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ON THE MAXIMAL CONNECTED ALGEBRAIC SUBGROUPS

OF THE CREMONA GROUP I

HIROSHI UMEMURA

This paper is a continuation of the two preceding papers [12], [13]
where the classification of the de Jonquieres type subgroups in the Cremona
group of 3 variables is promised. However the classification of such sub-
groups is postponed until the article in preparation 'On the maximal con-
nected algebraic subgroups of the Cremona group Π". The purpose of this
paper is to establish a general method to study algebraic subgroups in
the Cremona group of n variables and to illustrate how it works and leads
to the classification of Enriques (Theorem (2.25)) when applied to the 2
variable case. This method gives us also the classification of the maximal
connected algebraic subgroups of the Cremona group of 3 variables. The
reason why we dare to write a new proof of the notorious Enriques The-
orem is as follows. The case of 3 variables is rather complicated and we
are sometimes obliged to indicate only the results and the way how to
prove them without going into the detailed calculations if they are done
quite similarly as in the 2 variable case. Hence we consider the best
way to understand our classification in the 3 variable case is to read a
complete proof in the 2 variable case beforehand. This is a raison d'etre
of a new proof of the Enriques Theorem and hence of this paper. Our
method will be applied for the 4 variable case too.

As in the preceding papers, we work over an algebraically closed field
of characteristic 0. All algebraic groups are connected and when we
speak of a law chunk of algebraic operation (G, -X"), X is irreducible.
1 denotes either the unit element of a group or the group consisting only
of the unit element.
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214 HIROSHI UMEMURA

§ 1. Some results in the study of algebraic subgroups of the
Cremona group

Let X be an algebraic variety defined over an algebraically closed field
k of characteristic 0. We study the group of the birational automorphisms
of X We are particularly interested in connected algebraic subgroups of
the group of the birational automorphisms of X When we speak of the
group of the birational automorphisms of -X" and of a morphism of an
algebraic group onto that group, we do not consider the group of the bi-
rational automorphisms merely as an abstract group. There is an algebraic
structure which makes the group of the birational automorphisms some-
thing like an algebraic group. This structure is most naturally expressed
if we make a functorial interpretation.

We denote by Autbirat X a group functor on the category of ^-schemes;
for a ^-scheme Z, Autbirat X(Z) = Z-pseudo automorphisms of Z X X (cf.
Demazure [3]). Roughly speaking, Autbirat X{Z) — Z-birational auto-
morphisms of Z X X The group of k-valued points Autbirat X(k) is noth-
ing but the 'group of the ^-birational automorphisms of X In general,
this functor is far from being representable.

The following theorem clarifies the notion of an algebraic morphism
of an algebraic group to Autbirat X.

THEOREM (1.1). Let G be an algebraic group and X an algebraic variety.

Then there is a 1-1 correspondence between the following:

(1) Morphisms of group functors G -> Autbirat X

(2) Algebraic pseudo-operations (G, X).

(3) Algebraic operations (G, X') + birational isomorphism f: Xf > X

modulo equivalence relation ~(*>.

The correspondence (1) <-> (2) is Proposition 4, p. 515, Demazure [4],

(2) -> (3) is a well known theorem of Weil (Theorem, p. 375, Weil [15]).

(3) -> (2) is evident (cf. Umemura [12]).

(*> (G, Xί) + U is equivalent to (G, X'2) + fί if and only if the diagram

GxXί >Xί
ίldx/i !/i

G X X X is commutative.

ίldx/, \h

GxXί—>XZ
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DEFINITION (1.2). An algebraic subgroup G of Autbirat X is a sub-

group functor of Autbirat X representable by an algebraic variety.

The following result is also found in Demazure [3] (Proposition 3, p.

513).

PROPOSITION (1.3). Let X be a variety, G an algebraic group and φ

a morphism of G to Autbirat X. Then the Ker φ is represented by a closed

subgroup of G.

We need not only algebraic subgroups but also morphisms G ->

Autbirat X with finite kernels.

DEFINITION (1.4). Let (G, X) be an algebraic pseudo-operation. We

say (G, X) is effective (resp. almost effective) if the kernel of the induced

morphism G —> Autbirat X is 1 (resp. a finite group scheme). It follows

from Theorem (1.1).

PROPOSITION (1.5). There is a 1:1 correspondence between the following

two sets:

{connected algebraic subgroups in Autbirat X) / conjugacy < * > {effective

algebraic operations (G, X')\G is a connected algebraic group, Xr is bίra-

tionally ίsomorphic to X) / isomorphism of law chunks of algebraic operation.

See Umemura [13].

Let G be a connected algebraic subgroup of Autbirat X Let C be

the set of all the algebraic subgroups of Autbirat X conjugate to G. C

will be simply called a conjugacy class of connected algebraic subgroups

in Autbirat X There corresponds to C, by Proposition (1.5), an equivalence

class of algebraic operations. Any algebraic operation (G, X) of this

equivalence class is called an effective realization (or simply a realization)

of the conjugacy class C. An operation (G', X) such that there exists a

morphism of algebraic operation (φ, Id): (G', X) -> (G, X) with Ker ψ finite

is said to be an almost effective realization of the conjugacy class C

LEMMA (1.6). Let X be an algebraic variety and G an {connected) al-

gebraic group contained in Autbirat X The following are equivalent:

(1) There exists a realization (G, X') of the conjugacy class of G in

Autbirat X such that G has a non-empty open orbit on X'.

(2) For any realization (G, X') of the conjugacy class of G in

Autbirat X, G has a non-empty open orbit on X'.
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Proof, Since (2) => (1) is trivial, we prove (1) φ (2). Let (G, X'), (G, X")

be realizations of G and we assume (G, X') has a non-empty open orbit.

It follows from the definition there exists an isomorphism (<p9 f): (G, X') ->

(G, X") of law chunks of algebraic operations. Hence by Corollary p. 404

Rosenlicht [7], (G, X") also has a non-empty open orbit.

DEFINITION (1.7). Let X, G be as in Lemma (1.6). If G satisfies one

of the condition of Lemma (1.6), G is said to be generically transitive.

Otherwise, G is said to be generically intransitive.

The effectiveness of an algebraic operation (G, X) sometimes restricts

the group G.

LEMMA (1.8). Let (G, X) be an effective algebraic operation. If (G, X)

is generically transitive and G is abelian, then dim G = dim X.

Proof Let GjH be the open orbit in X. The morphism G -> Aut X

factors through G -> Aut GjH. Since GjH is open in X, the homogeneous

space (G, G/i?) is effective. As G is abelian, this shows H — 1 and dimG

= dim G/iJ= dim X.

DEFINITION (1.9). Let X be a variety and Cu C2 be conjugacy classes

of connected algebraic subgroups of Autbirat X. We say Q is a subgroup

of C2 if there exist algebraic groups Gt (i = 1, 2) such that Gίd G2d

Autbirat X and such that Gt belongs to the conjugacy class C*.

PROPOSITION (1.10). Let X be a variety and Ct (i = 1, 2) conjugacy

classes of connected algebraic subgroups of Autbirat X. Let (Gί9 Xt) be

realizations of Ct for i = 1, 2. Then, the following are equivalent

(1) Cj is a subgroup of C2.

(2) There exists a morphism (φ,f): (G1? Xj) -> (G2, X2) o/ /αw chunks of

algebraic operations such that f is birationaL

Proof (1) =Φ> (2). In fact, there exist birational maps ht: Xt —• X, ί =

1, 2 and the condition (1) implies there exists a birational automorphism

h:X-+X such that hQi^GJi^h'1 c h^GJτ^1. This means there exists a

(rational hence regular) morphism ψ:Gx-^Gz such that (φu h^ohohj:

(Gl9 Xi) -> (G2, X2) is a morphism of algebraic law chunks with birational

hi1 oho hίm

(2) Φ (1). Let us fix a birational map Λ2:X2->X. Then, hJGif^h;1 is an

algebraic subgroup of Cx and h2GJnix is an algebraic subgroup of C2. The

inclusion fGJ'1 C G2 implies the inclusion hJGJ'^h^ c
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DEFINITION (1.11). The Cremona group Crn of n variable is, by defini-

tion, AutbiratP*.

It follows from the definition that Crn(k) is the group of the k-

automorphisms of the rational function field of n-variables. As we proved

in [13], algebraic subgroups of the Cremona groups are linear. Hence,

from now on we assume all the algebraic groups are linear.

In the proof of Theorem (3.7) Umemura [13], it is important to observe

the orbits of a normal subgroup, e.g., the unipotent radical, the center of

the unipotent radical. The idea of studying the orbits of a normal sub-

group looks naive but it is rather powerful. This method is so useful

that we use it repeatedly. Here is the first example of the application.

LEMMA (1.12). Let (G, GjH) be an algebraic homogeneous space and n

the dimension of GjH. We assume the operation of G is effective. If there

is a normal subgroup N of G isomorphic to G®m such that N has an n

dimensional orbit, then (1) m = n, (2) G/H is isomorphic to the affine space

An, and (3) (G,GjH) is a suboperation of the n dimensional affine trans-

formation (GTAn,A
n), (4) G is the semi-direct product NH.

