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SUBGROUPS OF ELLIPTIC ELEMENTS OF THE CREMONA

GROUP

CHRISTIAN URECH

Abstract. The Cremona group is the group of birational transformations of
the complex projective plane. In this paper we classify its subgroups that
consist only of elliptic elements using elementary model theory. This yields in
particular a description of the structure of torsion subgroups. As an appliction,
we prove the Tits alternative for arbitrary subgroups of the Cremona group,
generalizing a result of Cantat. We also describe solvable subgroups of the
Cremona group and their derived length, refining results from Déserti.
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1. Introduction and results

1.1. Subgroups of elliptic elements. To a complex projective surface S one can
associate its group of birational transformations Bir(S). This group is particularly
rich and interesting when S is rational. In this case it is isomorphic to the Cremona
group Cr2(C) := Bir(P2

C).
Groups of birational transformations of surfaces have been studied for more

than 150 years and much progress has been achieved in the last decades. One
of the key techniques for studying their group theoretical properties has been an
action by isometries on an infinite dimensional hyperbolic space H∞(S), which we
can associate to every projective surface S. Recall that there are three types of
isometries of hyperbolic spaces:

• elliptic isometries, which are the isometries that fix a point in H∞(S),
• parabolic isometries, which are the isometries that do not fix any point in
H∞(S), but fix exactly one point in the boundary ∂H∞(S),

• loxodromic isometries, which are the isometries that do not fix any point
in H

∞(S), but fix exactly two points in ∂H∞(S).

We call an element f ∈ Bir(S) elliptic, parabolic or loxodromic, if the isometry of
H

∞(S) induced by f is elliptic, parabolic or loxodromic respectively. This notion is
linked to the dynamical behavior of f . Let H be an ample divisor on S, the degree
degH(f) ∈ Z+ of f with respect to H is defined by

degH(f) = f∗H ·H,

where f∗H is the total transform of H under f . An element f ∈ Bir(S) is el-
liptic if and only if there exists an ample divisor H on S such that the sequence
{degH(fn)}n∈Z+

is bounded and in this case the boundedness also holds for any
other ample divisor (see Theorem 2.1). By deg(f) we denote the degree of f with
respect to the class of a line in P

2.
In this paper we consider subgroups consisting only of elliptic elements - a class

of subgroups that has not been understood very well so far.

Definition 1.1. A group G ⊂ Bir(S) is a group of elliptic elements if every element
in G is elliptic.

A particular case of subgroups of elliptic elements are bounded subgroups:

Definition 1.2. A group G ⊂ Bir(S) is bounded if there exists a constant K such
that deg(g) ≤ K for all elements g ∈ G.

In [Bla09], Blanc showed that every bounded subgroup is contained in a maximal
bounded subgroup and gave a full classification of maximal bounded subgroups of
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Cr2(C) (these are exactly the maximal algebraic subgroups, see Section 4). However,
not all groups of elliptic elements in Cr2(C) need to be bounded, as the following
two examples show:

Example 1.1. Let G ⊂ Cr2(C) be the group of elements of the form (x, y+ p(x)),
where p(x) ∈ C(x) is a rational function. Then every element in G is elliptic, but
G contains elements of arbitrarily high degrees.

Example 1.2. In [Wri79], Wright constructs examples of torsion subgroups of
Aut(A2), and hence in particular of Cr2(C), that contain elements of arbitrarily high
degree. In fact, he shows that there is a subgroup G of Cr2(C) that is isomorphic to
the subgroup of roots of unity in C

∗ but that is not bounded. In [Lam01a], Lamy
shows that some of the examples of Wright do not preserve any fibration.

The group in Example 1.1 preserves a rational fibration and the group in Exam-
ple 1.2 is a torsion group. Our main result shows that every subgroup of elliptic
elements of Cr2(C) that is not bounded has one of these properties:

Theorem 1.3. Let G ⊂ Cr2(C) be a subgroup of elliptic elements. Then one of
the following is true:

(1) G is a bounded subgroup;
(2) G preserves a rational fibration;
(3) G is a torsion subgroup.

In the case of non-rational surfaces, an analogue to Theorem 1.3 is not hard to
prove. We will show:

Theorem 1.4. Let S be a non-rational complex projective surface and G ⊂ Bir(S) a
subgroup of elliptic elements. Then G is bounded or G preserves a rational fibration.

1.2. Torsion subgroups. Example 1.2 shows that certain torsion groups can be
embedded into Cr2(C) in such a way that they are neither bounded nor preserve
any fibration. However, the group-structure of torsion subgroups is not more com-
plicated than the group structure of bounded groups:

Theorem 1.5. Let G ⊂ Cr2(C) be a torsion subgroup. Then G is isomorphic to a
bounded subgroup of Cr2(C). Moreover, G is isomorphic to a subgroup of GL48(C).

The main tool to prove Theorem 1.5 will be the compactness theorem of Malcev
from model theory (Section 6.1).

The following corollary is a direct consequence of Theorem 1.5. It can be seen
as an analogue of the Theorem of Jordan and Schur:

Corollary 1.6. There exists a constant K such that every torsion subgroup of
Cr2(C) contains a commutative normal subgroup of index ≤ K.

Remark 1.1. The constant K in Corollary 1.6 can be bounded explicitely, for
instance with the help of a theorem of Schur ([CR62, p.258]).

1.3. The Tits alternative. In a next step we will illustrate how Theorem 1.3
and Theorem 1.5 can be used to prove structure theorems on general subgroups of
Cr2(C). Recall the following definition:

Definition 1.3.

(1) A group G satisfies the Tits alternative if every subgroup of G is either
virtually solvable or contains a non-abelian free subgroup.
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(2) A group G satisfies the Tits alternative for finitely generated subgroups if
every finitely generated subgroup ofG either is virtually solvable or contains
a non-abelian free subgroup.

Tits showed that linear groups over fields of characteristic zero satisfy the Tits
alternative and that linear groups over fields of positive characteristic satisfy the
Tits alternative for finitely generated subgroups ([Tit72]). Other well-known ex-
amples of groups that satisfy the Tits alternative include mapping class groups of
surfaces ([Iva84]), Out(Fn), the outer automorphism group of the free group of finite
rank n ([BFH00]), or hyperbolic groups in the sense of Gromov ([Gro87]). Lamy
showed that the Tits alternative holds for Aut(A2

C) using its amalgamated product
structure that is given by the Theorem of Jung and van der Kulk and Bass-Serre
theory ([Lam01b]). In [Can11a], Cantat established the Tits alternative for finitely
generated subgroups of Cr2(C) as part of a series of profound results about the
group structure of the plane Cremona group, which he deduces from the action of
Cr2(C) by isometries on H∞(P2). The main obstacle to generalize the theorem of
Cantat to arbitrary subgroups was caused by unbounded groups of elliptic elements
that do not preserve any fibration. At this point, Theorem 1.3 steps in. It turns
out that it yields the results needed to generalize the result of Cantat:

Theorem 1.7. Let S be a complex compact Kähler surface. Then Bir(S) satisfies
the Tits alternative.

1.4. Solvable subgroups. In [Dés15], Déserti gives a description of solvable sub-
groups of Cr2(C). Theorem 1.3 and 1.5 refine her results. We will moreover com-
plement them with the following observation:

Theorem 1.8. The derived length of a solvable subgroup of Cr2(C) is at most 8.

For each n ∈ Z+ there exists an N ∈ Z+ such that every solvable subgroup
of GLn(C) has derived length ≤ N . This result seems to go back to Zassenhaus.
Theorem 1.8 can thus be seen as an analogue to this result.

Remark 1.2. In [New72] Newman shows that every solvable subgroup of GL2(C)
and hence of PGL2(C) is of derived length ≤ 4 and that this bound is sharp. It
follows that every solvable subgroup of the de Jonquières subgroup (see Section 2.5),
which is isomorphic to PGL2(C)⋉PGL2(C(t)), is of derived length ≤ 8. However,
it is not clear whether this bound is sharp. We will see in the proof of Theorem 1.8
that solvable subgroups of Cr2(C) that are not subgroups of PGL2(C)⋉PGL2(C(t))
are of derived length at most 6.

In [FP16], Furter and Poloni show that the maximal derived length of a solvable
subgroup of Aut(A2

C) is 5 (and that this bound is optimal).

1.5. Acknowledgements. I express my warmest thanks to my PhD-advisors Jérémy
Blanc and Serge Cantat for sharing their beautiful view on the Cremona group with
me and for their constant support and helpful guidance. I also thank Michel Brion
and Ivan Cheltsov for many helpful comments.

2. Preliminaries

2.1. The plane Cremona group. The aim of this chapter is to gather some
results we need for our purposes. Most of the times we will refer to other sources
for the proofs.
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2.2. The bubble space. Let S be a smooth projective surface. The bubble space
B(S) is, roughly speaking, the set of all points that belong to S or are infinitely
near to S. More precisely, B(S) can be defined as the set of all triples (y, S′, π),
where S′ is a smooth projective surface, y ∈ S′ and π : S′ → S a birational mor-
phism, modulo the following equivalence relation: A triple (y, S′, π) is equivalent
to (y′, S′′, π′) if there exists a birational transformation ϕ : S′′

99K S′ that restricts
to an isomorphism in a neighborhood of y, maps y to y′ and satifies π′ ◦ ϕ = π. A
point p ∈ B(S) that is equivalent to (x, S, id) is called a proper point of S. All points
in B(S) that are not proper are called infinitely near. If there is no ambiguity, we
will denote a point in the bubble space by y instead of (y, S′, π).

Let f : S1 99K S2 be a birational transformation. By Zariski’s theorem (see
[Bea96, Corollary II.12]) we can write f = π2◦π

−1
1 , where π1 : S3 → S1, π2 : S3 → S1

are finite sequences of blow ups. We may assume that there is no (−1)-curve in S3

that is contracted by both, π1 and π2. The base-points B(f) of f are the points
in B(S) that are blown up by π1. The proper base-points are sometimes called
indeterminacy points of f .

A birational morphism π : S → S′ induces a bijection (π1)• : B(S) → B(S′) \
B(π−1) by sending a point represented by (x, S, ϕ) to the point represented by
(x,X, π ◦ϕ). A birational transformation of smooth projective surfaces f : S 99K S′

induces a bijection f• : B(S)\B(f) → B(S′)\B(f−1) by f• := (π2)• ◦ (π1)
−1
• , where

π1 : S
′′ → S, π2 : S

′′ → S′ is a minimal resolution of f .

2.3. An infinite dimensional hyperbolic space. Let S be a smooth complex
projective surface and denote by NS(S) its Néron-Severi group, which is a finitely
generated free abelian group. Its rank ρ(X) is called the Picard number. By the
Hodge index theorem, the signature of the intersection form on NS(S) has signature
(1, ρ(X)− 1).

