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1 Introduction

Throughout this paper we work overk, an algebraically closed field of characteristic
0. Recall that the Cremona group Crn.k/ is the group of birational transformations
of the projective space Pn

k. We are interested in finite subgroups of Crn.k/. For n D 2

these subgroups are classified basically (see [5] and references therein) but for n � 3

the situation becomes much more complicated. There are only a few, very specific
classification results (see e.g. [14, 15, 18]).

Let p be a prime number. A group G is said to be p-elementary abelian of rank
r if G ' .Z=pZ/r . In this case we denote r.G/ WD r . A. Beauville [3] obtained a
sharp bound for the rank of p-elementary abelian subgroups of Cr2.k/.
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Theorem 1.1 ([3]). Let G � Cr2.k/ be a 2-elementary abelian subgroup.
Then r.G/ � 4. Moreover, this bound is sharp and such groups G with r.G/ D 4

are classified up to conjugacy in Cr2.k/.

The author [14] was able to get a similar bound for p-elementary abelian subgroups
of Cr3.k/ which is sharp for p � 17.

In this paper we improve this result in the case p D 2. We study 2-elementary
abelian subgroups acting on rationally connected threefolds. In particular, we obtain
a sharp bound for the rank of such subgroups in Cr3.k/. Our main result is the
following.

Theorem 1.2. Let Y be a rationally connected three-dimensional algebraic variety
over k and let G � Birk.Y / be a 2-elementary abelian group. Then r.G/ � 6.

Corollary 1.3. Let G � Cr3.k/ be a 2-elementary abelian group. Then r.G/ � 6

and the bound is sharp (see Example 3.4).

Unfortunately we are not able to classify all the birational actions G ,! Birk.Y /

as above attaining the bound r.G/ � 6 (cf. [3]). However, in some cases we get a
description of these “extremal” actions.

The structure of the paper is as follows. In Sect. 3 we reduce the problem to the
study of biregular actions of 2-elementary abelian groups on Fano-Mori fiber spaces
and investigate the case of nontrivial base. A few facts about actions of 2-elementary
abelian groups on Fano threefolds are discussed in Sect. 4. In Sect. 5 (resp. Sect. 6)
we study actions on non-Gorenstein (resp. Gorenstein) Fano threefolds. Our main
theorem is a direct consequence of Propositions 3.2, 5.1, and 6.1.

2 Preliminaries

Notation.

• For a group G, r.G/ denotes the minimal number of generators. In particular, if
G is an elementary abelian p-group, then G ' .Z=pZ/r.G/.

• Fix.G; X/ (or simply Fix.G/ if no confusion is likely) denotes the fixed point
locus of an action of G on X .

Terminal Singularities. Recall that the index of a terminal singularity .X 3 P / is
a minimal positive integer r such that KX is a Cartier divisor at P .

Lemma 2.1. Let .X 3 P / be a germ of a threefold terminal singularity and let
G � Aut.X 3 P / be a 2-elementary abelian subgroup. Then r.G/ � 4. Moreover,
if r.G/ D 4, then .X 3 P / is not a cyclic quotient singularity.

Proof. Let m be the index of .X 3 P /. Consider the index-one cover
�W .X] 3 P ]/ ! .X 3 P / (see [19]). Here .X] 3 P ]/ is a terminal point of index
1 (or smooth) and � is a cyclic cover of degree m which is étale outside of P .
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Thus X 3 P is the quotient of X] 3 P by a cyclic group of order m. If m D 1,
we take � to be the identity map. We may assume that k D C and then the map
X] n fP ]g ! X n fP g can be regarded as the topological universal cover. Hence
there exists a natural lifting G] � Aut.X] 3 P ]/ fitting in the following exact
sequence

1 �! Cm �! G] �! G �! 1; (*)

where Cm ' Z=mZ. We claim that G] is abelian. Assume the converse, then m � 2.
The group G] permutes the eigenspaces of Cm in the Zariski tangent space TP ];X] .
Let n WD dim TP ];X] be the embedded dimension. By the classification of three-
dimensional terminal singularities [10, 19] we have one of the following:

.1/ 1
m

.a; �a; b/; n D 3; gcd.a; m/ D gcd.b; m/ D 1I
.2/ 1

m
.a; �a; b; 0/; n D 4; gcd.a; m/ D gcd.b; m/ D 1I

.3/ 1
4
.a; �a; b; 2/; n D 4; gcd.a; 2/ D gcd.b; 2/ D 1; m D 4;

(**)

where 1
m

.a1; : : : ; an/ denotes the diagonal action

xk 7�! exp.2�iak=m/ � xk; k D 1; : : : ; n:

Put T D TP ];X] in the first case and denote by T � TP ];X] the three-dimensional
subspace x4 D 0 in the second and the third cases. Then Cm acts on T freely
outside of the origin and T is G]-invariant. By (*) we see that the derived subgroup
ŒG]; G]� is contained in Cm. In particular, ŒG]; G]� is abelian and also acts on T

freely outside of the origin. Assume that ŒG]; G]� ¤ f1g. Since dim T D 3, this
implies that the representation of G] on T is irreducible (otherwise T has a one-
dimensional invariant subspace, say T1, and the kernel of the map G] ! GL.T1/ '
k� must contain ŒG]; G]�). In particular, the eigenspaces of Cm on T have the same
dimension. Since T is irreducible, the order of G] is divisible by 3 D dim T and
so m > 2. In this case, by the above description of the action of Cm on TP ];X] we
get that there are exactly three distinct eigenspaces Ti � T . The action of G] on the
set fTig induces a transitive homomorphism G] ! S3 whose kernel contains Cm.
Hence we have a transitive homomorphism G ! S3. Since G is a two-group, this
is impossible.

Thus G] is abelian. Then

r.G/ � r.G]/ � dim TP ];X] :

This proves our statement. ut
Remark 2.2. If in the above notation the action of G on X is free in codimension
one, then r.G/ � dim TP ];X] � 1.
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For convenience of references, we formulate the following easy result.

Lemma 2.3. Let G be a 2-elementary abelian group and let X be a G-threefold
with isolated singularities.

(i) If dim Fix.G/ > 0, then dim Fix.G/ C r.G/ � 3.
(ii) Let ı 2 Gnf1g and let S � Fix.ı/ be the union of two-dimensional components.

Then S is G-invariant and smooth in codimension 1.

Sketch of the proof. Consider the action of G on the tangent space to X at a general
point of a component of Fix.G/ (resp. at a general point of Sing.S/). ut

3 G -Equivariant Minimal Model Program

Definition 3.1. Let G be a finite group. A G-variety is a variety X provided with a
biregular faithful action of G. We say that a normal G-variety X is GQ-factorial if
any G-invariant Weil divisor on X is Q-Cartier.

The following construction is standard (see e.g. [15]).
Let Y be a rationally connected three-dimensional algebraic variety and let

G � Bir.Y / be a finite subgroup. Taking an equivariant compactification and
running an equivariant minimal model program we get a G-variety X and a
G-equivariant birational map Y Ü X , where X has a structure a G-Fano-Mori
fibration f W X ! B . This means that X has at worst terminal GQ-factorial
singularities, f is a G-equivariant morphism with connected fibers, B is normal,
dim B < dim X , the anticanonical Weil divisor �KX is ample over B , and the
relative G-invariant Picard number �.X/G equals to one. Obviously, in the case
dim X D 3 we have the following possibilities:

(C) B is a rational surface and a general fiber f �1.b/ is a conic;
(D) B ' P

1 and a general fiber f �1.b/ is a smooth del Pezzo surface;
(F) B is a point and X is a GQ-Fano threefold, that is, X is a Fano threefold with

at worst terminal GQ-factorial singularities and such that Pic.X/G ' Z. In this
situation we say that X is G-Fano threefold if X is Gorenstein, that is, KX is a
Cartier divisor.

Proposition 3.2. Let G be a 2-elementary abelian group and let f W X ! B be a
G-Fano-Mori fibration with dim X D 3 and dim B > 0. Then r.G/ � 6. Moreover,
if r.G/ D 6 and B ' P

1, then a general fiber f �1.b/ is a del Pezzo surface of
degree 4 or 8.

Proof. Let Gf � G (resp. GB � Aut.B/) be the kernel (resp. the image) of the
homomorphism G ! Aut.B/. Thus GB acts faithfully on B and Gf acts faithfully
on the generic fiber F � X of f . Clearly, Gf and GB are 2-elementary groups
with r.Gf / C r.GB/ D r.G/. Assume that B ' P

1. Then r.GB/ � 2 by the
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classification of finite subgroups of P GL2.k/. By Theorem 1.1 we have r.Gf / � 4.
If furthermore r.G/ D 6, then r.Gf / D 4 and the assertion about F follows
by Lemma 3.3 below. This proves our assertions in the case B ' P

1. The case
dim B D 2 is treated similarly. ut
Lemma 3.3 (cf. [3]). Let F be a del Pezzo surface and let G � Aut.F / be a
2-elementary abelian group with r.F / � 4. Then r.F / D 4 and one of the following
holds:

(i) K2
F D 4, �.F /G D 1;

(ii) K2
F D 8, �.F /G D 2.

