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SOME EFFECTIVITY QUESTIONS FOR PLANE CREMONA

TRANSFORMATIONS

N. I. SHEPHERD-BARRON

1 Introduction

The Cremona group Cr2(k) is the group of k-birational automorphisms of the
projective plane P2

k over a field k. As such, it is an object of algebraic geometry,
but it is also of interest from the viewpoints of dynamics [M1] and group theory,
including geometric group theory [CL]. This latter paper introduces a certain
infinite-dimensional hyperbolic space H = H(P2) on which Cr2(K) acts as a
group of isometries and makes it clear that this action is an important tool for
studying both Cr2(k) and its individual elements. However, given an algebraic
description of a Cremona transformation g in terms of explicit rational functions,
it is not always clear how to calculate anything about g that is relevant to any
of these frameworks. For example, there is no known effective procedure for
determining whether g is biregular (that is, acts as a biregular automorphism of
some projective rational surface) or of calculating the translation length L(g) =
L(g∗) of the isometry g∗ of H that is associated to g.

Our goal here is to make matters more nearly effective in the very particular
case where g is a special quadratic transformation. That is, g = σα, where σ is the
standard quadratic transformation given in terms of homogeneous co-ordinates
x, y, z by σ : (x, y, z) 7→ (yz, xz, xy) and α is a linear map with α2 = 1. For
this special class of Cremona transformations we give (Theorem 1.1 2 below) a
simple and explicit lower bound, in terms of a constant amount of calculation, for
L(g). The upper bound L(h) ≤ logD for a Cremona transformation h of degree
D is well known [CL]; these bounds together give an arbitrarily fine estimate
for L(g). These bounds will also determine the type of g; that is, whether g is
elliptic, parabolic or hyperbolic (the word loxodromic is also used for this last
class). However, even in this special case, and even over a finite field, we still
have no finite means of determining whether g is biregular.

Let P,Q,R denote the base points of σ and that ∆, the fundamental tri-
angle given by xyz = 0, is the locus where σ is not biregular. We say that
points x1, x2, ..., xn in P2 are in general position if they are all distinct and
none of them, except for P,Q,R, lies on ∆. For any natural number n, let
wn denote the reduced word in σ, α that has length n and begins with α when
reading from right to left. So, for example, w0 = 1, w1 = α,w2 = σα. Set
Pn = wn(P ), etc. So P0 = P . We say that α, or g, is in (p, q, r)-general position
if P0, ..., Pp−1, Q0, ..., Qq−1, R0, ..., Rr−1 are in general position. We abbreviate
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(r, r, r)-general position to r-general position. Of course, r-general position im-
plies s-general position for any s ≤ r.

Theorem 1.1 (1) Suppose that g is in (p, q, r)-general position and that 1/p+
1/q + 1/r < 0. Then g is hyperbolic.

(2) For 1 ≫ ǫ > 0 define p0 = p0(ǫ) = log(3/ǫ)/ log(2− ǫ). Then, if g is in
p-general position and p ≥ p0, g is hyperbolic and

log 2− ǫ < L(g) ≤ log 2.

Note [CL] that any transformation g of degree D has L(g) ≤ logD, while
if g is very general then L(g) = logD and (this is the main result of [CL]) the
normal closure 〈〈gn〉〉 in Cr2(k) of a sufficiently large power gn of g does not
contain g; in particular, it is not all of Cr2(k), and Cr2(k) is not simple. By
using the ideas and methods of [CL] we can make this more explicit for some
special quadratic transformations, as follows.

Theorem 1.2 Suppose that P6 = P7, Q6 = Q7, R6 = R7 and that the 21 points
P0, ..., P6, ..., R6 are in general position. Assume also that none of P1, Q1, R1 lies
on the triangle ∆′ defined by the equality of any two of the given homogeneous
co-ordinates. Then g 6∈ 〈〈gn〉〉 for n≫ 0.

These hypotheses can be realized over a finite field, since they impose three
conditions on the 4-dimensional variety of involutions in PGL3. In fact, over a
finite field more is true.

Theorem 1.3 Suppose that k is a finite field and that g is a hyperbolic element
of Cr2(k). Then g is tight and g 6∈ 〈〈gN〉〉 for all sufficiently divisible N .

However, we have no effective bound on N .
We can also give some analogous sufficient conditions for a special quadratic

transformation g to be elliptic. Here is an example.

Theorem 1.4 Suppose that P1 = P2, Q2 = Q3, R4 = R5 and that the ten
points P0, P1, ..., R4 are in general position. Then g has order 30.

These results can be summarized by saying that there is a Coxeter–Dynkin
diagram associated to the problem and if P0, ..., Rr−1 are in general position then
the diagram contains the standard tree Tp,q,r. Since T2,3,5 = E8 the number 30
appears as the Coxeter number of E8. This is a particular instantiation of the
very old idea of relating groups of Cremona transformations to Weyl groups, and
also of Steinberg’s idea [S] of describing Coxeter elements using a description of
the Coxeter diagram as a bipartite graph. This viewpoint has also been exploited
by Blanc and Cantat [BC], who use an infinite group W∞ that is something like
a Coxeter group of type E∞ to prove that, for any hyperbolic Cremona trans-
formation g, the spectral radius λ(g) = expL(g) lies in the closure of the set T
of Salem numbers and λ(g) ≥ λLehmer, the Lehmer number, which is the small-
est known Salem number. However, although we only consider special quadratic
transformations, the Coxeter–Dynkin diagrams and groups that arise here are
more general; they include those of all types Tp,q,r, where Er+3 = T2,3,r.
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2 Other background: dynamical systems and

symmetric key cryptography

Hénon introduced certain complex quadratic plane Cremona transformations,
now called Hénon maps, as models of (sections of) dynamical systems such as
the Lorenz equations. They are of the form

f(x, y) = (ay + q(x), x),

where q is a quadratic polynomial and a is a non-zero scalar.
Then f might have sensitive dependence on initial conditions in this sense:

even if initial points x0 and y0 are very close, their images fn(x0) and f
n(y0) can

be far apart for large values of n.
In the context where f is a smooth self-map of a compact manifold X this,

when stated precisely in terms of Lyapunov exponents, turns out to be equivalent
to the topological entropy h(f) being strictly positive. (Recall that the topological
entropy h(g) of a self-map g of a compact metric space X is defined by

h(g) = lim
ǫ→0

lim
n→∞

log

(
1

n
N(n, ǫ)

)
,

where N(n, ǫ) is the number of orbit segments of length n that are at least a
distance ǫ apart. Gromov [G] extended this definition to cover correspondences,
which include Cremona transformations, as well.) However, this definition in-
volves two limits, so the questions arise of finding how large n must be taken,
and how small ǫ, in order to estimate it in to a given accuracy in a bounded time.

On the other hand, over a finite field, especially one of characteristic 2,
Feistel introduced the same kind of Cremona transformations, except that he
took the parameter a to be a = 1 always and he did not demand that q be
quadratic. These maps are also known as round functions and they are an essen-
tial element of Feistel ciphers such as DES, the Data Encryption Standard. The
Advanced Encryption Standard, AES, uses different Cremona transformations,
but otherwise both DES and AES have a similar structure.