The pull-back of a birational morphism π : S′ → S yields an injection of NS(X)
into NS(Y ). The morphism π : Y → X can be written as a finite sequence of
blow-ups. Let e1, . . . , ek ⊂ Y be the classes of the irreducible components of the
exceptional divisor of π, i.e. the classes contracted by π. Then we have a decompo-
sition

(1) NS(Y ) = NS(X)⊕ Z e1 ⊕ · · · ⊕ Z ek,

which is orthogonal with respect to the intersection form.
Let π1 : S1 → 1 and π2 : S2 → S be birational morphisms of smooth projective

surfaces. We say that π1 is above π2 if π−1
2 ◦ π1 is a morphism. In other words,

π1 lies above π2 if all the points that are blown up by π2 are also blown up by
π1. For any two birational morphisms π1 : S1 → X and π2 : S2 → X there exists a
birational morphism π3 : S3 → X that lies above π1 and π2. Consider the set of all
birational morphisms of smooth projective surfaces π : Y → X . Our remark shows
that the corresponding embeddings of the Néron-Severi groups π : NS(S′) → NS(S)
form a directed family, so the direct limit

Z(S) := lim
π : S′→S

NS(S′)

exists. It is called the Picard-Manin space of S. The intersection forms on the
groups NS(S′) induce a quadratic form on Z(X) of signature (1,∞).
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Let p ∈ B(S) be a point in the bubble space of S and denote by ep the divisor
class of the exceptional divisor of the blow-up of p in the corresponding Néron-
Severi group, i.e. ep can be seen as a point in Z(X). From Equation 1 one deduces
that the Picard-Manin space has the following decomposition

Z(S) = NS(S)⊕
⊕

p∈B(X)

Z ep.

Moreover, ep · ep = −1 and ep · eq = 0 for all p 6= q, as well as ep · l = 0 for all
l ∈ NS(S).

Let Z(S) be the completion of the real vector space Z(S) ⊗ R obtained in the
following way:

Z(S) := {v +
∑

p∈B(S)

apep | v ∈ NS(X)⊗ R, ap ∈ R,
∑

p∈B(S)

a2p <∞}.

The intersection form extends continuously to a quadratic form on Z(S) with sig-
nature (1,∞). Let e0 ∈ Z(S) be a vector that corresponds to an ample class. We
define H∞(S) to be the set of all vectors v in Z(S) such that v ·v = 1 and e0 ·v > 0.
This yields a distance d on H∞(S) by

d(u, v) := arccosh(u · v).

It turns out that H∞(S) with the metric d is a complete metric space that is
hyperbolic. The boundary ∂H∞(S) ofH∞(S) consists of the one-dimensional vector
subspaces in the light cone, i.e. the cone of isotropic vectors with respect to the
intersection form.

To an isometry h of H∞(S) we associate L(h) := inf{d(h(p), p) | p ∈ H
∞(S)}.

If L(h) = 0 and the infimum is attained, i.e.h has a fixed point in H∞(S), then h
is called elliptic. If L(h) = 0 but the infimum is not attained, we call h parabolic.
It can be shown that a parabolic isometry fixes exactly one point p on the border
∂H∞(S). If L(h) > 0 we call h loxodromic. In this case the set

{p ∈ H
∞(S) | d(h(p), p) = L(h)}

is a geodesic line in H
∞(S). It is called the axis Ax(h) of h and L(h) is called the

translation length. A loxodromic isometry has exactly two fixed points in ∂H∞,
one of them attractive and the other repulsive (see [Can11a]).

Often, we will just write H∞ and ∂H∞ instead of H∞(S) and ∂H∞(S) if it is
clear from the context, over which surface we are working.

A birational morphism f : S′ → S of smooth projective surfaces induces an
isomorphism f∗ : Z(S′) → Z(S). Let NS(S′) = NS(S)⊕ Z ep1

⊕ · · · ⊕ Z epn
, where

p1, . . . , pn ∈ B(X) are the points blown up by f and epi
is the irreducible component

in the exceptional divisor that is contracted to pi. The map f∗ is then defined by
f∗(ep) = ef•(p) for all p ∈ B(S′), f∗(epi

) = epi
and f∗(D) = D for all D ∈

NS(S) ⊂ NS(S′) (where the inclusion is given by the pull back of f). A birational
map f : S′

99K S induces an isomorphism f∗ : Z(S′) → Z(S), which is defined by
f∗ = (π2)∗ ◦ (π1)

−1
∗ , where π1 : S

′′ → S′, π2 : S
′′ → S′ are birational morphisms

such that f = π2 ◦ π
−1
1 .

Now assume that f ∈ Bir(S). Then f∗ yields an automorphism of Z(S) ⊗
R, which extends to an automorphism of the completion Z(S) and preserves the
intersection form. This automorphism thus preserves the hyperboloid H

∞(S) and
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it induces an isometry on H∞(S). This gives an action by isometries of Bir(S)
on H∞(S).

We refer to [Man86], where this construction was developed for the first time
and [Can11a] for details and proofs.

An element f ∈ Bir(S) is called elliptic, if the corresponding isometry on H
∞(S)

is elliptic, parabolic if the corresponding isometry is parabolic and loxodromic if
the corresponding isometry is loxodromic. The axis Ax(f) of a loxodromic element
f ∈ Bir(S) is the axis in H∞(S) of the isometry of H∞(S) corresponding to f .

2.4. Degrees and types. The importance of the action of Bir(S) by isometries on
H∞(S) is a result of the following correspondence between the dynamical behavior
of a birational transformation f of S, in particular its degree, and the type of the
induced isometry on H∞(S):

Theorem 2.1 (Gizatullin; Cantat; Diller and Favre). Let S be a complex smooth
projective surface with a fixed polarization H and f ∈ Bir(X). Then one of the
following is true:

(1) f is elliptic, the sequence {degH(fn)} is bounded and there exists a k ∈
Z+ and a birational map ϕ : S 99K S′ to a smooth projective surface S′

such that ϕfkϕ−1 is contained in Aut0(S′), the neutral component of the
automorphism group Aut(S′).

(2a) f is parabolic and degH(fn) ∼ cn for some positive constant c and f pre-
serves a rational fibration, i.e. there exists a smooth projective surface S′,
a birational map ϕ : S 99K S′, a curve B and a fibration π : S′ → B, such
that a general fiber of π is rational and such that ϕfϕ−1 permutes the fibers
of π.

(2b) f is parabolic and degH(fn) ∼ cn2 for some positive constant c and f
preserves a fibration of genus 1 curves, i.e. there exists a smooth projective
surface S′, a birational map ϕ : S 99K S′, a curve B and a fibration π : S′ →
B, such that ϕfϕ−1 permutes the fibers of π and such that π is an elliptic
fibration.

(3) f is loxodromic and degH(fn) = cλ(f)n +O(1) for some positive constant
c, where λ(f) is the dynamical degree of f . In this case, f does not preserve
any fibration.

A first main step towards Theorem 2.1 has been done by Gizatullin in [Giz80]
(see as well [Gri16]), where he classified parabolic automorphisms of surfaces. In
[DF01], Diller and Favre proved the main result about the possible degree growths
(see also [Fav10]).

Let us also recall the following result, which we will use later:

Theorem 2.2 ([Can11a, Theorem 6.6]). Let G ⊂ Cr2(C) be a subgroup. If G does
not contain any loxodromic element, then G fixes a point in H∞ ∪∂H∞.

2.5. The de Jonquières subgroup. A fibration of a surface S is a rational map
π : S 99K C, where C is a curve such that the general fibers are one-dimensional.
We will identify two fibrations π1 : S 99K C and π2 : S 99K C′ with each other if
there exists an open dense subset U ⊂ S that is contained in the domain of π1
and π2 such that the restrictions of π1 and π2 to U define the same set of fibers.
We say that a group G ⊂ Bir(S) preserves a fibration π if G permutes the fibers,
i.e. there exists a rational G-action on C such that π is a G-equivariant map. A
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rational fibration of a rational surface S is a rational map π : S 99K P
1 such that

the general fiber is rational. Recall that, by a Theorem of Noether and Enriques,
there exists a birational map ϕ : C × P

1
99K X such that π ◦ ϕ is the projection

onto the first factor. In other words, up to birational transformations there exists
just one rational fibration of P2.

Definition 2.1. The de Jonquières subgroup J of Cr2(C) is the subgroup of ele-
ments that preserve the pencil of lines through the point [0 : 0 : 1] ∈ P

2.

With respect to affine coordinates [x : y : 1] an element of J is of the form

(x, y) 799K

(

ax+ b

cx+ d
,
α(x)y + β(x)

γ(x)y + δ(x)

)

,

where

(

a b
c d

)

∈ PGL2(C) and

(

α(x) β(x)
γ(x) δ(x)

)

∈ PGL2(C(x)). This induces

an isomorphism

J ≃ PGL2(C)⋉ PGL2(C(x)).

Every subgroup of Cr2(C) that preserves a rational fibration is conjugate to a
subgroup of J .

2.6. Halphen surfaces. Consider two smooth cubic curves C and D in P
2. Then

C and D intersect in 9 points p1, . . . , p9 and there is a pencil of cubic curves passing
through these 9 points. By blowing up p1, . . . , p9, we obtain a rational surface X
with a fibration π : X → P

1 whose fibers are genus 1 curves. More generally, we
can consider a pencil of curves of degree 3m for any m ∈ Z+ and blow up its base-
points to obtain a surface X . Such a pencil of genus 1 curves is called a Halphen
pencil and the surface X a Halphen surface of index m. A surface X is Halphen if
and only if the linear system | −mKX| is one-dimensional, has no fixed component
and is base-point free. Up to conjugacy by birational maps, every pencil of genus
1 curves of P2 is a Halphen pencil and Halphen surfaces are the only examples of
rational elliptic surfaces. We refer to [CD12] and [IS96, Chapter 10] for proofs and
more details. A subgroup G of Cr2(C) that preserves a pencil of genus 1 curves
is therefore conjugate to a subgroup of the automorphism group of some Halphen
surface by the following lemma:

Lemma 2.3. Let X be a Halphen surface and f ∈ Bir(X) a birational transforma-
tion that preserves the Halphen pencil, then f ∈ Aut(X).

Proof. Since the Halphen pencil is defined by a multiple of −KX , the class of the
anticanonical divisor, every birational transformation of a Halphen surface that
preserves the Halphen fibration, preserves KX , the class of the canonical divisor.
Assume that f is not an automorphism and let Z be a minimal resolution of inde-
terminacies of f and π, η : Z → X such that f = π ◦ η−1. We have

η∗(KX) +
∑

Ei = KZ = π∗(KX) +
∑

Fi,

where the Ei and Fi are the total pull-backs of the exceptional curves; in particular,
E2

i = −1, F 2
i = −1 and EiEj = 0, FiFj = 0 for i 6= j. Since f preserves KX , we

have that η∗(KX) = π(KX) and hence
∑

Ei =
∑

Fi. Note that
∑

Ei contains at
least one (−1)-curve Ek. Hence Ek · (

∑

Ei) = −1 = Ek · (
∑

Fi). But this implies
that Ek is contained in the support of

∑

Fi, which contradicts the minimality of
the resolution. �
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The automorphism groups of Halphen surfaces are studied in [Giz80] and in
[CD12], see also [Gri16]. We need the following result, which can be found in
[CD12, Remark 2.11]:

Theorem 2.4. Let X be a Halphen surface. Then there exists a homomorphism
ρ : Aut(X) → PGL2(C) with finite image such that ker(ρ) is an extension of an
abelian group of rank ≤ 8 by a cyclic group of order dividing 24.

