p-elementary subgroups of the Cremona group of rank 3

Yuri Prokhorov*

Abstract. For the subgroups of the Cremona group $\operatorname{Cr}_3(\mathbb{C})$ having the form $(\mu_p)^s$, where p is prime, we obtain an upper bound for s. Our bound is sharp if $p \geq 17$.

2010 Mathematics Subject Classification. 14E07

1. Introduction

Let \mathbb{k} be an algebraically closed field. The *Cremona group* $\operatorname{Cr}_n(\mathbb{k})$ is the group of birational transformations of $\mathbb{P}^n_{\mathbb{k}}$, or equivalently the group of \mathbb{k} -automorphisms of the field $\mathbb{k}(x_1,\ldots,x_n)$. Finite subgroups of $\operatorname{Cr}_2(\mathbb{C})$ are completely classified (see [DI09] and references therein). In contrast, subgroups of $\operatorname{Cr}_n(\mathbb{k})$ for $n \geq 3$ are not studied well (cf. [Pro09]).

In the present paper we study a certain kind of abelian subgroups of $\operatorname{Cr}_3(\mathbb{C})$. Let p be a prime number. We say that a group G is p-elementary if $G \simeq (\mu_p)^s$ for some positive integer s. In this case s is called the rank of G and denoted by rk G.

Theorem 1.1 ([Bea07]). Let p be a prime $\neq \operatorname{char}(\mathbb{k})$ and let $G \subset \operatorname{Cr}_2(\mathbb{k})$ be a p-elementary subgroup. Then:

$$\operatorname{rk} G \le 2 + \delta_{p,3} + 2\delta_{p,2}$$

where $\delta_{i,j}$ is Kronecker's delta. Moreover, for any such p this bound is attained for some G. These "maximal" groups G are classified up to conjugacy in $Cr_2(\mathbb{k})$.

More generally, instead of $\operatorname{Cr}_n(\Bbbk)$ we also can consider the group $\operatorname{Bir}(X)$ of birational automorphisms of an arbitrary rationally connected variety X. Our main result is the following

Theorem 1.2. Let X be a rationally connected threefold defined over a field of characteristic 0, let p be a prime, and let $G \subset Bir(X)$ be a p-elementary subgroup. Then

$$\operatorname{rk} G \leq \begin{cases} 7 & \text{if } p = 2, \\ 5 & \text{if } p = 3, \\ 4 & \text{if } p = 5, 7, 11, \text{ or } 13, \\ 3 & \text{if } p \geq 17. \end{cases}$$
 (1.3)

 $^{^*{\}rm The}$ author was partially supported by RFBR, grant No. 08-01-00395-a and Leading Scientific Schools (grants No. 1983.2008.1, 1987.2008.1).

For any prime $p \geq 17$ this bound is attained for some subgroup $G \subset \operatorname{Cr}_3(\mathbb{C})$. (However we do not assert that the bound (1.3) is sharp for $p \leq 13$).

Remark 1.4. (i) Note that $\operatorname{Cr}_1(\Bbbk) \simeq \operatorname{PGL}_2(\Bbbk)$. Hence for any prime $p \neq \operatorname{char}(\Bbbk)$ and any p-elementary subgroup $G \subset \operatorname{Cr}_1(\Bbbk)$, we have $\operatorname{rk} G \leq 1 + \delta_{p,2}$ (see, e.g., [Bea07, Lemma 2.1]).

(ii) Since $\operatorname{Cr}_1(\mathbb{k}) \times \operatorname{Cr}_2(\mathbb{k})$ admits (a lot of) embeddings into $\operatorname{Cr}_3(\mathbb{k})$, the group $\operatorname{Cr}_3(\mathbb{k})$ contains a *p*-elementary subgroup G of rank $3 + \delta_{p,3} + 3\delta_{p,2}$. This shows the last assertion of our theorem.

The following consequence of Theorem 1.2 was proposed by A. Beauville.

Corollary 1.5. The group $\operatorname{Cr}_3(\mathbb{C})$ is not isomorphic to $\operatorname{Cr}_n(\mathbb{C})$ for $n \neq 3$ as an abstract group.

Proof. Denote by $\xi(n,p)$ the maximal rank of a p-elementary group contained in $\operatorname{Cr}_n(\mathbb{C})$. Then $\xi(2,17)=2<\xi(3,17)=3$ and $\xi(n,17)\geq n$ by Theorems 1.1 and 1.2.

Our method is a generalization of the method used for the study of finite subgroups of $\operatorname{Cr}_2(\Bbbk)$ [Bea07], [DI09]. Similarly to [Pro09] we use the equivariant three-dimensional minimal model program. This easily allows us to reduce the problem to the study of automorphism groups of some (not necessarily smooth) Fano threefolds.

Acknowledgments. I would like to thank J.-P. Serre for asking me the question considered here and for useful comments. I am also grateful to A. Beauville for proposing me Corollary 1.5 and for his interest in my paper. This paper was written at the IHES (Bures-sur-Yvette) during my visit in 2009. I am grateful to IHES for the support and hospitality. Finally I would like to thank the referee for several suggestions that make the paper more readable and clear.

2. Preliminaries

Clearly, we may assume that $\mathbb{k} = \mathbb{C}$. All the groups in this paper are multiplicative. In particular, we denote a cyclic group of order n by μ_n .