Here is a toy model of DES (“toy” because it omits the key schedule): after
Alice and Bob have established a key K (for example, by using some version
of public key cryptography based, say, on elliptic curves), the key determines,
according to a fixed public procedure that is part of the infrastructure of the
algorithm, a round function fK that is regarded as a non-linear but polynomial
automorphism of some affine space An

k over a finite field k.
Then encryption of a message M is this: break M into blocks Mi, each of

size n (that is, Mi is a k-point of A
n) and then, for a fixed integer N that is also

part of the infrastructure of the algorithm, apply the transformation fNK to the
plaintext block Mi and transmit fNK (Mi). Decryption is: apply (f−1

K )N to each
block fNK (Mi) that is received.
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There is a parallel toy model of AES. First, some Galois twist σ of the
standard non-linear birational involution (x0, ..., xn) 7→ (x−1

0 , ..., x−1
n ) of Pnk is

given in advance and is public. Then the key K is used to construct a linear
transformation of Pnk and we set fK = σ ◦ LK . Then the algorithm runs as for
DES. (If the process ever encounters a base point, meaning that it is trying to
invert 0, then it maps 0 to 0. So the iterated Cremona transformation is garbled.
However, the security of the scheme does not reside in this garbling.) Since
f−1
K = σ ◦ L−1

K , decrypting is then, as with DES, as fast and cheap as encrypting
(especially if LK is an involution). However, in higher dimensions, a general
Cremona transformations is of lower degree than its inverse, so slower and more
expensive to invert.

Encryption should also mix up the points of projective space thoroughly and
quickly; in other words, it is desirable that if x0 and y0 are distinct basepoints that
are close, then the points fNK (x0) and f

N
K (y0) should be far apart for some large,

but fixed, value ofN . In other words, the round function should be sensitive to the
parameters that define it, in the sense of (1) above. That is, in terms that might
be over-simplified, over the complex numbers certain Cremona transformations
serve as simple models of a real world that is known to be chaotic, while over a
finite field the same Cremona transformations are used to create the appearance
of chaos.

Moreover [M1], positive entropy does not exclude the existence of Siegel
discs; Siegel discs are undesirable in cryptography because they are regions con-
sisting of plaintexts that are close and that remain close after encryption. Of
course, none of this is as significant as the fact that it is not clear what is the
correct definition of entropy for points over finite fields, with distance defined
to be the Hamming distance. On the other hand, the theorem of Gromov and
Yomdin, that the entropy of an endomorphism g of a smooth projective variety
X is the logarithm of the spectral radius of the action of g on the cohomology of
X shows that h(g) can be computed by reducing modulo p and counting points.

3 Hyperbolic space

Here we review the construction and basic properties of the infinite hyperbolic
space H = Hk = H(P2

k) and the action of Cr2(k) on it. This is taken from [CL];
we repeat it in order to establish notation.

Let V be any smooth projective surface over the field k. Set Z(V )Z =
lim−→Y→V

NS(Y ), where the direct limit is taken over all blow-ups Y → V , and

Z(V ) = Z(V )Z ⊗Z R. There is a Lorentzian completion Z̃(V ) of Z(V ), given by

Z̃(V ) = {λ+
∑

deg(P )nPeP |λ ∈ NS(V )R, nP ∈ R,
∑

deg(P )n2
P <∞},

where eP is the exceptional curve associated to the closed point P on some blow-
up Y and deg(P ) is the degree of the field extension k(P )/k. On Z̃(V ) there
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is a Lorentzian inner product denoted by (x.y). The hyperbolic space H(V ) is

one of the two connected components of the locus {x ∈ Z̃(V )|(x.x) = 1}. The
distance on H(V ) is denoted by d, so that cosh d(x, y) = (x.y). The isometries of

H(V ) are the continuous linear transformations of Z̃(V ) that preserve the inner
product and the connected component above.

Given any blow–up Y → V , there are natural isomorphisms Z(V )Z →
Z(Y )Z, H(V ) → H(Y ), etc., so that the group Bir(V ) of birational automor-
phisms of V acts as a group of isometries of H(V ) via γ 7→ γ∗.

From now on, we take V = P2
k. We shall usually drop the subscript k from

Hk, but note that the formation of Hk is functorial in k.
Isometries φ of H are of three types: φ is elliptic if it has a fixed point

in (the interior of) H; φ is parabolic if it has a unique fixed point on the ideal
boundary ∂H of H and no fixed point in H; φ is hyperbolic if the lower bound
L(φ) = lim inf d(x, φ(x)) is strictly positive and is attained in H.

In this last case the set {x ∈ H|d(x, φ(x)) = M(φ)} is a geodesic in H. It
is the axis of φ and is denoted by Ax(φ). It is the unique geodesic preserved by φ
and its endpoints on ∂H are the unique fixed point on the closure H = H∪ ∂H.
The quantity L(φ) is the translation length of φ. On the other hand, a parabolic
isometry does not preserve any geodesic.

We record the following lemma.

Lemma 3.1 If Π is a sub-vector space of Z̃ and δ an isometry ofH that preserves
V , then δ is hyperbolic on Z̃ if and only if it is hyperbolic on the hyperbolic space
H(Π) associated to Π. If δ is hyperbolic, then its axis in H(Π) equals its axis in
H.

Suppose that δ is a Cremona transformation, of degree D (in that δ is de-
fined by a net of homogeneous polynomials of degree D). Then [CL] L(δ∗) equals
the dynamical degree of δ, defined as limn→∞(deg(fn))1/n. Moreover, the entropy
h(δ) of δ satisfies h(δ) ≤ L(δ∗) and equals it if δ is biregular on some smooth
projective rational surface. Then δ is elliptic, etc., if δ∗ is so, and δ is biregular if
there is some rational surface X on which δ is a biregular automorphism. If δ is
elliptic, then δ is biregular, and moreover there is a rational surface X on which
δ is biregular and an integer n > 0 such that δn lies in the connected component
of AutX .

If δ is parabolic, then there is a rational surface X and a fibration X → P1

that is preserved by δ and whose generic fibre has genus at most 1.
Now suppose that δ is hyperbolic. Then the following are equivalent:

(1) δ is biregular;
(2) there is a finite dimensional Lorentzian subspace W of Z(P2)Q, defined over
Q, that is preserved by δ∗;
(3) there is a finite dimensional Lorentzian subspace W of Z(P2)Q, defined over
Q, such that Ax(δ∗) is contained in WR;
(4) the end-points of Ax(δ∗) on ∂H are defined over Q.
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Now fix V = P2. We denote by σ the standard quadratic involution σ :
(x, y, z) 7→ (yz, xz, xy) and by α a linear involution. We put g = σα and γ = g∗.

Lemma 3.2 (1) Fix(σ∗) and Fix(α∗) are hyperbolic subspaces of H.
(2) Fix(σ∗) and Fix(α∗) meet in H if and only if γ is elliptic if and only if

there is a rational surface X on which both α and σ are biregular automorphisms
and some power of g lies in Aut0X . That is, both α and σ act projectively on X .

