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RELATIONS IN THE CREMONA GROUP OVER PERFECT

FIELDS

JULIA SCHNEIDER

Abstract. For perfect fields k satisfying rk : ks ą 2, we construct new
normal subgroups of the plane Cremona group and provide an elemen-
tary proof of its non-simplicity, following the melody of the recent proof
by Blanc, Lamy and Zimmermann that the Cremona group of rank n

over (subfields of) the complex numbers is not simple for n ě 3.
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1. Introduction

The Cremona group Crnpkq “ BirpP2
k

q is the group of birational trans-
formations of the projective n-space over a field k. In dimension n “ 2
it is known [CL13, She13, Lon16] that the Cremona group over any field is
not simple. For algebraically closed fields, the plane Cremona group Cr2pkq
is a perfect group [CD13, Corollaire 5.15], meaning that all group homo-
morphisms from the Cremona group to an abelian group are trivial. For
many perfect fields, however, Lamy and Zimmermann constructed a surjec-
tive group homomorphism from the plane Cremona group to a free product
of Z{2Z [LZ19, Theorem C], implying non-perfectness and thus reproving
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2 JULIA SCHNEIDER

non-simplicity of the Cremona group in these cases. Recently, Blanc, Lamy
and Zimmermann managed to construct a surjective group homomorphism
from the high-dimensional Cremona group Crnpkq to a free product of di-
rect sums of Z{2Z, where n ě 3 and k Ă C is a subfield [BLZ19]. For the
high-dimensional case, it turned out that it is more suitable not to use the
high-dimensional analogy of [LZ19] but to take a different construction. The
goal of this article is to adapt the strategy of [BLZ19] back to dimension two
over perfect fields and find new normal subgroups of Cr2pkq. No knowledge
of [BLZ19] is required to read our paper but we will highlight the connec-
tions to their proof. In fact, only classical algebraic geometry is used, and
the well-established decomposition of birational maps into Sarkisov links
(proven in [Isk96, Theorem 2.5] and [Cor95, Appendix], see Theorem 4 be-
low). Therefore, the following result can be seen as an elementary proof of
non-simplicity of the Cremona group over perfect fields whose extension de-
gree of the algebraic closure is at least 2 (and thus infinite by Artin-Schreier):

Theorem 1. For each perfect field k such that rk : ks ą 2, there exists a
group homomorphism

BirkpP2q ։
à

I

Z{2Z

where the indexing set I is infinite and whose kernel contains AutkpP2q “
PGL3pkq such that the restriction to the subgroup that is locally given by

tpx, yq ÞÑ pxppyq, yq | p P kpxqzt0uu

is surjective. In particular, the Cremona group BirkpP2q is not perfect and
thus not simple.

The result is thus a 2-dimensional analogue of [BLZ19, Theorem A]. Note
that over an algebraically closed field, the plane Cremona group is generated
by PGL3pkq and the standard quadratic transformation. Over non-closed
fields, such a nice set of generators is not known (a set of generators can be
found in [IKT93]). However, instead of looking at the group BirpXq for a
(smooth and projective) surface X we consider the groupoid BirMoripXq,
which is the set consisting of birational maps between surfaces that are bi-
rational to X. For a Mori fiber space (a simple fibration, see Definition 2.2),
the groupoid BirMoripXq is generated by Sarkisov links of type I to IV (sim-
ple birational maps, see Definition 2.8) [Isk96, Theorem 2.5]. Whereas over
an algebraically closed field the Sarkisov links are just the blow-up of one
point (type III), or its inverse (type I), or the blow-up of one point followed
by the contraction of one curve (type II), or an exchange of the fibration
of P1 ˆ P1 (type IV), over a perfect field one has to consider orbits of the
Galois action of Galpk{kq on X. In this paper, the size of the orbits that lie
in the base locus of a birational map is going to be important. We say that
the cardinality of a birational map ϕ is the maximal size of an orbit that
lies in the base locus of ϕ or ϕ´1.
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So we do not directly construct a group homomorphism from BirpXq, but
we first construct a groupoid homomorphism from BirMoripXq and then
take the restriction to BirpXq. For this one has to study relations of the
groupoid. Note that in [Isk96] there is a long and complicated list of gener-
ating relations. In [LZ19] the focus lies on Bertini involutions (the blow-up
of an orbit of size 8 in P2, followed by the contraction of an orbit of curves
of size 8). For higher dimensions, the focus lies on links of type II between
conic bundles that have a large covering gonality (see [BLZ19] for defini-
tions). Translating this back to the 2-dimensional case, we focus on links of
type II between conic bundles (that is, a Mori fiber space X Ñ B where B
is a curve) that have a large cardinality and find the following generating
relations:

Theorem 2. Let X be a Mori fiber space. Relations of the groupoid BirMoripXq
are generated by the trivial relations and relations of the following form:

(a) ϕn ¨ ¨ ¨ϕ1 “ id, where the cardinality of all ϕi is ď 15, and
(b) χ4χ3χ2χ1 “ id where χi : Xi´1 99K Xi are links of type II between

conic bundles such that the links χ1 and χ3 are equivalent and χ2

and χ4 are equivalent.

(For the notion of equivalent links see Remark 3.4 Definition 5.2.) This
can be compared with [BLZ19, Proposition 5.5]. It would be nice to have
the number 8 instead of 15, but some technicalities in Lemma 3.10 deny
us this pleasure. One may however observe that in dimension n ě 3 the
bound on the covering gonality given in [BLZ19], the analogue of the cardi-
nality, is not explicit. Using these generating relations, we are finally able
to construct a groupoid homomorphism. (For the notation: CBpXq denotes
the set of equivalence classes of conic bundles, and MpCq denotes the set of
equivalence classes of Sarkisov links between conic bundles equivalent to C;
see Definitions 5.1 and 5.2.)

Theorem 3. Let X be a Mori fiber space. There exists a groupoid homo-
morphism

BirMoripXq Ñ ˚
CPCBpXq

à

χPMpCq

Z{2Z

that sends each Sarkisov link χ of type II between conic bundles that is of
cardinality ě 16 onto the generator indexed by its equivalence class, and all
other Sarkisov links and all automorphisms of Mori fiber spaces birational
to X onto zero.

Moreover it restricts to group homomorphisms

BirpXq Ñ ˚
CPCBpXq

à

χPMpCq

Z{2Z, BirpX{W q Ñ
à

χPMpX{W q

Z{2Z.

This is analogue to [BLZ19, Theorem D]. Note that the group homomor-
phism of Theorem 3 is trivial if the field does not admit large orbits. If the
group homomorphism is not trivial, the kernel is a non-trivial normal sub-
group of BirpXq. For perfect fields k that admit a large orbit and X “ P2

k
,
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we provide an example that shows that the group homomorphism is not
trivial and therefore obtain Theorem 1.

