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1. Introduction

Let k be an algebraically closed field. The Cremona group Crn(k) is the group of
birational transformations of Pnk , or equivalently the group of k-automorphisms of
the field k(x1, . . . , xn). Finite subgroups of Cr2(C) are completely classified (see
[DI09] and references therein). In contrast, subgroups of Crn(k) for n ≥ 3 are not
studied well (cf. [Pro09]).

In the present paper we study a certain kind of abelian subgroups of Cr3(C).
Let p be a prime number. We say that a group G is p-elementary if G @ (µp)

s for
some positive integer s. In this case s is called the rank of G and denoted by rkG.

Theorem 1.1 ([Bea07]). Let p be a prime K= char(k) and let G ⊂ Cr2(k) be a
p-elementary subgroup. Then:

rkG ≤ 2 + δp,3 + 2δp,2

where δi,j is Kronecker’s delta. Moreover, for any such p this bound is attained for
some G. These “maximal” groups G are classified up to conjugacy in Cr2(k).

More generally, instead of Crn(k) we also can consider the group Bir(X) of
birational automorphisms of an arbitrary rationally connected variety X. Our
main result is the following

Theorem 1.2. Let X be a rationally connected threefold defined over a field of
characteristic 0, let p be a prime, and let G ⊂ Bir(X) be a p-elementary subgroup.
Then

rkG ≤


7 if p = 2,

5 if p = 3,

4 if p = 5, 7, 11, or 13,

3 if p ≥ 17.

(1.3)

∗The author was partially supported by RFBR, grant No. 08-01-00395-a and Leading Scientific
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For any prime p ≥ 17 this bound is attained for some subgroup G ⊂ Cr3(C).
(However we do not assert that the bound (1.3) is sharp for p ≤ 13).

Remark 1.4. (i) Note that Cr1(k) @ PGL2(k). Hence for any prime p K= char(k)
and any p-elementary subgroup G ⊂ Cr1(k), we have rkG ≤ 1 + δp,2 (see, e.g.,
[Bea07, Lemma 2.1]).

(ii) Since Cr1(k)×Cr2(k) admits (a lot of) embeddings into Cr3(k), the group
Cr3(k) contains a p-elementary subgroup G of rank 3 + δp,3 + 3δp,2. This shows
the last assertion of our theorem.

The following consequence of Theorem 1.2 was proposed by A. Beauville.

Corollary 1.5. The group Cr3(C) is not isomorphic to Crn(C) for n K= 3 as an
abstract group.

Proof. Denote by ξ(n, p) the maximal rank of a p-elementary group contained in
Crn(C). Then ξ(2, 17) = 2 < ξ(3, 17) = 3 and ξ(n, 17) ≥ n by Theorems 1.1 and
1.2.

Our method is a generalization of the method used for the study of finite
subgroups of Cr2(k) [Bea07], [DI09]. Similarly to [Pro09] we use the equivariant
three-dimensional minimal model program. This easily allows us to reduce the
problem to the study of automorphism groups of some (not necessarily smooth)
Fano threefolds.

Acknowledgments. I would like to thank J.-P. Serre for asking me the ques-
tion considered here and for useful comments. I am also grateful to A. Beauville
for proposing me Corollary 1.5 and for his interest in my paper. This paper was
written at the IHES (Bures-sur-Yvette) during my visit in 2009. I am grateful to
IHES for the support and hospitality. Finally I would like to thank the referee for
several suggestions that make the paper more readable and clear.

2. Preliminaries

Clearly, we may assume that k = C. All the groups in this paper are multiplicative.
In particular, we denote a cyclic group of order n by µn.

