),
which is assertion (ii). �

The following result will be used in the proofs of Lemmas 7.3 and 7.5.

Lemma 3.18. Let V be a vector space of dimension n > 3,
and G ⊂ PGL(V ) be a p-group. Suppose that G preserves a normal vari-
ety X such that X is either a complete intersection of two quadrics in P(V ),
or a complete intersection of a quadric and a cubic in P(V ). Suppose
that p > n− 1 and p > 5. Then G has a fixed point on X.

Proof. If X is a complete intersection of a quadric and a cubic, then there is
a unique quadric Q passing through X , so that Q is G-invariant. If X is a
complete intersection of two quadrics, then G acts on the pencil of quadrics
passing through X ; thus Lemma 3.5 implies that there is a G-invariant
quadric Q passing through X in this case as well. Since X is normal, the
codimension of the singular locus of Q is at least 2, so that the quadric Q
is reduced.
Let θ : SL(V ) → PGL(V ) be the natural homomorphism.

Put G̃ = θ−1(G), and let Ḡ be a Sylow p-subgroup of G̃. One has θ(Ḡ) = G.
If p > n, then the group Ḡ is abelian by Lemma 3.3. If p = n, then Ḡ is

abelian by Lemma 3.10. If p = n− 1, then Ḡ is abelian by Lemma 3.16(i).
Let W be a three-dimensional Ḡ-invariant subspace of V , and denote

by Π ⊂ P(V ) its projectivization. If Π is contained in X , then X contains a
point fixed by G since W contains a one-dimensional Ḡ-subrepresentation.
Thus we may assume that Π is not contained in X .
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If Π ∩ X is one-dimensional, let C be the union of its one-dimensional
irreducible components. Then deg(C) 6 3, so that G has a fixed point on C
by Corollary 3.14.
Thus we may assume that the intersection Π ∩ X is finite. This means

that it consists of either 4 or 6 points (counted with multiplicities). One of
them must be fixed by the group G because p > 5. �

The following result will be used in the proof of Lemma 7.5.

Lemma 3.19. Let V be a vector space of dimension n > 4,
and G ⊂ PGL(V ) be a p-group. Suppose that G preserves a variety X that
is a complete intersection of three quadrics in P(V ). Suppose that X is
normal. Suppose also that p > n− 2 and p > 5. Then G has a fixed point
on X.

Proof. The group G acts on the projective plane parameterizing quadrics
passing through X ; thus Lemma 3.5 implies that there is a G-invariant
quadric Q passing through X . Since X is normal, we see that the codimen-
sion of the singular locus of Q is at least 2, i.e. the singular locus of Q has
dimension at most n− 4.
Let θ : SL(V ) → PGL(V ) be the natural homomorphism.

Put G̃ = θ−1(G), and let Ḡ be a Sylow p-subgroup of G̃. One has θ(Ḡ) = G.
The group Ḡ is abelian by Lemma 3.3 if p > n, by Lemma 3.10 if p = n,
by Lemma 3.16(i) if p = n− 1 and by Lemma 3.16(ii) if p = n− 2. Let W
be a four-dimensional Ḡ-invariant subspace of V , and let Π ⊂ P(V ) be its
projectivization. If Π is contained in X , then X contains a point fixed by
G since W contains a one-dimensional Ḡ-subrepresentation. Thus we may
assume that Π is not contained in X .
If Π ∩ X is two-dimensional, let S be the union of its two-dimensional

irreducible components. Then deg(S) 6 2, so that G has a fixed point on S
by Corollary 3.9.
If Π∩X is one-dimensional, let C be the union of its one-dimensional irre-

ducible components. Then deg(C) 6 4, and for a general point P of (every
irreducible component of) C there is a neighbourhood UP such that C ∩UP
is cut out by quadrics. so that G has a fixed point on C by Corollary 3.15.
Thus we may assume that the intersection Π ∩ X is finite. This means

that it consists of 8 points (counted with multiplicities). One of them must
be fixed by the group G because p > 5. �

The following result will be used in the proof of Lemma 7.8.

Lemma 3.20. Let µ5 ⊂ PGL4(k) be a subgroup such that there is a smooth
µ5-invariant curve C ⊂ P3 of genus 3. Then deg(C) 6= 7.

10



Proof. Suppose that deg(C) = 7. Note that C is not contained in a plane,
so that the action of µ5 on C is faithful. It follows from the Hurwitz formula
that µ5 has a unique fixed point on C. Let us denote it by P .
It is easy to see that there is an embedding µ5 ⊂ GL4(k) that induces

our action of µ5 on P3. The corresponding four-dimensional vector space
splits as a sum of four one-dimensional µ5-representations. Let H1, . . . , H4

be µ5-invariant planes in P3 such that H1 ∩ . . . ∩H4 = ∅. Then the inter-
section of Hi with C consists of 7 points (counted with multiplicities), so
that Hi ∩ C contains at least one µ5-fixed point, say, Pi. At least one of
the points P1, . . . , P4 is different from P , which gives a contradiction. �

4. Extremal contractions

In this section we adapt the results of [PS16b, §3] for p-groups. We will
use the following notation. Let L(n) be a minimal integer such that for any
rationally connected variety X of dimension n and any p-groupG ⊂ Aut(X)
with p > L(n) the group G has a fixed point on X . This definition
makes sense by [PS16b, Theorem 4.2] and [Bir16, Theorem 1.1]. Note
that L(1) = 2 by Corollary 3.6.