The paper is structured as follows: In Section 2 we introduce the notion
of Mori fiber space and Sarkisov link, and state some basic but important
remarks about the cardinality of birational maps. In Section 3 we study
relations of BirMoripXq and prove Theorem 2. Then, we make a detour to
Galois theory in Section 4 to establish that a perfect field k with rk : ks ą 2
has arbitrarily large orbits (Lemma 4.2), and that there are such fields that
do not have an orbit of size exactly 8 (Lemma 4.3). The latter is to contrast
our result with [LZ19]. We end with Section 5, where we prove Theorem 3
and finally Theorem 1.

I would like to thank Philipp Habegger and Lars Kuehne for discussions
about Galois theory. Moreover, I thank Susanna Zimmermann for explaining
her results to me, and my thesis advisor Jérémy Blanc for introducing me
to the Cremona group.

2. Preliminaries

Consider a perfect field k and the Galois group Γ “ Galpk{kq “ Autpk{kq.
We will work over the algebraic closure k, equipped with the Galois action of
Γ. A perfect field is a field such that every algebraic extension is separable.
We will use the following property of perfect fields: A field k is perfect if
and only if the extension k{k is normal and separable, which means that
k{k is Galois. In particular, the field fixed by the action of Γ is exactly
k [Lan05, Theorem 1.2, Chapter VI]. So a point is fixed by the Galois
action if and only if it is defined over k.

We are interested in surfaces. In the sequel, we assume all surfaces

to be smooth and projective. A (rational) map ϕ : X 99K Y is always
supposed to be defined over k (and thus X and Y are defined over k, too).
However, we will look at k-points and k-curves on our surfaces.

2.1. Spaces of interest: Mori fiber spaces.

Definition 2.1. LetX be a surface and π : X Ñ B a surjective morphism to
a smooth variety B. The relative Picard group is the quotient PickpX{Bq :“
PickpXq{π˚ PickpBq.

We study Mori fiber spaces and only consider surfaces X over k. So the
definition is as follows:

Definition 2.2. A surjective morphism X Ñ B, where X is a smooth sur-
face and B is smooth, is called a Mori fiber space if the following conditions
are satisfied:

(1) dimpBq ă dimpXq,
(2) rkPickpX{Bq “ 1 (relative Picard rank),
(3) ´KX ¨D ą 0 for all D P PickpX{Bq.
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If B is 1-dimensional, we say that X Ñ B is a conic bundle.

Remark 2.3. Any Mori fiber space X Ñ B is of one of the two following
forms, depending on the dimension of the base B:

(1) If B “ t˚u then rkPickpXq “ 1 and so X is a del Pezzo surface.
(2) If B is a curve, then X Ñ B is a conic bundle, and the fiber of each

k-point of B is isomorphic to a reduced conic in P2 (irreducible or re-
ducible). So a general fiber is isomorphic to P1 and any singular fiber
is the union of two p´1q-curves intersecting at one point. Moreover,
the two irreducible components of any singular fiber lie in the same
Galois orbit. (Otherwise, the orbit of one component consists of dis-
joint p´1q-curves. Contracting them yields a surface S Ñ B with
rkpPicpS{Bqq ě 1. Then rkpPickpX{Bqq “ rkpPickpS{Bqq ` 1 ě 2,
a contradiction.)

If B is 1-dimensional and X is geometrically rational with a k-point, the
following lemma implies that B “ P1 and so rkPickpXq “ 2.

Lemma 2.4. Let π : X Ñ B be a conic bundle. Then X is geometrically
rational if and only if the genus of B is 0. In this case, either B “ P1 or B
is a smooth projective curve without k-point.

Proof. Assume that X is geometrically rational, so there is a birational map
ϕ : X

k
99K P2. Hence, πϕ´1 : P2

99K B
k
is a dominant rational map and

so B is geometrically unirational. As B is a curve, the solution of Lüroth’s
problem implies that B is geometrically rational. So the genus of B is zero.

The converse direction is a corollary of Tsen’s theorem [Kol99, Corollary
6.6.2, p. 232], which states that X

k
is birational to B

k
ˆ P1 and hence X

k

is rational. �

Definition 2.5. Let X1 Ñ B1 and X2 Ñ B2 be two Mori fiber spaces.
We say that a birational map ϕ : X1 99K X2 preserves the fibration if the
diagram

X1 X2

B1 B2

ϕ

»

commutes. Moreover, if ϕ is also an isomorphism we say that ϕ : X1

„Ñ X2

is an isomorphism of Mori fiber spaces.

2.2. Maps of interest: Sarkisov links.

Definition 2.6. Let X Ñ B be a Mori fibration. We denote by BirMoripXq
the groupoid consisting of all birational maps ϕ : X1 99K X2 where Xi Ñ Bi

are Mori fiber spaces for i “ 1, 2 such that X1 and X2 are birational to X.

Definition 2.7. For a Mori fiber space X
πÑ W we denote by BirpX{W q Ă

BirpXq the subgroup of birational maps f P BirpXq that preserve the fibra-
tion.
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Definition 2.8. A Sarkisov link (or simply link) is a birational map ϕ : X1 99K

X2 between two Mori fibrations πi : Xi Ñ Bi, i “ 1, 2, that is of one of the
following four types:

Type I
X1 X2

t˚u “ B1 B2

ϕ

where ϕ´1 : X2 Ñ X1 is the blow up
of one orbit of Galpk{kq.

Type II Z

X1 X2

B1 B2

ϕ
σ1 σ2

»

where σi : Z Ñ Xi is a blow-up of
one orbit.

Type III
X1 X2

B1 t˚u “ B2

ϕ where ϕ : X1 Ñ X2 is the blow-up
of one orbit.

Type IV
X1 X2

B1 B2

ϕ

»
where ϕ is an isomorphism that does
not preserve the fibration and B1,
B2 are curves.

Theorem 4 ([Isk96, Theorem 2.5] and [Cor95, Appendix]). Let X be a geo-
metrically rational Mori fiber space. The groupoid BirMoripXq is generated
by Sarkisov links and isomorphisms of Mori fiber spaces.

The following two lemmas follow from the classification of Sarkisov links
[Isk96, Theorem 2.6]. In order to keep the promise of providing elementary
proofs, we reprove the statement for completeness.

Lemma 2.9. Let ϕ : X1 Ñ X2 be a link of type III.

(1) The cone of effective curves NEQpX1q equals Qě0f `Qě0E, where f
is a fiber of the Mori fiber space X1 Ñ B1 and E is the exceptional
locus of ϕ.

(2) X1 is a del Pezzo surface.
(3) The cardinality r of the orbit blown-up by ϕ is less or equal than 8.