Proof Let X be the n dimensional iV-orbit. Then X is an open subset.

Since N is normal, for any geG, gX is also an n dimensional iV-orbit.

Hence gX coincides with X, i.e. X is G-invariant and X = GjH. Since

N operated on X — G/H transitively and effectively and since N is abelian,

m should be equal to n by Lemma (1.8) and X is isomorphic to G®n, hence

to the affine space An and N operates o n l = GjH~ An as translation

group. As N operates transitively on GjH, we get G = NH. Since the

operation of N is effective, N Π H = 1 hence G is a semi-direct product.

Now, it remains to show that if is a subgroup of the affine translation.

Let geH, neN, then the result of the operation of g on the coset nH is

gnH = gn(g~ιg)H = gng~xH. Hence the operation of H on An is linear.

COROLLARY (1.13). Let (G, GjH) be an effective homogeneous space as

in Lemma (1.12). If the center Uz of the unipotent radical of G has n

dimensional orbit {here n = dim GjH), then (1) dim Uz = n, (2) G/H is iso-

morphic to the affine space An, (3) (G, G/H) is a suboperation of the n

dimensional affine transformation (GTAn, An\ (4) the unipotent radical U is

abelian, namely U = Uz, (5) H is reductive and (6) G is a semi-direct

product G = HUZ~H. G®\
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Proof. The assertions (1), (2) and (3) follow from Lemma (1.12). To

prove (4), we need

LEMMA (1.14). Let U be a (connected) unipotent algebraic group and

Uf a closed normal subgroup. If the quotient group UjU' is 1 dimensional

(hence ίsomorphic to Ga), then the exact sequence

1 _ > u' > U~^ Ό\U' > 1

splits. Namely there exists a closed subgroup K of U such that the restric-

tion p\κ: K~+ TJ\V is an isomorphism.

Before we start the proof, we notice the assertion of the Lemma is

evidently false if char k > 0. If U is abelian, the result is well-known

(Corollaire, p. 172, Serre [8]). We prove the lemma by induction on the

dimension of U. If dim U = 1, a non-zero homomorphism of Ga to Ga is

an isomorphism because char k = 0. Let us assume the Lemma holds

for dim U < m. Let U, U' be as in Lemma (1.14) with dimension U — m

+ 1. The unipotent group has the non-trivial center Uz with dim Uz > 1.

If P\uz i s surjective, as we have seen above the exact sequence

i _ > κeτp\ϋz —^uz—> υ\υf —+1

splits and we have nothing to prove. Hence we may assume p(Uz) = 1.

This is equivalent to say that the diagram

u

Uf >

1
commutes where q, r are canonical maps. It follows from the induction

hypothesis r has a section s. It is sufficient to show q has a section over

s(U/U% i.e. the exact sequence 1 -* Uz -> q-\s(UIU')) -> s(UIU')-+l splits.
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Since Uz is abelian, we have to show H2(Ga, Uz) = 0 for the trivial Ga-

module Uz. Let more generally W be a finite dimensional vector group

on which Ga operates trivially, then H2(Ga, W) = 0 since W is the direct

sum of Ga$ and H\Ga, Ga) = 0 (See Proposition 8, p. 172, Serre [8]).

Let us come back to the proof of the assertion (4) in Corollary (1.13).

Consider the exact sequence,

o —> uz —>u —>υ\υz —> l.
u u
K-^+ Ga

Assume U/Uz Φ 1. Since UjUz is unipotent, it contains Ga. The exact

sequence restricted on this Ga splits by Lemma (1.14). Hence, there exists

a subgroup K of U lying over the Ga. Then the subgroup UZ K is uni-

potent and abelian. Hence UZ K is isomorphic to C?®n+1. On the other

hand, in the proof of the Lemma, we proved G/H is homogeneous space

of Uz hence in particular, a homogeneous space of UZK. Since UZ K is

abelian and of dimension n + 1, the operation of Uz- K on its homogeneous

space of dimension n can not be effective by Lemma (1.8). This contradicts

the assumption that the operation of G is effective. Hence U coincides

with Uz. Now the assertions (5), (6) follow from Lemma (1.12).

For the definitions of primitive, imprimitive and de Jonquieres type

transformations, we refer the reader to Umemura [12], [13]. But we recall

the following properties because they are basic and used frequently in

the sequel.

(1.15) Let G be an analytic group and H a. closed analytic subgroup.

Then an analytic operation (G, GjH) is primitive if and only if the Lie

algebra of H is a maximal Lie subalgebra of the Lie algebra of G (Propo-

sition (1.7), Umemura [13]).

(1.16) Let G be an (connected) algebraic group and H be a closed

subgroup. Then an algebraic operation (G, G/H) is of de Jonquieres type

if and only if there exists a closed algebraic subgroup K of G such that

H C K C G and d i m # < dim K.

The following theorem is an algebraic version of a theorem of

Morozoff [6].

THEOREM (1,17). Let (G, G/H) be an effective algebraic operation with

dim GjH > 2(*\ We assume that (G, G/H) is primitive, i.e., the associated

*> If άimG/H = 1, (G,G/H) is a suboperation of (PGL2, P
1).
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analytic operation (G, G/H)an is primitive.

(1) If G is not semi-simple, then (i) G/H is isomorphic to an affine

space, (ii) (G, GjH) is (algebraically) an suboperation of the affine transfor-

mation group, (in) the unipotent radical U of G is abelian and H is a

reductive part of G and (iv) U is an irreducible H-module.

(2) // G is semi-simple, then the Lie algebra g of G is either simple

or isomorphic to the direct product & X & of the two copies of a simple Lie

algebra &.

Proof. If G is not semi-simple, we notice first that G cannot be

reductive. For, otherwise G has a nontrivial center Z and we can find

in Z a 1 dimensional normal subgroup N of G. Then K = NH satisfies

the condition of (1.16) and (G, GjH) is of de Jonquieres type hence

(G, G/H)an is imprimitive. Let U be the unipotent radical and Uz be its

center. Uz is a normal subgroup of positive dimension. Therefore, if

UZHQG, K= UZH satisfies the condition of (1.16) and (G, GjH) is of

de Jonquieres type and (G, GjH)an is imprimitive. Hence we may assume

UZH = G, namely Uz has an open orbit. If U were not irreducible, then

there would exist a proper ίf-invariant space Uf and K = U' H would

satisfy the condition (1.16) and (G, GjH) would be of de Jonquieres type

hence imprimitive. The assertions (1) (i), (ii), (iii) follow from Corollary

(1.13).

Now, we assume G is semi-simple. Let G be the universal covering

of G. Then, the Lie algebra of G is isomorphic to G and G is simply

connected. Let φ:G-+G be the covering map. It is known that φ is

finite and algebraic. Let H = φ~ι(H). Then the algebraic operation

(G, GjH) is primitive. Though the algebraic operation (G, GjH) is not

effective but almost effective. Let G = Gί1 X Gf2 X X G*r

r where Gt is

simple, st > 1 is an integer for 1 < i < r and we assume that if 1 < i <

j < r, Gt is not isomorphic to Gj. First, let us show r = 1. Assume r ;>

2. Since the Lie algebra ζ of H is maximal in c$, by (1.15) the projection

Pji H-> Gs/ is either surjective or Pj*(ij) is a maximal Lie subalgebra in

§y for 1 < j < r where Q3 is the Lie algebra of Gt. This latter case never

happens as we assume r > 2.

In fact if there exist a j such that Pj*(§) is maximal in g ,̂ then we

have ϊj c p ^ p ^ y c g. As r > 2, there exists an i ^ j . Since the opera-

tion (G, G/H), is almost effective, /& does not contain non-zero ideal. In

particular, the ideal O x x O x g f x O x x O i s not contained in
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ϊ) but is contained in p]ϊp >*(§). Hence ζ Qpj*Pj*(W £ 8 which contradicts

the maximality of the Lie subalgebra I). We have therefore surjective

morphisms: ϊ ) - * ^ for any i. By Levi's theorem ζ is isomorphic to the

semi-direct product ί) = r + §s where r is the radical of $ and Ij, is semi-

simple. We are given surjective morphisms: §s -> g{* for any L But it is

an easy excercise of Lie algebra to conclude dim hs > ΣΓ=i st dim gέ =

dim g hence dim Λ, > dim 3. We have proved r should be 1. Now, we may

assume G — G's where G' is simple and s > 1 is an integer. We have to

show s <2. Assume s > 3. And let g' be the Lie algebra of G' and p =

P2,8,...,β be the projection of G = G/s onto the last s — 1 factors. The same

argument as above shows the map p*: 1} -> g'**""1* is surjective. Since the

Lie algebra g' of Gr is semi-simple, the mapp*: ζ -> (g7)'"1 splits and there

exist a section i: (g7)*"1 —> ζ The composite morphism Pi © ί: (gO*"1 ~+ &' i&

either 0 or surjective. If pt o i is zero, ζ contains an ideal O χ g ' χ x

g7 hence H contains a normal subgroup 1 X G' X X G' of dimension

(s — 1) dim G' which contradicts the effectiveness. Thus, p^i: (g')*""1 —> gΛ

is surjective. But any non-zero morphism (gO5"1 -> g' is up to automorphism

of g', the projection onto the j-th factor for a suitable 1 < j < s — 1. In

particular, ptoi is the projection onto the j-th factor for a suitable 1 < 7

< s — 1, up to automorphism of g7. It follows, then up to automorphism

of G/s, the composite morphism (GO'"1 <=—^iϋΓc=—> G/s is nothing but

(Pj>Pι>P2, - - ',Ps-ι)- I*1 particular, H contains a normal subgroup

I X G ' X . X G ' X T X - X G '

of dimension (s — 2) dim G7 > 0 which is a contradiction. Hence s < 2.