2.1. Terminal singularities. We need a few facts on the classification of three-dimensional terminal singularities (see [Mor85], [Rei87]). Let $(X \ni P)$ be a germ of a three-dimensional terminal singularity. Then $(X \ni P)$ is isolated, i.e., $\operatorname{Sing}(X) = \{P\}$. The *index* of $(X \ni P)$ is the minimal positive integer r such that rK_X is Cartier. If r=1, then $(X \ni P)$ is Gorenstein. In this case $(X \ni P)$ is analytically isomorphic to a hypersurface singularity in \mathbb{C}^4 of multiplicity 2. Moreover, any Weil \mathbb{Q} -Cartier divisor D on $(X \ni P)$ is Cartier. If r > 1, then there is a cyclic, étale outside of P cover $\pi: (X^{\sharp} \ni P^{\sharp}) \to (X \ni P)$ of degree r such that $(X^{\sharp} \ni P^{\sharp})$ is a Gorenstein terminal singularity (or a smooth point). This π is called the *index-one cover* of $(X \ni P)$.

Theorem 2.2 ([Mor85], [Rei87]). In the above notation $(X^{\sharp} \ni P^{\sharp})$ is analytically μ_r -isomorphic to a hypersurface in \mathbb{C}^4 with μ_r -semi-invariant ¹ coordinates x_1, \ldots, x_4 , and the action is given by

$$(x_1,\ldots,x_4)\longmapsto (\varepsilon^{a_1}x_1,\ldots,\varepsilon^{a_4}x_4)$$

for some primitive r-th root of unity ε , where one of the following holds:

(i)
$$(a_1, \ldots, a_4) \equiv (1, -1, a_2, 0) \mod r$$
, $\gcd(a_2, r) = 1$,

(ii)
$$r = 4$$
 and $(a_1, \ldots, a_4) \equiv (1, -1, 1, 2) \mod 4$.

Definition 2.3. A G-variety is a variety X provided with a biregular faithful action of a finite group G. We say that a normal G-variety X is $G\mathbb{Q}$ -factorial if any G-invariant Weil divisor on X is \mathbb{Q} -Cartier. A projective normal G-variety X is called $G\mathbb{Q}$ -fano if it is $G\mathbb{Q}$ -factorial, has at worst terminal singularities, $-K_X$ is ample, and $\operatorname{rk}\operatorname{Pic}(X)^G=1$.

Lemma 2.4. Let $(X \ni P)$ be a germ of a threefold terminal singularity and let $G \subset \operatorname{Aut}(X \ni P)$ be a p-elementary subgroup. Then $\operatorname{rk} G \leq 3 + \delta_{2,p}$.

Proof. Assume that $\mathrm{rk}\,G \geq 4 + \delta_{2,p}$. First we consider the case where $(X \ni P)$ is Gorenstein. The group G acts faithfully on the Zariski tangent space $T_{P,X}$, so $G \subset GL(T_{P,X})$, where dim $T_{P,X} = 3$ or 4. If dim $T_{P,X} = 3$, then G is contained in a maximal torus of $GL_3(\mathbb{C})$, so $\mathrm{rk}\,G\leq 3$ and we are done. Thus we may assume that dim $T_{P,X}=4$. Take semi-invariant coordinates x_1,\ldots,x_4 in $T_{P,X}$. There is a G-equivariant analytic embedding $(X \ni P) \subset \mathbb{C}^4_{x_1,\dots,x_4}$. As above, $\operatorname{rk} G \leq 4$. Thus we may assume that $\operatorname{rk} G \leq 4$ and p > 2. Let $\phi(x_1, \ldots, x_4) = 0$ be an equation of X, where ϕ is a G-semi-invariant function. Regard ϕ as a power series and write $\phi = \sum_{d} \phi_{d}$, where ϕ_{d} is the sum of all monomials of degree d. Since the action of G on x_1, \ldots, x_4 is linear, all the ϕ_d 's are semi-invariants of the same G-weight $w = \text{wt } \phi_d$. Hence, for any ϕ_d , $\phi_{d'} \neq 0$ we have $d - d' \equiv 0 \mod p$. Since $(X \ni P)$ is a terminal singularity, $\phi_2 \neq 0$ and so $\phi_3 = 0$. Recall that $G \simeq (\mu_p)^4$, $p \geq 3$. In this case, ϕ_2 must be a monomial. Thus up to permutations of coordinates and scalar multiplication we get either $\phi_2 = x_1^2$ or $\phi_2 = x_1 x_2$. In particular, we have $\operatorname{rk} \phi_2 \leq 2$ and $\phi_3 = 0$. This contradicts the classification of terminal singularities [Mor85], [Rei87].

Now assume that $(X \ni P)$ is non-Gorenstein of index r > 1. Consider the index-one cover $\pi \colon (X^{\sharp} \ni P^{\sharp}) \to (X \ni P)$ (see 2.1). Here $(X^{\sharp} \ni P^{\sharp})$ is a Gorenstein terminal point and the map $X^{\sharp} \setminus \{P^{\sharp}\} \to X \setminus \{P\}$ can be regarded as the topological universal cover. Hence there exists a natural lifting $G^{\sharp} \subset \operatorname{Aut}(X^{\sharp} \ni P^{\sharp})$ fitting in the following exact sequence

$$1 \longrightarrow \mu_r \longrightarrow G^{\sharp} \longrightarrow G \longrightarrow 1. \tag{2.5}$$