Proof. As E is an orbit of r disjoint p´1q-curves, none of these is contained
in a fiber of X1 Ñ B1 (see Remark 2.3). Hence, f ¨ E ą 0 and so f and E
are not linearly equivalent because f2 “ 0 and E2 “ ´r ă 0. As the rank
of the Picard group PickpX1q is 2 (since the rank of the Picard group of X2

is 1), any curve C in NEQpX1q is linearly equivalent to αf ` βE for some
α, β P Q. We want to prove that α, β ě 0. If C “ E, then α “ 0 and β “ 1,
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so assume that C ‰ E. We compute

0 ď f ¨ C “ βE ¨ f,
hence β ě 0. We also find

0 ď E ¨ C “ αE ¨ f ` βE2,

which implies that α ě 0, since βE2 ď 0 and E ¨ f ą 0. This proves (1).
For (2), we prove ampleness of ´KX1

using Kleiman’s Criterion. Note

that the expression of NEQpX1q in (1) is closed, hence NEQpX1qzt0u “
pQě0f ` Qě0Eq zt0u. We compute for pα, βq P Q2

ě0ztp0, 0qu
´KX1

pαf ` βEq “ αp´KX1
fq ` βp´KX1

Eq “ 2α ` βr ą 0,

where we used the adjunction formula to compute ´KX1
f and ´KX1

E.
Therefore, Kleiman’s Criterion implies that ´KX1

is ample, and so (2) holds.
For (3), note that (2) implies in particular that 0 ă p´KX1

q2 ď 9. Since
ϕ : X1 Ñ X2 is a blow-up of r points (over k), we also have p´KX1

q2 “
p´KX2

q2 ´ r. This gives r ă p´KX1
q2 ď 9, hence r ď 8. �

Lemma 2.10. For i “ 1, 2, let Xi Ñ t˚u be two Mori fiber spaces and let
ϕ : X1 99K X2 be a link of type II that has a resolution σi : Z Ñ Xi, where
σi is the blow-up of an orbit of size ri with exceptional divisor Ei.

(1) The cone of effective curves NEQpZq equals Qě0E1 ` Qě0E2.
(2) Z is a del Pezzo surface. In particular, ri ď 8 for i “ 1, 2.

Proof. For (1) it is enough to show that E1 and E2 are (different) extremal
rays in the cone of effective 1-cycles NEpZq since rkPickpZq “ 2. First,
we remark that NEQpX1q “ ´KX1

¨ Qě0: Having rkPicpX1q “ 1, there is
a curve C on X1 such that NEQpX1q “ Qě0C. As ´KX1

is ample (since
X1 is del Pezzo), ´KX1

is effective and non-zero, hence ´KX1
“ λC for

some λ ą 0. Therefore, NEQpX1q “ ´KX1
Qě0. Now, let D P NEQpZq

be such that D is no multiple of E1. Hence, π˚pDq is effective. As D P
PicpZq “ QE1 ` Qπ˚p´KX1

q, we can write D „ aπ˚p´KX1
q ` bE1 with

a ě 0. Therefore, NEQpZq lies in Qě0π
˚p´KX1

q ` QE1. Hence, E1 is
extremal. The same argument works for E2. The two extremal rays E1 and
E2 are different because E1 is effective with E2

1 ă 0 but E1E2 ě 0 (ϕ is not
an isomorphism, hence E1 and E2 are distinct).

For (2), compute with the adjunction formula ´KZEi “ ri. For α, β P
Qě0, not both zero, this gives

´KZpαE1 ` βE2q “ αr1 ` βr2 ą 0

and Kleiman criterion implies that ´KZ is ample, hence Z is del Pezzo. Note
that ri ď 8 follows in the same way as the proof of (3) of Lemma 2.9. �

This leads us to one of the main points of this article: The cardinality of
birational maps, which plays in our article the role of the covering gonality
in [BLZ19, Theorem D].
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2.3. Cardinality of birational maps.

Definition 2.11. Let ϕ : X 99K X 1 be a birational map between surfaces.
The cardinality of ϕ is the maximal size of all orbits contained in the base
loci of ϕ and ϕ´1.

Remark 2.12. A Sarkisov link ϕ : X1 99K X2 has cardinality ď 8 – except if
it is a link of type II between conic bundles. Indeed, the statement for links
of type I and III is implied by Lemma 2.9, for type II it is Lemma 2.10, and
links of type IV do not have base points so they have cardinality 0.

Remark 2.13. Any f P BirMoripXq can be decomposed as

Y0 X1 Y1 X2 YN´1 XN YN XN`1,

V1 W1 V2 WN´1 VN WN

Ψ1 Φ1 Ψ2 ΨN ΦN ΨN`1

» »

where Ψi : Yi´1 99K Xi are compositions of links of cardinality ď 8, and
Φi : Xi 99K Yi are a composition of links of type II. The Xi Ñ Vi, Yi Ñ Wi

are conic bundles for i “ 1, . . . , N .

3. Relations

Let X be a Mori fiber space (of dimension 2). By Theorem 4, the groupoid
BirMoripXq is generated by Sarkisov links and isomorphisms of Mori fiber
spaces. We study the set of relations of these generators. The following two
relations will be called trivial :

‚ αβ “ γ, where α, β, γ are isomorphisms of Mori fiber spaces,
‚ αψ´1ϕ “ idX , where ϕ : X 99K Y and ψ : Z 99K Y are Sarkisov links
and α : Z

„Ñ X is an isomorphism of Mori fiber spaces.

Any element of BirMoripXq that is not an isomorphism of Mori fiber
spaces is a product of Sarkisov links.

3.1. Relations between conic bundles.

Lemma 3.1. Let X Ñ V and Y Ñ W be two conic bundles and let
ϕ : X 99K Y be a birational map such that every curve contracted by ϕ is
contained in a fiber of X Ñ V . Then there is a composition ϕ “ αϕn˝¨ ¨ ¨˝ϕ1

of Sarkisov links ϕi of type II between conic bundles such that each ϕi is the
blow-up of one orbit of ri ě 1 distinct points on ri distinct smooth fibers,
followed by the contraction of the strict transforms of these fibers, where α
is an isomorphism (not necessarily of Mori fiber spaces).

Proof. Consider the minimal resolution

S

X Y,
ϕ

σ τ
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where σ and τ are compositions of blow-ups in points. Let C Ă S be a p´1q-
curve contracted by τ . So σpCq is either a smooth fiber or a component of
a singular fiber.

Let us show that it is not possible that σpCq “ F is a component of
a singular fiber. In this case, the self-intersection of F is ´1. Hence, no
point on F is a base point of σ. (Otherwise, C2 ď ´2.) Let E be the
other irreducible component of the fiber containing F , so E2 “ ´1. By
Remark 2.3, E and F lie in one orbit. As τ contracts C “ Ẽ, it also
contracts F̃ (since they are in the same orbit). This is not possible, since

after the contraction of C onto a point, the push-forward of F̃ is a curve of
self-intersection 0 and can therefore not be contracted.

Hence, σpCq “ F is a smooth fiber and so its self-intersection is 0. As σ
is a composition of blow-ups, there is one base point p P F of σ, and it is the
only base point of σ on the fiber σpCq. (Otherwise, the self-intersection of
C would be ď ´2.) So all points of the orbit of p are base points of σ, and
no two lie on the same fiber. (Otherwise, there would also be a second base
point p1 on σpCq.) Therefore, τ contracts all fibers through the orbit. Let
ϕ1 be the blow-up of the orbit of p followed by the contraction of the strict
transforms of the fibers through the orbit. This is a link of type II between
conic bundles, and ϕ factors through ϕ1. Moreover, ϕ ˝ ϕ´1 has fewer base
points.