Lemma 4.1. Let X be a variety of dimension n, and G ⊂ Aut(X)
be a p-group. Suppose that X has terminal GQ-factorial singularities.
Let f : X 99K Y be a birational map that is a result of a G-Minimal
Model Program ran on X. Suppose that G has a fixed point on Y ,
and p > L(n− 1). Then G has a fixed point on X.

Proof. The rational map f is a composition of G-contractions
(see [PS16b, §2] for a precise definition) and G-flips, so it is enough to
prove the assertion for a G-contraction and for a G-flip. If f : X → Y is
a G-contraction, then there is a G-invariant rationally connected subvari-
ety Z ( X by [PS16b, Corollary 3.7]. If f : X → Y is a G-flip, then there
is a G-invariant rationally connected subvariety Z ( X by [PS16b, Corol-
lary 3.8]. In any case, one has dimZ 6 n− 1, so that G has a fixed point
on Z. �

Recall that a G-equivariant morphism φ : X → S of normal varieties
acted on by a finite group G is a G-Mori fiber space, if X has terminal
GQ-factorial singularities, one has dim(S) < dim(X), the fibers of φ are
connected, the anticanonical divisor −KX is φ-ample, and the relative G-
invariant Picard number ρG(X/S) equals 1. If the dimension of X equals 3,
there are three cases:

• S is a point, −KX is ample; in this case X is said to be a GQ-
Fano threefold, and X is a G-Fano threefold provided that the
singularities of X are Gorenstein;
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• S is a curve, a general fiber of φ is a del Pezzo surface; in this case
X is said to be a GQ-del Pezzo fibration;

• S is a surface, the general fiber of φ is a rational curve; in this case
X is said to be a GQ-conic bundle.

Similarly to Lemma 4.1, we prove the following result.

Corollary 4.2. Let X be a rationally connected variety, and G ⊂ Aut(X) be
a p-group. Suppose that φ : X → S is a G-Mori fiber space with dimS > 0.
Suppose that p > L(n− 1). Then G has a fixed point on X.

Proof. Since X is rationally connected, S is rationally connected as well.
Thus the group G has a fixed point on S. Hence there is a G-invariant
rationally connected subvariety Z ( X by [PS16b, Corollary 3.7]. One
has dimZ 6 n− 1, so that G has a fixed point on Z. �

5. Surfaces

In this section we collect some facts about p-groups acting on surfaces.
In particular, we prove Propositions 1.7 and 1.8.

Lemma 5.1. Let S be a smooth del Pezzo surface, and G ⊂ Aut(S) be a
p-group. Suppose that p > 5. Then G has a fixed point on S.

Proof. If S ∼= P2, then G has a fixed point on S by Lemma 3.5.
If S ∼= P1 × P1, then G has a fixed point on S by Corollary 3.8. There-
fore, we may assume that S is obtained from P2 by blowing up 1 6 r 6 8
points. Put d = K2

S = 9− r.
If d = 1, then G fixes the unique base point of the linear system | −KS|.

Thus we will assume that 2 6 d 6 8. We know the number of (−1)-
curves on S: see e.g. [Man86, Theorem IV.4.3(c)] for degrees d 6 6. If this
number is not divisible by p, then there is a G-invariant (−1)-curve C ∼= P1

on S, and G has a fixed point on C by Lemma 3.5. This happens unless
either p = 5 and d = 5, or d = 2 and p = 7. On the other hand, in the
latter two cases |Aut(S)| is not divisible by p2, see [Dol12, Corollary 8.2.40]
and [Dol12, Corollary 8.2.20]. Therefore, one has r(G) 6 1 in these cases,
so that G is cyclic. Hence G has a fixed point on S by the holomorphic
Lefschetz fixed-point formula. �

Lemma 5.2. Let S be a smooth rational surface, and G ⊂ Aut(S) be a
p-group. Suppose that p > 5. Then G has a fixed point on S.

Proof. Let π : S → S ′ be a result of a G-Minimal Model Program ran on S.
Then either S ′ is a del Pezzo surface, or there is a GQ-conic bundle struc-
ture φ : S ′ → P1 (see [Isk80, Theorem 1G]). In the former case G acts on S ′

with a fixed point by Lemma 5.1. In the latter case G has a fixed point
on S ′ by Corollary 4.2 and Corollary 3.6. Now Lemma 4.1 implies that G
has a fixed point on S. �
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Now we are ready to prove Proposition 1.8.

Proof of Proposition 1.8. The minimal resolution of singularities of S is G-
equivariant. Keeping in mind that an image of a G-fixed point with respect
to any G-equivariant morphism is again a G-fixed point, we may assume
that S is smooth. Now the assertion follows from Lemma 5.2. �

Finally, we prove Proposition 1.7.

Proof of Proposition 1.7. Regularizing the (rational) action of G (see [PS14,
Lemma-Definition 3.1]), we may assume that G acts by automorphisms of
a smooth rational surface S. By Proposition 1.8 (or by Lemma 5.2) there
is a G-fixed point on S. Now everything follows from Remark 3.4 and
Lemma 3.3. �

Remark 5.3. Theorem 1.3 shows that the assertions of Propositions 1.7
and 1.8 fail without the assumption p > 5. See also the examples of §2.

Applying Proposition 1.8 together with Corollary 4.2, we obtain the fol-
lowing result.

Corollary 5.4. Let X be a rationally connected threefold, and
let G ⊂ Aut(X) be a p-group. Suppose that φ : X → S is a G-Mori fiber
space with dimS > 0. Suppose that p > 5. Then G has a fixed point on X.