Proof. Similar to [3, §3]. ut
Example 3.4. Let F �P

4 be the quartic del Pezzo surface given by
P

x2
i D P

�ix
2
i

D 0 with �i ¤ �j for i ¤ j and let Gf � Aut.F / be the 2-elementary abelian
subgroup generated by involutions xi 7! �xi . Consider also a 2-elementary abelian
subgroup GB � Aut.P1/ induced by a faithful representation Q8 ! GL2.k/ of
the quaternion group Q8. Then r.Gf / D 4, r.GB/ D 2, and G WD Gf � GB

naturally acts on X WD F � P
1. Two projections give us two structures of

G-Fano-Mori fibrations of types (D) and (C). This shows that the bound r.G/ � 6

in Proposition 3.2 is sharp. Moreover, X is rational and so we have an embedding
G � Cr3.k/.

4 Actions on Fano Threefolds

Main Assumption. From now on we assume that we are in the case (F), that is, X

is a GQ-Fano threefold.

Remark 4.1. The group G acts naturally on the space of anticanonical sections
H 0.X; �KX/. Assume that H 0.X; �KX/ ¤ 0. Since G is an abelian group, there
exists a decomposition if H 0.X; �KX/ into eigenspaces. Then any eigensection
s 2 H 0.X; �KX/ defines an invariant member S 2 j�KX j.
Lemma 4.2. Let X be a GQ-Fano threefold, where G is a 2-elementary abelian
group with r.G/ � 5. Let S be an invariant effective Weil divisor such that
�.KX C S/ is nef. Then the pair .X; S/ is log canonical (lc). In particular, S is
reduced. If �.KX C S/ is ample, then the pair .X; S/ is purely log terminal (plt).

Proof. Assume that the pair .X; S/ is not lc. Since S is G-invariant and �.X/G D 1,
we see that S is numerically proportional to KX . Hence S is ample. We apply
quite standard connectedness arguments of Shokurov [22] (see, e.g., [11, Prop.
2.6]): for a suitable G-invariant boundary D, the pair .X; D/ is lc, the divisor
�.KX C D/ is ample, and the minimal locus V of log canonical singularities
is also G-invariant. Moreover, V is either a point or a smooth rational curve.
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By Lemma 2.1 we may assume that G has no fixed points. Hence, V ' P
1 and we

have a map & W G ! Aut.P1/. By Lemma 2.3 r.ker &/ � 2. Therefore, r.&.G// � 3.
This contradicts the classification of finite subgroups of P GL2.k/.

If �.KX C S/ is ample and .X; S/ has a log canonical center of dimension � 1,
then by considering .X; S 0 D S C �B/, where B is a suitable invariant divisor and
0 < � � 1, we get a non-lc pair .X; S 0/. This contradicts the above considered case.

ut
Corollary 4.3. Let X be a GQ-Fano threefold, where G is a 2-elementary abelian
group with r.G/ � 6 and let S be an invariant Weil divisor. Then �.KX C S/ is not
ample.

Proof. If �.KX C S/ is ample, then by Lemma 4.2 the pair .X; S/ is plt. By the
adjunction principle [22] the surface S is irreducible, normal and has only quotient
singularities. Moreover, �KS is ample. Hence S is rational. We get a contradiction
by Theorem 1.1 and Lemma 2.3(i). ut
Lemma 4.4. Let S be a K3 surface with at worst Du Val singularities and let � �
Aut.S/ be a 2-elementary abelian group. Then r.� / � 5.

Proof. Let QS ! S be the minimal resolution. Here QS is a smooth K3 surface and
the action of � lists to QS . Let �s � � be the largest subgroup that acts trivially on
H 2;0. QS/ ' C. The group � =�s is cyclic. Hence, r.� =�s/ � 1. According to [13,
Th. 4.5] we have r.�s/ � 4. Thus r.� / � 5. ut
Corollary 4.5. Let X be a GQ-Fano threefold, where G is a 2-elementary abelian
group. Let S 2 j�KX j be a G-invariant member. If r.G/ � 7, then the singularities
of S are worse than Du Val.

Proposition 4.6. Let X be a GQ-Fano threefold, where G is a 2-elementary
abelian group with r.G/ � 6. Let S 2 j�KX j be a G-invariant member and let
G� � G be the largest subgroup that acts trivially on the set of components of S .
One of the following holds:

(i) S is a K3 surface with at worst Du Val singularities, then S � Fix.ı/ for some
ı 2 G n f1g and G=hıi faithfully acts on S . In this case r.G/ D 6.

(ii) The surface S is reducible (and reduced). The group G acts transitively on the
components of S and G� acts faithfully on each component Si � S . There are
two subcases:

(a) any component Si � S is rational and r.G�/ � 4.
(b) any component Si � S is birationally ruled over an elliptic curve and

r.G�/ � 5.

Proof. By Lemma 4.2 the pair .X; S/ is lc. Assume that S is normal (and
irreducible). By the adjunction formula KS 	 0. We claim that S has at worst Du
Val singularities. Indeed, otherwise by the Connectedness Principle [22, Th. 6.9] S
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has at most two non-Du Val points. These points are fixed by an index two subgroup
G0 � G. This contradicts Lemma 2.1. Taking Lemma 4.4 into account we get the
case (i).