We also recall the following result from [Can11a]:

Lemma 2.5. Let G ⊂ Cr2(C) be a group that does not contain any loxodromic
element but contains a parabolic element. Then G is conjugate to a subgroup of the
de Jonquières group J or to a subgroup of Aut(Y ), where Y is a Halphen surface.

Proof. By Theorem 2.2, G fixes a point q ∈ H∞ ∪∂H∞. Let f ∈ G be a parabolic
element. By definition, f has no fixed point in H∞ and a unique fixed point
p ∈ ∂H∞. It follows that p = q. By Theorem 2.1, there exists a birational map
ϕ : P

2
99K Y , a curve C and a fibration π : Y → C such that ϕfϕ−1 permutes the

fibers of π. In particular, ϕfϕ−1 preserves the divisor class of a fiber F of π. Being
the class of a fiber, F has self-intersection 0. The point A ∈ Z(P2) corresponding to
F satisfies therefore A ·A = 0 and we obtain that p ∈ ∂H∞ corresponds to the line
passing through the origin and A. It follows that every element in G fixes A and
hence that every element in G preserves the divisor class of F , i.e. every element in
ϕGϕ−1 permutes the fibers of the fibration π : Y → C. If the fibration is rational,
G is conjugate to a subgroup of J . If it is a fibration of genus 1 curves, there exists
a Halphen surface Y such that G is conjugate to a subgroup of Bir(Y ) and such
that G preserves the Halphen fibration. By Lemma 2.3, G is therefore contained in
Aut(Y ). �

2.7. The Zariski topology and algebraic subgroups. Let S be a complex
projective variety. Then the group Bir(S) can be equipped with the Zariski topology,
which we will now briefly recall. Let A be an algebraic variety and

f : A×X 99K A×X

a birational map of the form (a, x) 799K (a, f(a, x)) that induces an isomorphism
between open subsets U and V of A × X such that the projections from U and
from V to A are both surjective. In this way we obtain for each a ∈ A an element
of Bir(X) defined by x 7→ π2(f(a, x)), where π2 is the second projection. Such
a map A → Bir(X) is called a morphism or family of birational transformations
parametrized by A. The Zariski topology on Bir(X) is defined as the finest topology
such that all morphisms f : A→ Bir(X) for all algebraic varieties A are continuous
with respect to the Zariski topology on A.

An algebraic subgroup of Bir(X) is the image of an algebraic group G by a
morphism G→ Bir(X) that is an injective group homomorphism. Algebraic groups
are closed in the Zariski topology and of bounded degree in the case of Bir(X) =
Crn(C). Conversely, closed subgroups of bounded degree in Crn(C) are always
algebraic subgroups with a unique algebraic group structure that is compatible
with the Zariski topology (see [BF13]). In [BF13], it is shown moreover, that all
algebraic subgroups of Crn(C) are linear.

The sets Crn(C)≤d ⊂ Crn(C) consisting of all birational transformations of de-
gree ≤ d are closed with respect to the Zariski topology. Hence the closure of a
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subgroup of bounded degree in Crn(C) is an algebraic subgroup. Every algebraic
subgroup of Cr2(C) is contained in a maximal algebraic subgroups and the maximal
algebraic subgroups have been classified. We will discuss this classification in detail
in Section 4. From this classification one deduces in particular, that every bounded
subgroup can be regularized, i.e every bounded subgroup is conjugate to a group of
automorphisms of some projective surface. This last fact is true in all dimensions,
by a Theorem of Weil ([Wei55]).

Lemma 2.6. Let G ⊂ Cr2(C) be a group that fixes a point in H∞. Then the degree
of all elements in G is uniformly bounded and there exists a smooth projective va-
riety X and a birational transformation ϕ : P

2
99K X such that ϕGϕ−1 ⊂ Aut(X).

Proof. Let p ∈ H∞ be the fixed point of G and denote by e0 ∈ H∞ the class
of a line in P

2. Let g ∈ G be arbitrary. Since the action of G on H∞ is iso-
metric, d(g(e0), p) = d(e0, p), in particular, d(g(e0), e0) ≤ 2d(e0, p). This implies
〈g(e0), e0〉 ≤ cosh(2d(e0, p)) for all g ∈ G. As 〈g(e0), e0〉 = deg(g), the degree of
all elements in G is uniformly bounded and thus can be regularized by the above
observation. �

2.8. Tori and monomial maps. An algebraic torus of rank n is an algebraic
subgroup isomorphic to (C∗)n. The subgroup of diagonal automorphisms D2 ⊂

PGL3(C) = Aut(P2) is a torus of rank 2. All algebraic tori in Cr2(C) are of rank
≤ 2 and are conjugate in Cr2(C) to a subtorus of D2 ([BB67], [Dem70]).

An integer matrix A = (aij) ∈M2(Z) determines a rational map fA of P2, which
we define, with respect to local coordinates (x, y), by

fA = (xa11ya12 , xa21ya22).

We have fA ◦ fB = fAB for A,B ∈M2(Z) and fA is a birational transformation if
and only if A ∈ GL2(Z). This yields an injective homomorphism GL2(Z) → Cr2(C).
By abuse of notation, we will identify its image with GL2(Z). The normalizer of
D2 in Cr2(C) is the semidirect product

NormCr2(C)(D2) = GL2(Z)⋉D2.

If M ∈ GL2(Z) has spectral radius strictly larger than 1, the birational map
fM is loxodromic. This yields examples of loxodromic elements that normalize
an infinite elliptic subgroup. The following theorem by Cantat shows that, up to
conjugacy, these are the only examples with this property:

Theorem 2.7 ([DP12, Appendix]). Let N be a subgroup of Cr2(C) containing at
least one loxodromic element. Assume that there exists a short exact sequence

1 → A→ N → B → 1,

where A is infinite and of bounded degree. Then N is conjugate to a subgroup of
GL2(Z)⋉D2.

In Theorem 7.1, we will generalize Theorem 2.7 to the case where A is a group
of elliptic elements.

Lemma 2.8. Let m ∈ GL2(Z) ⊂ Cr2(C) be a loxodromic monomial map and
∆2 ⊂ D2 an infinite subgroup that is normalized by m. Then ∆2 is dense in D2

with respect to the Zariski topology.
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Proof. Let ∆
0

2 be the neutral component of the Zariski-closure of ∆2. If ∆
0

2 has a

dense orbit on P
2 we are done. Otherwise, the generic orbits of ∆

0

2 are of dimension

1. Since m normalizes ∆
0

2 , it preserves its orbits. This implies in particular that m
preserves a rational fibration, which is a contradiction to m being loxodromic. �

2.9. Small cancellation. Small cancellation has been developed in various con-
texts. In [CLdC13] the authors use it to show that Cr2(C) is not simple. In this
section, we will briefly recall the results needed for our purposes.

Let ǫ, B > 0. Two geodesic lines L and L′ in H∞ are called (ǫ, B)-close, if the
diameter of the set S = {x ∈ L | d(x, L′) ≤ ǫ} is at least B, i.e. there exist two
points in S with distance at least B.

Definition 2.2. Let G ⊂ Cr2(C) be a subgroup. A loxodromic element g ∈ G is
called rigid in G if there exist ǫ, B > 0 such that for every element h ∈ G we have:
h(Ax(g)) is (ǫ, B)-close to Ax(g) if and only if h(Ax(g)) = Ax(g).

Definition 2.3. Let G ⊂ Cr2(C) be a subgroup. A loxodromic element g ∈ G
is called tight in G if it is rigid and if, for all h ∈ G, h(Ax(g)) = Ax(g) implies
hgh−1 = g or hgh−1 = g−1.

Theorem 2.9 ([CLdC13, Theorem 2.10]). Let G ⊂ Cr2(C) be a subgroup and g ∈ G
an element that is tight in G. Then every element h in 〈〈g〉〉 \ {id}, the smallest
normal subgroup of G containing g, satisfies the following alternative: Either h is
a conjugate of g or h is a loxodromic element with strictly larger translation length
than g. In particular, for n ≥ 2, g is not contained in 〈〈gn〉〉.

In [SB13], Shepherd-Barron classifies tight elements in G = Cr2(C) using Theo-
rem 2.7:

Theorem 2.10 ([SB13]). In Cr2(C) every loxodromic element is rigid. If g is
conjugate to a monomial map, then no power of g is tight. In all the other cases,
there exists an integer n such that gn is tight.

Note that if G ⊂ Cr2(C) is a subgroup and g ∈ Cr2(C) is a rigid element, then g
is rigid in G as well. The same is true for tight elements. However, there might be
loxodromic elements g ∈ G such that g is tight in G but not in Cr2(C). From the
proof of Theorem 2.10 (see [SB13, p.18]) and Lemma 2.8 the following Theorem
follows:

Theorem 2.11. Let G ⊂ Cr2(C) be a subgroup and g ∈ G a loxodromic element.
The following two conditions are equivalent:

(1) no power of g is tight in G;
(2) there is a subgroup ∆2 ⊂ G that is normalized by g and a birational trans-

formation f ∈ Cr2(C) such that f∆2f
−1 ⊂ D2 is a dense subgroup and

fgf−1 ∈ GL2(Z)⋉D2.

3. Finitely generated groups of elliptic elements

In [Can11a], Cantat studied finitely generated subgroups of elliptic elements. We
will need the following result:

Theorem 3.1 ([Can11a, Proposition 6.14]). Let Γ be a finitely generated subgroup
of elliptic elements. Then either Γ is bounded or Γ preserves a rational fibration,
i.e.Γ is conjugate to a subgroup of J .
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Example 1.2 shows that the condition that Γ is finitely generated in Theo-
rem 3.1 is necessary. It is an open question, which has been asked in [Can11a]
and [Fav10], whether there exist finitely generated groups of elliptic elements that
are not bounded.

Lemma 3.2. Let G ⊂ Cr2(C) be a group of elliptic elements. Then one of the
following is true:

(a) G preserves a fibration and is therefore conjugate to a subgroup of the de
Jonquières group J or to a subgroup of Aut(X), where X is a Halphen
surface.

(b) Every finitely generated subgroup of G is bounded.

Moreover, if G fixes a point p ∈ ∂H∞ that does not correspond to the class of a
rational fibration π : P 99K P, then we are in case (b).