We can answer in positive way to the question proposed in [13].

COROLLARY (1.18). Let Gi (ί = 1, 2) be connected algebraic groups and

Hi be closed algebraic subgroups of Gi such that the algebraic operation

(Gi, GJHi) are effective and primitive. Let (φ, / ) : (Gl9 GJHJ*" -> (G2, GJH2)
an

be an isomorphism of analytic operations. Then the morphism (φ,f) is

algebraic, i.e., there exists an isomorphism (φ'9f): (Gl5 GJH^ -> (G2, GJH2) of

algebraic operations such that (φ\ f ' ) a n = (φ, f).

Proof. Since the algebricity of / follows from that of φ, we have to

show φ is algebraic. If Gί is semi-simple, then the assertion is trivial.

For, an analytic homomorphism of a semi-simple algebraic group to an

algebraic group is algebraic (Theoreme 10, VIII-8, Serre [10]). If Gx is not
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semi-simple, then by the proof of Theorem (1.17), Gt is the semi-direct

product HiUi where Ht is reductive, Ut is the unipotent radical of Gt and

Ut. is abelian (i = 1, 2). Let Rt denote the radical of Gt (i = 1, 2). By

replacing the reference point of G2/£Γ2, we may assume φ(Hl) = H2. Since

ifj is reductive, φ\Hl: Hϊn-+H%Λ is algebraic by Theoreme 10, VIΠ-8, Serre

[10]. φ induces an isomorphism between the radicals R1 and R2 and we

liave to show <p\Rl is algebraic. If Rx = Uί9 then R2 = U2 and the iso-

morphism φ\Ux\ U?n-+ U2

an is linear hence algebraic. If Rx 2 Uu then Rx

= U^Gm and R2 = U2 Gm. For since, ίZj-module JTi is irreducible, the

center of lϊi is at most Gm. Since the operation is effective, we may

assume the group structure of Rί is defined by ί u t'1 = t X w (multiplica-

tion of the scalor t on the vector u is denoted by t X u) for teGm9 ue Ux.

We shall describe the restriction ψ\Rx = ψ. Since φ(H^) = iϊ2, ^(G^) = Gm.

Thus ψ:jR1== Uϊ-Gm->R2= U2-Gm is written as ψ(w ί) = Ψi(u)ψ2(u)ψ2(t)

for ue Uu teGm where ψx: C7Ί —• ί72 is an analytic map and ψ2: i?jw-> G*n

is an analytic morphism of Lie groups. We shall show ψ2(u) — 1 for any

u e Ux. In fact, let uλ tu u2-t2e i?! and write the condition for φ((ux tx)(u2 ί2))

= ψ(Ui'ti)φ(u2'Q' Comparing the Gm component, we get ψ2(^r(ίi X u2)) —

^2(^1)^2(^2) hence ψ2(^ x w2) = ψ2(u2). Therefore, for any teGm, ue Uu

ψ2(t X u) — ψ2(u) hence ψ2(u) = 1. It follows ψ maps Ux onto C72 hence

-ψΊtfi is linear and ?̂ is algebraic.

As we proved in Umemura [13], in Cr3 there are few algebraic opera-

tions which are imprimitive and not of de Jonquieres type. The following

theorem is nothing but an abstraction of Theorem (3.7), Umemura [13].

THEOREM (1.19). Let (G, X) be an effective algebraic operation. If (G, X)

is imprimitive (i.e., the associated analytic operation (G, X)an is imprimitive)

and if (G, X) is not of de Jonquieres type, then (G, X) is generically trans-

itive and G is semi-simple.

Proof. Let us first notice that dim X > 2 because (G, X) is imprimitive.

By Umemura [13], a generically intransitive operation is of de Jonquieres

type if the dimension of the transformation space > 2. Hence we may

assume (G, X) is a homogeneous space (G, G/H). By (1.16), it is sufficient

to construct a closed subgroup K such that H C K Q G and dim H <

dim K under the hypothesis that G is not semi-simple. If G is solvable,

then there exists a 1 dimensional closed normal subgroup N of G. Since

(G, G/H) is effective, the normal group N is not contained in H and K —
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HN satisfies our requirement. If G is reductive, we may assume G is

not a torus because G — torus case is trivial. Let Z be the center of G.

If G is not semi-simple, dim Z > 1. Let N be a 1 dimensional closed sub-

group of Z. Then iV is normal and the normal subgroup N is not con-

tained in H because (G, G/H) is effective. The closed subgroup K == HN

satisfies the desired condition. It remains to check the case where G is

neither solvable nor reductive. Let Uz denote the center of the unipotent

radical U of G. Since Uz is normal, Uz is not contained in H. Hence,

if UZH Φ G, then it is sufficient to put K = UZH. Therefore we may

assume Uz H — G. Namely Uz orbit UZH coincides with GjH. It follows

from Corollary (1.13) U = Uz and G is the semi-direct product UZ H.

Let g, Σ), uz denote the Lie algebras of G, H, Uz. Therefore g = uz + J}.

By (1.15), the Lie algebra ϊj is not maximal. This implies ^-module uz is

not irreducible. Consequently, the vector group Uz is not an irreducible

iJ-module. Let 0 Φ W Q Uz be an H-invariant submodule. Then K ~

W'H satisfies our requirement.

COROLLARY (1.20). Let (G, X) be an effective algebraic operation. We

assume the associated analytic operation (G, X)an is imprimitive. If G is

not semi-simple, then (G, X) is of de Jonquίeres type.

This is a part of Theorem (1.19).

LEMMA (1.21). Let G be a (connected) reductive algebraic group, (G, X)

an algebraic operation, f:X->Y a morphίsm of algebraic varieties such

that the diagram

GxX

is commutative, where ψ is the operation and p2 is the projection G X X —>

X. If, for any closed point y e Y, the operation of G on the fibre Xy = f~\y)

is not almost effective (resp. effective), then the operation (G, X) is not almost

effective (resp. effective).

Proof. As the effective case is treated similarly, we prove the Lemma

for the almost effective case. Since a normal subgroup of positive dimen-
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sion of G contains a torus, a torus is contained in a maximal torus and since
maximal tori are conjugate, a maximal torus T of G satisfies the hypothesis.
Therefore, we may assume G is a torus. Let F be the inverse image of
the diagonal of I X I by the morphism (φ,p2): G X X-+X X X. F is a
closed subscheme of G X X and a subgroup scheme over X of G X X.
Since a morphism is generically flat, there exists a non-empty open subset
U of X such that the projection p2: F Π G X t/-> U is faithfully flat. By
Lemma 5, p. 520, Demazure [3], there exists a closed subscheme H of G
such that F = H X U. Let Λ: € C7 be a closed point. It follows from the
assumption, that there exists a closed subgroup K of positive dimension
of G operating trivially on the fibre X/(x). This shows K is a subgroup
of H and the operation of G is not almost effective.

§ 2. Classification of the maximal connected algebraic subgroups
of the Cremona group of two variables

The classification, up to conjugacy, of the maximal connected alge-
braic subgroups of the Cremona group of two variables Cr2 was done by
Enriques [4]. We apply the results of § 1 to recover the result of Enriques.
The method of Enriques is quite different from ours and depends on the
classification of linear systems on two dimensional rational varieties.
Let us indicate roughly why the classification of the maximal connected
algebraic subgroups of the Cremona group is related to the classification
of linear systems on rational varieties. Let (G, X) be a realization of a
conjugacy class of a connected algebraic subgroups in the Cremona group
of n variables. As the theorem of the equivariant resolution of singularity
is proved, then by equivariant completion and equivariant Chow's lemma
(Sumihiro [11]), we could assume X non-singular and projective. Then,
since X is rational, hOί(X) = hι\X) = 0. Hence the Picard scheme of X
is descrete and the algebraic group G leaves any complete linear system
on X invariant. A maximal algebraic group of Crn is defined to be the
group of the birational transformations leaving a linear system invariant.

The advantage of our method is the comprehensiveness (we hope) and
to be extendable to the higher dimensional case. The three dimensional
case is treated in Umemura [12], [13] and will be completed by our method
in Umemura [14].