Now assume that S is not normal. Let Si � S be an irreducible component (the
case Si D S is not excluded). If the action on components Si � S is not transitive,
there is an invariant divisor S 0 < S . Since X is GQ-factorial and �.X/G D 1, the
divisor �.KX C S 0/ is ample. This contradicts Corollary 4.3.

By Lemma 2.3(ii) the action of G� on each component Si is faithful.
If Si is a rational surface, then r.G�/ � 4 by Theorem 1.1. Assume that Si is not

rational. Let �W S 0 ! Si be the normalization. Write 0 	 ��.KX CS/ D KS 0 CD0,
where D0 is the different, see [22, §3]. Here D0 is an effective reduced divisor and the
pair is lc [22, 3.2]. Since S is not normal, D0 ¤ 0. Consider the minimal resolution
	W QS ! S 0 and let QD be the crepant pull-back of D0, that is, 	� QD D D0 and

K QS C QD D 	�.KS 0 C D0/ 	 0:

Here QD is again an effective reduced divisor. Hence QS is a ruled surface. Consider
the Albanese map ˛ W QS ! C . Let QD1 � QD be an ˛-horizontal component. By the
adjunction formula QD1 is an elliptic curve and so C is. Let � be the image of G� in
Aut.C /. Then r.� / � 3 and so r.G�/ � 5. So, the last assertion is proved. ut

5 Non-Gorenstein Fano Threefolds

Let G be a 2-elementary abelian group and let X be GQ-Fano threefold. In this
section we consider the case where X is non-Gorenstein, i.e., it has at least one
terminal point of index > 1. We denote by Sing0.X/ D fP1; : : : ; PM g the set of
non-Gorenstein points.

Recall that any (analytic) threefold terminal singularity U 3 P has a small
deformation Ut , where t 2 (unit disk) � C, such that for 0 < jt j � 1 the threefold
Ut 3 Pi;t has only cyclic quotient singularities Ut 3 Pi;t of the form 1

mi
.1; �1; ai /

with gcd.mi ; ai / D 1 [19]. The collection B.U; P / WD
n

1
mi

.1; �1; ai /
o

does not

depend on the choice of deformation and called the basket of U 3 P . For a threefold
X with terminal singularities we denote by B D B.X/ its global basket, the union
of baskets of all singular points.

Proposition 5.1. Let X be a non-Gorenstein Fano threefold with terminal singu-
larities. Assume that X admits a faithful action of a 2-elementary abelian group G

with r.G/ � 6. Then r.G/ D 6, G transitively acts on Sing0.X/, j�KX j ¤ ;, and
the configuration of non-Gorenstein singularities is described below.

.1/ M D 8, B.X; Pi / D ˚
1
2
.1; 1; 1/

�
;

.2/ M D 8, B.X; Pi / D ˚
1
3
.1; 1; 2/

�
;

.3/ M D 4, B.X; Pi / D ˚
2 � 1

2
.1; 1; 1/

�
;
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.4/ M D 4, B.X; Pi / D ˚
2 � 1

3
.1; 1; 2/

�
;

.5/ M D 4, B.X; Pi / D ˚
3 � 1

2
.1; 1; 1/

�
;

.6/ M D 4, B.X; Pi / D ˚
1
4
.1; �1; 1/; 1

2
.1; 1; 1/

�
.

Proof. Let P .1/; : : : ; P .n/ 2 Sing0.X/ be representatives of distinct G-orbits and let
Gi be the stabilizer of P .i/. Let r WD r.G/, ri WD r.Gi /, and let mi;1; : : : ; mi;�i be
the indices of points in the basket of P .i/. We may assume that mi;1 � � � � � mi;�i

By the orbifold Riemann–Roch formula [19] and a form of Bogomolov–Miyaoka
inequality [8, 9] we have

nX

iD1

2r�ri

�iX

j D1

�

mi;j � 1

mi;j

�

< 24: (***)

If P is a cyclic quotient singularity, then �i D 1 and by Lemma 2.1 ri � 3. If P is
not a cyclic quotient singularity, then �i � 2 and again by Lemma 2.1 ri � 4. Since
mi;j � 1=mi;j � 3=2, in both cases we have

2r�ri

�iX

j D1

�

mi;j � 1

mi;j

�

� 3 � 2r�4 � 12:

Therefore, n D 1, i.e., G transitively acts on Sing0.X/, and r D 6.
If P is not a point of type cAx=4 (i.e., it is not as in (3) of (**)), then by

the classification of terminal singularities [19] m1;1 D � � � D m1;�i and (***) has
the form

24 > 26�r1�1

�

m1;1 � 1

m1;1

�

� 8

�

m1;1 � 1

m1;1

�

:

Hence r1 � 3, �1 � 3, m1;1 � 3, and 3 � 2r1�3 � �1m1;1. If r1 D 3, then �1 D 1.
If r1 D 4, then �1 � 2 and �1m1;1 � 6. This gives us the possibilities (1)– (5).