2.1. Terminal singularities. We need a few facts on the classification of three-
dimensional terminal singularities (see [Mor85], [Rei87]). Let (X _ P ) be a germ of
a three-dimensional terminal singularity. Then (X _ P ) is isolated, i.e., Sing(X) =
{P}. The index of (X _ P ) is the minimal positive integer r such that rKX is
Cartier. If r = 1, then (X _ P ) is Gorenstein. In this case (X _ P ) is analytically
isomorphic to a hypersurface singularity in C4 of multiplicity 2. Moreover, any
Weil Q-Cartier divisor D on (X _ P ) is Cartier. If r > 1, then there is a cyclic,
étale outside of P cover π : (Xq _ P q) → (X _ P ) of degree r such that (Xq _ P q)
is a Gorenstein terminal singularity (or a smooth point). This π is called the
index-one cover of (X _ P ).
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Theorem 2.2 ([Mor85], [Rei87]). In the above notation (Xq _ P q) is analyti-
cally µr-isomorphic to a hypersurface in C4 with µr-semi-invariant 1 coordinates
x1, . . . , x4, and the action is given by

(x1, . . . , x4) ?−→ (εa1x1, . . . , ε
a4x4)

for some primitive r-th root of unity ε, where one of the following holds:

(i) (a1, . . . , a4) ≡ (1,−1, a2, 0) mod r, gcd(a2, r) = 1,

(ii) r = 4 and (a1, . . . , a4) ≡ (1,−1, 1, 2) mod 4.

Definition 2.3. A G-variety is a variety X provided with a biregular faithful
action of a finite group G. We say that a normal G-variety X is GQ-factorial if
any G-invariant Weil divisor on X is Q-Cartier. A projective normal G-variety X
is called GQ-Fano if it is GQ-factorial, has at worst terminal singularities, −KX

is ample, and rk Pic(X)G = 1.

Lemma 2.4. Let (X _ P ) be a germ of a threefold terminal singularity and let
G ⊂ Aut(X _ P ) be a p-elementary subgroup. Then rkG ≤ 3 + δ2,p.

Proof. Assume that rkG ≥ 4 + δ2,p. First we consider the case where (X _ P )
is Gorenstein. The group G acts faithfully on the Zariski tangent space TP,X , so
G ⊂ GL(TP,X), where dimTP,X = 3 or 4. If dimTP,X = 3, then G is contained in
a maximal torus of GL3(C), so rkG ≤ 3 and we are done. Thus we may assume
that dimTP,X = 4. Take semi-invariant coordinates x1, . . . , x4 in TP,X . There is a
G-equivariant analytic embedding (X _ P ) ⊂ C4

x1,...,x4
. As above, rkG ≤ 4. Thus

we may assume that rkG ≤ 4 and p > 2. Let φ(x1, . . . , x4) = 0 be an equation of
X, where φ is a G-semi-invariant function. Regard φ as a power series and write
φ =

∑
d φd, where φd is the sum of all monomials of degree d. Since the action

of G on x1, . . . , x4 is linear, all the φd’s are semi-invariants of the same G-weight
w = wtφd. Hence, for any φd, φd′ K= 0 we have d− d′ ≡ 0 mod p. Since (X _ P )
is a terminal singularity, φ2 K= 0 and so φ3 = 0. Recall that G @ (µp)

4, p ≥ 3. In
this case, φ2 must be a monomial. Thus up to permutations of coordinates and
scalar multiplication we get either φ2 = x2

1 or φ2 = x1x2. In particular, we have
rkφ2 ≤ 2 and φ3 = 0. This contradicts the classification of terminal singularities
[Mor85], [Rei87].

Now assume that (X _ P ) is non-Gorenstein of index r > 1. Consider the
index-one cover π : (Xq _ P q) → (X _ P ) (see 2.1). Here (Xq _ P q) is a Gorenstein
terminal point and the map Xq\{P q} → X\{P} can be regarded as the topological
universal cover. Hence there exists a natural lifting Gq ⊂ Aut(Xq _ P q) fitting in
the following exact sequence

1 −→ µr −→ Gq −→ G −→ 1. (2.5)

It is sufficient to show that there exists a subgroup G• ⊂ Gq isomorphic to G
(but we do not assert that the sequence splits). Indeed, in this case G• @ G