(A) Classification of the maximal primitive connected algebraic sub-
groups of Cr2.
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Let (G, X) be a realization of a conjugacy class of the maximal prim-

itive connected algebraic subgroups of Cr2. Then, by Proposition (1.10),

Theorem (1.17) and Corollaire 1, p. 521, Demazure [14], G is semi-simple

of rank < 2. Hence, the Lie algebra g of G is isomorphic to sl2, sl3, sl2 X sl2

or G2. Let X be isomorphic to G/H, then by Umemura [13], the Lie algebra

ϊ) of H has the following properties: (1) I) is maximal Lie subalgebra of g,

(2) h contains no non-zero ideals of g, (3) dim g — dim ζ = 2. It is an easy

exercise to see that G2 contains no Lie subalgebra of codimension 2. The

only one possible such G and H is (PGLZ, P2). Hence, any primitive con-

nected algebraic subgroup of Cr2 is, up to conjugacy, is contained in

(PGL3, PJ.

(B) Classification of the imprimitive connected algebraic groups which

are not of de Jonquieres type.

Before we begin the classification, let us notice the following Lemma

which is almost evident but will be often used.

LEMMA (2.1). Let (G, X) be a realization of a conjugacy class C of the

connected algebraic groups in Cr2. Then, the following are equivalent:

(1) The conjugacy class C is of de Jonquieres type.

(2) The algebraic operation (G, X) is of de Jonquieres type.

(3) There exists a morphism (<p,f):(G,X)->(PGL2>P
1) of law chunks

of algebraic operation such that φ(G) Φ 1.

If we assume the realization (G, X) is a homogeneous space (G, GjH),

then the following condition is equivalent to the preceding conditions (1),

(2), (3):

(4) There exists a morphism (φ,f): (G, G/H) -» (PGL2, P
1) of algebraic

operations with φ(G) Φ 1.

Proof. The equivalence of (1) and (2) is the definition. Let (G\ X;)

be an algebraic operation such that Xf is a rational curve. Then (G', X')

is considered as a suboperation of (PGL2, P
1) and a unirational curve is

rational. This shows the equivalence of (2) and (3), The equivalence of

(3) and (4) follows from Corollary, p. 404, Rosenlicht [7].

The following Proposition is similar to Theorem (3.7) Umemura [13]

and proved by the same method.

THEOREM (2.2). Let (G, X) be a realization of a conjugacy class of the

connected algebraic subgroups in Cr2. Let g be the Lie algebra of G. If
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(G,X) is imprimitive and if g is not isomorphic to sl2, then (G, X) is of de

Jonquieres type.

Proof. By Theorem (1.19), we may assume that (G, X) is generically

transitive and G is semi-simple. Therefore we assume (G, X) is a homo-

geneous space (G, GjH). Since any 1 dimensional effective analytic law

chunk is contained in (PGL2, P
1), it follows from the hypothesis that there

exists a morphism of law chunks of analytic operation (φ,f):(G,GlH)an

-> (PGL2, P
ι)an with non-trivial φ. Hence, the Lie algebra g contains sl2

as a direct factor. If g is not isomorphic to sl2, then the kerςp contains

an ideal ϊ of g such that ϊ is a simple Lie algebra. Since ϊ is simple,

there exists a normal closed algebraic subgroup K of G corresponding to

ϊ by Theorems 15, p. 177, Che valley [2]. The orbits of K are one dimen-

sional because k c ker φ. Hence KH Q G. Since the operation (G, G/H)

is effective, the normal subgroup K is not contained in H and d i m i / <

dim KH. Therefore by (1.16), (G, G/H) is of de Jonquieres type.

COROLLARY (2.3). Let (G, X) be a realization of a conjugacy class of

the connected algebraic groups in Cr2. If (G, X) is imprimitive and not of

de Jonquieres type, then (G, X) is isomorphic to (SO3, SOJD^) as an alge-

braic law chunk of operation (or in usual language, birationally isomorphic

to). The definition of D^ is given in the proof.

Proof. By Theorem (1.19) and Theorem (2.2), (G, X) is isomorphic to

(G, GjH) as an algebraic law chunk of operation and G is isomorphic to

SL2 or SOZ. There is a morphism φ: SL2-+ SOZ of degree 2. Hence in

either case, G\H is isomorphic to SL2jH
f for an appropriate 1 dimensional

closed algebraic subgroup W of SLZ. It is easy to see that a 1 dimensional

closed algebraic subgroup Hf of SL2 is conjugate to one of the following:

( 3 ) ^

Hence the operation (G, GjH) is isomorphic to (SL2, SLJH') or (SO3,

SOzlφ(H')) as an algebraic operation. If Hf is T or Un (n = 1, 2, ),

then



CREMONA GROUP 227

and the operation (G, G/H) is of de Jonquieres type by (1.16). Hence

Hf — Doo and ZL is not contained in a Borel subgroup. Therefore (SL2,

SLJDS) is not of de Jonquieres type. But the operation (SL2, SLJDJ) is

not effective. Hence (G, G/H) is isomorphic to (SO3J SOJφφJ)) as an

algebraic operation. Since φ(DJ) is isomorphic to £>„,, φ(DJ) is, by abuse

of notation, denoted by !)«,.

PROPOSITION (2.4). The conjugacy class in Cr2 of the almost effective

realization (SL2, SLJDJ) is a subgroup of the conjugacy class of the reali-

zation (PGL3, P2), hence is not maximal among the connected algebraic sub-

groups in Cr2.

Proof Let V be the irreducible representation of degree 2 of SL2»

Let u, υ be a base of V such that

(a b\
\c d)

e SL2 transforms (u9 v) ι > (au + cv, bu + dv) .

Let us consider the irreducible representation S\V) of degree 3 and pro-

jectify the SL2 operation on P(S2(V)). Then the stabilizer at uυ e P(S\V))

coincides with D^. Therefore we get a morphism (SL2, SLJDJ) -> (PGLZy

P{S\V))) and the Proposition follows from Proposition (1.10).

(C) Classification of the maximal connected algebraic subgroups of

de Jonquieres type in Cr2.

Case (C-tr). First we treat generically transitive operations. Hence,

we assume that all realizations are homogeneous space (G, G/H).

Case (C-tr-1). G is neither reductive nor solvable.

Let U denote the unipotent radical of G and Uz the center of U. It

follows from the hypothesis that dim Uz > 1. If the dimension of the

orbit UZH C G/H is 2, then (G, G/H) is a suboperation of the 2 dimensional

affine transformation group by Theorem (1.13) and is not maximal. Hence,

we may assume that the dimension of the orbit UZH c G/H is < 1. But

since the operation is effective, the normal subgroup Uz of positive di-

mension is not contained in H. Therefore the dimension of the orbit

UZH C GjH is equal to 1 and we get the morphism of algebraic operation
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The fibre of /: G/H-^ G\ΌZU is UZH/H which is a 1 dimensional homo-

geneous space of the commutative unipotent group Uz, hence isomorphic

to A\ Since any effective algebraic operation on a rational curve is a

suboperation of (PGL2, P
1), there exists a morphism (<p,f):(G,G/UzH)^

(PGL2, P1) of algebraic operations such that / is an open immersion. Let

τis consider the composite (p',/0 of (Id,/) and {φ,f). This gives us an

exact sequence

1 >N >G^->PGL2, where i V = K e r / .

Since the fibre of / is A1 and no simple algebraic group acts on A\ N° is

solvable. As we assume G is not solvable, the map φ' is surjective. Hence

the sequence

<2.5) 1 > N—> G - ^ > PGL2 —> 1

is exact, U is a subgroup of N and N is a subgroup of the automorphism

group Autp i G/H of ^-bundle. Since the unipotent part of the solvable

algebraic group Aut A1 is Ga, the operation of U on each fibre is abelian

and hence U is abelian because the operation is effective. Therefore

U — Uz. The connected component N° is normal and we get a com-

mutative diagram

1 > N • G • PGL2 • 1

1 — • N° — > G — > GIN0 — > 1 .

Since [N: N°] < oo, the morphism G/N° -> PGL2 is finite, N° is the radical

of G and the Lie algebra of G/N° is isomorphic to sl2.

Case (C-tr-1-of). We assume U = N°.

The unipotent part U is a Gj [/-module. Through the isogeny SL2-+

GjU, U is an SL2-module. If we consider the semi-direct product USLZ,

by the structure theorem in characteristic 0, there exists an isogeny

-ψ : USL2-> G such that the diagram below is commutative;

ψ isogeny

0 — > U—> G - ^ > G/U—>
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where ί is the canonical inclusion, p is the projection and SL2->G/i7 is
the natural isogeny. Let us put G =; USL2 and H = ψ"\H). Then the
operation (G, G/iϊ) is almost effective.

LEMMA (2.6). The SL2-module U is irreducible.

Proof. If U ~ θ£=1 Vt be a decomposition into the direct sum of irre-
ducible modules. Let B c SL2 be a Borel subgroup, C c B a Cartan sub-
group, W C JB the unipotent part of B and ι;4 6 Vt be the highest weight
vector with respect to C and B. Then let us put D = {λ^ + + λrvr \ λt

ek, 1 < ί < r}. Then Z) W is a closed abelian subgroup of dimension
r + 1 of G. JD has a 2 dimensional orbit on G/ff because λjVj has 1 di-
mensional orbit along a fibre and W has 1 dimensional orbit in horizontal
direction. Hence by Lemma (1.8), dim D = r + 1 < 2. Namely r < 1.