We conclude this section by two useful facts about p-groups acting on
non-rational surfaces.

Lemma 5.5. Let S be a K3 surface with at worst Du Val singularities, and
let G ⊂ Aut(S) be a p-group. Suppose that p > 5. Then G has a fixed point
on S.

Proof. Replacing S with its minimal resolution we may assume that S is
smooth. Let Gs be the subgroup of G that acts on S by symplectic au-
tomorphisms, i.e. Gs is the kernel of the induced action of G on H2,0(S)
(cf. [Nik80, Definition 0.2]). Then G/Gs is a cyclic group. If Gs is trivial,
then G has a fixed point on S by the holomorphic Lefschetz fixed-point
formula. Thus we assume that Gs is non-trivial.
Suppose that |Gs| > p. Then Gs contains a subgroup Ĝs of order p

2 by

Lemma 3.1(i). The group Ĝs is abelian, which is impossible by [Nik80, The-
orem 4.5]. Therefore, one has Gs

∼= µp. Moreover, it has exactly 24/(p+ 1)
fixed points on S (see [Nik80, §5.1]). Since 24/(p + 1) < p for p > 5, these
points cannot be permuted by G/Gs. Thus G has a fixed point on S. �

Lemma 5.6. Let S be a birationally ruled surface over an elliptic curve,
and G ⊂ Bir(S) be a p-group. Suppose that p > 5. Then r(G) 6 3.
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Proof. There exists a rational map φ : S 99K E, where E is an elliptic curve
and a general fiber of φ is a rational curve. Moreover, φ is equivariant with
respect to the group Bir(S). Thus we have an exact sequence

1 → Γφ → Bir(S) → ΓS → 1,

where Γφ acts by fiberwise birational transformations with respect to φ,
and ΓS ⊂ Bir(E) = Aut(E). Let S be the fiber of φ over the general
scheme-theoretic point of E. Then S is a rational curve over the func-
tion field k(E), so that Γφ ⊂ PGL2

(

k(E)
)

is a cyclic group. On the other
hand, the elements of ΓS act by translations on E, so that ΓE is generated
by at most two elements, and the assertion follows. �

6. Anticanonical divisors

In this section we study invariant anticanonical divisors with respect to
p-groups acting on Fano threefolds.

Lemma 6.1. Let X be a terminal Fano threefold, and G ⊂ Aut(X) be a
p-group such that X is a GQ-Fano threefold. Suppose that G has no fixed
points on X. Furthermore, suppose that there exists a G-invariant divi-
sor S ∈ | −KX |, and that p > 5. Then the pair (X,S) is log canonical and
one of the following cases occurs.

(A) The surface S is reducible (and reduced). The group G acts transi-
tively on the set of irreducible components of S.

(B) The surface S is irreducible and not normal. Then S is a bira-
tionally ruled surface over an elliptic curve. Let Λ ⊂ S be the
non-normal locus and let ν : S ′ → S be the normalization. Then
ν−1(Λ) is either a smooth elliptic curve or a disjoint union of two
smooth elliptic curves. Moreover, S ′ has at worst Du Val singulari-
ties and ν−1(Λ) is contained in the smooth locus of S ′. Furthermore,
Λ has at most two irreducible components, and each of them is a
G-invariant curve of geometric genus 1.

In both cases the action of G on S is faithful. In case (B) one has r(G) 6 3.

Proof. First we claim that for any effective G-invariant Q-divisor D on X
such that −(KX+D) is nef the pair (X,D) is log canonical. Indeed, assume
the converse. Then replacingD with cD for some rational number 0 < c < 1
we may assume that the pair (X,D) is strictly log canonical and−(KX +D)
is ample. Let Z ⊂ X be a minimal G-center of non Kawamata log terminal
singularities of the pair (X,D), see [PS16b, §2]. By [PS16b, Lemma 2.2]
there exists a G-invariant effective Q-divisor D′ such that the pair (X,D′) is
strictly log canonical, the divisor −(KX+D′) is ample, and the only centers
of non Kawamata log terminal singularities of (X,D′) are the irreducible
components of Z. By Shokurov’s connectedness theorem [Kol92, 17.4] the
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subvariety Z is connected. If dimZ = 0, then Z is a G-fixed point. This
contradicts our assumptions. Thus dimZ > 0. By Kawamata’s subadjunc-
tion theorem Z is normal and there exists an effective Q-divisor ∆ on Z such
that the pair (Z,∆) is Kawamata log terminal and −(KZ +∆) is ample. In
particular, Z is a rational curve. By Corollary 3.6 there is a G-fixed point
on Z, which is a contradiction. This shows that (X,D) is log canonical. In
particular, (X,S) is log canonical.
Suppose that S is reducible. Write S =

∑

Si. Let S1 ⊂ S be an irre-
ducible component, let S1, . . . , Sr be its G-orbit, and let S ′ = S1 + . . .+ Sr.
If S ′ 6= S, then −(KX+cS ′) is ample for some c > 1. Since the pair (X, cS ′)
is not log canonical, this is impossible. Hence S = S ′, i.e. G acts transi-
tively on the set of irreducible components of S. This is case (A) of the
lemma.
From now on we assume that S is irreducible. If S is normal and its

singularities are worse than Du Val, then S has at most two non-Du Val
points by [Sho93, Theorem 6.9]. Hence G has a fixed point on S in this
case. If S has at worst Du Val singularities, then G has a fixed point on S
by Lemma 5.5. Finally assume that S is not normal. Let ν : S ′ → S be its
normalization. We have the adjunction formula