(3) Fix(σ∗) and Fix(α∗) are parallel if and only if they meet in a single ideal
boundary point [ξ] in ∂H. In this case [ξ] is defined over Q and is the class of a
fibre in a genus 1 fibration that is preserved by both α and σ.

(4) If Fix(σ∗) and Fix(α∗) are ultraparallel then there is a unique geodesic
Γ perpendicular to both. This geodesic is preserved by both α and σ and is the
axis of γ.

PROOF: This is standard elementary hyperbolic geometry.

Say that P,Q,R are the base points of σ and Y = BlP,Q,R V , with excep-
tional curves eP , eQ, eR. Note that σ is biregular on Y and α is biregular on V .
Let ℓ denote the class of a line in V . Since Z(Y )Z ∼= Z(V )Z, the lattice Z(V )Z
has a Z-basis {ℓ} ∪ {eP , eQ, eR} ∪ E, where E is the set of all exceptional curves
ex as x runs over all points of all blow-ups of Y .

From now on we shall not always be careful to distinguish between α and
α∗, nor between σ and σ∗.

Lemma 3.3 α permutes the set {eP , eQ, eR} ∪ E and σ permutes E.

PROOF: Immediate, from the facts that α is biregular on V and that σ is bireg-
ular on Y .

Lemma 3.4 α preserves ℓ and σ acts on the lattice Z.{ℓ, eP , eQ, eR} as the
reflection sv0 in the root v0 = ℓ− eP − eQ − eR.

PROOF: Calculation.

4 Graphs and lattices

As above, σ and α are fixed. Our aim is to construct a bipartite Coxeter–Dynkin
diagramH that depends upon the choice of α. Then g = σα will act as something
close to a Coxeter element in the corresponding Coxeter group.

We begin by constructing a bipartite graph Γ̃ = Γ̃α ∪ Γ̃σ, as follows.
The vertices of Γ̃σ are v0 and one representative ex−σ(ex) of each non-zero

pair ±(ex − σ(ex)) as x runs over E. The vertices of Γ̃α are one representative
ey − α(ey) of each non-zero pair ±(ey − α(ey)) as y runs over E ∪ {eP , eQ, eR}.
Finally, if v lies in Γ̃α and ±v lies in Γ̃σ, then normalize through the process of
replacing ±v by v.
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We join two vertices in Γ̃ by an edge of multiplicity equal to their intersec-
tion number, if that number is non-zero. If the intersection number is zero, then
the corresponding vertices are left disjoint. So every edge has multiplicity ±1 or
2. Define the valency of a vertex v to be the sum of the absolute values of the
edges meeting v.

Lemma 4.1 If v lies in the intersection Γ̃α ∩ Γ̃σ then v is disjoint from all other
vertices in Γ̃.

Now define Gα = Γ̃α−(Γ̃α∩Γ̃σ) and define Gσ similarly. Put G = Gα

∐
Gσ.

Note that v0 lies in Gσ.

Lemma 4.2 G is a bipartite graph; there are no edges within either of Gα or
Gσ; the vertex v0 is of valency at most 3; every other vertex of G is of valency at
most 2.

PROOF: It is enough to notice that in Γ̃ the vertex v0 has valency at most 3
and that every other vertex has valency at most 2, so that deleting Γ̃α ∩ Γ̃σ
amounts to deleting those vertices that are joined to themselves and to no other
vertex. Equivalently, deleting Γ̃α ∩ Γ̃σ amounts to deleting all double bonds and
the corresponding vertices.

Now define H̃ to be the connected component of G that contains v0.

Lemma 4.3 H̃ is bipartite and is either a tree Tp,q,r consisting of v0 and three
arms of lengths p, q, r ≤ ∞ attached to v0 or the union ∆m,r of a cycle of finite
length m together with an arm of length r ≤ ∞ attached to the cycle at v0.

PROOF: Immediate.

Lemma 4.4 m is even.

PROOF: Suppose that m = 2q + 1 is odd. Then start at v0 and travel around
∆ in the two different directions through a distance q. We arrive at vertices
esw(P ) − ew(P ) and esw(Q) − ew(Q) for some word w in the group W generated by
σ, α such that ℓ(w) = q − 1 and ℓ(wα) = l(w) − 1, s equals either σ or α and
(esw(P )−ew(P )).(esw(Q)−ew(Q)) = ±1. Since w(P ) 6= w(Q) we have w(P ) = sw(Q).
But then esw(P ) − ew(P ) = ±(esw(Q) − ew(Q)), a contradiction.

Write m = 2n. From H̃ , construct a graph H with the same vertices as
H̃ , but where every edge except at most one has multiplicity +1, by starting at
v0 and proceeding either outwards along one arm at a time (in the case of Tp,q,r)
or around the cycle and then along the arm (in the case of ∆2n,r) as follows: at
each step, change an edge of multiplicity −1 into an edge of multiplicity +1 by
replacing a vector v by its negative, −v. If H is of type Tp,q,r then all its edges
have multiplicity +1, and we write H = Tp,q,r; in the other case all edges, except
possibly one edge that meets v0 and lies in the cycle, are of multiplicity +1, and
we write H = ∆±

2n,r accordingly.
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Lemma 4.5 (1) H is either of type Tp,q,r with p, q, r ≤ ∞ or of type ∆−

2n,r. That
is, ∆+

2n,r cannot occur.
(2) If p, q, r are finite and the points P0, ..., Pp−1, Q0, ..., Qq−1, R0, ..., Rr−1

are in general position, then H contains the diagram Tp,q,r.

PROOF: We use the notation of the preceding proof, and in addition let s′ denote
the element of {α, σ} distinct from s. Then there are consecutive nodes in the
cycle that are of the form esw(P ) − ew(P ), es′sw(P ) − esw(P ) and esw(Q) − ew(Q), and
also es′sw(P ) − esw(P ) = es′sw(Q) − esw(Q). However, this is absurd.

The second part is an immediate observation.

Denote by L(H) the lattice on the vertices of H , with pairing determined
by the edges of H and their multiplicities. Put Hα = H ∩Gα and Hσ = H ∩Gσ,
so that v0 ∈ Hσ.

Lemma 4.6 σ acts on L(H) via the product S =
∏

v∈Hσ
sv of the reflections in

the vectors v in Hσ and α acts on L(H) via the product S =
∏

w∈Hα
sw of the

reflections in the vectors w in Hα.

PROOF: Immediate observation. Notice that because all the reflections in each
product commute with each other, the order in which they are taken is immaterial.
The fact that each product contains infinitely many factors is also immaterial,
since there are only finitely many terms in either product that act non-trivially
on any given element of L(H).

Lemma 4.7 L(H) is degenerate only when H is of finite type Tp,q,r with 1/p+
1/q + 1/r = 1.

PROOF: The Tp,q,r case is well known. The degenerate possibilities correspond
to various types of singular Kodaira–Néron fibres.