To determine H9 we need

LEMMA (2.7). Let L be a unipotent group (defined over an algebraically
closed field characteristic 0) and M be a closed subgroup. Then M is con-
nected.

Proof. Induction on the dimension of L. If dim L = 1, L ~ Ga and
the assertion is trivial. For a general L, there exists a normal subgroup
K of dimension 1 so that there exists an exact sequence

1 >κ >L >L\K >1.

By the induction hypothesis K Π M and φ(M) is connected, hence M is
connected.

Let us now determine the closed subgroup H of G. To this end, we
fix a Borel subgroup

and a Cartan subgroup

of SL2. Let u, v be variables and

Ac d
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operates linearly on the 2 dimensional vector space U2 = ku φ kv by u

au + cv, v \-+bu + dv. Let £7n be the (n — l)-th symmetric power S71

of £4. E7n is the irreducible representation of degree n of SL2. By Lemma

(2.6), there exists an integer n > 1 such that the unipotent radical U is

isomorphic to Un+1 as an SL2-module. Since dim UHjH = dim 17/ £7 Π i ϊ i s

equal to 1, /?(#) is 2 dimensional hence a Borel subgroup of SL2. By

taking a conjugation if necessary, we may assume p(H) — B. Since we

are in characteristic 0, U Π H C U is connected by Lemma (2.7). There-

fore it follows, from the exact sequence

(2.8) 0 >Uf] H—+H >B >1,

that H is connected. By exact sequence (2.8), U f] Ha U is a .B-invariant

space with dim U/U f] H = 1. The J8-invariant space of codimension 1 of

U is uniquely determined: U Π H is generated by monomials M 1 1" 1^ ww'2ι;,

• , vn which we denote by Ui+1 or U'. The weights of these monomials

are n — 2, n — 4, , — n. The subgroup if is contained inp'^B) = UB.

The image p(H) contains a torus Gm hence H contains also a torus Gm.

Taking again the conjugation by an element of £/• J3, we may assume that

the torus O C c UB is in H. Let u, b, c, h be the Lie algebra of C7, B,

C, if. Then the Lie algebra u + b of U- B is decomposed into the direct

sum of c-eigen spaces: u + b = 2]2=o W -̂2« + (W_2 + c) where Wt ~ k and

the index i is the weight of the vector space with respect to the adjoint

action of c. Since hZD h (Ί u — Σ ; = 1 Wn.2a, hZD c and since dim h = dim u

+ dim b — 1, h is also the direct sum of c-eigen spaces and h should be

Σ«=i Wn-2α + c + (one dimensional c-eigen space) W where W is a sub-

space of Wn + W_2. Hence PF = Wn or W_2. In the first case H = UC

and in the second case H — (un~λυ, , MI;""1, vn)B. Since the operation

(G, G/H) is almost effective, H contains no normal subgroup of G of pos-

itive dimension and H can not coincide with U- C. Hence H = (un~ιv,

un~2v\ >>,υn)>B.

To state our conclusion we need definitions.

DEFINITION (2.9). For an integer n > 0, we denote by Gn the semi-

direct product Un+1SL2, t7^+1 is the linear space (u71'^, un~2v2, « ,yπ) and

Hn denotes the closed subgroup l^+ 1J3 of Gn.

We have proved

PROPOSITION (2.10). There exists an integer n > 0 such that the con-
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jugacy class of the algebraic operation (G, G/H) in case (C-tr-l-a) is realized

by (Gn, GJHn).

We write explicitly the operation (Gn, GnjHn) in terms of a local co-

ordinate system for a later use.

PROPOSITION (2.11). For an integer n > 0, the algebraic operation

(Gn, Gn/Hn) realizes an algebraic subgroup in Cr2 consisting of the follow-

ing k-automorphisms of k(x,y):

x, y) κ_> ( « L ± * y + f-M) , where (a b\ e SLZ, /„<«) 6 k[x] ,
\cx + d (ex + d)n) \c d)

/n(x) < n and x,y are independent variables over k.

Proof. To avoid the index, we put Gn — G, Hn = H, Un = U and

ί = U'.

Let

Then K is a. closed subgroup of G isomorphic to G®\ Since K Γ) H = 1,

the orbit K H in G/Jϊ is isomorphic to <7f2 ~ A2 and we can take x9y as

a coordinate system on A2. Let us express the regular operation of G on

G/H as a rational operation on the open subset KH of G/ίf by using

the coordinate system x, y. First let

* - l c d)βSL2'

To write the operation of g in terms of coordinate system x, y is equivalent

to determine x\ yf such that

<2-12> C 5 K ί)*-"G ί) s -
Let us solve (2.12) which is equivalent to

(α 6V«"f1 ̂ € / « '
\c dr \o 1/

Therefore, since we have seen H = U' B,

for suitable
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atek, l<l<n,

c >t ίrc x
bxbx ίH/»-+§.»

and we get

(2.14) y(αw + cv)n = /ιzn + 2 a^-^x'u + v)1 .
i = l

It follows from (2.13) xf = (α* + &)/(<?# + d). To solve (2.14), we notice

(au + cv)n = ((a — cx!)u + c(xfu + v))n. Therefore / = y(a — cx')n = y/(cx

+ d)n. The operation of U on A2 is determined in a similar way and they

are the set of automorphisms (x9 y) ^ (x,y) + fn(x)), fn{x) e k[x], degfn(x) < n.

Case (C-tr-l-β). N° is not unipotent.

Since the fibre of / is A\ and Aut A1 is solvable, N° is solvable and

the dimension of a maximal torus of N° is at most 1 and N° = U- Gm by

Lemma (1.21). By the structure theorem, there is an isogeny ψ:N°-SL2

— G-+G such that ψ\N° is an isomorphism. Hence, there are an isogeny

ψ: U-Gm-SL2 -> G and a commutative diagram

^ ^ > SL2 >1

1 — • N • G -?->PGL2 >1,

where i is the canonical inclusion, p is the projection and SL2 -> PGL2 is

the isogeny. The algebraic group φ(U SL2) is in case (C-tr-l-α:). Hence

U is abelian and the Gm SL2-module U is irreducible. We shall see below

as Gm-module, U is of weight 1. Now let H = ψ-\H). By (C-tr-1-αr),

H Π USL2 = (un-ιυ, un~2v2, , vn)B. As every algebraic action of Gm on

A1 has a fixed point, Gm(dN) has a fixed point on the fibre HjU Π H ~

/ί1. Hence we may assume that by taking the conjugation of an element

of U if necessary, that the maximal torus Gm of N° is contained H.
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LEMMA (2.15). H is connected.

Proof. As dim NH/H = dim N/N Π H = 1, dimp(JΪ) is 2 and p(iϊ) is

a Borel subgroup and in particular connected (Borel [1]).

Therefore, it is sufficient to show that H Π UGm is connected. In

fact, by the exact sequence 0 -> £7—• UGm -> Gm -> 1, we get 0 -+ £7 (Ί # - >

(Jϊ Π ί7)Cm —• Gm -> 1. But, as we are in characteristic 0, the subgroup

U Π H of the unipotent group £7 is connected by Lemma (2.7). Thus H

Π £7<7m is connected.

We have shown that H is connected and HID U'GmB, where V =

(un~% un-% , υn). But dim U- GmSLJH = 2 = dim U- Gm SLJU' GmB.

Hence H = U/ Gm B. Thus if we determine the <7m-module structure U,

everything is determined. Since U is an irreducible Gm SL2-module U ~

V® Un+ί where V is an irreducible (7m-module. If the representation Gm

-> GL([7j) ~ Gm λ ̂  λι is not faithful (|/[ > 2), taking the same coordinate

system as in the proof of Proposition (2.11), we see that the operation of

Gm is given by (x, y) t-> (x, λιy). λ e Gm, and is not faithful. This contradicts

the assumption that ψ|2V° is an isomorphism and 2V° operates faithfully.

We thus proved U is a <7m-module of dimension n + 1 and of weight ± 1

hence we may assume of weight 1.

We fix notations to state the result.

DEFINITION (2.16). Let k be the Gm-module of weight 1 and Un+1 (resp.

Uή+1) is the irreducible SL2 (resp. £)-module in Definition (2.9) for n > 0.

The irreducible CmSL2-module k®Un+ι is also denoted by Un+1. G{n) is

the semi-direct product Un+ι-GmSL2 and we put H{n) = Uή+ί GmB.

We have proved

PROPOSITION (2.17). There exists an integer n > 0 such that the con-

jugacy class of the algebraic operation (G, G/H) in case (C-tr-l-/3) is realized

by (Gw, GwIH{n)).

We can also make explicit the operation (G{n\ G{n)lH{n)) in terms of

a local coordinate system.

PROPOSITION (2.18). For an integer n > 0, the algebraic operation

(G(n\ G(n)IH(n)) realizes an algebraic subgroup in Cr2 consisting of the fol-

lowing k-automorphisms of k(x, y):

(x, y) —> ( « ± * -£±IΆ) , where (a *>) e SL2, /.<*) 6 k[x] ,
\cx + d (ex + d) / \c dl
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deg/n(x) < n, λek* and x,y are independent variables over k.