It is sufficient to show that there exists a subgroup $G^{\bullet} \subset G^{\sharp}$ isomorphic to G (but we do not assert that the sequence splits). Indeed, in this case $G^{\bullet} \simeq G$

¹In invariant theory people often say "relative invariant" rather than "semi-invariant". We prefer to use the terminology of [Mor85].

acts faithfully on the terminal Gorenstein singularity $(X^{\sharp} \ni P^{\sharp})$ and we can apply the case considered above. We may assume that G^{\sharp} is not abelian (otherwise a subgroup $G^{\bullet} \simeq G$ obviously exists). The group G^{\sharp} permutes eigenspaces of μ_r . By Theorem 2.2 the subspace $T := \{x_4 = 0\} \subset \mathbb{C}^4_{x_1, \dots, x_4}$ is G^{\sharp} -invariant and μ_r acts on any eigenspace $T_1 \subset T$ faithfully. On the other hand, by (2.5) we see that the derived subgroup $[G^{\sharp}, G^{\sharp}]$ is contained in μ_r . In particular, $[G^{\sharp}, G^{\sharp}]$ is abelian and also acts on any eigenspace $T_1 \subset T$ faithfully. Since $\dim T = 3$, this implies that the representation of G^{\sharp} on T is irreducible (otherwise T has a one-dimensional subrepresentation, say T_1 , and the kernel of the map $G \to \operatorname{GL}(T_1) \simeq \mathbb{C}^*$ must contain $[G^{\sharp}, G^{\sharp}]$). Hence eigenspaces of μ_r have the same dimension and so μ_r acts on T by scalar multiplication. By Theorem 2.2 this is possible only if r = 2.

Let $G_p^{\sharp} \subset G^{\sharp}$ be a Sylow p-subgroup. If $\mu_r \cap G_p^{\sharp} = \{1\}$, then $G_p^{\sharp} \simeq G$ and we are done. Thus we assume that $\mu_r \subset G_p^{\sharp}$, so p = r = 2 and $G_p^{\sharp} = G^{\sharp}$. But then G^{\sharp} is a 2-group, so the dimension of its irreducible representation must be a power of 2. Hence T is reducible, a contradiction.

Lemma 2.6. Let X be a G-threefold with isolated singularities.

- (i) If there is a curve $C \subset X$ of G-fixed points, then $\operatorname{rk} G \leq 2$.
- (ii) If there is a surface $S \subset X$ of G-fixed points, then $\operatorname{rk} G \leq 1$. If moreover S is singular along a curve, then $G = \{1\}$.

Sketch of the Proof. Consider the action of G on the tangent space to X at a general point of C (resp. S).

G-equivariant minimal model program. Let X be a rationally connected three-dimensional algebraic variety and let $G \subset \operatorname{Bir}(X)$ be a finite subgroup. By shrinking X we may assume that G acts on X biregularly. The quotient Y = X/G is quasiprojective, so there exists a projective completion $\hat{Y} \supset Y$. Let \hat{X} be the normalization of \hat{Y} in the function field $\mathbb{C}(X)$. Then \hat{X} is a projective variety birational to X admitting a biregular action of G. There is an equivariant resolution of singularities $\tilde{X} \to \hat{X}$, see [AW97]. Run the G-equivariant minimal model program: $\tilde{X} \to \bar{X}$, see [Mor88, 0.3.14]. Running this program we stay in the category of projective normal varieties with at worst terminal $G\mathbb{Q}$ -factorial singularities. Since X is rationally connected, on the final step we get a Fano-Mori fibration $f: \bar{X} \to Z$. Here dim $Z < \dim X$, Z is normal, f has connected fibers, the anticanonical Weil divisor $-K_{\bar{X}}$ is ample over Z, and the relative G-invariant Picard number $\rho(\bar{X})^G$ is one. Obviously, we have the following possibilities:

- (i) Z is a rational surface and a general fiber $F=f^{-1}(y)$ is a conic;
- (ii) $Z \simeq \mathbb{P}^1$ and a general fiber $F = f^{-1}(y)$ is a smooth del Pezzo surface;
- (iii) Z is a point and \bar{X} is a $G\mathbb{Q}$ -Fano threefold.

Proposition 2.7. In the above notation assume that Z is not a point. Then $\operatorname{rk} G \leq 3 + \delta_{p,3} + 3\delta_{p,2}$. In particular, (1.3) holds.

Proof. Let $G_0 \subset G$ be the kernel of the homomorphism $G \to \operatorname{Aut}(Z)$. The group $G_1 := G/G_0$ acts effectively on Z and G_0 acts effectively on a general fiber $F \subset X$ of f. Hence, $G_1 \subset \operatorname{Aut}(Z)$ and $G_0 \subset \operatorname{Aut}(F)$. Clearly, G_0 and G_1 are p-elementary groups with $\operatorname{rk} G_0 + \operatorname{rk} G_1 = \operatorname{rk} G$. Assume that $Z \simeq \mathbb{P}^1$. Then $\operatorname{rk} G_1 \leq 1 + \delta_{p,2}$. By Theorem 1.1 we obtain $\operatorname{rk} G_0 \leq 2 + \delta_{p,3} + 2\delta_{p,2}$. This proves our assertion in the case $Z \simeq \mathbb{P}^1$. The case dim Z = 2 is treated similarly.

2.8. Main assumption. Thus from now on we assume that we are in the case (iii). Replacing X with \bar{X} we may assume that our original X is a $G\mathbb{Q}$ -Fano threefold.