1In invariant theory people often say “relative invariant” rather than “semi-invariant”. We
prefer to use the terminology of [Mor85].
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acts faithfully on the terminal Gorenstein singularity (Xq _ P q) and we can apply
the case considered above. We may assume that Gq is not abelian (otherwise a
subgroup G• @ G obviously exists). The group Gq permutes eigenspaces of µr. By
Theorem 2.2 the subspace T := {x4 = 0} ⊂ C4

x1,...,x4
is Gq-invariant and µr acts

on any eigenspace T1 ⊂ T faithfully. On the other hand, by (2.5) we see that the
derived subgroup [Gq, Gq] is contained in µr. In particular, [Gq, Gq] is abelian and
also acts on any eigenspace T1 ⊂ T faithfully. Since dimT = 3, this implies that
the representation of Gq on T is irreducible (otherwise T has a one-dimensional
subrepresentation, say T1, and the kernel of the map G → GL(T1) @ C∗ must
contain [Gq, Gq]). Hence eigenspaces of µr have the same dimension and so µr
acts on T by scalar multiplication. By Theorem 2.2 this is possible only if r = 2.

Let Gqp ⊂ Gq be a Sylow p-subgroup. If µr ∩ Gqp = {1}, then Gqp @ G and we

are done. Thus we assume that µr ⊂ Gqp, so p = r = 2 and Gqp = Gq. But then Gq

is a 2-group, so the dimension of its irreducible representation must be a power of
2. Hence T is reducible, a contradiction.

Lemma 2.6. Let X be a G-threefold with isolated singularities.

(i) If there is a curve C ⊂ X of G-fixed points, then rkG ≤ 2.

(ii) If there is a surface S ⊂ X of G-fixed points, then rkG ≤ 1. If moreover S
is singular along a curve, then G = {1}.

Sketch of the Proof. Consider the action of G on the tangent space to X at a
general point of C (resp. S).

G-equivariant minimal model program. Let X be a rationally connected
three-dimensional algebraic variety and let G ⊂ Bir(X) be a finite subgroup. By
shrinking X we may assume that G acts on X biregularly. The quotient Y =
X/G is quasiprojective, so there exists a projective completion Ŷ ⊃ Y . Let X̂
be the normalization of Ŷ in the function field C(X). Then X̂ is a projective
variety birational to X admitting a biregular action of G. There is an equivariant
resolution of singularities X̃ → X̂, see [AW97]. Run the G-equivariant minimal
model program: X̃ → X̄, see [Mor88, 0.3.14]. Running this program we stay in
the category of projective normal varieties with at worst terminal GQ-factorial
singularities. Since X is rationally connected, on the final step we get a Fano-Mori
fibration f : X̄ → Z. Here dimZ < dimX, Z is normal, f has connected fibers,
the anticanonical Weil divisor −KX̄ is ample over Z, and the relative G-invariant
Picard number ρ(X̄)G is one. Obviously, we have the following possibilities:

(i) Z is a rational surface and a general fiber F = f−1(y) is a conic;

(ii) Z @ P1 and a general fiber F = f−1(y) is a smooth del Pezzo surface;

(iii) Z is a point and X̄ is a GQ-Fano threefold.

Proposition 2.7. In the above notation assume that Z is not a point. Then
rkG ≤ 3 + δp,3 + 3δp,2. In particular, (1.3) holds.
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Proof. Let G0 ⊂ G be the kernel of the homomorphism G → Aut(Z). The group
G1 := G/G0 acts effectively on Z and G0 acts effectively on a general fiber F ⊂ X
of f . Hence, G1 ⊂ Aut(Z) and G0 ⊂ Aut(F ). Clearly, G0 and G1 are p-elementary
groups with rkG0 + rkG1 = rkG. Assume that Z @ P1. Then rkG1 ≤ 1 + δp,2.
By Theorem 1.1 we obtain rkG0 ≤ 2 + δp,3 + 2δp,2. This proves our assertion in
the case Z @ P1. The case dimZ = 2 is treated similarly.