Proof. By Theorem 2.2, G fixes a point p ∈ H
∞ ∪∂H∞. If p ∈ H

∞, then G is
bounded and we are done. If p ∈ ∂H∞, then either p corresponds to the class of
a general fiber of some fibration π : Y → P

1, where Y is a rational surface. In this
case, G preserves this fibration and is therefore conjugate to a subgroup of J (if the
fibration is rational) or to a subgroup of Aut(X), where X is a Halphen surface (if
the fibration consists of curves of genus 1). Or p does not correspond to the class
of a fibration. Let us prove that in this case (b) holds. Let Γ ⊂ G be any finitely
generated subgroup. By Theorem 3.1, Γ is either bounded or it preserves a rational
fibration. In the first case we are done. In the second, it follows that Γ fixes a point
q ∈ ∂H∞ that corresponds to the class of the rational fibration that is preserved
by Γ. Hence q 6= p and G therefore fixes the geodesic line through p and q. In
particular, G fixes a point in H

∞ and is therefore bounded, by Lemma 2.6. �

The Burnside problem asks whether a finitely generated torsion group is finite.
In general it has a negative answer. However, there are some important classes of
groups in which the Burnside property holds, including the Cremona group:

Theorem 3.3 (Theorem 7.7, [Can11a]). Every finitely generated torsion subgroup
of Cr2(C) is finite.

Theorem 3.1 and 3.3 are crucial for the proof of Theorem 1.5.

4. Maximal algebraic subgroups

In this section we recall some results about algebraic subgroups of Cr2(C). In
[Bla09], Blanc classified all maximal algebraic subgroups of Cr2(C) (see [Ume82],
[Enr93] for the case of maximal connected algebraic subgroups). There are 11
classes of maximal algebraic subgroups. We summarize them in Theorem 4.1. The
notions appearing in Theorem 4.1 will be recalled in the next sections.

Theorem 4.1 ([Bla09]). Every algebraic subgroup of Cr2(C) is contained in a max-
imal algebraic subgroup. The maximal algebraic subgroups of Cr2(C) are conjugate
to one of the following groups:

(1) Aut(P2) ≃ PGL3(C)
(2) Aut(P1 ×P

1) ≃ (PGL2(C))
2 ⋊ Z /2Z

(3) Aut(S6) ≃ (C∗)2 ⋊ (S3 × Z /2Z), where S6 is the del Pezzo surface of
degree 6.
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(4) Aut(Fn) ≃ C[x, y]n ⋊ GL2(C)/µn, where n ≥ 2 and Fn is the n-th Hirze-
bruch surface and µn ⊂ GL2(C) is the subgroup of n-torsion elements in
the center of GL2(C).

(5) Aut(S, π), where π : S → P
1 is an exceptional conic bundle.

(6)-(10) Aut(S), where S is a del Pezzo surface of degree 5, 4, 3, 2 or 1. In this
case, Aut(S) is finite.

(11) Aut(S, π), where (S, π) is a (Z /2Z)2-conic bundle and S is not a del Pezzo
surface. There exists an exact sequence

1 → V → Aut(S, π) → HV → 1,

where V ≃ (Z /2Z)2 and HV ⊂ PGL2(C) is a finite subgroup.

In [Bla09] one finds a more detailed description of the groups above as well as a
classification of the conjugacy classes of the maximal algebraic subgroups.

4.1. Automorphism groups of del Pezzo surfaces. Recall that a del Pezzo
surface is a smooth projective surface whose anticanonical divisor class is ample.
The degree of a del Pezzo surface S is the self-intersection number of its canonical
class. It is well-known that the degree of a del Pezzo surface is a positive integer
≤ 9. A del Pezzo surface is isomorphic to either P

2,P1 ×P
1 or to the blow-up S

of r general points in P
2. Here, general means that S does not contain a curve of

self-intersection ≤ −2. In this last case, the degree of S is exactly 9 − r. There
exists a unique isomorphism class of del Pezzo surfaces of degree 5, 6, 7 and 9, two
isomorphism classes of del Pezzo surfaces of degree 8 and infinitely many isomor-
phism classes of del Pezzo surfaces of degree 1, 2, 3 or 4 (see for example [Dol12,
Chapter 8] for proofs and references for these and other results on del Pezzo sur-
faces). Automorphism groups of del Pezzo surfaces are always algebraic subgroups
of Cr2(C) ([Bla09, Proposition 2.2.6]) and they are finite if and only if the degree
of the corresponding surface is ≤ 5.

If the degree of a del Pezzo surface S is 5, then Aut(S) = S5. A precise descrip-
ition of automorphism groups of del Pezzo surfaces of degree ≤ 4 can be found in
the tables in [DI09, Section 10]. This description yields in particular the following:

Theorem 4.2 ([DI09]). If the automorphism group of a del Pezzo surface is finite,
then it has order at most 648.

Lemma 4.3. If the automorphism group of a del Pezzo surface is finite, then it
can be embedded into GL8(C).

Proof. Let S be a del Pezzo surface such that Aut(S) is finite. This implies that
S is of degree d ≤ 5, hence S is isomorphic to the blow-up of r = 9 − d general
points p1, . . . , pr in P

2, where 4 ≤ r ≤ 8. The Néron-Severi space NS(S) ⊗ R is
therefore of dimension r+1 and has a basis [E0], [Ep1

], . . . , [Epr
], where [E0] is the

pullback of the class of a line and the [Epi
] are the classes of the exceptional lines

Epi
corresponding to the points pi. Since the self-intersection of a class [Epi

] equals
−1, the exceptional line Epi

is the only representative of [Epi
] on S. If f ∈ Aut(S)

acts as the identity on NS(S)⊗R, we obtain that f preserves the exceptional lines
Epi

for all i. Therefore, f induces an automorphism on P
2 that fixes the points

pi. But since the pi are in general position and r ≥ 4, the automorphism f is
the identity. Thus, the action of Aut(S) on NS(S) ⊗ R is faithful and we obtain
a faithful representation Aut(S) → GLr+1(C). As every element f ∈ Aut(S) fixes
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the canonical divisorKS , the one-dimensional subspace R ·KS in NS(S)⊗R is fixed.
We project to the orthogonal complement of KS in NS(S)⊗R and obtain a faithful
representation of Aut(S) into GLr(C). �

A del Pezzo surface of degree 6 is isomorphic to the surface

S6 = {((x : y : z), (a : b : c)) ∈ P
2 ×P

2 | ax = by = cz},

which is the blow-up of P2 in three general points. The group Aut(S6) is isomorphic
to (C∗)2 ⋊ (S3 × Z /2Z), where S3 acts by permuting the coordinates of the two
factors simultanously, Z /2Z exchanges the two factors and d ∈ (C∗)2 acts by
sending ((x : y : z), (a : b : c)) to (d(x : y : z), d−1(a : b : c)) (d(x : y : z) is
the standard action on P

2). In other words, Aut(S6) is conjugate to the subgroup
(S3 × Z /2Z)⋉D2 ⊂ GL2(Z)⋉D2.

Lemma 4.4. The group Aut(S6) can be embedded into GL6(C).

Proof. Consider the rational map f : P
2
99K P

6 given by

[x : y : z] 799K [x2y : x2z : y2x : y2z : z2x : z2y : xyz].

Then, the rational action of (S3×Z /2Z)⋉D2 on f(P2) extends to a regular action
on P

6 that preserves the affine space given by x6 6= 0. This yields an embedding of
(S3 × Z /2Z)⋉D2 into GL6(C).

�

Lemma 4.5. Let G ⊂ Cr2(C) be a subgroup that is conjugate to an automorphism
group of a del Pezzo surface. Then G can be embedded into GL8(C).

Proof. We prove that Aut(S) can be embedded into GL8(C) for all del Pezzo sur-
faces S. If S is a del Pezzo surface of degree 9 then S is isomorphic to P

2, so
Aut(S) = PGL3(C) ⊂ GL8(C). This corresponds to case (1) of Theorem 4.1. If
the degree of S is 8 then S is either isomorphic to F0 = P

1 ×P
1 or to F1. The

automorphism group Aut(F1) is not a maximal algebraic subgroup of Cr2(C) and
Aut(F0) = (PGL2(C))

2 ⋊ Z /2Z ⊂ GL6(C). In the case that S is a del Pezzo sur-
face of degree 7, Aut(S) is conjugate to a subgroup of Aut(P1 ×P

1). A del Pezzo
surface of degree 6 can be embedded into GL6(C), by Lemma 4.4. If the degree
of a del Pezzo surface S is ≤ 5 then Aut(S) is finite and the claim follows from
Lemma 4.3. �

4.2. Automorphism groups of rational fibrations. In this section we consider
the cases (4), (5) and (11) of Theorem 4.1.

4.2.1. Automorphism groups of Hirzebruch surfaces. In case (4) of Theorem 4.1,
the semidirect product gives a natural homomorphism ϕ : Aut(Fn) → GL2(C)/µn

whose kernel is isomorphic to C
n. The following lemma shows that all finite sub-

groups of Aut(Fn) can be embedded into PGL2(C)× PGL2(C) for all n ≥ 2:

Lemma 4.6. If n ≥ 2 is even, the group GL2(C)/µn is isomorphic as an algebraic
group to PGL2(C)×C

∗. If n is odd, then GL2(C)/µn is isomorphic as an algebraic
group to GL2(C).

Proof. Assume that n ≥ 2 is even, so n = 2k for some k ∈ Z+. Consider the
algebraic group homomorphism ϕe : GL2(C) → PGL2(C) × C

∗ given by A 7→
([A], det(A)k), where [A] denotes the class of A modulo the center of GL2(C). The
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kernel of ϕe consists of the scalar matrices of the form a · id such that det(a)k = 1;
hence, ker(ϕe) = µn. Let (M, c) ∈ PGL2(C) × C

∗. We choose a representative
A ∈ SL2(C) ⊂ GL2(C) of the class ofM and a n-th root of c in C, which we denote
by d. Then ϕe(d ·A) = (M, c). So ϕe is surjective and the claim follows.

Assume that n is odd; so n = 2k + 1 for some k ∈ Z+. Consider the algebraic
group homomorphism ϕo : GL2(C) → GL2(C) given by A 7→ det(A)kA. Let B ∈
GL2(C) and c ∈ C a n-th root of det(B)k. Then

ϕo(c
−1 · B) = c−2k−1 det(B)k · B = B,

hence ϕo is surjective. Moreover, ker(ϕo) = µn, and the claim follows. �

4.2.2. Automorphism groups of exceptional fibrations. In a next step, we consider
the case Aut(S, π), where π : S → P

1 is an exceptional fibration, i.e. case (5) of
Theorem 4.1. An exceptional fibration S is by definition a conic bundle with singular
fibers above 2n points in P

1 and with two sections s1 and s2 of self-intersection −n,
where n is an integer ≥ 2 (see [Bla09]).