The group G acts naturally on $H^0(X, -K_X)$. If $H^0(X, -K_X) \neq 0$, then there exists a G-semi-invariant section $s \in H^0(X, -K_X)$ (because G is an abelian group). This section gives us an invariant member $S \in |-K_X|$.

Lemma 2.9. Let X be a $G\mathbb{Q}$ -Fano threefold, where G is a p-elementary group with $\operatorname{rk} G \geq \delta_{p,2} + 4$. Let S be an invariant Weil divisor such that $-(K_X + S)$ is nef. Then the pair (X, S) is log canonical (LC).

Proof. Assume that the pair (X,S) is not LC. Since S is G-invariant and $\rho(X)^G = 1$, we see that S is numerically proportional to K_X . Since $-(K_X + S)$ is nef, S is ample. We apply quite standard connectedness arguments of Shokurov [Sho93] (see, e.g., [MP09, Prop. 2.6]): for a suitable G-invariant boundary D, the pair (X,D) is LC, the divisor $-(K_X + D)$ is ample, and the minimal locus V of log canonical singularities is also G-invariant. Moreover, V is either a point or a smooth rational curve. By Lemma 2.4 we may assume that G has no fixed points. Hence, $V \simeq \mathbb{P}^1$ and we have a map $\varsigma : G \to \operatorname{Aut}(\mathbb{P}^1)$. If p > 2, then $\varsigma(G)$ is a cyclic group, so G has a fixed point, a contradiction. Let p = 2 and let $G_0 = \ker \varsigma$. By Lemma 2.6 rk $G_0 \le 2$. Therefore rk $\varsigma(G_0) \ge 3$. Again we get a contradiction. \square

Lemma 2.10. Let X be a $G\mathbb{Q}$ -Fano threefold, where G is a p-elementary group with

$$\operatorname{rk} G \ge \begin{cases} 7 & \text{if } p = 2, \\ 5 & \text{if } p = 3, \\ 4 & \text{if } p \ge 5. \end{cases}$$
 (2.11)

Let $S \in |-K_X|$ be a G-invariant member. Then we have

- (i) Any component $S_i \subset S$ is either rational or birationally ruled over an elliptic curve.
- (ii) The group G acts transitively on the components of S.
- (iii) For the stabilizer G_{S_i} we have $\operatorname{rk} G_{S_i} \leq \delta_{p,2} + 4$.
- (iv) The surface S is reducible (and reduced).

Proof. By Lemma 2.9 the pair (X, S) is LC. Assume that S is normal (and irreducible). By the adjunction formula $K_S \sim 0$. We claim that S has at worst Du Val singularities. Indeed, otherwise by the Connectedness Principle [Sho93, Th.

6.9] S has at most two non-Du Val points. If p > 2, these points must be G-fixed. This contradicts Lemma 2.4. Otherwise p = 2 and these points are fixed for an index two subgroup $G^{\bullet} \subset G$. Again we get a contradiction by Lemma 2.4. Thus we may assume that S has at worst Du Val singularities. Let Γ be the image of G in $\operatorname{Aut}(S)$. By Lemma 2.6 rk $G \leq \operatorname{rk} \Gamma + 1$. Let $\tilde{S} \to S$ be the minimal resolution. Here \tilde{S} is a smooth K3 surface. The natural representation of Γ on $H^{2,0}(\tilde{S})$ induces the exact sequence (see [Nik80])

$$1 \longrightarrow \Gamma_0 \longrightarrow \Gamma \longrightarrow \Gamma_1 \longrightarrow 1$$
,

where Γ_0 (resp. Γ_1) is the kernel (resp. image) of the representation of Γ on $H^{2,0}(\tilde{S})$. The group Γ_1 is cyclic. Hence either $\Gamma_1 = \{1\}$ or $\Gamma_1 \simeq \mu_p$. In the second case by [Nik80, Cor. 3.2] $p \leq 19$. Further, according to [Nik80, Th. 4.5] we have

$$\operatorname{rk} \Gamma_0 \le \begin{cases} 4 & \text{if } p = 2\\ 2 & \text{if } p = 3\\ 1 & \text{if } p = 5 \text{ or } 7\\ 0 & \text{if } p > 7. \end{cases}$$

Combining this we obtain a contradiction with (2.11).

Now assume that S is not normal. Let $S_i \subset S$ be an irreducible component (the case $S_i = S$ is not excluded). Let $\nu \colon S' \to S_i$ be the normalization. Write $0 \sim \nu^*(K_X + S_i) = K_{S'} + D'$, where D' is the different, see [Sho93, §3]. Here D' is an effective reduced divisor and the pair is LC [Sho93, 3.2]. Since S is not normal, $D' \neq 0$. Consider the minimal resolution $\mu \colon \tilde{S} \to S'$ and let \tilde{D} be the crepant pull-back of D', that is, $\mu_*\tilde{D} = D'$ and

$$K_{\tilde{S}} + \tilde{D} = \mu^* (K_{S'} + D') \sim 0.$$

Here \tilde{D} is again an effective reduced divisor. Hence \tilde{S} is a ruled surface. If it is not rational, consider the Albanese map $\alpha: \tilde{S} \to C$. Clearly α is Γ -equivariant and the action of Γ on C is not trivial. Let $\tilde{D}_1 \subset \tilde{D}$ be an α -horizontal component. By adjunction \tilde{D}_1 is an elliptic curve. So is C. This proves (i).