Suppose that H = ∆2n,r and has diagram

•v2n−1

−1 ●●
●●

●●
●●

●●

•v0 •wr−1
•w0

•v1

✇✇✇✇✇✇✇✇✇

(the vertices v0, . . . , v2n−1 are arranged in a cycle). Suppose also that r ≥ 1 and
that η =

∑2n−1
0 aivi +

∑r−1
0 bjwj is in the radical, so that η.vi = η.wj = 0 for all

i, j. Put wr = v0.
By letting i run from 0 to 2n − 1, we see that ai is a linear function of i;

say ai = λi + a0 for i = 0, ..., 2n − 1. By letting j run from 0 to r, we see that
bj = µj + b0 for j = 0, ..., r.

Since wr = v0, we get a0 = µr + rb+ 0. Also, b1 = 2b0, so that

µ = b0, a0 = µ(r + 1).
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From η.v2n−1 = 0 we get a2n−2 − 2a2n−1 − a0 = 0, so that 2nλ+ a0 = 0.
From η.v0 = 0 we get a1 − a2n−1 − 2a+ 0 + br−1 = 0, so that

0 = −2(n− 1)λ− 2a0 + µr.

Then µ = −2λ(n+1)/2r, so that µ = −2nλ/(r+1). Hence (n+1)(r+1) =
nr, which is absurd.

Finally, the negative definiteness of ∆−

2n,0 follows from a comparison of it
with the affine lattice ∆+

2n,0.

There is an obvious natural homomorphism β : L(H) → Z(V )Z of lattices.

Lemma 4.8 β is injective unless H is of type Tp,q,r with 1/p+ 1/q + 1/r = 1.

PROOF: A lattice homomorphism whose domain is non-degenerate is injective.

Let T
(λ)
p,q,r and ∆

−(λ)
2n,r denote the lattices corresponding to the diagrams Tp,q,r

and ∆−

2n,r, but where each vertex v has v2 = −λ and the other intersection
numbers are unchanged.

Lemma 4.9 T
(2)
p,q,r is hyperbolic if 1/p+1/q+1/r < 1 and ∆

−(2)
2n,r is hyperbolic if

2/m+ 1/r < 1.

PROOF: For T
(2)
p,q,r this is well known. For ∆

−(2)
2n,r , note that deleting v0 leaves a

negative definite lattice, while deleting the vertex opposite v0 in the cycle leaves
a Tn,n,r diagram.

Say that a lattice L is affine if L is degenerate, its radical R(L) is of rank
1 and L/R(L) is negative definite.

When 1/p + 1/q + 1/r ≤ 1, define µ(p, q, r) to be the minimum value of λ

such that T
(µ)
p,q,r is affine. So, for example, µ(2, 3, 6) = µ(2, 4, 4) = µ(3, 3, 3) = 2.

Lemma 4.10 µ(p, q, r) is a strictly increasing function of each of p, q, r.

PROOF: Say s = µ(p, q, r−1), so that T
(s)
p,q,r−1 is affine. Then there is a non-zero

vector
∑
nivi in the radical of T

(s)
p,q,r−1, and it is easy to see that we can take every

ni to be positive.
Say that w is the vertex adjoined in passing from Tp,q,r−1 to Tp,q,r. Then

(∑
nivi + ǫw

)2

= 2n2ǫ− ǫ2s > 0

for 0 < ǫ≪ 1, so that T
(s)
p,q,r is Lorentzian.

Write µ(p, p, p) = µp.

Lemma 4.11 lim supµ(p, q, r) = limp,q,r→∞ µ(p, q, r) = 3/
√
2 and µp → (3/

√
2)−

faster than 3/
√
2− 2yp0 for any y0 ∈ (1/2, 1).

PROOF: Say that f1, f2, ...; g1, g2, ...; h1, h2, ... are the vertices of Tp−1,q−1,r−1,
reading outwards along the arms from the central vertex v0. We can suppose
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that p = q = r and then, by symmetry, that

ξ = bp(0)v0 +

∞∑

i=1

bp(i)(fi + gi + hi)

is in the radical of T
(µp)
p−1,q−1,r−1.

Set bp(0) = 3 and bp(p) = 0. Then

0 = ξ.v0 = −3µp + 3bp(1), 0 = ξ.fn = bp(n− 1) + bp(n + 1)− µp.bp(n) ∀ n ≥ 1.

Therefore
bp(n) = −Cpeαpn +Dpe

−αpn

for constants Cp, Dp, αp, with αp > 0, and µp = eαp + e−αp . Since µp > 2, bp
is a decreasing function of n; moreover, bp(n) ≥ 0 for n ≤ p. So as p → ∞,
we get bp(n) → 3e−cn for some c, and µp → ec + e−c. Since bp(1) = µp, we get
µp → (3/

√
2)−.

For the speed of convergence, note that the boundary conditions give

mp
p =

2mp − 1

2−mp

where mp = e2αp > 1. The same equation is satisfied by m−1
p .

Lemma 4.12 mp → 2−, and does so faster than 2 − 4yp0 for any y0 ∈ (1/2, 1).
Similarly m−1

p → (1/2)+ and does so faster than 1/2 + yp0 for any y0 ∈ (1/2, 1).

PROOF: Write p = x and m−1
p = y = y(x). So yx = (2y − 1)/(2 − y). Then

yx = y + y2−1
2−y

, so that

1/2 < y = yx +
1− y2

2− y
< yx + 1/2,

since 1/2 < y < 1. That is, 1/2 < m−1
p < (m−1

p )p + 1/2. We know that µp is an
increasing function of p; since µ2

p = mp+m−1
p +2 and mp > 1, it follows that mp

is also an increasing function of p and that m−1
p is a decreasing function of p. So

1/2 < m−1
p < (m−1

p0
)p + 1/2

for any fixed p0 ≤ p. It follows that

2 > mp > 2− 4(m−1
p )p > 2− 4(m−1

p0 )
p

for all p ≥ p0.

Taking square roots shows that e−αp → (1/
√
2)+ faster than y

p/2
0 + 1/

√
2

for any y0 ∈ (1/2, 1). Write z = 1/y = ν−1
p ; then

√
2 > z >

√
2− 2yp/2

and the result follows from µp = y + z.



EFFECTIVITY QUESTIONS IN THE CREMONA GROUP 11

Corollary 4.13 If 1/p+ 1/q + 1/r ≤ 1, then 2 ≤ µ(p, q, r) ≤ 3/
√
2 ≈ 2.1213.

Calculation reveals that µ(4, 4, 4) ≈ 2.0743, µ(5, 5, 5) =
√

3 +
√
2 ≈ 2.101,

µ(6, 6, 6) ≈ 2.112. Of course, µ(3, 3, 3) = µ(2, 4, 4) = µ(2, 3, 6) = 2.

5 Estimating the length of a special quadratic

transformation

Suppose that H = Tp,q,r. (The case of ∆−

2n,r will be treated later; it turns out
to be very similar.) The adjacency matrix M of H is, according to the bipartite
decomposition H = Hσ

∐
Hα, of the form

M =

[
0 tC
C 0

]
,

where each row and column of C contains at most three non-zero entries, and
each non-zero entry is ±1. Put µ = µ(p, q, r), so that 2 ≤ µ ≤ 3/

√
2, and

B = −µ+M is the Gram matrix of the lattice L(H(µ)). This lattice is affine, so
that an eigenvector of B corresponding to the eigenvalue 0, again of B, generates
the radical R(L(H(µ)). So the other eigenvalues of the symmetric matrix B are
real and strictly negative. In particular, µ is the maximum eigenvalue of M , and
is of multiplicity 1.