2.8. Main assumption. Thus from now on we assume that we are in the case
(iii). Replacing X with X̄ we may assume that our original X is a GQ-Fano
threefold.

The group G acts naturally on H0(X,−KX). If H0(X,−KX) K= 0, then there
exists a G-semi-invariant section s ∈ H0(X,−KX) (because G is an abelian group).
This section gives us an invariant member S ∈ |−KX |.
Lemma 2.9. Let X be a GQ-Fano threefold, where G is a p-elementary group
with rkG ≥ δp,2 + 4. Let S be an invariant Weil divisor such that −(KX + S) is
nef. Then the pair (X,S) is log canonical (LC ).

Proof. Assume that the pair (X,S) is not LC. Since S is G-invariant and ρ(X)G =
1, we see that S is numerically proportional to KX . Since −(KX + S) is nef, S
is ample. We apply quite standard connectedness arguments of Shokurov [Sho93]
(see, e.g., [MP09, Prop. 2.6]): for a suitable G-invariant boundary D, the pair
(X,D) is LC, the divisor −(KX + D) is ample, and the minimal locus V of log
canonical singularities is also G-invariant. Moreover, V is either a point or a
smooth rational curve. By Lemma 2.4 we may assume that G has no fixed points.
Hence, V @ P1 and we have a map ς : G → Aut(P1). If p > 2, then ς(G) is a cyclic
group, so G has a fixed point, a contradiction. Let p = 2 and let G0 = ker ς. By
Lemma 2.6 rkG0 ≤ 2. Therefore rk ς(G0) ≥ 3. Again we get a contradiction.

Lemma 2.10. Let X be a GQ-Fano threefold, where G is a p-elementary group
with

rkG ≥


7 if p = 2,

5 if p = 3,

4 if p ≥ 5.

(2.11)

Let S ∈ |−KX | be a G-invariant member. Then we have

(i) Any component Si ⊂ S is either rational or birationally ruled over an elliptic
curve.

(ii) The group G acts transitively on the components of S.

(iii) For the stabilizer GSi
we have rkGSi

≤ δp,2 + 4.

(iv) The surface S is reducible (and reduced).

Proof. By Lemma 2.9 the pair (X,S) is LC. Assume that S is normal (and irre-
ducible). By the adjunction formula KS ∼ 0. We claim that S has at worst Du
Val singularities. Indeed, otherwise by the Connectedness Principle [Sho93, Th.
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6.9] S has at most two non-Du Val points. If p > 2, these points must be G-fixed.
This contradicts Lemma 2.4. Otherwise p = 2 and these points are fixed for an
index two subgroup G• ⊂ G. Again we get a contradiction by Lemma 2.4. Thus
we may assume that S has at worst Du Val singularities. Let Γ be the image of G
in Aut(S). By Lemma 2.6 rkG ≤ rk Γ + 1. Let S̃ → S be the minimal resolution.
Here S̃ is a smooth K3 surface. The natural representation of Γ on H2,0(S̃) induces
the exact sequence (see [Nik80])

1 −→ Γ0 −→ Γ −→ Γ1 −→ 1,

where Γ0 (resp. Γ1) is the kernel (resp. image) of the representation of Γ on
H2,0(S̃). The group Γ1 is cyclic. Hence either Γ1 = {1} or Γ1 @ µp. In the second
case by [Nik80, Cor. 3.2] p ≤ 19. Further, according to [Nik80, Th. 4.5] we have

rkΓ0 ≤


4 if p = 2

2 if p = 3

1 if p = 5 or 7

0 if p > 7.