If the action on components $S_i \subset S$ is not transitive, we have an invariant divisor S' < S. Since X is $G\mathbb{Q}$ -factorial and $\rho(X)^G = 1$, we can take S' so that $-(K_X + 2S')$ is nef. This contradicts Lemma 2.9. So, (ii) is proved.

Now we prove (iii). Let Γ be the image of G_{S_i} in $\operatorname{Aut}(S_i)$. By Lemma 2.6 $\operatorname{rk} G_{S_i} \leq \operatorname{rk} \Gamma + 1$. If S_i is rational, then we get the assertion by Theorem 1.1. Assume that S_i is a birationally ruled surface over an elliptic curve. As above, let $\tilde{S}_i \to S_i$ be the composition of the normalization and the minimal resolution, and let $\alpha: \tilde{S}_i \to C$ be the Albanese map. Then Γ acts faithfully on \tilde{S}_i and α is Γ -equivariant. Thus we have a homomorphism $\alpha_*: \Gamma \to \operatorname{Aut}(C)$. Here $\operatorname{rk} \Gamma \leq \operatorname{rk} \alpha_*(\Gamma) + 1 + \delta_{p,2}$. Note that $\alpha_*(\Gamma)$ is a p-elementary subgroup of the automorphism group of an elliptic curve. Hence, $\operatorname{rk} \alpha_*(\Gamma) \leq 2$. This implies (iii).

It remains to prove (iv). Assume that S is irreducible. By (iii) the surface S is not rational. So, S is birational to a ruled surface over an elliptic curve. By Lemma 2.6 the group G acts faithfully on S. Hence, in the above notation, $\operatorname{rk} G = \operatorname{rk} \Gamma \leq \operatorname{rk} \alpha_*(\Gamma) + 1 + \delta_{p,2} \leq 3 + \delta_{p,2}$, a contradiction.

3. Proof of Theorem 1.2

3.1. In this section we prove Theorem 1.2. As in 2.8 we assume that X is a $G\mathbb{Q}$ -Fano threefold, where G is a p-elementary subgroup of $\operatorname{Aut}(X)$.

First we consider the case where X is non-Gorenstein, i.e., it has at least one point of index > 1.

Proposition 3.2. Let G be a p-elementary group and let X be a non-Gorenstein $G\mathbb{Q}$ -Fano threefold. Then

$$\operatorname{rk} G \leq \begin{cases} 7 & \text{if } p = 2, \\ 5 & \text{if } p = 3, \\ 4 & \text{if } p = 5, 7, 11, 13, \\ 3 & \text{if } p \geq 17. \end{cases}$$

Proof. Let P_1 be a point of index r > 1 and let P_1, \ldots, P_l be its G-orbit. Here $l = p^t$ for some t with $t \ge s - \delta_{2,p} - 3$, where $s = \operatorname{rk} G$ (see Lemma 2.4). By the orbifold Riemann-Roch formula [Rei87] and a form of the Bogomolov-Miyaoka inequality [Kaw92], [KMMT00] we have

$$\sum \left(r_{P_i} - \frac{1}{r_{P_i}} \right) < 24.$$

Since $r_i - 1/r_i \ge 3/2$, we have 3l/2 < 24 and so

$$p^{s-\delta_{2,p}-3} \le l < 16.$$

This gives us the desired inequality.

From now on we assume that our $G\mathbb{Q}$ -Fano threefold X is Gorenstein, i.e., K_X is a Cartier divisor. Recall (see, e.g., [IP99]) that the Picard group of a Fano variety X with at worst (log) terminal singularities is a torsion free finitely generated abelian group ($\simeq H^2(X,\mathbb{Z})$). Then we can define the Fano index of X as the maximal positive integer that divides $-K_X$ in $\operatorname{Pic}(X)$.

Proposition-Definition 3.3 (see, e.g., [IP99]). Let X be a Fano threefold with at worst terminal Gorenstein singularities. The positive integer $-K_X^3$ is called the degree of X. We can write $-K_X^3 = 2g - 2$, where g is an integer ≥ 2 called the genus of X. Then $\dim |-K_X| = g + 1 \geq 3$.

Corollary-Notation 3.4. In notation 3.1 the linear system $|-K_X|$ is not empty, so there exists a G-invariant member $S \in |-K_X|$. Write $S = \sum_{i=1}^N S_i$, where S_i are irreducible components.

Theorem 3.5 ([Nam97]). Let X be a Fano threefold with terminal Gorenstein singularities. Then X is smoothable, that is, there is a flat family X_t such that $X_0 \simeq X$ and a general member X_t is a smooth Fano threefold of the same degree,

Fano index and Picard number. Furthermore, the number of singular points is bounded as follows:

$$|\operatorname{Sing}(X)| \le 20 - \rho(X_t) + h^{1,2}(X_t),$$
 (3.6)

where $h^{1,2}(X_t)$ is the Hodge number.

Combining the above theorem with the classification of smooth Fano threefolds [Isk80], [MM82] (see also [IP99]) we get the following

Theorem 3.7. Let X be a Fano threefold with at worst terminal Gorenstein singularities and let X_t be its smoothing. Let g and q be the genus and Fano index of X, respectively.