Proof. Using the same coordinate system as in the proof of Proposi-

tion (2.11), the Proposition is proved in a similar way.

PROPOSITION (2.19). For n > 0, the operation (Gn, GJHn) is a sub-

operation of (G<w>, G™/Hw).

Proof In fact, consider a morphism of algebraic groups φ: Gn =

Un+1SL2-+G™ = Un+1 GmSL2, φ(u.g) = uΛ.g for ueUn+u ge SL2, then

ψ~x{Hw) = Hn and the Proposition is proved.

Summing up Proposition (2.10), Proposition (2.17) and Proposition

(2.19), we get

PROPOSITION (2.20). Let G be a connected algebraic subgroup of the

Cremona group Cr2 of two variables. We assume that G is generically

transitive and that G is not solvable. Let (G, GjH) be a realization of G

and U be the unipotent radical of G.

(1) The following are equivalent:

(1) The dimension of a U-orbit in G/H is 1.

(ii) The dimension of any U-orbit in G/H is 1.

(2) If one of the conditions (i), (ii) is satisfied, then there exists an

integer n>0 such that in Cr2 the conjugacy class of G is contained in the

conjugacy class of (G(n\ G(TO)/ff(n)).

Proof. Let us prove the assertion (1). It is sufficient to show (i) ^

(ii). For g e G, UgH = gg-'UgH = gUH and the [7-orbit gH is the trans-

lation by g of the [/-orbit UH. The assertion (2) is a consequence of

Proposition (2.10), Proposition (2.17) and Proposition (2.19).

We shall see the conjugacy class of (G(7Z), G(n)IHin)) is maximal in Cr2

for n > 2 (Theorem (2.25)) but not so for n = 0,1 (Proposition (2.21) and

Proposition (2.24)).

PROPOSITION (2.21). In the Cremona group Cr2 of two variables, the

conjugacy class determined by the almost effective realization (G(1), G{1)/H{1))

is a subgroup of the conjugacy class determined by an effective realization

(PGL3,P2).

Proof. Let p = {(αo) e SL3 \ aυ = 0, j = 2, 3}. P is a parabolic subgroup

and (SL3, SLJP) is an almost effective realization of the conjugacy class

of (PGL3, P2). Let φ: G(1) = U(2) Gm SL2 -> SL3 be defined by the formula,
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/ a\
φ((au + bv)'t'A) = \A b for a, b e k9 t e k*9 A e SL2.

\0 0 r 1 /

Then φ-'ip) = U'wGm-B = # ( 1 ) and φ defines a morphism (φ,f): (G(1), G(1)/H(1))

-» (SL3, SLJP) of algebraic operations. Since <p(G(ί)) has an open orbit

on P 2 and p is injective, / is birational. The Proposition now follows

from Proposition (1.10).

Case (C-tr-2). G is generically transitive and reductive.

Let R be the radical of G. Since k = C, there exists a semi-simple

algebraic group G' and an isogeny φ: R X G7 -> G such that the restriction

of p on i? is an isomorphism. Let (G, G/iϊ) be an effective realization.

By corollaire 1, p. 521, Demazure [3], the rank of G < 2. Since G2 contains

no Lie subalgebra of codimension 2, we can exclude the simple algebraic

group of which the Lie algebra is G2. Hence there exist an algebraic

group G and an isogeny ψ:G -+ G such that ψ is an isomorphism on the

radical of G and G is isomorphic to one of the following: (i) SL3, (ii) SL2

X SL2, (iii) Gm X SL2, (iv) SL2, (v) Gm X Gm. Since (G, G/H) is of de

Jonquieres type, by Lemma (2.1) there exists a non-trivial morphism of

law chunks of algebraic operations {φ, f): (G, GjH) -* (PGL2, P
ι), hence the

first group £L3 is excluded. Let us determine all algebraic subgroup H

C G of codimension 2 such that

( * ) the radical operates on (G/H) effectively and the algebraic opera-

tion (G, GjH) is almost effective and of de Jonquieres type. This gives

us almost effective realizations of all the group G in case (C-tr-2).

LEMMA (2.22). Up to isomorphism, we have a list of all the algebraic

subgroup of G of codimension 2 satisfying the condition (*):

group G subgroups H

SL2 X SL2 B X B, B is a Borel subgroup of SL2

Gm X SL2 It71 X Γ )\xek, tek*\, n is a non-negative
I \x t/\ J

integer

= l( s \\xeksn l\niasL non-negative

integer
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GmXGm 1 .

Proo/ o/ £fte Lemma. E G = SL2 X SL2, we show H is solvable. If

H is not solvable, then there is a non-trivial morphism SL2 -> if. Hence,

there is a non-trivial morphism SL2 -> SL2 X £L2 This morphism is, up

to automorphism of SL2, one of the following: (i) x ι-» (x, 1), (ii) Λ >-» (1, x),

(iii) JC H-> (x9 x). The morphisms (i) and (ii) do not occur. For H does not

contain any normal algebraic subgroup of positive dimension because

(G, G/H) is almost effective. Let Δ denote the morphism (iii). The Lie

algebra sl2 X sl2 is considered as an sZ2-module by Δ*. Then, as sZ2-module,

sl2 X sl2 is isomorphic to sl2 φ sl2. Hence Δ*sl2 is a maximal s/2-invariant

space and in particular maximal Lie algebra of sl2 X sl2. This proves

there is no algebraic subgroup of SL2 X SL2 containing Δ(SL2) and of co-

dimension 2. Now we may assume H is solvable. Therefore the connected

component H° is contained in a Borel subgroup B X B. Counting the

dimension, we conclude H° = B X B. Since any parabolic subgroup is

connected, H = Bx B (Borel [1]).

If G = Gm X SL2, if is solvable. For, otherwise, H contains a normal

subgroup of positive dimension SL2. As Gm operates on G/H effectively

and Gm is in the center of G, Gm 0 H = {1} and we get an exact sequence

1 > Gm > Gm - SL2 > SL2 > 1 ,
U U
H - ^ > B

where p is the projection. Since the dimension of the image p(H) is 2,

p(H) is a Borel subgroup B of SL2. We may assume B = lower triangular

matrices in SL2 Now we conclude

for an appropriate integer m. Since m and — m give the same subgroup,

we may assume m is non-negative.

If G = SL2, the result is well known. If G = <7m X Gm9 the assertion

is trivial.
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PROPOSITION (2.23). The notation being as in Lemma (2.22), the con-

jugacy class in Cr2 determined by an almost effective realization (G, GjH)

will be simply called the conjugacy class of (G, G/H).

(1) The conjugacy class of

(Gm X SL2, Gm X SL2/{t« x (^ °t)\tek> tekή)

is a subgroup of the conjugacy class of (G(7°, G{n)IH(n))9 for n>0. (Defini-

tion (1.9)).

(2) The conjugacy class of (SL2f SLJUn) is a subgroup of the conjugacy

class of (G(w), GWIHW), for n > 0.

(3) The conjugacy class of (SL2, SL2/T) is a subgroup of the conjugacy

class of (SL2 X SL29 SL2 X SLJB x B).

(4) The conjugacy class of (SL2, SLJDJ) is a subgroup of the conjugacy

class of (PGL3, P2).

(5) The conjugacy class of (Gm X Gm, Gm X Gjl) is a subgroup of the

conjugacy class of (PGLZ, P2).

Proof To prove the first assertion, by Proposition (1.10) it is sufficient

to construct a morphism of algebraic operations

^ | x e k, t e(φ, / ) : (Gn X SL2, Gm X SL2/\t« X

such that / is a birational morphism. Let a: Gw = U{n+ίyGm'SL2-+ G(π)

= U(n+ίyGm'SL2 be the inner automorphism a(x) = vn-X'(—υn)ΐoγχe G{nK

An easy calculation shows that

a(0-Gm'SL2) Π £Γ(n) = ίo Γ-^ °) 6 Gn- U SL2\xe k, t e k*\ .

If we consider the composite map

Gm X SL2 > Uin+1) Gm - SL2 > Un+1'Gm- SL2

where i((t, A)) = 0tΆ for

teGm, AeSL29 (aiY^H^ = {*» X (^ ^ eGmX

and the first assertion is proved. As for the second assertion, by the
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inclusion SL2 =—> Gm X SL2 A ι-> (1, A), (SL2, SLJUn) is a suboperation of

(βm X SL2, <7m x SL2/{t« x (^ £

and we have shown (1). Therefore the assertion (2) is proved. To prove

the assertion (3), we give only ψ of morphism (φ, f) because / is uniquely

determined by /. φ: SL2 -> SL2 X SL2 is defined by φ{A) = (A, 'A'1). We

have φ~\B X B) = H. The assertion (4) is proved in Proposition (2.4).

The assertion (5) is trivial.

As the conjugacy class realized by the algebraic operation (G(1),

G(1)/iϊ(1>) failed to be maximal (Proposition (2.21)), (G(0>, G(0)/H(0)) is not

maximal either.