Combining this we obtain a contradiction with (2.11).
Now assume that S is not normal. Let Si ⊂ S be an irreducible component

(the case Si = S is not excluded). Let ν : S′ → Si be the normalization. Write
0 ∼ ν∗(KX +Si) = KS′ +D′, where D′ is the different, see [Sho93, §3]. Here D′ is
an effective reduced divisor and the pair is LC [Sho93, 3.2]. Since S is not normal,
D′ K= 0. Consider the minimal resolution µ : S̃ → S′ and let D̃ be the crepant
pull-back of D′, that is, µ∗D̃ = D′ and

KS̃ + D̃ = µ∗(KS′ +D′) ∼ 0.

Here D̃ is again an effective reduced divisor. Hence S̃ is a ruled surface. If it is not
rational, consider the Albanese map α : S̃ → C. Clearly α is Γ-equivariant and
the action of Γ on C is not trivial. Let D̃1 ⊂ D̃ be an α-horizontal component. By
adjunction D̃1 is an elliptic curve. So is C. This proves (i).

If the action on components Si ⊂ S is not transitive, we have an invariant
divisor S′ < S. Since X is GQ-factorial and ρ(X)G = 1, we can take S′ so that
−(KX + 2S′) is nef. This contradicts Lemma 2.9. So, (ii) is proved.

Now we prove (iii). Let Γ be the image of GSi in Aut(Si). By Lemma 2.6
rkGSi ≤ rk Γ + 1. If Si is rational, then we get the assertion by Theorem 1.1.
Assume that Si is a birationally ruled surface over an elliptic curve. As above,
let S̃i → Si be the composition of the normalization and the minimal resolution,
and let α : S̃i → C be the Albanese map. Then Γ acts faithfully on S̃i and
α is Γ-equivariant. Thus we have a homomorphism α∗ : Γ → Aut(C). Here
rk Γ ≤ rkα∗(Γ) + 1 + δp,2. Note that α∗(Γ) is a p-elementary subgroup of the
automorphism group of an elliptic curve. Hence, rkα∗(Γ) ≤ 2. This implies (iii).

It remains to prove (iv). Assume that S is irreducible. By (iii) the surface
S is not rational. So, S is birational to a ruled surface over an elliptic curve.
By Lemma 2.6 the group G acts faithfully on S. Hence, in the above notation,
rkG = rk Γ ≤ rkα∗(Γ) + 1 + δp,2 ≤ 3 + δp,2, a contradiction.
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3. Proof of Theorem 1.2

3.1. In this section we prove Theorem 1.2. As in 2.8 we assume that X is a
GQ-Fano threefold, where G is a p-elementary subgroup of Aut(X).

First we consider the case where X is non-Gorenstein, i.e., it has at least one
point of index > 1.

Proposition 3.2. Let G be a p-elementary group and let X be a non-Gorenstein
GQ-Fano threefold. Then

rkG ≤


7 if p = 2,

5 if p = 3,

4 if p = 5, 7, 11, 13,

3 if p ≥ 17.

Proof. Let P1 be a point of index r > 1 and let P1, . . . , Pl be its G-orbit. Here
l = pt for some t with t ≥ s − δ2,p − 3, where s = rkG (see Lemma 2.4). By
the orbifold Riemann-Roch formula [Rei87] and a form of the Bogomolov-Miyaoka
inequality [Kaw92], [KMMT00] we have∑ (

rPi −
1

rPi

)
< 24.

Since ri − 1/ri ≥ 3/2, we have 3l/2 < 24 and so

ps−δ2,p−3 ≤ l < 16.

This gives us the desired inequality.

From now on we assume that our GQ-Fano threefold X is Gorenstein, i.e.,
KX is a Cartier divisor. Recall (see, e.g., [IP99]) that the Picard group of a
Fano variety X with at worst (log) terminal singularities is a torsion free finitely
generated abelian group (@ H2(X,Z)). Then we can define the Fano index of X
as the maximal positive integer that divides −KX in Pic(X).

Proposition-Definition 3.3 (see, e.g., [IP99]). Let X be a Fano threefold with
at worst terminal Gorenstein singularities. The positive integer −K3

X is called the
degree of X. We can write −K3

X = 2g − 2, where g is an integer ≥ 2 called the
genus of X. Then dim |−KX | = g + 1 ≥ 3.