Repeating this process for all p´1q-curves that are contracted by τ gives
an isomorphism α “ ϕ˝ϕ´1

1
˝¨ ¨ ¨˝ϕ´1

n , that is, ϕ “ αϕn˝¨ ¨ ¨˝ϕ1 where all ϕi

are blow-ups of an orbit followed by the contraction of the strict transforms
of the fibers through it, as in the statement of the lemma. �

Corollary 3.2. Let X Ñ V and Y Ñ W be two Mori fibers and let
ϕ : X 99K Y be a birational map that preserves the fibration. If ϕ is not
an isomorphism, then ϕ “ ϕn ˝ ¨ ¨ ¨ ˝ ϕ1 for Sarkisov links ϕi of type II be-
tween conic bundles such that each ϕi is the blow-up of one orbit of ri ě 1
distinct points on ri distinct smooth fibers, followed by the contraction of the
strict transforms of these fibers.

Proof. As in the proof of Lemma 3.1, consider the minimal resolution σ : S Ñ
X and τ : S Ñ Y of ϕ. Let C Ă S be a p´1q-curve contracted by τ . Since
ϕ preserves the fibration, σpCq lies in a fiber. By the minimality of the
resolution, σpCq is not a point. So σpCq is a curve contained in a fiber of
X Ñ V and Lemma 3.1 can be applied. Hence, ϕ “ αϕn ˝ ¨ ¨ ¨ ˝ϕ1 where the
ϕi are links of type II as desired and α is an isomorphim. As ϕ and each of
the ϕi preserve the fibration, also α preserves the fibration and is therefore
an isomorphism of Mori fiber spaces. Hence αϕn is also a link of type II
between conic bundles and the corollary follows. �

Lemma 3.3. Let X be a Mori fiber space that is not geometrically rational.
Then, BirMoripXq is generated by links of type II and isomorphisms of Mori
fiber spaces.
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Proof. Let ϕ : X1 99K X2 be a birational map in BirMoripXq, whereXi Ñ Bi

are Mori fiber spaces where Bi are curves of genus at least 1. Any curve C in
X1 contracted by ϕ is rational, and so every morphism C Ñ B1 is constant
(by Riemann-Hurwitz). Therefore, C is contained in a fiber. Lemma 3.1 can
be applied and therefore ϕ “ αϕn ¨ ¨ ¨ϕ1, where α is an isomorphism and ϕi

are links of type II between conic bundles. If α preserves the fibration, then
we are in the case of Corollary 3.2 and so ϕ is a product of links of type II.
If α does not preserve the fibration, α : Y1

„Ñ Y2 is a link of type IV, where
Yi Ñ Ci are Mori fiber spaces. Such a link does not exist for geometrically
non-rational surfaces: Consider F2 Ă Y2 a general fiber (hence isomorphic
to P1) of Y2 Ñ C2 and consider its image F1 “ α´1pF2q in Y1, which is
also isomorphic to P1. As F2 was chosen to be a general fiber and α does
not preserve the fibration, the restriction of the fibration Y1 Ñ C1 to F1

is surjective. This gives a contradiction, since every map from P1 Ñ C1 is
constant as before. �

Remark 3.4. Let χ1 : X0 99K X1 and χ2 : X1 99K X2 be two links of type
II between conic bundles Xi Ñ Bi such that no fiber of X1 Ñ B1 is con-
tracted by both χ´1

1
and χ2. Then, the composition χ2χ1 can be written

as χ´1

3
χ´1

4
, where χ3 : X2 99K X3 is the blow-up of χ2pBaspχ´1

1
qq followed

by the contraction of the strict transform of the corresponding fiber, and
χ4 : X3 99K X4 is the blow-up of χ3pBaspχ´1

2
qq followed by the contraction

of the strict transform of the corresponding fiber. So χ4χ3χ2χ1 is an isomor-
phism of Mori fiber spaces and χ4 can be chosen such that χ4χ3χ2χ1 “ id.

Note that χ1 and χ3 have the same cardinality, as well as χ2 and χ4.

Lemma 3.5. Let X be a conic bundle and let ϕn ¨ ¨ ¨ϕ1 “ idX be a relation
in BirMoripXq such that ϕi : Xi´1 99K Xi is a link of type II between conic
bundles, where X0 “ Xn “ X. This relation is generated in BirMoripXq by
the trivial relations and those of the form χ4χ3χ2χ1 “ id as in Remark 3.4,
where χ1, . . . , χ4 are links of type II between conic bundles.

Proof. For each link ϕi of type II we call pi´1 Ă Xi´1 the base orbit of ϕi,
and qi Ă Xi the base orbit of ϕ´1

i .
In the following, we show that using relations of the form χ4χ3χ2χ1 “ id

and the trivial relations, we can reduce the word ϕ “ ϕn ¨ ¨ ¨ϕ1 to the empty
word.

Starting from a fiber F “ F0 Ă X0 and the value N pF, 0q “ 0, we define
a sequence of subsets Fi “ pϕi ¨ ¨ ¨ϕ1qpF q Ă Xi, and a sequence of values
N pF, iq P N for i “ 1, . . . , n that “keep track of what happens to F” in each
step of our fixed decomposition ϕn ˝ ¨ ¨ ¨ ˝ ϕ1.

We inductively define N pF, iq ě 0 in the following way:

(1) If ϕi is a local isomorphism on the fiber containing Fi´1, then

N pF, iq “ N pF, i ´ 1q.
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(2) Otherwise, Fi´1 lies on the same fiber as a point of pi´1. We define

N pF, iq “

$

’

’

’

’

&

’

’

’

’

%

1 if Fi´1 is a fiber (so Fi is a point in qi),

N pF, i ´ 1q ´ 1 if Fi´1 is a point in pi´1,

N pF, i ´ 1q ` 1 if Fi´1 is a point but not in pi´1

pagain, Fi is a point in qi).

Observe that N pF, iq is the number of base points of ϕi ˝ ¨ ¨ ¨ ˝ ϕ1 that are
equal or infinitely near to a base point on F . Note that the sequence

ΣF “
`

N pF, 0q,N pF, 1q, . . . ,N pF, nq
˘

is the same for each fiber in the same orbit as F . We consider connected
subsequences of ΣF and note that the last value N pF, nq is zero as the
product of all the ϕi is the identity.

(1) First, we look at subsequences of the form pm´1,m,m´1q form ě 1
with corresponding links ϕi and ϕi`1. This occurs only if ϕ´1

i and
ϕi`1 have common base points, so ϕi`1ϕi equals an isomorphism.
Hence, this part of the sequence is equivalent to the empty word
modulo the trivial relations.