Assume that P is a point of type cAx=4. Then m1;1 D 4, �1 > 1, and m1;j D 2

for 1 < j � �1. Thus (***) has the form

24 > 26�r1

�
15

4
C 3

2
.�1 � 1/

�

D 24�r1 .9 C 6�1/ :

We get �1 D 2, r1 D 4, i.e., the case (6).
Finally, the computation of dim j�KX j follows by the orbifold Riemann–Roch

formula [19]

dim j�KX j D �1

2
K3

X C 2 �
X

P 2B.X/

bP .mP � bP /

2mP

:
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6 Gorenstein Fano Threefolds

The main result of this section is the following:

Proposition 6.1. Let G be a 2-elementary abelian group and let X be a (Goren-
stein) G-Fano threefold. Then r.G/ � 6. Moreover, if r.G/ D 6, then Pic.X/ DZ �
KX and �K3

X � 8.

Let X be a Fano threefold with at worst Gorenstein terminal singularities. Recall
that the number


.X/ WD maxfi 2 Z j �KX 	 iA; A 2 Pic.X/g

is called the Fano index of X . The integer g D g.X/ such that �K3
X D 2g � 2 is

called the genus of X . It is easy to see that dim j�KX j D gC1 [7, Corollary 2.1.14].
In particular, j�KX j ¤ ;.

Notation. Throughout this section G denotes a 2-elementary abelian group and
X denotes a Gorenstein G-Fano threefold. There exists an invariant member
S 2 j�KX j (see 4.1). We write S D PN

iD1 Si , where the Si are irreducible
components. Let G� � G be the kernel of the homomorphism G ! SN induced
by the action of G on fS1; : : : ; SN g. Since G is abelian and the action of G on
fS1; : : : ; SN g is transitive, the group G� coincides with the stabilizer of any Si .
Clearly, N D 2r.G/�r.G�/. If r.G/ � 6, then by Proposition 4.6 we have r.G�/ � 5

and so N � 2r.G/�5.

Lemma 6.2. Let G � Aut.Pn/ be a 2-elementary subgroup and n is even. Then G

is conjugate to a diagonal subgroup. In particular, r.G/ � n.

Proof. Let G] � SLnC1.k/ be the lifting of G and let G0 � G] be a Sylow two-
subgroup. Then G0 ' G. Since G0 is abelian, the representation G0 ,! SLnC1.k/

is diagonalizable. ut
Corollary 6.3. Let Q � P

4 be a quadric and let G � Aut.Q/ be a 2-elementary
subgroup. Then r.G/ � 4.

Lemma 6.4. Let G � Aut.P3/ be a 2-elementary subgroup. Then r.G/ � 4.

Certainly, the fact follows by Blichfeldt’s theorem which asserts that the lifting
G] � SL4.k/ is a monomial representation (see e.g. [20, §3]). Here we give a
short independent proof.

Proof. Assume that r.G/ � 5. Take any element ı 2 G n f1g. By Lemma 2.1 the
group G has no fixed points. Since the set Fix.ı/ is G-invariant, Fix.ı/ D L1 [ L2,
where L1; L2 � P

3 are skew lines.
Let G1 � G be the stabilizer of L1. There is a subgroup G2 � G1 of index 2

having a fixed point P 2 L1. Thus r.G2/ � 3 and the “orthogonal” plane ˘ is
G2-invariant. By Lemma 6.2 there exists an element ı0 2 G2 that acts trivially on
˘ , i.e., ˘ � Fix.ı0/. But then ı0 has a fixed point, a contradiction. ut
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Lemma 6.5. If Bsj�KX j ¤ ;, then r.G/ � 4.

Proof. By Shin [21] the base locus Bsj�KX j is either a single point or a rational
curve. In both cases r.G/ � 4 by Lemmas 2.1 and 2.3. ut
Lemma 6.6. If �KX is not very ample, then r.G/ � 5.