Corollary-Notation 3.4. In notation 3.1 the linear system |−KX | is not empty,

so there exists a G-invariant member S ∈ |−KX |. Write S =
∑N
i=1 Si, where Si

are irreducible components.

Theorem 3.5 ([Nam97]). Let X be a Fano threefold with terminal Gorenstein
singularities. Then X is smoothable, that is, there is a flat family Xt such that
X0 @ X and a general member Xt is a smooth Fano threefold of the same degree,
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Fano index and Picard number. Furthermore, the number of singular points is
bounded as follows:

|Sing(X)| ≤ 20 − ρ(Xt) + h1,2(Xt), (3.6)

where h1,2(Xt) is the Hodge number.

Combining the above theorem with the classification of smooth Fano threefolds
[Isk80], [MM82] (see also [IP99]) we get the following

Theorem 3.7. Let X be a Fano threefold with at worst terminal Gorenstein sin-
gularities and let Xt be its smoothing. Let g and q be the genus and Fano index of
X, respectively.

(i) q ≤ 4.

(ii) If q = 4, then X @ P3.

(iii) If q = 3, then X is a quadric in P4 (with dim Sing(X) ≤ 0).

(iv) If q = 2, then ρ(X) ≤ 3 and −K3
X = 8d, where 1 ≤ d ≤ 7. Moreover

ρ(X) = 1 if and only if d ≤ 5.

(v) If q = 1 and ρ(X) = 1, then there are the following possibilities:

g 2 3 4 5 6 7 8 9 10 12

h1,2(Xt) 52 30 20 14 10 7 5 3 2 0

Lemma 3.8. Let G be a p-elementary group and let X be a Gorenstein GQ-Fano
threefold. If the linear system |−KX | is not base point free, then rkG ≤ 3 + δp,2.

Proof. Assume that Bs |−KX | K= ∅. Clearly, Bs |−KX | is G-invariant. By [Isk80],
[Shi89] Bs |−KX | is either a single point or a smooth rational curve. In the first
case the assertion immediately follows by Lemma 2.4. In the second case G acts on
the curve C = Bs |−KX |. Since C @ P1, the assertion follows by Lemma 2.6.

Proposition 3.9. Let G be a p-elementary group, where p ≥ 5, and let X be a
Gorenstein GQ-Fano threefold. Then

rkG ≤
{

4 if p = 5, 7, 11, 13,

3 if p ≥ 17.

Proof. Assume that the above inequality does not hold. We use the notation of
3.4. In particular, N denotes the number of components of S =

∑
Si ∈ | −KX |.

By Lemma 2.10 N = pl, where l ≥ 1. Hence p divides −K3
X = 2g−2 =

(
(−KX)2 ·

Si
)
N . First we claim that ρ(X) = 1. Indeed, if ρ(X) > 1, then the natural

representation of G on PicQ(X) := Pic(X) ⊗ Q is decomposed as PicQ(X) =



335

V1 ⊕ V , where V1 is a trivial subrepresentation generated by the class of −KX

and V is a subrepresentation such that V G = 0. Since G is a p-elementary group,
dimV ≥ p − 1. Hence, ρ(X) ≥ p ≥ 5 and by the classification [MM82] we have
two possibilities:

• −K3
X = 6(11 − ρ(X)), 5 ≤ ρ(X) ≤ 10, or

• −K3
X = 28, ρ(X) = 5.