Suppose that v =

[
u
z

]
is an non-zero eigenvalue of M that belongs to µ.

Then tCz = µu and Cu = µz.
Recall that g = σα and notice that, from the bipartite description of H , α

acts as the matrix A =

[
1 0
C −1

]
, while σ acts as the matrix S =

[
−1 tC
0 1

]
.

Then

S

[
u
0

]
=

[
−u
0

]
, S

[
0
z

]
=

[
µu
z

]
,

A

[
u
0

]
=

[
u
µz

]
, A

[
0
z

]
=

[
0
−z

]
.

So S,A preserve the real 2-plane Π based by

([
u
0

]
,

[
0
z

])
and act on Π with

respect to this basis as the matrices

[
−1 µ
0 1

]
and

[
1 0
µ −1

]
, respectively. The

matrix of γ = g∗ is then SA =

[
µ2 − 1 −µ
µ −1

]
= δ2, where δ =

[
µ −1
1 0

]
. Since

Tr δ = µ > 2, it follows that δ, and so γ, is hyperbolic.
Now suppose that m is the greater of the two eigenvalues of γ (both are

real). Then µ2 = m+m−1 + 2, so that

logm = 2 cosh−1(µ/2).
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Moreover, m is, by construction, the maximum eigenvalue of a Coxeter element
of the Coxeter group W (Tp,q,r) and so [M2] is a Salem number.

Corollary 5.1 (1) If p, q, r are finite and 1/p + 1/q + 1/r < 1, then g is a
hyperbolic element of Cr2(k) and

0 < L(g) = logm < 2 cosh−1(3/2
√
2) = log 2.

(2) If p = q = r ≥ 3 then L(g) ≥ logmp, where 1 < mp ≤ 2 and

mp
p =

2mp − 1

2−mp
.

In particular, L(g) → (log 2)− as p→ ∞ and the convergence is fast, in the sense
that expL(g) → 2− faster than 2− 4yp0 for any y0 ∈ (1/2, 1).

PROOF: Note that δ preserves the Lorentzian quadratic form Q on Π defined by

the matrix Q =

[
1 −µ/2

−µ/2 1

]
. The vector x =

[
1
0

]
satisfies (x.x) = 1 and

(x.δ(x)) = µ/2, so that d(x, δ(x)) = cosh−1(µ/2). That is, L(δ) = cosh−1(µ/2),
so that, by Lemma 3.1, γ is hyperbolic and L(γ) = 2 cosh−1(µ/2) = logm.

For the second part, note that, in the notation of Lemma 4.12 and the
formula immediately preceding it, L(g) = logmp = 2αp, since µ

2
p = mp+m

−1
p +2.

That lemma states that mp converges fast to 2 from below, and we are done.

Proposition 5.2 If any or all of p, q, r are infinite, then again g is hyperbolic
and L(g) = log 2 ≈ 0.6931.

PROOF: Even if p, q, r are infinite, the adjacency matrix M still represents a
bounded linear operator, since its rows and columns have at most 3 non-zero
entries, all ±1, and its spectrum is 3/

√
2.

Of course, this is not an effective result, because we have no effective means
of deciding whether any of p, q, r is infinite.

Now suppose that H = ∆−

2n,r, and assume that 2/n+ 1/r < 1.

Proposition 5.3 g is hyperbolic and limn,r→∞ L(g) = log 2. If n, r ≥ 5, then

0.6329 ≈ 2 cosh−1(

√
3 +

√
2/2) ≤ L(g).

PROOF: Deleting the vertex opposite v0 in the cycle leaves a diagram of type
Tn,n,r. Now the previous arguments apply.

Finally we give the proof of Theorem 1.1. Recall the statement:

Theorem 5.4 (= Theorem 1.1)
(1) Suppose that the twelve points P0, P1, P2, P3, Q0, ..., R3 are in general

position. Then g is hyperbolic and

0.5435 ≈ logm ≤ L(g) ≤ log 2 ≈ 0.6932,
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where m = m4 is the maximal real zero of the quartic polynomial m4 − m3 −
m2 −m+ 1.

(2) For 1 ≫ ǫ > 0 define p0 = p0(ǫ) = log(3/ǫ) log(2 − ǫ). Then, if the 3p
points P0, ..., Pp−1, ..., Rp−1 are in general position, the Cremona transformation
g = σα is hyperbolic and

log 2− ǫ0 < L(g) ≤ log 2.

PROOF: For any p, consider the diagram Tp,p,p. Its bipartite nature means that
we can find a Coxeter element γ = γp of W (Tp,p,p) that is exhibited as a product
γ = SA of two involutions, each represented as a 2× 2 matrix that is computed
from the adjacency matrix of the diagram, exactly as above. Then compute µp
as above, so that

µ2
p = mp +m−1

p + 2.

We define p(ǫ0) to be the least value of p such that

log 2− ǫ0 < logmp.

Now Theorem 1.1 follows from Corollary 5.1.

6 Constructing Cremona transformations with

prescribed properties

Here we prove Theorems 1.4 and 1.2.
Fix (finite) integers p, q, r. Then we can force H to be equal to the finite

tree Tp,q,r by putting stringent conditions on the linear involution α, as follows.
Assume that P0, ..., Pp−1, ..., Rr−1 are in general position and that Pp = Pp−1, Qq =
Qq−1, Rr = Rr−1. Note that, since σ has only finitely many fixed points while α
has a line of fixed points, these are two conditions on α for each of p, q, r that is
odd, and one condition on α for each that is even. As before, ℓ is the class of a
line in P2.

Lemma 6.1 H is a finite diagram of type Tp,q,r and its vertices are v0 = ℓ −
eP0

− eQ0
− eR0

; eP0
− eP1

, ..., ePp−2
− ePp−1

; eQ0
− eQ1

, ..., eQq−2
− eQq−1

; eR0
−

eR1
, ..., eRr−2

− eRr−1
.

PROOF: Immediate.

Lemma 6.2 Both α and σ are biregular on the blow-up Y of P2 at the p+ q+ r
points P0, ..., Rr−1.

PROOF: Also immediate.

Of course, g is then also biregular on Y .
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Lemma 6.3 The orthogonal complement L(H)⊥ of L(H) in NS(Y ) has a Z-basis
(xP , xQ, xR) given by xP = ℓ−

∑
ePi

, etc. Each of α, σ acts trivially on L(H)⊥.

Theorem 6.4 (= 1.4) g acts on NS(Y ) as a Coxeter element in the Weyl group

of the lattice T
(2)
p,q,r. In particular, if (p, q, r) = (2, 3, 5) then g has order 30.

PROOF: This follows from the discussion in the previous sections.

Remark: Moreover, if (p, q, r) = (2, 3, 7) then g is hyperbolic and its length L(g)
equals log λLehmer where λLehmer, the Lehmer number, is the smallest known Salem
number. Moreover, this value of L(g) is minimal over all hyperbolic elements of
Cr2(k) [BC].