The proof of the following lemma can be found in [Bla09, proof of Lemma 4.3.3].
We briefly recall the arguments of the proof.

Lemma 4.7. Let π : S → P
1 be an exceptional fibration. Then Aut(S, π) is iso-

morphic to a subgroup of PGL2(C)× PGL2(C).

Proof. There exists a birational morphism η0 : S → P
1 ×P

1 of conic bundles that
is the blow-up of 2n points for some n ≥ 1; n of them lie on one line l1 of self-
intersection 0 and the other n on another line l2 of self intersection 0 such that l1
and l2 are disjoint sections of the first projection from P

1 ×P
1 to P

1 (see [Bla09,
Lemma 4.3.1]). Let s1 and s2 in S be the strict transforms of l1 and l2 under η.
Hence, s1 and s2 are of self-intersection −n ≤ −2. The group Aut(S, π) then acts
on the set {s1, s2}, since s1 and s2 are the unique curves of self-intersection −n.
This gives an exact sequence

1 → H → Aut(S, π) →W → 1,

where W ⊂ Z /2Z and H preserves each of the sections s1 and s2. Therefore, H
is conjugate by η0 to a subgroup of Aut(P1 ×P

1) that preserves the structure of
a conic bundle, so H is conjugate to a subgroup of PGL2(C) × PGL2(C). In fact,
since H preserves the two lines l1, and l2, it is contained in PGL2(C)× C

∗ and we
can write H = G1×A, where G1 ⊂ PGL2(C) and A ⊂ C

∗. We may assume that the
2n points blown up by η0 are of the form {(pi, [0 : 1])}ni=1 and {(pi, [1 : 0])}2ni=n+1

for some pi ∈ P
1. For each i = 1, . . . , 2n, let mi ∈ C[x0, x1] be a homogeneous form

of degree 1 that vanishes on pi. Consider the birational involution of P1 ×P
1 given

by

τ : ([x0 : x1], [y0 : y1]) 99K

(

[x0 : x1], [y1

n
∏

i=1

mi(x0, x1) : y1

2n
∏

i=n+1

mi(x0, x1)]

)

.

The base-points of τ are exactly the 2n points blown up by η0, and η
−1
0 τη0 is in

Aut(S, π) and it exchanges the two sections s1 and s2. Hence W is isomorphic to
Z /2Z and τ lifts to an automorphism τ̃ := η−1

0 τη0. Since τ fixes the P
1-fibration

given by π, we obtain that τ̃ commutes with G1. Moreover, τ̃aτ̃−1 = a−1 for all
a ∈ A and it follows that A ⋊ Z /2Z can be embedded into PGL2(C). In other
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words, Aut(S, π) is of the form G1 × (A ⋊ Z /2Z) and in particular isomorphic to
a subgroup of PGL2(C)× PGL2(C) . �

4.2.3. (Z /2Z)2-conic bundles. In this section we treat case (11) of Theorem 4.1.
A conic bundle π : S → P

1 is a (Z /2Z)2-conic bundle if the group Aut(S/P1) is

isomorphic to (Z /2Z)2 and if each of the three involutions of Aut(S/P1) fixes an
irreducible curve C such that π : C → P

1 is a double covering that is ramified over a
positive even number of points. The automorphism group Aut(S, π) of a (Z /2Z)2-
conic bundle is finite and has the structure as described in Theorem 4.1. We will
need the following Lemma:

Lemma 4.8. Let G ⊂ Cr2(C) be an infinite torsion subgroup. Assume that for
every finitely generated subgroup Γ ⊂ G there exists a (Z /2Z)2-conic bundle S →
P
1 such that Γ is conjugate to a subgroup of Aut(S, π). Then every finitely generated

subgroup of G is isomorphic to a subgroup of PGL2(C)× PGL2(C).

Proof. By Theorem 3.3, every finitely generated subgroup of G is finite. Let Γ ⊂ G
be finitely generated and assume that |Γ| > 240. By assumption, Γ is conjugate to
a subgroup of Aut(S, π) for some (Z /2Z)2-conic bundle S → P

1. By Theorem 4.1
there is a short exact sequence

1 → V → Aut(S, π)
ϕ
−→ HV → 1,

where V = Aut(S/π) ≃ (Z /2Z)2 and HV ⊂ PGL2(C) is a finite subgroup. Recall
that finite subgroups of PGL2(C) are isomorphic to A5,S4,A4,Z /nZ or D2n for
n ∈ Z+ (see [Bea10]). The condition |Γ| > 240 implies that in our case HV is
dihedral or cyclic. The restriction of ϕ to Γ induces an exact sequence

1 → VΓ → Γ → HV Γ → 1,

where VΓ ⊂ V and HV Γ ⊂ PGL2(C) are finite. If VΓ is trivial, then Γ ≃ HV Γ ⊂
PGL2(C) and we are done.

Now assume that VΓ ≃ Z /2Z. If HV Γ is cyclic, i.e. isomorphic to Z /lZ for some
l ∈ Z+, then Γ is abelian and isomorphic to Z /2Z×Z /lZ or to Z /2lZ, depending
on whether Γ contains an element of order 2l or not. In both cases we are done. If
HV Γ is dihedral, i.e. isomorphic to D2l for some l ∈ Z+, the projectionD2l → Z /2Z
induces a short exact sequence

1 → Γ′ → Γ
α
−→ Z /2Z,

where Γ′ is either isomorphic to Z /2lZ or to Z /2Z×Z /lZ. Let g ∈ Γ be an
element that is not contained in Γ′. If Γ′ ≃ Z /2lZ, then conjugation by g is
multiplication by −1 and hence Γ ≃ D4l. If Γ

′ ≃ Z /2Z×Z /lZ, then g commutes
with elements from the first factor and conjugation of elements of the second factor
by g corresponds to multiplication by −1, hence Γ′ ≃ Z /2Z×D2l. In both cases,
Γ can be embedded into PGL2(C)× PGL2(C).

Finally assume that VΓ is isomorphic to (Z /2Z)2, i.e.VΓ = Aut(S/π). Let
g ∈ G be an element that is not contained in Aut(S, π). Since 〈Γ, g〉 ⊂ G is finitely
generated, there exists, by assumption, a birational transformation ϕ : S 99K S′ that
conjugates 〈Γ, g〉 ⊂ G to a subgroup of Aut(S′, π′), where π′ : S′ → P

1 is another
(Z /2Z)2-conic bundle. In particular, ϕ conjugates VΓ = Aut(S/π) to a subgroup
of Aut(S′, π′). By [Bla09, Proposition 4.4.6. (5)], the birational transformation ϕ
is an automorphism and in particular, G ⊂ Aut(S, π) which is a contradiction to G
being infinite. �
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5. Proof of Theorem 1.3

Before we prove Theorem 1.3 we gather some technical lemmas.

Lemma 5.1. Let g ∈ Cr2(C) be an algebraic element that fixes two different ratio-
nal fibrations. Then g is of finite order.

Proof. Assume that the two rational fibrations fixed by g are given by the rational
maps π1, π2 : P

2
99K P

1. We thus obtain a dominant g-invariant rational map
π : P

2
99K P

1 ×P
1 given by π = (π1, π2). Since π is of finite degree, it is locally a

finite cover, hence g must be of finite order. �

Lemma 5.2. Let G ⊂ Cr2(C) be an algebraic subgroup of dimension ≥ 9. Then G
preserves a unique rational fibration.

Proof. It follows from Theorem 4.1 that G is conjugate to a subgroup of Aut(Fn)
for some Hirzebruch surface Fn, n ≥ 2, and therefore that G preserves a rational
fibration π : Fn → P

1. As G permutes the fibers of π, we obtain a homomorphism
ϕ : G → PGL2(C) with a kernel of dimension ≥ 6. Assume that there exists a
second rational fibration π′ : Fn 99K P

1 that is preserved by G. We obtain a second
homomorphism ϕ′ : G → PGL2(C). The restriction of π′ to ker(π) has a positive
dimensional kernel. Hence, the intersection ker(ϕ)∩ker(ϕ′) is positive dimensional.
In particular, ker(ϕ)∩ker(ϕ′) contains an element of infinite order. By Lemma 5.1,
the rational maps π and π′ define the same fibration. �

Lemma 5.3. Let D ⊂ Cr2(C) be an algebraic subgroup that is isomorphic as an
algebraic group to C

∗. There exists a constant K(D) such that every elliptic element
in the centralizer CentCr2(C)(D) is of degree ≤ K(D).

Proof. After conjugation by an element h ∈ Cr2(C), we may assume that D is the
group of elements of the form (cx, y), where c ∈ C

∗. Let f = (f1(x, y), f2(x, y))
be an elliptic element centralizing D, where fi(x, y) ∈ C(x, y). The condition
(f1(cx, y), f2(cx, y)) = (cf1(x, y), f2(x, y)) implies that we can write f1(x, y) =
xg1(y) and f2(x, y) = g2(y) for some rational functions gi(y) ∈ C(y). As {deg(fn)}
is bounded, we obtain that g1(y) is constant and as a consequence that g2(y) =
a11y+a12

a21y+a22
for some matrix (aij) ∈ PGL2(C). In particular, deg(f) ≤ 2. The constant

K(D) thus only depends on the degree of the element h. �

Lemma 5.4. Let G be a group of monomial elliptic elements, i.e.G ⊂ GL2(Z) ⋉
(C∗)2 ⊂ Cr2(C). Then G is bounded.

Proof. Consider the projection π : G → GL2(Z). The kernel of π is bounded and
all elements in π(G) are elliptic. Since all elliptic elements in GL2(Z) ⊂ Cr2(C) are
of finite order, we obtain that π(G) is a torsion group. There are only finitely many
conjugacy classes of finite subgroups in GL2(Z), hence π(G) has to be finite. It
follows that G is a finite extension of a bounded subgroup, hence it is bounded. �

Lemma 5.5. Let G ⊂ Cr2(C) be a group of elliptic elements that normalizes a
semi-simple algebraic subgroup H ⊂ Cr2(C). Then G is bounded.

Proof. Since H is semi-simple, its group of inner automorphisms has finite index
in its group of algebraic automorphisms. Therefore there exists a constant N such
that for any g ∈ G, conjugation by gN induces an inner automorphism of H . Hence
there exists an element h ∈ H such that gNh centralizes H . Since H is semi-simple,
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it contains a closed subgroup D isomorphic to an algebraic group to C
∗, which is

centralized by gNh. Lemma 5.3 implies that deg(gNh) is bounded by a constant not
depending on g or on N . Since H is an algebraic subgroup, deg(h) and thus deg(g)
are also bounded independently of N and g and we obtain that G is bounded. �

Proof of Theorem 1.3. Let G ⊂ Cr2(C) be a group of elliptic elements. We know by
Lemma 3.2, that either G preserves a rational fibration, or every finitely generated
subgroup of G is bounded. In the first case we are done. In the second, we define

n := sup{dim(Γ) | Γ ⊂ G finitely generated }.