KS′ +∆′ ∼ ν∗KS ∼ 0,

where ∆′ is the different, an effective integral Weil divisor such that ν(∆′)
is supported on the non-normal locus. Moreover, ∆′ is G-invariant and
the pair (S ′,∆′) is log canonical [Kaw07]. Hence S ′ is a birationally ruled
surface. Again by [Sho93, Theorem 6.9] the locus L of log canonical singu-
larities of (S ′,∆′) has at most two connected components. Since G has no
fixed points on S, and hence on S ′, the surface S ′ is not rational by Propo-
sition 1.8. Moreover, each connected component of L is one-dimensional.
In particular, all zero-dimensional centers of log canonical singularities
of (S ′,∆′) are contained in ∆′, so that S ′ has only log terminal singularities.
Furthermore, since KS′ +∆′ ∼ 0, the singularities of S ′ outside of ∆′ are
at worst Du Val. Thus the Abanese map gives a morphism ϕ : S ′ → Z to
a non-rational curve Z. Let ∆′

1 ⊂ ∆′ be a ϕ-horizontal component. By
the adjunction formula the divisor −K∆′

1
is effective. Thus pa(∆

′
1) 6 1.

Since ∆′
1 is not rational, it is a smooth elliptic curve. Moreover, again by

adjunction ∆′
1 is contained in the smooth locus of S ′ and does not meet

other components of ∆′. Clearly, ∆′
1 is G-invariant, and hence so is ν(∆′

1).
Since G has no fixed points on S, the curve ν(∆′

1) cannot be rational by
Corollary 3.6. Hence it is an elliptic curve and the restriction ϕ∆′

1
: ∆′

1 → Z
is étale. If ∆′ is connected, then ∆′ = ∆′

1. Hence the non-normal locus of S
coincides with ν(∆′

1).
Finally consider the case when ∆′ is not connected. Then by [Sho93,

Theorem 6.9] it has two connected components and both of them are sections
15



of ϕ. Moreover, both are G-invariant. Arguing as above, we see that they
are smooth elliptic curves, and the non-normal locus of S is a union of their
images under the morphism ν.
We see that the non-normal locus Λ ⊂ S is a union of at most two

irreducible G-invariant curves. Moreover, by Corollary 3.6 none of them can
be a rational curve, so that their geometric genus equals 1. This completes
a description of case (B) of the lemma.
In either of the cases (A) or (B) we see that S has a one-dimensional

singular locus. On the other hand, the threefoldX has isolated singularities.
Suppose that γ ∈ G is an element that acts trivially on S. Let P be a point
that is singular on S but non-singular on X . Then TP (S) = TP (X). The
action of γ on TP (S) is trivial, while the action of γ on TP (X) is non-trivial
by Remark 3.4. An obtained contradiction shows that the action of G on S
is faithful.
Finally, applying Lemma 5.6 we see that in case (B) one has r(G) 6 3. �

7. Gorenstein Fano threefolds

In this section we study p-groups acting on Gorenstein Fano threefolds.
Let X be a Fano threefold with at worst canonical Gorenstein singulari-

ties. In this case, the number

g(X) =
1

2
(−KX)

3 + 1

is called the genus of X . By Riemann–Roch theorem and Kawamata–
Viehweg vanishing one has

dim | −KX | = g(X) + 1

(see e. g. [IP99, 2.1.14]). In particular, the genus g(X) is an integer,
and g(X) > 2. The maximal number ι = ι(X) such that −KX is di-
visible by ι in Pic(X) is called the Fano index, or sometimes just in-
dex, of X . Recall that Pic(X) is a finitely generated torsion free abelian
group, see e. g. [IP99, Proposition 2.1.2]. The rank ρ(X) of the free abelian
group Pic(X) is called the Picard rank of X . Let H be a divisor class
such that −KX ∼ ι(X)H . The class H in Pic(X) is unique since Pic(X) is
torsion free. Define the degree of X as d(X) = H3. Since the class of H is
Aut(X)-invariant, the rational map X 99K PN given by a linear system |kH|
is always Aut(X)-equivariant.

Lemma 7.1. Let X be a GQ-Fano variety, where G is a p-group. Then
either rkCl(X) = 1, or rkCl(X) > p.

Proof. Suppose that rkCl(X) > 1. Consider the representation of G
in the Q-vector space W = Cl(X) ⊗ Q. There is a one-dimensional
subrepresentation K ⊂ W corresponding to the canonical class of X .
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Put V = W/K. Then V is a (possibly non-faithful) G-representation de-
fined over Q. Since rkCl(X)G = 1, the representation V has no triv-
ial subrepresentations. By Lemma 3.1(iii) we have dimV > p − 1, so
that dimW = rkCl(X) > p. �

Lemma 7.2. Let X be a terminal Gorenstein Fano threefold with ρ(X) > 1,
and let G ⊂ Aut(X) be a p-group such that X is a G-Fano variety.
Then p 6 3.

Proof. By Lemma 7.1 we have ρ(X) > p. On the other hand, by [Pro13b]
one has ρ(X) 6 4, and the assertion follows. �

Lemma 7.3. Let X be a terminal Gorenstein Fano threefold with ρ(X) = 1
and ι(X) > 1. Let G ⊂ Aut(X) be a p-group such that X is a G-Fano
variety. Suppose that p > 5. Then G has a fixed point on X.