- (i) $q \le 4$.
- (ii) If q = 4, then $X \simeq \mathbb{P}^3$.
- (iii) If q = 3, then X is a quadric in \mathbb{P}^4 (with dim Sing(X) ≤ 0).
- (iv) If q=2, then $\rho(X)\leq 3$ and $-K_X^3=8d$, where $1\leq d\leq 7$. Moreover $\rho(X)=1$ if and only if $d\leq 5$.
- (v) If q = 1 and $\rho(X) = 1$, then there are the following possibilities:

g	2	3	4	5	6	7	8	9	10	12
$h^{1,2}(X_t)$	52	30	20	14	10	7	5	3	2	0

Lemma 3.8. Let G be a p-elementary group and let X be a Gorenstein $G\mathbb{Q}$ -Fano threefold. If the linear system $|-K_X|$ is not base point free, then $\operatorname{rk} G \leq 3 + \delta_{p,2}$.

Proof. Assume that Bs $|-K_X| \neq \emptyset$. Clearly, Bs $|-K_X|$ is G-invariant. By [Isk80], [Shi89] Bs $|-K_X|$ is either a single point or a smooth rational curve. In the first case the assertion immediately follows by Lemma 2.4. In the second case G acts on the curve $C = \text{Bs } |-K_X|$. Since $C \simeq \mathbb{P}^1$, the assertion follows by Lemma 2.6.

Proposition 3.9. Let G be a p-elementary group, where $p \geq 5$, and let X be a Gorenstein $G\mathbb{Q}$ -Fano threefold. Then

$$\operatorname{rk} G \leq \begin{cases} 4 & \text{if } p = 5, 7, 11, 13, \\ 3 & \text{if } p \geq 17. \end{cases}$$

Proof. Assume that the above inequality does not hold. We use the notation of 3.4. In particular, N denotes the number of components of $S = \sum S_i \in |-K_X|$. By Lemma 2.10 $N = p^l$, where $l \geq 1$. Hence p divides $-K_X^3 = 2g - 2 = ((-K_X)^2 \cdot S_i)N$. First we claim that $\rho(X) = 1$. Indeed, if $\rho(X) > 1$, then the natural representation of G on $\operatorname{Pic}_{\mathbb{Q}}(X) := \operatorname{Pic}(X) \otimes \mathbb{Q}$ is decomposed as $\operatorname{Pic}_{\mathbb{Q}}(X) = \operatorname{Pic}(X) \otimes \mathbb{Q}$.

 $V_1 \oplus V$, where V_1 is a trivial subrepresentation generated by the class of $-K_X$ and V is a subrepresentation such that $V^G = 0$. Since G is a p-elementary group, $\dim V \geq p-1$. Hence, $\rho(X) \geq p \geq 5$ and by the classification [MM82] we have two possibilities:

- $-K_X^3 = 6(11 \rho(X)), \quad 5 \le \rho(X) \le 10, \text{ or }$
- $-K_X^3 = 28$, $\rho(X) = 5$.

In the last case p=5, so $-K_X^3 \not\equiv 0 \mod p$, a contradiction. In the first case p divides $-K_X^3$ only if p=5. Then $\rho(X)=6$. So, dim V=5 and $V^G \not\equiv 0$. Again we get a contradiction.

Therefore, $\rho(X)=1$. Let q be the Fano index of X. We claim that X is singular. Indeed, otherwise all the S_i are Cartier divisors. Then $-K_X=NS_1$, where $N\geq p$, and so $q\geq 5$. This contradicts (i) of Theorem 3.7. Hence X is singular. By Lemma 2.4 and our assumption we have $|\operatorname{Sing}(X)|\geq p$. In particular, $q\leq 2$ (see Theorem 3.7). If q=1, then by Theorem 3.7 either $2\leq g\leq 10$ or g=12. Thus N=p and we get the following possibilities: (p,g)=(5,6), (7,8), or (11,12). Moreover, $(-K_X)^2\cdot S_i=(2g-2)/N=2$. Therefore, the restriction $|-K_X||_{S_i}$ of the (base point free) anticanonical linear system defines either an isomorphism to a quadric $S_i\to Q\subset \mathbb{P}^3$ or a double cover $S_i\to \mathbb{P}^2$. In both cases the image is rational, so we get a map $G_i\to\operatorname{Cr}_2(\mathbb{C})$ whose kernel is of rank ≤ 1 by Lemma 2.6 and because p>2. Then by Theorem 1.1 $\operatorname{rk} G_{S_i}\leq 3$. Hence, $\operatorname{rk} G\leq 4$ which contradicts our assumption.

Finally, consider the case q=2. Then $-K_X=2H$ for some ample Cartier divisor H and $d:=H^3\leq 7$. Therefore, $NS_i\cdot H^2=S\cdot H^2=2d$. Since $\rho(X)=1$, by Theorem 3.7 we get p=d=5. Then we apply (3.6). In this case, $h^{1,2}(X_t)=0$ (see [IP99]). So, $|\operatorname{Sing}(X)|\leq 19$. On the other hand, $|\operatorname{Sing}(X)|\geq 25$ by Lemma 2.4 and our assumption. The contradiction proves the proposition.

We need the following result which is a very weak form of Shokurov's much more general toric conjecture [McK01], [Pro03].

Lemma 3.10. Let V be a smooth Fano threefold and let $D \in |-K_V|$ be a divisor such that the pair (V, D) is LC. Then D has at most $3 + \rho(V)$ irreducible components.