If n = 0 the group G is a torsion group and we are done. If n = ∞, let Γ ⊂ G be a
finitely generated subgroup such that Γ has dimension ≥ 9. Lemma 5.2 implies that
Γ preserves a unique rational fibration and this fibration is, again by Lemma 5.2,
preserved as well by 〈Γ, g〉 for all g ∈ G and we are done. Assume now that n is a
positive integer. Let Γ ⊂ G be a finitely generated group such that dim(Γ) = n and

denote by Γ
0
the neutral component of Γ. For any g ∈ G the group 〈Γ

0
, gΓ

0
g−1〉 is

connected and contained in the group 〈Γ, gΓg−1〉, which is finitely generated and

therefore of dimension ≤ n. This implies 〈Γ
0
, gΓ

0
g−1〉 = Γ

0
and hence that Γ

0
is

normalized by G. If Γ
0
is semi-simple we are done by Lemma 5.5. Otherwise, the

radical R of Γ
0
, i.e. its maximal connected normal solvable subgroup, is positive

dimensional. Since the radical is unique, it is preserved by automorphisms of Γ
0

and hence in particular normalized by G. Let

R = Rk ⊃ Rk−1 ⊃ · · · ⊃ R0 ⊃ 1

be the derived series of R, where R0 is the last non-trivial member. In particu-
lar, R0 is positive-dimensional and abelian. This normal series is invariant under

automorphisms of Γ
0
and hence invariant under conjugation by elements of G. In

particular, G normalizes R0. Since R0 is a bounded subgroup it is conjugate to
a subgroup of one of the groups from Theorem 4.1 and in particular, it can be
regularized. So we may assume that G ⊂ Bir(S) for a smooth projective surface S
on which R0 acts regularly. If all the orbits of R0 are of dimension ≤ 1, we obtain
that G preserves a rational fibration and we are done. Now assume that R0 has an
open orbit U . Since G normalizes R0, it acts by regular automorphisms on U . The
action of R0 is faithful, so R0 is of dimension two and therefore isomorphic to C

2,
to C

∗ ×C or to (C∗)2. If R0 is isomorphic to C
2 then U is isomorphic to the affine

plane and the action of R0 on U is given by translations. The normalizer of C2 in
Aut(C2) is the group of affine transformations GL2(C)⋉C

2, which implies that G
is bounded. If R0 is isomorphic to C

∗ ×C we obtain similarly G ⊂ Aut(C∗ ×C).
The C-fibration of C∗ ×C is given by the invertible functions, so it is preserved
by Aut(C∗ ×C). In particular, G preserves a rational fibration. Finally, if R0 is
isomorphic to C

∗ ×C
∗, then G consist of monomial transformations and Lemma 5.4

implies the claim. �

Proof of Theorem 1.4. Let S be a non-rational complex projective surface of Ko-
daira dimension −∞. Then S is ruled, i.e. it is birationally equivalent to P

1 ×C,
where C is a non-rational curve. In this case Bir(S) preserves the rational fibra-
tion given by the projection to C. In particular, all subgroups of elliptic elements
preserve a rational fibration.
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If S is a surface of non-negative Kodaira dimension, then there exists a unique
smooth minimal model S′ of S. In particular we have Bir(S) ≃ Bir(S′) = Aut(S′).
The group Aut(S′) acts by linear transformations on the cohomology of S′ and we
obtain a homomorphism ϕ : Aut(S′) → GL(NS(S′)), where NS(S′) is the Neron
Severi group of S′. The kernel of ϕ is an algebraic subgroup of Aut(S′) and hence
in particular bounded. Let G ⊂ Aut(S′) be a subgroup of elliptic elements. The
restriction of ϕ to G yields an exact sequence

1 → G′ → G→ H → 1,

where G′ is bounded and H ⊂ GL(NS(S′)). By assumption, G consists of elliptic
elements, soH is a torsion subgroup. Since finite subgroups in GLn(Z) are bounded,
we obtain that H is finite and hence that G is bounded. �

6. Proof of Theorem 1.5

In this section we will prove Theorem 1.5. The two main ingredients for our
proof is the classification of maximal algebraic subgroups (see Section 4) and the
compactness theorem from model theory, which we recall below.

6.1. The compactness theorem. The compactness theorem is a well known re-
sult from model theory. It states that a set of first order sentences has a model
if and only if each of its finite subsets has a model. The countable version of the
theorem has been proven by Gödel in 1930, the general version is due to Malcev
([Mal40]). We recall the original version as stated by Malcev:

Definition 6.1. Let {xi}i∈I be a set of variables. A condition is an expression of
the form F (xi1 , . . . , xik) = 0 or an expression of the form F1(xi1 , . . . , xik) 6= 0 ∨
F2(xik , . . . , xik ) 6= 0∨· · ·∨Fl(xi1 , . . . , xik) 6= 0, where F and the Fi are polynomials
with integer coefficients. A mixed system is a set of conditions.

Definition 6.2. A mixed system S is compatible if there exists a field k which
contains values {zi}i∈I that satisfy S.

Theorem 6.1 (Mal’cev, [Mal40]). If every finite subset of a mixed system S is
compatible, then S is compatible.

Malcev used Theorem 6.1 to deduce that if for a given group G every finitely
generated subgroup can be embedded into GLn(k) for some field k then there exists
a field k′ such that G can be embedded into GLn(k

′). Note that a priori nothing
can be said about the structure of the field k′.

6.2. Proof of Theorem 1.5. If G is finite, the group is bounded, so we assume
G to be infinite.

First we assume that every finitely generated subgroup of G is isomorphic to a
subgroup of PGL3(C). Consider the closed embedding of PGL3(C) into GL8(C)
given by the adjoint representation and let f1, . . . , fn be polynomials in the set of
variables {xij}, where 1 ≤ i, j,≤ 8, such that the image of PGL3(C) in GL8(C) is
the zero set of f1, . . . , fn. To every element g ∈ G we associate a 8 × 8 matrix of
variables

(

xgij
)

. We now construct a mixed system S consisting of the following
conditions:

(1) the equations given by the matrix product (xfij)(x
g
ij) = (xhij) for all f, g, h ∈

G such that fg = h;
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(2) for all g ∈ G \ {id} the conditions (
∨

i x
g
ii − 1 6= 0) ∨ (

∨

i6=j x
g
ij 6= 0);

(3) xidii − 1 = 0 and xidij = 0 for all 1 ≤ i, j ≤ N , i 6= j;

(4) fk({xij}) = 0 for all k = 1, . . . , n and all g ∈ G;
(5) p 6= 0 for all primes p ∈ Z+.

First we show that S is compatible. For this, it suffices to show that every finite
subset of S is compatible, by Theorem 6.1. Let c1, . . . , cn ∈ S be finitely many
conditions. There are only finitely many variables xgij that appear in c1, . . . , cn.

Denote by {g1, . . . , gl} ⊂ G the finite set of all elements g in G such that for
some 1 ≤ i, j ≤ 8 the variable xgij appears in one of the conditions c1, . . . , cn.

Consider the finitely generated subgroup Γ = 〈g1, . . . , gl〉 ⊂ G. By Theorem 3.3,
Γ is finite and has therefore, by assumption, a faithful representation to PGL3(C).
The existence of such a faithful representation implies in particular that C contains
values that satisfy the finite set of conditions c1, . . . , cn, i.e it is compatible. Hence
there exists a field k which contains values zgij for all i, j ∈ {1, . . . , 8}, and all g ∈ G

that satisfy conditions (1) to (5). First we note that char(k) = 0 because of the
conditions (5). Since G ⊂ Cr2(C), it has at most the cardinality of the continuum,
so in particular, the values {zgij} are contained in a subfield k′ of k with the same

cardinality as C, which implies that k′ can be embedded into C as a subfield. So
without loss of generality we may assume that k = C. Consider now the map
ϕ : G → PGL3(C) given by g 7→ (zgij)i,j . It is well defined, since the conditions

(3) imply ϕ(id) = id and by the conditions (1) the image of every element of G is
an invertible matrix and the conditions (4) ensure that the images are contained
in PGL3(C) ⊂ GL8(C). The conditions (1) furthermore imply that ϕ is a group
automorphism and the conditions (2) ensure that it is injective.

If every finitely generated subgroup of G can be embedded into Aut(S6) ≃
D2 ⋊ (Z /2Z×S3) we proceed similarly and obtain that G is isomorphic to a sub-
group of Aut(S6). If every finitely generated subgroup of G can be embedded into

Aut(P1 ×P
1) ≃ (PGL2(C)×PGL2(C))⋊Z /2Z, we obtain that G is isomorphic to a

subgroup of Aut(P1 ×P
1). And if for every finitely generated subgroup Γ of G there

exists a n > 0 such that Γ can be embedded into Aut(F2n) ≃ C[x, y]2n⋊GL2(C)/µ2n

it follows, by using again the same line of argument and Lemma 4.6, that G is iso-
morphic to a subgroup of GL2(C) and thus can be embedded into PGL3(C).

Now assume that G contains a finitely generated subgroup Γ1 that can not be
embedded into Aut(P2), a finitely generated subgroup Γ2 that can not be embedded
into Aut(S6), a finitely generated subgroup Γ3 that can not be embedded into

Aut(P1 ×P
1) and a finitely generated subgroup Γ4 that can not be embedded into

Aut(F2n) for all n > 0. Then the finitely generated subgroup Γ := 〈Γ1,Γ2,Γ3,Γ4〉
is not isomorphic to any subgroup of an infinite automorphism group of a del Pezzo
surface. After adding finitely many elements, we may assume that the order of Γ is
> 648 and hence Γ is not isomorphic to any subgroup of an automorphism group
of a del Pezzo surface, by Theorem 4.2 nor to subgroup of Aut(F2n) for all n > 0.
Let ∆ ⊂ G be an arbitrary finitely generated subgroup, then the finitely generated
subgroup 〈Γ,∆〉, and hence in particular ∆, is isomorphic to a subgroup of one of
the automorphism groups from case (5) or (11) from Theorem 4.1 or to a subgroup
of Aut(F2n+1) for some n > 0. Lemma 4.6, Lemma 4.7 and Lemma 4.8 imply
that ∆ is isomorphic to a subgroup of PGL2(C) × PGL2(C). Hence every finitely
generated subgroup of G is isomorphic to a subgroup of PGL2(C)× PGL2(C) and
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we can use again the compactness theorem to conclude that G is isomorphic to a
subgroup of PGL2(C)× PGL2(C) and therefore in particular of Aut(P1 ×P

1).
It remains to show that every torsion subgroup G is isomorphic to a subgroup of

GL48(C). If G is infinite, it is, by what we have shown above, isomorphic to a sub-
group of Aut(P2), Aut(P1 ×P

1), Aut(S6), or Aut(Fn) for some n ≥ 2. We observe
that, by the structure of Aut(Fn) and Lemma 4.6, all torsion subgroups of Aut(Fn)
are isomorphic to a subgroup of GL2(C) or of PGL2(C)× C

∗. Since PGL2(C) can
be embedded into GL3(C) and PGL3(C) into GL8(C), and Aut(S6) into GL6(C)
by Lemma 4.4, we obtain that G is isomorphic to a subgroup of GL8(C). Now
assume that G is finite and not contained in an infinite bounded subgroup. If G is
contained in the the automorphism group of a del Pezzo surface, it is isomorphic
to a subgroup of GL8(C) by Lemma 4.5. If G is contained in the automorphism
group of an exceptional fibration, it can be embedded into PGL2(C)×PGL2(C) by
Lemma 4.7. Moreover, in [Ure17, Lemma 6.2.12] it is shown that if G is contained
in the automorphism group of a (Z /2Z)2-fibration, then it is isomorphic to a sub-
group of GL48(C). By Theorem 4.1, these are all the possible cases. This concludes
the proof. �

7. The Tits alternative

In this section we prove Theorem 1.7. Let G ⊂ Cr2(C) be a subgroup. We
distinguish three cases:

• G contains a loxodromic element;
• G contains a parabolic element but no loxodromic element;
• G is a group of elliptic elements.