Proof. It is known that ι(X) 6 4. Moreover, ι(X) = 4 if and only if X is
the projective space P3, and ι(X) = 3 if and only if X is a quadric in P4 (see
e. g. [Shi89, Theorem 3.9]). In the former case the assertion is implied by
Lemma 3.5, and in the latter case the assertion follows from Lemma 3.12.
Thus we may assume that ι(X) = 2. Recall that 1 6 d(X) 6 5 (see e. g.

[Pro13a, Corollary 8.7]).
If d(X) = 5, then X is smooth [Pro13a, Corollary 8.7]. Thus X is

isomorphic to a linear section of the Grassmannian Gr(2, 5) ⊂ P9 by a sub-
space P6 ⊂ P9, see [IP99, §12.2]. In this case one has

Aut(X) ∼= PGL2(k),

see [Muk88, Proposition 4.4] or [CS16, Proposition 7.1.10]. Hence G is a
cyclic group and the assertion follows by the holomorphic Lefschetz fixed
point formula.
If d(X) = 4, then X is a complete intersection of two quadrics in P5 (see

e. g. [Shi89, Corollary 0.8]). Thus the assertion follows from Lemma 3.18.
If d(X) = 3, then X ∼= X3 ⊂ P4 is a cubic threefold (see e. g. [Shi89,

Corollary 0.8]). Thus the assertion follows from Lemma 3.12.
If d(X) = 2, then the linear system | − 1

2
KX | defines an Aut(X)-

equivariant double cover X → P3. By Lemma 3.5 the group G has a fixed
point on P3, and hence also on X , cf. Lemma 7.4 below.
Finally, if d(X) = 1, then the linear system | − 1

2
KX | has a unique base

point (see [Shi89, Theorem 0.6]) which must be fixed by Aut(X). �

Lemma 7.4 (cf. [Pro12, Lemma 5.3], [KPS16, Lemma 4.4.1], [PS16a,
Proposition 6.1.1]). Let X be a Fano threefold with canonical Gorenstein
singularities, and let G ⊂ Aut(X) be a p-group. Suppose that −KX is not
very ample, and that p > 5. Then G has a fixed point on X.

17



Proof. Suppose that G has no fixed points on X . Recall that one
has dimH0(X,−KX) = g(X) + 2. If the linear system | −KX | is not base
point free, then Bs |−KX| is either a single point or a rational curve [Shi89,
Theorem 0.5]. This contradicts our assumption that G has no fixed points
on X , see Corollary 3.6. Thus the linear system |−KX | defines a morphism

Φ = Φ|−KX | : X → Y ⊂ P2g(X)−2.

If Φ is birational, then standard inductive arguments [IP99, Lemma 2.2.5]
show that it is an embedding and −KX is very ample, a contradiction. So
assume that Φ is not birational. Then by [IP99, Proposition 2.1.15] the
morphism Φ is a double cover and Y = Yg(X)−1 ⊂ P2g(X)−2 is a subvariety
of minimal degree (see e.g. [IP99, 2.2.11]). Since Φ is Aut(X)-equivariant,
it is sufficient to show that G has a fixed point on Y . If Y is singular,
then the singular locus is either a single point or a line and we are done.
Assume that Y is smooth. Then it is either P3, or a quadric in P4, or a
scroll over P1, and the existence of a fixed point follows from Lemma 7.3
and Corollary 4.2. �

Lemma 7.5. Let X be a terminal Gorenstein Fano threefold. Suppose that
ρ(X) = 1, ι(X) = 1, and g(X) 6 5. Let G ⊂ Aut(X) be a p-group. Suppose
that p > 5. Then G has a fixed point on X.

Proof. By Lemma 7.4 we may assume that −KX is very ample and so
g(X) > 3. If g(X) = 3, then X is a quartic in P4 (because dim | −KX | = 4
and −K3

X = 4), so that the assertion follows from Lemma 3.12. If g(X) = 4,
then X is a complete intersection of a quadric and a cubic in P5 (see [IP99,
Proposition 4.1.12]). In this case the assertion follows from Lemma 3.18.
Finally, if g(X) = 5, then X is a complete intersection of three quadrics
in P6 (see [PCS05, Theorem 1.6]). In this case the assertion follows from
Lemma 3.19. �

Lemma 7.6. Let X be a terminal Gorenstein Fano threefold with ρ(X) = 1
and ι(X) = 1. Let G ⊂ Aut(X) be a p-group such that X is a G-Fano
variety. Suppose that g(X) > 6 and p > 5. Suppose also that g(X) 6≡ 1
mod p. Then X is Q-factorial.

Proof. Suppose that X is not Q-factorial, so that rkCl(X) > 1. Let S be an
effective Weil divisor on X which is not Q-Cartier. Take S to be of minimal
possible degree. Let S1 = S, . . . , SN be its G-orbit. Then

∑

Si ∼ −aKX

for some a ∈ Z. Clearly, N = pk for some k. Therefore, one has

pk deg(S) = (2g(X)− 2)a.