PROPOSITION (2.24). The conjugacy class determined by (G(0), G(0)/H(0))

is a subgroup of the conjugacy class realized by the almost effective algebraic

operation (SL2 X SL2f SLJB X SLJB).

Proof. By abuse of notation, let B be the Borel subgroup of PSL2

consisting of the matrices (αu)1^ {,y^2 e PGL2, aί2 = 0. Then (PGL2 X PGL2,

PGLJB X PGLJB) realizes the same conjugacy class as (SL2 X SL2, SLJB

X SLJB). It is sufficient, by Proposition (1.3) and Proposition (1.10), the

construct a morphism

(φf): (G(0>, G(07#(0)) — > (PGL2 X PGL2, PGLJB x PGLJB)

of algebraic operations such that / is birational. Since both spaces are

homogeneous, / is uniquely determined by φ. Let φ: G(0) = Uί-Gm SL2-^

SL2 X SL2 be defined by

for weU^te Gm, A e SL2. Then φ is a morphism of algebraic groups and

<p~1{B X B) = O l B, hence ψ gives an open immersion /.

THEOREM (Enriques) (2.25). Let G be a connected algebraic subgroup

of the Cremona group Cr2 of two variables.

(1) The conjugacy class of G in Cr2 is a subgroup of the conjugacy

class realized by one of the following almost effective algebraic operations

( i )

(ii)
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(iii) (PGL2 X PGL2, PGL2 X PGLJB X B), B Us a Borel subgroup of
PGL2.

(2) There exists no inclusions among the conjugacy classes realized by
the almost effective algebraic operations (i), (ii), (iii).

Proof The second assertion follows from Proposition (1.10) if we
notice that there is no inclusion among the Lie algebras of the conjugacy
class of the almost effective realizations (i), (ii), (iii). The first assertion
is already verified under several additional assumptions on G:

(1) G is primitive (A);
(2) G is imprimitive but not of de Jonquieres type ((B), Corollary

(2.3), Proposition (2.4));
(3) G is of de Jonquieres type, generically transitive and neither solv-

able nor reductive ((C-tr-1), Proposition (2.20), Proposition (2.21), Proposi-
tion (2.24);

(4) G is of de Jonquieres type, generically transitive and reductive
((C-tr-2), Lemma (2.22) Proposition (2.23)).

The rest of the paper is devoted to the proof of the Theorem. The
proof will be done as follows:

(5) G is of de Jonquieres type, generically transitive and solvable
(Proposition (2.26));

(6) G is generically intransitive (C-intr).

Case (C-tr-4). G is generically transitive and solvable.

In this case Theorem (2.25) follows from the following Proposition.

PROPOSITION (2.26). Let G be a (connected) algebraic subgroup of the
Cremona group Cr2 of 2 variables. If G is generically transitive and solv-
able, G is contained in one of the conjugacy classes of the almost effective
realizations (i), (ii), (iii) of Theorem (2.25).

Proof By Corollaire 1, p. 521, Demazure [3], we may assume G is
not a torus. Let U denote the unipotent part of G and Uz its center.
If Uz has 2 dimensional orbit, then by Lemma (1.12) G is a suboperation
of affine transformation and hence a suboperation of (PGL29 P2). Thus we
may assume the orbits of Uz are 1 dimensional as in Proposition (2.20).
Now Proposition (2.26) follows from Proposition (2.21), Proposition (2.24)
and from

LEMMA (2.27). Under the same assumption as in Proposition (2.26), if
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the dimension of the Uz-orbits are 1, G is a subgroup of the almost effective

realization (G(n\ Gin)/H(n)) for an appropriate integer n > 0.

Proof of the Lemma. Let (G, GjH) be an effective realization of G.

The morphism of algebraic operations (G, G/H) -> (G, GjUzH), gives an

exact sequence

π
(2.28) 1 >N >G >Gf >1.

G' is a solvable subgroup of PGL2. Hence, Gr is isomorphic to Gay Gm or

the affine transformation group GTAX of 1 variable. The proof of Lemma

(2.27) is given under the hypotheses G' ~ affine transformation group GTAU

The proof in other cases is similar and simpler, hence omitted. Therefore

from now on we assume G' ~ GTAX. Let U be the unipotent part of the

solvable group G and T a (fixed) maximal torus. The unipotent part Nv

of N is abelian for the same reason as in case (C-tr-1). The maximal torus

T acts on U and on its center Uz by inner automorphism. Since Nπ is

normal in U, Nv is a T-module. Since by Lemma (2.7) we have NΌ = U

Π N, restricting exact sequence (2.28) on U9 we get an exact sequence

(2.29) 0 >NΠ >U-^>Ga >0

of T-groups.

SUBLEMMA (2.30). Let S be a torus and Ut be a unipotent group. We

assume S acts on Uit Let U2 be a S-invariant closed normal subgroup of

U2. Let U3 be the quotient S-group UJU2;

(2.31) 1 >U2 >U1^

If UJU2 is 1 dimensional (hence UJU2 is isomorphic to Ga), then exact

sequence (2.31) of S-groups, S-splίts. Namely, there exists an S-morphism

s; UJU2 —> U such that π o s = Id.

Proof Let Z be the center of Ux. We prove the existence of S-section

s by induction on the dimension of C71# Before we begin the induction,

we notice that if Ux is abelian, the Sublemma follows from the semi-

simplicity of S-module Ux. In particular, if the restriction π \ Z is surjec-

tive, then an S-section exists. If dim Ux = 1, then lemma is obvious.

If π\Z: Z—> UJU2 is surjective, then the an S-section exists as we noticed

above. If π \ Z is not surjective, then π(Z) = 0 and we get a commutative

diagram of S-groups,
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0

I
z
1

"I /
ujz
ψ1

Since dim UjZ < dim Uu by induction hypothesis there exists an S-equiv-

ariant section s of UJZ-+ UJU2. If we restrict the vertical exact sequence

on siUJUz), an S-equivariant section of p over s(t/i/£72) exists by the same

arguments as in the proof of Lemma (1.14).

Let us come back to the proof of Lemma (2.27). By sublemma (2.30),

there exists a T-section s of exact sequence (2.29). s(Ga)T is a closed

subgroup of G. Since s(Ga)T is solvable, there exists a 1 dimensional

s((7α)Γ-invariant space V of s(σα)Γ-module Uz. We put W= V>s(Ga).

Since 1 dimensional representation V of Ga is trivial, W is a closed sub-

group of G isomorphic to Ga X Ga. The orbit W- H in GjH coincides with

G/H. To see this, let us consider a commutative diagram;

WHaGIH

I I
W UZH c G/UZH

and we observe that W- UZH = G/UZH and that the both fibrations have

the same fibres. In fact, W- UZH = the open orbit of G α (cG0 in A1 =

G/UZH and W UZH = G/UZH. As for fibres, A1 -VHcz UZH ~ A1 hence

V H = UZH. Since W has a 2 dimensional orbit and W is abelian, W

is canonically isomorphic to the orbit W-H. Let us fix an isomorphism

Ga X Ga ~ W and a coordinate system on <7α. Then they define a co-

ordinate system (y, x) on W hence on WH = G/H. We use this co-

ordinate system (y, x) to write explicitly the operation (G, GjH). In order

to show G is a subgroup of the conjugacy class of the almost effective

realization (G(7l), G(n)/H(n)) for an appropriate integer n > 0, it is sufficient
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to prove the operations of the maximal torus T and the unipotent part

U are contained in the group of the birational automorphisms in Propo-

sition (2.18), when they are expressed by using the above coordinate

system on G/H.

As in the proof of Lemma (1.12), it is easy to see that the operation

of the maximal torus T is a suboperation of the operation of 2 dimensional

torus; (y, x) -»(t?y, t\x). Since U is the semi-direct product iN^ s(Gα), we

have to write the operations oί Nv = U Π N and s(Ga) using the coordinate

system (y, x). The operation of s(Ga) is (y, x) -+(y9 x + c) for cek. As

we have seen above Nσ is abelian and is a direct sum Nσ = (Nσ Π H) V.

The operation of V is (y, x) -• (y + d, x) for d e k. Therefore it suffices to

write the operation of NΌ Π H. To describe the operation of Nυ Π H, we

need some notations. Let us take a base eί9 , et of Nv such that the

s((7α)-module structure on JV̂- is given by, for x e Ga,

(xex, xe29 , xet) = (eu e2, , et) (fiό(x)) ,

where fi3{x) 1 < i, j < I are polynomials in x and the matrix F(z) = (fij(x))

is lower triangular (/*/:*;) = 0 if 1 < i < j < I) and fu(x) = 1 for 1 < i < I

(Theorem (Kolchin) LA 5.7, Serre [11]). By Lemma (1.8), s(<7α)-invariant

subspace of Nσ is 1 dimensional. Therefore {λeι \ λ e k) = V. Let Σ Ά Ί aiei

— w e Nσ. To write the operation of w using the coordinate system (y, x)

is equivalent to determining (y\ Λ/) such that

(2.32) (£ a.eλiye,. x) = {y'eι xf) (£ bA in Nσ s(Ga)

where x9 x
f are considered as elements of s(Ga) and X|fβl b^ eNv Π H.