7 Rigidity and tightness over finite fields

We refer to [CL] for the crucial notions of rigidity and tightness for elements of
Cr2(k). Instead of repeating the definitions here we explain what needs to be
proved.

Now suppose that the ground field k is finite.

Proposition 7.1 For every point z ∈ H and every r > 0, the set of f ∈ Cr2(k)
such that d(z, f(z)) < r is finite. In particular, Cr2(k) acts properly discontinu-
ously on H.

PROOF: Fix z, r and suppose that d(z, f(z)) < r. Then

d(ℓ, f(ℓ)) ≤ d(ℓ, z) + d(z, f(z)) + d(f(z), f(ℓ)),

so that d(ℓ, f(ℓ)) < 2d(ℓ, z) + r. Since cosh d(ℓ, f(ℓ)) = (ℓ.f(ℓ)) = deg(f), it
follows that deg(f) is bounded. Because k is finite, we are done.

Now fix a hyperbolic element g of Cr2(k). We know that such g exist; for
example, the special quadratic transformations.

Theorem 7.2 The axis Ax(g) is rigid.

PROOF: Suppose that Ax(g) is not rigid. Then, by Proposition 3.3 of [CL], for
all bounded segments Σ of Ax(g) and all ǫ > 0 there exists h ∈ Cr2(k) such that
d(y, h(y)) ≤ ǫ for all y ∈ Σ and h does not preserve Ax(g).

Take t to be the point on Ax(g) that is closest to the class ℓ; say that
d(ℓ, t) = a. Take any segment Σ containing t, and let ǫ > 0. Take h ∈ Cr2(k) as
given above. Then, by the triangle inequality,

d(ℓ, h(ℓ)) ≤ d(ℓ, t) + d(t, h(t)) + d(h(t), h(ℓ)),

so that d(ℓ, h(ℓ)) < 2a+ ǫ. Then

(ℓ.h(ℓ)) = cosh d(ℓ, h(ℓ)) < cosh(2a+ ǫ).
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Since (ℓ.h(ℓ)) is just deg(h), it follows that deg(h) is bounded. Since k is finite,
the set of all such h is finite, so that (pigeon-hole principle) there exists h ∈ Cr2(k)
that works for arbitrarily long Σ and arbitrarily small ǫ. Then h(s) = s for all
s ∈ Ax(g); however, this contradicts the fact that h does not preserve Ax(g).

Let Fix(Ax(g)) denote the set of elements f of Cr2(k) that fix every point
on Ax(g).

Lemma 7.3 Fix(Ax(g)) is finite.

PROOF: The preceding argument with the triangle inequality shows that (ℓ.f(ℓ))
is bounded independently of f ∈ Fix(Ax(g)), and now finiteness follows again.

Let M denote the size of Fix(Ax(g)) and N =M !.

Theorem 7.4 gN is tight.

PROOF: We know that Ax(g) is rigid. Suppose that h ∈ Cr2(k) preserves Ax(g);
we must show that hgNh−1 = g±N .

Assume first that h preserves the orientation of Ax(g). Then hgrh−1g−r lies
in Fix(Ax(g)) for every r, so that there are distinct integers r, s between 1 andM
such that hgrh−1g−r = hgsh−1g−s. Then hgr−sh−1 = gr−s, so that hgNh−1 = gN .

If h reverses the orientation of Ax(g) then hgrh−1gr ∈ Fix(Ax(g)) for every
r, and the same argument shows that hgNh−1 = g−N .

Theorem 7.5 (= Theorem 1.3) If k is a finite field and g is a hyperbolic ele-
ment of Cr2(k) then g does not lie in the normal closure 〈〈gN〉〉 whenever N is
sufficiently divisible. In particular, 〈〈gN〉〉 is a non-trivial normal subgroup of
Cr2(k).

PROOF: This follows from tightness, exactly as in Theorems C and 2.10 of [CL].
(Note the typo in Theorem 2.10 of loc. cit.: the phrase “either h is a conjugate
of g, or...” should read “either h is a conjugate of g±1, or...”.)

In particular, every hyperbolic element of Cr2(k) lies outside some non-
trivial normal subgroup of Cr2(k), and we have exhibited hyperbolic special
quadratic transformations over sufficiently large finite fields.

8 Rigidity, tightness and non-normal subgroups

over an arbitrary field

Recall that ℓ is the class of a line in P2
k.

We begin by recalling some elementary hyperbolic geometry. A skew right

trapezium is a quadrilateral xyzt in hyperbolic space with a base [z, t] of length
b, a summit [x, y] of length s and sides [y, z], [x, t], of respective lengths a and
a′, both of which are orthogonal to the base (at the points z, t). When a = a′

this is a skew Saccheri quadrilateral.
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Lemma 8.1 (1) In a skew right trapezium we have

cosh a cosh a′(cosh b− 1) ≤ cosh s− cosh(a− a′) ≤ cosh s− 1

(so, in particular, b ≤ s).
(2) Equality holds if and only if the trapezium is planar and a = a′.
(3) In a skew Saccheri quadrilateral we have

cosh s+ 1

cosh b+ 1
≤ cosh2 a ≤ cosh s− 1

cosh b− 1
.

PROOF: Draw the diagonal d = [x, z]. Denote the angles ∠xzy and ∠xzt by
θ, φ, respectively. Note that θ+φ ≥ π/2, by the triangle inequality on the sphere
S2 of curvature +1, and φ ≤ π/2 and θ ≤ π. So −π/2 ≤ π − θ ≤ φ ≤ π/2 and
therefore sin(π/2−θ) ≤ sin φ. The trigonometry of the hyperbolic triangle △xyz
gives

sinh a sinh d cos θ = cosh a cosh d− cosh s.

The trigonometry of △xtz gives sin φ = sinh a′/ sinh d, so that sinh d cos θ ≤
sinh a′. The same triangle also gives cosh d = cosh a′ cosh b. So

cosh a cosh d− cosh s = sinh a sinh d cos θ ≤ sinh a sinh a′

and then substituting cosh d = cosh a′ cosh b and using the identity sinh a sinh a′−
cosh a cosh a′ = − cosh(a− a′) gives

cosh a cosh a′(cosh b− 1) ≤ cosh s− cosh(a− a′).

Since cosh(a − a′) ≥ 1 we have the inequality of the lemma. If equality holds,
then cosh(a − a′) = 1 and cos θ = sinφ, and we are done, except for the first
inequality of the last part.

For this, let w be the midpoint of the base [z, t] and draw the segments
[y, w], [x, w]. By symmetry, they have the same length, say f . By the triangle
inequality s ≤ 2f , so that cosh s ≤ cosh 2f and cosh s + 1 ≤ 2 cosh2 f . The
trigonometry of △yzw shows that cosh f = cosh a cosh b/2, so that

cosh s+ 1 ≤ 2 cosh2 a

(
cosh b+ 1

2

)
= cosh2 a(cosh b+ 1).