In the last case p = 5, so −K3
X K≡ 0 mod p, a contradiction. In the first case p

divides −K3
X only if p = 5. Then ρ(X) = 6. So, dimV = 5 and V G K= 0. Again

we get a contradiction.
Therefore, ρ(X) = 1. Let q be the Fano index of X. We claim that X is

singular. Indeed, otherwise all the Si are Cartier divisors. Then −KX = NS1,
where N ≥ p, and so q ≥ 5. This contradicts (i) of Theorem 3.7. Hence X is
singular. By Lemma 2.4 and our assumption we have |Sing(X)| ≥ p. In particular,
q ≤ 2 (see Theorem 3.7). If q = 1, then by Theorem 3.7 either 2 ≤ g ≤ 10 or
g = 12. Thus N = p and we get the following possibilities: (p, g) = (5, 6), (7, 8),
or (11, 12). Moreover, (−KX)2 · Si = (2g − 2)/N = 2. Therefore, the restriction
|−KX ||Si of the (base point free) anticanonical linear system defines either an
isomorphism to a quadric Si → Q ⊂ P3 or a double cover Si → P2. In both cases
the image is rational, so we get a map Gi → Cr2(C) whose kernel is of rank ≤ 1 by
Lemma 2.6 and because p > 2. Then by Theorem 1.1 rkGSi ≤ 3. Hence, rkG ≤ 4
which contradicts our assumption.

Finally, consider the case q = 2. Then −KX = 2H for some ample Cartier
divisor H and d := H3 ≤ 7. Therefore, NSi ·H2 = S ·H2 = 2d. Since ρ(X) = 1,
by Theorem 3.7 we get p = d = 5. Then we apply (3.6). In this case, h1,2(Xt) = 0
(see [IP99]). So, |Sing(X)| ≤ 19. On the other hand, |Sing(X)| ≥ 25 by Lemma
2.4 and our assumption. The contradiction proves the proposition.

We need the following result which is a very weak form of Shokurov’s much
more general toric conjecture [McK01], [Pro03].

Lemma 3.10. Let V be a smooth Fano threefold and let D ∈ |−KV | be a di-
visor such that the pair (V,D) is LC. Then D has at most 3 + ρ(V ) irreducible
components.

Proof. Write D =
∑n
i=1 Di. If ρ(V ) = 1, then all the Di are linearly proportional:

Di ∼ niH, where H is an ample generator of Pic(V ). Then −KV ∼ ∑
niH and

by Theorem 3.7 we have
∑

ni = q ≤ 4.
If V is a blowup of a curve on another smooth Fano threefold W , then we

can proceed by induction replacing V with W . Thus we assume that V cannot
be obtained by blowing up of a curve on another smooth Fano threefold. In this
situation V is called primitive ([MM83]). According to [MM83, Th. 1.6] we have
ρ(V ) ≤ 3 and V has a conic bundle structure f : V → Z, where Z @ P2 (resp.
Z @ P1 × P1) if ρ(V ) = 2 (resp. ρ(V ) = 3). Let ] be a general fiber. Then
2 = −KV · ] =

∑
Di · ]. Hence D has at most two f -horizontal components and at

least n−2 vertical ones. Now let h : V → W be an extremal contraction other than
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f and let ]′ be any curve in a non-trivial fiber of h. For any f -vertical component
Di ⊂ D we have Di = f−1(Γi), where Γi ⊂ Z is a curve, so Di ·]′ = Γi ·f∗]′ ≥ 0. If
ρ(V ) = 2, then Di ·l′ ≥ 1. Hence, −KV ·]′ ≥ n−2. On the other hand, −KV ·]′ ≤ 3
(see [MM83, §3]). This immediately gives us n ≤ 5 as claimed. Finally consider
the case ρ(V ) = 3. Assume that n ≥ 7. Then we can take h so that ]′ meets at
least three f -vertical components, say D1, D2, D3. As above, −KV · ]′ ≥ 3 and
by the classification of extremal rays (see [MM83, §3]) h is a del Pezzo fibration.
This contradicts our assumption ρ(V ) = 3.

Proposition 3.11. Let G be a 2-elementary group and let X be a Gorenstein
GQ-Fano threefold. Then rkG ≤ 7.

Proof. Assume that rkG ≥ 8. By Lemma 2.10 we have rkGSi
≤ 5. Hence, N ≥ 8.