(2) Now, we consider subsequences of the form pm ´ 1,m,mq with cor-
responding links ϕi, which is not an isomorphism on F , and ϕi`1,
which is a local isomorphism on F . In this case, the fibers ofXi Ñ Bi

that are contracted by ϕ´1

i are not contracted by ϕi`1. By Re-
mark 3.4, there exist links χi and χi`1 of type II between conic
bundles such that χi has ϕi`1pBaspϕ´1

i qq as base points, and χi`1

has base points χipBaspϕi`1qq, and ϕi`1ϕi “ χ´1

i χ´1

i`1
is satisfied.

So by replacing ϕi`1ϕi with χ´1

i χ´1

i`1
in the factorisation of ϕ, we

can change this part of the sequence to pm ´ 1,m ´ 1,mq, leaving
the rest of it invariant.

Using these two kinds of reduction modulo the said relations, we proceed by
induction over

m “ mF “ maxtN pF, iq | i “ 0, . . . , nu.
There exists at least one subsequence Σ1 “ pm ´ 1,m, . . . ,m,m´ 1q of size
k ` 2 for some k ě 1. Using (2) multiple times we can change this part
of the sequence to pm ´ 1, . . . ,m ´ 1,m,m ´ 1q. This can then be reduced
to pm ´ 1, . . . ,m ´ 1q of size k ` 1 with (1). Doing this for any such Σ1,
we get a new sequence (corresponding to the new factorisation of ϕ) whose
maximum is m ´ 1. By induction, we find the sequence p0, . . . , 0q. Hence,
ϕ is a local isomorphism on F .

Note thatmF ě 1 only for finitely many fibers F . We repeat the described
process for each fiber F with mF ě 1 and can therefore reduce ϕ to an
isomorphism using the trivial relations and compositions of four links of
type II between conic bundles. �
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Corollary 3.6. Let ∆ ě 1. Let X1 Ñ B1 and X2 Ñ B2 be two conic
bundles. Let ϕ “ ϕn ¨ ¨ ¨ϕ1 : X1 99K X2 be a composition of links of type
II. Then we can write ϕ modulo the trivial relations and those of the form
χ4χ3χ2χ1, where χi are links of type II between conic bundles, as ψn ¨ ¨ ¨ψ1,
where ψ1, . . . , ψr are of cardinality ě ∆ and ψr`1, . . . , ψn are of cardinality
ă ∆.

Proof. We use relations of Lemma 3.5. If ϕi and ϕi`1 are centered at the
same fiber (that is, Baspϕ´1

i q lies on the same orbit of fibers as Baspϕi`1q),
then they have the same cardinality. If ϕi and ϕi`1 are centered at different
fibers and the cardinality of ϕi is ă ∆ and the one of ϕi`1 is ě ∆, let χ1 “ ϕi

and χ2 “ ϕi`1. As in Remark 3.4 there are links χ3 (of the same cardinality
as χ1, hence ă ∆) and χ4 (of the same cardinality as χ2, hence ě ∆) such
that χ4χ3χ2χ1 “ id. Therefore, by replacing χ2χ1 with χ

´1

3
χ´1

4
we have the

desired order of orbit sizes on these two elements. In this manner we can
move all small orbits to the end of the composition. �

Lemma 3.7. Let X Ñ B be a conic bundle that is not geometrically ra-
tional. Relations of the groupoid BirMoripXq are generated by the following
relations:

(a) ϕn ˝ ¨ ¨ ¨ ˝ ϕ1 “ id, where the cardinality of all ϕi is ď 15, and
(b) χ4χ3χ2χ1 “ id where χi : Xi´1 99K Xi are links of type II between

conic bundles.

Proof. By Lemma 2.4, the genus of B is ě 1. Links of type I or III do not
occur as they are between del Pezzo surfaces (see Lemma 2.9), which are
geometrically rational. Also no links of type IV are possible by Lemma 3.3.
Therefore, only links of type II between conic bundles occur. By Lemma 3.5,
they are generated by links as in (b). �

We want to prove the same theorem for the more interesting case of
geometrically rational Mori fiber spaces.

3.2. Geometrically rational conic bundles.

Lemma 3.8. Let X Ñ B be a geometrically rational conic bundle. Then,
each effective divisor D on X is linearly equivalent to ´aKX ` bf for a, b P
1

2
Z and a ě 0. Moreover, if the support of D is not contained in fibers, then

a ě 1

2
.

Proof. By the adjunction formula, we have ´KXf “ 2. Hence, ´KX and
f are linearly independent as f2 “ 0. By the geometrical rationality of X,
we have that B

k
“ P1

k
, hence the Picard rank of X is 2. Hence, there are

a, b P Q with D „ ´aKX ` bf . As D is effective, we have 0 ď Df “ 2a P N.
Moreover, if the support of D is not contained in fibers, a ą 0. So a ě 0
and a P Z1

2
. Since X is geometrically rational, there exists a section s on

X defined over k (by a corollary to Tsen’s theorem [Kol99, Corollary 6.6.2,
p.232]). As ´KXs is an integer and Ds “ ap´KXsq ` b, we also find that
b P 1

2
Z. �
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Lemma 3.9. Let X1 Ñ W1 and X2 Ñ W2 be two conic bundles that are ge-
ometrically rational and let ϕ : X1 99K X2 be a birational map that preserves
the fibration, that is the diagram

X1 X2

W1 W2

ϕ

»

commutes. Let H1 „ ´λ1KX1
` ν1f be a linear system without fixed com-

ponent on X, and let H2 „ ´λ2KX2
` ν2f be the strict transform of H1 on

X2. Then,

(1) λ1 “ λ2 “: λ,
(2) ν2 “ ν1 ` ř

|ω1|
`

λ´mω1

˘

, where the sum runs over all orbits ω1 in
Baspϕq,

(3) mω2
pH2q “ 2λ ´ mω1

for orbits ω2 in Baspϕ´1q (and ω1 the corre-
sponding orbit in Baspϕq),

where |ωi| denotes the size of the orbit ωi, and mωi
“ mωi

pHiq denotes the
multiplicity of Hi at the points in ωi, for i “ 1, 2.

Proof. Consider the minimal resolution

S

X1 X2.ϕ

σ1 σ2

We consider the case where ϕ is one link of type II, that is, σi is the blow-up
of one orbit ωi. Let Ei Ă S be the exceptional divisor of the blow-up σi for
i “ 1, 2, and let f̂ be a general fiber on S. So E1 `E2 “ |ω1| f̂ . We compute

H̃i “ σ˚
i pHiq ´mωi

Ei

“ ´λiσ˚
i pKXi

q ` νiσ
˚
i pfq ´mωi

Ei

“ ´λipKS ´ Eiq ` νif̂ ´mωi
Ei

“ ´λiKS ` νif̂ ` pλi ´mωi
qEi

Replacing E1 “ |ω1| f̂ ´ E2 in H̃ we get

H̃1 “ ´λ1KS `
`

ν1 `|ω1| pλ1 ´mω1
q
˘

f̂ ` pmω1
´ λ1qE2.