Proof. Write $D = \sum_{i=1}^{n} D_i$. If $\rho(V) = 1$, then all the D_i are linearly proportional: $D_i \sim n_i H$, where H is an ample generator of Pic(V). Then $-K_V \sim \sum n_i H$ and by Theorem 3.7 we have $\sum n_i = q \leq 4$.

If V is a blowup of a curve on another smooth Fano threefold W, then we can proceed by induction replacing V with W. Thus we assume that V cannot be obtained by blowing up of a curve on another smooth Fano threefold. In this situation V is called primitive ([MM83]). According to [MM83, Th. 1.6] we have $\rho(V) \leq 3$ and V has a conic bundle structure $f: V \to Z$, where $Z \simeq \mathbb{P}^2$ (resp. $Z \simeq \mathbb{P}^1 \times \mathbb{P}^1$) if $\rho(V) = 2$ (resp. $\rho(V) = 3$). Let ℓ be a general fiber. Then $2 = -K_V \cdot \ell = \sum D_i \cdot \ell$. Hence D has at most two f-horizontal components and at least n-2 vertical ones. Now let $h: V \to W$ be an extremal contraction other than

f and let ℓ' be any curve in a non-trivial fiber of h. For any f-vertical component $D_i \subset D$ we have $D_i = f^{-1}(\Gamma_i)$, where $\Gamma_i \subset Z$ is a curve, so $D_i \cdot \ell' = \Gamma_i \cdot f_* \ell' \geq 0$. If $\rho(V) = 2$, then $D_i \cdot \ell' \geq 1$. Hence, $-K_V \cdot \ell' \geq n-2$. On the other hand, $-K_V \cdot \ell' \leq 3$ (see [MM83, §3]). This immediately gives us $n \leq 5$ as claimed. Finally consider the case $\rho(V) = 3$. Assume that $n \geq 7$. Then we can take h so that ℓ' meets at least three f-vertical components, say D_1 , D_2 , D_3 . As above, $-K_V \cdot \ell' \geq 3$ and by the classification of extremal rays (see [MM83, §3]) h is a del Pezzo fibration. This contradicts our assumption $\rho(V) = 3$.

Proposition 3.11. Let G be a 2-elementary group and let X be a Gorenstein $G\mathbb{Q}$ -Fano threefold. Then $\mathrm{rk}\,G \leq 7$.

Proof. Assume that $\operatorname{rk} G \geq 8$. By Lemma 2.10 we have $\operatorname{rk} G_{S_i} \leq 5$. Hence, $N \geq 8$. If X is smooth, then by Lemma 3.10 we have $\rho(X) \geq 5$. If furthermore $X \simeq Y \times \mathbb{P}^1$, where Y is a del Pezzo surface, then the projection $X \to Y$ must be G-equivariant. This contradicts $\rho(X)^G = 1$. Therefore, $\rho(X) = 5$ and $-K_X^3 = 28$ or 36 (see [MM82]). On the other hand, $-K_X^3$ is divisible by N, a contradiction.

Thus X is singular. Assume that $|\operatorname{Sing}(X)| \geq 32$. Then for a smoothing X_t of X by (3.6) we have $h^{1,2}(X_t) \geq 13$. Since N divides $-K_X^3 = -K_{X_t}^3$, using the classification of Fano threefolds [Isk80], [MM82] (see also [IP99]) we get:

$$\rho(X) = 1$$
, $-K_X^3 = 8$, $N = 8$, $|\operatorname{Sing}(X)| = 32$.

Consider the representation of G on $H^0(X, -K_X)$. Since

$$7 = \dim H^0(X, -K_X) < \operatorname{rk} G,$$

this representation is not faithful (otherwise G is contained in a maximal torus of $\mathrm{GL}(H^0(X,-K_X))=\mathrm{GL}_7(\mathbb{C})$). Therefore, the linear system $|-K_X|$ is not very ample. On the other hand, $|-K_X|$ is base point free (see Lemma 3.8). Hence $|-K_X|$ defines a double cover $X\to Y\subset \mathbb{P}^6$ [Isk80]. Here Y is a variety of degree 4 in \mathbb{P}^6 , a variety of minimal degree. If Y is smooth, then according to the Enriques theorem (see, e.g., [Isk80, Th. 3.11]) Y is a rational scroll $\mathbb{P}_{\mathbb{P}^1}(\mathscr{E})$, where \mathscr{E} is a rank 3 vector bundle on \mathbb{P}^1 . Then X has a G-equivariant projection to a curve. This contradicts $\rho(X)^G=1$. Hence Y is singular. In this case, Y is a cone (again by the Enriques theorem [Isk80, Th. 3.11]). If its vertex $O\in Y$ is zero-dimensional, then $\dim T_{O,Y}=6$. On the other hand, X has only hypersurface singularities (see 2.1). Therefore the double cover $X\to Y$ is not étale over O and so G has a fixed point on X. This contradicts Lemma 2.4. Thus Y is a cone over a rational normal curve of degree 4 with vertex along a line. Then X cannot have isolated singularities, a contradiction.