The first two cases will be treated similarly as in the proof of the Tits alternative
for finitely generated subgroups in [Can11a], whereas in the last case the Tits
alternative can be deduced from Theorem 1.3.

7.1. The loxodromic case. We first start with some preparation. The following
result is a generalization of Theorem 2.7:

Theorem 7.1. Let N be a subgroup of Cr2(C) containing at least one loxodromic
element. Assume that there exists a short exact sequence

1 → A→ N → B → 1,

where A is an infinite group of elliptic elements. Then N is conjugate to a subgroup
of GL2(Z)⋉D2.

Proof. By Theorem 2.2, A fixes a point p ∈ ∂H∞ ∪H∞. If p ∈ H∞, then A is
bounded and we are in the case of Theorem 2.7. So we may assume that p ∈ ∂H∞

and that p is the only fixed point of A in ∂H∞, since otherwise A fixes the geodesic
between p and q and again, A would be bounded.

Let f ∈ N be a loxodromic element. Since f normalizes A, we obtain that f
fixes p. Being loxodromic, f does not preserve any fibration and hence, p does not
correspond to the class of a fibration. In particular, every finitely generated group
of elliptic elements that fixes p is bounded, by Lemma 3.2. Denote by G ⊂ Cr2(C)
the subgroup of elements that fix p. Let L be the one-dimensional subspace of
Z(P2) that corresponds to p. Since G fixes p, its linear action on Z(P2) acts on L
by automorphisms preserving the orientation. This yields a group homomorphism
ρ : G→ R

∗
+. The kernel of ρ consists of elliptic elements, since loxodromic elements
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do not fix any vector in Z(P2), and G does not contain any parabolic element, as p
does not correspond to the class of a fibration. Moreover, all elliptic elements in G
are contained in ker(ρ), since 1 is the only eigenvalue of a transformation of Z(P2)
that is induced by an elliptic element (see [Can15, Section 4.1.3]). Let f ∈ G be
loxodromic; let us show that no power of f is tight. Assume the contrary, i.e. that
fn is tight in G for some n ∈ Z. By Theorem 2.9, all elements except the identity
in the normal subgroup generated by fn are loxodromic. In particular, all the
elements of the form gfng−1f−n are loxodromic, where g ∈ G is an element that
does not commute with fn (such elements exist since we assumed N ⊂ G to be
infinite and the group 〈f〉 has finite index in the centralizer of f by [BC16, Corollary
2.7]). But ρ(gfng−1f−n) = id and hence gfng−1f−n is elliptic - a contradiction.
Hence, no power of f is tight, which implies, by Theorem 2.11, that there exists a
h ∈ Cr2(C) and an algebraic subgroup ∆2 ⊂ G such that hfh−1 is monomial and
h∆2h

−1 = D2.
Let Γ ⊂ ker(ρ) be a finitely generated subgroup. Since Γ is bounded, the Zariski-

closure Γ of Γ is an algebraic subgroup of G. Let

d := sup{dim(Γ) | Γ ⊂ ker(ρ) finitely generated }.

First assume that d is finite. Since ker(ρ) contains a subgroup that is conjugate
to D2, we have d ≥ 2. Let Γ ⊂ ker(ρ) be a finitely generated subgroup such that

dim(Γ) = d and denote by Γ
0
the neutral component of the algebraic group Γ.

Let f ∈ G be any element. Note that fΓ
0
f−1 is again an algebraic subgroup and

that 〈Γ
0
, fΓ

0
f−1〉 is contained in the Zariski-closure of the finitely generated group

〈Γ, fΓf−1〉. By [Hum75, Chapter 7.5], 〈Γ
0
, fΓ

0
f−1〉 is closed and connected. Since

it is of dimension ≤ d and contains Γ
0
it equals Γ

0
, i.e. f normalizes Γ

0
. Since

Γ ∩ Γ
0
is infinite, Theorem 2.7 implies that there exists a g ∈ Cr2(C) such that

gGg−1 ⊂ GL2(Z)⋉D2 and hence in particular gNg−1 ⊂ GL2(Z)⋉D2.
Now assume that d = ∞. Let Γ ⊂ ker(ρ) be a finitely generated subgroup

such that dim(Γ) ≥ 9. By Lemma 5.2, Γ preserves a unique rational fibration
given by a rational map π : P

2
99K P

1. Let g ∈ ker(ρ) be any element. The

algebraic group 〈Γ, g〉 preserves again a rational fibration and since it contains Γ,
this fibration is given by π. It follows that ker(ρ) preserves a rational fibration,
which implies that ker(ρ) is bounded and we can apply Theorem 2.7 to conclude
that gGg−1 ⊂ GL2(Z)⋉D2 and hence in particular gNg−1 ⊂ GL2(Z)⋉D2. �

From Theorem 7.1 we can in particular draw the following results:

Lemma 7.2. Let f, g ∈ Cr2(C) be two loxodromic elements such that Ax(f) 6=
Ax(g). Then either f and g do not have a common fixed point on ∂H∞, or 〈f, g〉
contains a subgroup ∆2, and there exists an h ∈ Cr2(C) such that h〈f, g〉h−1 ⊂
GL2(Z)⋉D2 and h∆2h

−1 ⊂ D2 is a dense subgroup.

Proof. Assume that f and g have a common fixed point p ∈ ∂H∞. Let L be the
one-dimensional subspace of Z(P2) that corresponds to p. Since 〈f, g〉 fixes p, its
linear action on Z(P2) acts on L by automorphisms preserving the orientation. As
in the proof of Theorem 7.1, this yields a group homomorphism ρ : 〈f, g〉 → R

∗
+

whose kernel consists of elliptic elements. Assume that fn is tight for some n.
Since f and g have different axes the elements g and fn do not commute. By
Theorem 2.9, all elements except the identity in the normal subgroup generated by
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fn are loxodromic. In particular, gfng−1f−n is loxodromic. But ρ(gfng−1f−n) =
id and hence gfng−1f−n is elliptic - a contradiction. Hence, no power of f is
tight in 〈f, g〉, which implies, by Theorem 2.11, that there exists a h ∈ Cr2(C)
and a bounded subgroup ∆2 ⊂ 〈f, g〉 such that hfh−1 is monomial and h∆2h

−1

is a dense subgroup of D2. In particular, ker(ρ) is infinite as ∆2 ⊂ ker(ρ). The
statement now follows from Theorem 7.1. �

Lemma 7.3. Let f, g ∈ Cr2(C) be two loxodromic elements such that Ax(f) 6=
Ax(g). Then f and g do not have a common fixed point on ∂H∞.

Proof. Assume that f and g have a common fixed point in ∂H∞. By Lemma 7.2,
we may assume that 〈f, g〉 ⊂ GL2(Z) ⋉ D2 and that 〈f, g〉 contains a subgroup
∆2 ⊂ D2 that is dense in D2. We can write f = d1m1 and g = d2m2, where
d1, d2 ∈ D2 and m1,m2 ∈ GL2(Z). The group of diagonal automorphisms D2 fixes
the axes of all the monomial loxodromic elements (see [Can15, Example 7.1]). In
particular, the loxodromic transformations m1 and m2 have the same fixed points
on ∂H∞ as f and g respectively. However, the group 〈m1,m2〉 does not contain
any infinite abelian group, hence, by Lemma 7.2, the transformations m1 and m2

do not have a common fixed point on ∂H∞ - a contradiction. �

The main tool to prove the Tits alternative for subgroups of Cr2(C) containing
loxodromic elements is the so-called ping-pong Lemma:

Lemma 7.4 (Ping-pong Lemma, [dlH00, II.B.]). Let S be a set and f1, f2 two
bijections of S. Assume that there exist subsets S1 and S2 of S satisfying S1 6⊂ S2

as well as S2 6⊂ S1. If fn
1 (S1) ⊂ S2 and fn

2 (S2) ⊂ S1 for all n ∈ Z, n 6= 1, then f1
and f2 generate a non-abelian free group.

Lemma 7.5. Let G ⊂ Cr2(C) be a subgroup that contains a loxodromic element.
Then one of the following is true:

(1) G is conjugate to a subgroup of GL2(Z)⋉D2;
(2) G contains a subgroup G0 of index at most two that is isomorphic to Z⋉H,

where H is a finite group;
(3) G contains a non-abelian free subgroup.

Proof. Let f ∈ G be a loxodromic element. We consider three cases.
Case 1. First we assume that all elements in G preserve the axis Ax(f) of

f . There is a subgroup G0 ⊂ G of index at most 2 such that G0 preserves the
orientation of the axis. Hence every element g ∈ G0 translates the points on Ax(f)
by a constant cg ∈ R. This yields a group homomorphism π : G0 → R, whose kernel
is a bounded group. By Theorem 2.7, ker(π) is either finite or G is conjugate to a
subgroup of GL2(Z)⋉D2. The image of π is discrete by the gap property ( [BC16,
Corollary 2.7]) and therefore isomorphic to Z. Hence, if ker(π) is finite, we are in
case (2).