Proof. Assume that r.G/ � 6. By Lemma 6.5 the linear system j�KX j is base point
free. It is easy to show that j�KX j defines a double cover � W X ! Y � P

gC1

(cf. [6, Chap. 1, Prop. 4.9]). Here Y is a variety of degree g � 1 in P
gC1, a variety

of minimal degree. Let NG be the image of G in Aut.Y /. Then r. NG/ � r.G/ � 1.
If g D 2 (resp. g D 3), then Y D P

3 (resp. Y � P
4 is a quadric) and r.G/ � 5

by Lemma 6.4 (resp. by Corollary 6.3). Thus we may assume that g � 4. If Y

is smooth, then according to the Enriques theorem (see, e.g., [6, Th. 3.11]) Y is
a rational scroll PP1 .E /, where E is a rank 3 vector bundle on P

1. Then X has a
G-equivariant projection to a curve. This contradicts �.X/G D 1. Hence Y is
singular. In this case, Y is a projective cone (again by the Enriques theorem). If its
vertex O 2 Y is zero-dimensional, then dim TO;Y � 5. On the other hand, X has
only hypersurface singularities. Therefore the double cover X ! Y is not étale
over O and so G has a fixed point on X . This contradicts Lemma 2.1. Thus Y is
a cone over a curve with vertex along a line L. As above, L must be contained in
the branch divisor and so L0 WD ��1.L/ is a G-invariant rational curve. Since the
image of G in Aut.L0/ is a 2-elementary abelian group of rank � 2, by Lemma 2.3
we have r.G/ � 4. ut
Remark 6.7. Recall that for a Fano threefold X with at worst Gorenstein terminal
singularities one has 
.X/ � 4. Moreover, 
.X/ D 4 if and only if X ' P

3 and

.X/ D 3 if and only if X is a quadric in P

4 [7]. In these cases we have r.G/ � 4

by Lemma 6.4 and Corollary 6.3, respectively. If 
.X/ D 2, then X is so-called del
Pezzo threefold. The number d WD .� 1

2
KX/3 is called the degree of X .

Lemma 6.8. Assume that the divisor �KX is very ample, r.G/ � 6, and the
action of G on X is not free in codimension 1. Let ı 2 G be an element such
that dim Fix.ı/ D 2 and let D � Fix.ı/ be the union of all two-dimensional
components. Then r.G/ D 6 and D is a Du Val member of j�KX j. Moreover,

.X/ D 1 except, possibly, for the case where 
.X/ D 2 and � 1

2
KX is not very

ample.

Proof. Since G is abelian, Fix.ı/ and D are G-invariant and so �KX 	Q �D

for some � 2 Q. In particular, D is a Q-Cartier divisor. Since X has only
terminal Gorenstein singularities, D must be Cartier. Clearly, D is smooth outside
of Sing.X/. Further, D is ample and so it must be connected. Since D is a reduced
Cohen–Macaulay scheme with dim Sing.D/ � 0, it is irreducible and normal.

Let X ,! P
gC1 be the anticanonical embedding. The action of ı on X is induced

by an action of a linear involution of PgC1. There are two disjointed linear subspaces
VC; V� � P

gC1 of ı-fixed points and the divisor D is contained in one of them. This
means that D is a component of a hyperplane section S 2 j�KX j and so � � 1.



2-Elementary Subgroups of the Space Cremona Group 225

Since r.G/ � 6, by Corollary 4.3 we have � D 1 and �KX 	 D (because Pic.X/

is a torsion free group). Since D is irreducible, the case (i) of Proposition 4.6 holds.
Finally, if 
.X/ > 1, then by Remark 6.7 we have 
.X/ D 2. If furthermore the

divisor A is very ample, then it defines an embedding X ,! P
N so that D spans

P
N . In this case the action of ı must be trivial, a contradiction. ut

Lemma 6.9. If �.X/ > 1, then r.G/ � 5.

Proof. We use the classification of G-Fano threefolds with �.X/ > 1 [17]. By this
classification �.X/ � 4. Let G0 be the kernel of the action of G on Pic.X/.

Consider the case �.X/ D 2. Then ŒG W G0� D 2. In the cases (1.2.1) and (1.2.4)
of [17] the variety X has a structure of G0-equivariant conic bundle over P2. As in
Proposition 3.2 we have r.G0/ � 4 and r.G/ � 5 in these cases. In the cases (1.2.2)
and (1.2.3) of [17] the variety X has two birational contractions to P

3 and a quadric
Q � P

4, respectively. As above we get r.G/ � 5 by Lemma 6.4 and Corollary 6.3.
Consider the case �.X/ D 3. We show that in this case Pic.X/G 6' Z (and so

this case does not occur). Since G is a 2-elementary abelian group, its action on
Pic.X/ ˝ Q is diagonalizable. Since, Pic.X/G D Z � KX , the group G contains
an element � that acts on Pic.X/ ' Z

3 as the reflection with respect to the
orthogonal complement to KX . Since the group G preserves the natural bilinear
form hx1; x2i WD x1 � x2 � KX , the action must be as follows:

� W x 7�! x � �KX; � D 2x � K2
X

K3
X

:

Hence �KX is an integral element for any x 2 Pic.X/. This gives a contradiction in
all cases (1.2.5)–(1.2.7) of [17, Th. 1.2]. For example, in the case (1.2.5) of [17, Th.
1.2] our variety X has a structure (non-minimal) del Pezzo fibration of degree 4 and
�K3

X D 12. For the fiber F we have F � K2
X D K2

F D 4 and �KX is not integral, a
contradiction.