We fix a hyperbolic element g of Cr2(k) of degreeD. Say that its translation
length L(g) = L, that t is the point on Ax(g) closest to ℓ and that a = d(ℓ, t) =
d(ℓ,Ax(g)). We know that L ≤ logD; write L = logD − η1. Assume that for
some given n ≥ 1 we know that deg(gn) = Dn.

Now consider the skew Saccheri quadrilateral with vertices x = ℓ, y = gn(ℓ),
t the point just described and z = gn(t). Say b = nL and s = cosh−1(ℓ.gn(ℓ)),
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so that the notation matches that of Lemma 8.1 above. Put ψ = exp(η).Then
Lemma 8.1 gives

2
ψn(1 +D−n)

(1 + ψnD−n)2
≤ cosh2 a ≤ 2

ψn(1−D−n)

(1− ψnD−n)2
,

which we abbreviate to

2A ≤ cosh2 a ≤ 2B.

Since cosh 2a = 2 cosh2 a− 1, this can also be written as

4A− 1 ≤ cosh 2a ≤ 4B − 1.

Now suppose that g = σα as before, so that D = 2, and that g is in
n-general position for some n ≥ 4. Then g is hyperbolic, deg(gn) = 2n and

log 2 ≥ L = L(g) ≥ logmn = 2 cosh−1(µn/2),

with mn and µn as before.

Define functions A,B, Y, Z of two variables by

A(n, ψ) =
ψn(1 + 2−n)

(1 + ψn2−n)2
,

B(n, ψ) =
ψn(1− 2−n)

(1− ψn2−n)2
,

Y (n, ψ) = 4
(
A(n, ψ)(2ψ−2 + ψ2/8)− 1

)
,

Z(n, ψ) = 4
(
B(n, ψ)(2ψ−2 + ψ2/8)− 1

)
.

Lemma 8.2 (1) If n ≥ 4 then A,B, Y, Z are increasing functions of ψ for ψ ∈
[1, 2).

(2) For 1 ≤ ψ ≪ 2, B and Z are decreasing functions of n.

PROOF: Calculate logarithmic partial derivatives.

So, since ψ ≤ ψn, where as before ψn satisfies ψnn = 21+n (ψn−1)
(4−ψn)

, we have

2.
1

1 + 2−n
≤ cosh2 a ≤ 2B(n, ψn).

Also, Y ≥ 4
(

1
1+2−n .2

1
8
− 1

)
, so that Y ≥ 4.2 for n ≥ 5. Moreover, calculation

reveals that for n = 8 we have Z(n, ψn) ≈ 4.869, so that Z < 4.9 for all n ≥ 8.
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Proposition 8.3 If n = 8 then Ax(g) is rigid.

PROOF: The basic structure of the argument is taken from the proof of Prop.
5.7 of [CL].

Suppose that Ax(g) is not rigid; then (Proposition 3.3 of [CL]) for all ǫ > 0
(however small) and for all Θ > 0 (however large) there exists h ∈ Cr2(k) such
that the ǫ-neighbourhood of Ax(g) and the ǫ-neighbourhood of h(Ax(g)) intersect
in something of diameter at least Θ, while at the same time h(Ax(g)) is distinct
from Ax(g). In particular, for all ǫ > 0 there exists h ∈ Cr2(k) such that
d(h(x), x) < ǫ for x = t, g±(t). However, we make no use of the assumption that
h(Ax(g)) 6= Ax(g).

First, calculation reveals that for n = 8 we have ψ8 ≈ 1.00614, B ≈ 1.05477,
Z ≈ 4.86889

Lemma 8.4 deg(h) ≤ 3.

PROOF: By the triangle inequality

d(h(ℓ), ℓ) ≤ d(h(ℓ), h(t)) + d(h(t), t) + d(t, ℓ) < 2d(ℓ, t) + ǫ = 2a+ ǫ.

Define ǫ′ by cosh(2a+ ǫ) = cosh 2a+ ǫ′, so that

(h(ℓ).ℓ) < cosh 2a+ ǫ′ = 2 cosh2 a− 1 + ǫ′.

Since
cosh2 a ≤ 2B = 2ψ8

8(1− 2−8)/(1− ψ8
82

−8) ≈ 2.1095

it follows that (h(ℓ).ℓ) <≤ 3.2189 + ǫ′ < 4.

Similarly deg(ghg−1) ≤ 3 and deg(g−1hg) ≤ 3.
Assume that deg(h) = 3. We shall derive a contradiction to this when ǫ

is sufficiently small.
Extend the geodesic segment [ℓ, t] to a point s so that t is the midpoint of

the segment [ℓ, s]. Say that δ = d(h(ℓ), s).

Lemma 8.5 cosh δ ≤ 2 cosh a cosh(a+ ǫ)− 3.

PROOF: By the triangle inequality, if we write d(t, h(ℓ)) = a + ǫ′′, then ǫ′′ ≤ ǫ.
Say that α is the angle of the triangle formed by t, ℓ, h(ℓ) at the vertex ℓ; then

cosh(a+ ǫ′′) = 3 cosh a−
√
8 sinh a cosα

and
cosh δ = 3 cosh 2a−

√
8 sinh 2a cosα.

This reduces to

cosh δ = 2 cosh a cosh(a + ǫ′′)− 3 ≤ 2 cosh a cosh(a + ǫ)− 3.
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Consider the configuration of points

ℓ, t, s, h(ℓ), g2(ℓ), g2(t).

Let y denote the length of the segment [t, g2(ℓ)] and ν the angle of the trian-
gle △(g2(ℓ), ℓ, t) at the vertex ℓ; note that ν is also the angle of the triangle
△(g2(ℓ), ℓ, s) at the vertex ℓ. The trigonometry of the triangles △(g2(ℓ), g2(t), t)
and △(g2(ℓ), ℓ, t) gives

cosh y = cosh a cosh(2(log 2− η))

and
cosh y = 4 cosh a− sinh a sinh(cosh−1(4)) cos ν,

respectively, so that

cos ν = cosh a(4− cosh(2(log 2− η))/ sinh a
√
24 − 1.

The trigonometry of △(g2(ℓ), ℓ, s) then yields

(s.g2(ℓ)) = 2 cosh2 a cosh(2(log 2− η))− 4.

We shall derive a contradiction by showing that (s.g2(ℓ)) is far from any
integer, so that when ǫ is sufficiently small (h(ℓ).g2(ℓ)) is not an integer, which
is certainly absurd.

We have

4A2 cosh(log 4− 2η)− 4 < (s.g2(ℓ)) < 4B2 cosh(log 4− 2η)− 4.

That is, Y < (s.g2(ℓ)) < Z, so that, for n = 8,

4.2 < Y < (s.g2(ℓ)) < Z < 4.9.

At the same time (h(ℓ).g2(ℓ)) is an integer and is close, in terms of ǫ, to (s.g2(ℓ)).
This is impossible and so deg(h) ≤ 2. The same argument shows that deg(ghg−1)
and deg(g−1hg) are both at most 2.

Now assume that deg(h) = 2. We shall derive a contradiction in this
situation too.