Case 2. Now assume that there is an element g ∈ G that does not preserve
Ax(f). By Lemma 7.3, G contains two loxodromic elements h1, h2 that do not have
a common fixed point in ∂H∞ and we apply the ping-pong Lemma by considering
the action of h1 and h2 on the border ∂H∞ and chosing as subsets S1 and S2 small
enough neighborhoods of the fixed points of f and g on ∂H∞. More precisely,
denote by α+ the attracting fixed point of f in ∂H∞ and by α− its repulsive fixed
point. Similarly, we denote by β+ and β− the attractive and repulsive fixed point
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of g on ∂H∞ respectively. Let S+
1 be a small neighborhood of α+ and S−

1 a small
neighborhood of α− in ∂H∞. Similarly, let S+

2 be a small neighborhood of β+ and
S−
2 a small neighborhood of β−. We may assume that S+

1 , S−
1 , S+

2 , and S−
2 are

pairwise disjoint. Let S1 := S+
1 ∪ S−

1 and S2 := S+
2 ∪ S−

2 . There exist positive
integers n1, n2, n3, n4 satisfying fn1(S2) ⊂ S+

1 , f−n2(S2) ⊂ S−
1 , gn3(S1) ⊂ S+

1 and
g−n3(S2) ⊂ S1. Define n := max{n1, n2, n3, n4}. As f(S+

1 ) ⊂ S+
1 and f−1(S−

1 ) ⊂
S−
1 as well as g(S+

2 ) ⊂ S+
2 and g−1(S−

2 ) ⊂ S−
2 , we obtain that fm(S2) ⊂ S1 and

f−m(S2) ⊂ S1 as well as gm(S1) ⊂ S2 and g−m(S1) ⊂ S2 for all m ≥ n. The two
maps fn and gn together with the sets S1, S2 therefore satisfy all the conditions
from the Ping-Pong Lemma and we obtain that fn and gn generate a non-abelian
free subgroup of G. �

Remark 7.1. We closely followed the proof from [Can11a], where Cantat shows
the Tits alternative for Cr2(C) for finitely generated groups. However, we use a
different argument to handle the case in which two loxodromic elements might
have a common fixed point on ∂H∞. The downside of the argument in [Can11a]
is that it relies on the ground field being of characteristic 0. Whereas it looks like
our approach to use Lemma 7.2 can be adapted to prove the Tits alternative for
finitely generated subgroups of Cr2(k), where k is an algebraically closed field of
arbitrary characteristic.

Remark 7.2. It seems that in the proof of the main theorem in [Dés15] it has
not been considered that a priori there could be loxodromic elements with different
axes but a common fixed point on ∂H∞ (in this case the ping-pong Lemma can not
be applied). However, Lemma 7.3 fills this gap by showing that such loxodromic
elements do not exist.

7.2. The parabolic case. Recall that a subgroup of Cr2(C) that contains no
loxodromic element, but a parabolic element always preserves a rational or elliptic
fibration (Lemma 2.5). From the structure theorems about these groups we will
deduce that subgroups of this type satisfy the Tits alternative.

Theorem 7.6 ([Can12], Proposition 6.3). Assume that we have a short exact se-
quence of groups

1 → G1 → H → G2 → 1.

If G1 and G2 satisfy the Tits alternative then H satisfies the Tits alternative.

Remark 7.3. In the published version of the paper [Can11a] there is a gap in the
proof of Theorem 7.6. However, in the version of the paper on the website of the
author [Can11b] this gap has been filled and the proof is complete.

Lemma 7.7. Let G ⊂ Cr2(C) be a subgroup that contains a parabolic element but
no loxodromic element. Then G satisfies the Tits alternative.

Proof. By Lemma 2.5, G is either conjugate to a subgroup of J or to a subgroup
of Aut(X), where Aut(X) is the automorphism group of a Halphen surface. In the
first case, the Tits alternative follows from Theorem 7.6 and the Tits alternative
for linear groups in characteristic zero, since J ≃ PGL2(C) ⋉ PGL2(C(t)). In the
second case, G is solvable up to finite index since the automorphism group of a
Halphen surface is virtually abelian by Theorem 2.4. �
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7.3. Proof of Theorem 1.7. The Tits alternative for groups of birational transfor-
mations of non-rational complex compact Kähler surfaces has already been shown
in [Can11a]. So it is enough to show it for Cr2(C). Let G ⊂ Cr2(C) be a subgroup.
If G contains a loxodromic element, then, by Lemma 7.5, G is either conjugate to
a subgroup of GL2(Z)⋉D2, in which case the the Tits alternative holds by Theo-
rem 7.6, or G is cyclic up to finite index, or G contains a non-abelian free subgroup.
Therefore, the Tits alternative holds for groups containing loxodromic elements.

For the case in which G contains a parabolic but no loxodromic element, the
Tits alternative is proven in Lemma 7.7.

Assume that all elements in G are elliptic. We thus are in one of the cases of
Theorem 1.3. All the groups from case (1) or case (3) are isomorphic to a bounded
group and hence in particular linear groups (see [BF13, Remark 2.21]). Therefore
they satisfy the Tits alternative. If G is a group from case (2) the Tits alternative
follows from Theorem 7.6. �

8. Solvable subgroups of Cr2(C)

In this section we prove Theorem 1.8. Our starting point is the following The-
orem due to Déserti. Since the proof in [Dés15] seems to contain a small gap (see
Remark 7.2), we will briefly recall the arguments and give a complete proof. More-
over, Theorem 1.3 allows us to refine the original result for the case of groups of
elliptic elements:

Theorem 8.1. Let G ⊂ Cr2(C) be a solvable subgroup, then one of the following
is true:

(1) G is a subgroup of elliptic elements, and hence isomorphic to a solvable sub-
group of J ≃ PGL2(C)⋉PGL2(C(t)) or to a solvable subgroup of a bounded
group, i.e. a solvable subgroup from one of the groups in Theorem 4.1.

(2) G is conjugate to a subgroup of J ≃ PGL2(C)⋉ PGL2(C(t)).
(3) G is conjugate to a subgroup of the automorphism group of a Halphen sur-

face.
(4) G is conjugate to a subgroup of GL2(Z)⋉D2.
(5) There is a loxodromic element f ∈ Cr2(C) and a finite group H ⊂ Cr2(C)

such that G = Z⋉H.

Proof. Let G ⊂ Cr2(C) be a solvable subgroup.
Case 1. G contains a loxodromic element. In this case the statement follows

directly from Lemma 7.5.
Case 2. G does not contain a loxodromic element, but G contains a parabolic

element. In this case G is either a subgroup of the de Jonquières group J , or G is
a subgroup of the automorphism group of a Halphen surface.

Case 3. G is a group of elliptic elements and as such isomorphic to a subgroup
of one of the groups from Theorem 1.3. �

We now use the classification of maximal algebraic subgroup (Theorem 4.1) to
calculate the solvable length of bounded subgroups. Recall that if there is an exact
sequence of groups

1 → H1 → G→ H2 → 1.

Then G is solvable if and only if H1 and H2 are solvable. Moreover, the derived
length of G is at most the sum of the derived lengths of H1 and of H2.
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Lemma 8.2. The derived length of a bounded solvable subgroup of Cr2(C) is ≤ 5.

Proof. It is enough to consider solvable subgroups of the maximal algebraic sub-
groups of Cr2(C), i.e. the subgroups described in Theorem 4.1. Denote by ψ(G) the
maximal derived length of a solvable subgroup of a group G. In [New72] it is shown
that ψ(GL3(C)) = 5 and ψ(GL2(C)) = 4. This implies that ψ(PGL3(C)) ≤ 5 and
ψ(PGL2(C)) ≤ 4 and we obtain ψ(Aut(P2)) ≤ 5, ψ(Aut(P1 ×P

1)) = ψ((PGL2(C)×
PGL2(C)) ⋊ Z /2Z) ≤ 5. Since the derived length of S3 is 2, we obtain that
ψ(Aut(S6)) = 3. From Lemma 4.6 we deduce that ψ(Aut(Fn)) ≤ 5 for all n ≥ 2.
Lemma 4.7 implies that if π : S → P

1 is an exceptional fibration, then ψ(Aut(S, π)) ≤
4 and if π : S → P

1 is a (Z /2Z)2-fibration, then ψ(Aut(S, π)) ≤ 5, by Theorem 4.1.
So it remains to consider automorphism groups of del Pezzo surfaces of degree

≤ 5, which are all finite. Let S5 be the del Pezzo surface of degree 5, then Aut(S5) =
S5 and hence ψ(Aut(S5)) ≤ 3. If S4 is a del Pezzo surface of degree 4, then
Aut(S4) ≃ T⋊H∆, whereH∆ is isomorphic to Z /2Z,Z /4Z, D6 orD10 (see [Bla09,
Section 3.4]) and hence ψ(Aut(S4)) ≤ 3. If S3 is a del Pezzo surface of degree 3 then
S3 is a cubic surface. A full list of all possible automorphism groups of cubic surfaces
can be found in [DI09, Table 4]. One checks that in all the cases ψ(Aut(S3)) ≤ 3.
If S2 is a del Pezzo surface of degree 2 then Aut(S2) ≃ Z /2Z×HS∆

, where HS∆
is

a subgroup of Aut(P2) ([Bla09, Section 3.6]). We obtain ψ(Aut(S2)) ≤ 5. The list
of groups that can appear as automorphism groups of del Pezzo surfaces of degree 1
can be found in [DI09, Table 8]. By checking all the groups that appear in the cited
table, one obtains ψ(Aut(S1)) ≤ 4 for all del Pezzo surfaces S1 of degree 1. �

Proof of Theorem 1.8. Let G ⊂ Cr2(C) be a solvable subgroup.
Case 1. First we assume thatG contains a loxodromic element. By Theorem 8.1,

G is either isomorphic to a subgroup of GL2(Z) ⋉ D2 or to a group of the form
Z⋉H , where H ⊂ Cr2(C) is finite and solvable. Every solvable subgroup of GL2(Z)
has derived length ≤ 4, hence in the first case, G has derived length ≤ 5. In the
second case, by Lemma 8.2, the derived length of H is ≤ 5 and hence the derived
length of G is ≤ 6.

Case 2. In a next step we consider the case where G does not contain a lox-
odromic element, but a parabolic element. In this case, G is either isomorphic to
a subgroup of the de Jonquières group J or to a subgroup of the automorphism
group of a Halphen surface, by Lemma 2.5. If G is isomorphic to a subgroup of the
de Jonquières group PGL2(C)⋉ PGL2(C(t)) there exists a short exact sequence

1 → H1 → G→ H2 → 1,

where H1 ⊂ PGL2(C(t)) and H2 ⊂ PGL2(C). By [New72], the derived length of
H1 and H2 is ≤ 4 and hence the derived length of G is ≤ 8. If G is isomorphic to a
subgroup of the automorphism group of a Halphen surface X , then there exists, by
Theorem 2.4, a homomorphism ρ : Aut(X) → H , where H ⊂ PGL2(C) is a finite
solvable group and as such of derived length ≤ 4. Moreover, ker(ρ) is an extension
of an abelian group by a cyclic group of order dividing 24. Hence the derived length
of G is ≤ 6.

Case 3. Finally, we consider the case where G is a group of elliptic elements.
By Theorem 1.3, G is either isomorphic to a subgroup of the de Jonquieres group
or to a subgroup of a bounded group. In the first case we proceed as above, in the
second case the claim is covered by Lemma 8.2. �
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