Finally, consider the case �.X/ D 4. Then according to [17] X is a divisor of
multidegree .1; 1; 1; 1/ in .P1/4. All the projections 'i W X ! P

1, i D 1; : : : ; 4

are G0-equivariant. We claim that natural maps 'i � W G0 ! Aut.P1/ are injective.
Indeed, assume that '1�.#/ is the identity map in Aut.P1/ for some # 2 G. This
means that # ı '1 D '1. Since Pic.X/G D Z, the group G permutes the classes
'�

i OP1 .1/ 2 Pic.X/. Hence, for any i D 1; : : : ; 4, there exists 
i 2 G such that
'i D '1 ı 
i . Then

# ı 'i D # ı '1 ı 
i D '1 ı 
i D 'i :

Hence, 'i �.#/ is the identity for any i . Since '1�� � ��'4 is an embedding, # must be
the identity as well. This proves our clam. Therefore, r.G0/ � 2. The group G=G0

acts on Pic.X/ faithfully. By the same reason as above, an element of G=G0 cannot
act as the reflection with respect to KX . Therefore, r.G=G0/ � 2 and r.G/ � 4. ut

Now we consider the case of del Pezzo threefolds.
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Lemma 6.10. If 
.X/ D 2, then r.G/ � 5.

Proof. By Lemma 6.9 we may assume that �.X/ D 1. Let A WD � 1
2
KX and let

d WD A3 be the degree of X . Since �.X/ D 1, we have d � 5 (see e.g. [16]).
Consider the possibilities for d case by case. We use the classification (see [21]
and [16]).

If d D 1, then the linear system jAj has a unique base point. This point is smooth
and must be G-invariant. By Lemma 2.1 r.G/ � 3. If d D 2, then the linear system
jAj defines a double cover ' W X ! P

3. Then the image of G in Aut.P3/ is a
2-elementary group NG with r. NG/ � r.G/ � 1, where r. NG/ � 4 by Lemma 6.4.
If d D 3, then X D X3 � P

4 is a cubic hypersurface. By Lemma 6.2 r.G/ � 4.
If d D 5, then X is smooth, unique up to isomorphism, and Aut.X/ ' P GL2.k/

(see [7]).
Finally, consider the case d D 4. Then X D Q1 \ Q2 � P

5 is an intersection
of two quadrics (see e.g. [21]). Let Q be the pencil generated by Q1 and Q2. Since
X has a isolated singularities and it is not a cone, a general member of Q is smooth
by Bertini’s theorem and for any member Q 2 Q we have dim Sing.Q/ � 1. Let
D be the divisor of degree 6 on Q ' P

1 given by the vanishing of the determinant.
The elements of Supp.D/ are exactly degenerate quadrics. Clearly, for any point
P 2 Sing.X/ there exists a unique quadric Q 2 Q which is singular at P . This
defines a map � W Sing.X/ ! Supp.D/. Let Q 2 Supp.D/. Then ��1.Q/ D
Sing.Q/ \ X D Sing.Q/ \ Q0, where Q0 2 Q, Q0 ¤ Q. In particular, ��1.Q/

consists of at most two points. Hence the cardinality of Sing.X/ is at most 12.
Assume that r.G/ � 6. Let S 2 j � KX j be an invariant member. We claim

that S 
 Sing.X/ and Sing.X/ ¤ ;. Indeed, otherwise S \ Sing.X/ D ;.
By Proposition 4.6 S is reducible: S D S1 C� � �CSN , N � 2. Since 
.X/ D 2, we
get N D 2 and S1 	 S2, i.e., Si is a hyperplane section of X � P

5. As in the proof
of Corollary 4.3 we see that Si is rational. This contradicts Proposition 4.6 (ii). Thus
; ¤ Sing.X/ � S . By Lemma 6.8 the action of G on X is free in codimension 1.
By Remark 2.2 for the stabilizer GP of a point P 2 Sing.X/ we have r.GP / � 3.
Then by the above estimate the variety X has exactly 8 singular points and G acts
on Sing.X/ transitively.

Note that our choice of S is not unique: there is a basis s.1/, . . . , s.gC2/ 2
H 0.X; �KX/ consisting of eigensections. This basis gives us G-invariant divisors
S.1/, . . . , S.gC2/ generating j�KX j. By the above Sing.X/ � S.i/ for all i . Thus
Sing.X/ � \S.i/ D Bsj�KX j. This contradicts the fact that �KX is very ample.

ut
The following two examples show that the inequality r.G/ � 5 in the above

lemma is sharp.