Since 2g(X)− 2 is coprime to p, we can write a = pkb and

deg(S) = (2g(X)− 2)b
18



for some b ∈ Z. In particular, X does not contain surfaces of degree less
than 2g(X)− 2. Now let ξ : X ′ → X be a Q-factorialization. Run the
Minimal Model Program on X ′. We get the following diagram:

X ′

ξ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

ψ
//❴❴❴❴❴❴ Y

f

��
❅❅

❅❅
❅❅

❅❅

X Z

Here ψ : X ′ 99K Y is a birational map given by the Mininal Model Program,
and f : Y → Z is a Mori fiber space. By [Pro15, Theorem 1.1] does not
contain planes, and so each step of the Mininal Model Program is a diviso-
rial contraction of threefolds with terminal Gorenstein singularities [Pro05,
Proposition 4.5]. It is easy to check that on each step of the Minimal Model
Program we have

(−KXi
)2 · F > 2g(X)− 2 > 10

for any surface F ⊂ Xi (see [Pro16b, Lemma 2.5]). Hence each step con-
tracts a divisor to a curve (otherwise the anticanonical degree of the excep-
tional divisor is at most 4, see [Pro16b, Proposition 2.2]). In particular, ψ
is a morphism, all varieties Xi are Gorenstein, and thus Y is Gorenstein as
well, see [Cut88]. Note that ξ contracts all curves of degree 0 with respect
to KX′ . Hence −KX′ is ample over Z. Assume that Z is a curve. Then a
general fiber F of the composition

π = f ◦ ψ : X ′ → Z

is a smooth del Pezzo surface. Therefore, we have K2
X′ · F = K2

F 6 9, a
contradiction. Now assume that Z is a surface. It is smooth by [Cut88].
By the above argument with a degree of a fiber we may assume that Z has
no contractions to a curve, and so Z ∼= P2. We claim that π : X ′ → Z has
no two-dimensional fibers. Indeed, assume that there is a two-dimensional
irreducible component of a fiber. Note that by our assumptions running the
Minimal Model Program over Z we cannot obtain a Mori fiber space over
a surface dominating Z. Hence on some step we get a model f̂ : X̂ → Z
which is an equidimensional (but possibly non-standard) conic bundle, and

the last contraction X̌ → X̂ that brings us to X̂ contracts a divisor F̌ to
an irreducible component B̂ of a fiber of f̂ . Clearly, B̂ is a smooth rational
curve, and −KX̂ · B̂ equals 1 or 2. Thus −KX̌ · F̌ 6 4 (see e.g. [Pro16b,
Lemma 2.4]). This contradicts our assumptions. Hence π : X ′ → Z = P2 is
an equidimensional conic bundle.
Let ∆ ⊂ Z be the discriminant curve of ψ, let l ⊂ P2 be a general line,

and put F = ψ−1(l). Then F is a smooth rational surface with a conic
bundle structure θ : F → l ∼= P1. The number of degenerate fibers of θ
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equals l ·∆ = deg∆. Therefore, we compute

K2
X′ ·F = (KX′+F )2 ·F−2KX′ ·F 2 = K2

F +4 = 10−ρ(F )+4 = 12−deg∆.

On the other hand, we have

K2
X′ · F = deg ξ(F ) = (2g(X)− 2)b

for some b ∈ Z. We get the following possibilities:

• deg ξ(F ) = 12, ∆ = ∅, g(X) = 7,
• deg ξ(F ) = 10, deg∆ = 2, g(X) = 6.

Note that ρ(X ′) = rkCl(X) > p > 5 by Lemma 7.1, and so ρ(X ′/Z) > 4.
Hence ∆ has at least 4 irreducible components. This is a contradiction.
Therefore, f cannot be of fiber type, i.e. Z is a point. Hence Y is

a (terminal) Gorenstein Fano threefold with ρ(Y ) = 1. Note that each
step increases the degree −K3

Xi
by at least 4g(X) − 6 (see e. g. [Pro15,

Proposition 5.1]) and

ρ(X ′) = rkCl(X) > p > 5

by Lemma 7.1. Thus

−K3
Y > 2g(X)− 2 + (p− 1)(4g(X)− 6) > 82,

which gives a contradiction with [Pro05]. �

Lemma 7.7. Let X be a terminal Gorenstein Fano threefold with ρ(X) = 1,
ι(X) = 1, and g(X) = 12. Let G ⊂ Aut(X) be a p-group such that X is a
G-Fano variety. Suppose that p > 3. Then G has a fixed point on X.

Proof. Since X is a G-Fano variety, by Lemma 7.1 one has ei-
ther rkCl(X) = 1, or rk Cl(X) > p > 2. Thus rkCl(X) = 1 and X is
smooth by [Pro16b, Theorem 1.3]. Hence the family C parameterizing the
conics (in the anticanonical embedding) on X is isomorphic to the projec-
tive plane P2, see [KS04, Theorem 2.4], [KPS16, Proposition B.4.1]. By
Lemma 3.5 the group G has a fixed point on C , which means that there is
a G-invariant conic contained in X . Now the assertion follows from Corol-
lary 3.7 �

Lemma 7.8. Let X be a terminal Gorenstein Fano threefold with ρ(X) = 1,
ι(X) = 1, and g(X) > 9. Let G ⊂ Aut(X) be a p-group such that X is a
G-Fano variety. Suppose that p > 5. Then G has a fixed point on X.