Comparing H̃1 “ H̃2 we find λ2 “ λ1, ν2 “ ν1 `|ω1| pλ ´ mω1
q, and mω2

“
2λ ´mω1

. Repeating this for every orbit ω1 P Baspϕq, we find λ2 “ λ1 and
ν2 “ ν ` ř

|ω1| pλ ´mω1
q. �

Lemma 3.10. Let ∆ “ 16 and δ “ 1

2
. Let X Ñ V , Y Ñ W and X 1 Ñ V 1

be three minimal conic bundles and let Φ: X 99K Y be a birational map of
cardinality ě ∆ and Ψ: Y 99K X 1 a birational map of cardinality ă ∆ such
that
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X Y X 1

V W V 1.

Φ Ψ

» ­

where we mean by “ W ­Ñ V 1” that there is no such morphism making the
diagram commute.

Let H be a linear system on X without fixed component, so

H „ ´λKX ` νf,

where f is a general fiber of X Ñ V . Let HY „ ´λYKY `νY fY be the strict
transform of H on Y , and let H 1 „ ´λ1KX1 ` ν 1f 1 be the one on X 1.

Let µ (respectively µ1) be the maximum of the multiplicities mωpHq (re-
spectively mωpH 1q) for all orbits ω with |ω| ě ∆.

Assume µ ă δλ. Then λ1 ą λ and µ1 ă δλ1.

Proof. By Lemma 3.2, we can write Φ as a composition of links of type II
between conic bundles and, by Corollary 3.6, move the links of cardinality
ă ∆ to the end. So we can assume that each base orbit of Φ has cardinality
ě ∆.

Since Ψ is an isomorphism on the points lying in an orbit of size ě ∆,
the maximal multiplicity µ1 on X 1 of H 1 equals the multiplicity of HY at a
point in Y . Hence, µ1 ď HY ¨ fY “ 2λY (when taking fY to be the fiber
through a point of maximal multiplicity). As λY “ λ by Lemma 3.9, we get
µ1 ď 2λ. So if we show that λ1 ą 2

δ
λ “ 4λ, then δλ1 ą 2λ ě µ1 and λ1 ą λ

are implied.
Let g Ă Y be the pull back of a general fiber f 1 of X 1 Ñ V 1 under Ψ. We

write g „ ´aKY ` bf . As g is not a fiber, a ě 1

2
by Lemma 3.8. We will use

H 1 ¨ f 1 “ 2λ1 to find a lower bound for λ1. Consider a minimal resolution

T

Y X 1.
Ψ

As f 1 is a general fiber, we have H̃ 1 ¨ f̃ 1 “ H 1 ¨ f 1 for the strict transforms of
H 1 respectively f 1 in T . So we find

2λ1 “ H 1 ¨ f 1

“ H̃Y ¨ g̃
“ HY ¨ g ´

ÿ

j

mpjpHY qmpj pgq,

where the points pj P Y are the points blown up in T Ñ Y and infinitely
near ones. Since Ψ is of cardinality ă ∆, the pj form orbits of size ă ∆. As
we have remarked in the beginning of the proof, the base points of Φ consist
of orbits of size ě ∆, hence the map Φ is a local isomorphism onto the points
pj. Hence, Mj :“ mpjpHY q “ mΦ´1ppjqpHq. We have H2 ´ ř

mqpHq2 ě 0,
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where the sum goes over all points (including infinitely near ones) q P X

(since H is a linear system, hence nef), so also H2 ´ ř

M2
j ě 0. This gives

an upper bound
ř

M2
j ď H2.

Let Nj “ mpjpgq. As g̃2 “ f̃ 12 “ 0, we find g2 “ g̃2 ` ř

N2
j “ ř

N2
j .

By Cauchy-Schwarz, we have
`
ř

MjNj

˘2 ď př

M2
j qpř

N2
j q and, with the

above discussion, get the inequality

2λ1 ě HY ¨ g ´
c

´

ÿ

M2
j

¯ ´

ÿ

N2
j

¯

ě HY ¨ g ´
a

H2g2.(1)

Let β be such that νY “ ν ` βλ, namely

β “
ÿ

|ω| p1 ´ mω

λ
q ą ∆p1 ´ δq “ 8,

where the notation is from Lemma 3.9 and the inequalities come from our
assumptions that |ω| ě ∆ “ 16 and mω ď µ ă δλ “ 1

2
λ.

To compare HY ¨ g with the square root of H2g2, let d “ K2
Y and denote

by e1 the expression 1

λ2H
2 “ λpλd`4νq “ d`4 ν

λ
, and similary e2 “ 1

a2
g2 “

d` 4 b
a
. We compute

HY ¨ g “ p´λYKY ` νY fq ¨ p´aKY ` bfq
“ aλd ` 2bλ` 2aνY

“ λpad ` 2bq ` 2apν ` βλq

and so
1

aλ
HY ¨ g “ d ` 2

b

a
` 2

ν

λ
` 2β “ 1

2
pe1 ` e2q ` 2β.

Therefore,

2λ1

aλ
ě 1

aλ

´

HY ¨ g ´
a

H2g2
¯

“ e1

2
` e2

2
` 2β ´ ?

e1e2

ě 2β,

where the last inequality holds because of the inequality of the arithmetic
and the geometric mean. Hence, using a ě 1

2
, we conclude the proof with

λ1 ě aβλ ą 8aλ ě 4λ.

So we have λ1 ą λ, and δλ1 “ 1

2
λ1 ą 1

2
4λ “ 2λ ě µ1. �

Corollary 3.11. Let ∆ “ 16. Assume N ě 1. For i “ 0, . . . , N let Xi Ñ Vi
and Yi Ñ Wi be conic bundles that are geometrically rational with birational
maps Φi : Xi 99K Yi of cardinality ě ∆ and birational maps (for i ‰ 0)
Ψi : Yi´1 99K Xi of cardinality ă ∆ such that the diagram
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X0 Y0 X1 YN´1 XN YN

V0 W0 V1 WN´1 VN WN

Φ0 Ψ1 ΨN ΦN

» ­ ­ »

commutes, where we mean by “ Wi´1 ­Ñ Vi” that there is no such morphism
making the diagram commute.

Let ϕ “ ΦNΨNΦN´1 ¨ ¨ ¨Φ1Ψ1Φ0, and let H „ ´λKX ` νf be a linear
system without fixed comoponent on X “ X0 and let H 1 „ ´λ1KX1 ` ν 1f be
its strict transform in X 1 “ YN under ϕ. Then λ1 ą λ. In particular, there
is no morphism V0 Ñ WN making the diagram

X0 YN

V0 WN

ϕ

­

commute, hence ϕ is not an isomorphism of conic bundles.

Proof. This is a direct corollary from Lemma 3.10: We can assume that H
is smooth, hence µ “ 0, and we can apply the lemma.

For the last part: If ϕ would preserve the fibration, then it would be of
type II, hence we would have λ1 “ λ, a contradiction to Lemma 3.9. �

3.3. Generating relations.

Proof of Theorem 2. The statement was already proven in Lemma 3.7 if X
is not geometrically rational. So we assume now that X is geometrically
rational.