If X is smooth, then by Lemma 3.10 we have ρ(X) ≥ 5. If furthermore X @ Y ×P1,
where Y is a del Pezzo surface, then the projection X → Y must be G-equivariant.
This contradicts ρ(X)G = 1. Therefore, ρ(X) = 5 and −K3

X = 28 or 36 (see
[MM82]). On the other hand, −K3

X is divisible by N , a contradiction.
Thus X is singular. Assume that |Sing(X)| ≥ 32. Then for a smoothing Xt

of X by (3.6) we have h1,2(Xt) ≥ 13. Since N divides −K3
X = −K3

Xt
, using the

classification of Fano threefolds [Isk80], [MM82] (see also [IP99]) we get:

ρ(X) = 1, −K3
X = 8, N = 8, |Sing(X)| = 32.

Consider the representation of G on H0(X,−KX). Since

7 = dimH0(X,−KX) < rkG,

this representation is not faithful (otherwise G is contained in a maximal torus
of GL(H0(X,−KX)) = GL7(C)). Therefore, the linear system |−KX | is not very
ample. On the other hand, |−KX | is base point free (see Lemma 3.8). Hence
|−KX | defines a double cover X → Y ⊂ P6 [Isk80]. Here Y is a variety of degree 4
in P6, a variety of minimal degree. If Y is smooth, then according to the Enriques
theorem (see, e.g., [Isk80, Th. 3.11]) Y is a rational scroll PP1(E ), where E is a rank
3 vector bundle on P1. Then X has a G-equivariant projection to a curve. This
contradicts ρ(X)G = 1. Hence Y is singular. In this case, Y is a cone (again by the
Enriques theorem [Isk80, Th. 3.11]). If its vertex O ∈ Y is zero-dimensional, then
dimTO,Y = 6. On the other hand, X has only hypersurface singularities (see 2.1).
Therefore the double cover X → Y is not étale over O and so G has a fixed point
on X. This contradicts Lemma 2.4. Thus Y is a cone over a rational normal curve
of degree 4 with vertex along a line. Then X cannot have isolated singularities, a
contradiction.

Therefore, |Sing(X)| < 32. Then for any point P ∈ Sing(X) by Lemma 2.4
we have rkGP ≥ 4. Hence the orbit of P contains 16 elements and coincides with
Sing(X), i.e., the action of G on Sing(X) is transitive. Since S ∩ Sing(X) K= ∅, we
have Sing(X) ⊂ S. On the other hand, our choice of S in 2.8 is not unique: there
is a basis s(1), . . . , s(g+2) ∈ H0(X,−KX) consisting of eigensections. This basis
gives us G-invariant divisors S(1), . . . , S(g+2) generating | −KX |. By the above,
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Sing(X) ⊂ S(i) for all i. Thus Sing(X) ⊂ ∩S(i) = Bs | − KX |. This contradicts
Lemma 3.8. Proposition 3.11 is proved.

Proposition 3.12. Let G be an 3-elementary group and let X be a Gorenstein
GQ-Fano threefold. Then rkG ≤ 5.

Proof. Assume that rkG ≥ 6. By Lemma 2.10 we have rkGSi ≤ 5. Hence, N ≥ 9.
If X is smooth, then by Lemma 3.10 we have ρ(X) ≥ 6 and so X @ Y ×P1, where Y
is a del Pezzo surface [MM82]. Then the projection X → Y must be G-equivariant.
This contradicts ρ(X)G = 1. Therefore, X is singular. By Lemma 2.4 |Sing(X)| ≥
36−3 = 27. Hence, for a smoothing Xt of X by (3.6) we have h1,2(Xt) ≥ 7+ ρ(X).
Recall that N divides −K3

X = −K3
Xt

. Then we use the classification of smooth
Fano threefolds [Isk80], [MM82] and get a contradiction.

Now Theorem 1.2 is a consequence of Propositions 3.2, 3.9, 3.11, and 3.12.
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