Proof. By Lemma 7.7 we may assume that g(X) 6= 12, so that ei-
ther g(X) = 9, or g(X) = 10. Thus the threefold X is Q-factorial by
Lemma 7.6.
Assume that X is singular. Since X is Q-factorial, there are at most 3

singular points on X by [Pro15, Theorem 1.3]. Since p > 3, these points
must be G-invariant.
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Therefore, we may assume that X is smooth. Let γ ∈ G be a non-trivial
element, and let Λ = Xγ be its fixed locus. By the holomorphic Lefschetz
fixed point formula Λ is not empty. Thus we may assume that G 6= 〈γ〉,
i.e. the group G is not cyclic. There is a natural action of G on H3(X,Z).
Recall that

rkH3(X,Z) = 2 dimH1,2(X) = 2(12− g(X)) 6 6

for g(X) > 9, see e. g. [IP99, §12.2]. Replacing γ with another ele-
ment of G \ {1} if necessary, we may assume that one of its eigenvalues
on H3(X,C) equals 1. In this case either the action of γ on H3(X,Z) is
trivial, or one has p = 5, g(X) = 9, rkH3(X,Z) = 6, and trH3(X,Z) γ

∗ = 1,
see Lemma 3.1(iii).
If dimΛ > 0, then Λ meets a line l ⊂ X . Let P be one of the points

of l ∩ Λ. Since X is an intersection of quadrics [IP99, Corollary 4.1.13], the
number of lines on X passing through P is at most 4 (see [IP99, Proposi-
tion 4.2.2(iv)]). Since p > 5, this implies that these lines, and in particular
the line l, are γ-invariant.
As in [Pro12, Proof of Lemma 5.18], considering the double projection

from l we get a γ-equivariant Sarkisov link X 99K Y , where Y ∼= P3 in the
case g(X) = 9 and Y is a smooth quadric in P4 in the case g(X) = 10
(see e.g. [IP99, Theorem 4.3.3]). Moreover, X 99K Y contracts a surface
to a smooth curve Γ ⊂ Y with H3(X,Z) ∼= H1(Γ,Z). Since X 99K Y is
birational, the action of γ on Y is not trivial. The curve Γ is of degree 7,
it spans P3 (respectively, P4), and g(Γ) = 12 − g(X). Since Γ spans P3

(respectively, P4) the action of γ on Γ is non-trivial. By the topological Lef-
schetz fixed point formula it is non-trivial on H3(X,Z) ∼= H1(Γ,Z), and so
one has p = 5, g(X) = 9, and g(Γ) = 3. This is impossible by Lemma 3.20.
Therefore, one has dimΛ = 0. Again by the topological Lefschetz fixed

point formula this gives

trH3(X,Z) γ
∗ < 4 6 dimH1,2(X),

and so trH3(X,Z) γ
∗ = 1, i.e. γ has exactly 3 fixed points on X . Moreover,

we may assume that the action of G on H3(X,Z) is faithful; otherwise we
replace γ with another element of G which acts trivially on H3(X,Z), and
return to the case of a positive-dimensional fixed locus Λ. Hence G is abelian
by Lemma 3.1(v). Therefore, the fixed points of γ are fixed by G. �

Lemma 7.9. Let X be a terminal Gorenstein Fano threefold such that the
divisor −KX is very ample. Let G ⊂ Aut(X) be a p-group. Then the
representation of G in H0(X,−KX) is reducible.

Proof. Suppose that H0(X,−KX) is an irreducible representation of G. By
Schur’s lemma the center Z of G acts on V by scalar matrices. On the other
hand, X is embedded into the projective space P = P

(

H0(X,−KX)
∨
)

, and
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the action of G on P induces the initial action of G on X . However, Z acts
trivially on P, which is a contradiction. �

Proposition 7.10. Let X be a Gorenstein Fano threefold with ρ(X) = 1,
ι(X) = 1, and g(X) > 6. Let G ⊂ Aut(X) be a p-group such that X is a
G-Fano variety. Suppose that G does not have fixed points on X. Suppose
also that p > 5. Then either the group G has a fixed point on X, or one of
the following cases occurs:

(A) p = 5, g(X) = 6, and there is a G-invariant anticanonical divisor
on X;

(B) p = 5, g(X) = 7, the threefold X is Q-factorial, and there is an
irreducible G-invariant anticanonical divisor on X;

(C) p = 5, g(X) = 8, the threefold X is Q-factorial, and there are no
G-invariant anticanonical divisors on X;

(D) p = 7, g(X) = 8, and there is a G-invariant anticanonical divisor
on X.

Proof. By Lemma 7.4 the divisor −KX is very ample; alternatively, one
can use the results of [PCS05] here. By Lemma 7.8 we may assume
that g(X) 6 8.
Assume thatH0(X,−KX) has no one-dimensional G-invariant subspaces.

By Lemma 7.9 one has g(X) + 2 > 2p > 10. Hence g(X) + 2 = 2p = 10, so
that p = 5 and g(X) = 8. This is case (C) of the lemma. The threefold X
is Q-factorial by Lemma 7.6 in this case.
Now assume that H0(X,−KX) has a one-dimensional G-invariant sub-

space. Then there exists a G-invariant divisor S ∈ | −KX |.
Suppose that S is irreducible. Then S is as in case (B) of Lemma 6.1.

Let Λ be one of the irreducible components of the non-normal locus of the
surface S. Then Λ is a G-invariant non-rational curve. Let d = deg Λ,
let Π = 〈Λ〉 be the linear span of Λ, and let H be a general hyperplane
section of S. Then H is an irreducible curve with pa(H) = g(X). Note that
the surface S is non-rational, so that the curve H is non-rational as well.
Since H is singular along Λ ∩H , we have g(X) > d+ 1. Since the curve Λ
is irreducible and non-rational, we have

dimΠ 6 d− 1 6 g(X)− 2.