As before, there is a point s such that d(s, t) = a and s is arbitrarily close,
in terms of ǫ, to h(ℓ). Take w to be the midpoint of the segment [t, gm(t)] for
m = ±1 or ±2. Then the right-angled triangles △(t, s, w) and △(t, gm(t), gm(ℓ)))
are congruent; let z denote the common length of their hypotenuses. Then

(s.gm(ℓ)) ≤ cosh 2z = 2 cosh2 a cosh2

(
1

2
|m|(log 2− η)

)
− 1

which leads to (s.gm(ℓ)) ≤ B(2m+2−m+2)−1, so that (s.g±1(ℓ)) ≤ 41
2
B−1 < 4

and (s.g±2(ℓ)) ≤ 61
4
B − 1 < 6. Hence h(ℓ).g±1(ℓ)) ≤ 3 and h(ℓ).g±2(ℓ)) ≤ 5.
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We can write h(ℓ) = 2ℓ − E1 − E2 − E3. We also know that g(ℓ) =
2ℓ− F1 − F2 − F3 and g−1(ℓ) = 2ℓ− F ′

1 − F ′
2 − F ′

3, so that

g2(ℓ) = 4ℓ− 2
∑

Fi −
∑

g(Fi).

Moreover, by our general position assumption on g, the classes F1, ..., g(F3) are
distinct exceptional curves. Since (h(ℓ).g(ℓ)) ≤ 3 it follows that {E1, E2, E3} ∩
{F1, F2, F3} has at least one element. Similarly the inequality (h(ℓ).g2(ℓ)) ≤ 5
shows that {E1, E2, E3} ∩ S has at least two elements, where

S = {F1, F2, F3, g(F1), g(F2), g(F3)}.

Again similarly, (h(ℓ).g−2(ℓ)) ≤ 5 shows that {E1, E2, E3} ∩ S ′ has at least two
elements, where

S ′ = {F ′

1, F
′

2, F
′

3, g
−1(F ′

1), g
−1(F ′

2), g
−1(F ′

3)}.

It follows that S∩S ′ is non-empty, which contradicts what we have assumed
about g. So deg h = 2 is impossible, so that deg h = 1. Similarly deg(ghg−1) =
deg(g−1hg) = 1. Now the argument of [CL], p. 48, applies to show that h = 1.
(They denote by P what is denoted here by t.) This completes the proof of
Proposition 8.3.

Proposition 8.6 If n = 8 then g is tight.

PROOF: We must show that if f ∈ Cr2(k) preserves Ax(g), then fgf
−1 = g±.

Suppose first that f preserves the orientation of Ax(g). Then put h =
fgf−1g−1, so that h fixes every point on Ax(g). The proof of rigidity given above
shows that then h = 1, as required.

If f reverses the the orientation of Ax(g) take h = fgf−1g instead and then
use the same argument.

Corollary 8.7 Suppose that g = σα is in 8-general position. Then for some
integer m the normal subgroup 〈〈grm〉〉 of Cr2(k) generated by gm is a non-trivial
normal subgroup of Cr2(k).

PROOF: This is an immediate application of Theorem C of [CL] to our situation.

9 A lower bound for parabolic elements

In [BC] Blanc and Cantat prove the lower bound L(g) ≥ log λLehmer for hyperbolic
elements g of Cr2(k), for any field k. Here λLehmer = λ is Lehmer’s number, the
smallest known Salem number. In particular, d(x, g(x)) ≥ log λ for hyperbolic g
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and any x ∈ H(P2). In this section we prove a result for parabolic elements that
can be regarded as an analogue of this.

Recall that if v0 is a primitive isotropic vector in the lattice L and z is a
positive real number, then there is a horosphere in H(P2) defined by (x.v0) = z
and a horoball B(v0, z) defined by (x.v0) < z. These horospheres and horoballs
are preserved by those isometries that preserve v0.

Theorem 9.1 Suppose that f is a parabolic element of Cr2(k), that x ∈ H(P2)
and that d(x, f(x)) < log λ. Then there is a unique primitive isotropic vector
v0 ∈ Λ such that x lies in the horoball B(v0, λ

1/2 − λ−1/2). Moreover, v0 is
preserved by f .

PROOF: The existence of v0 is, by now, a well known result about Cremona
transformations: a parabolic Cremona transformation is biregular and preserves
a fibration by curves of genus at most 1. Take v0 to be the class of a fibre in such
a fibration. So there is a primitive isotropic element v0 of the infinite Lorentzian
lattice L such that f preserves v0. With respect to the filtration

0 ⊂ Zv0 ⊂ v⊥0 ⊂ Λ

we can write f as a matrix

f =




1 −tζQ′f̃ −1

2
||ζ ||2

0 f̃ ζ
0 0 1





where f̃ is in the orthogonal group O(v⊥0 /Zv0), Q
′ is a Gram matrix of the

intersection pairing on v⊥0 /Zv0 and ζ ∈ v⊥0 /Zv0.

Suppose that x =



a
y
z


 lies in H(P2). Here a, z ∈ R and y ∈ (v⊥0 /Zv0)R,

so that 2az + ||y||2 = 1 and a, z > 0. Then

cosh d(f(x), x) = (f(x).x) = 2az − (zζ.f̃y)− 1

2
(zζ.zζ) + (y.f̃y) + (y.zζ).

Since 1 = (x.x) = 2az + (y.y) and (y.y) = (f̃y.f̃y), this gives

(f(x).x) = 1− 1

2

∣∣∣
∣∣∣zζ − y + f̃y

∣∣∣
∣∣∣
2

.

Since f is parabolic, the affine transformation

faff : (v⊥0 /Zv0)R → (v⊥0 /Zv0)R : q 7→ f̃(q) + ζ

has no fixed points. Moreover, faff preserves the lattice v⊥0 /Zv0, and so shifts
everything in (v⊥0 /Zv0)R through a distance of at least 1. Hence

∣∣∣
∣∣∣f̃

(y
z

)
+ ζ −

(y
z

)∣∣∣
∣∣∣
2

≤ −1,
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which gives (f(x).x) ≥ 1 + z2/2. Since d(x, f(x)) < log λ, it follows that z <
λ1/2 − λ−1/2, as required.

For the uniqueness, suppose that x also lies in the horoball B(w0, λ
1/2 −

λ−1/2). Then (x.x) = 1 and ((v0 + w0).(v0 + w0)) ≥ 2, while (x.(v0 + w0)) <
2(λ1/2 − λ−1/2). However, this is impossible.

Recall [CL, Prop. 3.3] that if g ∈ G = Cr2(k) is hyperbolic and its axis
Γ = Ax(g) is not rigid, then for every bounded segment Σ of Γ and every ǫ > 0,
there exists f ∈ G such that d(x, f(x)) < ǫ for all x ∈ Σ.

Corollary 9.2 If g is a hyperbolic element of Cr2(k), Σ is a bounded segment
of Ax(g) and f ∈ G such that d(x, f(x)) < log λ for all x ∈ Σ, then f is elliptic.

PROOF: The horoballs of the preceding theorem are disjoint.

I am grateful to Anthony Manning, Geoff Robinson, Caroline Series and
Colin Sparrow for several valuable conversations and emails.
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