Example 6.11. Let X D X2�2 � P
5 be the variety given by

P
x2

i D P
�i x

2
i D 0

with �i ¤ �j for i ¤ j and let G � Aut.X/ be the 2-elementary abelian subgroup
generated by involutions xi 7! �xi . Then X is a rational del Pezzo threefold of
degree 4 and r.G/ D 5.
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Example 6.12 (suggested by the referee). Let A be the Jacobian of a curve of genus
2 and let � be its theta-divisor. The linear system j2�j defines a finite morphism
˛ W A ! B � P

3 of degree 2 whose image B D ˛.A/ is a quartic with 16 nodes
[2, Chap. VIII, Exercises]. Let ' W X ! P

3 be the double cover branched along
B . Then X is a del Pezzo threefold of degree 2 whose singular locus consists of 16
nodes. In this situation, the rank of the Weil divisor class group Cl.X/ equals to 7

(see [16, Th. 7.1]) and X has a small resolution which can be obtained by blowing
up of six points in general position on P

3 (see e.g. [4, 23, Chap. 3] or [16, Th. 7.1]).
In particular, X is rational. The translation by a two-torsion point a 2 A induces
a projective involution �a of B � P

3. These involutions lift to X and generate a
2-elementary subgroup H � Aut.X/ with r.H/ D 4. The Galois involution � of
the double cover ' is contained in the center of Aut.X/. Hence � and H generate a
2-elementary subgroup G � Aut.X/ of rank 5.

Note that the fixed point locus of � on X is a Kummer surface isomorphic to B .
On the other hand, the fixed point loci of involutions acting on X2�2 are either
rational surfaces or subvarieties of dimension � 1. Hence the groups constructed
in Examples 6.11 and 6.12 are not conjugate to each other in the Cremona group.

From now on we assume that Pic.X/ D Z � KX . Let g WD g.X/.

Lemma 6.13. If g � 4, then r.G/ � 5. If g D 5, then r.G/ � 6.

Proof. We may assume that �KX is very ample. Automorphisms of X are induced
by projective transformations of PgC1 that preserve X � P

gC1. On the other hand,
there is a natural representation of G on H 0.X; �KX/ which is faithful. Thus the
composition

Aut.X/ ,! GL.H 0.X; �KX // D GLgC2.k/ ! P GLgC2.k/

is injective. Since G is abelian, its image NG � GLgC2.k/ is contained in a maximal
torus and by the above NG contains no scalar matrices. Hence, r.G/ � g C 1. ut
Example 6.14. Let G be the two-torsion subgroup of the diagonal torus of
P GL7.k/. Then X faithfully acts on the Fano threefold in P

6 given by the equationsP
x2

i D P
�i x

2
i D P

	i x
2
i D 0. This shows that the bound r.G/ � 6 in the above

lemma is sharp. Note however that X is not rational if it is smooth [1]. Hence in
this case our construction does not give any embedding of G to Cr3.k/.

Lemma 6.15. If in the above assumptions g.X/ � 6, then X has at most 29

singular points.

Proof. According to [12] the variety X has a smoothing. This means that there
exists a flat family X ! T over a smooth one-dimensional base T with special
fiber X D X0 and smooth general fiber Xt D Xt . Using the classification of Fano
threefolds [6] (see also [7]) we obtain h1;2.Xt/ � 10. Then by Namikawa [12]
we have
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#Sing.X/ � 21 � 1

2
Eu.Xt / D 20 � �.Xt / C h1;2.Xt / � 29:

Proof of Proposition 6.1. Assume that r.G/ � 7. Let S 2 j�KX j be an invariant
member. By Corollary 4.5 the singularities of S are worse than Du Val. So S satisfies
the conditions (ii) of Proposition 4.6. Write S D PN

iD1 Si . By Proposition 4.6 the
group G� acts on Si faithfully and

N D 2r.G/�r.G�/ � 4:

First we consider the case where X is smooth near S . Since �.X/ D 1, the
divisors Si ’s are linear equivalent to each other and so 
.X/ � 4. This contradicts
Lemma 6.10.

Therefore, S \ Sing.X/ ¤ ;. By Lemma 6.8 the action of G on X is free in
codimension 1 and by Remark 2.2 we see that r.GP / � 3, where GP is the stabilizer
of a point P 2 Sing.X/. Then by Lemma 6.15 the variety X has exactly 16 singular
points and G acts on Sing.X/ transitively. Since S \ Sing.X/ ¤ ;, we have
Sing.X/ � S . On the other hand, our choice of S is not unique: there is a basis
s.1/, . . . , s.gC2/ 2 H 0.X; �KX / consisting of eigensections. This basis gives us G-
invariant divisors S.1/, . . . , S.gC2/ generating j�KX j. By the above Sing.X/ � S.i/

for all i . Thus Sing.X/ � \S.i/ D Bsj�KX j. This contradicts Lemma 6.6. ut
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