Consider the case when d < p. By assumption there are no G-fixed points
on Λ. Therefore, Λ has no G-invariant hyperplane sections, which implies
that Π has no G-invariant (dimΠ − 1)-dimensional linear subspaces, and
thus Π also does not have G-fixed points. By Lemma 3.5 we have

dimΠ > p− 1 > d− 1,

which is a contradiction.
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Thus we may assume that g(X)−1 > d > p. In particular, we have p 6 7.
If p = 7, then g(X) = 8. This is case (D) of the lemma.
Take general points P1, . . . , Pg(X)−d ∈ S and a general hyperplane sec-

tion H ′ ⊂ S passing through Π and these points. Then

2g(X)− 2 = H ·H ′ 6 2d+ g(X)− d = d+ g(X),

which gives g(X) 6 d+ 2.
Therefore, we are left with the case when d > p = 5 and

d+ 1 6 g(X) 6 d+ 2.

If g(X) = 6, we get case (A) of the lemma. If g(X) = 7, we get case (B)
of the lemma; the threefold X is Q-factorial by Lemma 7.6 in this case.
If g(X) = 8, we have 6 6 d 6 7, which contradicts Lemma 3.13.

Finally, suppose that S is reducible, that is, S =
∑N

i=1 Si, N > 1. The
group G permutes the surfaces Si transitively. Hence N = pk for some k.
Thus

deg S = 2g(X)− 2 = pk deg Si.

This is possible only if deg Si = 2, N = p, and g(X) = p + 1. We see that
either p = 5 and g(X) = 6, or p = 7 and g(X) = 8. The former is case (A),
and the latter is case (D) of the lemma. �

Remark 7.11. In case (B) of Proposition 7.10 one has r(G) 6 3 by
Lemma 6.1. In case (C) of Proposition 7.10 the threefold X has at most 10
singular points by [Pro15, Theorem 1.3]. This implies that there is a sub-
group G′ ⊂ G of index at most p = 5 such that G′ has a fixed point on X ′.
Resolving this point if it is singular and using Lemma 4.1 together with
Remark 3.4 and Lemma 3.3, one can show that r(G′) 6 3 and r(G) 6 4 in
this case, cf. the proof of Theorem 1.5 in §8 below.

We summarize the most important results of this section as follows.

Corollary 7.12. Let G be a p-group, and X be a G-Fano threefold. Suppose
that p > 11. Then G has a fixed point on X.

Proof. By Lemma 7.2 we may assume that ρ(X) = 1, and by Lemma 7.3
we may assume that ι(X) = 1. If g(X) 6 5, the assertion follows from
Lemma 7.5. If g(X) > 9, the assertion follows from Lemma 7.8. Finally,
if 6 6 g(X) 6 8, the assertion follows from Proposition 7.10. �

8. Proofs of the main results

In this section we prove Theorems 1.5 and 1.6, and make a couple of
concluding remarks.

Proposition 8.1. Let X be a terminal Fano threefold with at least one
non-Gorenstein point. Let G ⊂ Aut(X) be a p-group. Suppose that p > 17.
Then G has a fixed point on X.
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Proof. Denote by rP the index of a point P ∈ X , i.e. the minimal positive
integer t such that the divisor tKX is Cartier near P . Recall that the
terminal singularities are isolated, so there is only a finite number of points
with rP > 1. By [Kaw92], [KMMT00] we have

∑

P∈X

(

rP − 1

rP

)

< 24.

This shows that the number of singular points of X is at most 15. These
points cannot be permuted by a p-group G if p > 17. Hence G has a fixed
point on X . �

Remark 8.2. To improve the result of Proposition 8.1 one needs a classifica-
tion of non-Gorenstein Q-Fano threefolds and their automorphism groups.
Note however that the class of Q-Fano threefolds is huge, and only some
special types of these varieties are classified (see e.g. [Pro16a], [PR12], and
references therein).

Now we are ready to prove our main results.

Proof of Theorem 1.6. Taking a G-equivariant desingularization
(see [AW97]) and keeping in mind that an image of a G-fixed point
with respect to any G-equivariant morphism is again a G-fixed point, we
may assume that the threefold X is smooth.
Applying G-equivariant Minimal Model Program to X (which is possible

due to an equivariant version of [BCHM10, Corollary 1.3.3] and [MM86,
Theorem 1], since rational connectedness implies uniruledness), we obtain
a G-equivariant birational map f : X 99K X ′ such that either there is a
G-Mori fiber space φ : X ′ → S, or X ′ is a GQ-Fano threefold. In the former
case G has a fixed point on X ′ by Corollary 5.4. In the latter case G has a
fixed point on X ′ by Corollary 7.12 and Proposition 8.1. Thus the existence
of a G-fixed point on X follows from Lemma 4.1. �

Proof of Theorem 1.5. Regularizing the action of G and taking an equivari-
ant desingularization (see e. g. [PS14, Lemma-Definition 3.1]), we may as-
sume that X is smooth and G ⊂ Aut(X). By Theorem 1.6 the group G
has a fixed point on X . Thus there is an embedding G →֒ GL3(k) by Re-
mark 3.4. Now the assertion follows from Lemma 3.3. �

Remark 8.3. If we restrict ourselves to subgroups of Cr3(k), then it may
be possible to strengthen the bounds. Namely, although rationally con-
nected varieties with relatively large automorphism groups are sometimes
necessarily rational (as in the case of cubic or quartic hypersurfaces in P4

with a maximal number of isolated singularities), in some cases having a
large automorphism group implies non-rationality of a corresponding vari-
ety, cf. [PS16a, Remark 7.4.2], [PS16c, Theorem 1.2(ii)].
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In any case, we believe that the results of Propositions 7.10 and 8.1, and
thus of Theorems 1.5 and 1.6, can be strengthened.
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