Let ϕn ¨ ¨ ¨ϕ1 “ id be a relation in BirMoripXq, where ϕi : Zi´1 99K Zi is
a Sarkisov link of cardinality di. If all di ď 15, we are in situation (a).

Otherwise, the base points of at least one of the ϕi contains an orbit of size
ě 16. In particular, ϕi : Zi´1 99K Zi is a link of type II between conic bundles
(since these are the only links of big cardinality, see Remark 2.12). We will
prove that we are always in the situation of Lemma 3.5 using Corollary 3.11.
By replacing the relation with

ϕi´1 ¨ ¨ ¨ϕ1ϕn ¨ ¨ ¨ϕi`1ϕi,

we can assume that Z0 is a conic bundle. We consider the relator ϕ “
ϕn ¨ ¨ ¨ϕ1 and write it – as in Remark 2.13 – as

ϕ “ ΦNΨN ¨ ¨ ¨Φ1Ψ1Φ0,

where for i “ 0, . . . , N the Xi Ñ Vi and Yi Ñ Wi are conic bundles with
birational maps Φi : Xi 99K Yi that are a composition of links of type II
between conic bundles, and birational maps (for i ‰ 0) Ψi : Yi´1 99K Xi of
cardinality ď 15.
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If N “ 0 then ϕ “ Φ0 is a composition of links of type II between conic
bundles. The result follows with Lemma 3.5.

If N ě 1, we can assume with Corollary 3.6 that each Φi is either a
product of links of cardinality ě 16 or an isomorphism. Now, we change our
decomposition of the relator ϕ such that it is of the form of Corollary 3.11.
If one of the Φi is an isomorphism, we look at the birational map Ψ1

i “
Ψi`1ΦiΨi : Yi´1 99K Xi`1. There are two possibilities: Either Ψ1

i preserves
the fibration, or it does not. If it does not, we replace Ψi`1ΦiΨi with Ψ1

i in
the decomposition of ϕ. Note that Ψ1

i is of cardinality ď 15. If Ψ1
i preserves

the fibration, we replace Φi´1 with Φ1
i´1

“ Φi`1Ψ
1
iΦi´1 : Xi´1 99K Yi`1.

Applying Corollary 3.6 once more, we can assume that Φ1
i´1

is a product of
links of cardinality ě 16 or an isomorphism. In the latter case we repeat
the process.

In this way, we arrive either at the case N “ 0 and we are done, or we are
in the situation of Corollary 3.11, which implies that the relator ϕ is not an
isomorphism, a contradiction. �

4. Detour to Galois theory for non-experts

In this section we will prove that a perfect field k with rk : ks ą 2 contains
an arbitrarily large Galois orbit. We recall first the statements from Galois
theory that we need.

Recall that a field k is called perfect if every algebraic extension is sepa-
rable. In particular, any finite extension of a perfect field is again perfect.
A finite field extension L{K is called Galois if it is normal and separable.
In this case, the extension degree rL : Ks equals the number of elements in
the Galois group GalpL{Kq.

Moreover, for any splitting field L of an irreducible polynomial f P krxs,
the extension L{k is normal. So if k is perfect, then L{k is Galois. We will
use the Artin-Schreier Theorem [Lan05, Corollary 9.3, Chapter IV] and the
Primitive Element Theorem [Lan05, Theorem 4.6, Chapter V].

Lemma 4.1. Let L{k be a finite Galois extension. For γ P L the degree of
rkpγq : ks equals the length of the orbit of γ under the action of GalpL{kq.
Proof. As L{k is normal and separable by assumption, also L{kpγq is normal
[Lan05, Chapter V, Theorem 3.4] and separable, hence it is Galois. Note
that the stabilizer of γ is GalpL{kpγqq. By the orbit formula, the length of
the orbit of γ under the action of GalpL{kq equals rGalpL{kq : GalpL{kpγqqs,
which is equal to

|GalpL{kq|
|GalpL{kpγqq| “ rL : ks

rL : kpγqs “ rkpγq : ks.

�

Lemma 4.2. Let k be a perfect field with rk : ks ą 2 and let ∆ ě 1. Then
k contains an orbit of length ě ∆ under the action of Galpk{kq.
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Proof. The Artin-Schreier Theorem directly implies that the degree rk : ks
is infinite, and hence for a finite field extension L{k with L Ă k we have
that L is not equal to the algebraic closure k. We inductively construct
a series of finite field extensions Ln{k such that rLn : ks ě 2n. For the
base case, set L0 “ k so rL0 : ks “ 1 “ 20 is finite. For the induction
step n ´ 1 Ñ n, assume that there is a finite field extension Ln´1{k with
rLn´1 : ks ě 2n´1. Hence, L ‰ k and so there exists αn P kzLn´1. Set
Ln “ Ln´1pαnq, so Ln{Ln´1 is an algebraic and even finite extension. As
Ln ‰ Ln´1 we have rLn : Ln´1s ě 2. The induction hypothesis implies with
rLn : ks “ rLn : Ln´1srLn´1 : ks that

8 ą rLn : ks ě 2 ¨ 2n´1 “ 2n,

which means that Ln{k is a finite extension of degree ě 2n.
Now, choose n such that 2n ě ∆. As Ln{k is an algebraic extension of the

perfect field k, it is a separable extension. The Primitive Element Theorem
can be applied and provides the existence of γ P Ln such that Ln “ kpγq.
Take a finite Galois extension L{k with γ P L Ă k. (For example take L
to be the splitting field in k of the minimal polynomial of γ over k.) By
Lemma 4.1, the orbit of γ is of length rkpγq : ks “ rLn : ks ě ∆. �

Note that we do not claim that an orbit of exact size ∆ exists. In fact,
for any ∆ ě 2 there exists a perfect field with no Galois orbit of exact size
∆, namely the following example that was provided to me by Lars Kuehne.

Lemma 4.3. Let ∆ ě 2. There exists a perfect field k with rk : ks “ 8 such
that no element in k has an orbit of length ∆ under the action of Galpk{kq.

Proof. Consider the field extension Q Ă k Ă Q, where k is the set consisting
of elements a P Q such that there exists a tower of fields Q “ L0 Ă L1 Ă
¨ ¨ ¨ Ă Ln Q a such that Li{Li´1 is the splitting field of a polynomial of degree
∆ with coefficients in Li´1.

Indeed, k is a perfect field: For a, b P k let L0 Ă L1 Ă ¨ ¨ ¨ Ă Ln Q a

be the tower of fields corresponding to a, and let gi be the polynomials of
degree ∆ corresponding to the splitting fields corresponding to b for i “
1, . . . ,m. There exists a tower of fields L0 Ă ¨ ¨ ¨ Ă Ln Ă Ln`1 Ă ¨ ¨ ¨Ln`m

with a ` b, ab P Ln`m, where the Ln`i{Ln`i´1 are the splitting fields of gi.
Therefore, k is a field. It is perfect because its characteristic is zero.