Therefore, $|\operatorname{Sing}(X)| < 32$. Then for any point $P \in \operatorname{Sing}(X)$ by Lemma 2.4 we have $\operatorname{rk} G_P \geq 4$. Hence the orbit of P contains 16 elements and coincides with $\operatorname{Sing}(X)$, i.e., the action of G on $\operatorname{Sing}(X)$ is transitive. Since $S \cap \operatorname{Sing}(X) \neq \emptyset$, we have $\operatorname{Sing}(X) \subset S$. On the other hand, our choice of S in 2.8 is not unique: there is a basis $s^{(1)}, \ldots, s^{(g+2)} \in H^0(X, -K_X)$ consisting of eigensections. This basis gives us G-invariant divisors $S^{(1)}, \ldots, S^{(g+2)}$ generating $|-K_X|$. By the above,

 $\operatorname{Sing}(X) \subset S^{(i)}$ for all i. Thus $\operatorname{Sing}(X) \subset \cap S^{(i)} = \operatorname{Bs} |-K_X|$. This contradicts Lemma 3.8. Proposition 3.11 is proved.

Proposition 3.12. Let G be an 3-elementary group and let X be a Gorenstein $G\mathbb{Q}$ -Fano threefold. Then $\mathrm{rk}\,G \leq 5$.

Proof. Assume that $\operatorname{rk} G \geq 6$. By Lemma 2.10 we have $\operatorname{rk} G_{S_i} \leq 5$. Hence, $N \geq 9$. If X is smooth, then by Lemma 3.10 we have $\rho(X) \geq 6$ and so $X \simeq Y \times \mathbb{P}^1$, where Y is a del Pezzo surface [MM82]. Then the projection $X \to Y$ must be G-equivariant. This contradicts $\rho(X)^G = 1$. Therefore, X is singular. By Lemma 2.4 $|\operatorname{Sing}(X)| \geq 3^{6-3} = 27$. Hence, for a smoothing X_t of X by (3.6) we have $h^{1,2}(X_t) \geq 7 + \rho(X)$. Recall that N divides $-K_X^3 = -K_{X_t}^3$. Then we use the classification of smooth Fano threefolds [Isk80], [MM82] and get a contradiction.

Now Theorem 1.2 is a consequence of Propositions 3.2, 3.9, 3.11, and 3.12.

References

- [AW97] D. Abramovich and J. Wang. Equivariant resolution of singularities in characteristic 0. Math. Res. Lett., 4(2-3):427-433, 1997.
- [Bea07] A. Beauville. *p*-elementary subgroups of the Cremona group. *J. Algebra*, 314(2):553–564, 2007.
- [DI09] I. V. Dolgachev and V. A. Iskovskikh. Finite subgroups of the plane Cremona group. To appear in Algebra, Arithmetic, and Geometry in Honor of Yu. I. Manin, Progr. Math., 269, 2009.
- [IP99] V. A. Iskovskikh and Y. Prokhorov. Fano varieties. Algebraic geometry. V. Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999.
- [Isk80] V. A. Iskovskikh. Anticanonical models of three-dimensional algebraic varieties. J. Sov. Math., 13:745–814, 1980.
- [Kaw92] Y. Kawamata. Boundedness of Q-Fano threefolds. In Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), Contemp. Math. 131, 439–445, Providence, RI, 1992. Amer. Math. Soc.
- [KMMT00] J. Kollár, Y. Miyaoka, S. Mori, and H. Takagi. Boundedness of canonical Q-Fano 3-folds. Proc. Japan Acad. Ser. A Math. Sci., 76(5):73-77, 2000.
- [McK01] J. McKernan. A simple characterization of toric varieties. In Proc. Algebraic Geom. Symp. Kinosaki, 59–72, 2001.
- [MM83] S. Mori and S. Mukai. On Fano 3-folds with $B_2 \geq 2$. In Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, 101–129. North-Holland, Amsterdam, 1983.
- [MM82] S. Mori and S. Mukai. Classification of Fano 3-folds with $B_2 \geq 2$. $Manuscripta\ Math.,\ 36(2):147–162,\ 1981/82.$ Erratum: Manuscripta Math. $110\ (2003),\ 407.$
- [Mor85] S. Mori. On 3-dimensional terminal singularities. Nagoya Math. J., 98:43–66, 1985.

[Mor88] S. Mori. Flip theorem and the existence of minimal models for 3-folds. J. Amer. Math. Soc., 1(1):117–253, 1988.

- [MP09] S. Mori and Y. Prokhorov. Multiple fibers of del Pezzo fibrations. Proc. Steklov Inst. Math., 264(1):131–145, 2009.
- [Nam97] Y. Namikawa. Smoothing Fano 3-folds. J. Algebraic Geom., 6(2):307–324, 1997.
- [Nik80] V. V. Nikulin. Finite automorphism groups of Kähler K3 surfaces. Trans. Mosc. Math. Soc., 2:71–135, 1980.
- [Pro03] Y. Prokhorov. An application of the canonical bundle formula. Proc. Steklov Inst. Math., 241:195–201, 2003.
- [Pro09] Y. Prokhorov. Simple finite subgroups of the Cremona group of rank 3. arXiv: 0908.0678, 2009.
- [Rei87] M. Reid. Young person's guide to canonical singularities. In Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, 345–414. Amer. Math. Soc., Providence, RI, 1987.
- [Shi89] K.-H. Shin. 3-dimensional Fano varieties with canonical singularities. Tokyo J. Math., 12(2):375–385, 1989.
- [Sho93] V. V. Shokurov. 3-fold log flips. Russ. Acad. Sci., Izv. Math., 40(1):95–202, 1993.

Yuri Prokhorov: Department of Algebra, Faculty of Mathematics, Moscow State University, Moscow 117234, Russia

E-mail: prokhoro@gmail.com