From (2.32), we get

(ίj «

Hence x = x' and

(2.33) g OA + ye, = y'et + g g ό/fcί(*K .

SUBLEMMA (2.34). TTiβre exist Xtek, 1 <i < I — 1 swcΛ £Λα£, /or

2 { e l α̂ βί eNu f] H, the coefficient at is equal to a linear combination

Proof. Nσ Π H is a linear subspace of JVσ of codimension 1 and since
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the operation of Nu-siGa) is transitive and effective, Nu Π H contains no

s((7α)-invariant subspace of positive dimension. Hence (Nn (Ί H) Π V = 0.

Let p (resp. q): Nv = kex ® ke2 ® 0 keι ->keι®ke2®-->® ke^ (resp.

ket) be the projection. The restriction Pι\Nv Π i ϊ is an isomorphism be-

cause p\NΌ (Ί H is injective and because dimiV^ f) H = I — I. Thus,

q°(p\Nu ίΊ H)~ι is a homomorphism and the sublemma is proved, q.e.d.

From (2.33), we can determine

ax = bJnix) = bl9 α 2 = bJ2l(x) + b2f22(x) - aγf2l{x) + b2

and inductively bu 1 < i < I — 1, hence also 6̂  by sublemma (2.34), are

expressed as linear combinations of α/s whose coefficients are polynomials

in x. Therefore yr — y + linear combination of α/s whose coefficients are

polynomials in x. The operation of w — Σ L i aίeί e^u o n WΉ C G/iϊ is

written in terms of coordinate system (y, x) (y, x) H> (y\ x') — (y + linear

combination of α/s whose coefficients are polynomial in x, x). Therefore,

for an appropriate n the operations of T, s(Ga), V, Nv (hence of G = ((NU9

V)s(Ga))T) is contained in the ^-automorphism group in Proposition (2.18)

and Lemma (2.27) is proved.

Case (C-intr). G is generically intransitive.

Let (G, X) be a realization of G. Then by Theorem 2, p. 407, Rosenlicht

[7], there exists a morphism (φ, / ) : (G, X) -> (1, V) of law chunks of algebraic

operation such that dim V — 1 and / is dominant. By the Lύroth theorem,

V is rational. Replacing X by an open subset of X, we may assume (φ, f)

is a morphism of algebraic operations and V is non-singular.

This case is divided into two subcases: (i) G is reductive, (ii) G is

not reductive. We shall see in the second subcase G is necessarily solvable.

Bubcase (C-intr-1). G is generically intransitive and reductive.

Since the fibre of / is 1 dimensional, it follows from our assumption

and Lemma (1.22) that G is a algebraic subgroup of PGL2. Hence G is

either Gm or PGL2. If G = Gm, then by Corollaire 1, p. 521, Demazure

[3], (Gn, X) is a suboperation of (PGL,, P2). Thus, we assume G - PGL2.

Then /: X —> V is F^bundle. Since the Brauer group of a curve vanishes

(cf. Grothendieck [5]), /: X-> Vis a locally trivial Pι = bundle. Replacing

V by an open subset V and X by f~\Vf), we may assume / is trivial,

namely X ~ V X P1. Let s: V->X be a section and we choose a Borel
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subgroup B of PGL2. Let us recall the following well known facts valid

for any semi-simple group and its Borel subgroup.

(2.35.1) Any Borel subgroup of PGL2 is conjugate to the Borel

group B and the normalizer of B coincides with B itself. This gives a

1:1 correspondence

PGLJB ~^-> {Borel subgroups of PGL2} (gB > gBg'1) .

(2.35.2) The fibering given by the projection p: PGL2-^ PGLJB is

locally trivial for the Zariski topology.

Let us now consider the map F: V-^ PGLJB defined as follows; υe

V, v ι-> Ψ'1 (stabilizer at s(v)). By (2.35.2), replacing V by an open subset,

we may assume there exist a morphism F: Vy-> PGL2 such that the diagram

PGL2

is commutative. Let (1 X PGL2i V X PGLJB) == (PGL2, V X PGLJB) be the

product operation. Let /: V X PGLJB - ^ 1 be a morphism defined by

h((z, gB)) — gF(z)~ιs(z). The morphism h is well-defined and is an iso-

morphism. Then (Id, h): (PGL2, V X PGLJB) ~> (PGL2, X) is an isomorphism

of algebraic operations. Hence (G, X) is considered as a suboperation of

the operation (iii) of Theorem (2.25).

Subcase (C-intr-2). G is generically intransitive and not reductive.

Let U be the unipotent radical of G. By Theorem 2, p. 407, Rosenlicht

[7] we may assume there exist a non-singular rational curve V and a

morphism of algebraic operations (1,/): (U, X) -> (1, V) such that the fibres

of / are [/-orbits and / is faithfully flat. Hence the fibres of / are iso-

morphic to A1. Since U is normal, the operation of G respects the fibra-

tion /: X -* V. As the dimension of G-orbits 1, G operates trivially on V.

Therefore we get a morphism of algebraic operations (1, / ) : (G, X) —> (1, V).

Let G/ be a semi-simple, closed, connected subgroup of G. Then, by Lemma

(1.21) Gf is a subgroup of Aut A1 which is solvable. Hence G7 = 1 and G

is solvable. By Lemma (1.21), the rank of G < 1. Since the unipotent

part U of respects the fibration /: X-+ V whose fibre is A\ the operation

of U on each fibre of / is abelian and hence U is abelian. Consequently,
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U is isomorphic to Gfr for a certain integer r. By Theorem 10, p. 426,

Rosenlicht [9], we may assume / is trivial i.e., X = V X A\ Taking V

smaller, we may assume V is non-singular and affine. To define an

operation of Gfr on X respecting the fibering / is equivalent to giving a

morphism of group schemes over V, V X Gfr -* Autκ V X A1 = V X Aut A1

and hence a morphism of group schemes over V, V X Gfr -> V X Ga.

Therefore, there is a 1:1 correspondence:

{operations of Gfr on X respecting the fibrations /} <^->

t
Hoπv_ g r o u p s c h e m e (V X Gf% VχGa)~ H°(V, Ov)®r .

Hence there exist f19f29 Jr e H\V, Ov) such that the operation of Gfτ

= U on V X A1 is given by (x, y) *->(x,y + ΣiUi ctifd for (α,, α2, , ar) e

G®r. To normalized this operation, let V be the non-singular compactifi-

cation of V so that V ^ P1. Let {Plf P2, , P J = V - V. As a local

coordinate on V, we take a global coordinate on A1 = V — Ps. Let g e

H°(V, Ov) such that g~ι is also regular on V and such that gfteH\V —

Ps> Ov-p) for 1 < i < r. If we twist the coordinate y by (x, y) »-* (x, ̂ (x)w),

the operation of £7 = <7®r becomes (x, y) -> (x, y + ΣΓ=i <*ig(*)fi%) and hence

[/ is a suboperation of Proposition (2.20) for suitable n. It remains to

control the operation of Gm(czG) on the fibre. To define a Gm operation

on V X A1 respecting the fibration is equivalent to giving a morphism of

group schemes over V, V X Gm -> AutF V X A1 — V X Aut A1. Since any

1 dimensional torus in Aut A1 is conjugate to a fixed 1 dimensional torus,

to define a Gm operation on V X A1 is equivalent to give a morphism

V-> Aut ΛVNormalizer of Gm = Aut 47<7m ^ 41. As Aut Λ1 -> Aut ^VGm

has a section, we may assume as in (C-intr-1). If we change the co-

ordinate by (x,y)»(x,y + f(x)) for a certain feH°(V,Ov), the Gm{dG)
operation is given by (x, y) >-> (x, ty) for teGm. Since the coordinate change

(x, y) h-> (x, y + /(x)) does not affect the operation of £7 = GΘr, G is a sub-

operation of Proposition (2.20) for a suitable n. This completes the clas-

sification in Case (C-intr), hence the proof of Theorem (2.25).

As a concluding remark, let us notice the maximal connected algebraic

groups in Cr2 are related to the relatively minimal models of the rational

surfaces. The homogeneous space Gin)/Hin) is an ΛP-bundle over G(n)/

Un+1H™ = P1. Since the SL2-orbit SL2- Un+1H
W = SLJB = P\ the ^-bundle

G^jHw -> G™IUn+1H™ = P1 has a section hence the ^-bundle is a line
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bundle. It is easy to see G{n)/Hw is isomorphic to V(Θpi(n)) over Pι and

(G(n), V(ΘPι{n))) is equivariantly completed to (Aut° Fn, Fn) where Fn =

Piβpx θ (9Pi(n)). Since Fn is projective, Aut° Fn is an algebraic group. By

the maximality of G(n) in Cr2, G(n) = Aut° Fn. The rational surfaces P\

Fn(n > 2), PGLJB X PGLJB = P 1 χ P 1 are exactly relatively minimal

models of rational surfaces. We have proved

THEOREM (2.36). The maximal connected algebraic groups in Cr2 are

exactly the connected components of 1 of the automorphism groups of the

relatively minimal models of rational surfaces.
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