To prove that rQ : ks “ 8, we assume that rQ : ks “ N for some
N P N. Let p ą maxtN,∆!u be a prime number. First, we prove that there
exists a Galois extension F {Q of degree p. By Dirichlet’s Theorem, one
can choose a prime q ” 1 mod p. Let Qpµqq be the cyclotomic extension

of Q, where µq is a qth root of unity. The Galois group of Qpµqq{Q is the
multiplicative group pZ{qZqˆ, which is cyclic of order q ´ 1. As p divides

q´1, there exists a (normal) subgroup H Ă GalpQpµqq{Qq of order q´1

p
. Let

F Ă Qpµqq be the field that is fixed by H. By Galois Theory, the extension
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F {Q is Galois and of degree p (using that the extension degree of Qpµqq{Q
is q ´ 1) [Lan05, Chapter VI, Theorem 1.1 and 1.8].

By the Primitive Element Theorem, we can choose α P Q such that
F “ Qpαq. Hence Qpαq{Q is a Galois extension with rQpαq : Qs “ p. We
prove that α P k. As k{Q is an (arbitrary) extension, the degree rkpαq : ks
divides rQpαq : Qs “ p [Lan05, Chapter VI, Corollary 1.13] (using that
the compositum Qpαqk of the two fields Qpαq and k equals kpαq). By the
transitivity of the degree, we also find that

N “ rQ : ks “ rQ : kpαqsrkpαq : ks,
so rkpαq : ks divides N . Since it also divides the prime number p ą N , the
only possibility is rkpαq : ks “ 1 and so α P k.

Now, we find a contradiction to p ą ∆!. As α lies in k, there exists a
tower of fields L0 Ă ¨ ¨ ¨ Ă Ln Q α such that Li{Li´1 is the splitting field
of a polynomial of degree ∆. Hence, rLi : Li´1s ď ∆!. So rLn : Qs “
rLn : Ln´1s ¨ ¨ ¨ rL1 : Qs is a product of numbers smaller or equal to ∆!.
Note that Qpαq Ă Ln, hence rLn : Qs “ rLn : QpαqsrQpαq : Qs and so
p “ rQpαq : Qs divides rLn : Qs. As p is a prime, it implies that p ď ∆!,
which is a contradiction to p ą ∆!.

Finally, we prove that k has no Galois orbit of size ∆. Assume that there
exists β P Q such that kpβq{k is finite and such that the length of the Galois
orbit of β is ∆. In particular, β P Qzk. Consider the minimal polynomial
minkpβq of β over k and its splitting field L. So β P L and L{k is finite and
Galois. Hence with Theorem 4.1 we have that the size of the Galois orbit of
β, which is ∆, equals rkpβq : ks, which in turn is the degree of the minimal
polynomial minkpβq. By the construction of our field k, this implies that β
already lies in k, a contradiction. �

5. Group homomorphism

Definition 5.1. We say that two conic bundles X{W and X 1{W 1 are equiv-
alent if there exists a birational map X 99K X 1 that preserves the fibration
(see Definition 2.5) and maps singular fibers onto singular fibers.

We denote the set of equivalence classes of conic bundles birational to X
by CBpXq.
Definition 5.2. We say that two Sarkisov links χ and χ1 of conic bundles
of type II are equivalent, if

(1) the conic bundles are equivalent,
(2) the Sarkisov links have the same cardinality.

For an equivalence class C P CBpXq of conic bundles, we denote by MpCq
the set of equivalence classes of Sarkisov links of type II (between conic
bundles in the equivalence class of C). That is, an element of MpCq is the
class of Sarkisov links of type II between equivalent conic bundles of the
same cardinality.
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Proof of Theorem 3. One has to show that the homomorphism is well de-
fined, that is, to show that every relator is mapped onto the identity.

By construction, relators that consist of Sarkisov links of cardinality ď 15
are mapped on the identity.

The trivial relation αβ “ γ, where α, β, γ are isomorphisms of Mori fiber
spaces, is mapped onto the identity by construction. Trivial relations of
the form αψ´1φ “ id satisfy Baspφq “ Baspψq, hence they have the same
cardinality and are therefore in the same equivalence class of Sarkisov links.
Hence ψ and φ have the same image and so the relator is mapped onto the
identity.

Relations of the form χ4χ3χ2χ1 “ id, where χi are Sarkisov links of type
II between conic bundles, are such that χ4 and χ2, as well as χ3 and χ1 have
the same cardinality as in Remark 3.4. As they are all links between conic
bundles of the same equivalence class of conic bundles, χ1 and χ3, as well
as χ2 and χ4 have the same image. Therefore, the relator is mapped onto
the identity. This proves the existence of the groupoid homomorphism. The
fact that it restricts to a group homomorphism from BirpXq is immediate,
and the fact that it restricts to a group homomorphism from BirpX{W q is
a consequence of Lemma 3.2. �

Example 5.3. Consider the birational map

px, yq ÞÑ pxppyq, yq,
and its extension to a birational map ϕ : P1 ˆ P1

99K P1 ˆ P1 that is given
by

rx0 : x1; y0 : y1s ÞÑ rx0yd1 : x1ppy0, y1q; y0 : y1s,
where p P kry0, y1s is an irreducible polynomial of degree d ě 16. Since k

is perfect, ppt, 1q has d different zeroes t1, . . . , td P k. So ϕ is not defined
on r1 : 0; 1 : 0s and on the points pi “ r0 : 1; ti : 1s for i “ 1, . . . , d. One
can check that ϕ is the composition of a link ϕ0 : P

1 ˆ P1
99K Fd of type II

centered at the orbit tp1, . . . , pdu, followed by d links ϕn : Fn 99K Fn´1 of
type II of cardinality 1 for n “ d, . . . , 1. Note that ϕ0 is not mapped onto the
identity (its image is 1 P Z{2 corresponding to the equivalence class of ϕ0 in
MpP1 ˆ P1q), whereas all ϕn for n “ 1, . . . , d are mapped onto the identity.
Therefore, the image of ϕ P BirpP1 ˆP1q under the group homomorphism is
non-trivial.

Proof of Theorem 1. We take the group homomorphism from Theorem 3.
For a constant polynomial p P k, the local map px, yq ÞÑ ppx, yq is an auto-
morphism and therefore it is mapped onto the identity. For the surjectivity,
using Lemma 4.2 we can construct an infinite and countable indexing set I
such that for each d P I there exists an irreducible polynomial p P krys of
degree d, and each d P I is at least 16. For each such polynomial we consider
ϕ : P1 ˆP1 Ñ P1 ˆP1 as in Example 5.3. Let α : P2

99K P1 ˆP1 be the blow-
up of two points in P2 that are defined over k, followed by the contraction
of the line connecting the two points. Then α´1ϕα lies in BirpP2q and, since
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α and α´1 have cardinality 1, its image under the group homomorphism of
Theorem 3 is non-trivial on the index of I corresponding to the degree of
p. �
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